Sample records for scan showed multiple

  1. A preliminary study into the sensitivity of disease activity detection by serial weekly magnetic resonance imaging in multiple sclerosis.

    PubMed Central

    Lai, M; Hodgson, T; Gawne-Cain, M; Webb, S; MacManus, D; McDonald, W I; Thompson, A J; Miller, D H

    1996-01-01

    Long TR and gadolinium enhanced spin echo brain MRI was performed weekly for three months in three patients with relapsing-remitting or secondary progressive multiple sclerosis. During the study, 38 new enhancing lesions were seen; 11 showed enhancement for less than four weeks, and two enhanced on only one scan. All 16 new lesions seen on long TR scans showed initial enhancement. When only every fourth (monthly) scan was analysed, a total of 33 new enhancing lesions were seen. Subject to confirmation in a larger cohort, the results suggest: (a) that blood brain barrier leakage is an invariable event in new lesion development in relapsing-remitting and secondary progressive multiple sclerosis; (b) the small increase in sensitivity of weekly scanning does not justify its use in preference to monthly scanning when monitoring treatments. Images PMID:8609517

  2. Motor unit activity within the depth of the masseter characterized by an adapted scanning EMG technique.

    PubMed

    van Dijk, J P; Eiglsperger, U; Hellmann, D; Giannakopoulos, N N; McGill, K C; Schindler, H J; Lapatki, B G

    2016-09-01

    To study motor unit activity in the medio-lateral extension of the masseter using an adapted scanning EMG technique that allows studying the territories of multiple motor units (MUs) in one scan. We studied the m. masseter of 10 healthy volunteers in whom two scans were performed. A monopolar scanning needle and two pairs of fine-wire electrodes were inserted into the belly of the muscle. The signals of the fine wire electrodes were decomposed into the contribution of single MUs and used as a trigger for the scanning needle. In this manner multiple MU territory scans were obtained simultaneously. We determined 161 MU territories. The maximum number of territories obtained in one scan was 15. The median territory size was 4.0mm. Larger and smaller MU territories were found throughout the muscle. The presented technique showed its feasibility in obtaining multiple MU territories in one scan. MUs were active throughout the depth of the muscle. The distribution of electrical and anatomical size of MUs substantiates the heterogeneous distribution of MUs throughout the muscle volume. This distributed activity may be of functional significance for the stabilization of the muscle during force generation. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.

  3. Computed tomography of infantile hepatic hemangioendothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucaya, J.; Enriquez, G.; Amat, L.

    1985-04-01

    Computed tomography (CT) was performed on five infants with hepatic hemangioendothelioma. Precontrast scans showed solitary or multiple, homogeneous, circumscribed areas with reduced attenuation values. Tiny tumoral calcifications were identified in two patients. Serial scans, after injection of a bolus of contrast material, showed early massive enhancement, which was either diffuse or peripheral. On delayed scans, multinocular tumors became isodense with surrounding liver, while all solitary ones showed varied degrees of centripetal enhancement and persistent central cleftlike unenhanced areas. The authors believe that these CT features are characteristic and obviate arteriographic confirmation.

  4. A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes

    NASA Astrophysics Data System (ADS)

    Labadie, Nathan Richard

    Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and characterized the 2D scanning hybrid phased array demonstrating wide angle scanning with high antenna efficiency.

  5. Design and construction of a cost-efficient Arduino-based mirror galvanometer system for scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Feng; Dhingra, Shonali; D'Urso, Brian

    2017-01-01

    Mirror galvanometer systems (galvos) are commonly employed in research and commercial applications in areas involving laser imaging, laser machining, laser-light shows, and others. Here, we present a robust, moderate-speed, and cost-efficient home-built galvo system. The mechanical part of this design consists of one mirror, which is tilted around two axes with multiple surface transducers. We demonstrate the ability of this galvo by scanning the mirror using a computer, via a custom driver circuit. The performance of the galvo, including scan range, noise, linearity, and scan speed, is characterized. As an application, we show that this galvo system can be used in a confocal scanning microscopy system.

  6. LCC demons with divergence term for liver MRI motion correction

    NASA Astrophysics Data System (ADS)

    Oh, Jihun; Martin, Diego; Skrinjar, Oskar

    2010-03-01

    Contrast-enhanced liver MR image sequences acquired at multiple times before and after contrast administration have been shown to be critically important for the diagnosis and monitoring of liver tumors and may be used for the quantification of liver inflammation and fibrosis. However, over multiple acquisitions, the liver moves and deforms due to patient and respiratory motion. In order to analyze contrast agent uptake one first needs to correct for liver motion. In this paper we present a method for the motion correction of dynamic contrastenhanced liver MR images. For this purpose we use a modified version of the Local Correlation Coefficient (LCC) Demons non-rigid registration method. Since the liver is nearly incompressible its displacement field has small divergence. For this reason we add a divergence term to the energy that is minimized in the LCC Demons method. We applied the method to four sequences of contrast-enhanced liver MR images. Each sequence had a pre-contrast scan and seven post-contrast scans. For each post-contrast scan we corrected for the liver motion relative to the pre-contrast scan. Quantitative evaluation showed that the proposed method improved the liver alignment relative to the non-corrected and translation-corrected scans and visual inspection showed no visible misalignment of the motion corrected contrast-enhanced scans and pre-contrast scan.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan

    During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less

  8. Assessment of virtual towers performed with scanning wind lidars and Ka-band radars during the XPIA experiment

    DOE PAGES

    Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan; ...

    2017-03-29

    During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less

  9. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    PubMed

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  10. Autoimmune lymphoproliferative syndrome and non-Hodgkin lymphoma: what 18F-fluorodeoxyglucose positron emission tomography/computed tomography can do in the management of these patients? Suggestions from a case report.

    PubMed

    Cistaro, A; Pazè, F; Durando, S; Cogoni, M; Faletti, R; Vesco, S; Vallero, S; Quartuccio, N; Treglia, G; Ramenghi, U

    2014-01-01

    A young patient with undefined autoimmune lymphoproliferative syndrome (ALPS-U) and low back pain underwent a CT and MRI study that showed enhancing vertebral lesions, some pulmonary nodules and diffuse latero-cervical lymphadenopathy. A (18)F-FDG-PET/CT scan showed many areas of intense (18)F-FDG uptake in multiple vertebrae, in some ribs, in the sacrum, in the liver, in both lungs, in multiple lymph nodes spread in the cervical, thoracic and abdominal chains. A bone marrow biopsy showed a "lymphomatoid granulomatosis", a rare variant of B-cell non-Hodgkin lymphoma (NHL). After the treatment, the (18)F-FDG-PET/CT scan showed a complete metabolic response. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  11. Incorporating Radiology into Medical Gross Anatomy: Does the Use of Cadaver CT Scans Improve Students' Academic Performance in Anatomy?

    ERIC Educational Resources Information Center

    Lufler, Rebecca S.; Zumwalt, Ann C.; Romney, Carla A.; Hoagland, Todd M.

    2010-01-01

    Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with…

  12. A spatial scan statistic for multiple clusters.

    PubMed

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2011-10-01

    Spatial scan statistics are commonly used for geographical disease surveillance and cluster detection. While there are multiple clusters coexisting in the study area, they become difficult to detect because of clusters' shadowing effect to each other. The recently proposed sequential method showed its better power for detecting the second weaker cluster, but did not improve the ability of detecting the first stronger cluster which is more important than the second one. We propose a new extension of the spatial scan statistic which could be used to detect multiple clusters. Through constructing two or more clusters in the alternative hypothesis, our proposed method accounts for other coexisting clusters in the detecting and evaluating process. The performance of the proposed method is compared to the sequential method through an intensive simulation study, in which our proposed method shows better power in terms of both rejecting the null hypothesis and accurately detecting the coexisting clusters. In the real study of hand-foot-mouth disease data in Pingdu city, a true cluster town is successfully detected by our proposed method, which cannot be evaluated to be statistically significant by the standard method due to another cluster's shadowing effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    PubMed

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  14. Resting-state fMRI correlations: From link-wise unreliability to whole brain stability.

    PubMed

    Pannunzi, Mario; Hindriks, Rikkert; Bettinardi, Ruggero G; Wenger, Elisabeth; Lisofsky, Nina; Martensson, Johan; Butler, Oisin; Filevich, Elisa; Becker, Maxi; Lochstet, Martyna; Kühn, Simone; Deco, Gustavo

    2017-08-15

    The functional architecture of spontaneous BOLD fluctuations has been characterized in detail by numerous studies, demonstrating its potential relevance as a biomarker. However, the systematic investigation of its consistency is still in its infancy. Here, we analyze within- and between-subject variability and test-retest reliability of resting-state functional connectivity (FC) in a unique data set comprising multiple fMRI scans (42) from 5 subjects, and 50 single scans from 50 subjects. We adopt a statistical framework that enables us to identify different sources of variability in FC. We show that the low reliability of single links can be significantly improved by using multiple scans per subject. Moreover, in contrast to earlier studies, we show that spatial heterogeneity in FC reliability is not significant. Finally, we demonstrate that despite the low reliability of individual links, the information carried by the whole-brain FC matrix is robust and can be used as a functional fingerprint to identify individual subjects from the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal

    NASA Astrophysics Data System (ADS)

    Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.

    2011-07-01

    In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.

  16. Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap.

    PubMed

    Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham

    2017-10-17

    Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.

  17. Neonatal Death Dwarfism in a Girl with Distinctive Bone Dysplasia Compatible with Grebe Chondrodysplasia: Analysis by CT Scan-based Phenotype.

    PubMed

    Al Kaissi, Ali; Chehida, Farid Ben; Ganger, Rudolf; Grill, Franz

    2014-01-01

    We report on a female fetus noted to have severe malformative type of skeletal dysplasia on ultrasonography done at 35 weeks gestation. The girl died shortly after birth. Clinical examination showed a fetus with severe dwarfism, extensive long and short bones, and bone deficiencies associated with multiple dislocations. Computed tomography (CT) scan-based phenotype showed a complex constellation of malformations consistent with the diagnosis of Grebe syndrome. Parents being first cousins (consanguineous marriage) strongly suggests autosomal recessive pattern of inheritance. To our knowledge, this is the first report of neonatal death dwarfism of Grebe syndrome analyzed by CT scan-based phenotype.

  18. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    DOE PAGES

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...

    2017-02-06

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less

  19. Local dynamic range compensation for scanning electron microscope imaging system by sub-blocking multiple peak HE with convolution.

    PubMed

    Sim, K S; Teh, V; Tey, Y C; Kho, T K

    2016-11-01

    This paper introduces new development technique to improve the Scanning Electron Microscope (SEM) image quality and we name it as sub-blocking multiple peak histogram equalization (SUB-B-MPHE) with convolution operator. By using this new proposed technique, it shows that the new modified MPHE performs better than original MPHE. In addition, the sub-blocking method consists of convolution operator which can help to remove the blocking effect for SEM images after applying this new developed technique. Hence, by using the convolution operator, it effectively removes the blocking effect by properly distributing the suitable pixel value for the whole image. Overall, the SUB-B-MPHE with convolution outperforms the rest of methods. SCANNING 38:492-501, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  20. The NAIMS cooperative pilot project: Design, implementation and future directions.

    PubMed

    Oh, Jiwon; Bakshi, Rohit; Calabresi, Peter A; Crainiceanu, Ciprian; Henry, Roland G; Nair, Govind; Papinutto, Nico; Constable, R Todd; Reich, Daniel S; Pelletier, Daniel; Rooney, William; Schwartz, Daniel; Tagge, Ian; Shinohara, Russell T; Simon, Jack H; Sicotte, Nancy L

    2017-10-01

    The North American Imaging in Multiple Sclerosis (NAIMS) Cooperative represents a network of 27 academic centers focused on accelerating the pace of magnetic resonance imaging (MRI) research in multiple sclerosis (MS) through idea exchange and collaboration. Recently, NAIMS completed its first project evaluating the feasibility of implementation and reproducibility of quantitative MRI measures derived from scanning a single MS patient using a high-resolution 3T protocol at seven sites. The results showed the feasibility of utilizing advanced quantitative MRI measures in multicenter studies and demonstrated the importance of careful standardization of scanning protocols, central image processing, and strategies to account for inter-site variability.

  1. Radioisotope bone scanning in a case of sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinti, D.C.; Hawkins, H.B.; Slavin, J.D. Jr.

    1985-03-01

    The application of radioisotope scanning to osseous involvement from systemic sarcoidosis has been infrequently described in the scientific literature. Most commonly, the small bones of the hands and feet are affected if sarcoidosis involves the skeleton. Nonetheless, there are also occasional manifestations of sarcoid in the skull, long bones, and vertebral bodies. This paper describes a case of sarcoid involving the lung parenchyma with multiple lesions in the skull and ribs demonstrated by bone scanning with Tc-99m MDP. Following treatment with steroids, the bone scan showed complete resolution of the rib lesions and almost complete resolution of the lesions inmore » the calvarium.« less

  2. Estimating the lifetime risk of cancer associated with multiple CT scans.

    PubMed

    Ivanov, V K; Kashcheev, V V; Chekin, S Yu; Menyaylo, A N; Pryakhin, E A; Tsyb, A F; Mettler, F A

    2014-12-01

    Multiple CT scans are often done on the same patient resulting in an increased risk of cancer. Prior publications have estimated risks on a population basis and often using an effective dose. Simply adding up the risks from single scans does not correctly account for the survival function. A methodology for estimating personal radiation risks attributed to multiple CT imaging using organ doses is presented in this article. The estimated magnitude of the attributable risk fraction for the possible development of radiation-induced cancer indicates the necessity for strong clinical justification when ordering multiple CT scans.

  3. Unenhanced 320-row multidetector computed tomography of the brain in children: comparison of image quality and radiation dose among wide-volume, one-shot volume, and helical scan modes.

    PubMed

    Jeon, Sun Kyung; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Cho, Yeon Jin; Ha, Ji Young; Lee, Seung Hyun; Hyun, Hyejin; Kim, In-One

    2018-04-01

    The 320-row multidetector computed tomography (CT) scanner has multiple scan modes, including volumetric modes. To compare the image quality and radiation dose of 320-row CT in three acquisition modes - helical, one-shot volume, and wide-volume scan - at pediatric brain imaging. Fifty-seven children underwent unenhanced brain CT using one of three scan modes (helical scan, n=21; one-shot volume scan, n=17; wide-volume scan, n=19). For qualitative analysis, two reviewers evaluated overall image quality and image noise using a 5-point grading system. For quantitative analysis, signal-to-noise ratio, image noise and posterior fossa artifact index were calculated. To measure the radiation dose, adjusted CT dose index per unit volume (CTDI adj ) and dose length product (DLP) were compared. Qualitatively, the wide-volume scan showed significantly less image noise than the helical scan (P=0.009), and less streak artifact than the one-shot volume scan (P=0.001). The helical mode showed significantly lower signal-to-noise ratio, with a higher image noise level compared with the one-shot volume and wide-volume modes (all P<0.05). The CTDI adj and DLP were significantly lower in the one-shot volume and wide-volume modes compared with those in the helical scan mode (all P<0.05). For pediatric unenhanced brain CT, both the wide-volume and one-shot volume scans reduced radiation dose compared to the helical scan mode, while the wide-volume scan mode showed fewer streak artifacts in the skull vertex and posterior fossa than the one-shot volume scan.

  4. Dynamic phase-sensitive optical coherence elastography at a true kilohertz frame-rate

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Larin, Kirill V.

    2016-03-01

    Dynamic optical coherence elastography (OCE) techniques have rapidly emerged as a noninvasive way to characterize the biomechanical properties of tissue. However, clinical applications of the majority of these techniques have been unfeasible due to the extended acquisition time because of multiple temporal OCT acquisitions (M-B mode). Moreover, multiple excitations, large datasets, and prolonged laser exposure prohibit their translation to the clinic, where patient discomfort and safety are critical criteria. Here, we demonstrate the feasibility of noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system. The OCE system was based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz, and imaged the elastic wave propagation at a frame rate of ~7.3 kHz. Because the elastic wave directly imaged, only a single excitation was utilized for one line scan measurement. Rather than acquiring multiple temporal scans at successive spatial locations as with previous techniques, here, successive B-scans were acquired over the measurement region (B-M mode). Preliminary measurements were taken on tissue-mimicking agar phantoms of various concentrations, and the results showed good agreement with uniaxial mechanical compression testing. Then, the elasticity of an in situ porcine cornea in the whole eye-globe configuration at various intraocular pressures was measured. The results showed that this technique can acquire a depth-resolved elastogram in milliseconds. Furthermore, the ultra-fast acquisition ensured that the laser safety exposure limit for the cornea was not exceeded.

  5. Multi-point laser coherent detection system and its application on vibration measurement

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Yang, C.; Xu, Y. J.; Liu, H.; Yan, K.; Guo, M.

    2015-05-01

    Laser Doppler vibrometry (LDV) is a well-known interferometric technique to measure the motions, vibrations and mode shapes of machine components and structures. The drawback of commercial LDV is that it can only offer a pointwise measurement. In order to build up a vibrometric image, a scanning device is normally adopted to scan the laser point in two spatial axes. These scanning laser Doppler vibrometers (SLDV) assume that the measurement conditions remain invariant while multiple and identical, sequential measurements are performed. This assumption makes SLDVs impractical to do measurement on transient events. In this paper, we introduce a new multiple-point laser coherent detection system based on spatial-encoding technology and fiber configuration. A simultaneous vibration measurement on multiple points is realized using a single photodetector. A prototype16-point laser coherent detection system is built and it is applied to measure the vibration of various objects, such as body of a car or a motorcycle when engine is on and under shock tests. The results show the prospect of multi-point laser coherent detection system in the area of nondestructive test and precise dynamic measurement.

  6. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  7. MULTIMODAL IMAGING OF ACUTE EXUDATIVE POLYMORPHOUS VITELLIFORM MACULOPATHY WITH OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY AND ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPY.

    PubMed

    Skondra, Dimitra; Nesper, Peter L; Fawzi, Amani A

    2017-05-16

    To report a case of acute exudative polymorphous vitelliform maculopathy including the findings of optical coherence tomography angiography and adaptive optics scanning laser ophthalmoscopy. Findings on clinical examination, color fundus photography, spectral-domain optical coherence tomography, infrared reflectance, autofluorescence, optical coherence tomography angiography, and adaptive optics scanning laser ophthalmoscopy. A 54-year-old white man with no significant medical history and history of smoking presented with bilateral multiple serous and vitelliform detachments consistent with acute exudative polymorphous vitelliform maculopathy. Extensive infectious, inflammatory, and malignancy workup was negative. Spectral-domain optical coherence tomography showed thickened, hyperreflective ellipsoid zone, subretinal fluid, and focal as well as diffuse subretinal hyperreflective material corresponding to the vitelliform lesions. Optical coherence tomography angiography showed normal retinal and choroidal vasculature, whereas adaptive optics scanning laser ophthalmoscopy showed circular focal "target" lesions at the level of the photoreceptors in the area of foveal detachment. Multimodal imaging is valuable in evaluating patients with acute exudative polymorphous vitelliform maculopathy.

  8. Multiple enface image averaging for enhanced optical coherence tomography angiography imaging.

    PubMed

    Uji, Akihito; Balasubramanian, Siva; Lei, Jianqin; Baghdasaryan, Elmira; Al-Sheikh, Mayss; Borrelli, Enrico; Sadda, SriniVas R

    2018-05-31

    To investigate the effect of multiple enface image averaging on image quality of the optical coherence tomography angiography (OCTA). Twenty-one normal volunteers were enrolled in this study. For each subject, one eye was imaged with 3 × 3 mm scan protocol, and another eye was imaged with the 6 × 6 mm scan protocol centred on the fovea using the ZEISS Angioplex™ spectral-domain OCTA device. Eyes were repeatedly imaged to obtain nine OCTA cube scan sets, and nine superficial capillary plexus (SCP) and deep capillary plexus (DCP) were individually averaged after registration. Eighteen eyes with a 3 × 3 mm scan field and 14 eyes with a 6 × 6 mm scan field were studied. Averaged images showed more continuous vessels and less background noise in both the SCP and the DCP as the number of frames used for averaging increased, with both 3 × 3 and 6 × 6 mm scan protocols. The intensity histogram of the vessels dramatically changed after averaging. Contrast-to-noise ratio (CNR) and subjectively assessed image quality scores also increased as the number of frames used for averaging increased in all image types. However, the additional benefit in quality diminished when averaging more than five frames. Averaging only three frames achieved significant improvement in CNR and the score assigned by certified grades. Use of multiple image averaging in OCTA enface images was found to be both objectively and subjectively effective for enhancing image quality. These findings may of value for developing optimal OCTA imaging protocols for future studies. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. Multipinhole SPECT helical scan parameters and imaging volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Rutao, E-mail: rutaoyao@buffalo.edu; Deng, Xiao; Wei, Qingyang

    Purpose: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. Methods: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluatedmore » by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. Results: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. Conclusions: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.« less

  10. Measurement of density and affinity for dopamine D2 receptors by a single positron emission tomography scan with multiple injections of [11C]raclopride

    PubMed Central

    Ikoma, Yoko; Watabe, Hiroshi; Hayashi, Takuya; Miyake, Yoshinori; Teramoto, Noboru; Minato, Kotaro; Iida, Hidehiro

    2010-01-01

    Positron emission tomography (PET) with [11C]raclopride has been used to investigate the density (Bmax) and affinity (Kd) of dopamine D2 receptors related to several neurological and psychiatric disorders. However, in assessing the Bmax and Kd, multiple PET scans are necessary under variable specific activities of administered [11C]raclopride, resulting in a long study period and unexpected physiological variations. In this paper, we have developed a method of multiple-injection graphical analysis (MI-GA) that provides the Bmax and Kd values from a single PET scan with three sequential injections of [11C]raclopride, and we validated the proposed method by performing numerous simulations and PET studies on monkeys. In the simulations, the three-injection protocol was designed according to prior knowledge of the receptor kinetics, and the errors of Bmax and Kd estimated by MI-GA were analyzed. Simulations showed that our method could support the calculation of Bmax and Kd, despite a slight overestimation compared with the true magnitudes. In monkey studies, we could calculate the Bmax and Kd of diseased or normal striatum in a 150 mins scan with the three-injection protocol of [11C]raclopride. Estimated Bmax and Kd values of D2 receptors in normal or partially dopamine-depleted striatum were comparable to the previously reported values. PMID:19904285

  11. [A case of lung abscess during chemotherapy for testicular tumor].

    PubMed

    Hayashi, Yujiro; Miyago, Naoki; Takeda, Ken; Yamaguchi, Yuichiro; Nakayama, Masashi; Arai, Yasuyuki; Kakimoto, Ken-ichi; Nishimura, Kazuo

    2014-05-01

    32-year-old man was seen in a clinic because of prolonged cough and slight-fever. Chest X-ray showed multiple pulmonary nodules, and multiple lung and mediastinal lymph node metastases from right testicular tumor was suspected by positron emission tomography/CT (PET/CT) scan. He was diagnosed with right testicular germ cell tumor (embryonal carcinoma + seminoma, pT2N1M1b), and classified into the intermediate risk group according to International Germ Cell Cancer Collaborative Group. He underwent 4 cycles of chemotherapy with bleomycin, etoposide and cisplatin (BEP therapy). During BEP therapy, sputum with foul odor appeared and chest CT scan revealed lung abscess with a necrotic lesion of metastatic tumor. The lung abscess was treated successfully with antibiotics.

  12. Sarcoidosis with Pancreatic Mass, Endobronchial Nodules, and Miliary Opacities in the Lung.

    PubMed

    Matsuura, Shun; Mochizuka, Yasutaka; Oishi, Kyohei; Miyashita, Koichi; Naoi, Hyogo; Mochizuki, Eisuke; Mikura, Shinichiro; Tsukui, Masaru; Koshimizu, Naoki; Ohata, Akihiko; Suda, Takahumi

    2017-11-15

    Sarcoidosis affects multiple organs and rarely has unusual manifestations. A 78-year-old woman was referred to our hospital for coughing symptoms. A chest computed tomography (CT) scan revealed bilateral diffuse miliary patterns and right pleural effusion. Bronchoscopy showed multiple nodules in the carina and the bronchus intermedius. A CT scan of her abdomen revealed hypovascular lesions involving the pancreatic head and body. A transbronchial lung biopsy, bronchial mucosal biopsy, and endoscopic ultrasound-guided fine-needle aspiration of the pancreatic mass demonstrated non-caseating granulomas. We diagnosed the patient with sarcoidosis. She received no treatment for sarcoidosis and has been followed up for one year, during which no pulmonary disease progression had been observed and the pancreatic masses partially regressed.

  13. Parameter estimation for slit-type scanning sensors

    NASA Technical Reports Server (NTRS)

    Fowler, J. W.; Rolfe, E. G.

    1981-01-01

    The Infrared Astronomical Satellite, scheduled for launch into a 900 km near-polar orbit in August 1982, will perform an infrared point source survey by scanning the sky with slit-type sensors. The description of position information is shown to require the use of a non-Gaussian random variable. Methods are described for deciding whether separate detections stem from a single common source, and a formulism is developed for the scan-to-scan problems of identifying multiple sightings of inertially fixed point sources for combining their individual measurements into a refined estimate. Several cases are given where the general theory yields results which are quite different from the corresponding Gaussian applications, showing that argument by Gaussian analogy would lead to error.

  14. Significance of postshunt ventricular asymmetries.

    PubMed

    Linder, M; Diehl, J T; Sklar, F H

    1981-08-01

    Ventricular asymmetries after shunt surgery were studied. Right and left ventricular areas from pre-and postoperative computerized tomography scans were measured with a computer digitizing technique, and the respective areas were expressed as a ratio. Measurements were made from the scans of 15 hydrocephalic children selected at random. Ages at surgery ranged from 1 to 101 weeks. The results indicate a significantly greater decrease in ventricular size on the side of the ventricular shunt catheter. Multiple regression analysis showed no relationship between the magnitude of change in ventricular size and either the patients' age orn the time intervals between surgery and follow-up scans. Possible mechanisms for these postshunt ventricular asymmetries are discussed.

  15. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references

    NASA Astrophysics Data System (ADS)

    Liu, Jingbin; Liang, Xinlian; Hyyppä, Juha; Yu, Xiaowei; Lehtomäki, Matti; Pyörälä, Jiri; Zhu, Lingli; Wang, Yunsheng; Chen, Ruizhi

    2017-04-01

    Terrestrial laser scanning has been widely used to analyze the 3D structure of a forest in detail and to generate data at the level of a reference plot for forest inventories without destructive measurements. Multi-scan terrestrial laser scanning is more commonly applied to collect plot-level data so that all of the stems can be detected and analyzed. However, it is necessary to match the point clouds of multiple scans to yield a point cloud with automated processing. Mismatches between datasets will lead to errors during the processing of multi-scan data. Classic registration methods based on flat surfaces cannot be directly applied in forest environments; therefore, artificial reference objects have conventionally been used to assist with scan matching. The use of artificial references requires additional labor and expertise, as well as greatly increasing the cost. In this study, we present an automated processing method for plot-level stem mapping that matches multiple scans without artificial references. In contrast to previous studies, the registration method developed in this study exploits the natural geometric characteristics among a set of tree stems in a plot and combines the point clouds of multiple scans into a unified coordinate system. Integrating multiple scans improves the overall performance of stem mapping in terms of the correctness of tree detection, as well as the bias and the root-mean-square errors of forest attributes such as diameter at breast height and tree height. In addition, the automated processing method makes stem mapping more reliable and consistent among plots, reduces the costs associated with plot-based stem mapping, and enhances the efficiency.

  16. Joint detection and localization of multiple anatomical landmarks through learning

    NASA Astrophysics Data System (ADS)

    Dikmen, Mert; Zhan, Yiqiang; Zhou, Xiang Sean

    2008-03-01

    Reliable landmark detection in medical images provides the essential groundwork for successful automation of various open problems such as localization, segmentation, and registration of anatomical structures. In this paper, we present a learning-based system to jointly detect (is it there?) and localize (where?) multiple anatomical landmarks in medical images. The contributions of this work exist in two aspects. First, this method takes the advantage from the learning scenario that is able to automatically extract the most distinctive features for multi-landmark detection. Therefore, it is easily adaptable to detect arbitrary landmarks in various kinds of imaging modalities, e.g., CT, MRI and PET. Second, the use of multi-class/cascaded classifier architecture in different phases of the detection stage combined with robust features that are highly efficient in terms of computation time enables a seemingly real time performance, with very high localization accuracy. This method is validated on CT scans of different body sections, e.g., whole body scans, chest scans and abdominal scans. Aside from improved robustness (due to the exploitation of spatial correlations), it gains a run time efficiency in landmark detection. It also shows good scalability performance under increasing number of landmarks.

  17. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.

    PubMed

    Gröner, Nadine; Capoulade, Jérémie; Cremer, Christoph; Wachsmuth, Malte

    2010-09-27

    The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.

  18. Detecting active pelvic arterial haemorrhage on admission following serious pelvic fracture in multiple trauma patients.

    PubMed

    Brun, Julien; Guillot, Stéphanie; Bouzat, Pierre; Broux, Christophe; Thony, Frédéric; Genty, Céline; Heylbroeck, Christophe; Albaladejo, Pierre; Arvieux, Catherine; Tonetti, Jérôme; Payen, Jean-Francois

    2014-01-01

    The early diagnosis of pelvic arterial haemorrhage is challenging for initiating treatment by transcatheter arterial embolization (TAE) in multiple trauma patients. We use an institutional algorithm focusing on haemodynamic status on admission and on a whole-body CT scan in stabilized patients to screen patients requiring TAE. This study aimed to assess the effectiveness of this approach. This retrospective cohort study included 106 multiple trauma patients admitted to the emergency room with serious pelvic fracture [pelvic abbreviated injury scale (AIS) score of 3 or more]. Of the 106 patients, 27 (25%) underwent pelvic angiography leading to TAE for active arterial haemorrhage in 24. The TAE procedure was successful within 3h of arrival in 18 patients. In accordance with the algorithm, 10 patients were directly admitted to the angiography unit (n=8) and/or operating room (n=2) for uncontrolled haemorrhagic shock on admission. Of the remaining 96 stabilized patients, 20 had contrast media extravasation on pelvic CT scan that prompted pelvic angiography in 16 patients leading to TAE in 14. One patient underwent a pelvic angiography despite showing no contrast media extravasation on pelvic CT scan. All 17 stabilized patients who underwent pelvic angiography presented a more severely compromised haemodynamic status on admission, and they required more blood products during their initial management than the 79 patients who did not undergo pelvic angiography. The incidence of unstable pelvic fractures was however comparable between the two groups. Overall, haemodynamic instability and contrast media extravasation on the CT-scan identified 26 out of the 27 patients who required subsequent pelvic angiography leading to TAE in 24. An algorithm focusing on haemodynamic status on arrival and on the whole-body CT scan in stabilized patients may be effective at triaging multiple trauma patients with serious pelvic fractures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A compact multi-trap optical tweezer system based on CD-ROM technologies

    NASA Astrophysics Data System (ADS)

    McMenamin, T.; Lee, W. M.

    2017-08-01

    We implemented an integrated time sharing multiple optical trapping system through the synchronisation of high speed voice coil scanning lens and laser pulsing. The integration is achieved by using commonly available optical pickup unit (OPU) that exists inside optical drives. Scanning frequencies of up to 2 kHz were showed to achieve arbitrary distribution of optical traps within the one-dimensional scan range of the voice coil motor. The functions of the system were demonstrated by the imaging and trapping of 1 μm particles and giant unilamellar vesicles (GUVs). The new device circumvents existing bulky laser scanning systems (4f lens systems) with an integrated laser and lens steering platform that can be integrated on a variety of microscopy platforms (confocal, lightsheet, darkfield).

  20. Extramedullary plasmacytoma (EMP): Report of a case manifested as a mediastinal mass and multiple pulmonary nodules and review of literature.

    PubMed

    Luh, Shi-Ping; Lai, Yih-Shyong; Tsai, Chung-Hong; Tsao, Thomas Chang-Yao

    2007-10-27

    Extramedullary plasmacytoma (EMP) is a rare plasma cell neoplasm of soft tissue without bone marrow involvement or other systemic characteristics of multiple myeloma A 42 year-old woman presented with intermittent dry cough of 10 months duration. Her breathing sound was slightly coarse without rales or rhonchi on auscultation. CT scan revealed a right anterior mediastinal shadow with multiple pulmonary nodular lesions. A video-assisted thoracoscopic surgery (VATS) was performed. Histopathology showed it to be a myeloma. This is the first presentation of EMP with a mediastinal mass with multiple pulmonary nodules.

  1. Analysis of the EBT3 Gafchromic film irradiated with 6 MV photons and 6 MeV electrons using reflective mode scanners.

    PubMed

    Farah, Nicolas; Francis, Ziad; Abboud, Marie

    2014-09-01

    We explore in our study the effects of electrons and X-rays irradiations on the newest version of the Gafchromic EBT3 film. Experiments are performed using the Varian "TrueBeam 1.6" medical accelerator delivering 6 MV X-ray photons and 6 MeV electron beams as desired. The main interest is to compare the responses of EBT3 films exposed to two separate beams of electrons and photons, for radiation doses ranging up to 500 cGy. The analysis is done on a flatbed EPSON 10000 XL scanner and cross checked on a HP Scanjet 4850 scanner. Both scanners are used in reflection mode taking into account landscape and portrait scanning positions. After thorough verifications, the reflective scanning method can be used on EBT3 as an economic alternative to the transmission method which was also one of the goals of this study. A comparison is also done between single scan configuration including all samples in a single A4 (HP) or A3 (EPSON) format area and multiple scan procedure where each sample is scanned separately on its own. The images analyses are done using the ImageJ software. Results show significant influence of the scanning configuration but no significant differences between electron and photon irradiations for both single and multiple scan configurations. In conclusion, the film provides a reliable relative dose measurement method for electrons and photons irradiations in the medical field applications. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field

    NASA Astrophysics Data System (ADS)

    Park, Sung Min; Wang, Bo; Das, Saikat; Chae, Seung Chul; Chung, Jin-Seok; Yoon, Jong-Gul; Chen, Long-Qing; Yang, Sang Mo; Noh, Tae Won

    2018-05-01

    Flexoelectricity is an electromechanical coupling between electrical polarization and a strain gradient1 that enables mechanical manipulation of polarization without applying an electrical bias2,3. Recently, flexoelectricity was directly demonstrated by mechanically switching the out-of-plane polarization of a uniaxial system with a scanning probe microscope tip3,4. However, the successful application of flexoelectricity in low-symmetry multiaxial ferroelectrics and therefore active manipulation of multiple domains via flexoelectricity have not yet been achieved. Here, we demonstrate that the symmetry-breaking flexoelectricity offers a powerful route for the selective control of multiple domain switching pathways in multiaxial ferroelectric materials. Specifically, we use a trailing flexoelectric field that is created by the motion of a mechanically loaded scanning probe microscope tip. By controlling the SPM scan direction, we can deterministically select either stable 71° ferroelastic switching or 180° ferroelectric switching in a multiferroic magnetoelectric BiFeO3 thin film. Phase-field simulations reveal that the amplified in-plane trailing flexoelectric field is essential for this domain engineering. Moreover, we show that mechanically switched domains have a good retention property. This work opens a new avenue for the deterministic selection of nanoscale ferroelectric domains in low-symmetry materials for non-volatile magnetoelectric devices and multilevel data storage.

  3. Multiple-mouse MRI with multiple arrays of receive coils.

    PubMed

    Ramirez, Marc S; Esparza-Coss, Emilio; Bankson, James A

    2010-03-01

    Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a 3-fold acceleration was achieved with signal-to-noise ratio in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil. (c) 2010 Wiley-Liss, Inc.

  4. Reduction of speckle noise from optical coherence tomography images using multi-frame weighted nuclear norm minimization method

    NASA Astrophysics Data System (ADS)

    Thapa, Damber; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2015-12-01

    In this paper, we propose a speckle noise reduction method for spectral-domain optical coherence tomography (SD-OCT) images called multi-frame weighted nuclear norm minimization (MWNNM). This method is a direct extension of weighted nuclear norm minimization (WNNM) in the multi-frame framework since an adequately denoised image could not be achieved with single-frame denoising methods. The MWNNM method exploits multiple B-scans collected from a small area of a SD-OCT volumetric image, and then denoises and averages them together to obtain a high signal-to-noise ratio B-scan. The results show that the image quality metrics obtained by denoising and averaging only five nearby B-scans with MWNNM method is considerably better than those of the average image obtained by registering and averaging 40 azimuthally repeated B-scans.

  5. Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.

    2015-01-01

    The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.

  6. Bone scan as a screening test for missed fractures in severely injured patients.

    PubMed

    Lee, K-J; Jung, K; Kim, J; Kwon, J

    2014-12-01

    In many cases, patients with severe blunt trauma have multiple fractures throughout the body. These fractures are not often detectable by history or physical examination, and their diagnosis can be delayed or even missed. Thus, screening test fractures of the whole body is required after initial management. We performed this study to evaluate the reliability of bone scans for detecting missed fractures in patients with multiple severe traumas and we analyzed the causes of missed fractures by using bone scan. A bone scan is useful as a screening test for fractures of the entire body of severe trauma patients who are passed the acute phase. We reviewed the electronic medical records of severe trauma patients who underwent a bone scan from September 2009 to December 2010. Demographic and medical data were compared and statistically analyzed to determine whether missed fractures were detected after bone scan in the two groups. A total of 382 patients who had an injury severity score [ISS] greater than 16 points with multiple traumas visited the emergency room. One hundred and thirty-one patients underwent bone scan and 81 patients were identified with missed fractures by bone scan. The most frequent location for missed fractures was the rib area (55 cases, 41.98%), followed by the extremities (42 cases, 32.06%). The missed fractures that required surgery or splint were most common in extremities (11 cases). In univariate analysis, higher ISS scores and mechanism of injury were related with the probability that missed fractures would be found with a bone scan. The ISS score was statistically significant in multivariate analysis. Bone scan is an effective method of detecting missed fractures among patients with multiple severe traumas. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function.

    PubMed

    Higuchi, Seiji; Kuramochi, Hiromi; Laurent, Olivier; Komatsubara, Takashi; Machida, Shinichi; Aono, Masakazu; Obori, Kenichi; Nakayama, Tomonobu

    2010-07-01

    Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.

  8. Rapid detection and identification of N-acetyl-L-cysteine thioethers using constant neutral loss and theoretical multiple reaction monitoring combined with enhanced product-ion scans on a linear ion trap mass spectrometer.

    PubMed

    Scholz, Karoline; Dekant, Wolfgang; Völkel, Wolfgang; Pähler, Axel

    2005-12-01

    A sensitive and specific liquid chromatography-mass spectrometry (LC-MS) method based on the combination of constant neutral loss scans (CNL) with product ion scans was developed on a linear ion trap. The method is applicable for the detection and identification of analytes with identical chemical substructures (such as conjugates of xenobiotics formed in biological systems) which give common CNLs. A specific CNL was observed for thioethers of N-acetyl-L-cysteine (mercapturic acids, MA) by LC-MS/MS. MS and HPLC parameters were optimized with 16 MAs available as reference compounds. All of these provided a CNL of 129 Da in the negative-ion mode. To assess sensitivity, a multiple reaction monitoring (MRM) mode with 251 theoretical transitions using the CNL of 129 Da combined with a product ion scan (IDA thMRM) was compared with CNL combined with a product ion scan (IDA CNL). An information-dependent acquisition (IDA) uses a survey scan such as MRM (multiple reaction monitoring) to generate "informations" and starting a second acquisition experiment such as a product ion scan using these "informations." Th-MRM means calculated transitions and not transitions generated from an available standard in the tuning mode. The product ion spectra provide additional information on the chemical structure of the unknown analytes. All MA standards were spiked in low concentrations to rat urines and were detected with both methods with LODs ranging from 60 pmol/mL to 1.63 nmol/mL with IDA thMRM. The expected product ion spectra were observed in urine. Application of this screening method to biological samples indicated the presence of a number of MAs in urine of unexposed rats, and resulted in the identification of 1,4-dihydroxynonene mercapturic acid as one of these MAs by negative and positive product ion spectra. These results show that the developed methods have a high potential to serve as both a prescreen to detect unknown MAs and to identify these analytes in complex matrix.

  9. Near-field microscopy and fluorescence spectroscopy: application to chromosomes labelled with different fluorophores.

    PubMed

    Mahieu-Williame, L; Falgayrettes, P; Nativel, L; Gall-Borrut, P; Costa, L; Salehzada, T; Bisbal, C

    2010-04-01

    We have coupled a spectrophotometer with a scanning near-field optical microscope to obtain, with a single scan, simultaneously scanning near-field optical microscope fluorescence images at different wavelengths as well as topography and transmission images. Extraction of the fluorescence spectra enabled us to decompose the different wavelengths of the fluorescence signals which normally overlap. We thus obtained images of the different fluorescence emissions of acridine orange bound to single or double stranded nucleic acids in human metaphase chromosomes before and after DNAse I or RNAse A treatment. The analysis of these images allowed us to visualize some specific chromatin areas where RNA is associated with DNA showing that such a technique could be used to identify multiple components within a cell.

  10. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    NASA Astrophysics Data System (ADS)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  11. Hepatosplenic Cat-Scratch Disease in Children and the Positive Contribution of 18F-FDG Imaging.

    PubMed

    Kraft, Karianne E; Doedens, Rienus A; Slart, Riemer H J A

    2015-09-01

    Two patients were referred to our hospital because of suspected malignancy. In patient 1, a 4-year-old boy, a F-FDG PET scan showed an enlarged liver with multiple FDG-positive nodular lesions. In patient 2, a 16-year-old boy, a FDG PET-(low-dose) CT showed an enlarged liver and spleen with multiple nodular lesions and a solitary hypodense nodule adjacent to the pancreatic head. The lesions were thought to originate from infectious disease or lymphoma. Polymeric chain reaction (PCR) on a liver biopsy was positive for Bartonella henselae. Both patients were treated with antibiotics and recovered completely.

  12. Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Yamada, Kazuma; Kojima, Takuya; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2018-02-01

    The purpose of this study is to evaluate and compare the performance of modern deep learning techniques for automatically recognizing and segmenting multiple organ regions on 3D CT images. CT image segmentation is one of the important task in medical image analysis and is still very challenging. Deep learning approaches have demonstrated the capability of scene recognition and semantic segmentation on nature images and have been used to address segmentation problems of medical images. Although several works showed promising results of CT image segmentation by using deep learning approaches, there is no comprehensive evaluation of segmentation performance of the deep learning on segmenting multiple organs on different portions of CT scans. In this paper, we evaluated and compared the segmentation performance of two different deep learning approaches that used 2D- and 3D deep convolutional neural networks (CNN) without- and with a pre-processing step. A conventional approach that presents the state-of-the-art performance of CT image segmentation without deep learning was also used for comparison. A dataset that includes 240 CT images scanned on different portions of human bodies was used for performance evaluation. The maximum number of 17 types of organ regions in each CT scan were segmented automatically and compared to the human annotations by using ratio of intersection over union (IU) as the criterion. The experimental results demonstrated the IUs of the segmentation results had a mean value of 79% and 67% by averaging 17 types of organs that segmented by a 3D- and 2D deep CNN, respectively. All the results of the deep learning approaches showed a better accuracy and robustness than the conventional segmentation method that used probabilistic atlas and graph-cut methods. The effectiveness and the usefulness of deep learning approaches were demonstrated for solving multiple organs segmentation problem on 3D CT images.

  13. Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams

    NASA Astrophysics Data System (ADS)

    Pan, An; Si, Jinhai; Chen, Tao; Li, Cunxia; Hou, Xun

    2016-04-01

    Two-dimensional (2D) periodic structures were fabricated on silicon surfaces by femtosecond laser irradiation in air and water, with the assistance of a microlens array (MLA) placed in the beam's path. By scanning the laser beam along the silicon surface, multiple grooves were simultaneously fabricated in parallel along with smaller laser-induced ripples. The 2D periodic structures contained long-periodic grooves and perpendicular short-periodic laser-induced ripples, which had periods of several microns and several hundred nanometers, respectively. We investigated the influence of laser power and scanning velocity on the morphological evolution of the 2D periodic structures in air and water. Large-area grid-like structures with ripples were fabricated by successively scanning once along each direction of the silicon's surface, which showed enhanced optical absorption. Hydrofluoric acid was then used to remove any oxygen and laser-induced defects for all-silicon structures.

  14. Spatial scan statistics for detection of multiple clusters with arbitrary shapes.

    PubMed

    Lin, Pei-Sheng; Kung, Yi-Hung; Clayton, Murray

    2016-12-01

    In applying scan statistics for public health research, it would be valuable to develop a detection method for multiple clusters that accommodates spatial correlation and covariate effects in an integrated model. In this article, we connect the concepts of the likelihood ratio (LR) scan statistic and the quasi-likelihood (QL) scan statistic to provide a series of detection procedures sufficiently flexible to apply to clusters of arbitrary shape. First, we use an independent scan model for detection of clusters and then a variogram tool to examine the existence of spatial correlation and regional variation based on residuals of the independent scan model. When the estimate of regional variation is significantly different from zero, a mixed QL estimating equation is developed to estimate coefficients of geographic clusters and covariates. We use the Benjamini-Hochberg procedure (1995) to find a threshold for p-values to address the multiple testing problem. A quasi-deviance criterion is used to regroup the estimated clusters to find geographic clusters with arbitrary shapes. We conduct simulations to compare the performance of the proposed method with other scan statistics. For illustration, the method is applied to enterovirus data from Taiwan. © 2016, The International Biometric Society.

  15. Multiple pinhole collimator based X-ray luminescence computed tomography

    PubMed Central

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-01-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  16. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku

    2013-03-15

    Purpose: Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Methods: Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity andmore » energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCR{sub L}) and phase-controlled volumetric rescanning (PCR{sub V}) were compared. Results: For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1 Multiplication-Sign PCR{sub L} and 1 Multiplication-Sign PCR{sub V}) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4 Multiplication-Sign PCR{sub L} or more significantly and consistently improved dose distribution. PCR{sub V} showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCR{sub L}/PCR{sub V} with a sweep direction perpendicular to motion direction showed large hot/cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI/AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax/Dmin, homogeneity index) were improved with an increasing number of PCR{sub L}/PCR{sub V}, but with PCR{sub L} being more robust. Conclusions: PCR{sub L} requires a longer treatment time than PCR{sub V} for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.« less

  17. Purchase of a Laser Scanning Confocal Microscope at Xavier University of Louisiana

    DTIC Science & Technology

    2016-05-04

    SECURITY CLASSIFICATION OF: The purpose of this grant was to purchase a laser scanning confocal microscope to be used by multiple laboratories at...was being developed for undergraduate education. Over the course of the funding period, the microscope was purchased and installed, multiple training...Distribution Unlimited UU UU UU UU 04-05-2016 1-Feb-2015 31-Jan-2016 Final Report: Purchase of a Laser Scanning Confocal Microscope at Xavier

  18. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.

    PubMed

    Gangnon, Ronald E

    2012-03-01

    The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.

  19. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution

    PubMed Central

    Gangnon, Ronald E.

    2011-01-01

    Summary The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, while rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. PMID:21762118

  20. Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annuum fruit.

    PubMed

    Kilcrease, James; Collins, Aaron M; Richins, Richard D; Timlin, Jerilyn A; O'Connell, Mary A

    2013-12-01

    Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  1. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xuefei; Zhou, S. Kevin; Rasselkorde, El Mahjoub

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location.more » The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.« less

  2. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin

    2015-03-01

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.

  3. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation

    NASA Astrophysics Data System (ADS)

    Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin

    2018-06-01

    We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.

  4. Feasibility of large volume tumor ablation using multiple-mode strategy with fast scanning method: A numerical study

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Shen, Guofeng; Qiao, Shan; Chen, Yazhu

    2017-03-01

    Sonication with fast scanning method can generate homogeneous lesions without complex planning. But when the target region is large, switching focus too fast will reduce the heat accumulation, the margin of which may not ablated. Furthermore, high blood perfusion rate will reduce this maximum volume that can be ablated. Therefore, fast scanning method may not be applied to large volume tumor. To expand the therapy scope, this study combines the fast scan method with multiple mode strategy. Through simulation and experiment, the feasibility of this new strategy is evaluated and analyzed.

  5. CBCT volumetric coverage extension using a pair of complementary circular scans with complementary kV detector lateral and longitudinal offsets

    NASA Astrophysics Data System (ADS)

    Yang, Deshan; Li, H. Harold; Goddu, S. Murty; Tan, Jun

    2014-10-01

    Onboard cone-beam CT (CBCT) has been widely used in image guided radiation therapy. However, the longitudinal coverage is only 15.5 cm in the pelvis scan mode. As a result, a single CBCT scan cannot cover the planning target volume in the longitudinal direction for over 80% of the patients. The common approach is to use double- or multiple-circular scans and then combine multiple CBCT volumes after reconstruction. However it raises concerns regarding doubled imaging dose at the imaging beam junctions due to beam divergence. In this work, we present a new method, DSCS (Dual Scan with Complementary Shifts), to address the CBCT coverage problem using a pair of complementary circular scans. In DSCS, two circular scans were performed at 39.5 cm apart longitudinally. In the superior scan, the detector panel was offset by 16 cm to the left, 15 cm to the inferior. In the inferior scan, the detector panel was shifted 16 cm to the right and 15 cm to the superior. The effective imaging volume is 39.5 cm longitudinally with a 45 cm lateral field-of-view (FOV). Half beam blocks were used to confine the imaging radiation inside the volume of interest. A new image reconstruction algorithm was developed, based on the Feldkamp-Davis-Kress cone-beam CT reconstruction algorithm, to support the DSCS scanning geometry. Digital phantom simulations were performed to demonstrate the feasibility of DSCS. Physical phantom studies were performed using an anthropomorphic phantom on a commercial onboard CBCT system. With basic scattering corrections, the reconstruction results were acceptable. Other issues, including the discrepancy in couch vertical at different couch longitudinal positions, and the inaccuracy in couch table longitudinal movement, were manually corrected during the reconstruction process. In conclusion, the phantom studies showed that, using DSCS, a 39.5 cm longitudinal coverage with a 45 cm FOV was accomplished. The efficiency of imaging dose usage was near 100%. This proposed method could be potentially useful for image guidance and subsequent treatment plan adaptation.

  6. Multiple myeloma associated with an Evan’s syndrome

    PubMed Central

    Bechir, Achour; Haifa, Regaieg; Nesrine, Ben Sayed; Emna, Bouslema; Senda, Mejdoub; Asma, Achour; Amina, Bouatay Bouzouita; Mrabet, Senda; Yosra, Ben Youssef; Mondher, Kortas; Abderrahim, Khelif

    2016-01-01

    Auto-immun events are rare in multiple myeloma (MM). Here, we report one MM case complicated by Evans syndrome (Autoimmun hemolytic anemia (AIHA) associated with thrombocytopenia). A 52-year-old man was admitted in nephrology department with severe anemia, renal insufficiency and hypergamma globulinemia. Laboratory exams showed acute hemolysis due to an IgG warm autoantibody. Serum electrophoresis revealed the presence of a monoclonal IgG protein and urinary M protein was 2g/day. A whole body CT-Scan showed osteolytic lesions of vertebral body of C5, D4, L3, L4 and the left iliac wing. The diagnosis of multiple myeloma and Evan's syndrome was made, we underwent chemotherapy by BTD (bortezomib-thalidomide-dexamethasone) and continuous corticosteroid therapy but unfortunately the patient died secondary of a Lactic acidosis. The relationship between MM and hemolysis remain unclear. PMID:28292089

  7. [Pulmonary cystic disease may be a rare complication to recurrent respiratory human papilloma virus infection].

    PubMed

    Laurberg, Peter Thaysen; Weinreich, Ulla M Øller

    2014-12-08

    A 19-year-old woman with a history of juvenile laryngeal papillomatosis (JLP), treated since childhood with multiple resections, was admitted with symptoms of pneumonia. A chest X-ray and CAT-scan revealed multiple lung cysts and a bronchoalveolar lavage detected human papilloma virus 11. The patient responded well to antibiotics. A body plethysmography showed small lung volumes and low diffusion capacity for carbon monoxide, but normal volume diffusion capacity divided by alveolar volume. Pulmonary cystic disease should be considered when patients with JLP have symptoms of pneumonia.

  8. Postinjection single photon transmission tomography with ordered-subset algorithms for whole-body PET imaging

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Kinahan, P. E.; Brasse, D.; Comtat, C.; Townsend, D. W.

    2002-02-01

    We have evaluated the penalized ordered-subset transmission reconstruction (OSTR) algorithm for postinjection single photon transmission scanning. The OSTR algorithm of Erdogan and Fessler (1999) uses a more accurate model for transmission tomography than ordered-subsets expectation-maximization (OSEM) when OSEM is applied to the logarithm of the transmission data. The OSTR algorithm is directly applicable to postinjection transmission scanning with a single photon source, as emission contamination from the patient mimics the effect, in the original derivation of OSTR, of random coincidence contamination in a positron source transmission scan. Multiple noise realizations of simulated postinjection transmission data were reconstructed using OSTR, filtered backprojection (FBP), and OSEM algorithms. Due to the nonspecific task performance, or multiple uses, of the transmission image, multiple figures of merit were evaluated, including image noise, contrast, uniformity, and root mean square (rms) error. We show that: 1) the use of a three-dimensional (3-D) regularizing image roughness penalty with OSTR improves the tradeoffs in noise, contrast, and rms error relative to the use of a two-dimensional penalty; 2) OSTR with a 3-D penalty has improved tradeoffs in noise, contrast, and rms error relative to FBP or OSEM; and 3) the use of image standard deviation from a single realization to estimate the true noise can be misleading in the case of OSEM. We conclude that using OSTR with a 3-D penalty potentially allows for shorter postinjection transmission scans in single photon transmission tomography in positron emission tomography (PET) relative to FBP or OSEM reconstructed images with the same noise properties. This combination of singles+OSTR is particularly suitable for whole-body PET oncology imaging.

  9. Multi-focal multiphoton lithography.

    PubMed

    Ritschdorff, Eric T; Nielson, Rex; Shear, Jason B

    2012-03-07

    Multiphoton lithography (MPL) provides unparalleled capabilities for creating high-resolution, three-dimensional (3D) materials from a broad spectrum of building blocks and with few limitations on geometry, qualities that have been key to the design of chemically, mechanically, and biologically functional microforms. Unfortunately, the reliance of MPL on laser scanning limits the speed at which fabrication can be performed, making it impractical in many instances to produce large-scale, high-resolution objects such as complex micromachines, 3D microfluidics, etc. Previously, others have demonstrated the possibility of using multiple laser foci to simultaneously perform MPL at numerous sites in parallel, but use of a stage-scanning system to specify fabrication coordinates resulted in the production of identical features at each focal position. As a more general solution to the bottleneck problem, we demonstrate here the feasibility for performing multi-focal MPL using a dynamic mask to differentially modulate foci, an approach that enables each fabrication site to create independent (uncorrelated) features within a larger, integrated microform. In this proof-of-concept study, two simultaneously scanned foci produced the expected two-fold decrease in fabrication time, and this approach could be readily extended to many scanning foci by using a more powerful laser. Finally, we show that use of multiple foci in MPL can be exploited to assign heterogeneous properties (such as differential swelling) to micromaterials at distinct positions within a fabrication zone.

  10. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients.

    PubMed

    Guo, Yi; Lebel, R Marc; Zhu, Yinghua; Lingala, Sajan Goud; Shiroishi, Mark S; Law, Meng; Nayak, Krishna

    2016-05-01

    To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.

  11. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si

    2015-01-01

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  12. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging.

    PubMed

    Deng, Junjing; Nashed, Youssef S G; Chen, Si; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J

    2015-03-09

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in which the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.

  13. Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: Correlation with gestational age.

    PubMed

    Afacan, Onur; Gholipour, Ali; Mulkern, Robert V; Barnewolt, Carol E; Estroff, Judy A; Connolly, Susan A; Parad, Richard B; Bairdain, Sigrid; Warfield, Simon K

    2016-12-01

    To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.

    PubMed

    Takaki, Yasuhiro; Nakaoka, Mitsuki

    2016-08-08

    Viewing-zone scanning holographic displays can enlarge both the screen size and the viewing zone. However, limitations exist in the screen size enlargement process even if the viewing zone is effectively enlarged. This study proposes a multi-channel viewing-zone scanning holographic display comprising multiple projection systems and a planar scanner to enable the scalable enlargement of the screen size. Each projection system produces an enlarged image of the screen of a MEMS spatial light modulator. The multiple enlarged images produced by the multiple projection systems are seamlessly tiled on the planar scanner. This screen size enlargement process reduces the viewing zones of the projection systems, which are horizontally scanned by the planar scanner comprising a rotating off-axis lens and a vertical diffuser to enlarge the viewing zone. A screen size of 7.4 in. and a viewing-zone angle of 43.0° are demonstrated.

  15. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process.

    PubMed

    Hosseini, Seyede Marzieh; Hosseini, Hedayat; Mohammadifar, Mohammad Amin; Mortazavian, Amir Mohammad; Mohammadi, Abdorreza; Khosravi-Darani, Kianoosh; Shojaee-Aliabadi, Saeedeh; Dehghan, Solmaz; Khaksar, Ramin

    2013-11-01

    In this study, an o/w/o multiple emulsion/ionic gelation method was developed for production of alginate microparticles loaded with Satureja hortensis essential oil (SEO). It was found that the essential oil concentration has significant influence on encapsulation efficiency (EE), loading capacity (LC) and size of microparticles. The values of EE, LC and particle mean diameter were about 52-66%, 20-26%, and 47-117 μm, respectively, when the initial SEO content was 1-3% (v/v) .The essential oil-loaded microparticles were porous, as displayed by scanning electron micrograph. The presence of SEO in alginate microparticles was confirmed by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analyses. SEO-loaded microparticles showed good antioxidant (with DPPH radical scavenging activity of 40.7-73.5%) and antibacterial properties; this effect was greatly improved when the concentration of SEO was 3% (v/v). S. aureus was found to be the most sensitive bacterium to SEO and showed a highest inhibition zone of 304.37 mm(2) in the microparticles incorporated with 3% (v/v) SEO. In vitro release studies showed an initial burst release and followed by a slow release. In addition, the release of SEO from the microparticles followed Fickian diffusion with acceptable release. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. [Anorectal Malignant Melanoma Is a Very Rare Disease and Has a Poor Prognosis].

    PubMed

    Yoshida, Yuta; Noura, Shingo; Matsumura, Tae; Hirota, Masaki; Shuto, Takashi; Muratsu, Arisa; Yasuyama, Harunobu; Takata, Akihiro; Koga, Chikato; Kameda, Chizu; Murakami, Masahiro; Kawabata, Ryohei; Shimizu, Junzo; Miwa, Hideaki; Hasegawa, Junichi

    2017-11-01

    We performed abdomino-perineal-resection(APR)on 2 cases of anorectal malignant melanoma. The first case was a 70- year-old woman suffering from bloody stool. Colonoscopy showed a black tumor in the rectum. Biopsy revealed a malignant melanoma. A CT scan showed multiple lung metastases and liver metastasis. She underwent surgery for the purpose of bleeding control, but died shortly thereafter because her liver and lung metastases had worsened. The second case was a 43- years-old man suffering from bloody stool. He had a black type 3 tumor in the rectum. A biopsy revealed malignant melanoma. A CT scan showed lateral lymph node swelling. He underwent APR with right side-lateral dissection. An established treatment for anorectal malignant melanoma has not been agreed upon and it is controversial. We experienced 2 cases that underwent surgery and we report them along with relevant information from the literature.

  17. Recurrent FUO due to intermittent Enterobacter cloacae bacteremias from an infected pacemaker lead diagnosed by gallium scan.

    PubMed

    Cunha, Burke A; Jimada, Ismail

    2018-01-01

    Fever of unknown origin (FUO) refers to fevers of ≥101° F that persist for ≥3 weeks and remain undiagnosed after a focused inpatient or outpatient workup. FUO may be due to infectious, malignant/neoplastic, rheumatic/inflammatory, or miscellaneous disorders. Recurrent FUOs are due to the same causes of classical FUOs. Recurrent FUOs may have continuous or intermittent fevers and are particularly difficult to diagnose. With intermittent fever, recurrent FUO diagnostic tests are best obtained during fever episodes. With recurrent FUOs, the periodicity of febrile episodes is unpredictable. We present a case of a 70-year-old male who presented with recurrent FUO. Multiple extensive FUO workups failed to determine the source of his fever. During his last two episodes of fever/chills, blood cultures were positive for Enterobacter cloacae. Episodic E. cloacae bacteremias suggested a device-related infection, and the patient had a penile implant and permanent pacemaker (PPM). Following febrile episodes, he was treated with multiple courses of appropriate antibiotics, but subsequently fever/chills recurred. Since a device-associated infection was suspected, indium and PET scans were done, but were negative. The source of his intermittent E. cloacae bacteremias was finally demonstrated by gallium scan showing enhanced uptake on a cardiac lead, but not the penile implant or PPM. Gallium scanning remains useful in workup of FUOs, particularly when false-negative indium or PET scans are suspected. The involved pacemaker lead was explanted, grew E. cloacae and the patient has since remained fever free.

  18. Triple dose of gadolinium-DTPA and delayed MRI in patients with benign multiple sclerosis.

    PubMed Central

    Filippi, M; Capra, R; Campi, A; Colombo, B; Prandini, F; Marcianò, N; Gasparotti, R; Comi, G

    1996-01-01

    OBJECTIVES--To evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) or delayed MRI increase the number, size, and conspicuousness of enhancing lesions in patients with benign multiple sclerosis. METHODS--T1 weighted brain MRI was carried out on 20 patients with benign multiple sclerosis (expanded disability status scale < 3 with a disease duration > 10 years) in two sessions. In the first session, one scan was obtained before and two scans five to seven minutes and 20-30 minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, the same procedure was repeated with 0.3 mmol/kg Gd-DTPA (triple dose). RESULTS--Nine enhancing lesions were found in seven patients (35%) using the standard dose of Gd-DTPA. The numbers of enhancing lesions increased to 13 (P = 0.03) and the number of patients with such lesions to eight (40%) on the delayed standard dose scans. On the early triple dose scans, we found 19 enhancing lesions in 10 patients (50%). The number of enhancing lesions was significantly higher (P = 0.01) than that obtained with the early standard dose. The number of enhancing lesions was 18 and the number of "active" patients 11 (55%) on the delayed triple dose scans. The enhancing areas increased progressively from the early standard dose scans to the delayed triple dose scans. The contrast ratios of the lesions detected in early standard dose scans was lower than those of lesions present in the early (P = 0.01) and delayed (P = 0.04) triple dose scans. CONCLUSIONS--More enhancing lesions were detected in patients with benign multiple sclerosis with both delay of MRI and the use of triple dose of Gd-DTPA suggesting that the amount of inflammation in the lesions of such patients is mild and heterogeneous. Images PMID:8778257

  19. Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Waldstein, Sebastian M.; Gerendas, Bianca S.; Langs, Georg; Simader, Christian; Schmidt-Erfurth, Ursula

    2015-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high- resolution, three-dimensional (3D) cross-sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD), glaucoma and retinal vein occlusion (RVO). Disease diagnosis, assessment, and treatment will require a patient to undergo multiple OCT scans, possibly using multiple scanners, to accurately and precisely gauge disease activity, progression and treatment success. However, cross-vendor imaging and patient movement may result in poor scan spatial correlation potentially leading to incorrect diagnosis or treatment analysis. The retinal fovea is the location of the highest visual acuity and is present in all patients, thus it is critical to vision and highly suitable for use as a primary landmark for cross-vendor/cross-patient registration for precise comparison of disease states. However, the location of the fovea in diseased eyes is extremely challenging to locate due to varying appearance and the presence of retinal layer destroying pathology. Thus categorising and detecting the fovea type is an important prior stage to automatically computing the fovea position. Presented here is an automated cross-vendor method for fovea distinction in 3D SD-OCT scans of patients suffering from RVO, categorising scans into three distinct types. OCT scans are preprocessed by motion correction and noise filing followed by segmentation using a kernel graph-cut approach. A statistically derived mask is applied to the resulting scan creating an ROI around the probable fovea location from which the uppermost retinal surface is delineated. For a normal appearance retina, minimisation to zero thickness is computed using the top two retinal surfaces. 3D local minima detection and layer thickness analysis are used to differentiate between the remaining two fovea types. Validation employs ground truth fovea types identified by clinical experts at the Vienna Reading Center (VRC). The results presented here are intended to show the feasibility of this method for the accurate and reproducible distinction of retinal fovea types from multiple vendor 3D SD-OCT scans of patients suffering from RVO, and for use in fovea position detection systems as a landmark for intra- and cross-vendor 3D OCT registration.

  20. Childhood CT scans linked to leukemia and brain cancer later in life

    Cancer.gov

    Children and young adults scanned multiple times by computed tomography (CT), a commonly used diagnostic tool, have a small increased risk of leukemia and brain tumors in the decade following their first scan.

  1. Multiple single-element transducer photoacoustic computed tomography system

    NASA Astrophysics Data System (ADS)

    Kalva, Sandeep Kumar; Hui, Zhe Zhi; Pramanik, Manojit

    2018-02-01

    Light absorption by the chromophores (hemoglobin, melanin, water etc.) present in any biological tissue results in local temperature rise. This rise in temperature results in generation of pressure waves due to the thermoelastic expansion of the tissue. In a circular scanning photoacoustic computed tomography (PACT) system, these pressure waves can be detected using a single-element ultrasound transducer (SUST) (while rotating in full 360° around the sample) or using a circular array transducer. SUST takes several minutes to acquire the PA data around the sample whereas the circular array transducer takes only a fraction of seconds. Hence, for real time imaging circular array transducers are preferred. However, these circular array transducers are custom made, expensive and not easily available in the market whereas SUSTs are cheap and readily available in the market. Using SUST for PACT systems is still cost effective. In order to reduce the scanning time to few seconds instead of using single SUST (rotating 360° ), multiple SUSTs can be used at the same time to acquire the PA data. This will reduce the scanning time by two-fold in case of two SUSTs (rotating 180° ) or by four-fold and eight-fold in case of four SUSTs (rotating 90° ) and eight SUSTs (rotating 45° ) respectively. Here we show that with multiple SUSTs, similar PA images (numerical and experimental phantom data) can be obtained as that of PA images obtained using single SUST.

  2. Impact of 18F-fluorodeoxyglucose positron emission tomography before and after definitive radiation therapy in patients with apparently solitary plasmacytoma.

    PubMed

    Kim, Paul J; Hicks, Rodney J; Wirth, Andrew; Ryan, Gail; Seymour, John F; Prince, H Miles; Mac Manus, Michael P

    2009-07-01

    To evaluate the impact of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) on management of patients with apparently isolated plasmacytoma. Twenty-one patients with apparently solitary plasmacytoma who underwent FDG-PET for staging or restaging were identified from a central PET database. They were either candidates for or had received definitive radiation therapy (RT). Seventeen patients had initial staging scans for bone (n = 11) or soft tissue (n = 6) plasmacytomas, and 11 had PET scans after RT. Only 1 of 14 known untreated sites of plasmacytoma was not identified on staging PET (lesion sensitivity = 93%). Three plasmacytomas were excised before PET. Staging PET influenced management in 6 of 17 patients (35%) by showing multiple myeloma (n = 1), discouraging RT after complete resection (n = 1), excluding plasmacytoma at a second site (n = 1), by increasing RT fields (n = 2), or by suggesting sarcoidosis (n = 1). Fifteen of 17 patients with initial staging PET scans received definitive RT. Restaging PET scans after RT showed complete metabolic response in 8 of 11 cases and progressive disease in 2. Two patients with either no response or partial metabolic response had late responses. Staging sestamibi and PET scans were concordant in five of six occasions (one sestamibi scan was false negative). FDG-PET has value for staging and RT planning in plasmacytoma and potentially could have a role in response-assessment after RT. Slow resolution of FDG uptake posttreatment does not necessarily imply an adverse prognosis.

  3. Sarcoidosis: correlation of pulmonary parenchymal pattern at CT with results of pulmonary function tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, C.J.; Bell, D.Y.; Coblentz, C.L.

    1989-06-01

    The appearances of the lungs on radiographs and computed tomographic (CT) scans were correlated with degree of uptake on gallium scans and results of pulmonary function tests (PFTs) in 27 patients with sarcoidosis. CT scans were evaluated both qualitatively and quantitatively. Patients were divided into five categories on the basis of the pattern of abnormality at CT: 1 = normal (n = 4); 2 = segmental air-space disease (n = 4); 3 = spherical (alveolar) masslike opacities (n = 4); 4 = multiple, discrete, small nodules (n = 6); and 5 = distortion of parenchymal structures (fibrotic end-stage sarcoidosis) (nmore » = 9). The percentage of the volume judged to be abnormal (CT grade) was correlated with PFT results for each CT and radiographic category. CT grades were also correlated with gallium scanning results and percentage of lymphocytes recovered from bronchoalveolar lavage (BAL). Patients in CT categories 1 and 2 had normal lung function, those in category 3 had mild functional impairment, and those in categories 4 and 5 showed moderate to severe dysfunction. The overall CT grade correlated well with PFT results expressed as a percentage of the predicted value. In five patients, CT scans showed extensive parenchymal disease not seen on radiographs. CT grades did not correlate with the results of gallium scanning or BAL lymphocytes. The authors conclude that patterns of parenchymal sarcoidosis seen at CT correlate with the PFT results and can be used to indicate respiratory impairment.« less

  4. Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods.

    PubMed

    Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G

    2014-01-27

    Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.

  5. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  6. Passive OCT probe head for 3D duct inspection

    NASA Astrophysics Data System (ADS)

    Ford, Helen D.; Tatam, Ralph P.

    2013-09-01

    A passive, endoscopic optical coherence tomography (OCT) probe has been demonstrated, incorporating an imaging fibre bundle and 45° conical mirror, and with no electromechanical components at the probe tip. Circular scanning, of the beam projected onto the proximal face of the imaging bundle, produces a corresponding circular scan at the distal end of the bundle. The beam is turned through 90° by the conical mirror and converted into a radially-scanned sample beam, permitting circumferential OCT scanning in quasi-cylindrical ducts. OCT images, displayed as polar plots and as 3D reconstructions, are presented, showing the internal profile of a metallic test sample containing a 660 µm step in the internal wall. Results have been acquired using two methods: one that makes use of multiple beam-circle diameters, and a mechanical ‘pull-back’ technique. The effects of the convex surface of the conical mirror on spatial resolution are discussed, with suggested working distances given for different application regimes.

  7. Infrared needle mapping to assist biopsy procedures and training.

    PubMed

    Shar, Bruce; Leis, John; Coucher, John

    2018-04-01

    A computed tomography (CT) biopsy is a radiological procedure which involves using a needle to withdraw tissue or a fluid specimen from a lesion of interest inside a patient's body. The needle is progressively advanced into the patient's body, guided by the most recent CT scan. CT guided biopsies invariably expose patients to high dosages of radiation, due to the number of scans required whilst the needle is advanced. This study details the design of a novel method to aid biopsy procedures using infrared cameras. Two cameras are used to image the biopsy needle area, from which the proposed algorithm computes an estimate of the needle endpoint, which is projected onto the CT image space. This estimated position may be used to guide the needle between scans, and results in a reduction in the number of CT scans that need to be performed during the biopsy procedure. The authors formulate a 2D augmentation system which compensates for camera pose, and show that multiple low-cost infrared imaging devices provide a promising approach.

  8. Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory.

    Treesearch

    Stephen E. Reutebuch; Hans-Erik Andersen; Robert J. McGaughey

    2005-01-01

    Airborne laser scanning of forests has been shown to provide accurate terrain models and, at the same time, estimates of multiple resource inventory variables through active sensing of three-dimensional (3D) forest vegetation. Brief overviews of airborne laser scanning technology [often referred to as "light detection and ranging" (LIDAR)] and research...

  9. Isotropic-resolution linear-array-based photoacoustic computed tomography through inverse Radon transform

    NASA Astrophysics Data System (ADS)

    Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.

    2015-03-01

    Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.

  10. Automated vessel shadow segmentation of fovea-centered spectral-domain images from multiple OCT devices

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Gerendas, Bianca S.; Waldstein, Sebastian M.; Simader, Christian; Schmidt-Erfurth, Ursula

    2014-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high reso- lution, three-dimensional (3D) cross sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD) and glaucoma.1 Disease diagnosis, assessment, and treatment requires a patient to undergo multiple OCT scans, possibly using different scanning devices, to accurately and precisely gauge disease activity, progression and treatment success. However, the use of OCT imaging devices from different vendors, combined with patient movement may result in poor scan spatial correlation, potentially leading to incorrect patient diagnosis or treatment analysis. Image registration can be used to precisely compare disease states by registering differing 3D scans to one another. In order to align 3D scans from different time- points and vendors using registration, landmarks are required, the most obvious being the retinal vasculature. Presented here is a fully automated cross-vendor method to acquire retina vessel locations for OCT registration from fovea centred 3D SD-OCT scans based on vessel shadows. Noise filtered OCT scans are flattened based on vendor retinal layer segmentation, to extract the retinal pigment epithelium (RPE) layer of the retina. Voxel based layer profile analysis and k-means clustering is used to extract candidate vessel shadow regions from the RPE layer. In conjunction, the extracted RPE layers are combined to generate a projection image featuring all candidate vessel shadows. Image processing methods for vessel segmentation of the OCT constructed projection image are then applied to optimize the accuracy of OCT vessel shadow segmentation through the removal of false positive shadow regions such as those caused by exudates and cysts. Validation of segmented vessel shadows uses ground truth vessel shadow regions identified by expert graders at the Vienna Reading Center (VRC). The results presented here are intended to show the feasibility of this method for the accurate and precise extraction of suitable retinal vessel shadows from multiple vendor 3D SD-OCT scans for use in intra-vendor and cross-vendor 3D OCT registration, 2D fundus registration and actual retinal vessel segmentation. The resulting percentage of true vessel shadow segments to false positive segments identified by the proposed system compared to mean grader ground truth is 95%.

  11. Ratioed scatter diagrams - An erotetic method for phase identification on complex surfaces using scanning Auger microscopy

    NASA Technical Reports Server (NTRS)

    Browning, R.

    1984-01-01

    By ratioing multiple Auger intensities and plotting a two-dimensional occupational scatter diagram while digitally scanning across an area, the number and elemental association of surface phases can be determined. This can prove a useful tool in scanning Auger microscopic analysis of complex materials. The technique is illustrated by results from an anomalous region on the reaction zone of a SiC/Ti-6Al-4V metal matrix composite material. The anomalous region is shown to be a single phase associated with sulphur and phosphorus impurities. Imaging of a selected phase from the ratioed scatter diagram is possible and may be a useful technique for presenting multiple scanning Auger images.

  12. Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.

    PubMed

    Zhou, Xin; Hedberg, James; Miyahara, Yoichi; Grutter, Peter; Ishibashi, Koji

    2014-12-12

    Two coupled single wall carbon nanotube quantum dots in a multiple quantum dot system were characterized by using a low temperature scanning gate microscopy (SGM) technique, at a temperature of 170 mK. The locations of single wall carbon nanotube quantum dots were identified by taking the conductance images of a single wall carbon nanotube contacted by two metallic electrodes. The single electron transport through single wall carbon nanotube multiple quantum dots has been observed by varying either the position or voltage bias of a conductive atomic force microscopy tip. Clear hexagonal patterns were observed in the region of the conductance images where only two sets of overlapping conductance rings are visible. The values of coupling capacitance over the total capacitance of the two dots, C(m)/C(1(2)) have been extracted to be 0.21 ∼ 0.27 and 0.23 ∼ 0.28, respectively. In addition, the interdot coupling (conductance peak splitting) has also been confirmed in both conductance image measurement and current-voltage curves. The results show that a SGM technique enables spectroscopic investigation of coupled quantum dots even in the presence of unexpected multiple quantum dots.

  13. [Orbital extension of sinus plasmacytoma secondarily transforming into multiple myeloma: a case study].

    PubMed

    Balayre, S; Gicquel, J-J; Mercie, M; Dighiero, P

    2004-01-01

    We report the case of a 39-year-old man who consulted for severe exophthalmia with diplopia associated with chronic sinusitis evolving over 6 months. A cervicofacial CT scan showed a tumoral mass invading the maxillary and ethmoidal left sinus and orbital cavity. A biopsy of the mass and general evaluation confirmed the diagnosis of extramedullary plasmocytoma. Secondarily it transformed into multiple myeloma. In light of this case of extramedullary plasmocytoma in a young subject, we discuss the clinical characteristics, ophthalmologic manifestations, and the various therapeutic modalities according to the stage of the disease and the ocular repercussions.

  14. Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.

    PubMed

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-10-29

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.

  15. Whole-heart magnetic resonance coronary angiography with multiple breath-holds and automatic breathing-level tracking

    NASA Astrophysics Data System (ADS)

    Kuhara, Shigehide; Ninomiya, Ayako; Okada, Tomohisa; Kanao, Shotaro; Kamae, Toshikazu; Togashi, Kaori

    2010-05-01

    Whole-heart (WH) magnetic resonance coronary angiography (MRCA) studies are usually performed during free breathing while monitoring the position of the diaphragm with real-time motion correction. However, this results in a long scan time and the patient's breathing pattern may change, causing the study to be aborted. Alternatively, WH MRCA can be performed with multiple breath-holds (mBH). However, one problem in the mBH method is that patients cannot hold their breath at the same position every time, leading to image degradation. We have developed a new WH MRCA imaging method that employs both the mBH method and automatic breathing-level tracking to permit automatic tracking of the changes in breathing or breath-hold levels. Evaluation of its effects on WH MRCA image quality showed that this method can provide high-quality images within a shorter scan time. This proposed method is expected to be very useful in clinical WH MRCA studies.

  16. Reduced-order modeling for hyperthermia control.

    PubMed

    Potocki, J K; Tharp, H S

    1992-12-01

    This paper analyzes the feasibility of using reduced-order modeling techniques in the design of multiple-input, multiple-output (MIMO) hyperthermia temperature controllers. State space thermal models are created based upon a finite difference expansion of the bioheat transfer equation model of a scanned focused ultrasound system (SFUS). These thermal state space models are reduced using the balanced realization technique, and an order reduction criterion is tabulated. Results show that a drastic reduction in model dimension can be achieved using the balanced realization. The reduced-order model is then used to design a reduced-order optimal servomechanism controller for a two-scan input, two thermocouple output tissue model. In addition, a full-order optimal servomechanism controller is designed for comparison and validation purposes. These two controllers are applied to a variety of perturbed tissue thermal models to test the robust nature of the reduced-order controller. A comparison of the two controllers validates the use of open-loop balanced reduced-order models in the design of MIMO hyperthermia controllers.

  17. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi, E-mail: yiguo@usc.edu; Zhu, Yinghua; Lingala, Sajan Goud

    Purpose: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Methods: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm{sup 3}, FOV 22 × 22 × 4.2 cm{sup 3}, and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm{sup 3}, and broader coverage 22 × 22 × 19 cm{sup 3}. Temporal resolution was 5 smore » for both protocols. Time-resolved images and blood–brain barrier permeability maps were qualitatively evaluated by two radiologists. Results: The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. Conclusions: The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.« less

  18. 2.8 {mu}m emission from type-I quantum wells grown on InAs{sub x}P{sub 1-x}/InP metamorphic graded buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Daehwan; Song, Yuncheng; Larry Lee, Minjoo

    We report 2.8 {mu}m emission from compressively strained type-I quantum wells (QWs) grown on InP-based metamorphic InAs{sub x}P{sub 1-x} step-graded buffers. High quality metamorphic graded buffers showed smooth surface morphology and low threading dislocation densities of approximately 2.5 Multiplication-Sign 10{sup 6} cm{sup -2}. High-resolution x-ray diffraction scans showed strong satellites from multiple quantum wells grown on metamorphic buffers, and cross-sectional transmission electron microscopy revealed smooth and coherent quantum well interfaces. Room-temperature photoluminescence emission at 2.8 {mu}m with a narrow linewidth ({approx}50 meV) shows the promise of metamorphic growth for mid-infrared laser diodes on InP.

  19. Stochastic nature of Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Masuoka, E. J.

    1987-01-01

    A multiple series generalization of the ARIMA models is used to model Landsat MSS scan lines as sequences of vectors, each vector having four elements (bands). The purpose of this work is to investigate if Landsat scan lines can be described by a general multiple series linear stochastic model and if the coefficients of such a model vary as a function of satellite system and target attributes. To accomplish this objective, an exploratory experimental design was set up incorporating six factors, four representing target attributes - location, cloud cover, row (within location), and column (within location) - and two factors representing system attributes - satellite number and detector bank. Each factor was included in the design at two levels and, with two replicates per treatment, 128 scan lines were analyzed. The results of the analysis suggests that a multiple AR(4) model is an adequate representation across all scan lines. Furthermore, the coefficients of the AR(4) model vary with location, particularly changes in physiography (slope regimes), and with percent cloud cover, but are insensitive to changes in system attributes.

  20. THE SCREENING AND RANKING ALGORITHM FOR CHANGE-POINTS DETECTION IN MULTIPLE SAMPLES

    PubMed Central

    Song, Chi; Min, Xiaoyi; Zhang, Heping

    2016-01-01

    The chromosome copy number variation (CNV) is the deviation of genomic regions from their normal copy number states, which may associate with many human diseases. Current genetic studies usually collect hundreds to thousands of samples to study the association between CNV and diseases. CNVs can be called by detecting the change-points in mean for sequences of array-based intensity measurements. Although multiple samples are of interest, the majority of the available CNV calling methods are single sample based. Only a few multiple sample methods have been proposed using scan statistics that are computationally intensive and designed toward either common or rare change-points detection. In this paper, we propose a novel multiple sample method by adaptively combining the scan statistic of the screening and ranking algorithm (SaRa), which is computationally efficient and is able to detect both common and rare change-points. We prove that asymptotically this method can find the true change-points with almost certainty and show in theory that multiple sample methods are superior to single sample methods when shared change-points are of interest. Additionally, we report extensive simulation studies to examine the performance of our proposed method. Finally, using our proposed method as well as two competing approaches, we attempt to detect CNVs in the data from the Primary Open-Angle Glaucoma Genes and Environment study, and conclude that our method is faster and requires less information while our ability to detect the CNVs is comparable or better. PMID:28090239

  1. Multivendor Spectral-Domain Optical Coherence Tomography Dataset, Observer Annotation Performance Evaluation, and Standardized Evaluation Framework for Intraretinal Cystoid Fluid Segmentation.

    PubMed

    Wu, Jing; Philip, Ana-Maria; Podkowinski, Dominika; Gerendas, Bianca S; Langs, Georg; Simader, Christian; Waldstein, Sebastian M; Schmidt-Erfurth, Ursula M

    2016-01-01

    Development of image analysis and machine learning methods for segmentation of clinically significant pathology in retinal spectral-domain optical coherence tomography (SD-OCT), used in disease detection and prediction, is limited due to the availability of expertly annotated reference data. Retinal segmentation methods use datasets that either are not publicly available, come from only one device, or use different evaluation methodologies making them difficult to compare. Thus we present and evaluate a multiple expert annotated reference dataset for the problem of intraretinal cystoid fluid (IRF) segmentation, a key indicator in exudative macular disease. In addition, a standardized framework for segmentation accuracy evaluation, applicable to other pathological structures, is presented. Integral to this work is the dataset used which must be fit for purpose for IRF segmentation algorithm training and testing. We describe here a multivendor dataset comprised of 30 scans. Each OCT scan for system training has been annotated by multiple graders using a proprietary system. Evaluation of the intergrader annotations shows a good correlation, thus making the reproducibly annotated scans suitable for the training and validation of image processing and machine learning based segmentation methods. The dataset will be made publicly available in the form of a segmentation Grand Challenge.

  2. Multivendor Spectral-Domain Optical Coherence Tomography Dataset, Observer Annotation Performance Evaluation, and Standardized Evaluation Framework for Intraretinal Cystoid Fluid Segmentation

    PubMed Central

    Wu, Jing; Philip, Ana-Maria; Podkowinski, Dominika; Gerendas, Bianca S.; Langs, Georg; Simader, Christian

    2016-01-01

    Development of image analysis and machine learning methods for segmentation of clinically significant pathology in retinal spectral-domain optical coherence tomography (SD-OCT), used in disease detection and prediction, is limited due to the availability of expertly annotated reference data. Retinal segmentation methods use datasets that either are not publicly available, come from only one device, or use different evaluation methodologies making them difficult to compare. Thus we present and evaluate a multiple expert annotated reference dataset for the problem of intraretinal cystoid fluid (IRF) segmentation, a key indicator in exudative macular disease. In addition, a standardized framework for segmentation accuracy evaluation, applicable to other pathological structures, is presented. Integral to this work is the dataset used which must be fit for purpose for IRF segmentation algorithm training and testing. We describe here a multivendor dataset comprised of 30 scans. Each OCT scan for system training has been annotated by multiple graders using a proprietary system. Evaluation of the intergrader annotations shows a good correlation, thus making the reproducibly annotated scans suitable for the training and validation of image processing and machine learning based segmentation methods. The dataset will be made publicly available in the form of a segmentation Grand Challenge. PMID:27579177

  3. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    NASA Astrophysics Data System (ADS)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  4. Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning.

    PubMed

    Ozbay, Baris N; Futia, Gregory L; Ma, Ming; Bright, Victor M; Gopinath, Juliet T; Hughes, Ethan G; Restrepo, Diego; Gibson, Emily A

    2018-05-25

    We present a miniature head mounted two-photon fiber-coupled microscope (2P-FCM) for neuronal imaging with active axial focusing enabled using a miniature electrowetting lens. We show three-dimensional two-photon imaging of neuronal structure and record neuronal activity from GCaMP6s fluorescence from multiple focal planes in a freely-moving mouse. Two-color simultaneous imaging of GFP and tdTomato fluorescence is also demonstrated. Additionally, dynamic control of the axial scanning of the electrowetting lens allows tilting of the focal plane enabling neurons in multiple depths to be imaged in a single plane. Two-photon imaging allows increased penetration depth in tissue yielding a working distance of 450 μm with an additional 180 μm of active axial focusing. The objective NA is 0.45 with a lateral resolution of 1.8 μm, an axial resolution of 10 μm, and a field-of-view of 240 μm diameter. The 2P-FCM has a weight of only ~2.5 g and is capable of repeatable and stable head-attachment. The 2P-FCM with dynamic axial scanning provides a new capability to record from functionally distinct neuronal layers, opening new opportunities in neuroscience research.

  5. Multiple echo multi-shot diffusion sequence.

    PubMed

    Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A

    2014-04-01

    To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.

  6. Annual Research Report 1 October 1978-30 September 1979.

    DTIC Science & Technology

    1979-01-01

    Roeder, R. G. and Rutter, W. J. Multiple acid polymerases in ribonucleic acid synthesis during sea urchin development. Biochemistry 9: 2543-2554...with ultrastructural transmission electron microscopy (TEM) studies and scanning electron microscopy ( SEM ) stud- ies of lateral ventricular lining and...1I alterations in animals about 100 days after Silastic implantation. SEM studies show flattening and stretching of ependymal cells in the dorsomedial

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedelkoski, Zlatko; Kepaptsoglou, Demie; Lari, Leonardo

    We compare the structural, chemical, and magnetic properties of magnetite nanoparticles. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. We show that atomistic magnetic modelling of nanoparticles with and without these defects reveal the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm.

  8. Application of several physical techniques in the total analysis of a canine urinary calculus.

    PubMed

    Rodgers, A L; Mezzabotta, M; Mulder, K J; Nassimbeni, L R

    1981-06-01

    A single calculus from the bladder of a Beagle bitch has been analyzed by a multiple technique approach employing x-ray diffraction, infrared spectroscopy, scanning electron microscopy, x-ray fluorescence spectrometry, atomic absorption spectrophotometry and density gradient fractionation. The qualitative and quantitative data obtained showed excellent agreement, lending confidence to such an approach for the evaluation and understanding of stone disease.

  9. Utility of 18 F-FDG PET/CT scan to diagnose the etiology of fever of unknown origin in patients on dialysis.

    PubMed

    Tek Chand, Kalawat; Chennu, Krishna Kishore; Amancharla Yadagiri, Lakshmi; Manthri Gupta, Ranadheer; Rapur, Ram; Vishnubotla, Siva Kumar

    2017-04-01

    Studies on fever of unknown origin (FUO) in patients of chronic kidney disease and end stage renal disease patients on dialysis were not many. In this study, we used 18 F-FDG PET/CT scan whole body survey for detection of hidden infection, in patients on dialysis, labelled as FUO. In this retrospective study, 20 patients of end stage renal disease on dialysis were investigated for the cause of FUO using 18F-FDG PET/CT scan. All these patients satisfied the definition of FUO as defined by Petersdorf and Beeson. Any focal abnormal site of increased FDG concentration detected by PET/CT, either a solitary or multiple lesions was documented and at least one of the detected abnormal sites of radio tracer concentration was further examined for histopathology. All patients were on renal replacement therapy. Of these, 18 were on hemodialysis and two were on peritoneal dialysis. 18F-FDG PET/CT scan showed metabolically active lesions in 15 patients and metabolically quiescent in five patients. After 18F-FDG PET/CT scan all, but one patient had a change in treatment for fever. Anti-tuberculous treatment was given in 15 patients, antibiotics in four patients and anti-malaria treatment in one patient. The present study is first study of 18F-FDG PET/CT scan in patients of end stage renal disease on dialysis with FUO. The study showed that the 18 F FDG PET/CT scan may present an opportunity to attain the diagnosis in end stage renal disease patients on dialysis with FUO. © 2016 International Society for Hemodialysis.

  10. Scanning electron microscopy fractography analysis of fractured hollow implants.

    PubMed

    Sbordone, Ludovico; Traini, Tonino; Caputi, Sergio; Scarano, Antonio; Bortolaia, Claudia; Piattelli, Adriano

    2010-01-01

    Fracture of the implant is one of the possible complications affecting dental implants; it is a rare event but of great clinical relevance. The aim of the present study was to perform a scanning electron microscopy (SEM) fractography evaluation of 7 International Team for oral Implantology (ITI) hollow implants removed because of fracture. The most common clinical risk factors, such as malocclusion, bruxism, and cantilevers on the prosthesis, were absent. Seven fractured ITI hollow implants were retrieved from 5 patients and were analyzed with the use of SEM. SEM analysis showed typical signs of a cleavage-type fracture. Fractures could be due to an association of multiple factors such as fatigue, inner defects, material electrochemical problems, and tensocorrosion.

  11. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu; Chung, Hsiao-Wen; Chiu, Hui-Chu; Liu, Yi-Jui; Hsu, Hsian-He; Juan, Chun-Jung

    2016-04-01

    To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s(-1)) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s(-1), respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.

  12. Accuracy of complete-arch model using an intraoral video scanner: An in vitro study.

    PubMed

    Jeong, Il-Do; Lee, Jae-Jun; Jeon, Jin-Hun; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul

    2016-06-01

    Information on the accuracy of intraoral video scanners for long-span areas is limited. The purpose of this in vitro study was to evaluate and compare the trueness and precision of an intraoral video scanner, an intraoral still image scanner, and a blue-light scanner for the production of digital impressions. Reference scan data were obtained by scanning a complete-arch model. An identical model was scanned 8 times using an intraoral video scanner (CEREC Omnicam; Sirona) and an intraoral still image scanner (CEREC Bluecam; Sirona), and stone casts made from conventional impressions of the same model were scanned 8 times with a blue-light scanner as a control (Identica Blue; Medit). Accuracy consists of trueness (the extent to which the scan data differ from the reference scan) and precision (the similarity of the data from multiple scans). To evaluate precision, 8 scans were superimposed using 3-dimensional analysis software; the reference scan data were then superimposed to determine the trueness. Differences were analyzed using 1-way ANOVA and post hoc Tukey HSD tests (α=.05). Trueness in the video scanner group was not significantly different from that in the control group. However, the video scanner group showed significantly lower values than those of the still image scanner group for all variables (P<.05), except in tolerance range. The root mean square, standard deviations, and mean negative precision values for the video scanner group were significantly higher than those for the other groups (P<.05). Digital impressions obtained by the intraoral video scanner showed better accuracy for long-span areas than those captured by the still image scanner. However, the video scanner was less accurate than the laboratory scanner. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. The prevalence of osteoarthritis of the sternoclavicular joint on computed tomography.

    PubMed

    Lawrence, Christopher R; East, Benjamin; Rashid, Abbas; Tytherleigh-Strong, Graham M

    2017-01-01

    Symptomatic disorders around the sternoclavicular joint (SCJ) are relatively uncommon. Previous cadaveric and radiographic studies have suggested that asymptomatic osteoarthritic changes are relatively common, progressively increasing with age. The purpose of this study was to determine the prevalence of SCJ osteoarthritis in the general population using computed tomography (CT) scans. We assessed 464 SCJs in 232 patients undergoing a standardized axial CT scan of the thorax including both SCJs, across a range of ages from the second to tenth decade. The scans were undertaken for multiple clinical indications; however, none were obtained to investigate SCJ pathology. The predominant changes investigated were for the features associated with osteoarthritis including the presence of osteophytes, subchondral cysts, and subcortical sclerosis. The CT scans of 244 SCJs (53%) in 137 patients (59%) showed at least 1 sign of osteoarthritis. No patients younger than 35 years had any features of osteoarthritis. Osteoarthritic changes were present in 89.6% of patients older than 50 years compared with 9.1% younger than this age. All patients above the age of 61 had at least 1 feature of osteoarthritic changes on at least 1 side of the SCJ. Increasing prevalence was noted with increasing age both in the percentage of SCJs showing any positive signs of osteoarthritis and in the severity of osteoarthritis. SCJ osteoarthritis is a very common incidental finding on CT scans, particularly with increasing age. This should be taken into consideration when using a CT scan to assess a patient with symptomatic SCJ pathology. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. 18F-FDG uptake and its clinical relevance in primary gastric lymphoma.

    PubMed

    Yi, Jun Ho; Kim, Seok Jin; Choi, Joon Young; Ko, Young Hyeh; Kim, Byung-Tae; Kim, Won Seog

    2010-06-01

    We studied the clinical relevance of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in patients with primary gastric lymphoma underwent positron emission tomography (PET)/ computed tomography (CT) scan. Forty-two patients with primary gastric lymphoma were analysed: 32 diffuse large B-cell lymphomas (DLBCL) and 10 extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas). The PET/CT scans were compared with clinical and pathologic features, and the results of CT and endoscopy. Nine patients were up-staged based on the results of their PET/CT scan compared to CT (seven DLBCLs, two MALT lymphomas) while six patients were down-staged by the PET/CT scan. The standard uptake value (SUV) was used as an indicator of a lesion with a high metabolic rate. The high SUVmax group, defined as an SUVmax >or= median value, was significantly associated with an advanced Lugano stage (p < 0.001). Three patients with DLBCL, who showed an initially high SUVmax, died of disease progression. Among 24 patients for whom follow-up PET/CT scan with endoscopy was performed, 11 patients with ulcerative or mucosal lesions showed residual (18)F-FDG uptake. All of these gastric lesions were grossly and pathologically benign lesions without evidence of lymphoma cells. In conclusion, PET/CT scan can be used in staging patients with primary gastric lymphoma; however, the residual (18)F-FDG uptake observed during follow-up should be interpreted cautiously and should be combined with endoscopy and multiple biopsies of the stomach. (c) 2009 John Wiley & Sons, Ltd.

  15. Impact of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Before and After Definitive Radiation Therapy in Patients With Apparently Solitary Plasmacytoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Paul J.; Hicks, Rodney J.; Wirth, Andrew

    2009-07-01

    Purpose: To evaluate the impact of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) on management of patients with apparently isolated plasmacytoma. Methods and Materials: Twenty-one patients with apparently solitary plasmacytoma who underwent FDG-PET for staging or restaging were identified from a central PET database. They were either candidates for or had received definitive radiation therapy (RT). Results: Seventeen patients had initial staging scans for bone (n = 11) or soft tissue (n = 6) plasmacytomas, and 11 had PET scans after RT. Only 1 of 14 known untreated sites of plasmacytoma was not identified on staging PET (lesion sensitivity = 93%).more » Three plasmacytomas were excised before PET. Staging PET influenced management in 6 of 17 patients (35%) by showing multiple myeloma (n = 1), discouraging RT after complete resection (n = 1), excluding plasmacytoma at a second site (n = 1), by increasing RT fields (n = 2), or by suggesting sarcoidosis (n = 1). Fifteen of 17 patients with initial staging PET scans received definitive RT. Restaging PET scans after RT showed complete metabolic response in 8 of 11 cases and progressive disease in 2. Two patients with either no response or partial metabolic response had late responses. Staging sestamibi and PET scans were concordant in five of six occasions (one sestamibi scan was false negative). Conclusions: FDG-PET has value for staging and RT planning in plasmacytoma and potentially could have a role in response-assessment after RT. Slow resolution of FDG uptake posttreatment does not necessarily imply an adverse prognosis.« less

  16. Unlocking the spatial inversion of large scanning magnetic microscopy datasets

    NASA Astrophysics Data System (ADS)

    Myre, J. M.; Lascu, I.; Andrade Lima, E.; Feinberg, J. M.; Saar, M. O.; Weiss, B. P.

    2013-12-01

    Modern scanning magnetic microscopy provides the ability to perform high-resolution, ultra-high sensitivity moment magnetometry, with spatial resolutions better than 10^-4 m and magnetic moments as weak as 10^-16 Am^2. These microscopy capabilities have enhanced numerous magnetic studies, including investigations of the paleointensity of the Earth's magnetic field, shock magnetization and demagnetization of impacts, magnetostratigraphy, the magnetic record in speleothems, and the records of ancient core dynamos of planetary bodies. A common component among many studies utilizing scanning magnetic microscopy is solving an inverse problem to determine the non-negative magnitude of the magnetic moments that produce the measured component of the magnetic field. The two most frequently used methods to solve this inverse problem are classic fast Fourier techniques in the frequency domain and non-negative least squares (NNLS) methods in the spatial domain. Although Fourier techniques are extremely fast, they typically violate non-negativity and it is difficult to implement constraints associated with the space domain. NNLS methods do not violate non-negativity, but have typically been computation time prohibitive for samples of practical size or resolution. Existing NNLS methods use multiple techniques to attain tractable computation. To reduce computation time in the past, typically sample size or scan resolution would have to be reduced. Similarly, multiple inversions of smaller sample subdivisions can be performed, although this frequently results in undesirable artifacts at subdivision boundaries. Dipole interactions can also be filtered to only compute interactions above a threshold which enables the use of sparse methods through artificial sparsity. To improve upon existing spatial domain techniques, we present the application of the TNT algorithm, named TNT as it is a "dynamite" non-negative least squares algorithm which enhances the performance and accuracy of spatial domain inversions. We show that the TNT algorithm reduces the execution time of spatial domain inversions from months to hours and that inverse solution accuracy is improved as the TNT algorithm naturally produces solutions with small norms. Using sIRM and NRM measures of multiple synthetic and natural samples we show that the capabilities of the TNT algorithm allow very large samples to be inverted without the need for alternative techniques to make the problems tractable. Ultimately, the TNT algorithm enables accurate spatial domain analysis of scanning magnetic microscopy data on an accelerated time scale that renders spatial domain analyses tractable for numerous studies, including searches for the best fit of unidirectional magnetization direction and high-resolution step-wise magnetization and demagnetization.

  17. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  18. Long-term reproducibility of phantom signal intensities in nonuniformity corrected STIR-MRI examinations of skeletal muscle.

    PubMed

    Viddeleer, Alain R; Sijens, Paul E; van Ooijen, Peter M A; Kuypers, Paul D L; Hovius, Steven E R; Oudkerk, Matthijs

    2009-08-01

    Nerve regeneration could be monitored by comparing MRI image intensities in time, as denervated muscles display increased signal intensity in STIR sequences. In this study long-term reproducibility of STIR image intensity was assessed under clinical conditions and the required image intensity nonuniformity correction was improved by using phantom scans obtained at multiple positions. Three-dimensional image intensity nonuniformity was investigated in phantom scans. Next, over a three-year period, 190 clinical STIR hand scans were obtained using a standardized acquisition protocol, and corrected for intensity nonuniformity by using the results of phantom scanning. The results of correction with 1, 3, and 11 phantom scans were compared. The image intensities in calibration tubes close to the hands were measured every time to determine the reproducibility of our method. With calibration, the reproducibility of STIR image intensity improved from 7.8 to 6.4%. Image intensity nonuniformity correction with 11 phantom scans gave significantly better results than correction with 1 or 3 scans. The image intensities in clinical STIR images acquired at different times can be compared directly, provided that the acquisition protocol is standardized and that nonuniformity correction is applied. Nonuniformity correction is preferably based on multiple phantom scans.

  19. Gene finding in metatranscriptomic sequences.

    PubMed

    Ismail, Wazim Mohammed; Ye, Yuzhen; Tang, Haixu

    2014-01-01

    Metatranscriptomic sequencing is a highly sensitive bioassay of functional activity in a microbial community, providing complementary information to the metagenomic sequencing of the community. The acquisition of the metatranscriptomic sequences will enable us to refine the annotations of the metagenomes, and to study the gene activities and their regulation in complex microbial communities and their dynamics. In this paper, we present TransGeneScan, a software tool for finding genes in assembled transcripts from metatranscriptomic sequences. By incorporating several features of metatranscriptomic sequencing, including strand-specificity, short intergenic regions, and putative antisense transcripts into a Hidden Markov Model, TranGeneScan can predict a sense transcript containing one or multiple genes (in an operon) or an antisense transcript. We tested TransGeneScan on a mock metatranscriptomic data set containing three known bacterial genomes. The results showed that TranGeneScan performs better than metagenomic gene finders (MetaGeneMark and FragGeneScan) on predicting protein coding genes in assembled transcripts, and achieves comparable or even higher accuracy than gene finders for microbial genomes (Glimmer and GeneMark). These results imply, with the assistance of metatranscriptomic sequencing, we can obtain a broad and precise picture about the genes (and their functions) in a microbial community. TransGeneScan is available as open-source software on SourceForge at https://sourceforge.net/projects/transgenescan/.

  20. Clostridium perfringens's necrotizing acute pancreatitis: a case of success

    PubMed Central

    Mendes, Joana; Amaral, Luís; Quintanilha, Rui; Rama, Tiago; Melo, António

    2017-01-01

    Abstract The authors report a case of a 62-year-old man with upper abdominal pain with few hours of onset and vomits. The initial serum amylase was 2306 U/L. The first CT showed signs of a non-complicated acute pancreatitis. He suffered clinical deterioration and for this reason he was admitted on the intensive care unit where he progressed to multiple organ failure in <24 h. A new CT scan was performed that showed pneumoperitoneum and pneumoretroperitoneum. He underwent an exploratory laparotomy and pancreatic necrosectomy and vacuum pack laparostomy were performed. Intraoperative peritoneal fluid culture was positive for Clostridium perfringens confirming the diagnosis. He was discharged from hospital after 61 days. According to our research this is the second case reported in literature of a spontaneous acute necrotizing pancreatitis caused by C. perfringens, with pneumoretroperitoneum and pneumoperitoneum on evaluation by CT scan, that survived after surgical treatment and vigorous resuscitation. PMID:28702167

  1. Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Weina; Jiang, Lan; Li, Xiaowei, E-mail: lixiaowei@bit.edu.cn

    We report an extra freedom to modulate the femtosecond laser energy distribution to control the surface ablated structures through a copper-grid mask. Due to the reduced deposited pulse energy by changing the scanning speed or the pulse fluence, a sequential evolution of three distinctly different surface patterns with periodic distributions is formed, namely, striped ripple lines, ripple microdots, and surface modification. By changing the scanning speed, the number of the multiple dots in a lattice can be modulated. Moreover, by exploring the ablation process through the copper grid mask, it shows an abnormal enhanced ablation effect with strong dependence ofmore » the diffraction-aided fs laser ablated surface structures on polarization direction. The sensitivity shows a quasi-cosinusoid-function with a periodicity of π/2. Particularly, the connection process of striped ripple lines manifests a preferential formation direction with the laser polarization.« less

  2. A machine learning approach for classification of anatomical coverage in CT

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Lo, Pechin; Ramakrishna, Bharath; Goldin, Johnathan; Brown, Matthew

    2016-03-01

    Automatic classification of anatomical coverage of medical images is critical for big data mining and as a pre-processing step to automatically trigger specific computer aided diagnosis systems. The traditional way to identify scans through DICOM headers has various limitations due to manual entry of series descriptions and non-standardized naming conventions. In this study, we present a machine learning approach where multiple binary classifiers were used to classify different anatomical coverages of CT scans. A one-vs-rest strategy was applied. For a given training set, a template scan was selected from the positive samples and all other scans were registered to it. Each registered scan was then evenly split into k × k × k non-overlapping blocks and for each block the mean intensity was computed. This resulted in a 1 × k3 feature vector for each scan. The feature vectors were then used to train a SVM based classifier. In this feasibility study, four classifiers were built to identify anatomic coverages of brain, chest, abdomen-pelvis, and chest-abdomen-pelvis CT scans. Each classifier was trained and tested using a set of 300 scans from different subjects, composed of 150 positive samples and 150 negative samples. Area under the ROC curve (AUC) of the testing set was measured to evaluate the performance in a two-fold cross validation setting. Our results showed good classification performance with an average AUC of 0.96.

  3. SU-E-J-36: Comparison of CBCT Image Quality for Manufacturer Default Imaging Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, G

    Purpose CBCT is being increasingly used in patient setup for radiotherapy. Often the manufacturer default scan modes are used for performing these CBCT scans with the assumption that they are the best options. To quantitatively assess the image quality of these scan modes, all of the scan modes were tested as well as options with the reconstruction algorithm. Methods A CatPhan 504 phantom was scanned on a TrueBeam Linear Accelerator using the manufacturer scan modes (FSRT Head, Head, Image Gently, Pelvis, Pelvis Obese, Spotlight, & Thorax). The Head mode scan was then reconstructed multiple times with all filter options (Smooth,more » Standard, Sharp, & Ultra Sharp) and all Ring Suppression options (Disabled, Weak, Medium, & Strong). An open source ImageJ tool was created for analyzing the CatPhan 504 images. Results The MTF curve was primarily dictated by the voxel size and the filter used in the reconstruction algorithm. The filters also impact the image noise. The CNR was worst for the Image Gently mode, followed by FSRT Head and Head. The sharper the filter, the worse the CNR. HU varied significantly between scan modes. Pelvis Obese had lower than expected HU values than most while the Image Gently mode had higher than expected HU values. If a therapist tried to use preset window and level settings, they would not show the desired tissue for some scan modes. Conclusion Knowing the image quality of the set scan modes, will enable users to better optimize their setup CBCT. Evaluation of the scan mode image quality could improve setup efficiency and lead to better treatment outcomes.« less

  4. [Preoperative assessment of renal vascular anatomy for donor nephrectomy: Is CT superior to MRI?].

    PubMed

    Arvin-Berod, A; Bricault, I; Terrier, N; Skowron, O; Cadi, P; Boillot, B; Thuillier, C; Cluze, C; Descotes, J-L; Rambeaud, J-J; Long, J-A

    2011-01-01

    computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are both used in the preoperative assessment of vascular anatomy before donor nephrectomy. Our objective was to determine retrospectively and to compare the sensitivity of CTA and MRA imaging in preoperative renal vascularisation in living kidney donors. between 1999 and 2007, 42 kidney donors were assessed in our center: 27 by MRA, 10 by CTA, and five by both techniques. Images were interpreted using multiplanar reconstructions. Results were compared retrospectively with peroperative findings; discordant cases were re-examined by an experienced radiologist. Numbers of vessels detected with imaging methods was compared with numbers actually found at the operating time. MRA showed 35/43 arteries (Se 81.4 %) and 33/34 veins (Se 97.1 %), and CTA showed 18/18 arteries (Se 100 %) and 15/16 veins (Se 93.8 %). The presence of multiple arteries was detected in only one third of cases (3/9) on MRI scans; this difference was statistically significant. The missed arteries were not detected on second examination of the MRI scans with the knowledge of peroperative findings. MRA is less sensitive than CTA for preoperative vascularisation imaging in living renal donors, especially in the detection of multiple renal arteries. 2010 Elsevier Masson SAS. All rights reserved.

  5. Scanning probe recognition microscopy investigation of tissue scaffold properties

    PubMed Central

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  6. Scanning probe recognition microscopy investigation of tissue scaffold properties.

    PubMed

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.

  7. Hyperparathyroidism Mimicking Metastatic Bone Disease: A Case Report and Review of Literature.

    PubMed

    Gupta, Monica; Singhal, Lalita; Kumar, Akshay

    2018-06-01

    Multiple osteolytic lesions are usually associated with metastatic involvement of the bone; however, metabolic bone diseases should also be included in the differential diagnosis. In this study, we describe a case of primary hyperparathyroidism (PHPT) with multiple osteolytic lesions that was diagnosed initially as having metastatic bone involvement. The laboratory results showed hypercalcemia and raised alkaline phosphatase along with fibrosis in the bone marrow biopsy with no increase in tumor markers and normal serum protein electrophoresis. The parathyroid hormone levels were high, which pointed toward a diagnosis of PHPT. Sestamibi scan revealed uptake at the level of the left inferior pole of the thyroid gland, which was suggestive of parathyroid adenoma. The possibility of hyperparathyroidism should be kept in mind when a patient presents with multiple osteolytic lesions and hypercalcemia.

  8. [Influence of multiple sintering on wear behavior of Cercon veneering ceramic].

    PubMed

    Gao, Qing-ping; Chao, Yong-lie; Jian, Xin-chun; Guo, Feng

    2010-04-01

    To investigate the influence of multiple sintering on wear behavior of Cercon veneering ceramic. Samples were fabricated according to the manufacture's requirement for different sintering times (1, 3, 5, 7 times). The wear test was operated with a modified MM-200 friction and wear machine in vitro. The wear scars were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). With the sintering times increasing, the wear scar width became larger. The correlation was significant at the 0.01 level. Significant difference was observed in wear scar width among different samples (P < 0.05). SEM and AFM results showed that veneering ceramic wear facets demonstrated grooves characteristic of abrasive wear. Multiple sintering can decrease the wear ability of Cercon veneer, and the wear pattern has the tendency to severe wear.

  9. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn

    2015-12-07

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less

  10. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    NASA Astrophysics Data System (ADS)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  11. Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.

    2014-12-01

    Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface. Finally, we compare characteristics of wakes at the outside of the row of turbines to wakes from turbines in the interior of the row, quantifying how wakes from outer turbines erode faster than those from interior.

  12. [Multiple myeloma with significant multifocal osteolysis in a dog without a detectible gammopathy].

    PubMed

    Souchon, F; Koch, A; Sohns, A

    2013-01-01

    Description of a variant of multiple myeloma in a dog lacking the gammopathy normally associated with this type of neoplasm. A Border Collie mongrel was presented with symptoms of progressive hind-leg weakness, lethargy and tiredness, which had started to appear 6 weeks previously. Radiographic examination showed small osteolytic areas in the spinal column, but also diffuse small areas of increased opacity as well as evidence of decreased bone density in the pelvis and of both femoral necks. Moderate regenerative anaemia, hypogammopathy and hypercalcaemia were diagnosed. Computed tomography scans displayed multifocal osteolysis and bone destruction in the skull, spinal column, scapulae, proximal humeri, pelvis and femoral necks. H&E staining of the biopsies showed bone destruction and monomorphic plasmacyotid cell populations, causing infiltrative bone marrow lesions and osteolysis. In many areas neoplastic plasma cell infiltration of the bone marrow was 70% and in some areas reached 100%. The diagnosis was non-secretory multiple myeloma without apparent secretion of paraproteins into the blood.

  13. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.

    PubMed

    Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes

    2013-11-21

    Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.

  14. Multiple beam interference confocal microscopy: a tool for morphological investigation of living cells and tissues

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio

    2000-05-01

    Multiple beam interference system is used in conjunction with a conventional scanning confocal microscope to examine the morphology and construction of 3D images of Histolytic Ameba and parasite Candida Albicans. The present combination permits to adjoin advantages of both systems, namely the vertical high contrast and optical sectioning. The interference pattern obtained from a multiple internal reflection of a simple, sandwiched between the glass plate and the cover plate, was focussed on an objective of a scanning confocal microscope. According to optical path differences, morphological details were revealed. The combined features, namely improved resolution in z axis, originated from the interference pattern and the optical sectioning of the confocal scanning system, enhance the resolution and contrast dramatically. These features permitted to obtain unprecedented images of Histolytic Ameba and parasite Candida Albicans. Because of the improved contrast, several details like double wall structure of candida, internal structure of ameba are clearly visible.

  15. Frequency multiplexed long range swept source optical coherence tomography

    PubMed Central

    Zurauskas, Mantas; Bradu, Adrian; Podoleanu, Adrian Gh.

    2013-01-01

    We present a novel swept source optical coherence tomography configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire multiple B-scans originating from different depths. The sensitivity range of the configuration is evaluated while acquiring five simultaneous B-scans. Then the configuration is employed to demonstrate long range B-scan imaging by combining two simultaneous B-scans from a mouse head sample. PMID:23760762

  16. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene.

    PubMed

    Settnes, Mikkel; Power, Stephen R; Petersen, Dirch H; Jauho, Antti-Pekka

    2014-03-07

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.

  17. Study of CT Scan Flooding System at High Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.

    2017-12-01

    CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.

  18. Scan-rescan reproducibility of segmental aortic wall shear stress as assessed by phase-specific segmentation with 4D flow MRI in healthy volunteers.

    PubMed

    van der Palen, Roel L F; Roest, Arno A W; van den Boogaard, Pieter J; de Roos, Albert; Blom, Nico A; Westenberg, Jos J M

    2018-05-26

    The aim was to investigate scan-rescan reproducibility and observer variability of segmental aortic 3D systolic wall shear stress (WSS) by phase-specific segmentation with 4D flow MRI in healthy volunteers. Ten healthy volunteers (age 26.5 ± 2.6 years) underwent aortic 4D flow MRI twice. Maximum 3D systolic WSS (WSSmax) and mean 3D systolic WSS (WSSmean) for five thoracic aortic segments over five systolic cardiac phases by phase-specific segmentations were calculated. Scan-rescan analysis and observer reproducibility analysis were performed. Scan-rescan data showed overall good reproducibility for WSSmean (coefficient of variation, COV 10-15%) with moderate-to-strong intraclass correlation coefficient (ICC 0.63-0.89). The variability in WSSmax was high (COV 16-31%) with moderate-to-good ICC (0.55-0.79) for different aortic segments. Intra- and interobserver reproducibility was good-to-excellent for regional aortic WSSmax (ICC ≥ 0.78; COV ≤ 17%) and strong-to-excellent for WSSmean (ICC ≥ 0.86; COV ≤ 11%). In general, ascending aortic segments showed more WSSmax/WSSmean variability compared to aortic arch or descending aortic segments for scan-rescan, intraobserver and interobserver comparison. Scan-rescan reproducibility was good for WSSmean and moderate for WSSmax for all thoracic aortic segments over multiple systolic phases in healthy volunteers. Intra/interobserver reproducibility for segmental WSS assessment was good-to-excellent. Variability of WSSmax is higher and should be taken into account in case of individual follow-up or in comparative rest-stress studies to avoid misinterpretation.

  19. The effect of SiO 2-doped boron nitride multiple coatings on mechanical properties of quartz fibers

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Wang, Shubin

    2012-01-01

    SiO2-doped boron nitride multiple coatings (SiO2/BN multiple coatings) were prepared on quartz fibers surface at 700 °C. Single fiber tensile test was employed to evaluate fiber tensile strength; Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to evaluate morphology and structure of the fibers. Fiber tensile test results indicated that the strength of quartz fibers with SiO2/BN multiple coatings was about twice of the fibers with BN coatings and original fibers which were heated at 700 °C for 10 h. The SiO2/BN multiple coatings would provide compressive stress on quartz fibers, which would help to seal the defects on fiber surface. Furthermore, TEM images showed that the nano-SiO2 powders crystallized in advance of quartz fibers, which would suppress crystallization of quartz fibers and reduce damage from crystallization. Thus, nano-SiO2 powders would help to keep mechanical properties of quartz fibers.

  20. Spontaneous hemothorax caused by ruptured multiple mycotic aortic aneurysms: a case report and literature review.

    PubMed

    Li, Po-Sung; Tsai, Chung-Lin; Hu, Sung-Yuan; Lin, Tzu-Chieh; Chang, Yao-Tien

    2017-12-02

    Mycotic aortic aneurysm (MAA) is a rare clinical entity with an incidence of 1-3%, but it is a life-threatening infection of aorta characterized by dilatation of aorta with false lumen. Multiple MAAs have been reported rarely with an incidence of 0.03% and associated with a high mortality rate of 80% if ruptured. A hypertensive and diabetic 78-year-old man visited our emergency department complaining intermittent dull and tingled pain over the left flank region for 1 week. Chest X-ray showed left pleural effusion and hemothorax was confirmed by thoracocentesis. Computed tomography (CT) of chest demonstrated multiple thoracic aortic aneurysms and the pathological findings disclosed the diagnosis of multiple MAAs. He was discharged under an uneventful condition post-surgical aortic repair with adequate intravenous antibiotics for 4 weeks. CT scan may make a definite diagnosis of multiple MAAs and management with surgical debridement, aortic repair and full-course antibiotics for Gram-positive coccus and/or Gram-negative bacillus is recommended.

  1. High-throughput multiple-mouse imaging with micro-PET/CT for whole-skeleton assessment.

    PubMed

    Yagi, Masashi; Arentsen, Luke; Shanley, Ryan M; Hui, Susanta K

    2014-11-01

    Recent studies have proven that skeleton-wide functional assessment is essential to comprehensively understand physiological aspects of the skeletal system. Therefore, in contrast to regional imaging studies utilizing a multiple-animal holder (mouse hotel), we attempted to develop and characterize a multiple-mouse imaging system with micro-PET/CT for high-throughput whole-skeleton assessment. Using items found in a laboratory, a simple mouse hotel that houses four mice linked with gas anesthesia was constructed. A mouse-simulating phantom was used to measure uniformity in a cross sectional area and flatness (Amax/Amin*100) along the axial, radial and tangential directions, where Amax and Amin are maximum and minimum activity concentration in the profile, respectively. Fourteen mice were used for single- or multiple-micro-PET/CT scans. NaF uptake was measured at eight skeletal sites (skull to tibia). Skeletal (18)F activities measured with mice in the mouse hotel were within 1.6 ± 4% (mean ± standard deviation) of those measured with mice in the single-mouse holder. Single-holder scanning yields slightly better uniformity and flatness over the hotel. Compared to use of the single-mouse holder, scanning with the mouse hotel reduced study time (by 65%), decreased the number of scans (four-fold), reduced cost, required less computer storage space (40%), and maximized (18)F usage. The mouse hotel allows high-throughput, quantitatively equivalent scanning compared to the single-mouse holder for micro-PET/CT imaging for whole-skeleton assessment of mice. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Laser-Based Pedestrian Tracking in Outdoor Environments by Multiple Mobile Robots

    PubMed Central

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-01-01

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures. PMID:23202171

  3. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    PubMed

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  4. Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinerstein, S.L.; Kovarsky, J.

    1984-08-01

    A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvismore » were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.« less

  5. Recurrent pulmonary embolism due to echinococcosis secondary to hepatic surgery for hydatid cysts.

    PubMed

    Damiani, Mario Francesco; Carratù, Pierluigi; Tatò, Ilaria; Vizzino, Heleanna; Florio, Carlo; Resta, Onofrio

    2012-01-01

    We describe the case of a 53-year-old man with recurrent pulmonary embolism due to intra-arterial cysts from Echinococcus. Both the patient's medical history and the computed tomographic (CT) scan abnormalities led to the diagnosis. The CT scan, performed during hospitalization in our ward, showed cystic masses in the left main pulmonary artery and in the descending branch of the right pulmonary artery. Within cystic masses, thin septa were visible, giving a chambered appearance, which was suggestive of a group of daughter cysts. In the past, our patient underwent multiple operations for recurring echinococcal cysts of the liver. After the last intervention, 4 years earlier, his postoperative course was complicated by pulmonary embolism: a CT scan showed a filling defect in the descending branch of the right pulmonary artery, which was caused by the same cystic mass as 4 years later, although smaller. This mass, not properly treated, increased in diameter. Moreover, after 4 years, there has been a new episode of embolism, which involved the left main pulmonary artery. This is the first case in which there are repeated episodes of pulmonary embolism echinococcosis after hepatic surgery for removal of hydatid cysts.

  6. Evaluating habitat associations of a fish assemblage at multiple spatial scales in a minimally disturbed stream using low-cost remote sensing

    USGS Publications Warehouse

    Cheek, Brandon D.; Grabowski, Timothy B.; Bean, Preston T.; Groeschel, Jillian R.; Magnelia, Stephan J.

    2016-01-01

    Habitat heterogeneity at multiple scales is a major factor affecting fish assemblage structure. However, assessments that examine these relationships at multiple scales concurrently are lacking. The lack of assessments at these scales is a critical gap in understanding as conservation and restoration efforts typically work at these levels.A combination of low-cost side-scan sonar surveys, aerial imagery using an unmanned aerial vehicle, and fish collections were used to evaluate the relationship between physicochemical and landscape variables at various spatial scales (e.g. micro-mesohabitat, mesohabitat, channel unit, stream reach) and stream–fish assemblage structure and habitat associations in the South Llano River, a spring-fed second-order stream on the Edwards Plateau in central Texas during 2012–2013.Low-cost side-scan sonar surveys have not typically been used to generate data for riverscape assessments of assemblage structure, thus the secondary objective was to assess the efficacy of this approach.The finest spatial scale (micro-mesohabitat) and the intermediate scale (channel unit) had the greatest explanatory power for variation in fish assemblage structure.Many of the fish endemic to the Edwards Plateau showed similar associations with physicochemical and landscape variables suggesting that conservation and restoration actions targeting a single endemic species may provide benefits to a large proportion of the endemic species in this system.Low-cost side-scan sonar proved to be a cost-effective means of acquiring information on the habitat availability of the entire river length and allowed the assessment of how a full suite of riverscape-level variables influenced local fish assemblage structure.

  7. Monitoring of typodont root movement via crown superimposition of single cone-beam computed tomography and consecutive intraoral scans.

    PubMed

    Lee, Robert J; Pham, John; Choy, Michael; Weissheimer, Andre; Dougherty, Harry L; Sameshima, Glenn T; Tong, Hongsheng

    2014-03-01

    The purpose of this study was to develop a new methodology to visualize in 3 dimensions whole teeth, including the roots, at any moment during orthodontic treatment without the need for multiple cone-beam computed tomography (CBCT) scans. An extraoral typodont model was created using extracted teeth placed in a wax base. These teeth were arranged to represent a typical malocclusion. Initial records of the malocclusion, including CBCT and intraoral surface scans, were taken. Threshold segmentation of the CBCT was performed to generate a 3-dimensional virtual model. This model and the intraoral surface scan model were superimposed to generate a complete set of digital composite teeth composed of high-resolution surface scan crowns sutured to the CBCT roots. These composite teeth were individually isolated from their respective arches for single-tooth manipulations. Orthodontic treatment for the malocclusion typodont model was performed, and posttreatment intraoral surface scans before and after bracket removal were taken. A CBCT scan after bracket removal was also obtained. The isolated composite teeth were individually superimposed onto the posttreatment surface scan, creating the expected root position setup. To validate this setup, it was compared with the posttreatment CBCT scan, which showed the true positions of the roots. Color displacement maps were generated to confirm accurate crown superimpositions and to measure the discrepancies between the expected and the true root positions. Color displacement maps through crown superimpositions showed differences between the expected and true root positions of 0.1678 ± 0.3178 mm for the maxillary teeth and 0.1140 ± 0.1587 mm for the mandibular teeth with brackets. Once the brackets were removed, differences of 0.1634 ± 0.3204 mm for the maxillary teeth and 0.0902 ± 0.2505 mm for the mandibular teeth were found. A new reliable approach was demonstrated in an ex-vivo typdont model to have the potential to track the 3-dimensional positions of whole teeth including the roots, with only the initial CBCT scan and consecutive intraoral scans. Since the presence of brackets in the intraoral scan had a minimal influence in the analysis, this method can be applied at any stage of orthodontic treatment. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  8. Angular Superresolution for a Scanning Antenna with Simulated Complex Scatterer-Type Targets

    DTIC Science & Technology

    2002-05-01

    Approved for public release; distribution unlimited. The Scan- MUSIC (MUltiple SIgnal Classification), or SMUSIC, algorithm was developed by the Millimeter...with the use of a single rotatable sensor scanning in an angular region of interest. This algorithm has been adapted and extended from the MUSIC ...simulation. Abstract ii iii Contents 1. Introduction 1 2. Extension of the MUSIC Algorithm for Scanning Antenna 2 2.1 Subvector Averaging Method

  9. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    EPA Science Inventory

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  10. Characterization of Visual Scanning Patterns in Air Traffic Control

    PubMed Central

    McClung, Sarah N.; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process. PMID:27239190

  11. Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging.

    PubMed

    Schneider, Falk; Waithe, Dominic; Galiani, Silvia; Bernardino de la Serna, Jorge; Sezgin, Erdinc; Eggeling, Christian

    2018-06-19

    The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.

  12. Characterization of Visual Scanning Patterns in Air Traffic Control.

    PubMed

    McClung, Sarah N; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process.

  13. A waveform diversity method for optimizing 3-d power depositions generated by ultrasound phased arrays.

    PubMed

    Zeng, Xiaozheng Jenny; Li, Jian; McGough, Robert J

    2010-01-01

    A waveform-diversity-based approach for 3-D tumor heating is compared to spot scanning for hyperthermia applications. The waveform diversity method determines the excitation signals applied to the phased array elements and produces a beam pattern that closely matches the desired power distribution. The optimization algorithm solves the covariance matrix of the excitation signals through semidefinite programming subject to a series of quadratic cost functions and constraints on the control points. A numerical example simulates a 1444-element spherical-section phased array that delivers heat to a 3-cm-diameter spherical tumor located 12 cm from the array aperture, and the results show that waveform diversity combined with mode scanning increases the heated volume within the tumor while simultaneously decreasing normal tissue heating. Whereas standard single focus and multiple focus methods are often associated with unwanted intervening tissue heating, the waveform diversity method combined with mode scanning shifts energy away from intervening tissues where hotspots otherwise accumulate to improve temperature localization in deep-seated tumors.

  14. Path-separated electron interferometry in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  15. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu

    Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fatmore » suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s{sup −1}) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s{sup −1}, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.« less

  16. T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging.

    PubMed

    Tamir, Jonathan I; Uecker, Martin; Chen, Weitian; Lai, Peng; Alley, Marcus T; Vasanawala, Shreyas S; Lustig, Michael

    2017-01-01

    A new acquisition and reconstruction method called T 2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T 2 Shuffling reduces blurring and recovers many images at multiple T 2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T 2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. The proposed T 2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Brain-Only Metastases Seen on FDG PET as First Relapse of Papillary Thyroid Carcinoma Two Years Post-Thyroidectomy.

    PubMed

    Naddaf, Sleiman Y; Syed, Ghulam Mustafa Shah; Hadb, Abdulrahman; Al-Thaqfi, Saif

    2016-09-01

    We report a case of a 60-year-old man diagnosed with papillary thyroid cancer who had a relapse seen only in the brain at FDG PET on standard images. Total thyroidectomy was performed in July 2013 after initial diagnosis. Patient received I ablation in December 2013, followed by external beam radiotherapy to the neck. In September 2015, the patient presented with neurological symptoms. Brain MRI showed multiple brain metastases later confirmed on histopathology. An FDG PET/CT scan was performed to evaluate the whole body in November 2015. Multiple hypermetabolic lesions were identified in the brain with no other lesion up to mid thighs.

  18. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    NASA Astrophysics Data System (ADS)

    Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.

    2016-07-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.

  19. Transformation optics with windows

    NASA Astrophysics Data System (ADS)

    Oxburgh, Stephen; White, Chris D.; Antoniou, Georgios; Orife, Ejovbokoghene; Courtial, Johannes

    2014-09-01

    Identity certification in the cyberworld has always been troublesome if critical information and financial transaction must be processed. Biometric identification is the most effective measure to circumvent the identity issues in mobile devices. Due to bulky and pricy optical design, conventional optical fingerprint readers have been discarded for mobile applications. In this paper, a digital variable-focus liquid lens was adopted for capture of a floating finger via fast focusplane scanning. Only putting a finger in front of a camera could fulfill the fingerprint ID process. This prototyped fingerprint reader scans multiple focal planes from 30 mm to 15 mm in 0.2 second. Through multiple images at various focuses, one of the images is chosen for extraction of fingerprint minutiae used for identity certification. In the optical design, a digital liquid lens atop a webcam with a fixed-focus lens module is to fast-scan a floating finger at preset focus planes. The distance, rolling angle and pitching angle of the finger are stored for crucial parameters during the match process of fingerprint minutiae. This innovative compact touchless fingerprint reader could be packed into a minute size of 9.8*9.8*5 (mm) after the optical design and multiple focus-plane scan function are optimized.

  20. A New Sparse Representation Framework for Reconstruction of an Isotropic High Spatial Resolution MR Volume From Orthogonal Anisotropic Resolution Scans.

    PubMed

    Jia, Yuanyuan; Gholipour, Ali; He, Zhongshi; Warfield, Simon K

    2017-05-01

    In magnetic resonance (MR), hardware limitations, scan time constraints, and patient movement often result in the acquisition of anisotropic 3-D MR images with limited spatial resolution in the out-of-plane views. Our goal is to construct an isotropic high-resolution (HR) 3-D MR image through upsampling and fusion of orthogonal anisotropic input scans. We propose a multiframe super-resolution (SR) reconstruction technique based on sparse representation of MR images. Our proposed algorithm exploits the correspondence between the HR slices and the low-resolution (LR) sections of the orthogonal input scans as well as the self-similarity of each input scan to train pairs of overcomplete dictionaries that are used in a sparse-land local model to upsample the input scans. The upsampled images are then combined using wavelet fusion and error backprojection to reconstruct an image. Features are learned from the data and no extra training set is needed. Qualitative and quantitative analyses were conducted to evaluate the proposed algorithm using simulated and clinical MR scans. Experimental results show that the proposed algorithm achieves promising results in terms of peak signal-to-noise ratio, structural similarity image index, intensity profiles, and visualization of small structures obscured in the LR imaging process due to partial volume effects. Our novel SR algorithm outperforms the nonlocal means (NLM) method using self-similarity, NLM method using self-similarity and image prior, self-training dictionary learning-based SR method, averaging of upsampled scans, and the wavelet fusion method. Our SR algorithm can reduce through-plane partial volume artifact by combining multiple orthogonal MR scans, and thus can potentially improve medical image analysis, research, and clinical diagnosis.

  1. Accuracy of parameter estimates for closely spaced optical targets using multiple detectors

    NASA Astrophysics Data System (ADS)

    Dunn, K. P.

    1981-10-01

    In order to obtain the cross-scan position of an optical target, more than one scanning detector is used. As expected, the cross-scan position estimation performance degrades when two nearby optical targets interfere with each other. Theoretical bounds on the two-dimensional parameter estimation performance for two closely spaced optical targets are found. Two particular classes of scanning detector arrays, namely, the crow's foot and the brickwall (or mosaic) patterns, are considered.

  2. Acquisition of multiple image stacks with a confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Zuschratter, Werner; Steffen, Thomas; Braun, Katharina; Herzog, Andreas; Michaelis, Bernd; Scheich, Henning

    1998-06-01

    Image acquisition at high magnification is inevitably correlated with a limited view over the entire tissue section. To overcome this limitation we designed software for multiple image-stack acquisition (3D-MISA) in confocal laser scanning microscopy (CLSM). The system consists of a 4 channel Leica CLSM equipped with a high resolution z- scanning stage mounted on a xy-monitorized stage. The 3D- MISA software is implemented into the microscope scanning software and uses the microscope settings for the movements of the xy-stage. It allows storage and recall of 70 xyz- positions and the automatic 3D-scanning of image arrays between selected xyz-coordinates. The number of images within one array is limited only by the amount of disk space or memory available. Although for most applications the accuracy of the xy-scanning stage is sufficient for a precise alignment of tiled views, the software provides the possibility of an adjustable overlap between two image stacks by shifting the moving steps of the xy-scanning stage. After scanning a tiled image gallery of the extended focus-images of each channel will be displayed on a graphic monitor. In addition, a tiled image gallery of individual focal planes can be created. In summary, the 3D-MISA allows 3D-image acquisition of coherent regions in combination with high resolution of single images.

  3. Genomic Physics. Multiple Laser Beam Treatment of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-03-01

    The synapses affected by Alzheimer's disease can be rejuvenated by the multiple ultrashort wavelength laser beams.[2] The guiding lasers scan the whole area to detect the amyloid plaques based on the laser scattering technique. The scanning lasers pinpoint the areas with plaques and eliminate them. Laser interaction is highly efficient, because of the focusing capabilities and possibility for the identification of the damaging proteins by matching the protein oscillation eigen-frequency with laser frequency.[3] Supported by Nikola Tesla Labs, La Jolla, California, USA.

  4. Synchronized Survey Scan Approach Allows for Efficient Discrimination of Isomeric and Isobaric Compounds during LC-MS/MS Analyses

    PubMed Central

    Masike, Keabetswe

    2018-01-01

    Liquid chromatography-mass spectrometry- (LC-MS-) based multiple reaction monitoring (MRM) methods have been used to detect and quantify metabolites for years. These approaches rely on the monitoring of various fragmentation pathways of multiple precursors and the subsequent corresponding product ions. However, MRM methods are incapable of confidently discriminating between isomeric and isobaric molecules and, as such, the development of methods capable of overcoming this challenge has become imperative. Due to increasing scanning rates of recent MS instruments, it is now possible to operate MS instruments both in the static and dynamic modes. One such method is known as synchronized survey scan (SSS), which is capable of acquiring a product ion scan (PIS) during MRM analysis. The current study shows, for the first time, the use of SSS-based PIS approach as a feasible identification feature of MRM. To achieve the above, five positional isomers of dicaffeoylquinic acids (diCQAs) were studied with the aid of SSS-based PIS method. Here, the MRM transitions were automatically optimized using a 3,5-diCQA isomer by monitoring fragmentation transitions common to all five isomers. Using the mixture of these isomers, fragmentation spectra of the five isomers achieved with SSS-based PIS were used to identify each isomer based on previously published hierarchical fragmentation keys. The optimized method was also used to detect and distinguish between diCQA components found in Bidens pilosa and their isobaric counterparts found in Moringa oleifera plants. Thus, the method was shown to distinguish (by differences in fragmentation patterns) between diCQA and their isobars, caffeoylquinic acid (CQA) glycosides. In conclusion, SSS allowed the detection and discrimination of isomeric and isobaric compounds in a single chromatographic run by producing a PIS spectrum, triggered in the automatic MS/MS synchronized survey scan mode. PMID:29805830

  5. Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements

    PubMed Central

    Tharakaraman, Kannan; Mariño-Ramírez, Leonardo; Sheetlin, Sergey L; Landsman, David; Spouge, John L

    2006-01-01

    Background Many DNA regulatory elements occur as multiple instances within a target promoter. Gibbs sampling programs for finding DNA regulatory elements de novo can be prohibitively slow in locating all instances of such an element in a sequence set. Results We describe an improvement to the A-GLAM computer program, which predicts regulatory elements within DNA sequences with Gibbs sampling. The improvement adds an optional "scanning step" after Gibbs sampling. Gibbs sampling produces a position specific scoring matrix (PSSM). The new scanning step resembles an iterative PSI-BLAST search based on the PSSM. First, it assigns an "individual score" to each subsequence of appropriate length within the input sequences using the initial PSSM. Second, it computes an E-value from each individual score, to assess the agreement between the corresponding subsequence and the PSSM. Third, it permits subsequences with E-values falling below a threshold to contribute to the underlying PSSM, which is then updated using the Bayesian calculus. A-GLAM iterates its scanning step to convergence, at which point no new subsequences contribute to the PSSM. After convergence, A-GLAM reports predicted regulatory elements within each sequence in order of increasing E-values, so users have a statistical evaluation of the predicted elements in a convenient presentation. Thus, although the Gibbs sampling step in A-GLAM finds at most one regulatory element per input sequence, the scanning step can now rapidly locate further instances of the element in each sequence. Conclusion Datasets from experiments determining the binding sites of transcription factors were used to evaluate the improvement to A-GLAM. Typically, the datasets included several sequences containing multiple instances of a regulatory motif. The improvements to A-GLAM permitted it to predict the multiple instances. PMID:16961919

  6. Practical use of bone scan in patients with an osteoporotic vertebral compression fracture.

    PubMed

    Jun, Deuk Soo; An, Byoung Keun; Yu, Chang Hun; Hwang, Kyung Hoon; Paik, Je Won

    2015-02-01

    Rib fractures are one of main causes of chest or flank pain when related to an osteoporotic vertebral compression fracture (OVCF). The authors investigated the incidence and risk factors of rib fracture in 284 patients with OVCF using bone scans and evaluated the feasibility as to whether bone scans could be utilized as a useful screening tool. Hot uptake lesions on ribs were found in 122 cases (43.0%). The factors analyzed were age, sex, number and locations of fractured vertebrae, BMD, and compression rates as determined using initial radiography. However, no statistical significances were found. In 16 cases (5.6%), there were concurrent multiple fractures of both the thoracic and lumbar spines not detected by single site MRI. Sixty cases (21.1%) of OVCF with the a compression rate of less than 15% could not be identified definitely by initial plain radiography, but were confirmed by bone scans. It is concluded that a bone scan has outstanding ability for the screening of rib fractures associated with OVCF. Non-adjacent multiple fractures in both thoracic and lumbar spines and fractures not identified definitely by plain radiography were detected on bone scans, which provided a means for determining management strategies and predicting prognosis.

  7. SU-C-207A-06: On-Line Beam Range Verification with Multiple Scanning Particle Beams: Initial Feasibility Study with Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Y; Sun, X; Lu, W

    Purpose: To investigate the feasibility and requirement for intra-fraction on-line multiple scanning particle beam range verifications (BRVs) with in-situ PET imaging, which is beyond the current single-beam BRV with extra factors that will affect the BR measurement accuracy, such as beam diameter, separation between beams, and different image counts at different BRV positions. Methods: We simulated a 110-MeV proton beam with 5-mm diameter irradiating a uniform PMMA phantom by GATE simulation, which generated nuclear interaction-induced positrons. In this preliminary study, we simply duplicated these positrons and placed them next to the initial protons to approximately mimic the two spatially separatedmore » positron distributions produced by two beams parallel to each other but with different beam ranges. These positrons were then imaged by a PET (∼2-mm resolution, 10% sensitivity, 320×320×128 mm^3 FOV) with different acquisition times. We calculated the positron activity ranges (ARs) from reconstructed PET images and compared them with the corresponding ARs of original positron distributions. Results: Without further image data processing and correction, the preliminary study show the errors between the measured and original ARs varied from 0.2 mm to 2.3 mm as center-to-center separations and range differences were in the range of 8–12 mm and 2–8 mm respectively, indicating the accuracy of AR measurement strongly depends on the beam separations and range differences. In addition, it is feasible to achieve ≤ 1.0-mm accuracy for both beams with 1-min PET acquisition and 12 mm beam separation. Conclusion: This study shows that the overlap between the positron distributions from multiple scanning beams can significantly impact the accuracy of BRVs of distributed particle beams and need to be further addressed beyond the established method of single-beam BRV, but it also indicates the feasibility to achieve accurate on-line multi-beam BRV with further improved method.« less

  8. Distinguishing the histological and radiological features of cystic lung disease in Birt-Hogg-Dubé syndrome from those of tobacco-related spontaneous pneumothorax.

    PubMed

    Fabre, Aurelie; Borie, Raphael; Debray, Marie Pierre; Crestani, Bruno; Danel, Claire

    2014-04-01

    Birt-Hogg-Dubé syndrome (BHD) is a rare autosomal dominantly inherited genodermatosis that predisposes to cystic lung disease, leading to spontaneous pneumothoraces. This retrospective analysis of five BHD cases (two men, three women) compared lung histology and computed tomography (CT) imaging to a matched cohort of non-BHD patients with spontaneous pneumothoraces (SPN). Lung was sampled during pleurodesis to resect bullae. Recurrent pneumothoraces was seen in two patients. Fourteen sets of histological slides (seven in each group) and 10 CT scans (five in each group) were reviewed. CT scans in BHD showed multiple cysts with a basal predominance and intraparenchymal/peribronchial distribution. On histological examination, BHD lungs showed punch-out cysts with no inflammation, and lacked subpleural fibroelastotic scars and smoking changes. In contrast, all SPN cases showed respiratory bronchiolitis and subpleural fibroelastotic scars. This study emphasizes the importance of smoking history and topography of the lesions in assessing cystic lung disease. Pathologists need to remain alert to the possibility of BHD in the setting of recurrent pneumothoraces in a non-smoker, in particular in a woman, at any age, and should take part in a multidisciplinary approach to the diagnosis of cystic lung disease to obtain clinical and CT scan details. © 2013 John Wiley & Sons Ltd.

  9. Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope

    PubMed Central

    Sulai, Yusufu N.; Scoles, Drew; Harvey, Zachary; Dubra, Alfredo

    2015-01-01

    Imaging of the retinal vascular structure and perfusion was explored by confocal illumination and nonconfocal detection in an adaptive optics scanning light ophthalmoscope (AOSLO), as an extension of the work by Chui et al. [Biomed. Opt. Express 3, 2537 (2012)]. Five different detection schemes were evaluated at multiple retinal locations: circular mask, annular mask, circular mask with filament, knife-edge, and split-detector. Given the superior image contrast in the reflectance and perfusion maps, the split-detection method was further tested using pupil apodization, polarized detection, and four different wavelengths. None of these variations provided noticeable contrast improvement. The noninvasive visualization of capillary flow and structure provided by AOSLO split-detection shows great promise for studying ocular and systemic conditions that affect the retinal vasculature. PMID:24690655

  10. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  11. Variable electronic stripe structures of the parent iron-chalcogenide superconductor Fe1 +dTe observed by STM-STS

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akira; Ekino, Toshikazu; Gabovich, Alexander M.

    2014-12-01

    Nanoscale stripe structures of the parent iron-11 superconductor Fe1.033Te were investigated using low-temperature scanning tunnel microscopy-scanning tunnel spectroscopy (STM-STS). STM topographies and d I /d V maps show clear stripe structures with the bias-dependent multiple periods 2 ×a0 and a0, where a0 is the lattice constant ˜0.38 nm. The form of the stripe structures seen on d I /d V maps strongly depends on the bias voltage. Varying stripe structures are apparently driven by magnetic order appearing below the transition temperature Ts˜72 K, that is defined by the noticeable drop in the temperature dependence of resistivity, and are strongly influenced by the underlying excess Fe.

  12. Origin of reduced magnetization and domain formation in small magnetite nanoparticles

    DOE PAGES

    Nedelkoski, Zlatko; Kepaptsoglou, Demie; Lari, Leonardo; ...

    2017-04-10

    We compare the structural, chemical, and magnetic properties of magnetite nanoparticles. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. We show that atomistic magnetic modelling of nanoparticles with and without these defects reveal the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm.

  13. An opposite view data replacement approach for reducing artifacts due to metallic dental objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdi, Mehran; Lari, Meghdad Asadi; Bernier, Gaston

    Purpose: To present a conceptually new method for metal artifact reduction (MAR) that can be used on patients with multiple objects within the scan plane that are also of small sized along the longitudinal (scanning) direction, such as dental fillings. Methods: The proposed algorithm, named opposite view replacement, achieves MAR by first detecting the projection data affected by metal objects and then replacing the affected projections by the corresponding opposite view projections, which are not affected by metal objects. The authors also applied a fading process to avoid producing any discontinuities in the boundary of the affected projection areas inmore » the sinogram. A skull phantom with and without a variety of dental metal inserts was made to extract the performance metric of the algorithm. A head and neck case, typical of IMRT planning, was also tested. Results: The reconstructed CT images based on this new replacement scheme show a significant improvement in image quality for patients with metallic dental objects compared to the MAR algorithms based on the interpolation scheme. For the phantom, the authors showed that the artifact reduction algorithm can efficiently recover the CT numbers in the area next to the metallic objects. Conclusions: The authors presented a new and efficient method for artifact reduction due to multiple small metallic objects. The obtained results from phantoms and clinical cases fully validate the proposed approach.« less

  14. Considerations for ultrasonic testing application for on-orbit NDE

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  15. Enhanced thermal and structural properties of partially phosphorylated polyvinyl alcohol - Aluminum phosphate (PPVA-Alpo4) nanocomposites with aluminium nitrate source

    NASA Astrophysics Data System (ADS)

    Saat, Asmalina Mohamed; Johan, Mohd Rafie

    2017-12-01

    Synthesis of AlPO4 nanocomposite depends on the ratio of aluminum to phosphate, method of synthesis and the source for aluminum and phosphate source used. Variation of phosphate and aluminum source used will form multiple equilibria reactions and affected by ions variability and concentration, stoichiometry, temperature during reaction process and especially the precipitation pH. Aluminum nitrate was used to produce a partially phosphorylated poly vinyl alcohol-aluminum phosphate (PPVA-AlPO4) nanocomposite with various nanoparticle shapes, structural and properties. Synthesis of PPVA-AlPO4 nanocomposite with aluminum nitrate shows enhancement of thermal and structural in comparison with pure PVA and modified PPVA. Thermogravimetric (TGA) analysis shows that the weight residue of PPVA-AlPO4 composite was higher than PPVA and PVA. X-ray diffraction (XRD) pattern of PVA shows a single peak broadening after the addition of phosphoric acid. Meanwhile, XRD pattern of PPVA-AlPO4 demonstrates multiple phases of AlPO4 in the nanocomposite. Field Emission Scanning Electron Microscopy (FESEM) confirmed the existence of multiple geometrical phases and nanosize of spherical particles.

  16. Portable automated imaging in complex ceramics with a microwave interference scanning system

    NASA Astrophysics Data System (ADS)

    Goitia, Ryan M.; Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Green, William; Franks, Lisa P.

    2013-01-01

    An improved portable microwave interferometry system has been automated to permit rapid examination of components with minimal operator attendance. Functionalities include stereo and multiplexed, frequency-modulated at multiple frequencies, producing layered volumetric images of complex ceramic structures. The technique has been used to image composite ceramic armor and ceramic matrix composite components, as well as other complex dielectric materials. The system utilizes Evisive Scan microwave interference scanning technique. Validation tests include artificial and in-service damage of ceramic armor, surrogates and ceramic matrix composite samples. Validation techniques include micro-focus x-ray and computed tomography imaging. The microwave interference scanning technique has demonstrated detection of cracks, interior laminar features and variations in material properties such as density. The image yields depth information through phase angle manipulation, and shows extent of feature and relative dielectric property information. It requires access to only one surface, and no coupling medium. Data are not affected by separation of layers of dielectric material, such as outer over-wrap. Test panels were provided by the US Army Research Laboratory, and the US Army Tank Automotive Research, Development and Engineering Center (TARDEC), who with the US Air Force Research Laboratory have supported this work.

  17. Histogram analysis of ADC in brain tumor patients

    NASA Astrophysics Data System (ADS)

    Banerjee, Debrup; Wang, Jihong; Li, Jiang

    2011-03-01

    At various stage of progression, most brain tumors are not homogenous. In this presentation, we retrospectively studied the distribution of ADC values inside tumor volume during the course of tumor treatment and progression for a selective group of patients who underwent an anti-VEGF trial. Complete MRI studies were obtained for this selected group of patients including pre- and multiple follow-up, post-treatment imaging studies. In each MRI imaging study, multiple scan series were obtained as a standard protocol which includes T1, T2, T1-post contrast, FLAIR and DTI derived images (ADC, FA etc.) for each visit. All scan series (T1, T2, FLAIR, post-contrast T1) were registered to the corresponding DTI scan at patient's first visit. Conventionally, hyper-intensity regions on T1-post contrast images are believed to represent the core tumor region while regions highlighted by FLAIR may overestimate tumor size. Thus we annotated tumor regions on the T1-post contrast scans and ADC intensity values for pixels were extracted inside tumor regions as defined on T1-post scans. We fit a mixture Gaussian (MG) model for the extracted pixels using the Expectation-Maximization (EM) algorithm, which produced a set of parameters (mean, various and mixture coefficients) for the MG model. This procedure was performed for each visits resulting in a series of GM parameters. We studied the parameters fitted for ADC and see if they can be used as indicators for tumor progression. Additionally, we studied the ADC characteristics in the peri-tumoral region as identified by hyper-intensity on FLAIR scans. The results show that ADC histogram analysis of the tumor region supports the two compartment model that suggests the low ADC value subregion corresponding to densely packed cancer cell while the higher ADC value region corresponding to a mixture of viable and necrotic cells with superimposed edema. Careful studies of the composition and relative volume of the two compartments in tumor region may provide some insights in the early assessment of tumor response to therapy for recurrence brain cancer patients.

  18. Neuro-Myelomatosis of the Brachial Plexus - An Unusual Site of Disease Visualized by FDG-PET/CT: A Case Report.

    PubMed

    Fukunaga, Hisanori; Mutoh, Tatsushi; Tatewaki, Yasuko; Shimomura, Hideo; Totsune, Tomoko; Terao, Chiaki; Miyazawa, Hidemitsu; Taki, Yasuyuki

    2017-05-01

    BACKGROUND Peripheral or cranial nerve root dysfunction secondary to invasion of the CNS in multiple myeloma is a rare clinical event that is frequently mistaken for other diagnoses. We describe the clinical utility of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET)/CT scanning for diagnosing neuro-myelomatosis. CASE REPORT A 63-year-old woman whose chief complaints were right shoulder and upper extremity pain underwent MRI and 18F-FDG PET/CT scan. MRI revealed a non-specific brachial plexus tumor. 18F-FDG PET/CT demonstrated intense FDG uptake in multiple intramedullary lesions and in the adjacent right brachial plexus, indicating extramedullary neural involvement associated with multiple myeloma, which was confirmed later by a bone marrow biopsy. CONCLUSIONS This is the first reported case of neuro-myelomatosis of the brachial plexus. It highlights the utility of the 18F-FDG PET/CT scan as a valuable diagnostic modality.

  19. Aerosol analysis with the Coastal Zone Color Scanner: a simple method for including multiple scattering effects.

    PubMed

    Gordon, H R; Castaño, D J

    1989-04-01

    For measurement of aerosols over the ocean, the total radiance L(t) backscattered from the top of a stratified atmosphere which contains both stratospheric and tropospheric aerosols of various types has been computed. A similar computation is carried out for an aerosol-free atmosphere yielding the Rayleigh scattered radiance L(r). The difference L(t) - L(r) is shown to be linearly related to the radiance L(as), which the aerosol would produce in the single scattering approximation. This greatly simplifies the application of aerosol models to aerosol analysis by satellite since adding to, or in some way changing, the aerosol model requires no additional multiple scattering computations. In fact, the only multiple computations required for aerosol analysis are those for determining L(r), which can be performed once and for all. The computations are explicitly applied to Band 4 of the CZCS, which, because of its high radiometric sensitivity and excellent calibration, is ideal for studying aerosols over the ocean. Specifically, the constant A in the relationship L(as) = A(-1)(L(t) - L(r)) is given as a function of position along the scan for four typical orbital-solar position scenarios. The computations show that L(as) can be retrieved from L(t) - L(r) with an average error of no more than 5-7% except at the very edges of the scan.

  20. Multiple Ewing Sarcoma/Primitive Neuroectodermal Tumors in the Mediastinum: A Case Report and Literature Review.

    PubMed

    Bae, Sung Hwan; Hwang, Jung Hwa; Da Nam, Bo; Kim, Hyun Jo; Kim, Ki-Up; Kim, Dong Won; Choi, In Ho

    2016-02-01

    Ewing sarcoma/primitive neuroectodermal tumors (ES/PNET) are high-grade malignant neoplasms. These malignancies present very rare tumors of thoracopulmonary area and even rarer in the mediastinum. In our knowledge, ES/PNET presented with multiple mediastinal masses has not been reported previously. We experienced a case of a 42-year-old man presented with gradual onset of left-side pleuritic chest pain. A contrast-enhanced chest computed tomography (CT) scan showed separate 2 large heterogeneously enhancing masses in each anterior and middle mediastinum of the left hemithorax. Positron emission tomography-computed tomography (PET-CT) scan revealed high fluorodeoxyglucose (FDG) uptake in the mediastinal masses. After surgical excision for the mediastinal masses, both of the masses were diagnosed as the ES/PNET group of tumors on the histopathologic examination. The patient refused postoperative adjuvant chemotherapy and came back with local tumor recurrence and distant metastasis on 4-month follow-up after surgical resection. We report this uncommon form of ES/PNET. We are to raise awareness that this rare malignancy should be considered as a differential diagnosis of the malignant mediastinal tumors and which can be manifested as multiple masses in a patient. Understanding this rare entity of extra-skeletal ES/PNET and characteristic imaging findings can help radiologists and clinicians to approach proper diagnosis and better management for this highly malignant tumor.

  1. Multiple Ewing Sarcoma/Primitive Neuroectodermal Tumors in the Mediastinum

    PubMed Central

    Bae, Sung Hwan; Hwang, Jung Hwa; Da Nam, Bo; Kim, Hyun Jo; Kim, Ki-Up; Kim, Dong Won; Choi, In Ho

    2016-01-01

    Abstract Ewing sarcoma/primitive neuroectodermal tumors (ES/PNET) are high-grade malignant neoplasms. These malignancies present very rare tumors of thoracopulmonary area and even rarer in the mediastinum. In our knowledge, ES/PNET presented with multiple mediastinal masses has not been reported previously. We experienced a case of a 42-year-old man presented with gradual onset of left-side pleuritic chest pain. A contrast-enhanced chest computed tomography (CT) scan showed separate 2 large heterogeneously enhancing masses in each anterior and middle mediastinum of the left hemithorax. Positron emission tomography-computed tomography (PET-CT) scan revealed high fluorodeoxyglucose (FDG) uptake in the mediastinal masses. After surgical excision for the mediastinal masses, both of the masses were diagnosed as the ES/PNET group of tumors on the histopathologic examination. The patient refused postoperative adjuvant chemotherapy and came back with local tumor recurrence and distant metastasis on 4-month follow-up after surgical resection. We report this uncommon form of ES/PNET. We are to raise awareness that this rare malignancy should be considered as a differential diagnosis of the malignant mediastinal tumors and which can be manifested as multiple masses in a patient. Understanding this rare entity of extra-skeletal ES/PNET and characteristic imaging findings can help radiologists and clinicians to approach proper diagnosis and better management for this highly malignant tumor. PMID:26886614

  2. [Two Episodes of Colostomy-Associated Intestinal Perforation during Chemotherapy for Metastatic Rectal Cancer].

    PubMed

    Tamura, Hiroshi; Otani, Ayaka; Tsukui, Mizuki; Toge, Koji; Otani, Takahiro; Hirose, Yuki; Morimoto, Yuta; Yoshino, Kei; Kido, Tomoki; Endo, Kazuhiko; Kameyama, Hitoshi; Kobayashi, Takashi; Wakai, Toshifumi

    2016-11-01

    A 77-year-old woman with rectal cancer and synchronous liver metastasis underwent a Hartmann operation with D3 lymph node dissection in June 2014. mFOLFOX6 plus bevacizumab(bev)was then administered to treat the liver metastasis.In February 2015, multiple liver metastases were detected and the regimen was changed to FOLFIRI plus bev.After 3 courses, peritonitis due to intestinal perforation around the descending colostomy occurred, and an emergency operation(partial resection of the descending colon and transverse colostomy)was performed.FOLFIRI was then administered from 2 months after the operation.After 3 courses of this regimen, a CT scan showed progression of the hepatic metastases.The regimen was therefore changed to mFOLFOX6.Five months later, another CT scan showed an intestinal perforation of the transverse colostomy at the abdominal wall, and an emergency cecostomy was performed.At this stage, chemotherapy was ceased.This case highlights the risk of intestinal perforation during chemotherapy, regardless of the use of bev.

  3. An acute adrenal insufficiency revealing pituitary metastases of lung cancer in an elderly patient.

    PubMed

    Marmouch, Hela; Arfa, Sondes; Mohamed, Saoussen Cheikh; Slim, Tensim; Khochtali, Ines

    2016-01-01

    Metastases of solid tumors to the pituitary gland are often asymptomatic or appereas as with diabetes insipid us. Pituitary metastases more commonly affect the posterior lobe and the infundibulum than the anterior lobe. The presentation with an acute adrenal insufficiency is a rare event. A 69-year-old men presented with vomiting, low blood pressure and hypoglycemia. Hormonal exploration confirmed a hypopituitarism. Appropriate therapy was initiated urgently. The hypothalamic-pituitary MRI showed a pituitary hypertrophy, a nodular thickening of the pituitary stalk. The chest X Rays revealed pulmonary opacity. Computed tomography scan of the chest showed a multiples tumors with mediastinal lymphadenopathy. Bronchoscopy and biopsy demonstrated a pulmonary adenocarcinoma. Hence we concluded to a lung cancer with multiple pituitary and adrenal gland metastases. This case emphasizes the need for an etiological investigation of acute adrenal insufficiency after treatment of acute phase.

  4. An acute adrenal insufficiency revealing pituitary metastases of lung cancer in an elderly patient

    PubMed Central

    Marmouch, Hela; Arfa, Sondes; Mohamed, Saoussen Cheikh; Slim, Tensim; Khochtali, Ines

    2016-01-01

    Metastases of solid tumors to the pituitary gland are often asymptomatic or appereas as with diabetes insipid us. Pituitary metastases more commonly affect the posterior lobe and the infundibulum than the anterior lobe. The presentation with an acute adrenal insufficiency is a rare event. A 69-year-old men presented with vomiting, low blood pressure and hypoglycemia. Hormonal exploration confirmed a hypopituitarism. Appropriate therapy was initiated urgently. The hypothalamic-pituitary MRI showed a pituitary hypertrophy, a nodular thickening of the pituitary stalk. The chest X Rays revealed pulmonary opacity. Computed tomography scan of the chest showed a multiples tumors with mediastinal lymphadenopathy. Bronchoscopy and biopsy demonstrated a pulmonary adenocarcinoma. Hence we concluded to a lung cancer with multiple pituitary and adrenal gland metastases. This case emphasizes the need for an etiological investigation of acute adrenal insufficiency after treatment of acute phase. PMID:27200139

  5. A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings.

    PubMed

    Corera, Íñigo; Eciolaza, Adrián; Rubio, Oliver; Malanda, Armando; Rodríguez-Falces, Javier; Navallas, Javier

    2018-01-11

    Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components. Graphical Abstract The raw scanning-EMG signal (left figure) is processed by the MLSS algorithm in order to remove the artifact interference. Firstly, artifacts are detected from the raw signal, obtaining a validity mask (central figure) that determines the samples that have been contaminated by artifacts. Secondly, a least-squares smoothing procedure in the spatial dimension is applied to the raw signal using the not contaminated samples according to the validity mask. The resulting MLSS-processed scanning-EMG signal (right figure) is clean of artifact interference.

  6. Comparison of CT and MRI in diagnosis of cerebrospinal leak induced by multiple fractures of skull base

    PubMed Central

    Wang, Xuhui; Xu, Minhui; Liang, Hong; Xu, Lunshan

    2011-01-01

    Background Multiple basilar skull fracture and cerebrospinal leak are common complications of traumatic brain injury, which required a surgical repair. But due to the complexity of basilar skull fracture after severe trauma, preoperatively an exact radiological location is always difficult. Multi-row spiral CT and MRI are currently widely applied in the clinical diagnosis. The present study was performed to compare the accuracy of cisternography by multi-row spiral CT and MRI in the diagnosis of cerebrospinal leak. Methods A total of 23 patients with multiple basilar skull fracture after traumatic brain injury were included. The radiological and surgical data were retrospectively analyzed. 64-row CT (mm/row) scan and three-dimensional reconstruction were performed in 12 patients, while MR plain scan and cisternography were performed in another 11 patients. The location of cerebrospinal leak was diagnosed by 2 experienced physicians majoring neurological radiology. Surgery was performed in all patients. The cerebrospinal leak location was confirmed and repaired during surgery. The result was considered as accurate when cerebrospinal leak was absent after surgery. Results According to the surgical exploration, the preoperative diagnosis of the active cerebrospinal leak location was accurate in 9 out of 12 patients with CT scan. The location could not be confirmed by CT because of multiple fractures in 2 patients and the missed diagnosis occurred in 1 patient. The preoperative diagnosis was accurate in 10 out of 11 patients with MRI examination. Conclusions MRI cisternography is more advanced than multi-row CT scan in multiple basilar skull fracture. The combination of the two examinations may increase the diagnostic ratio of active cerebrospinal leak. PMID:22933941

  7. Characteristic CT and MR imaging findings of cerebral paragonimiasis.

    PubMed

    Xia, Yong; Chen, Jing; Ju, Yan; You, Chao

    2016-06-01

    The early diagnosis of cerebral paragonimiasis (CP) is essential for a good prognosis. We seek to provide references for early diagnosis by analyzing the imaging characteristics of cerebral paragonimiasis. Images of 27 patients with CP (22 males and 5 females; median age 20.3 years; range: 4 to 47 years) were retrospectively evaluated. All patients underwent head computed tomography (CT) scans; 22 patients underwent conventional magnetic resonance imaging (MRI) sequences, including contrast-enhanced MRI for 20 patients and diffusion-weighted-imaging (DWI) for 1 patient. The diagnosis was confirmed based on a positive antibody test using enzyme-linked immunosorbent assay (ELISA) for paragonimiasis in the serum. The most common imaging findings of CP were isodense or hypodense lesions combined with extensive hypodense areas of perilesional edema on CT scans and a large mass composed of multiple ring-shaped lesions with surrounding edema on MRI images. The conglomeration of multiple ring-shaped lesions (n=11 patients), "tunnel signs" (n=12 patients) and worm-eaten signs (n=5 patients) were characteristic of most CP images. In 14 patients, contrast-enhanced MRI showed varying degrees of contrast enhancement combined with adjacent meningeal enhancement (n=10). A large mass comprising multiple ring-shaped lesions of different sizes, "tunnel signs" and worm-eaten signs with surrounding edema are the most characteristic features of CP. Extensive invasions of the adjacent meninges and ventricular wall (19 patients), multiple intracerebral lesions, bilateral hemispheric involvement, and lesion migration are other noteworthy imaging characteristics. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Bone and gallium scanning in the pre-op evaluation of the infected dysvascular foot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, C.; Sakimura, I.; Dillon, A.

    1984-01-01

    The purpose of this study is to determine the value of bone and gallium scans in predicting healing levels in the dysvascular foot with an infection requiring amputation. Healing requires amputation at a level both free of infection and with adequate blood flow. Forty-one such patients had bone and gallium scans and Doppler studies prior to amputation at a level selected by the surgeon. Eight patients required multiple surgeries before healing was obtained. Bone and soft tissue infections were determined from scans and healing levels predicted (SPHL) as the most distal amputation level free from infection: toectomy, Reye's, transmetatarsal, calcanectomy,more » Syme's, below knee. Doppler healing levels (DPHL) were predicted using a standard ischemic index. Doppler alone predicted the final healing level (FHL) in 41% with 59% needing more proximal amputation. Scans alone predicted FHL in 64% with 26% needing more proximal amputation. Ten percent were distal to the SPHL and all healed. These scans showed infection at transition sites between amputation levels, and the more proximal level had been predicted. Using the more proximal of the DPHL and SPHL the FHL was predicted in 78% with another 12% having more proximal amputation for nursing reasons. In 10% amputation was performed between DPHL and SPHL or at the more distal level. In no case was successful surgery performed distal to the more distal SPHL or DPHL. Bone and gallium scans used with Doppler studies are useful in optimizing the choice of amputation level in the infected, dysvascular foot.« less

  9. Asteroid detection using a single multi-wavelength CCD scan

    NASA Astrophysics Data System (ADS)

    Melton, Jonathan

    2016-09-01

    Asteroid detection is a topic of great interest due to the possibility of diverting possibly dangerous asteroids or mining potentially lucrative ones. Currently, asteroid detection is generally performed by taking multiple images of the same patch of sky separated by 10-15 minutes, then subtracting the images to find movement. However, this is time consuming because of the need to revisit the same area multiple times per night. This paper describes an algorithm that can detect asteroids using a single CCD camera scan, thus cutting down on the time and cost of an asteroid survey. The algorithm is based on the fact that some telescopes scan the sky at multiple wavelengths with a small time separation between the wavelength components. As a result, an object moving with sufficient speed will appear in different places in different wavelength components of the same image. Using image processing techniques we detect the centroids of points of light in the first component and compare these positions to the centroids in the other components using a nearest neighbor algorithm. The algorithm was used on a test set of 49 images obtained from the Sloan telescope in New Mexico and found 100% of known asteroids with only 3 false positives. This algorithm has the advantage of decreasing the amount of time required to perform an asteroid scan, thus allowing more sky to be scanned in the same amount of time or freeing a telescope for other pursuits.

  10. CT Scans - Multiple Languages

    MedlinePlus

    ... Tomography) Scan - العربية (Arabic) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section CT ( ... Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Chinese, Traditional (Cantonese dialect) (繁體中文) Expand Section CT ( ...

  11. Bone marrow uptake of 99mTc-MIBI in patients with multiple myeloma.

    PubMed

    Fonti, R; Del Vecchio, S; Zannetti, A; De Renzo, A; Di Gennaro, F; Catalano, L; Califano, C; Pace, L; Rotoli, B; Salvatore, M

    2001-02-01

    In a previous study, we showed the ability of technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) scan to identify active disease in patients with multiple myeloma (Eur J Nucl Med 1998; 25: 714-720). In particular, a semiquantitative score of the extension and intensity of bone marrow uptake was derived and correlated with both the clinical status of the disease and plasma cell bone marrow infiltration. In order to estimate quantitatively 99mTc-MIBI bone marrow uptake and to verify the intracellular localization of the tracer, bone marrow samples obtained from 24 multiple myeloma patients, three patients with monoclonal gammopathy of undetermined significance (MGUS) and two healthy donors were studied for in vitro uptake. After centrifugation over Ficoll-Hypaque gradient, cell suspensions were incubated with 99mTc-MIBI and the uptake was expressed as the percentage of radioactivity specifically retained within the cells. The cellular localization of the tracer was assessed by micro-autoradiography. Twenty-two out of 27 patients underwent 99mTc-MIBI scan within a week of bone marrow sampling. Whole-body images were obtained 10 min after intravenous injection of 555 MBq of the tracer; the extension and intensity of 99mTc-MIBI uptake were graded using the semiquantitative score. A statistically significant correlation was found between in vitro uptake of 99mTc-MIBI and both plasma cell infiltration (Pearson's coefficient of correlation r=0.69, P<0.0001) and in vivo score (Spearman rank correlation coefficient r=0.60, P<0.01). No specific tracer uptake was found in bone marrow samples obtained from the two healthy donors. Micro-autoradiography showed localization of 99mTc-MIBI inside the plasma cells infiltrating the bone marrow. Therefore, our findings show that the degree of tracer uptake both in vitro and in vivo is related to the percentage of infiltrating plasma cells which accumulate the tracer in their inner compartments.

  12. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, Cedric; Vanlanduit, Steve; Guillaume, Patrick

    2009-06-01

    When using optical measurements of the sound fields inside a glass tube, near the material under test, to estimate the reflection and absorption coefficients, not only these acoustical parameters but also confidence intervals can be determined. The sound fields are visualized using a scanning laser Doppler vibrometer (SLDV). In this paper the influence of different test signals on the quality of the results, obtained with this technique, is examined. The amount of data gathered during one measurement scan makes a thorough statistical analysis possible leading to the knowledge of confidence intervals. The use of a multi-sine, constructed on the resonance frequencies of the test tube, shows to be a very good alternative for the traditional periodic chirp. This signal offers the ability to obtain data for multiple frequencies in one measurement, without the danger of a low signal-to-noise ratio. The variability analysis in this paper clearly shows the advantages of the proposed multi-sine compared to the periodic chirp. The measurement procedure and the statistical analysis are validated by measuring the reflection ratio at a closed end and comparing the results with the theoretical value. Results of the testing of two building materials (an acoustic ceiling tile and linoleum) are presented and compared to supplier data.

  13. Objective evidence for the use of polylactic acid implants in HIV-associated facial lipoatrophy using three-dimensional surface laser scanning and psychological assessment.

    PubMed

    Ong, J; Clarke, A; White, P; Johnson, M A; Withey, S; Butler, P E M

    2009-12-01

    The advent of highly active antiretroviral therapy (HAART) has dramatically improved the life expectancy of people infected with human immunodeficiency virus (HIV). Although patients often have excellent disease control with these combinations of antiretrovirals, they are at risk for the multiple toxicities associated with these drugs. Facial lipoatrophy is a particularly distressing complication of some HAART regimes. This disfigurement can lead to significant psychosocial stress, resulting in decreased treatment compliance. Polylactic acid (PLA) facial implants provide a potential method of restoring a normal appearance. One hundred consecutive patients had a course of PLA facial implants. All patients were assessed clinically and had photographs, facial surface laser scans and completed psychological questionnaires throughout the course of treatment. After a mean of 4.85 treatments per patient, there were improvements in all measures. The mean clinical scores improved from a moderate-severe grade to none-mild grade after treatment. Three-dimensional (3D) laser surface scans showed a volume increase of 2.81 cc over the treated area of the cheek. There were significant improvements in all of the psychological measures. This study shows clear objective evidence of the psychological and physical benefit of PLA implants in HIV-associated facial lipodystrophy.

  14. [A case of severe asthma exacerbation complicated with cerebral edema and diffuse multiple cerebral micro-bleeds].

    PubMed

    Ohkura, Noriyuki; Fujimura, Masaki; Sakai, Asao; Fujita, Kentaro; Katayama, Nobuyuki

    2009-08-01

    A 36-year-old woman was admitted to the Intensive Care Unit for the treatment of severe asthma exacerbation. Her condition of asthma improved with systemic glucocorticosteroids, inhaled beta2-agonist, intravenous theophylline and inhaled anesthesia (isoflurane) under mechanical ventilation. Her consciousness was disturbed even after terminating isoflurane. Brain CT and MRI scan showed cerebral edema and diffuse multiple cerebral micro-bleeds. Glyceol, a hyperosmotic diuretic solution consisting of 10% glycerol and 5% fructose in saline, was administered to decrease cerebral edema. Her consciousness disturbance gradually recovered. Cerebral edema and hemorrhage improved. On the 69th hospital day, she was discharged from hospital without sequelae. This case is a rare one in which severe asthma exacerbation was complicated with cerebral edema and diffuse multiple cerebral hemorrhage. Inhaled anesthesia for asthma exacerbation should be used carefully to avoid delay of diagnosis of central nervous system complications.

  15. Fast dictionary generation and searching for magnetic resonance fingerprinting.

    PubMed

    Jun Xie; Mengye Lyu; Jian Zhang; Hui, Edward S; Wu, Ed X; Ze Wang

    2017-07-01

    A super-fast dictionary generation and searching (DGS) algorithm was developed for MR parameter quantification using magnetic resonance fingerprinting (MRF). MRF is a new technique for simultaneously quantifying multiple MR parameters using one temporally resolved MR scan. But it has a multiplicative computation complexity, resulting in a big burden of dictionary generating, saving, and retrieving, which can easily be intractable for any state-of-art computers. Based on retrospective analysis of the dictionary matching object function, a multi-scale ZOOM like DGS algorithm, dubbed as MRF-ZOOM, was proposed. MRF ZOOM is quasi-parameter-separable so the multiplicative computation complexity is broken into additive one. Evaluations showed that MRF ZOOM was hundreds or thousands of times faster than the original MRF parameter quantification method even without counting the dictionary generation time in. Using real data, it yielded nearly the same results as produced by the original method. MRF ZOOM provides a super-fast solution for MR parameter quantification.

  16. Label-free tomographic reconstruction of optically thick structures using GLIM (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail E.; Kouzehgarani, Ghazal N.; Ngyuen, Tan H.; Gillette, Martha U.; Popescu, Gabriel

    2017-02-01

    Although the contrast generated in transmitted light microscopy is due to the elastic scattering of light, multiple scattering scrambles the image and reduces overall visibility. To image both thin and thick samples, we turn to gradient light interference microscopy (GLIM) to simultaneously measure morphological parameters such as cell mass, volume, and surfaces as they change through time. Because GLIM combines multiple intensity images corresponding to controlled phase offsets between laterally sheared beams, incoherent contributions from multiple scattering are implicitly cancelled during the phase reconstruction procedure. As the interfering beams traverse near identical paths, they remain comparable in power and interfere with optimal contrast. This key property lets us obtain tomographic parameters from wide field z-scans after simple numerical processing. Here we show our results on reconstructing tomograms of bovine embryos, characterizing the time-lapse growth of HeLa cells in 3D, and preliminary results on imaging much larger specimen such as brain slices.

  17. Compact touchless fingerprint reader based on digital variable-focus liquid lens

    NASA Astrophysics Data System (ADS)

    Tsai, C. W.; Wang, P. J.; Yeh, J. A.

    2014-09-01

    Identity certification in the cyberworld has always been troublesome if critical information and financial transaction must be processed. Biometric identification is the most effective measure to circumvent the identity issues in mobile devices. Due to bulky and pricy optical design, conventional optical fingerprint readers have been discarded for mobile applications. In this paper, a digital variable-focus liquid lens was adopted for capture of a floating finger via fast focusplane scanning. Only putting a finger in front of a camera could fulfill the fingerprint ID process. This prototyped fingerprint reader scans multiple focal planes from 30 mm to 15 mm in 0.2 second. Through multiple images at various focuses, one of the images is chosen for extraction of fingerprint minutiae used for identity certification. In the optical design, a digital liquid lens atop a webcam with a fixed-focus lens module is to fast-scan a floating finger at preset focus planes. The distance, rolling angle and pitching angle of the finger are stored for crucial parameters during the match process of fingerprint minutiae. This innovative compact touchless fingerprint reader could be packed into a minute size of 9.8*9.8*5 (mm) after the optical design and multiple focus-plane scan function are optimized.

  18. Ultrasonic thickness measuring and imaging system and method

    DOEpatents

    Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.

    1992-08-04

    An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.

  19. Ultrasonic thickness measuring and imaging system and method

    DOEpatents

    Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.

    1992-01-01

    An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.

  20. En-face Flying Spot OCT/Ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Rosen, Richard B.; Garcia, Patricia; Podoleanu, Adrian Gh.; Cucu, Radu; Dobre, George; Trifanov, Irina; van Velthoven, Mirjam E. J.; de Smet, Marc D.; Rogers, John A.; Hathaway, Mark; Pedro, Justin; Weitz, Rishard

    This is a review of a technique for high-resolution imaging of the eye that allows multiple sample sectioning perspectives with different axial resolutions. The technique involves the flying spot approach employed in confocal scanning laser ophthalmoscopy which is extended to OCT imaging via time domain en face fast lateral scanning. The ability of imaging with multiple axial resolutions stimulated the development of the dual en face OCT-confocal imaging technology. Dual imaging also allows various other imaging combinations, such as OCT with confocal microscopy for imaging the eye anterior segment and OCT with fluorescence angiography imaging.

  1. ICPD-a new peak detection algorithm for LC/MS.

    PubMed

    Zhang, Jianqiu; Haskins, William

    2010-12-01

    The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods.

  2. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  3. Optical monitoring of neuronal activity at high frame rate with a digital random-access multiphoton (RAMP) microscope.

    PubMed

    Otsu, Yo; Bormuth, Volker; Wong, Jerome; Mathieu, Benjamin; Dugué, Guillaume P; Feltz, Anne; Dieudonné, Stéphane

    2008-08-30

    Two-photon microscopy offers the promise of monitoring brain activity at multiple locations within intact tissue. However, serial sampling of voxels has been difficult to reconcile with millisecond timescales characteristic of neuronal activity. This is due to the conflicting constraints of scanning speed and signal amplitude. The recent use of acousto-optic deflector scanning to implement random-access multiphoton microscopy (RAMP) potentially allows to preserve long illumination dwell times while sampling multiple points-of-interest at high rates. However, the real-life abilities of RAMP microscopy regarding sensitivity and phototoxicity issues, which have so far impeded prolonged optical recordings at high frame rates, have not been assessed. Here, we describe the design, implementation and characterisation of an optimised RAMP microscope. We demonstrate the application of the microscope by monitoring calcium transients in Purkinje cells and cortical pyramidal cell dendrites and spines. We quantify the illumination constraints imposed by phototoxicity and show that stable continuous high-rate recordings can be obtained. During these recordings the fluorescence signal is large enough to detect spikes with a temporal resolution limited only by the calcium dye dynamics, improving upon previous techniques by at least an order of magnitude.

  4. Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Ie-Hong; Hsu, Hsin-Zan

    2018-03-01

    The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

  5. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE PAGES

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; ...

    2015-02-23

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  6. Clock Scan Protocol for Image Analysis: ImageJ Plugins.

    PubMed

    Dobretsov, Maxim; Petkau, Georg; Hayar, Abdallah; Petkau, Eugen

    2017-06-19

    The clock scan protocol for image analysis is an efficient tool to quantify the average pixel intensity within, at the border, and outside (background) a closed or segmented convex-shaped region of interest, leading to the generation of an averaged integral radial pixel-intensity profile. This protocol was originally developed in 2006, as a visual basic 6 script, but as such, it had limited distribution. To address this problem and to join similar recent efforts by others, we converted the original clock scan protocol code into two Java-based plugins compatible with NIH-sponsored and freely available image analysis programs like ImageJ or Fiji ImageJ. Furthermore, these plugins have several new functions, further expanding the range of capabilities of the original protocol, such as analysis of multiple regions of interest and image stacks. The latter feature of the program is especially useful in applications in which it is important to determine changes related to time and location. Thus, the clock scan analysis of stacks of biological images may potentially be applied to spreading of Na + or Ca ++ within a single cell, as well as to the analysis of spreading activity (e.g., Ca ++ waves) in populations of synaptically-connected or gap junction-coupled cells. Here, we describe these new clock scan plugins and show some examples of their applications in image analysis.

  7. Strain mapping in TEM using precession electron diffraction

    DOEpatents

    Taheri, Mitra Lenore; Leff, Asher Calvin

    2017-02-14

    A sample material is scanned with a transmission electron microscope (TEM) over multiple steps having a predetermined size at a predetermined angle. Each scan at a predetermined step and angle is compared to a template, wherein the template is generated from parameters of the material and the scanning. The data is then analyzed using local mis-orientation mapping and/or Nye's tensor analysis to provide information about local strain states.

  8. Music-Based Magnetic Resonance Fingerprinting to Improve Patient Comfort During MRI Exams

    PubMed Central

    Ma, Dan; Pierre, Eric Y.; Jiang, Yun; Schluchter, Mark D.; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A.

    2015-01-01

    Purpose The unpleasant acoustic noise is an important drawback of almost every magnetic resonance imaging scan. Instead of reducing the acoustic noise to improve patient comfort, a method is proposed to mitigate the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. Theory and Methods MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and TRs in both 2D and 3D MRF exam. This new acquisition method named MRF-Music was used to quantify T1, T2 and proton density maps simultaneously while providing pleasing sounds to the patients. Results The MRF-Music scans were shown to significantly improve the patients' comfort during the MRI scans. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. Conclusions MRF-Music sequence provides significant improvement of the patient's comfort as compared to the MRF scan and other fast imaging techniques such as EPI and TSE scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameter simultaneously. PMID:26178439

  9. Mechanically scanned deployable antenna study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The conceptual design of a Mechanically Scanned Deployable Antenna which is launched by the STS (Space Shuttle) to provide radiometric brightness temperature maps of the Earth and oceans at selected frequency bands in the frequency range of 1.4 GHz to 11 GHz is presented. Unlike previous scanning radiometric systems, multiple radiometers for each frequency are required in order to fill in the resolution cells across the swath created by the 15 meter diameter spin stabilized system. This multiple beam radiometric system is sometimes designated as a ""whiskbroom'' system in that it combines the techniques of the scanning and ""pushbroom'' type systems. The definition of the feed system including possible feed elements and location, determination of the fundamental reflector feed offset geometry including offset angles and f/D ratio, preliminary estimates of the beam efficiency of the feed reflector system, a summary of reflector mesh losses at the proposed radiometric frequency bands, an overall conceptual configuration design and preliminary structural and thermal analyses are included.

  10. Automated Guided-Wave Scanning Developed to Characterize Materials and Detect Defects

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Gyekenyeski, Andrew L.; Roth, Don J.

    2004-01-01

    The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center has developed a scanning system that uses guided waves to characterize materials and detect defects. The technique uses two ultrasonic transducers to interrogate the condition of a material. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen, and the receiving transducer detects the signal after it has passed through the material. The aim of the method is to correlate certain parameters in both the time and frequency domains of the detected waveform to characteristics of the material between the two transducers. The scanning system is shown. The waveform parameters of interest include the attenuation due to internal damping, waveform shape parameters, and frequency shifts due to material changes. For the most part, guided waves are used to gauge the damage state and defect growth of materials subjected to various mechanical or environmental loads. The technique has been applied to polymer matrix composites, ceramic matrix composites, and metal matrix composites as well as metallic alloys. Historically, guided wave analysis has been a point-by-point, manual technique with waveforms collected at discrete locations and postprocessed. Data collection and analysis of this type limits the amount of detail that can be obtained. Also, the manual movement of the sensors is prone to user error and is time consuming. The development of an automated guided-wave scanning system has allowed the method to be applied to a wide variety of materials in a consistent, repeatable manner. Experimental studies have been conducted to determine the repeatability of the system as well as compare the results obtained using more traditional NDE methods. The following screen capture shows guided-wave scan results for a ceramic matrix composite plate, including images for each of nine calculated parameters. The system can display up to 18 different wave parameters. Multiple scans of the test specimen demonstrated excellent repeatability in the measurement of all the guided-wave parameters, far exceeding the traditional point-by-point technique. In addition, the scan was able to detect a subsurface defect that was confirmed using flash thermography This technology is being further refined to provide a more robust and efficient software environment. Future hardware upgrades will allow for multiple receiving transducers and the ability to scan more complex surfaces. This work supports composite materials development and testing under the Ultra-Efficient Engine Technology (UEET) Project, but it also will be applied to other material systems under development for a wide range of applications.

  11. X-ray fluorescence tomographic system design and image reconstruction.

    PubMed

    Cong, Wenxiang; Shen, Haiou; Cao, Guohua; Liu, Hong; Wang, Ge

    2013-01-01

    In this paper, we presented a new design of x-ray fluorescence CT imaging system. For detecting fuorescence signals of gold nanoparticles in-vivo, multiple spectroscopic detectors are arranged and rotated orthogonal to an excited region of interest so that a localized scan can be acquired with a maximized efficiency. Excitation filtration was employed to minimize the effects of low-energy x-rays and background scattering for lowering radiation dose to the object. Numerical simulations showed that the radiation dose is less than 300 mGy/second for a complete 30 views tomographic scan; and the sensitivity of 3D fluorescence signal detection is up to 0.2% contrast concentrations of nanoparticles. The x-ray fluorescence computed tomography is an important molecular imaging tool. It can be used directly in samall animal research. It has great translational potential for future clinical applications.

  12. NV: Nessus Vulnerability Visualization for the Web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Lane; Spahn, Riley B; Iannacone, Michael D

    2012-01-01

    Network vulnerability is a critical component of network se- curity. Yet vulnerability analysis has received relatively lit- tle attention from the security visualization community. In this paper we describe nv, a web-based Nessus vulnerability visualization. Nv utilizes treemaps and linked histograms to allow system administrators to discover, analyze, and man- age vulnerabilities on their networks. In addition to visual- izing single Nessus scans, nv supports the analysis of sequen- tial scans by showing which vulnerabilities have been fixed, remain open, or are newly discovered. Nv was also designed to operate completely in-browser, to avoid sending sensitive data to outside servers.more » We discuss the design of nv, as well as provide case studies demonstrating vulnerability analysis workflows which include a multiple-node testbed and data from the 2011 VAST Challenge.« less

  13. Scan path entropy and arrow plots: capturing scanning behavior of multiple observers

    PubMed Central

    Hooge, Ignace; Camps, Guido

    2013-01-01

    Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures (1) “scan path entropy” to quantify gaze guidance and (2) the “arrow plot” to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50). The new measures were tested in an eye tracking study (48 observers, 39 advertisements). Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place. PMID:24399993

  14. Integrating visible light 3D scanning into the everyday world

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    Visible light 3D scanning offers the potential to non-invasively and nearly non-perceptibly incorporate 3D imaging into the everyday world. This paper considers the various possible uses of visible light 3D scanning technology. It discusses multiple possible usage scenarios including in hospitals, security perimeter settings and retail environments. The paper presents a framework for assessing the efficacy of visible light 3D scanning for a given application (and compares this to other scanning approaches such as those using blue light or lasers). It also discusses ethical and legal considerations relevant to real-world use and concludes by presenting a decision making framework.

  15. Method and systems for collecting data from multiple fields of view

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K. (Inventor)

    2002-01-01

    Systems and methods for processing light from multiple fields (48, 54, 55) of view without excessive machinery for scanning optical elements. In an exemplary embodiment of the invention, multiple holographic optical elements (41, 42, 43, 44, 45), integrated on a common film (4), diffract and project light from respective fields of view.

  16. Automatic extraction of disease-specific features from Doppler images

    NASA Astrophysics Data System (ADS)

    Negahdar, Mohammadreza; Moradi, Mehdi; Parajuli, Nripesh; Syeda-Mahmood, Tanveer

    2017-03-01

    Flow Doppler imaging is widely used by clinicians to detect diseases of the valves. In particular, continuous wave (CW) Doppler mode scan is routinely done during echocardiography and shows Doppler signal traces over multiple heart cycles. Traditionally, echocardiographers have manually traced such velocity envelopes to extract measurements such as decay time and pressure gradient which are then matched to normal and abnormal values based on clinical guidelines. In this paper, we present a fully automatic approach to deriving these measurements for aortic stenosis retrospectively from echocardiography videos. Comparison of our method with measurements made by echocardiographers shows large agreement as well as identification of new cases missed by echocardiographers.

  17. Cryptogenic Organizing Pneumonia With Lung Nodules Secondary to Pulmonary Manifestation of Crohn Disease.

    PubMed

    Zaman, Taufiq; Watson, Joseph; Zaman, Mohammad

    2017-01-01

    Crohn disease is an immune-mediated inflammatory condition with gastrointestinal and extraintestinal manifestations in patients. Pulmonary involvement of Crohn disease is one manifestation. There have been case reports which have shown Crohn disease and lung nodules which were noted to be histopathological as cryptogenic organizing pneumonia (COP). In our case, a 22-year-old woman with Crohn disease was seen with complaints of chest pain and cough. Computed tomographic scan of chest showed multiple bilateral lung nodules, for which biopsy was done, which showed COP. The case study is followed by a deeper discussion of COP and the extraintestinal manifestation seen in inflammatory bowel disease.

  18. The use of 3D scanning for sporting applications

    NASA Astrophysics Data System (ADS)

    Friel, Kevin; Ajjimaporn, Pann; Straub, Jeremy; Kerlin, Scott

    2015-05-01

    This paper describes the process and research that went into creating a set of 3D models to characterize a golf swing. The purpose of this work is to illustrate how a 3D scanner could be used for assessing athlete performance in sporting applications. In this case, introductory work has been performed to show how the scanner could be used to show the errors a golfer made in a swing. Multiple factors must be taken into account when assessing golfers' swings including the position and movement of the golfer's hands, arms, and foot placement as well as the position of the club head and shaft of the golf club.

  19. Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells.

    PubMed

    Peckys, Diana B; de Jonge, Niels

    2014-04-01

    Scanning transmission electron microscopy (STEM) of specimens in liquid, so-called Liquid STEM, is capable of imaging the individual subunits of macromolecular complexes in whole eukaryotic cells in liquid. This paper discusses this new microscopy modality within the context of state-of-the-art microscopy of cells. The principle of operation and equations for the resolution are described. The obtained images are different from those acquired with standard transmission electron microscopy showing the cellular ultrastructure. Instead, contrast is obtained on specific labels. Images can be recorded in two ways, either via STEM at 200 keV electron beam energy using a microfluidic chamber enclosing the cells, or via environmental scanning electron microscopy at 30 keV of cells in a wet environment. The first series of experiments involved the epidermal growth factor receptor labeled with gold nanoparticles. The labels were imaged in whole fixed cells with nanometer resolution. Since the cells can be kept alive in the microfluidic chamber, it is also feasible to detect the labels in unfixed, live cells. The rapid sample preparation and imaging allows studies of multiple whole cells.

  20. [Stress fractures of the ribs with acute thoracic pain in a young woman, diagnosed by the bone scan].

    PubMed

    Georgitzikis, Athanasios; Siopi, Dimitra; Doumas, Argyrios; Mitka, Ekaterini; Antoniadis, Antonios

    2010-01-01

    We report the unusual case of a 29 -year old woman with emotional instability who presented with acute onset chest pain after severe chronic cough. The chest X-ray and the serological tests were normal but the CT scanning, and the bone scanning revealed multiple bilateral rib stress fractures, caused by severe coughing and physical activity and worsened by the patient's emotional instability.

  1. SU-E-I-49: Influence of Scanner Output Measurement Technique on KERMA Ratios in CT.

    PubMed

    Ogden, K; Roskopf, M; Scalzetti, E

    2012-06-01

    KERMA ratios (RK) are defined as the ratio of KERMA measured at a specific phantom location (K) to in-air isocenter CT scanner output (KCT). In this work we investigate the impact of measurement methodology on KCT values. OSL dosimeter chips were used to measure KCT for a GE VCT scanner (GE Medical Systems, Waukesha WI), using the 40 mm nominal beam width. Methods included a single point measurement at the center of the beam (1 tube rotation), and extended z-axis measurements using multiple adjacent OSL's (7.5 cm extent), with single tube rotation, multiple contiguous axial scans, and helical scans (pitch of 1.375). Measurements were made in air and on the scan table at 80 and 120 kV. Averaged single point measurements were consistent, with a mean coefficient of variation of 2.5%. For extended measurements with a single tube rotation, the mean value was equivalent to the single point measurements. For multiple contiguous axial scans, the in-air KCT values were higher than the single rotation mean value and single point measurements by 13% and 10.3% at 120 and 80 kV, respectively, and for the on-table measurements the values were 14.9% and 8.1% higher at 120 and 80 kV, respectively. The increase is due to beam overlap caused by z- axis over-beaming. Extended measurements using helical scanning were equivalent to the multiple rotation axial measurements when corrected for the helical pitch. For all methodologies, the in-air values exceeded the on- table measurements by an average of 23% and 19.4% at 80 and 120 kV, respectively. Scanner KCT values must be measured to allow organ dose estimation using published RK values. It is imperative that the KCT measurement methodology is the same as for the published values, or large errors may be introduced into the resulting organ dose estimates. © 2012 American Association of Physicists in Medicine.

  2. Multi-beam and single-chip LIDAR with discrete beam steering by digital micromirror device

    NASA Astrophysics Data System (ADS)

    Rodriguez, Joshua; Smith, Braden; Hellman, Brandon; Gin, Adley; Espinoza, Alonzo; Takashima, Yuzuru

    2018-02-01

    A novel Digital Micromirror Device (DMD) based beam steering enables a single chip Light Detection and Ranging (LIDAR) system for discrete scanning points. We present increasing number of scanning point by using multiple laser diodes for Multi-beam and Single-chip DMD-based LIDAR.

  3. Active Damping of a Piezoelectric Tube Scanner using Self-Sensing Piezo Actuation

    PubMed Central

    Kuiper, S.; Schitter, G.

    2010-01-01

    In most Atomic Force Microscopes (AFM), a piezoelectric tube scanner is used to position the sample underneath the measurement probe. Oscillations stemming from the weakly damped resonances of the tube scanner are a major source of image distortion, putting a limitation on the achievable imaging speed. This paper demonstrates active damping of these oscillations in multiple scanning axes without the need for additional position sensors. By connecting the tube scanner in a capacitive bridge circuit the scanner oscillations can be measured in both scanning axes, using the same piezo material as an actuator and sensor simultaneously. In order to compensate for circuit imbalance caused by hysteresis in the piezo element, an adaptive balancing circuit is used. The obtained measurement signal is used for feedback control, reducing the resonance peaks in both scanning axes by 18 dB and the cross-coupling at those frequencies by 30 dB. Experimental results demonstrate a significant reduction in scanner oscillations when applying the typical triangular scanning signals, as well as a strong reduction in coupling induced oscillations. Recorded AFM images show a considerable reduction in image distortion due to the proposed control method, enabling artifact free AFM imaging at a speed of 122 lines per second with a standard piezoelectric tube scanner. PMID:26412944

  4. Detecting Genomic Clustering of Risk Variants from Sequence Data: Cases vs. Controls

    PubMed Central

    Schaid, Daniel J.; Sinnwell, Jason P.; McDonnell, Shannon K.; Thibodeau, Stephen N.

    2013-01-01

    As the ability to measure dense genetic markers approaches the limit of the DNA sequence itself, taking advantage of possible clustering of genetic variants in, and around, a gene would benefit genetic association analyses, and likely provide biological insights. The greatest benefit might be realized when multiple rare variants cluster in a functional region. Several statistical tests have been developed, one of which is based on the popular Kulldorff scan statistic for spatial clustering of disease. We extended another popular spatial clustering method – Tango’s statistic – to genomic sequence data. An advantage of Tango’s method is that it is rapid to compute, and when single test statistic is computed, its distribution is well approximated by a scaled chi-square distribution, making computation of p-values very rapid. We compared the Type-I error rates and power of several clustering statistics, as well as the omnibus sequence kernel association test (SKAT). Although our version of Tango’s statistic, which we call “Kernel Distance” statistic, took approximately half the time to compute than the Kulldorff scan statistic, it had slightly less power than the scan statistic. Our results showed that the Ionita-Laza version of Kulldorff’s scan statistic had the greatest power over a range of clustering scenarios. PMID:23842950

  5. Diode-Laser Absorption Sensor for Line-of-Sight Gas Temperature Distributions

    NASA Astrophysics Data System (ADS)

    Sanders, Scott T.; Wang, Jian; Jeffries, Jay B.; Hanson, Ronald K.

    2001-08-01

    Line-of-sight diode-laser absorption techniques have been extended to enable temperature measurements in nonuniform-property flows. The sensing strategy for such flows exploits the broad wavelength-scanning abilities ( >1.7 nm ~ 30 cm-1 ) of a vertical cavity surface-emitting laser (VCSEL) to interrogate multiple absorption transitions along a single line of sight. To demonstrate the strategy, a VCSEL-based sensor for oxygen gas temperature distributions was developed. A VCSEL beam was directed through paths containing atmospheric-pressure air with known (and relatively simple) temperature distributions in the 200 -700 K range. The VCSEL was scanned over ten transitions in the R branch of the oxygen A band near 760 nm and optionally over six transitions in the P branch. Temperature distribution information can be inferred from these scans because the line strength of each probed transition has a unique temperature dependence; the measurement accuracy and resolution depend on the details of this temperature dependence and on the total number of lines scanned. The performance of the sensing strategy can be optimized and predicted theoretically. Because the sensor exhibits a fast time response ( ~30 ms) and can be adapted to probe a variety of species over a range of temperatures and pressures, it shows promise for industrial application.

  6. Retinotopic mapping with Spin Echo BOLD at 7 Tesla

    PubMed Central

    Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa

    2010-01-01

    For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431

  7. Analysis of a generalized dual reflector antenna system using physical optics

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Lagin, Alan R.

    1992-01-01

    Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.

  8. Effect of Multiple Reflow Cycles and Al2O3 Nanoparticles Reinforcement on Performance of SAC305 Lead-Free Solder Alloy

    NASA Astrophysics Data System (ADS)

    Tikale, Sanjay; Prabhu, K. Narayan

    2018-05-01

    The effect of Al2O3 nanoparticles reinforcement on melting behavior, microstructure evolution at the interface and joint shear strength of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder alloy subjected to multiple reflow cycles was investigated. The reinforced SAC305 solder alloy compositions were prepared by adding Al2O3 nanoparticles in different weight fractions (0.05, 0.1, 0.3 and 0.5 wt.%) through mechanical dispersion. Cu/solder/Cu micro-lap-shear solder joint specimens were used to assess the shear strength of the solder joint. Differential scanning calorimetry was used to investigate the melting behavior of SAC305 solder nanocomposites. The solder joint interfacial microstructure was studied using scanning electron microscopy. The results showed that the increase in melting temperature (T L) and melting temperature range of the SAC305 solder alloy by addition of Al2O3 nanoparticles were not significant. In comparison with unreinforced SAC305 solder alloy, the reinforcement of 0.05-0.5 wt.% of Al2O3 nanoparticles improved the solder wettability. The addition of nanoparticles in minor quantity effectively suppressed the Cu6Sn5 IMC growth, improved the solder joint shear strength and ductility under multiple reflow cycles. However, the improvement in solder properties was less pronounced on increasing the nanoparticle content above 0.1 wt.% of the solder alloy.

  9. Evaluating the dose effects of a longitudinal micro-CT study on pulmonary tissue in C57BL/6 mice

    NASA Astrophysics Data System (ADS)

    Detombe, Sarah A.; Dunmore-Buyze, Joy; Petrov, Ivailo E.; Drangova, Maria

    2012-03-01

    Background: Micro-computed tomography offers numerous advantages for small animal imaging, including the ability to monitor the same animals throughout a longitudinal study. However, concerns are often raised regarding the effects of x-ray dose accumulated over the course of the experiment. In this study, we scan C57BL/6 mice multiple times per week for six weeks, to determine the effect of the cumulative dose on pulmonary tissue at the end of the study. Methods/Results: C57BL/6 male mice were split into two groups (irradiated group=10, control group=10). The irradiated group was scanned (80kVp/50mA) each week for 6 weeks; the weekly scan session had three scans. This resulted in a weekly dose of 0.84 Gy, and a total study dose of 5.04 Gy. The control group was scanned on the final week. Scans from weeks 1 and 6 were reconstructed and analyzed: overall, there was no significant difference in lung volume or lung density between the control group and the irradiated group. Similarly, there were no significant differences between the week 1 and week 6 scans in the irradiated group. Histological samples taken from excised lung tissue also showed no evidence of inflammation or fibrosis in the irradiated group. Conclusion: This study demonstrates that a 5 Gy x-ray dose accumulated over six weeks during a longitudinal micro-CT study has no significant effects on the pulmonary tissue of C57BL/6 mice. As a result, the many advantages of micro- CT imaging, including rapid acquisition of high-resolution, isotropic images in free-breathing mice, can be taken advantage of in longitudinal studies without concern for negative dose-related effects.

  10. (Un)targeted Scanning of Locks of Hair for Drugs of Abuse by Direct Analysis in Real Time-High-Resolution Mass Spectrometry.

    PubMed

    Duvivier, Wilco F; van Putten, Marc R; van Beek, Teris A; Nielen, Michel W F

    2016-02-16

    Forensic hair evidence can be used to obtain retrospective timelines of drug use by analysis of hair segments. However, this is a laborious and time-consuming process, and mass spectrometric (MS) imaging techniques, which show great potential for single-hair targeted analysis, are less useful due to differences in hair growth rate between individual hairs. As an alternative, a fast untargeted analysis method was developed that uses direct analysis in real time-high-resolution mass spectrometry (DART-HRMS) to longitudinally scan intact locks of hair without extensive sample preparation or segmentation. The hair scan method was validated for cocaine against an accredited liquid chromatography/tandem mass spectrometry (LC/MS/MS) method. The detection limit for cocaine in hair was found to comply with the cutoff value of 0.5 ng/mg recommended by the Society of Hair Testing; that is, the DART hair scan method is amenable to forensic cases. Under DART conditions, no significant thermal degradation of cocaine occurred. The standard DART spot size of 5.1 ± 1.1 mm could be improved to 3.3 ± 1.0 mm, corresponding to approximately 10 days of hair growth, by using a high spatial resolution exit cone. By use of data-dependent product ion scans, multiple drugs of abuse could be detected in a single drug user hair scan with confirmation of identity by both exact mass and MS/HRMS fragmentation patterns. Furthermore, full-scan high-resolution data were retrospectively interrogated versus a list of more than 100 compounds and revealed additional hits and temporal profiles in good correlation with reported drug use.

  11. Two-dimensional simulation and modeling in scanning electron microscope imaging and metrology research.

    PubMed

    Postek, Michael T; Vladár, András E; Lowney, Jeremiah R; Keery, William J

    2002-01-01

    Traditional Monte Carlo modeling of the electron beam-specimen interactions in a scanning electron microscope (SEM) produces information about electron beam penetration and output signal generation at either a single beam-landing location, or multiple landing positions. If the multiple landings lie on a line, the results can be graphed in a line scan-like format. Monte Carlo results formatted as line scans have proven useful in providing one-dimensional information about the sample (e.g., linewidth). When used this way, this process is called forward line scan modeling. In the present work, the concept of image simulation (or the first step in the inverse modeling of images) is introduced where the forward-modeled line scan data are carried one step further to construct theoretical two-dimensional (2-D) micrographs (i.e., theoretical SEM images) for comparison with similar experimentally obtained micrographs. This provides an ability to mimic and closely match theory and experiment using SEM images. Calculated and/or measured libraries of simulated images can be developed with this technique. The library concept will prove to be very useful in the determination of dimensional and other properties of simple structures, such as integrated circuit parts, where the shape of the features is preferably measured from a single top-down image or a line scan. This paper presents one approach to the generation of 2-D simulated images and presents some suggestions as to their application to critical dimension metrology.

  12. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  13. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI.

    PubMed

    Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P; Sahin, Mustafa; Warfield, Simon K

    2015-12-01

    To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.

  14. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure.

    PubMed

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-05-11

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  15. Reducing Unnecessary Portable Pelvic Radiographs in Trauma Patients: A Resident-Driven Quality Improvement Initiative.

    PubMed

    Langer, Jessica M; Tsai, Emily B; Luhar, Aarti; McWilliams, Justin; Motamedi, Kambiz

    2015-09-01

    Quality improvement is increasingly important in the changing health care climate. We aim to establish a methodology and identify critical factors leading to successful implementation of a resident-led radiology quality improvement intervention at the institutional level. Under guidance of faculty mentors, the first-year radiology residents developed a quality improvement initiative to decrease unnecessary STAT pelvic radiographs (PXRs) in hemodynamically stable trauma patients who would additionally receive STAT pelvic CT scans. Development and implementation of this initiative required multiple steps, including: establishing resident and faculty leadership, gathering evidence from published literature, cultivating multidisciplinary support, and developing and implementing an institution-wide ordering algorithm. A visual aid and brief questionnaire were distributed to clinicians for use during treatment of trauma cases to ensure sustainability of the initiative. At multiple time points, pre- and post-intervention, residents performed a retrospective chart review to evaluate changes in imaging-ordering trends for trauma patients. Chart review showed a decline in the number of PXRs for hemodynamically stable trauma patients, as recommended in the ordering algorithm: 78% of trauma patients received both a PXR and a pelvic CT scan in the first 24 hours of the initiative, compared with 26% at 1 month; 24% at 6 months; and 18% at 10 to 12 months postintervention. The resident-led radiology quality improvement initiative created a shift in ordering culture at an institutional level. Development and implementation of this algorithm exemplified the impact of a multidisciplinary collaborative effort involving multiple departments and multiple levels of the medical hierarchy. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    PubMed Central

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-01-01

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879

  17. A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection

    Treesearch

    D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin

    1993-01-01

    A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...

  18. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, Gary W.

    1996-01-01

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  19. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, G.W.

    1996-10-22

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  20. Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors

    PubMed Central

    Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke

    2014-01-01

    A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430

  1. [Non-operation management of 12 cases with brain abscess demonstrated by CT scan].

    PubMed

    Long, J

    1990-12-01

    This paper reported 12 cases with brain abscess demonstrated by CT scan. Using antibiotic management without surgical intervention, in 10 cases the curative effects were satisfactory. The paper indicated that CT scan was very useful in prompt and correct diagnosis of brain abscess and with sequential CT scan medical therapy was feasible. It is significant in treatment of brain abscess especially for the patients who have a poor general condition, have the brain abscess located in important functional area or have multiple abscesses so that the operation is difficult for them.

  2. SU-E-T-133: Dosimetric Impact of Scan Orientation Relative to Target Motion During Spot Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoker, J; Summers, P; Li, X

    2014-06-01

    Purpose: This study seeks to evaluate the dosimetric effects of intra-fraction motion during spot scanning proton beam therapy as a function of beam-scan orientation and target motion amplitude. Method: Multiple 4DCT scans were collected of a dynamic anthropomorphic phantom mimicking respiration amplitudes of 0 (static), 0.5, 1.0, and 1.5 cm. A spot-scanning treatment plan was developed on the maximum intensity projection image set, using an inverse-planning approach. Dynamic phantom motion was continuous throughout treatment plan delivery.The target nodule was designed to accommodate film and thermoluminescent dosimeters (TLD). Film and TLDs were uniquely labeled by location within the target. The phantommore » was localized on the treatment table using the clinically available orthogonal kV on-board imaging device. Film inserts provided data for dose uniformity; TLDs provided a 3% precision estimate of absolute dose. An inhouse script was developed to modify the delivery order of the beam spots, to orient the scanning direction parallel or perpendicular to target motion.TLD detector characterization and analysis was performed by the Imaging and Radiation Oncology Core group (IROC)-Houston. Film inserts, exhibiting a spatial resolution of 1mm, were analyzed to determine dose homogeneity within the radiation target. Results: Parallel scanning and target motions exhibited reduced target dose heterogeneity, relative to perpendicular scanning orientation. The average percent deviation in absolute dose for the motion deliveries relative to the static delivery was 4.9±1.1% for parallel scanning, and 11.7±3.5% (p<<0.05) for perpendicularly oriented scanning. Individual delivery dose deviations were not necessarily correlated to amplitude of motion for either scan orientation. Conclusions: Results demonstrate a quantifiable difference in dose heterogeneity as a function of scan orientation, more so than target amplitude. Comparison to the analyzed planar dose of a single field hint that multiple-field delivery alters intra-fraction beam-target motion synchronization and may mitigate heterogeneity, though further study is warranted.« less

  3. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi

    In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less

  4. High speed imaging of dynamic processes with a switched source x-ray CT system

    NASA Astrophysics Data System (ADS)

    Thompson, William M.; Lionheart, William R. B.; Morton, Edward J.; Cunningham, Mike; Luggar, Russell D.

    2015-05-01

    Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data.

  5. Structural integrity of frontostriatal connections predicts longitudinal changes in self-esteem.

    PubMed

    Chavez, Robert S; Heatherton, Todd F

    2017-06-01

    Diverse neurological and psychiatric conditions are marked by a diminished sense of positive self-regard, and reductions in self-esteem are associated with risk for these disorders. Recent evidence has shown that the connectivity of frontostriatal circuitry reflects individual differences in self-esteem. However, it remains an open question as to whether the integrity of these connections can predict self-esteem changes over larger timescales. Using diffusion magnetic resonance imaging and probabilistic tractography, we demonstrate that the integrity of white matter pathways linking the medial prefrontal cortex to the ventral striatum predicts changes in self-esteem 8 months after initial scanning in a sample of 30 young adults. Individuals with greater integrity of this pathway during the scanning session at Time 1 showed increased levels of self-esteem at follow-up, whereas individuals with lower integrity showed stifled or decreased levels of self-esteem. These results provide evidence that frontostriatal white matter integrity predicts the trajectory of self-esteem development in early adulthood, which may contribute to blunted levels of positive self-regard seen in multiple psychiatric conditions, including depression and anxiety.

  6. Structural Integrity of Frontostriatal Connections Predicts Longitudinal Changes in Self-esteem

    PubMed Central

    Chavez, Robert S.; Heatherton, Todd F.

    2016-01-01

    Diverse neurological and psychiatric conditions are marked by a diminished sense of positive self-regard, and reductions in self-esteem are associated with risk for these disorders. Recent evidence has shown that the connectivity of frontostriatal circuitry reflects individual differences in self-esteem. However, it remains an open question as to whether the integrity of these connections can predict self-esteem changes over larger timescales. Using diffusion magnetic resonance imaging and probabilistic tractography, we demonstrate that the integrity of white matter pathways linking the medial prefrontal cortex to the ventral striatum predicts changes in self-esteem eight months after initial scanning in sample of thirty young adults. Individuals with greater integrity of this pathway during the scanning session at Time 1 showed increased levels of self-esteem at follow-up, whereas individuals with lower integrity showed stifled or decreased levels of self-esteem. These results provide evidence that frontostriatal white matter integrity predicts the trajectory of self-esteem development in early adulthood, which may contribute to blunted levels of positive self-regard seen in multiple psychiatric conditions including depression and anxiety. PMID:26966986

  7. Radiation damage in dielectric and semiconductor single crystals (direct observation)

    NASA Astrophysics Data System (ADS)

    Adawi, M. A.; Didyk, A. Yu.; Varichenko, V. S.; Zaitsev, A. M.

    1998-11-01

    The surfaces of boron-doped synthetic and natural diamonds have been investigated by using the scanning tunnelling microscope (STM) and the scanning electronic microscope (SEM) before and after irradiating the samples with 40Ar (25 MeV), 84Kr (210 MeV) and 125Xe (124 MeV) ions. The structures observed after irradiation showed craters with diameters ranging from 3 nm up to 20 nm, which could be interpreted as single ion tracks and multiple hits of ions at the nearest positions of the surface. In the case of argon ion irradiation, the surface was found to be completely amorphous, but after xenon irradiation one could see parts of surface without amorphism. This can be explained by the influence of high inelastic energy losses. The energy and temperature criteria of crater formation as a result of heavy ion irradiation are introduced.

  8. Line-scan spectrum-encoded imaging by dual-comb interferometry.

    PubMed

    Wang, Chao; Deng, Zejiang; Gu, Chenglin; Liu, Yang; Luo, Daping; Zhu, Zhiwei; Li, Wenxue; Zeng, Heping

    2018-04-01

    Herein, the method of spectrum-encoded dual-comb interferometry is introduced to measure a three-dimensional (3-D) profile with absolute distance information. By combining spectral encoding for wavelength-to-space mapping, dual-comb interferometry for decoding and optical reference for calibration, this system can obtain a 3-D profile of an object at a stand-off distance of 114 mm with a depth precision of 12 μm. With the help of the reference arm, the absolute distance, reflectivity distribution, and depth information are simultaneously measured at a 5 kHz line-scan rate with free-running carrier-envelope offset frequencies. To verify the concept, experiments are conducted with multiple objects, including a resolution test chart, a three-stair structure, and a designed "ECNU" letter chain. The results show a horizontal resolution of ∼22  μm and a measurement range of 1.93 mm.

  9. Applications of multiple change point detections to monthly streamflow and rainfall in Xijiang River in southern China, part II: trend and mean

    NASA Astrophysics Data System (ADS)

    Chen, Yongqin David; Jiang, Jianmin; Zhu, Yuxiang; Huang, Changxing; Zhang, Qiang

    2018-05-01

    This article, as part II, illustrates applications of other two algorithms, i.e., the scanning F test of change points in trend and the scanning t test of change points in mean, to both series of the normalized streamflow index (NSI) at Makou section in the Xijiang River and the normalized precipitation index (NPI) over the watershed of Xijiang River. The results from these two tests show mainly positive coherency of changes between the NSI and NPI. However, some minor negative coherency patches may expose somewhat impacts of human activities, but they were often associated with nearly normal climate periods. These suggest that the runoff still depends upon well the precipitation in the Xijiang catchment. The anthropogenic disturbances have not yet reached up to violating natural relationship on the whole in this river.

  10. Design and validation of a multiplexed low coherence interferometry instrument for in vivo clinical measurement of microbicide gel thickness distribution

    PubMed Central

    Drake, Tyler K.; DeSoto, Michael G.; Peters, Jennifer J.; Henderson, Marcus H.; Murtha, Amy P.; Katz, David F.; Wax, Adam

    2011-01-01

    We present a multiplexed, Fourier-domain low coherence interferometry (mLCI) instrument for in vivo measurement of intravaginal microbicide gel coating thickness distribution over the surface of the vaginal epithelium. The mLCI instrument uses multiple delivery fibers to acquire depth resolved reflection profiles across large scanned tissue areas. Here mLCI has been adapted into an endoscopic system with a custom imaging module for simultaneous, co-registered measurements with fluorimetric scans of the same surface. The resolution, optical signal-to-noise, and cross-talk of the mLCI instrument are characterized to evaluate performance. Validation measurements of gel thickness are made using a calibration socket. Initial results from a clinical study are presented to show the in vivo capability of the dual-modality system for assessing the distribution of microbicide gel vehicles in the lower human female reproductive tract. PMID:22025989

  11. Cooperative Environment Scans Based on a Multi-Robot System

    PubMed Central

    Kwon, Ji-Wook

    2015-01-01

    This paper proposes a cooperative environment scan system (CESS) using multiple robots, where each robot has low-cost range finders and low processing power. To organize and maintain the CESS, a base robot monitors the positions of the child robots, controls them, and builds a map of the unknown environment, while the child robots with low performance range finders provide obstacle information. Even though each child robot provides approximated and limited information of the obstacles, CESS replaces the single LRF, which has a high cost, because much of the information is acquired and accumulated by a number of the child robots. Moreover, the proposed CESS extends the measurement boundaries and detects obstacles hidden behind others. To show the performance of the proposed system and compare this with the numerical models of the commercialized 2D and 3D laser scanners, simulation results are included. PMID:25789491

  12. Estimating the exceedance probability of rain rate by logistic regression

    NASA Technical Reports Server (NTRS)

    Chiu, Long S.; Kedem, Benjamin

    1990-01-01

    Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.

  13. The evolution of computed tomography from organ-selective to whole-body scanning in managing unconscious patients with multiple trauma

    PubMed Central

    Hong, Zhi-Jie; Chen, Cheng-Jueng; Yu, Jyh-Cherng; Chan, De-Chuan; Chou, Yu-Ching; Liang, Chia-Ming; Hsu, Sheng-Der

    2016-01-01

    Abstract We aimed to evaluate the benefit of whole-body computed tomography (WBCT) scanning for unconscious adult patients suffering from high-energy multiple trauma compared with the conventional stepwise approach of organ-selective CT. Totally, 144 unconscious patients with high-energy multiple trauma from single level I trauma center in North Taiwan were enrolled from January 2009 to December 2013. All patients were managed by a well-trained trauma team and were suitable for CT examination. The enrolled patients are all transferred directly from the scene of an accident, not from other medical institutions with a definitive diagnosis. The scanning regions of WBCT include head, neck, chest, abdomen, and pelvis. We analyzed differences between non-WBCT and WBCT groups, including gender, age, hospital stay, Injury Severity Score, Glasgow Coma Scale, Revised Trauma Score, time in emergency department (ED), medical cost, and survival outcome. Fifty-five patients received the conventional approach for treating trauma, and 89 patients received immediate WBCT scanning after an initial examination. Patients’ time in ED was significantly shorter in the WBCT group in comparison with the non-WBCT group (158.62 ± 80.13 vs 216.56 ± 168.32 min, P = 0.02). After adjusting for all possible confounding factors, we also found that survival outcome of the WBCT group was better than that of the non-WBCT group (odds ratio: 0.21, 95% confidence interval: 0.06–0.75, P = 0.016). Early performing WBCT during initial trauma management is a better approach for treating unconscious patients with high-energy multiple trauma. PMID:27631215

  14. The evolution of computed tomography from organ-selective to whole-body scanning in managing unconscious patients with multiple trauma: A retrospective cohort study.

    PubMed

    Hong, Zhi-Jie; Chen, Cheng-Jueng; Yu, Jyh-Cherng; Chan, De-Chuan; Chou, Yu-Ching; Liang, Chia-Ming; Hsu, Sheng-Der

    2016-09-01

    We aimed to evaluate the benefit of whole-body computed tomography (WBCT) scanning for unconscious adult patients suffering from high-energy multiple trauma compared with the conventional stepwise approach of organ-selective CT.Totally, 144 unconscious patients with high-energy multiple trauma from single level I trauma center in North Taiwan were enrolled from January 2009 to December 2013. All patients were managed by a well-trained trauma team and were suitable for CT examination. The enrolled patients are all transferred directly from the scene of an accident, not from other medical institutions with a definitive diagnosis. The scanning regions of WBCT include head, neck, chest, abdomen, and pelvis. We analyzed differences between non-WBCT and WBCT groups, including gender, age, hospital stay, Injury Severity Score, Glasgow Coma Scale, Revised Trauma Score, time in emergency department (ED), medical cost, and survival outcome.Fifty-five patients received the conventional approach for treating trauma, and 89 patients received immediate WBCT scanning after an initial examination. Patients' time in ED was significantly shorter in the WBCT group in comparison with the non-WBCT group (158.62 ± 80.13 vs 216.56 ± 168.32 min, P = 0.02). After adjusting for all possible confounding factors, we also found that survival outcome of the WBCT group was better than that of the non-WBCT group (odds ratio: 0.21, 95% confidence interval: 0.06-0.75, P = 0.016).Early performing WBCT during initial trauma management is a better approach for treating unconscious patients with high-energy multiple trauma.

  15. High spatial resolution LWIR hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Roberts, Carson B.; Bodkin, Andrew; Daly, James T.; Meola, Joseph

    2015-06-01

    Presented is a new hyperspectral imager design based on multiple slit scanning. This represents an innovation in the classic trade-off between speed and resolution. This LWIR design has been able to produce data-cubes at 3 times the rate of conventional single slit scan devices. The instrument has a built-in radiometric and spectral calibrator.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan

    Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less

  17. MRI-based intelligence quotient (IQ) estimation with sparse learning.

    PubMed

    Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang

    2015-01-01

    In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject's IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge.

  18. Intravascular migration of a broken cerclage wire into the left heart.

    PubMed

    Leonardi, Francesco; Rivera, Fabrizio

    2014-10-01

    This article describes a patient in whom a broken cerclage wire migrated from the left hip into the left ventricle. A 71-year-old woman was admitted to the authors' hospital for preoperative examination before femoral hernia repair. Chest radiograph showed a metallic wire in the left ventricle. Twenty-four years earlier, she had a revision arthroplasty. During revision surgery, fragments of the osteotomy were fixed to the femur with multiple cerclage wires. During the past 5 years, radiographic follow-up showed progressive multiple ruptures of cerclage wires. The cerclage wiring was not removed because the patient had no related clinical symptoms. Radiograph of the left hip showed a well-fixed cemented acetabular ring and an uncemented femoral stem with a healed trochanteric osteotomy. All cerclage wires were broken into multiple parts, and it was very difficult to determine which part had migrated into the heart. Thoracic computed tomography scan showed wire that had migrated into the anterior left ventricular myocardial wall at the atrioventricular level. The patient had no clinical symptoms. Electrocardiogram showed a normal sinus rhythm and right bundle branch block. Because of the high risk of surgical left ventriculotomy associated with searching for wire that had migrated into the myocardial wall, patient monitoring was planned. Definitive management of this complication constitutes a dilemma. Although this complication is highly unusual, the possibility of intracardiac migration of broken wire should be considered when deciding on prophylactic surgical removal of hardware after fracture or osteotomy healing. Copyright 2014, SLACK Incorporated.

  19. [Radical resective surgery for the management of rectosigmoidal endometriosis. Clinical case].

    PubMed

    Bannura, G; Valencia, C; Corredoira, Y

    1998-11-01

    We report a 35 years old female with a profound rectosigmoidal endometriosis, who had been subjected to multiple laparoscopic procedures and open surgery due to infertility in the last five years. Main presenting symptoms were cyclic hematochezia during the menstrual periods associated to pelvic pain. Colonoscopy was inconclusive, barium enema showed a marked stenosis of the zone, appearing as an extrinsic compression. CAT scan showed a homogeneous, solid parauterine mass. During surgery, an inflammatory mass with multiple endometriotic foci was found. A low anterior resection with mechanical anastomosis was done, preserving the uterus and left adnexa. Two months later, the patient became pregnant and an elective cesarean section was done at 38 weeks of gestation, giving birth to a healthy newborn. Radical resective surgery for rectosigmoidal endometriosis is indicated in patients with intense and recurrent symptoms in whom hormonal treatment has failed and when a tumor cannot be discarded. The fertility rate, when adnexa and uterus are preserved, is 40% and symptomatic improvement is achieved in 85% of patients.

  20. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  1. Real-Time Detection and Tracking of Multiple People in Laser Scan Frames

    NASA Astrophysics Data System (ADS)

    Cui, J.; Song, X.; Zhao, H.; Zha, H.; Shibasaki, R.

    This chapter presents an approach to detect and track multiple people ro bustly in real time using laser scan frames. The detection and tracking of people in real time is a problem that arises in a variety of different contexts. Examples in clude intelligent surveillance for security purposes, scene analysis for service robot, and crowd behavior analysis for human behavior study. Over the last several years, an increasing number of laser-based people-tracking systems have been developed in both mobile robotics platforms and fixed platforms using one or multiple laser scanners. It has been proved that processing on laser scanner data makes the tracker much faster and more robust than a vision-only based one in complex situations. In this chapter, we present a novel robust tracker to detect and track multiple people in a crowded and open area in real time. First, raw data are obtained that measures two legs for each people at a height of 16 cm from horizontal ground with multiple registered laser scanners. A stable feature is extracted using accumulated distribu tion of successive laser frames. In this way, the noise that generates split and merged measurements is smoothed well, and the pattern of rhythmic swinging legs is uti lized to extract each leg. Second, a probabilistic tracking model is presented, and then a sequential inference process using a Bayesian rule is described. A sequential inference process is difficult to compute analytically, so two strategies are presented to simplify the computation. In the case of independent tracking, the Kalman fil ter is used with a more efficient measurement likelihood model based on a region coherency property. Finally, to deal with trajectory fragments we present a concise approach to fuse just a little visual information from synchronized video camera to laser data. Evaluation with real data shows that the proposed method is robust and effective. It achieves a significant improvement compared with existing laser-based trackers.

  2. CT cardiac imaging: evolution from 2D to 3D backprojection

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Pan, Tinsu; Sasaki, Kosuke

    2004-04-01

    The state-of-the-art multiple detector-row CT, which usually employs fan beam reconstruction algorithms by approximating a cone beam geometry into a fan beam geometry, has been well recognized as an important modality for cardiac imaging. At present, the multiple detector-row CT is evolving into volumetric CT, in which cone beam reconstruction algorithms are needed to combat cone beam artifacts caused by large cone angle. An ECG-gated cardiac cone beam reconstruction algorithm based upon the so-called semi-CB geometry is implemented in this study. To get the highest temporal resolution, only the projection data corresponding to 180° plus the cone angle are row-wise rebinned into the semi-CB geometry for three-dimensional reconstruction. Data extrapolation is utilized to extend the z-coverage of the ECG-gated cardiac cone beam reconstruction algorithm approaching the edge of a CT detector. A helical body phantom is used to evaluate the ECG-gated cone beam reconstruction algorithm"s z-coverage and capability of suppressing cone beam artifacts. Furthermore, two sets of cardiac data scanned by a multiple detector-row CT scanner at 16 x 1.25 (mm) and normalized pitch 0.275 and 0.3 respectively are used to evaluate the ECG-gated CB reconstruction algorithm"s imaging performance. As a reference, the images reconstructed by a fan beam reconstruction algorithm for multiple detector-row CT are also presented. The qualitative evaluation shows that, the ECG-gated cone beam reconstruction algorithm outperforms its fan beam counterpart from the perspective of cone beam artifact suppression and z-coverage while the temporal resolution is well maintained. Consequently, the scan speed can be increased to reduce the contrast agent amount and injection time, improve the patient comfort and x-ray dose efficiency. Based up on the comparison, it is believed that, with the transition of multiple detector-row CT into volumetric CT, ECG-gated cone beam reconstruction algorithms will provide better image quality for CT cardiac applications.

  3. Model observer for assessing digital breast tomosynthesis for multi-lesion detection in the presence of anatomical noise

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.; Miner Haygood, Tamara; Park, Subok

    2018-02-01

    Model observers are widely used in task-based assessments of medical image quality. The presence of multiple abnormalities in a single set of images, such as in multifocal multicentric breast cancer (MFMC), has an immense clinical impact on treatment planning and survival outcomes. Detecting multiple breast tumors is challenging as MFMC is relatively uncommon, and human observers do not know the number or locations of tumors a priori. Digital breast tomosynthesis (DBT), in which an x-ray beam sweeps over a limited angular range across the breast, has the potential to improve the detection of multiple tumors. However, prior studies of DBT image quality all focus on unifocal breast cancers. In this study, we extended our 2D multi-lesion (ML) channelized Hotelling observer (CHO) into a 3D ML-CHO that detects multiple lesions from volumetric imaging data. Then we employed the 3D ML-CHO to identify optimal DBT acquisition geometries for detection of MFMC. Digital breast phantoms with multiple embedded synthetic lesions were scanned by simulated DBT scanners of different geometries (wide/narrow angular span, different number of projections per scan) to simulate MFMC cases. With new implementations of 3D partial least squares (PLS) and modified Laguerre-Gauss (LG) channels, the 3D ML-CHO made detection decisions based upon the overall information from individual DBT slices and their correlations. Our evaluation results show that: (1) the 3D ML-CHO could achieve good detection performance with a small number of channels, and 3D PLS channels on average outperform the counterpart LG channels; (2) incorporating locally varying anatomical backgrounds and their correlations as in the 3D ML-CHO is essential for multi-lesion detection; (3) the most effective DBT geometry for detection of MFMC may vary when the task of clinical interest changes, and a given DBT geometry may not yield images that are equally informative for detecting MF, MC, and unifocal cancers.

  4. SU-E-J-240: Development of a Novel 4D MRI Sequence for Real-Time Liver Tumor Tracking During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, L; Burmeister, J; Ye, Y

    2015-06-15

    Purpose: To develop a Novel 4D MRI Technique that is feasible for realtime liver tumor tracking during radiotherapy. Methods: A volunteer underwent an abdominal 2D fast EPI coronal scan on a 3.0T MRI scanner (Siemens Inc., Germany). An optimal set of parameters was determined based on image quality and scan time. A total of 23 slices were scanned to cover the whole liver in the test scan. For each scan position, the 2D images were retrospectively sorted into multiple phases based on breathing signal extracted from the images. Consequently the 2D slices with same phase numbers were stacked to formmore » one 3D image. Multiple phases of 3D images formed the 4D MRI sequence representing one breathing cycle. Results: The optimal set of scan parameters were: TR= 57ms, TE= 19ms, FOV read= 320mm and flip angle= 30°, which resulted in a total scan time of 14s for 200 frames (FMs) per slice and image resolution of (2.5mm,2.5mm,5.0mm) in three directions. Ten phases of 3D images were generated, each of which had 23 slices. Based on our test scan, only 100FMs were necessary for the phase sorting process which may lower the scan time to 7s/100FMs/slice. For example, only 5 slices/35s are necessary for a 4D MRI scan to cover liver tumor size ≤ 2cm leading to the possibility of tumor trajectory tracking every 35s during treatment. Conclusion: The novel 4D MRI technique we developed can reconstruct a 4D liver MRI sequence representing one breathing cycle (7s/ slice) without an external monitor. This technique can potentially be used for real-time liver tumor tracking during radiotherapy.« less

  5. SU-E-T-645: Qualification of a 2D Ionization Chamber Array for Beam Steering and Profile Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, S; Balter, P; Rose, M

    2015-06-15

    Purpose: Establish a procedure for beam steering and profile measurement using a 2D ionization chamber array and show equivalence to a water scanning system. Methods: Multiple photon beams (30×30cm{sup 2} field) and electron beams (25×25cm{sup 2} cone) were steered in the radial and transverse directions using Sun Nuclear’s IC PROFILER (ICP). Solid water was added during steering to ensure measurements were beyond the buildup region. With steering complete, servos were zeroed and enabled. Photon profiles were collected in a 30×30cm{sup 2} field at dmax and 2.9 cm depth for flattened and FFF beams respectively. Electron profiles were collected with amore » 25×25cm{sup 2} cone and effective depth (solid water + 0.9 cm intrinsic buildup) as follows: 0.9 cm (6e), 1.9 cm (9e), 2.9 cm (12e, 16e, 20e). Profiles of the same energy, field size and depth were measured in water with Sun Nuclear’s 3D SCANNER (3DS). Profiles were re-measured using the ICP after the in-water scans. Profiles measured using the ICP and 3DS were compared by (a) examining the differences in Varian’s “Point Difference Symmetry” metric, (b) visual inspection of the overlaid profile shapes and (c) calculation of point-by-point differences. Results: Comparing ICP measurements before and after water scanning showed very good agreement indicating good stability of the linac and measurement system. Comparing ICP Measurements to water phantom measurements using Varian’s symmetry metric showed agreement within 0.5% for all beams. The average magnitude of the agreement was within 0.2%. Comparing ICP Measurements to water phantom measurements using point-by-point difference showed agreement within 0.5% inside of 80% area of the field width. Conclusion: Profile agreement to within 0.5% was observed between ICP and 3DS after steering multiple energies with the ICP. This indicates that the ICP may be used for steering electron beams, and both flattened and FFF photon beams. Song Gao: Sun Nuclear’s invitation of speak and financial support for attending the 8th QA & Dosimetry Symposium in Orlando, Florida 2015.« less

  6. CT scan range estimation using multiple body parts detection: let PACS learn the CT image content.

    PubMed

    Wang, Chunliang; Lundström, Claes

    2016-02-01

    The aim of this study was to develop an efficient CT scan range estimation method that is based on the analysis of image data itself instead of metadata analysis. This makes it possible to quantitatively compare the scan range of two studies. In our study, 3D stacks are first projected to 2D coronal images via a ray casting-like process. Trained 2D body part classifiers are then used to recognize different body parts in the projected image. The detected candidate regions go into a structure grouping process to eliminate false-positive detections. Finally, the scale and position of the patient relative to the projected figure are estimated based on the detected body parts via a structural voting. The start and end lines of the CT scan are projected to a standard human figure. The position readout is normalized so that the bottom of the feet represents 0.0, and the top of the head is 1.0. Classifiers for 18 body parts were trained using 184 CT scans. The final application was tested on 136 randomly selected heterogeneous CT scans. Ground truth was generated by asking two human observers to mark the start and end positions of each scan on the standard human figure. When compared with the human observers, the mean absolute error of the proposed method is 1.2% (max: 3.5%) and 1.6% (max: 5.4%) for the start and end positions, respectively. We proposed a scan range estimation method using multiple body parts detection and relative structure position analysis. In our preliminary tests, the proposed method delivered promising results.

  7. Mapping Diffusion in a Living Cell via the Phasor Approach

    PubMed Central

    Ranjit, Suman; Lanzano, Luca; Gratton, Enrico

    2014-01-01

    Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created. PMID:25517145

  8. Hierarchical pictorial structures for simultaneously localizing multiple organs in volumetric pre-scan CT

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Song, Qi; Das, Bipul; Yin, Zhye

    2015-03-01

    Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a challenging task with many applications such as personalized scan planning and dose reporting. In the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the primary scan or from an existing primary scan. To localize organs in such diverse data, we propose a new learning based framework that we call hierarchical pictorial structures (HPS) which builds multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) the local appearance and shape of structures, and (2) a generative global model that learns probabilistic, structural arrangement. Our main contribution is twofold. First we embed the pictorial structures approach in a hierarchical framework which reduces test time image interpretation and allows for the incorporation of additional geometric constraints that robustly guide model fitting in the presence of noise. Second we guide our HPS framework with the probabilistic cost maps extracted using random decision forests using volumetric 3D HOG features which makes our model fast to train and fast to apply to novel test data and posses a high degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 mins to compute and all organs are located with suitably high accuracy for our clinical applications such as personalized scan planning for radiation dose reduction. We assess our method using a database of volumetric CT scans from 81 subjects with widely varying age and pathology and with simulated ultra-low dose cadaver pre-scan data.

  9. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.

    PubMed

    Mi, Hao-Yang; Salick, Max R; Jing, Xin; Jacques, Brianna R; Crone, Wendy C; Peng, Xiang-Fang; Turng, Lih-Sheng

    2013-12-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. © 2013.

  10. Reproducibility over a 1-month period of 1H-MR spectroscopic imaging NAA/Cr ratios in clinically stable multiple sclerosis patients.

    PubMed

    Mostert, J P; Blaauw, Y; Koch, M W; Kuiper, A J; Hoogduin, J M; De Keyser, J

    2008-08-01

    N-acetylaspartate/creatine (NAA/Cr) ratios, assessed with proton magnetic resonance spectroscopy, are increasingly used as a surrogate marker for axonal dysfunction and degeneration in multiple sclerosis (MS). The purpose of this study was to test short-time reproducibility of NAA/Cr ratios in patients with clinically stable MS. In 35 MS patients we analysed NAA/Cr ratios obtained with (1)H-MR spectroscopic imaging at the centrum semiovale either with lateral ventricles partially included (group 1; n=15) or more cranially with no ventricles included (group 2; n=20). To test short-term reproducibility of the NAA/Cr measurements, patients were scanned twice 4 weeks apart. We determined mean NAA/Cr and Cho/Cr ratios of 12 grey matter and 24 white matter voxels. Mean NAA/Cr ratios of both the white and grey matter did not change after 4 weeks. Overall 4-week reproducibility of the NAA/Cr ratio, expressed as coefficient of variation, was 4.8% for grey matter and 3.5% for white matter. Reproducibility of cranial scanning of the ventricles was slightly better than with cerebrospinal fluid included. Our study shows good short-term reproducibility of NAA/Cr ratio measurements in the centrum semiovale, which supports the reliability of this technique for longitudinal studies.

  11. ICPD-A New Peak Detection Algorithm for LC/MS

    PubMed Central

    2010-01-01

    Background The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. Results In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. Conclusions The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods. PMID:21143790

  12. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    PubMed Central

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-01-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold’s microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. PMID:24094186

  13. Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations.

    PubMed

    Ma, Dan; Pierre, Eric Y; Jiang, Yun; Schluchter, Mark D; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A

    2016-06-01

    Unpleasant acoustic noise is a drawback of almost every MRI scan. Instead of reducing acoustic noise to improve patient comfort, we propose a technique for mitigating the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and repetition times in a two- and three-dimensional magnetic resonance fingerprinting (MRF) examination. This new acquisition method, named MRF-Music, was used to quantify T1 , T2 , and proton density maps simultaneously while providing pleasing sounds to the patients. MRF-Music scans improved patient comfort significantly during MRI examinations. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. MRF-Music sequence provides significant improvement in patient comfort compared with the MRF scan and other fast imaging techniques such as echo planar imaging and turbo spin echo scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameters simultaneously. Magn Reson Med 75:2303-2314, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. SEM, EDS and vibrational spectroscopic study of dawsonite NaAl(CO3)(OH)2.

    PubMed

    Frost, Ray L; López, Andrés; Scholz, Ricardo; Sampaio, Ney Pinheiro; de Oliveira, Fernando A N

    2015-02-05

    In this work we have studied the mineral dawsonite by using a combination of scanning electron microscopy with EDS and vibrational spectroscopy. Single crystals show an acicular habitus forming aggregates with a rosette shape. The chemical analysis shows a phase composed of C, Al, and Na. Two distinct Raman bands at 1091 and 1068 cm(-1) are assigned to the CO3(2-) ν1 symmetric stretching mode. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred upon 950 cm(-1) in both the Raman and infrared spectra show that the OH units in the dawsonite structure are non-equivalent. Raman bands observed at 3250, 3283 and 3295 cm(-1) are assigned to OH stretching vibrations. The position of these bands indicates strong hydrogen bonding of the OH units in the dawsonite structure. The formation of the mineral dawsonite has the potential to offer a mechanism for the geosequestration of greenhouse gases. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. SEM, EDS and vibrational spectroscopic study of dawsonite NaAl(CO3)(OH)2

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Sampaio, Ney Pinheiro; de Oliveira, Fernando A. N.

    2015-02-01

    In this work we have studied the mineral dawsonite by using a combination of scanning electron microscopy with EDS and vibrational spectroscopy. Single crystals show an acicular habitus forming aggregates with a rosette shape. The chemical analysis shows a phase composed of C, Al, and Na. Two distinct Raman bands at 1091 and 1068 cm-1 are assigned to the CO32- ν1 symmetric stretching mode. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred upon 950 cm-1 in both the Raman and infrared spectra show that the OH units in the dawsonite structure are non-equivalent. Raman bands observed at 3250, 3283 and 3295 cm-1 are assigned to OH stretching vibrations. The position of these bands indicates strong hydrogen bonding of the OH units in the dawsonite structure. The formation of the mineral dawsonite has the potential to offer a mechanism for the geosequestration of greenhouse gases.

  16. Failure of MIBG scan to detect metastases in SDHB-mutated pediatric metastatic pheochromocytoma.

    PubMed

    Sait, Sameer; Pandit-Taskar, Neeta; Modak, Shakeel

    2017-11-01

    123 I-meta-iodo benzyl guanidine (MIBG) scans are considered the gold standard imaging in neuroblastoma; however, flouro deoxy glucose positron emission tomography (FDG-PET) scans have increased sensitivity in adults with pheochromocytoma/paraganglioma. We describe a pediatric patient initially considered to have localized neuroblastoma based on anatomical imaging and 123 I-MIBG scan, but subsequent investigations revealed germline succinate dehydrogenase complex iron sulfur subunit B (SDHB) mutation-associated pheochromocytoma with multiple FDG-avid skeletal metastases. We then compared 123 I-MIBG and FDG-PET scans in children with metastatic pheochromocytoma/paraganglioma. FDG-PET was superior to 123 I-MIBG scan for the detection of skeletal metastases (median number of skeletal lesions detected 10 [range 1-30] vs. 2 [range 1-26], respectively; P = 0.005 by t-test). FDG-PET should be considered the functional scan of choice in children with pheochromocytoma/paraganglioma. © 2017 Wiley Periodicals, Inc.

  17. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  18. Resistance of superhydrophobic and oleophobic surfaces to varied temperature applications on 316L SS

    NASA Astrophysics Data System (ADS)

    Shams, Hamza; Basit, Kanza; Saleem, Sajid; Siddiqui, Bilal A.

    316L SS also called Marine Stainless Steel is an important material for structural and marine applications. When superhydrophobic and oleophobic coatings are applied on 316L SS it shows significant resistance to wear and corrosion. This paper aims to validate the coatings manufacturer's information on optimal temperature range and test the viability of coating against multiple oil based cleaning agents. 316L SS was coated with multiple superhydrophic and oleohobic coatings and observed under SEM for validity of adhesion and thickness and then scanned under FFM to validate the tribological information. The samples were then dipped into multiple cleaning agents maintained at the range of operating temperatures specified by the manufacturer. Coating was observed for deterioration over a fixed time intervals through SEM and FFM. A comparison was drawn to validate the most critical cleaning agent and the most critical temperature at which the coating fails to leave the base substrate exposed to the environment.

  19. Accuracy improvement in laser stripe extraction for large-scale triangulation scanning measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Wei; Li, Xiaodong; Yang, Fan; Gao, Peng; Jia, Zhenyuan

    2015-10-01

    Large-scale triangulation scanning measurement systems are widely used to measure the three-dimensional profile of large-scale components and parts. The accuracy and speed of the laser stripe center extraction are essential for guaranteeing the accuracy and efficiency of the measuring system. However, in the process of large-scale measurement, multiple factors can cause deviation of the laser stripe center, including the spatial light intensity distribution, material reflectivity characteristics, and spatial transmission characteristics. A center extraction method is proposed for improving the accuracy of the laser stripe center extraction based on image evaluation of Gaussian fitting structural similarity and analysis of the multiple source factors. First, according to the features of the gray distribution of the laser stripe, evaluation of the Gaussian fitting structural similarity is estimated to provide a threshold value for center compensation. Then using the relationships between the gray distribution of the laser stripe and the multiple source factors, a compensation method of center extraction is presented. Finally, measurement experiments for a large-scale aviation composite component are carried out. The experimental results for this specific implementation verify the feasibility of the proposed center extraction method and the improved accuracy for large-scale triangulation scanning measurements.

  20. Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in Curcuma longa as a Case Study.

    PubMed

    Qiao, Xue; Lin, Xiong-hao; Ji, Shuai; Zhang, Zheng-xiang; Bo, Tao; Guo, De-an; Ye, Min

    2016-01-05

    To fully understand the chemical diversity of an herbal medicine is challenging. In this work, we describe a new approach to globally profile and discover novel compounds from an herbal extract using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis. Turmeric (the rhizomes of Curcuma longa L.) was used as an example. This approach consists of three steps: (i) multiple neutral loss/precursor ion scanning to obtain substructure information; (ii) targeted identification of new compounds by extracted ion current and substructure recognition; and (iii) untargeted identification using total ion current and multivariate statistical analysis to discover novel structures. Using this approach, 846 terpecurcumins (terpene-conjugated curcuminoids) were discovered from turmeric, including a number of potentially novel compounds. Furthermore, two unprecedented compounds (terpecurcumins X and Y) were purified, and their structures were identified by NMR spectroscopy. This study extended the application of mass spectrometry to global profiling of natural products in herbal medicines and could help chemists to rapidly discover novel compounds from a complex matrix.

  1. Scanned-wavelength diode laser sensors for harsh environments

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Sanders, Scott T.; Zhou, Xin; Ma, Lin; Mattison, Daniel W.; Hanson, Ronald K.

    2002-09-01

    Diode laser absorption offers the possibility of high-speed, robust, and rugged sensors for a wide variety of practical applications. Pressure broadening complicates absorption measurements of gas temperature and species concentrations in high-pressure, high-temperature practical environments. More agile wavelength scanning can enable measurements of temperature and species concentrations in flames and engines as demonstrated by example measurements using wavelength scanning of a single DFB in laboratory flames or a vertical cavity surface emitting laser (VCSEL) in a pulse detonation engine environment. Although the blending of multiple transitions by pressure broadening complicates the atmospheric pressure spectrum of C2H4 fuel, a scanned wavelength strategy enables quantitative measurement of fuel/oxidizer stoichiometry. Wavelength-agile scanning techniques enable high-speed measurements in these harsh environments.

  2. Nuclear Scans - Multiple Languages

    MedlinePlus

    ... Cantonese dialect) (繁體中文) French (français) Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Russian (Русский) Somali (Af-Soomaali ) ... हिन्दी (Hindi) Bilingual PDF Health Information Translations Japanese (日本語) Expand Section Bone Scan - 日本語 (Japanese) Bilingual ...

  3. Measurement of third-order nonlinear susceptibility tensor in InP using extended Z-scan technique with elliptical polarization

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Shinozaki, Tomohisa; Hara, Hikaru; Yamamoto, Kazunuki; Matsusue, Toshio; Bando, Hiroyuki

    2018-05-01

    The elliptical polarization dependence of the two-photon absorption coefficient β in InP has been measured by the extended Z-scan technique for thick materials in the wavelength range from 1640 to 1800 nm. The analytical formula of the Z-scan technique has been extended with consideration of multiple reflections. The Z-scan results have been fitted very well by the formula and β has been evaluated accurately. The three independent elements of the third-order nonlinear susceptibility tensor in InP have also been determined accurately from the elliptical polarization dependence of β.

  4. Scan-Based Implementation of JPEG 2000 Extensions

    NASA Technical Reports Server (NTRS)

    Rountree, Janet C.; Webb, Brian N.; Flohr, Thomas J.; Marcellin, Michael W.

    2001-01-01

    JPEG 2000 Part 2 (Extensions) contains a number of technologies that are of potential interest in remote sensing applications. These include arbitrary wavelet transforms, techniques to limit boundary artifacts in tiles, multiple component transforms, and trellis-coded quantization (TCQ). We are investigating the addition of these features to the low-memory (scan-based) implementation of JPEG 2000 Part 1. A scan-based implementation of TCQ has been realized and tested, with a very small performance loss as compared with the full image (frame-based) version. A proposed amendment to JPEG 2000 Part 2 will effect the syntax changes required to make scan-based TCQ compatible with the standard.

  5. Detecting submerged objects: the application of side scan sonar to forensic contexts.

    PubMed

    Schultz, John J; Healy, Carrie A; Parker, Kenneth; Lowers, Bim

    2013-09-10

    Forensic personnel must deal with numerous challenges when searching for submerged objects. While traditional water search methods have generally involved using dive teams, remotely operated vehicles (ROVs), and water scent dogs for cases involving submerged objects and bodies, law enforcement is increasingly integrating multiple methods that include geophysical technologies. There are numerous advantages for integrating geophysical technologies, such as side scan sonar and ground penetrating radar (GPR), with more traditional search methods. Overall, these methods decrease the time involved searching, in addition to increasing area searched. However, as with other search methods, there are advantages and disadvantages when using each method. For example, in instances with excessive aquatic vegetation or irregular bottom terrain, it may not be possible to discern a submersed body with side scan sonar. As a result, forensic personnel will have the highest rate of success during searches for submerged objects when integrating multiple search methods, including deploying multiple geophysical technologies. The goal of this paper is to discuss the methodology of various search methods that are employed for submerged objects and how these various methods can be integrated as part of a comprehensive protocol for water searches depending upon the type of underwater terrain. In addition, two successful case studies involving the search and recovery of a submerged human body using side scan sonar are presented to illustrate the successful application of integrating a geophysical technology with divers when searching for a submerged object. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. The role of PET/CT in evaluation of Facet and Disc abnormalities in patients with low back pain using (18)F-Fluoride.

    PubMed

    Gamie, Sherief; El-Maghraby, Tarek

    2008-01-01

    Bone scintigraphy including Single Photon Emission Computed Tomography (SPECT) is known for its role in the diagnosis of low back pain disorders. Positron Emission Tomography (PET) with (18)F (Flouride-18) as a tracer can be used to carry out bone scans with improved image quality. With the addition of CT, simultaneous PET/CT fused images provide more accurate anatomical details. The objectives of this work are to assess the use of (18)F-PET/CT in patients with back pain and suspected facetogenic pain, and to find the frequency of facet arthropathy versus disc disease abnormalities. 67 patients who presented with back pain underwent routine X-ray, CT and/or MRI, which failed to identify a clear cause, were referred to (18)F-PET/CT. Among the main group, a subset of 25 patients had previous spine surgery consisting of laminectomy or discectomy (17 patients) and lumbar fusion (8 patients). The PET/CT scan was acquired on a GE VCT 64-Slice combined scanner. Imaging started 45-60 minutes after administration of 12-15 mCi (444-555 MBq) of (18)F-Fluoride. The PET scan was acquired from the skull base through the inguinal region in 3D mode at 2 minutes/bed. A lowresolution, non-contrast CT scan was also acquired for anatomic localization and attenuation correction. The (18)F-PET/CT showed abnormal uptake in the spine in 56 patients, with an overall detection ability of 84%. Facet joints as a cause of back pain was much more frequent (25 with abnormal scans). One-third (36%) of the patients showed multiple positive uptake in both facet joints and disc areas (20/56). The patients were further divided into two groups. Group A consisted of 42 patients (63%) with back pain and no previous operative procedures, and the (18)F-PET/CT showed a high sensitivity (88%) in identifying the source of pain in 37/42 patients. Group B included 25 patients (37%) with prior lumbar fusion or laminectomy, in which the PET/CT showed positive uptake in 76% (19/25 patients). (18)F-PET/CT showed positive uptake in all patients (100%) with a history of pain after lumbar fusion, while in the laminectomy subgroup only 11 cases (65%) showed positive focal uptake. (18)F-PET/CT has a potential use in evaluating adult patients with back pain. It has a promising role in identifying causes of persistent back pain following vertebral surgical interventions.

  7. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

    PubMed

    Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2006-06-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.

  8. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

    PubMed Central

    Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2007-01-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900

  9. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach

    PubMed Central

    Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David

    2014-01-01

    Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm2 and 1.2 × 1.2 mm2, respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:25219683

  10. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach.

    PubMed

    Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David

    2014-11-01

    Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm(2) and 1.2 × 1.2 mm(2) , respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  11. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-01-01

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272

  12. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shijun; Yao Jianhua; Liu Jiamin

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less

  13. Using terrestrial laser scanning for differential measurement of interannual rock glacier movement in the Argentine Dry Andes

    NASA Astrophysics Data System (ADS)

    Kane, Renato R.

    Argentina has recently implemented laws to protect glaciers and buried ice in the Andes to improve the sustainability of scarce, long-term water resources. Therefore, all glaciers and buried ice terrains must be located and avoided in any commercial alterations of the landscape. Buried ice in this remote and often dangerous terrain typically is located via the use of remote-sensing techniques. This thesis applies one such technique, Light Detection and Ranging (LiDAR) in the form of Terrestrial Laser Scanning (TLS), to detect rock glacier movement that is indicative of flowing, buried ice not visible in near surface excavations. TLS surveys were completed at two locales, Los Azules and El Altar, in both AD 2013 and AD 2014 on landscapes where buried ice is suspected to have produced the current surface forms. Multiple TLS scans were co-registered with the use of benchmarks, both between scans and between years, which introduced quantifiable positional errors. Digital Elevation Models (DEMs) were derived from the point cloud data by standardizing the spacing of the points in the horizontal direction, creating 0.1 m by 0.1 m cells with elevation as the cell value. The DEMs for each year were subtracted from each other to yield a change in elevation. The surface roughness of the rock glaciers (vertical variability within each cell) was empirically determined and evaluated as a threshold for results. Both sites showed sub-decimeter interannual movements, and the direction of their movement is typical of forms with buried ice. The results of the study were validated using independent GPS data showing annual movement rates. Despite the downslope movement of these rock glaciers, the volume of ice contained within them remains unclear, and further study is required to assess the volume of water contained.

  14. High-cadence observations of spicular-type events and their wave-signatures

    NASA Astrophysics Data System (ADS)

    Shetye, Juie

    2016-05-01

    We present, a statistical study of spectral images, taken from the CRISP instrument at the Swedish 1-m Solar Telescope in H-alpha 656.28 nm of fast spicules with Doppler velocities in the range of -41km/s to +41 km/s. Remarkably, many of these spicules display apparent velocities above 500 km/s, very short lifetimes of up to 20 s combined with width or thickness of 100 km and apparent lengths of around 3500 km. Here we present, the other spectral properties of these events in the H-alpha line scan. Most features showed signature in multiple line position as we scan along the line scan. In around 89 % of the cases, there is temporal offset by 3.7 s to 5 s between the red-wing and blue-wing signatures. Another result is that 25% of cases are repetitive i.e. appear at the same location but they are not co-temporal or necessarily periodic in nature. Putting all the evidence together, we interpret the observations as mass motions (of flux tubes) that appear in the field-of-view of CRISP’s 0.0060 nm filters in the line of sight, along their projection as we scan. Further we observed transverse motion associated with these structures, which in some cases could be related to high-frequency kink-waves. We describe some cases showing this motion and the energies associated with them. The current work presented already tests the limits of current telescopes in terms of the temporal and spatial resolution. DKIST VTF instrument, having 3 times more spatial resolution than CRISP and much higher temporal resolution, we can being to understand the nature of such fine-scale transient phenomena in greater details.

  15. Voxel-based modeling and quantification of the proximal femur using inter-subject registration of quantitative CT images.

    PubMed

    Li, Wenjun; Kezele, Irina; Collins, D Louis; Zijdenbos, Alex; Keyak, Joyce; Kornak, John; Koyama, Alain; Saeed, Isra; Leblanc, Adrian; Harris, Tamara; Lu, Ying; Lang, Thomas

    2007-11-01

    We have developed a general framework which employs quantitative computed tomography (QCT) imaging and inter-subject image registration to model the three-dimensional structure of the hip, with the goal of quantifying changes in the spatial distribution of bone as it is affected by aging, drug treatment or mechanical unloading. We have adapted rigid and non-rigid inter-subject registration techniques to transform groups of hip QCT scans into a common reference space and to construct composite proximal femoral models. We have applied this technique to a longitudinal study of 16 astronauts who on average, incurred high losses of hip bone density during spaceflights of 4-6 months on the International Space Station (ISS). We compared the pre-flight and post-flight composite hip models, and observed the gradients of the bone loss distribution. We performed paired t-tests, on a voxel by voxel basis, corrected for multiple comparisons using false discovery rate (FDR), and observed regions inside the proximal femur that showed the most significant bone loss. To validate our registration algorithm, we selected the 16 pre-flight scans and manually marked 4 landmarks for each scan. After registration, the average distance between the mapped landmarks and the corresponding landmarks in the target scan was 2.56 mm. The average error due to manual landmark identification was 1.70 mm.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltran, C; Kamal, H

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatmentmore » planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.« less

  17. Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans

    NASA Astrophysics Data System (ADS)

    Ramachandran S., Sindhu; George, Jose; Skaria, Shibon; V. V., Varun

    2018-02-01

    Lung cancer is the leading cause of cancer related deaths in the world. The survival rate can be improved if the presence of lung nodules are detected early. This has also led to more focus being given to computer aided detection (CAD) and diagnosis of lung nodules. The arbitrariness of shape, size and texture of lung nodules is a challenge to be faced when developing these detection systems. In the proposed work we use convolutional neural networks to learn the features for nodule detection, replacing the traditional method of handcrafting features like geometric shape or texture. Our network uses the DetectNet architecture based on YOLO (You Only Look Once) to detect the nodules in CT scans of lung. In this architecture, object detection is treated as a regression problem with a single convolutional network simultaneously predicting multiple bounding boxes and class probabilities for those boxes. By performing training using chest CT scans from Lung Image Database Consortium (LIDC), NVIDIA DIGITS and Caffe deep learning framework, we show that nodule detection using this single neural network can result in reasonably low false positive rates with high sensitivity and precision.

  18. Automated eye blink detection and correction method for clinical MR eye imaging.

    PubMed

    Wezel, Joep; Garpebring, Anders; Webb, Andrew G; van Osch, Matthias J P; Beenakker, Jan-Willem M

    2017-07-01

    To implement an on-line monitoring system to detect eye blinks during ocular MRI using field probes, and to reacquire corrupted k-space lines by means of an automatic feedback system integrated with the MR scanner. Six healthy subjects were scanned on a 7 Tesla MRI whole-body system using a custom-built receive coil. Subjects were asked to blink multiple times during the MR-scan. The local magnetic field changes were detected with an external fluorine-based field probe which was positioned close to the eye. The eye blink produces a field shift greater than a threshold level, this was communicated in real-time to the MR system which immediately reacquired the motion-corrupted k-space lines. The uncorrected images, using the original motion-corrupted data, showed severe artifacts, whereas the corrected images, using the reacquired data, provided an image quality similar to images acquired without blinks. Field probes can successfully detect eye blinks during MRI scans. By automatically reacquiring the eye blink-corrupted data, high quality MR-images of the eye can be acquired. Magn Reson Med 78:165-171, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  20. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing

    PubMed Central

    Hu, Chenyuan; Bai, Wei

    2018-01-01

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263

  1. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.

    PubMed

    Hu, Chenyuan; Bai, Wei

    2018-02-24

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.

  2. Infrared and Raman spectroscopic characterization of the carbonate bearing silicate mineral aerinite - Implications for the molecular structure

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Scholz, Ricardo; López, Andrés

    2015-10-01

    The mineral aerinite is an interesting mineral because it contains both silicate and carbonate units which is unusual. It is also a highly colored mineral being bright blue/purple. We have studied aerinite using a combination of techniques which included scanning electron microscopy, energy dispersive X-ray analysis, Raman and infrared spectroscopy. Raman bands at 1049 and 1072 cm-1 are assigned to the carbonate symmetric stretching mode. This observation supports the concept of the non-equivalence of the carbonate units in the structure of aerinite. Multiple infrared bands at 1354, 1390 and 1450 cm-1 supports this concept. Raman bands at 933 and 974 cm-1 are assigned to silicon-oxygen stretching vibrations. Multiple hydroxyl stretching and bending vibrations show that water is in different molecular environments in the aerinite structure.

  3. Hydrogen Balmer alpha intensity distributions and line profiles from multiple scattering theory using realistic geocoronal models

    NASA Technical Reports Server (NTRS)

    Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.

    1987-01-01

    The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.

  4. [A case of advanced gastric cancer with multiple liver metastases completely responding long term to paclitaxel plus S-1 therapy].

    PubMed

    Kanou, Mikihiro; Kurisu, Yoshihiro; Akagi, Shinji; Tanaka, Tomoko; Toge, Kunio

    2010-01-01

    A 69-year-old man was admitted to our hospital with complaints of loss of appetite, fatigue and dysphasia. Upper gastroscopy revealed advanced gastric cancer. Abdominal CT suggested liver metastases. At first we thought the liver metastases has been completely resected, but we found multiple liver metastases unexpectedly. So only total gastric resection and liver biopsy were performed. The pathological diagnosis was metastatic carcinoma. Paclitaxel (PTX) and S-1 combination chemotherapy was started after operation and was continued for 42 courses. A CT scan showed a complete response, and he has been well without tumor re-growth ever since. The combination of PTX and S-1 not only may be an effective regimen for gastric cancer with liver metastases, but also can be used without side effects for a long time.

  5. CT scan exposure in Spanish children and young adults by socioeconomic status: Cross-sectional analysis of cohort data.

    PubMed

    Bosch de Basea, Magda; Espinosa, Ana; Gil, Mariona; Figuerola, Jordi; Pardina, Marina; Vilar, José; Cardis, Elisabeth

    2018-01-01

    Recent publications reported that children in disadvantaged areas undergo more CT scanning than others. The present study is aimed to assess the potential differences in CT imaging by socioeconomic status (SES) in Spanish young scanned subjects and if such differences vary with different indicators or different time point SES measurements. The associations between CT scanning and SES, and between the CT scan rate per patient and SES were investigated in the Spanish EPI-CT subcohort. Various SES indicators were studied to determine whether particular SES dimensions were more closely related to the probability of undergoing one or multiple CTs. Comparisons were made with indices based on 2001 and 2011 censuses. We found evidence of socio-economic variation among young people, mainly related to autonomous communities of residence. A slightly higher rate of scans per patient of multiple body parts in the less affluent categories was observed, possibly reflecting a higher rate of accidents and violence in these groups. The number of CT scans per patient was higher both in the most affluent and the most deprived categories and somewhat lower in the intermediate groups. This relation varied with the SES indicator used, with lower CT scans per patients in categories of high unemployment and temporary work, but not depending on categories of unskilled work or illiteracy. The relationship between these indicators and number of CTs in 2011 was different than that seen with the 2001 census, with the number of CTs increasing with higher unemployment. Overall we observed some differences in the SES distribution of scanned patients by Autonomous Community in Spain. There was, however, no major differences in the frequency of CT scans per patient by SES overall, based on the 2001 census. The use of different indicators and of SES data collected at different time points led to different relations between SES and frequency of CT scans, outlining the difficulty of adequately capturing the social and economic dimensions which may affect health and health service utilisation.

  6. CT scan exposure in Spanish children and young adults by socioeconomic status: Cross-sectional analysis of cohort data

    PubMed Central

    Espinosa, Ana; Gil, Mariona; Figuerola, Jordi; Pardina, Marina; Vilar, José; Cardis, Elisabeth

    2018-01-01

    Recent publications reported that children in disadvantaged areas undergo more CT scanning than others. The present study is aimed to assess the potential differences in CT imaging by socioeconomic status (SES) in Spanish young scanned subjects and if such differences vary with different indicators or different time point SES measurements. The associations between CT scanning and SES, and between the CT scan rate per patient and SES were investigated in the Spanish EPI-CT subcohort. Various SES indicators were studied to determine whether particular SES dimensions were more closely related to the probability of undergoing one or multiple CTs. Comparisons were made with indices based on 2001 and 2011 censuses. We found evidence of socio-economic variation among young people, mainly related to autonomous communities of residence. A slightly higher rate of scans per patient of multiple body parts in the less affluent categories was observed, possibly reflecting a higher rate of accidents and violence in these groups. The number of CT scans per patient was higher both in the most affluent and the most deprived categories and somewhat lower in the intermediate groups. This relation varied with the SES indicator used, with lower CT scans per patients in categories of high unemployment and temporary work, but not depending on categories of unskilled work or illiteracy. The relationship between these indicators and number of CTs in 2011 was different than that seen with the 2001 census, with the number of CTs increasing with higher unemployment. Overall we observed some differences in the SES distribution of scanned patients by Autonomous Community in Spain. There was, however, no major differences in the frequency of CT scans per patient by SES overall, based on the 2001 census. The use of different indicators and of SES data collected at different time points led to different relations between SES and frequency of CT scans, outlining the difficulty of adequately capturing the social and economic dimensions which may affect health and health service utilisation. PMID:29723272

  7. Effect of autoclaving on the surfaces of TiN -coated and conventional nickel-titanium rotary instruments.

    PubMed

    Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M

    2012-12-01

    To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.

  8. Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: an in vivo [(11)C](R)-PK11195-PET pilot study.

    PubMed

    Giannetti, Paolo; Politis, Marios; Su, Paul; Turkheimer, Federico; Malik, Omar; Keihaninejad, Shiva; Wu, Kit; Reynolds, Richard; Nicholas, Richard; Piccini, Paola

    2014-05-01

    The pathophysiological correlates and the contribution to persisting disability of hypointense T1-weighted MRI lesions, black holes (BH), in multiple sclerosis (MS) are still unclear. In order to study the in vivo functional correlates of this MRI finding, we used 11C-PK11195 PET (PK-PET) to investigate changes in microglial activity. Ten relapsing and 9 progressive MS subjects had a PK-PET scan and a MRI scan alongside a full clinical assessment, including the expanded disability status scale (EDSS) for evaluation of disability. We studied the PK binding potential of the specifically bound radioligand relative to the non-displaceable radioligand in tissue (BPND) in T1 BHs. Out of a total of 1242 BHs identified, 947 were PK enhancing. The PKBPND was correlated with the EDSS (r=0.818; p<0.05) only in the progressive group. In the relapsing patients there was an inverse correlation between PKBPND and BH total lesion volume in whole brain (r=-0.781; p<0.05). When progressive patients were grouped according to the disability outcome at 2years from the PK-PET scan, the total PKBPND in BHs was found to be a significant outcome predictor of disability (p<0.01). Our findings show that relapsing and progressive patients have heterogeneous patterns of PKBPND in T1 BHs and indicate that BHs are not just "holes" representing loss of axons and myelin, but display inflammatory activity in the form of activated microglia. The significant association between PKBPND, neurological impairment and outcome in progressive subjects supports a role for activated microglia in disability progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) ofmore » image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans.« less

  10. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    PubMed Central

    Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P.; Sahin, Mustafa; Warfield, Simon K.

    2015-01-01

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane views consistently showed the superiority of SRR compared to original axial and coronal image acquisitions. Conclusions: Thick-slice 2D T2-weighted MRI scans are part of many routine clinical protocols due to their high signal-to-noise ratio, but are often severely affected by through-plane partial voluming effects. This study shows that while radiologic assessment is performed in 2D on thick-slice scans, super-resolution MRI reconstruction techniques can be used to fuse those scans to generate a high-resolution image with reduced partial voluming for improved postacquisition processing. Qualitative and quantitative evaluation showed the efficacy of all SRR techniques with the best results obtained from SRR in the image domain. The limitations of SRR techniques are uncertainties in modeling the slice profile, density compensation, quantization in resampling, and uncompensated motion between scans. PMID:26632048

  11. Phased-array-fed antenna configuration study, volume 2

    NASA Technical Reports Server (NTRS)

    Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.

    1983-01-01

    Increased capacity in future satellite systems can be achieved through antenna systems which provide multiplicity of frequency reuses at K sub a band. A number of antenna configurations which can provide multiple fixed spot beams and multiple independent spot scanning beams at 20 GHz are addressed. Each design incorporates a phased array with distributed MMIC amplifiers and phasesifters feeding a two reflector optical system. The tradeoffs required for the design of these systems and the corresponding performances are presented. Five final designs are studied. In so doing, a type of MMIC/waveguide transition is described, and measured results of the breadboard model are presented. Other hardware components developed are described. This includes a square orthomode transducer, a subarray fed with a beamforming network to measure scanning performance, and another subarray used to study mutual coupling considerations. Discussions of the advantages and disadvantages of the final design are included.

  12. Remote focusing for programmable multi-layer differential multiphoton microscopy

    PubMed Central

    Hoover, Erich E.; Young, Michael D.; Chandler, Eric V.; Luo, Anding; Field, Jeffrey J.; Sheetz, Kraig E.; Sylvester, Anne W.; Squier, Jeff A.

    2010-01-01

    We present the application of remote focusing to multiphoton laser scanning microscopy and utilize this technology to demonstrate simultaneous, programmable multi-layer imaging. Remote focusing is used to independently control the axial location of multiple focal planes that can be simultaneously imaged with single element detection. This facilitates volumetric multiphoton imaging in scattering specimens and can be practically scaled to a large number of focal planes. Further, it is demonstrated that the remote focusing control can be synchronized with the lateral scan directions, enabling imaging in orthogonal scan planes. PMID:21326641

  13. A lumber grading system for the future: an update evaluation

    Treesearch

    D. Earl Kline; Chris Surak; Philip A. Araman

    2000-01-01

    Virginia Tech and the Southern Research Station of the USDA Forest Service have jointly developed and refined a multiple-sensor lumber-scanning prototype to demonstrate and test applicable scanning technologies (Conners et al. 1997, Kline et al. 1997, Kline et al. 1998). This R&D effort has led to a patented wood color and grain sorting system (Conners and Lu 1998...

  14. Automated labeling of log features in CT imagery of multiple hardwood species

    Treesearch

    Daniel L. Schmoldt; Jing He; A. Lynn Abbott

    2000-01-01

    Before noninvasive scanning, e.g., computed tomography (CT), becomes feasible in industrial saw-mill operations, we need a procedure that can automatically interpret scan information in order to provide the saw operator with information necessary to make proper sawing decisions. To this end, we have worked to develop an approach for automatic analysis of CT images of...

  15. Fly-scan ptychography

    DOE PAGES

    Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; ...

    2015-03-13

    We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. Thus, this approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.

  16. Are Prenatal Ultrasound Scans Associated with the Autism Phenotype? Follow-Up of a Randomised Controlled Trial

    ERIC Educational Resources Information Center

    Stoch, Yonit K.; Williams, Cori J.; Granich, Joanna; Hunt, Anna M.; Landau, Lou I.; Newnham, John P.; Whitehouse, Andrew J. O.

    2012-01-01

    An existing randomised controlled trial was used to investigate whether multiple ultrasound scans may be associated with the autism phenotype. From 2,834 single pregnancies, 1,415 were selected at random to receive ultrasound imaging and continuous wave Doppler flow studies at five points throughout pregnancy (Intensive) and 1,419 to receive a…

  17. Multi-mounted X-ray cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Wang, Jingzheng; Guo, Wei; Peng, Peng

    2018-04-01

    As a powerful nondestructive inspection technique, X-ray computed tomography (X-CT) has been widely applied to clinical diagnosis, industrial production and cutting-edge research. Imaging efficiency is currently one of the major obstacles for the applications of X-CT. In this paper, a multi-mounted three dimensional cone-beam X-CT (MM-CBCT) method is reported. It consists of a novel multi-mounted cone-beam scanning geometry and the corresponding three dimensional statistical iterative reconstruction algorithm. The scanning geometry is the most iconic design and significantly different from the current CBCT systems. Permitting the cone-beam scanning of multiple objects simultaneously, the proposed approach has the potential to achieve an imaging efficiency orders of magnitude greater than the conventional methods. Although multiple objects can be also bundled together and scanned simultaneously by the conventional CBCT methods, it will lead to the increased penetration thickness and signal crosstalk. In contrast, MM-CBCT avoids substantially these problems. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed MM-CBCT prototype system. This technique will provide a possible solution for the CT inspection in a large scale.

  18. Multiview marker-free registration of forest terrestrial laser scanner data with embedded confidence metrics

    DOE PAGES

    Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan; ...

    2016-10-18

    Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less

  19. Automatic quantification framework to detect cracks in teeth

    PubMed Central

    Shah, Hina; Hernandez, Pablo; Budin, Francois; Chittajallu, Deepak; Vimort, Jean-Baptiste; Walters, Rick; Mol, André; Khan, Asma; Paniagua, Beatriz

    2018-01-01

    Studies show that cracked teeth are the third most common cause for tooth loss in industrialized countries. If detected early and accurately, patients can retain their teeth for a longer time. Most cracks are not detected early because of the discontinuous symptoms and lack of good diagnostic tools. Currently used imaging modalities like Cone Beam Computed Tomography (CBCT) and intraoral radiography often have low sensitivity and do not show cracks clearly. This paper introduces a novel method that can detect, quantify, and localize cracks automatically in high resolution CBCT (hr-CBCT) scans of teeth using steerable wavelets and learning methods. These initial results were created using hr-CBCT scans of a set of healthy teeth and of teeth with simulated longitudinal cracks. The cracks were simulated using multiple orientations. The crack detection was trained on the most significant wavelet coefficients at each scale using a bagged classifier of Support Vector Machines. Our results show high discriminative specificity and sensitivity of this method. The framework aims to be automatic, reproducible, and open-source. Future work will focus on the clinical validation of the proposed techniques on different types of cracks ex-vivo. We believe that this work will ultimately lead to improved tracking and detection of cracks allowing for longer lasting healthy teeth. PMID:29769755

  20. MRI-Based Intelligence Quotient (IQ) Estimation with Sparse Learning

    PubMed Central

    Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang

    2015-01-01

    In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject’s IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge. PMID:25822851

  1. Establishing a method to measure bone structure using spectral CT

    NASA Astrophysics Data System (ADS)

    Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.

    2017-03-01

    Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.

  2. Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle

    PubMed Central

    Chen, Long; Li, Qingquan; Li, Ming; Zhang, Liang; Mao, Qingzhou

    2012-01-01

    This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.

  3. ScanRanker: Quality Assessment of Tandem Mass Spectra via Sequence Tagging

    PubMed Central

    Ma, Ze-Qiang; Chambers, Matthew C.; Ham, Amy-Joan L.; Cheek, Kristin L.; Whitwell, Corbin W.; Aerni, Hans-Rudolf; Schilling, Birgit; Miller, Aaron W.; Caprioli, Richard M.; Tabb, David L.

    2011-01-01

    In shotgun proteomics, protein identification by tandem mass spectrometry relies on bioinformatics tools. Despite recent improvements in identification algorithms, a significant number of high quality spectra remain unidentified for various reasons. Here we present ScanRanker, an open-source tool that evaluates the quality of tandem mass spectra via sequence tagging with reliable performance in data from different instruments. The superior performance of ScanRanker enables it not only to find unassigned high quality spectra that evade identification through database search, but also to select spectra for de novo sequencing and cross-linking analysis. In addition, we demonstrate that the distribution of ScanRanker scores predicts the richness of identifiable spectra among multiple LC-MS/MS runs in an experiment, and ScanRanker scores assist the process of peptide assignment validation to increase confident spectrum identifications. The source code and executable versions of ScanRanker are available from http://fenchurch.mc.vanderbilt.edu. PMID:21520941

  4. Comparison of qualitative and quantitative analysis of T2-weighted MRI scans in chronic-progressive multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Adams, Hans-Peter; Wagner, Simone; Koziol, James A.

    1998-06-01

    Magnetic resonance imaging (MRI) is routinely used for the diagnosis of multiple sclerosis (MS), and for objective assessment of the extent of disease as a marker of treatment efficacy in MS clinical trials. The purpose of this study is to compare the evaluation of T2-weighted MRI scans in MS patients using a semi-automated quantitative technique with an independent assessment by a neurologist. Baseline, 6- month, and 12-month T2-weighted MRI scans from 41 chronic progressive MS patients were examined. The lesion volume ranged from 0.50 to 51.56 cm2 (mean: 8.08 cm2). Reproducibility of the quantitative technique was assessed by the re-evaluation of a random subset of 20 scans, the coefficient of variation of the replicate determinations was 8.2%. The reproducibility of the neurologist evaluations was assessed by the re-evaluation of a random subset of 10 patients. The rank correlation between the results of the two methods was 0.097, which did not significantly differ from zero. Disease-related activity in T2-weighted MRI scans is a multi-dimensional construct, and is not adequately summarized solely by determination of lesion volume. In this setting, image analysis software should not only support storage and retrieval as sets of pixels, but should also support links to an anatomical dictionary.

  5. Pseudocalcification on chest CT scan.

    PubMed

    Tiruvoipati, R; Balasubramanian, S K; Entwisle, J J; Firmin, R K; Peek, G J

    2007-07-01

    Liquid ventilation with perfluorocarbons is used in severe respiratory failure that cannot be managed by conventional methods. Very little is known about the use of liquid ventilation in paediatric patients with respiratory failure and there are no reports describing the distribution and excretion of perfluorocarbons in paediatric patients with severe respiratory failure. The aim of this report is to highlight the prolonged retention of perfluorocarbons in a paediatric patient, mimicking pulmonary calcification and misleading the interpretation of the chest CT scan. A 10-year-old girl was admitted to our intensive care unit with severe respiratory failure due to miliary tuberculosis. Extracorporeal membrane oxygenation (ECMO) was used to support gas exchange and partial liquid ventilation (PLV) with perfluorodecalin was used to aid in oxygenation, lavage the lungs and clear thick secretions. The patient developed a pneumothorax (fluorothorax) on the next day and PLV was discontinued. Multiple bronchoalveolar lavages were performed to clear thick secretions. With no improvement in lung function over the next month a CT scan of the chest was performed. This revealed extensive pulmonary fibrosis and multiple high attenuation lesions suggestive of pulmonary calcification. To exclude perfluorodecalin as the cause for high attenuation lesions, a sample of perfluorodecalin was scanned to estimate the Hounsfield unit density, which was similar to the density of high attenuation lesions on chest CT scan. High-density opacification should be interpreted with caution, especially following liquid ventilation.

  6. [Value of MR imaging in the diagnosis of intraductal papillary neoplasm of the bile duct].

    PubMed

    Song, Fengxiang; Zhou, Jun; Shi, Yuxin; Zeng, Mengsu; Zhou, Kangrong; Ding, Yuqin; Cao, Yingli; Zhou, Jianjun

    2015-01-01

    To analyze the value of MR imaging in diagnosis of intraductal papillary neoplasm of the bile duct (IPN-B). Fourteen patients with intraductal papillary neoplasms of the bile duct confirmed by surgical pathology were included in this study. The patients underwent MR routine plain scanning and enhancement scanning (including T1WI, T2WI with fat suppression, FALSH T1WI, and three-phase enhancement scanning), diffusion weighted imaging(DWI) and magnetic resonance cholangiopancreatography (MRCP) before operation. The imaging data were reviewed and analyzed retrospectively in comparison with the surgical and pathological results. In these patients, 7 cases had tumors located in the left lobe, 2 cases had tumors in both the left and right lobes, 2 cases in the hepatic hilum, 2 cases in the common bile duct, and 1 case in both the right lobe and the common bile duct. Solitary or multiple intraductal masses could be found in 12 cases, with 11 cases appeared as papillary masses and one case as flat mass. In the other two cases the tumor was not visible (one case had too many stones, and in another case the tumor was too small). The tumors in the 12 cases showed hypointensity on T1WI and hyperintensity on T2WI. On the dynamic contrast-enhanced MRI, 11 cases showed mild and one showed moderate enhancement in arterial phase, and all the cases showed mildly and gradually delayed enhancement. On DWI, the lesion areas showed high signal intensity in all the cases, and the ADC value of the tumor area (1.697×10(-3)mm(2)/s) was significantly lower than that of the normal bile (3.973×10(-3)mm(2)/s) (t = -10.94, P < 0.05). Twelve cases demonstrated filling defects on primary MRCP coronary thin section images. On 3D-reconstruction MRCP images, 7 cases exhibited diffuse bile duct dilatation with the tumor areas more prominent, 3 cases exhibited aneurysmal bile dilatation, while the rest 4 cases exhibited segmental or lobar bile duct dilatation ( including 2 with invisible tumors ). In the 3 cases with aneurysmal bile dilatation, the multiple directions of MRCP images helped to find the communication between the aneurysmal dilatation and the bile duct. All the cases showed significant proximal bile duct dilatation (the extent of dilatation >100%), and 9 cases also showed distal bile duct dilatation. Bile duct stones were noted in 6 cases, 4 at the tumor area, and the other 2 away from the tumor area. No adjacent tissue invasion and no distal tissue or lymph node metastasis were observed. Intraductal papillary neoplasms of the bile ducts have characteristic imaging appearances on MRI, and MRI is an important method helpful to making correct diagnosis.

  7. Terrestrial laser scanning and a degenerated cylinder model to determine gross morphological change of cadavers under conditions of natural decomposition.

    PubMed

    Zhang, Xiao; Glennie, Craig L; Bucheli, Sibyl R; Lindgren, Natalie K; Lynne, Aaron M

    2014-08-01

    Decomposition can be a highly variable process with stages that are difficult to quantify. Using high accuracy terrestrial laser scanning a repeated three-dimensional (3D) documentation of volumetric changes of a human body during early decomposition is recorded. To determine temporal volumetric variations as well as 3D distribution of the changed locations in the body over time, this paper introduces the use of multiple degenerated cylinder models to provide a reasonable approximation of body parts against which 3D change can be measured and visualized. An iterative closest point algorithm is used for 3D registration, and a method for determining volumetric change is presented. Comparison of the laser scanning estimates of volumetric change shows good agreement with repeated in-situ measurements of abdomen and limb circumference that were taken diurnally. The 3D visualizations of volumetric changes demonstrate that bloat is a process with a beginning, middle, and end rather than a state of presence or absence. Additionally, the 3D visualizations show conclusively that cadaver bloat is not isolated to the abdominal cavity, but also occurs in the limbs. Detailed quantification of the bloat stage of decay has the potential to alter how the beginning and end of bloat are determined by researchers and can provide further insight into the effects of the ecosystem on decomposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Normalization of Cortical Gray Matter Deficits in Nonpsychotic Siblings of Patients With Childhood-Onset Schizophrenia

    PubMed Central

    Mattai, Anand A.; Weisinger, Brian; Greenstein, Deanna; Stidd, Reva; Clasen, Liv; Miller, Rachel; Tossell, Julia W.; Rapoport, Judith L.; Gogtay, Nitin

    2012-01-01

    Objective Cortical gray matter (GM) abnormalities in patients with childhood-onset schizophrenia (COS) progress during adolescence ultimately localizing to prefrontal and temporal cortices by early adult age. A previous study of 52 nonpsychotic siblings of COS probands had significant prefrontal and temporal GM deficits that appeared to “normalize” by age 17 years. Here we present a replication with nonoverlapping groups of healthy full siblings and healthy controls. Method Using an automated measure and prospectively acquired anatomical brain magnetic resonance images, we mapped cortical GM thickness in nonpsychotic full siblings (n = 43, 68 scans; ages 5 through 26 years) of patients with COS, contrasting them with age-, gender-, and scan interval–matched healthy controls (n = 86, 136 scans). The false-discovery rate procedure was used to control for type I errors due to multiple comparisons. Results As in our previous study, young nonpsychotic siblings (<17 years) showed significant GM deficits in bilateral prefrontal and left temporal cortices and, in addition, smaller deficits in the parietal and right inferior temporal cortices. These deficits in nonpsychotic siblings normalized with age with minimal abnormalities remaining by age 17. Conclusions Our results support previous findings showing nonpsychotic siblings of COS probands to have early GM deficits that ameliorate with time. At early ages, prefrontal and/or temporal loss may serve as a familial/trait marker for COS. Late adolescence appears to be a critical period for greatest localization of deficits in probands or normalization in nonpsychotic siblings. PMID:21703497

  9. Large intramuscular lipoma of the tongue.

    PubMed

    Fitzgerald, Kara; Sanchirico, Paul J; Pfeiffer, David C

    2018-04-01

    We describe a case of a 57-year-old man referred to an oral maxillofacial surgeon for a nontender, large intramuscular tongue mass. A computed tomography scan with contrast showed a homogenous right tongue intramuscular fatty mass measuring 3.8 cm × 2.8 cm in the axial dimension and 2.2 cm in the craniocaudal dimension. Histologic examination revealed multiple lobulated sections of mature adipocytes and occasional entrapped skeletal muscle fibers. The final pathologic diagnosis was intramuscular lipoma. Although lipomas account for approximately 50% of all soft tissue neoplasms, intramuscular (infiltrating) lipoma of the tongue is exceedingly rare.

  10. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-06-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  11. Trauma Patient with Fat Embolism Detected on Computed Tomography.

    PubMed

    Sousa, Isabel; Janeiro, João; Campos, Paula; Távora, Isabel

    2017-01-31

    Fat embolism is frequent following fractures of long bones, however the development of the clinical syndrome of fat embolism (characterized by progressive respiratory distress, mental status depression and petechial rash) is rare, but relevant because of its potential severity. We report a case of a trauma patient with multiple fractures of the right lower limb in whom an emergency computed tomography scan showed fat emboli within the lumen of the homolateral common femoral vein. The imaging detection of macroscopic fat emboli should alert the clinician to the potential for subsequent fat embolism syndrome.

  12. Regression techniques for oceanographic parameter retrieval using space-borne microwave radiometry

    NASA Technical Reports Server (NTRS)

    Hofer, R.; Njoku, E. G.

    1981-01-01

    Variations of conventional multiple regression techniques are applied to the problem of remote sensing of oceanographic parameters from space. The techniques are specifically adapted to the scanning multichannel microwave radiometer (SMRR) launched on the Seasat and Nimbus 7 satellites to determine ocean surface temperature, wind speed, and atmospheric water content. The retrievals are studied primarily from a theoretical viewpoint, to illustrate the retrieval error structure, the relative importances of different radiometer channels, and the tradeoffs between spatial resolution and retrieval accuracy. Comparisons between regressions using simulated and actual SMMR data are discussed; they show similar behavior.

  13. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-02-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  14. Evaluation of Efficacy of Bone Scan With SPECT/CT in the Management of Low Back Pain: A Study Supported by Differential Diagnostic Local Anesthetic Blocks.

    PubMed

    Jain, Anuj; Jain, Suruchi; Agarwal, Anil; Gambhir, Sanjay; Shamshery, Chetna; Agarwal, Amita

    2015-12-01

    Conventional radiologic modalities provide details only about the anatomic aspect of the various structures of the spine. Frequently the structures that show abnormal morphology may not be the cause of low back pain (LBP). Functional imaging in the form of bone scan along with single photon emission computerized tomography (SPECT/CT) may be helpful in identifying structures causing pain, whether morphologically normal or not. The objective of this study is to evaluate the role of bone scan with SPECT/CT in management of patients with LBP. This is randomized double-blinded controlled study performed on 80 patients with LBP aged 20 to 80 years, ASA physical status I to III. Patients were randomized into bone scan and control groups consisting of 40 patients each. On the basis of the clinical features and radiologic findings a clinical diagnosis was made. After making a clinical diagnosis, the patients in bone scan group were subjected to bone scan with SPECT/CT. On the basis of the finding of the bone scan and SPECT/CT, a new working diagnosis was made and intervention was performed according to the new working diagnosis. Diagnostic blocks in the control group were given based on clinical diagnosis. Controlled comparative diagnostic blocks were performed with local anesthetic. The pain score just after the diagnostic block and at the time of discharge (approximately 4 h later) was recorded; the pain relief was recorded in percentage. In both the groups, sacroilitis was the most common diagnosis followed by facet joint arthropathy. The number of patients obtaining pain relief of >50% was significantly higher in the bone scan-positive group as compared with the control group. Three new clinical conditions were identified in the bone scan group. These conditions were multiple myeloma, avascular necrosis of the femoral head, and ankylosing spondylitis. Bone scan with SPECT/CT was found to complement the clinical workup of patients with LBP. Inclusion of bone scan with SPECT/CT in LBP management protocol can help in making a correct diagnosis. At times it might bring out some new information that may be vital for further management of the patients with LBP.

  15. Characterizing the Impact of Off-Axis Scan Acquisition on the Reproducibility of Total Retinal Thickness Measurements in SDOCT Volumes.

    PubMed

    Antony, Bhavna J; Stetson, Paul F; Abramoff, Michael D; Lee, Kyungmoo; Colijn, Johanna M; Buitendijk, Gabriëlle H S; Klaver, Caroline C W; Roorda, Austin; Lujan, Brandon J

    2015-07-01

    Off-axis acquisition of spectral domain optical coherence tomography (SDOCT) images has been shown to increase total retinal thickness (TRT) measurements. We analyzed the reproducibility of TRT measurements obtained using either the retinal pigment epithelium (RPE) or Bruch's membrane as reference surfaces in off-axis scans intentionally acquired through multiple pupil positions. Five volumetric SDOCT scans of the macula were obtained from one eye of 25 normal subjects. One scan was acquired through a central pupil position, while subsequent scans were acquired through four peripheral pupil positions. The internal limiting membrane, the RPE, and Bruch's membrane were segmented using automated approaches. These volumes were registered to each other and the TRT was evaluated in 9 Early Treatment of Diabetic Retinopathy Study (ETDRS) regions. The reproducibility of the TRT obtained using the RPE was computed using the mean difference, coefficient of variation (CV), and the intraclass correlation coefficient (ICC), and compared to those obtained using Bruch's membrane as the reference surface. A secondary set of 1545 SDOCT scans was also analyzed in order to gauge the incidence of off-axis scans in a typical acquisition environment. The photoreceptor tips were dimmer in off-axis images, which affected the RPE segmentation. The overall mean TRT difference and CV obtained using the RPE were 7.04 ± 4.31 μm and 1.46%, respectively, whereas Bruch's membrane was 1.16 ± 1.00 μm and 0.32%, respectively. The ICCs at the subfoveal TRT were 0.982 and 0.999, respectively. Forty-one percent of the scans in the secondary set showed large tilts (> 6%). RPE segmentation is confounded by its proximity to the interdigitation zone, a structure strongly affected by the optical Stiles-Crawford effect. Bruch's membrane, however, is unaffected leading to a more robust segmentation that is less dependent upon pupil position. The way in which OCT images are acquired can independently affect the accuracy of automated retinal thickness measurements. Assessment of scan angle in a clinical dataset demonstrates that off-axis scans are common, which emphasizes the need for caution when relying on automated thickness parameters when this component of scan acquisition is not controlled for.

  16. ScanIndel: a hybrid framework for indel detection via gapped alignment, split reads and de novo assembly.

    PubMed

    Yang, Rendong; Nelson, Andrew C; Henzler, Christine; Thyagarajan, Bharat; Silverstein, Kevin A T

    2015-12-07

    Comprehensive identification of insertions/deletions (indels) across the full size spectrum from second generation sequencing is challenging due to the relatively short read length inherent in the technology. Different indel calling methods exist but are limited in detection to specific sizes with varying accuracy and resolution. We present ScanIndel, an integrated framework for detecting indels with multiple heuristics including gapped alignment, split reads and de novo assembly. Using simulation data, we demonstrate ScanIndel's superior sensitivity and specificity relative to several state-of-the-art indel callers across various coverage levels and indel sizes. ScanIndel yields higher predictive accuracy with lower computational cost compared with existing tools for both targeted resequencing data from tumor specimens and high coverage whole-genome sequencing data from the human NIST standard NA12878. Thus, we anticipate ScanIndel will improve indel analysis in both clinical and research settings. ScanIndel is implemented in Python, and is freely available for academic use at https://github.com/cauyrd/ScanIndel.

  17. Multiple primary malignancies of the liver and the colon: a complex diagnostic and decisional process with a final unanswered question.

    PubMed

    Portolani, Nazario; Baiocchi, Gianluca; Baronchelli, Carla; Gheza, Federico; Giulini, Stefano Maria

    2014-03-29

    We herein present the case of a 78-year-old man with an incidental finding of a solid hepatic mass without symptoms and only a laparotomic cholecystectomy for acute cholecystitis in the past surgical history. A colonoscopy, a magnetic resonance imaging scan, a positron emission tomography scan, and a computed tomography scan completed the preoperative workup: a neoplastic lesion 4.3×3 cm in size was diagnosed at segments IV and V, associated with a neoplastic involvement of the splenic flexure without signs of colonic occlusion. After colonic resection, a frozen section on a granulomatous-like tissue at gastric border suggested a diagnosis of an adenocarcinoma of bilio-pancreatic type, changing the surgical strategy to include gastric resection and hepatic pedicle node dissection. The discussion turns around the idea that a final diagnosis of colon cancer with regional nodal involvement (pT3N1) and metastatic gallbladder cancer with multiple peritoneal seedings cannot be excluded.

  18. Multi-signal FIB/SEM tomography

    NASA Astrophysics Data System (ADS)

    Giannuzzi, Lucille A.

    2012-06-01

    Focused ion beam (FIB) milling coupled with scanning electron microscopy (SEM) on the same platform enables 3D microstructural analysis of structures using FIB for serial sectioning and SEM for imaging. Since FIB milling is a destructive technique, the acquisition of multiple signals from each slice is desirable. The feasibility of collecting both an inlens backscattered electron (BSE) signal and an inlens secondary electron (SE) simultaneously from a single scan of the electron beam from each FIB slice is demonstrated. The simultaneous acquisition of two different SE signals from two different detectors (inlens vs. Everhart-Thornley (ET) detector) is also possible. Obtaining multiple signals from each FIB slice with one scan increases the acquisition throughput. In addition, optimization of microstructural and morphological information from the target is achieved using multi-signals. Examples of multi-signal FIB/SEM tomography from a dental implant will be provided where both material contrast from the bone/ceramic coating/Ti substrate phases and porosity in the ceramic coating will be characterized.

  19. Evaluating the Surface Characteristics of Stainless Steel, TMA, Timolium, and Titanium-niobium Wires: An in vivo Scanning Electron Microscope Study.

    PubMed

    Babu, K Pradeep; Keerthi, V Naga; Madathody, Deepika; Prasanna, A Laxmi; Gopinath, Vidhya; Kumar, M Senthil; Kumar, A Nanda

    2016-05-01

    Recent metallurgical research and advancement in material science has benefited orthodontists in the selection of an appropriate wire size and alloy type, which is necessary to provide an optimum and predictable treatment results. The purpose of the study was to clinically evaluate and compare the surface characteristics of 16 x 22 stainless steel, Titanium molybdenum alloy, timolium, and titanium-niobium before and after placing them in a patient's mouth for 3 months using a scanning electron microscope (SEM). The total sample size was 40, which were divided into four groups (group 1 - stainless steel wires, 10 samples, group 2 - TMA wires, 10 samples, group 3 - timolium wires, 10 samples, and group 4 - titanium-niobium wires, 10 samples), and these were further subdivided into 5 each. The first subgroup of five samples was placed in the patient's mouth and was evaluated under SEM, and another subgroup of five samples was directly subjected to the SEM. Scanning electron microscopic evaluation of surface characteristics of unused 16 x 22 rectangular stainless steel wire under 500 x magnification showed an overall smooth surface. Stainless steel wire samples placed in the patient's mouth showed black hazy patches, which may be interoperated as areas of stress. TMA unused wires showed multiple small voids of areas and small craters with fewer elevated regions. The TMA wire samples placed in the patient's mouth showed black hazy patches and prominent ridges, making the wire rougher. Timolium unused archwires showed heavy roughness and voids, whereas wires tested in the patient's mouth showed homogeneous distribution of deep cracks and craters. Unused titanium-niobium archwires showed uniform prominent striations and ridges with occasional voids, whereas wires used in the patient's mouth showed prominent huge voids that could be interpreted as maximum stress areas. Stainless steel (group 1) used and unused wires showed smooth surface characteristics when compared with all the other three groups followed by timolium, which was superior to titanium-niobium wires and TMA wires. Timolium wires are superior to titanium-niobium wires and TMA wires.

  20. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    PubMed

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  1. [Conversion Therapy Using Etoposide and Cisplatin Chemotherapy for Liver Metastases from Advanced Gastric Mixed Adenoneuroendocrine Carcinoma - A Case Report].

    PubMed

    Inaba, Yoko; Fujita, Maiko; Ninomiya, Riki; Hashimoto, Daijo

    2017-11-01

    Gastric mixed adenoneuroendocrine carcinoma(MANEC)with multiple liver metastases is a rare condition with most data being derived from case reports. We present a case with liver metastases from gastric MANEC that respond remarkably to chemotherapy. Sixty-one-year-old male with severe anemia referred to surgical consultation due to advanced gastric cancer with multiple liver metastases. To relieve uncontrollable tumor bleeding, simple distal gastrectomy for symptom palliation was performed. Based on the tentative diagnosis with gastric poorly differentiated adenocarcinoma, a course of TS-1 and oxaliplatin therapy was administrated. Thereafter final diagnosis with neuroendocrine carcinoma with tubular adenocarcinoma was made, and the chemotherapy was switched to etoposide and cisplatin. Follow up abdominal CT scan after the third course of the therapy showed remarkable tumor shrinkages(PR). In anticipation of the chemotherapy effects in the adjuvant setting, we performed liver metastasectomy for curative intent. Two of 6 resected liver specimens showed no viable cancer cells at all (pCR). However, immediately after the surgery, multiple liver metastases developed, and the recurrent masses had kept growing up rapidly. The third line carboplatin and etoposide chemotherapy was given once but was withdrawn because of bone marrow suppression. At the present, the patient is alive with recurrent diseases for 18 months after initial diagnosis.

  2. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans

    DOE PAGES

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-10-10

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 1650), linolenic (Ln, 1853), linoleic (L, 1852), oleic (O, 1851), stearic (S, 1850), eicosadienoic (2052), gadoleic (2051), arachidic (2050), erucic (2251), and behenic (2250). The abundance ofmore » ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined.The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. As a result, this shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition.« less

  3. A Flexible High-Performance Photoimaging Device Based on Bioinspired Hierarchical Multiple-Patterned Plasmonic Nanostructures.

    PubMed

    Lee, Yoon Ho; Lee, Tae Kyung; Kim, Hongki; Song, Inho; Lee, Jiwon; Kang, Saewon; Ko, Hyunhyub; Kwak, Sang Kyu; Oh, Joon Hak

    2018-03-01

    In insect eyes, ommatidia with hierarchical structured cornea play a critical role in amplifying and transferring visual signals to the brain through optic nerves, enabling the perception of various visual signals. Here, inspired by the structure and functions of insect ommatidia, a flexible photoimaging device is reported that can simultaneously detect and record incoming photonic signals by vertically stacking an organic photodiode and resistive memory device. A single-layered, hierarchical multiple-patterned back reflector that can exhibit various plasmonic effects is incorporated into the organic photodiode. The multiple-patterned flexible organic photodiodes exhibit greatly enhanced photoresponsivity due to the increased light absorption in comparison with the flat systems. Moreover, the flexible photoimaging device shows a well-resolved spatiotemporal mapping of optical signals with excellent operational and mechanical stabilities at low driving voltages below half of the flat systems. Theoretical calculation and scanning near-field optical microscopy analyses clearly reveal that multiple-patterned electrodes have much stronger surface plasmon coupling than flat and single-patterned systems. The developed methodology provides a versatile and effective route for realizing high-performance optoelectronic and photonic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular Testing in Multiple Synchronous Lung Adenocarcinomas: Case Report and Literature Review.

    PubMed

    Rafael, Oana C; Lazzaro, Richard; Hasanovic, Adnan

    2016-02-01

    Discovery of driver mutations in pulmonary adenocarcinoma has revolutionized the field of thoracic oncology with major impact on therapy and diagnosis. Testing for EGFR, ALK, and KRAS mutations has become part of everyday practice. We report a case with multiple synchronous primary pulmonary adenocarcinomas in a 72-year-old female with previous history of smoking. The patient presented with cough and bilateral lung ground glass opacities. A positron emission tomography/computed tomography scan showed no activity in mediastinal lymph nodes. She underwent a left upper lobe biopsy and a right upper lobe wedge resection. Pathology revealed 4 morphologically distinct adenocarcinoma foci, suggestive of synchronous primary lung tumors. Molecular testing demonstrated no mutation in the left tumor. Three different driver mutations were present in the right lung tumors: KRAS codon 12 G12D and G12V and EGFR exon 21 L858R mutation, confirming the initial histologic impression. Subsequently, left upper lobe lobectomy showed 3 additional foci of adenocarcinoma with different morphologies, suggestive of synchronous primaries as well. No additional molecular testing was performed. Synchronous pulmonary adenocarcinomas are not uncommon; however, 4 or more synchronous tumors are rare. Distinguishing multiple primary tumors from intrapulmonary metastases is a common problem in thoracic oncology with major implications for staging, prognosis, and treatment. Lung adenocarcinoma subclassification based on predominant and coexisting histologic patterns can greatly facilitate differentiation between intrapulmonary metastases and multiple synchronous tumors. Use of molecular profiling is recommended since it further increases confidence in the diagnostic workup of multiple pulmonary adenocarcinomas and helps guiding therapy. © The Author(s) 2015.

  5. An Improved Source-Scanning Algorithm for Locating Earthquake Clusters or Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kao, H.; Hsu, S.

    2010-12-01

    The Source-scanning Algorithm (SSA) was originally introduced in 2004 to locate non-volcanic tremors. Its application was later expanded to the identification of earthquake rupture planes and the near-real-time detection and monitoring of landslides and mud/debris flows. In this study, we further improve SSA for the purpose of locating earthquake clusters or aftershock sequences when only a limited number of waveform observations are available. The main improvements include the application of a ground motion analyzer to separate P and S waves, the automatic determination of resolution based on the grid size and time step of the scanning process, and a modified brightness function to utilize constraints from multiple phases. Specifically, the improved SSA (named as ISSA) addresses two major issues related to locating earthquake clusters/aftershocks. The first one is the massive amount of both time and labour to locate a large number of seismic events manually. And the second one is to efficiently and correctly identify the same phase across the entire recording array when multiple events occur closely in time and space. To test the robustness of ISSA, we generate synthetic waveforms consisting of 3 separated events such that individual P and S phases arrive at different stations in different order, thus making correct phase picking nearly impossible. Using these very complicated waveforms as the input, the ISSA scans all model space for possible combination of time and location for the existence of seismic sources. The scanning results successfully associate various phases from each event at all stations, and correctly recover the input. To further demonstrate the advantage of ISSA, we apply it to the waveform data collected by a temporary OBS array for the aftershock sequence of an offshore earthquake southwest of Taiwan. The overall signal-to-noise ratio is inadequate for locating small events; and the precise arrival times of P and S phases are difficult to determine. We use one of the largest aftershocks that can be located by conventional methods as our reference event to calibrate the controlling parameters of ISSA. These parameters include the overall Vp/Vs ratio (because a precise S velocity model was unavailable), the length of scanning time window, and the weighting factor for each station. Our results show that ISSA is not only more efficient in locating earthquake clusters/aftershocks, but also capable of identifying many events missed by conventional phase-picking methods.

  6. Phased array-fed antenna configuration study: Technology assessment

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.

  7. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging-Only Radiation Therapy.

    PubMed

    Johnstone, Emily; Wyatt, Jonathan J; Henry, Ann M; Short, Susan C; Sebag-Montefiore, David; Murray, Louise; Kelly, Charles G; McCallum, Hazel M; Speight, Richard

    2018-01-01

    Magnetic resonance imaging (MRI) offers superior soft-tissue contrast as compared with computed tomography (CT), which is conventionally used for radiation therapy treatment planning (RTP) and patient positioning verification, resulting in improved target definition. The 2 modalities are co-registered for RTP; however, this introduces a systematic error. Implementing an MRI-only radiation therapy workflow would be advantageous because this error would be eliminated, the patient pathway simplified, and patient dose reduced. Unlike CT, in MRI there is no direct relationship between signal intensity and electron density; however, various methodologies for MRI-only RTP have been reported. A systematic review of these methods was undertaken. The PRISMA guidelines were followed. Embase and Medline databases were searched (1996 to March, 2017) for studies that generated synthetic CT scans (sCT)s for MRI-only radiation therapy. Sixty-one articles met the inclusion criteria. This review showed that MRI-only RTP techniques could be grouped into 3 categories: (1) bulk density override; (2) atlas-based; and (3) voxel-based techniques, which all produce an sCT scan from MR images. Bulk density override techniques either used a single homogeneous or multiple tissue override. The former produced large dosimetric errors (>2%) in some cases and the latter frequently required manual bone contouring. Atlas-based techniques used both single and multiple atlases and included methods incorporating pattern recognition techniques. Clinically acceptable sCTs were reported, but atypical anatomy led to erroneous results in some cases. Voxel-based techniques included methods using routine and specialized MRI sequences, namely ultra-short echo time imaging. High-quality sCTs were produced; however, use of multiple sequences led to long scanning times increasing the chances of patient movement. Using nonroutine sequences would currently be problematic in most radiation therapy centers. Atlas-based and voxel-based techniques were found to be the most clinically useful methods, with some studies reporting dosimetric differences of <1% between planning on the sCT and CT and <1-mm deviations when using sCTs for positional verification. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Recurrent spontaneous massive hemothorax from intrathoracic extramedullary hematopoiesis resulting in respiratory failure.

    PubMed

    Chu, Kuo-An; Hsu, Chien-Wei; Lin, Min-Hsi; Lin, Shyh-Jer; Huang, Yi-Luan

    2015-03-01

    Extramedullary hematopoiesis (EMH) is a compensatory response to many chronic anemic disorders. Intrathoracic EMH, usually presenting as paravertebral masses over the posterior mediastinum, is a rare entity and is usually asymptomatic. Hemothorax is a rare but possibly fatal complication. Local radiation for intrathoracic EMH is considered effective in preventing its recurrence. Here we describe a patient who had had α-thalassemia for many years and developed a spontaneous left-sided hemothorax from EMH. A chest film and a chest computed tomography (CT) scan had showed multiple paravertebral masses over the lower thoracic spine with left-sided pleural effusion. A pathological diagnosis of EMH was made by video-assisted thoracoscopic surgery. The patient had not received preventive local chest radiation. Ten years later, he suffered from a life-threatening hemothorax complicated by acute respiratory failure without traumatic history. A CT scan showed posterior mediastinal masses over the lower thoracic spine with right-sided pleural effusion. Thoracoscopy was performed to remove the blood clot in the pleural space for successful weaning from mechanical ventilation. This is the first case of intrathoracic EMH to have recurrent hemothorax associated with acute respiratory failure. Copyright © 2012. Published by Elsevier B.V.

  9. Patient-based estimation of organ dose for a population of 58 adult patients across 13 protocol categories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahbaee, Pooyan, E-mail: psahbae@ncsu.edu; Segars, W. Paul; Samei, Ehsan

    2014-07-15

    Purpose: This study aimed to provide a comprehensive patient-specific organ dose estimation across a multiplicity of computed tomography (CT) examination protocols. Methods: A validated Monte Carlo program was employed to model a common CT system (LightSpeed VCT, GE Healthcare). The organ and effective doses were estimated from 13 commonly used body and neurological CT examination. The dose estimation was performed on 58 adult computational extended cardiac-torso phantoms (35 male, 23 female, mean age 51.5 years, mean weight 80.2 kg). The organ dose normalized by CTDI{sub vol} (h factor) and effective dose normalized by the dose length product (DLP) (k factor)more » were calculated from the results. A mathematical model was derived for the correlation between the h and k factors with the patient size across the protocols. Based on this mathematical model, a dose estimation iPhone operating system application was designed and developed to be used as a tool to estimate dose to the patients for a variety of routinely used CT examinations. Results: The organ dose results across all the protocols showed an exponential decrease with patient body size. The correlation was generally strong for the organs which were fully or partially located inside the scan coverage (Pearson sample correlation coefficient (r) of 0.49). The correlation was weaker for organs outside the scan coverage for which distance between the organ and the irradiation area was a stronger predictor of dose to the organ. For body protocols, the effective dose before and after normalization by DLP decreased exponentially with increasing patient's body diameter (r > 0.85). The exponential relationship between effective dose and patient's body diameter was significantly weaker for neurological protocols (r < 0.41), where the trunk length was a slightly stronger predictor of effective dose (0.15 < r < 0.46). Conclusions: While the most accurate estimation of a patient dose requires specific modeling of the patient anatomy, a first order approximation of organ and effective doses from routine CT scan protocols can be reasonably estimated using size specific factors. Estimation accuracy is generally poor for organ outside the scan range and for neurological protocols. The dose calculator designed in this study can be used to conveniently estimate and report the dose values for a patient across a multiplicity of CT scan protocols.« less

  10. Duodenal perforation following esophagogastroduodenoscopy (EGD) with cautery and epinephrine injection for peptic ulcer disease: An interesting case of nonoperative management in the medical intensive care unit (MICU).

    PubMed

    Chertoff, Jason; Khullar, Vikas; Burke, Lucas

    2015-01-01

    The utilization of esophagogastroduodenoscopy (EGD) and related procedures continues to rise. Due to this increase in utilization is an inevitable rise in serious complications such as hemorrhage and perforation. One understudied and dreaded complication of EGD causing significant morbidity and mortality is duodenal perforation. We present the case of a 63-year-old male who presented to our institution's emergency room with dyspepsia, melanic stools, tachycardia, and hypotension. Initial laboratory evaluation was significant for severe anemia, lactic acidosis, and acute kidney injury, while CT scan of the abdomen pelvis did not suggest retroperitoneal hematoma or bowel perforation. An emergent EGD was performed which showed multiple bleeding duodenal ulcers that were cauterized and injected with epinephrine. Post-procedure the patient developed worsening abdominal pain, distension, diaphoresis, and tachypnea, requiring emergent intubation. A CT scan of the abdomen and pelvis with oral contrast confirmed pneumoperitoneum and duodenal perforation. Due to the patient's hemodynamic instability and multiple comorbidities, he was treated non-operatively with strict bowel rest and intravenous antibiotics. The patient ultimately had a 19-day hospital course complicated by renal failure requiring hemodialysis and an ischemic limb necessitating above knee amputation. This case describes an unsuccessful attempt at nonoperative management of duodenal perforation following EGD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Phase-sensitive multiple reference optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dsouza, Roshan I.; Subhash, Hrebesh; Neuhaus, Kai; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2016-03-01

    Multiple reference OCT (MR-OCT) is a recently developed novel time-domain OCT platform based on a miniature reference arm optical delay, which utilizes a single miniature actuator and a partial mirror to generate recirculating optical delay for extended axial-scan range. MR-OCT technology promises to fit into a robust and cost-effective design, compatible with integration into consumer-level devices for addressing wide applications in mobile healthcare and biometry applications. Using conventional intensity based OCT processing techniques, the high-resolution structural imaging capability of MR-OCT has been recently demonstrated for various applications including in vivo human samples. In this study, we demonstrate the feasibility of implementing phase based processing with MR-OCT for various functional applications such as Doppler imaging and sensing of blood vessels, and for tissue vibrography applications. The MR-OCT system operates at 1310nm with a spatial resolution of ~26 µm and an axial scan rate of 600Hz. Initial studies show a displacement-sensitivity of ~20 nm to ~120 nm for the first 1 to 9 orders of reflections, respectively with a mirror as test-sample. The corresponding minimum resolvable velocity for these orders are ~2.3 µm/sec and ~15 µm/sec respectively. Data from a chick chorioallantoic membrane (CAM) model will be shown to demonstrate the feasibility of MR-OCT for imaging in-vivo blood flow.

  12. A Case of Pulmonary Hypertension Due to Fistulas Between Multiple Systemic Arteries and the Right Pulmonary Artery in an Adult Discovered for Occulted Dyspnoea.

    PubMed

    Li, Ji-Feng; Zhai, Zhen-Guo; Kuang, Tu-Guang; Liu, Min; Ma, Zhan-Hong; Li, Yi-Dan; Yang, Yuan-Hua

    2017-08-01

    Pulmonary hypertension (PH) can be caused by a fistula between the systemic and pulmonary arteries. Here, we report a case of PH due to multiple fistulas between systemic arteries and the right pulmonary artery where the ventilation/perfusion scan showed no perfusion in the right lung. A 32-year-old male patient was hospitalised for community-acquired pneumonia. After treatment with antibiotics, the pneumonia was alleviated but dyspnoea persisted. Pulmonary hypertension was diagnosed using right heart catheterisation, which detected the mean pulmonary artery pressure as 37mmHg. The anomalies were confirmed by contrast-enhanced CT scan (CT pulmonary angiography), systemic arterial angiography and pulmonary angiography. Following embolisation of the largest fistula, the haemodynamics and oxygen dynamics did not improve, and even worsened to some extent. After supportive therapy including diuretics and oxygen, the patient's dyspnoea, WHO function class and right heart function by transthoracic echocardiography all improved during follow-up. Pulmonary hypertension can be present even when the right lung perfusion is lost. Closure of fistulas by embolisation, when those fistulas act as the proliferating vessels, may be harmful. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  13. Soft control of scanning probe microscope with high flexibility.

    PubMed

    Liu, Zhenghui; Guo, Yuzheng; Zhang, Zhaohui; Zhu, Xing

    2007-01-01

    Most commercial scanning probe microscopes have multiple embedded digital microprocessors and utilize complex software for system control, which is not easily obtained or modified by researchers wishing to perform novel and special applications. In this paper, we present a simple and flexible control solution that just depends on software running on a single-processor personal computer with real-time Linux operating system to carry out all the control tasks including negative feedback, tip moving, data processing and user interface. In this way, we fully exploit the potential of a personal computer in calculating and programming, enabling us to manipulate the scanning probe as required without any special digital control circuits and related technical know-how. This solution has been successfully applied to a homemade ultrahigh vacuum scanning tunneling microscope and a multiprobe scanning tunneling microscope.

  14. High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second

    NASA Astrophysics Data System (ADS)

    Kolb, Jan Philip; Klein, Thomas; Wieser, Wolfgang; Draxinger, Wolfgang; Huber, Robert

    2015-07-01

    We present full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan with volume rates varying between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a 1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative OCT.

  15. Nuclear ventriculography

    MedlinePlus

    ... ventriculography (RNV); Multiple gate acquisition scan (MUGA); Nuclear cardiology; Cardiomyopathy - nuclear ventriculography ... 56. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Bonow RO, Mann DL, Zipes DP, Libby ...

  16. Dynamic cellular uptake of mixed-monolayer protected nanoparticles.

    PubMed

    Carney, Randy P; Carney, Tamara M; Mueller, Marie; Stellacci, Francesco

    2012-12-01

    Nanoparticles (NPs) are gaining increasing attention for potential application in medicine; consequently, studying their interaction with cells is of central importance. We found that both ligand arrangement and composition on gold nanoparticles play a crucial role in their cellular internalization. In our previous investigation, we showed that 66-34OT nanoparticles coated with stripe-like domains of hydrophobic (octanethiol, OT, 34%) and hydrophilic (11-mercaptoundecane sulfonate, MUS, 66%) ligands permeated through the cellular lipid bilayer via passive diffusion, in addition to endo-/pino-cytosis. Here, we show an analysis of NP internalization by DC2.4, 3T3, and HeLa cells at two temperatures and multiple time points. We study four NPs that differ in their surface structures and ligand compositions and report on their cellular internalization by intracellular fluorescence quantification. Using confocal laser scanning microscopy we have found that all three cell types internalize the 66-34OT NPs more than particles coated only with MUS, or particles coated with a very similar coating but lacking any detectable ligand shell structure, or 'striped' particles but with a different composition (34-66OT) at multiple data points.

  17. Coating and functionalization of high density ion track structures by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mättö, Laura; Szilágyi, Imre M.; Laitinen, Mikko; Ritala, Mikko; Leskelä, Markku; Sajavaara, Timo

    2016-10-01

    In this study flexible TiO2 coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO2 films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti(iOPr)4 and water as precursors at 250 °C. The TiO2 films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils.

  18. Remote Sensing of Cloud Top Heights Using the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Sinclair, Kenneth; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej

    2015-01-01

    Clouds cover roughly two thirds of the globe and act as an important regulator of Earth's radiation budget. Of these, multilayered clouds occur about half of the time and are predominantly two-layered. Changes in cloud top height (CTH) have been predicted by models to have a globally averaged positive feedback, however observational changes in CTH have shown uncertain results. Additional CTH observations are necessary to better and quantify the effect. Improved CTH observations will also allow for improved sub-grid parameterizations in large-scale models and accurate CTH information is important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. RSP scans along the aircraft track and obtains measurements at 152 viewing angles at any aircraft location. The approach presented here aggregates measurements from multiple scans to a single location at cloud altitude using a correlation function designed to identify the location-distinct features in each scan. During NASAs SEAC4RS air campaign, the RSP was mounted on the ER-2 aircraft along with the Cloud Physics Lidar (CPL), which made simultaneous measurements of CTH. The RSPs unique method of determining CTH is presented. The capabilities of using single and combinations of channels within the approach are investigated. A detailed comparison of RSP retrieved CTHs with those of CPL reveal the accuracy of the approach. Results indicate a strong ability for the RSP to accurately identify cloud heights. Interestingly, the analysis reveals an ability for the approach to identify multiple cloud layers in a single scene and estimate the CTH of each layer. Capabilities and limitations of identifying single and multiple cloud layers heights are explored. Special focus is given to sources of error in the method including optically thin clouds, physically thick clouds, multi-layered clouds as well as cloud phase. When determining multi-layered CTHs, limits on the upper clouds opacity are assessed.

  19. Large-area uniform periodic microstructures on fused silica induced by surface phonon polaritons and incident laser

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanchao; Liao, Wei; Zhang, Lijuan; Jiang, Xiaolong; Chen, Jing; Wang, Haijun; Luan, Xiaoyu; Yuan, Xiaodong

    2018-06-01

    A simple and convenient means to self-organize large-area uniform periodic microstructures on fused silica by using multiple raster scans of microsecond CO2 laser pulses with beam spot overlapping at normal incidence is presented, which is based on laser-induced periodic surface structures (LIPSS) attributed to the interference between surface phonon polaritons and incident CO2 laser. The evolution of fused silica surface morphologies with increasing raster scans indicates that the period of microstructures changed from 10.6 μm to 9 μm and the profiles of microstructures changed from a sinusoidal curve to a half-sinusoidal shape. Numerical simulation results suggest that the formation of the half-sinusoidal profile is due to the exponential relationship between evaporation rate and surface temperature inducing by the intensive interference between surface phonon polaritons and incident laser. The fabricated uniform periodic microstructures show excellent structural color effect in both forward-diffraction and back-diffraction.

  20. Sulfur-doped Graphene Nanoribbons with a Sequence of Distinct Band Gaps

    NASA Astrophysics Data System (ADS)

    Du, Shi-Xuan; Zhang, Yan-Fang; Zhang, Yi; Berger, Reinhard; Feng, Xinliang; Mullen, Klaus; Lin, Xiao; Zhang, Yu-Yang; Pantelides, Sokrates T.; Gao, Hong-Jun

    Unlike free-standing graphene, graphene nanoribbons (GNRs) can possess semiconducting band gap. However, achieving such control has been a major challenge in the fabrication of GNRs. Chevron-type GNRs were recently achieved by surface-assisted polymerization of pristine or N-substituted oligophenylene monomers. By mixing two different monomers, GNR heterojunctions can in principle be fabricated. Here we report fabrication and characterization of chevron-type GNRs by using sulfur-substituted oligophenylene monomers to achieve GNRs and related heterostructures for the first time. Importantly, our first-principles calculations show that the band gaps of GNRs can be tailored by different S configurations in cyclodehydrogenated isomers through debromination and intramolecular cyclodehydrogenation. This feature should open up new avenues to create multiple GNR heterojunctions by engineering the sulfur configurations. These predictions have been confirmed by Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). The unusual sequence of intraribbon heterojunctions may be useful for nanoscale optoelectronic applications based on quantum dots

  1. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    PubMed

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  2. Vessel wall characterization using quantitative MRI: what's in a number?

    PubMed

    Coolen, Bram F; Calcagno, Claudia; van Ooij, Pim; Fayad, Zahi A; Strijkers, Gustav J; Nederveen, Aart J

    2018-02-01

    The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.

  3. Post-traumatic in situ fusion after calcaneal fractures: a retrospective study with 7-28 years follow-up.

    PubMed

    Ågren, Per-Henrik; Tullberg, Tycho; Mukka, Sebastian; Wretenberg, Per; Sayed-Noor, Arkan S

    2015-03-01

    In situ fusion as salvage operation after calcaneal fractures has been used. In this retrospective investigation, a group of in situ fused patients is analyzed with long-term follow-up. Twenty-nine patients with in situ single or multiple fusions performed between 1970 and 1990 were included. In 1998 these patients were examined with plain radiographs and computerized tomography (CT) scan of the affected foot. Also, a visual analogue score (VAS) for calcaneal fractures, short form health survey (SF-36), Olerud Molander score and American Orthopaedic Foot and Ankle society (AOFAS) hindfoot score were evaluated. The plain radiographs and CT scan showed severe remaining deformities in these patients. The outcome parameters were generally poor and correlated to the degree of remaining deformity. Simple in situ fusion, without consideration of the deformity at hand, after a calcaneal fracture is not an adequate treatment and generally associated with poor outcome. Copyright © 2014 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  4. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that amore » complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.« less

  5. SU-E-T-540: Volumetric Modulated Total Body Irradiation Using a Rotational Lazy Susan-Like Immobilization System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X; Hrycushko, B; Lee, H

    2014-06-01

    Purpose: Traditional extended SSD total body irradiation (TBI) techniques can be problematic in terms of patient comfort and/or dose uniformity. This work aims to develop a comfortable TBI technique that achieves a uniform dose distribution to the total body while reducing the dose to organs at risk for complications. Methods: To maximize patient comfort, a lazy Susan-like couch top immobilization system which rotates about a pivot point was developed. During CT simulation, a patient is immobilized by a Vac-Lok bag within the body frame. The patient is scanned head-first and then feet-first following 180° rotation of the frame. The twomore » scans are imported into the Pinnacle treatment planning system and concatenated to give a full-body CT dataset. Treatment planning matches multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. VMAT fields of the torso are optimized to satisfy lung dose constraints while achieving a therapeutic dose to the torso. The multiple isocenter VMAT fields are delivered with an indexed couch, followed by body frame rotation about the pivot point to treat the lower body isocenters. The treatment workflow was simulated with a Rando phantom, and the plan was mapped to a solid water slab phantom for point- and film-dose measurements at multiple locations. Results: The treatment plan of 12Gy over 8 fractions achieved 80.2% coverage of the total body volume within ±10% of the prescription dose. The mean lung dose was 8.1 Gy. All ion chamber measurements were within ±1.7% compared to the calculated point doses. All relative film dosimetry showed at least a 98.0% gamma passing rate using a 3mm/3% passing criteria. Conclusion: The proposed patient comfort-oriented TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.« less

  6. Oncogenic osteomalacia: role of Ga-68 DOTANOC PET/CT scan in identifying the culprit lesion and its management.

    PubMed

    Singh, Deepa; Chopra, Aditi; Ravina, Mudalsha; Kongara, Srikant; Bhatia, Eesh; Kumar, Narvesh; Gupta, Sushil; Yadav, Subhash; Dabadghao, Preeti; Yadav, Rajnikant; Dube, Veeresh; Kumar, Utham; Dixit, Manish; Gambhir, Sanjay

    2017-04-01

    The aim of this study was to evaluate the role of 68 Ga-DOTANOC positron emission tomography (PET)/CT scan in localization of culprit lesion for biopsy and required intervention [surgical excision/radiofrequency ablation (RFA)] in patients with long-standing oncogenic osteomalacia (OOM)/tumour-induced osteomalacia. 17 patients (8 males and 9 females) underwent 68 Ga-DOTANOC PET/CT scan. The patients referred with clinical and biochemical evidence of hypophosphatemia and raised fibroblast growth factor-23. Qualitative and semi-quantitative parameters were used to identify culprit lesions. 68 Ga-DOTANOC PET/CT scan revealed 52 lesions in 17 patients, and 37/52 of these lesions were tracer avid. 26/37 lesions were non-specific focal tracer-avid skeletal lesions (fractures or degenerative changes). 11/37 tracer-avid skeletal lesions present in 9 patients (3 lesions in 1 patient and 1 each in rest of the 8 patients) were highly suspicious for culprit lesions in view of high maximum standardized uptake value (SUV max ) (range 1.5-15.4; mean 7.0 ± 4.6), lesion size (0.9-5.0 cm; mean 3.3 ± 1.5) and associated soft-tissue component. During subsequent imaging with CT/MRI, 7/9 patients showed concordant lesions which were excised or biopsied and histopathologically verified as phosphaturic mesenchymal tumours. Surgical excision was resorted to in most of the detected lesions, and RFA was performed in one patient. There is some overlap in SUV max between fracture-/bone-associated lesions and culprit lesions with a tendency of most non-culprit lesions to have lower SUV max and no associated soft-tissue component. In such scenario, intensely tracer-avid, larger non-fracture lesions with soft-tissue component may lead to identification of culprit lesion among multiple lesions. Following detection of culprit lesion, surgical removal is the best treatment. RFA is alternative to surgery in cases where surgery is not possible owing to osteopenia/poor bone health. Advances in knowledge: The main challenge in patients of long-standing OOM is the presence of multiple skeletal lesions (both tumour- or tracer-avid fractures), and it is confusing to identify culprit lesion. This was noted in our study with 68 Ga-DOTANOC and has not been mentioned in studies performed with 68 Ga-DOTATATE/TOC PET/CT. In such scenario, 68 Ga-DOTANOC PET/CT needs to be reviewed and read thoroughly to localize the culprit lesion out of the multiple tracer-avid lesions.

  7. Percutaneous Radiofrequency Ablation with Multiple Electrodes for Medium-Sized Hepatocellular Carcinomas

    PubMed Central

    Lee, Jung; Yoon, Jung-Hwan; Lee, Jae Young; Kim, Se Hyung; Lee, Jeong Eun; Han, Joon Koo; Choi, Byung Ihn

    2012-01-01

    Objective To prospectively evaluate the safety and short-term therapeutic efficacy of switching monopolar radiofrequency ablation (RFA) with multiple electrodes to treat medium-sized (3.1-5.0 cm), hepatocellular carcinomas (HCC). Materials and Methods In this prospective study, 30 patients with single medium-sized HCCs (mean, 3.5 cm; range, 3.1-4.4 cm) were enrolled. The patients were treated under ultrasonographic guidance by percutaneous switching monopolar RFA with a multichannel RF generator and two or three internally cooled electrodes. Contrast-enhanced CT scans were obtained immediately after RFA, and the diameters and volume of the ablation zones were then measured. Follow-up CT scans were performed at the first month after ablation and every three months thereafter. Technical effectiveness, local progression and remote recurrence of HCCs were determined. Results There were no major immediate or periprocedural complications. However, there was one bile duct stricture during the follow-up period. Technical effectiveness was achieved in 29 of 30 patients (97%). The total ablation time of the procedures was 25.4 ± 8.9 minutes. The mean ablation volume was 73.8 ± 56.4 cm3 and the minimum diameter was 4.1 ± 7.3 cm. During the follow-up period (mean, 12.5 months), local tumor progression occurred in three of 29 patients (10%) with technical effectiveness, while new HCCs were detected in six of 29 patients (21%). Conclusion Switching monopolar RFA with multiple electrodes in order to achieve a sufficient ablation volume is safe and efficient. This method also showed relatively successful therapeutic effectiveness on short-term follow up for the treatment of medium-sized HCCs. PMID:22247634

  8. Cerebral arteriopathy with subcortical infarcts and leukoencephalopathy in acromegalic patient with severe headache.

    PubMed

    Cima, LuminiŢa Nicoleta; Fica, Simona Vasilica; Albu, Alice Ioana; Lambrescu, Ioana Maria; Lăcău, Ioana SmărăndiŢa; Popescu, Bogdan Ovidiu; Gherghiceanu, Mihaela; Badiu, Corin Virgil; Barbu, Carmen Gabriela

    2016-01-01

    A 68-year-old female patient was admitted in our clinic with severe frontal bilateral headache, dizziness, depression and cognitive decline in the context of a previously diagnosed acromegaly. She also had high blood pressure, dyslipidemia, secondary diabetes mellitus. Acromegaly was caused by a growth hormone (GH) secreting-pituitary macroadenoma, so a transsphenoidal surgery was performed. The postoperative magnetic resonance imaging (MRI) scan revealed a 20÷22÷25 mm pituitary mass remnant and medical therapy with somatostatin analogues (SSAs) was started. After nine months of treatment with SSAs, she continued having severe headache, the blood pressure was well controlled, but GH secretion was only partially controlled with insulin-like growth factor-1 (IGF-1) level still above the normal value. The MRI scan showed the same pituitary tumor remnant with supra- and parasellar right extension and also multiple fronto-temporo-parietal subcortical lesions that could suggest in the clinical context cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). According to a pregenetic screening tool, the Pescini Scale, the patient had a 19 points score, which is highly suggestive for CADASIL, an inherited cerebrovascular disease due to mutations of the Notch3 gene at the chromosome locus 19p13. In the absence of genetic testing, an alternate way to prove small vessels disease, the skin biopsy, was performed. Electron microscopy showed granular osmiophilic material (GOM) surrounding the vascular smooth muscle cells on that are pathognomonic for the disease. Our report underscores the importance of repeated investigations even in patients with apparently obvious explanations of their condition since they may have multiple diseases with the same presenting clinical signs.

  9. In vitro model to evaluate reliability and accuracy of a dental shade-matching instrument.

    PubMed

    Kim-Pusateri, Seungyee; Brewer, Jane D; Dunford, Robert G; Wee, Alvin G

    2007-11-01

    There are several electronic shade-matching instruments available for clinical use; unfortunately, there are limited acceptable in vitro models to evaluate their reliability and accuracy. The purpose of this in vitro study was to evaluate the reliability and accuracy of a dental clinical shade-matching instrument. Using the shade-matching instrument (ShadeScan), color measurements were made of 3 commercial shade guides (VITA Classical, VITA 3D-Master, and Chromascop). Shade tabs were selected and placed in the middle of a gingival matrix (Shofu Gummy), with tabs of the same nominal shade from additional shade guides placed on both sides. Measurements were made of the central region of the shade tab inside a black box. For the reliability assessment, each shade tab from each of the 3 shade guide types was measured 10 times. For the accuracy assessment, each shade tab from 10 guides of each of the 3 types evaluated was measured once. Reliability, accuracy, and 95% confidence intervals were calculated for each shade tab. Differences were determined by 1-way ANOVA followed by the Bonferroni multiple comparison procedure. Reliability of ShadeScan was as follows: VITA Classical = 95.0%, VITA 3D-Master = 91.2%, and Chromascop = 76.5%. Accuracy of ShadeScan was as follows: VITA Classical = 65.0%, VITA 3D-Master = 54.2%, Chromascop = 84.5%. This in vitro study showed a varying degree of reliability and accuracy for ShadeScan, depending on the type of shade guide system used.

  10. Terrestrial laser scanning in monitoring of anthropogenic objects

    NASA Astrophysics Data System (ADS)

    Zaczek-Peplinska, Janina; Kowalska, Maria

    2017-12-01

    The registered xyz coordinates in the form of a point cloud captured by terrestrial laser scanner and the intensity values (I) assigned to them make it possible to perform geometric and spectral analyses. Comparison of point clouds registered in different time periods requires conversion of the data to a common coordinate system and proper data selection is necessary. Factors like point distribution dependant on the distance between the scanner and the surveyed surface, angle of incidence, tasked scan's density and intensity value have to be taken into consideration. A prerequisite for running a correct analysis of the obtained point clouds registered during periodic measurements using a laser scanner is the ability to determine the quality and accuracy of the analysed data. The article presents a concept of spectral data adjustment based on geometric analysis of a surface as well as examples of geometric analyses integrating geometric and physical data in one cloud of points: cloud point coordinates, recorded intensity values, and thermal images of an object. The experiments described here show multiple possibilities of usage of terrestrial laser scanning data and display the necessity of using multi-aspect and multi-source analyses in anthropogenic object monitoring. The article presents examples of multisource data analyses with regard to Intensity value correction due to the beam's incidence angle. The measurements were performed using a Leica Nova MS50 scanning total station, Z+F Imager 5010 scanner and the integrated Z+F T-Cam thermal camera.

  11. SU-C-206-07: A Practical Sparse View Ultra-Low Dose CT Acquisition Scheme for PET Attenuation Correction in the Extended Scan Field-Of-View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, J; Fan, J; Gopinatha Pillai, A

    Purpose: To further reduce CT dose, a practical sparse-view acquisition scheme is proposed to provide the same attenuation estimation as higher dose for PET imaging in the extended scan field-of-view. Methods: CT scans are often used for PET attenuation correction and can be acquired at very low CT radiation dose. Low dose techniques often employ low tube voltage/current accompanied with a smooth filter before backprojection to reduce CT image noise. These techniques can introduce bias in the conversion from HU to attenuation values, especially in the extended CT scan field-of-view (FOV). In this work, we propose an ultra-low dose CTmore » technique for PET attenuation correction based on sparse-view acquisition. That is, instead of an acquisition of full amount of views, only a fraction of views are acquired. We tested this technique on a 64-slice GE CT scanner using multiple phantoms. CT scan FOV truncation completion was performed based on the published water-cylinder extrapolation algorithm. A number of continuous views per rotation: 984 (full), 246, 123, 82 and 62 have been tested, corresponding to a CT dose reduction of none, 4x, 8x, 12x and 16x. We also simulated sparse-view acquisition by skipping views from the fully-acquired view data. Results: FBP reconstruction with Q. AC filter on reduced views in the full extended scan field-of-view possesses similar image quality to the reconstruction on acquired full view data. The results showed a further potential for dose reduction compared to the full acquisition, without sacrificing any significant attenuation support to the PET. Conclusion: With the proposed sparse-view method, one can potential achieve at least 2x more CT dose reduction compared to the current Ultra-Low Dose (ULD) PET/CT protocol. A pre-scan based dose modulation scheme can be combined with the above sparse-view approaches, which can even further reduce the CT scan dose during a PET/CT exam.« less

  12. On multiple crack identification by ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Brigante, M.; Sumbatyan, M. A.

    2018-04-01

    The present work develops an approach which reduces operator equations arising in the engineering problems to the problem of minimizing the discrepancy functional. For this minimization, an algorithm of random global search is proposed, which is allied to some genetic algorithms. The efficiency of the method is demonstrated by the solving problem of simultaneous identification of several linear cracks forming an array in an elastic medium by using the circular Ultrasonic scanning.

  13. The ultrasound brain helmet: feasibility study of multiple simultaneous 3D scans of cerebral vasculature.

    PubMed

    Smith, Stephen W; Ivancevich, Nikolas M; Lindsey, Brooks D; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A; Laskowitz, Daniel T

    2009-02-01

    We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time three-dimensional (3D) scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging (Durham, NC, USA) real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64 degrees pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128 degrees sector, two simultaneous parasagittal images merged into a 128 degrees x 64 degrees C-mode plane and a simultaneous 64 degrees axial image. Real-time 3D color Doppler scans from a skull phantom with latex blood vessel were obtained after contrast agent injection as a proof of concept. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.

  14. Change descriptors for determining nodule malignancy in national lung screening trial CT screening images

    NASA Astrophysics Data System (ADS)

    Geiger, Benjamin; Hawkins, Samuel; Hall, Lawrence O.; Goldgof, Dmitry B.; Balagurunathan, Yoganand; Gatenby, Robert A.; Gillies, Robert J.

    2016-03-01

    Pulmonary nodules are effectively diagnosed in CT scans, but determining their malignancy has been a challenge. The rate of change of the volume of a pulmonary nodule is known to be a prognostic factor for cancer development. In this study, we propose that other changes in imaging characteristics are similarly informative. We examined the combination of image features across multiple CT scans, taken from the National Lung Screening Trial, with individual scans of the same patient separated by approximately one year. By subtracting the values of existing features in multiple scans for the same patient, we were able to improve the ability of existing classification algorithms to determine whether a nodule will become malignant. We trained each classifier on 83 nodules determined to be malignant by biopsy and 172 nodules determined to be benign by their clinical stability through two years of no change; classifiers were tested on 77 malignant and 144 benign nodules, using a set of features that in a test-retest experiment were shown to be stable. An accuracy of 83.71% and AUC of 0.814 were achieved with the Random Forests classifier on a subset of features determined to be stable via test-retest reproducibility analysis, further reduced with the Correlation-based Feature Selection algorithm.

  15. [Clinical characteristics of choroidal metastasis].

    PubMed

    Zhang, Hui-rong; Ma, Zhi-zhong; Feng, Yun; Guo, Tong

    2009-04-01

    To study the clinical characteristics of choroidal metastasis (CM) to promote the early diagnosis and differentiate from other choroidal tumors. Retrospective clinical observational cases. All patients with choroidal metastasis underwent ophthalmologic examination including best corrected visual acuity (VA), slit-lamp examination, binocular indirect funduscopy, color photography, fundus fluorescein angiography (FFA), indocyanine-green angiography (ICGA), optical coherence tomography (OCT), A and B scan ultrasound examination, magnetic resonance image (MRI) as well as CT of the thorax, etc. Nine eyes of 5 patients with CM were examined. Unilateral choroidal involvement was present in 1 patient, bilateral in 4 cases. There were 1 case male and 4 case females. The age of these patients ranged from 31 to 56 years, median 45 years. Ocular symptoms included reduced vision in 4 patients and visual distortion in 1 patient. Visual acuity was 20/400- < 20/63 in four eyes; 20/63- < 20/30 in two eyes and >or= 20/30 in three eyes. The primary cancer site was in the lung in 3 patients, in the breast in 1 patient and in the stomach in 1 patient. Fundus characteristics: Typical CM was more often in the plateau-shaped than in the dome-shaped; yellow-white or mottled in color and associated with subretinal fluid and retinal detachment. The tumor was found in the macular area and juxtapapillary area in 6 eyes, in the area between the macula and the equator in 3 eyes. CM was solitary in 5 eyes and showed multiple lesions in 4 eyes. By FA the lesions showed mottled hyperfluorescence in early stage and leakage in late stage. By ICGA the lesion showed blocked fluorescence and hypofluorescence. Choroidal mass showed moderate irregular internal reflectivity in A-scan ultrasound. B-scan showed a plateau-shaped solid mass. MRI examination of the lesion revealed moderate short T1W and T2W signals. The cancer antigen increased to 16.28 and 4.95 microg/L in two cases. CA125 increased to 160.5 kU/L in one case. The choroid is the most common site for metastases. CM may precede the diagnosis of primary tumor. Evaluation of A, B scan ultrasound, CT of thorax and cancer antigen test may be important to exclude primary carcinoma from lung and breast in patients with yellow-white in color, plateau-shaped choroidal lesions, especially in both eyes, and without known metastatic diseases.

  16. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-Part 2: reliability and application to multiple joints of a standardised consensus-based scoring system

    PubMed Central

    Terslev, Lene; Naredo, Esperanza; Aegerter, Philippe; Wakefield, Richard J; Backhaus, Marina; Balint, Peter; Bruyn, George A W; Iagnocco, Annamaria; Jousse-Joulin, Sandrine; Schmidt, Wolfgang A; Szkudlarek, Marcin; Conaghan, Philip G; Filippucci, Emilio

    2017-01-01

    Objectives To test the reliability of new ultrasound (US) definitions and quantification of synovial hypertrophy (SH) and power Doppler (PD) signal, separately and in combination, in a range of joints in patients with rheumatoid arthritis (RA) using the European League Against Rheumatisms–Outcomes Measures in Rheumatology (EULAR-OMERACT) combined score for PD and SH. Methods A stepwise approach was used: (1) scoring static images of metacarpophalangeal (MCP) joints in a web-based exercise and subsequently when scanning patients; (2) scoring static images of wrist, proximal interphalangeal joints, knee and metatarsophalangeal joints in a web-based exercise and subsequently when scanning patients using different acquisitions (standardised vs usual practice). For reliability, kappa coefficients (κ) were used. Results Scoring MCP joints in static images showed substantial intraobserver variability but good to excellent interobserver reliability. In patients, intraobserver reliability was the same for the two acquisition methods. Interobserver reliability for SH (κ=0.87) and PD (κ=0.79) and the EULAR-OMERACT combined score (κ=0.86) were better when using a ‘standardised’ scan. For the other joints, the intraobserver reliability was excellent in static images for all scores (κ=0.8–0.97) and the interobserver reliability marginally lower. When using standardised scanning in patients, the intraobserver was good (κ=0.64 for SH and the EULAR-OMERACT combined score, 0.66 for PD) and the interobserver reliability was also good especially for PD (κ range=0.41–0.92). Conclusion The EULAR-OMERACT score demonstrated moderate-good reliability in MCP joints using a standardised scan and is equally applicable in non-MCP joints. This scoring system should underpin improved reliability and consequently the responsiveness of US in RA clinical trials. PMID:28948984

  17. Studies of x-ray localization and thickness dependence in atomic-scale elemental mapping by STEM energy-dispersive x-ray spectroscopy using single-frame scanning method

    DOE PAGES

    Lu, Ping; Moya, Jaime M.; Yuan, Renliang; ...

    2018-03-01

    The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less

  18. Studies of x-ray localization and thickness dependence in atomic-scale elemental mapping by STEM energy-dispersive x-ray spectroscopy using single-frame scanning method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ping; Moya, Jaime M.; Yuan, Renliang

    The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less

  19. Studies of x-ray localization and thickness dependence in atomic-scale elemental mapping by STEM energy-dispersive x-ray spectroscopy using single-frame scanning method.

    PubMed

    Lu, Ping; Moya, Jaime M; Yuan, Renliang; Zuo, Jian Min

    2018-03-01

    The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maxima (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K + L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. With increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping. Published by Elsevier B.V.

  20. Complex Frontal Pneumosinus Dilatans Associated with Meningioma: A Report of Two Cases and Associated Literature Review.

    PubMed

    Timms, Sara; Lakhani, Raj; Connor, Steve; Hopkins, Claire

    2017-07-01

    Introduction  Pneumosinus dilatans (PSD) is a rare phenomenon involving the expansion of the paranasal sinuses, without bony destruction or a mass. Previously documented cases have demonstrated simple expansion of a solitary air cell. We present two unique cases of PSD in the presence of meningioma, in which complex new cells developed within the frontal sinus. One of the two patients developed associated sinus disease. Case 1  A 28-year-old man presented with facial pain. A computed tomography scan showed an abnormally enlarged, septated right frontal sinus, not present on childhood scans. He underwent a modified endoscopic Lothrop approach to divide the septations, and his symptoms resolved. Case 2  A 72-year-old woman presented with a 3-month history of headaches. Scans revealed a left frontal meningioma and multiple enlarged, dilated left frontal air cells. She had no clinical sinusitis and therefore was managed conservatively. Conclusions  PSD has been widely documented in association with fibrous dysplasia and meningioma. The most prevalent theory of the mechanism of PSD is of obstruction of the sinus ostium causing sinus expansion through a "ball-valve" effect. Our cases, which demonstrate septated PSD, suggest a more complex process involving local mediators and highlight the need to consider underlying meningioma in pneumosinus dilatans.

  1. Characterizing response versus scan-angle for MODIS reflective solar bands using deep convective clouds

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng

    2017-01-01

    MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versus scan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudoinvariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3% at certain AOIs.

  2. Harmonic demodulation and minimum enhancement factors in field-enhanced near-field optical microscopy.

    PubMed

    Scarpettini, A F; Bragas, A V

    2015-01-01

    Field-enhanced scanning optical microscopy relies on the design and fabrication of plasmonic probes which had to provide optical and chemical contrast at the nanoscale. In order to do so, the scattering containing the near-field information recorded in a field-enhanced scanning optical microscopy experiment, has to surpass the background light, always present due to multiple interferences between the macroscopic probe and sample. In this work, we show that when the probe-sample distance is modulated with very low amplitude, the higher the harmonic demodulation is, the better the ratio between the near-field signal and the interferometric background results. The choice of working at a given n harmonic is dictated by the experiment when the signal at the n + 1 harmonic goes below the experimental noise. We demonstrate that the optical contrast comes from the nth derivative of the near-field scattering, amplified by the interferometric background. By modelling the far and near field we calculate the probe-sample approach curves, which fit very well the experimental ones. After taking a great amount of experimental data for different probes and samples, we conclude with a table of the minimum enhancement factors needed to have optical contrast with field-enhanced scanning optical microscopy. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  3. Comparison of Optical Coherence Tomography and Scanning Laser Polarimetry Measurements in Patients with Multiple Sclerosis

    PubMed Central

    Quelly, Amanda; Cheng, Han; Laron, Michal; Schiffman, Jade S.; Tang, Rosa A.

    2010-01-01

    Purpose To compare optical coherence tomography (OCT) and scanning laser polarimetry (GDx) measurements of the retinal nerve fiber layer (RNFL) in multiple sclerosis (MS) patients with and without optic neuritis (ON). Methods OCT and GDx were performed on 68 MS patients. Qualifying eyes were divided into two groups: 51 eyes with an ON history ≥ 6 months prior (ON eyes), and 65 eyes with no history of ON (non-ON eyes). Several GDx and OCT parameters and criteria were used to define an eye as abnormal, for example, GDx nerve fiber indicator (NFI) above 20 or 30, OCT average RNFL thickness and GDx temporal-superior-nasal-inferior-temporal average (TSNIT) below 5% or 1% of the instruments’ normative database. Agreement between OCT and GDx parameters was reported as percent of observed agreement, along with the AC1 statistic. Linear regression analyses were used to examine the relationship between OCT average RNFL thickness and GDx NFI and TSNIT. Results All OCT and GDx measurements showed significantly more RNFL damage in ON than in non-ON eyes. Agreement between OCT and GDx parameters ranged from 69–90% (AC1 0.37–0.81) in ON eyes, and 52–91% (AC1 = 0.21–0.90) in non-ON eyes. Best agreement was observed between OCT average RNFL thickness (P < 0.01) and NFI (>30) in ON eyes (90%, AC1 = 0.81), and between OCT average RNFL thickness (P < 0.01) and GDx TSNIT average (P < 0.01) in non-ON eyes (91%, AC1 = 0.90). In ON eyes, the OCT average RNFL thickness showed good linear correlation with NFI (R2 = 0.69, P < 0.0001) and TSNIT (R2 = 0.55, P < 0.0001). Conclusions OCT and GDx show good agreement and can be useful in detecting RNFL loss in MS/ON eyes. PMID:20495500

  4. Automatic anatomy partitioning of the torso region on CT images by using multiple organ localizations with a group-wise calibration technique

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Morita, Syoichi; Zhou, Xinxin; Chen, Huayue; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2015-03-01

    This paper describes an automatic approach for anatomy partitioning on three-dimensional (3D) computedtomography (CT) images that divide the human torso into several volume-of-interesting (VOI) images based on anatomical definition. The proposed approach combines several individual detections of organ-location with a groupwise organ-location calibration and correction to achieve an automatic and robust multiple-organ localization task. The essence of the proposed method is to jointly detect the 3D minimum bounding box for each type of organ shown on CT images based on intra-organ-image-textures and inter-organ-spatial-relationship in the anatomy. Machine-learning-based template matching and generalized Hough transform-based point-distribution estimation are used in the detection and calibration processes. We apply this approach to the automatic partitioning of a torso region on CT images, which are divided into 35 VOIs presenting major organ regions and tissues required by routine diagnosis in clinical medicine. A database containing 4,300 patient cases of high-resolution 3D torso CT images is used for training and performance evaluations. We confirmed that the proposed method was successful in target organ localization on more than 95% of CT cases. Only two organs (gallbladder and pancreas) showed a lower success rate: 71 and 78% respectively. In addition, we applied this approach to another database that included 287 patient cases of whole-body CT images scanned for positron emission tomography (PET) studies and used for additional performance evaluation. The experimental results showed that no significant difference between the anatomy partitioning results from those two databases except regarding the spleen. All experimental results showed that the proposed approach was efficient and useful in accomplishing localization tasks for major organs and tissues on CT images scanned using different protocols.

  5. Diagnostic Nuclear Medicine for Paediatric Patients in Australia: Assessing the Individual's Dose Burden.

    PubMed

    Bartlett, Marissa L; Forsythe, Anna; Brady, Zoe; Mathews, John D

    2018-05-01

    We report data for all Australians aged 0-19 y who underwent publicly funded nuclear medicine studies between 1985 and 2005, inclusive. Radiation doses were estimated for individual patients for 95 different types of studies. There were 374 848 occasions of service for 277 511 patients with a collective effective dose of 1123 Sievert (Sv). Most services were either bone scans (45%) or renal scans (29%), with renal scans predominating at younger ages and bone scans at older ages. This pattern persisted despite a 4-fold increase in the annual number of procedures. Younger children were more likely to experience multiple scans, with the third quartile of scans per patient dropping from two to one with patient age. The median effective dose per patient ranged from 1.3 mSv (4-7 y old) to 2.8 mSv (13-16 y old). This large data set provides valuable information on nuclear medicine services for young Australians in the period 1985-2005.

  6. Utility of multiple rule out CT screening of high-risk atraumatic patients in an emergency department-a feasibility study.

    PubMed

    Pries-Heje, Mia M; Hasselbalch, Rasmus B; Raaschou, Henriette; Rezanavaz-Gheshlagh, Bijan; Heebøll, Hanne; Rehman, Shazia; Kristensen, Mariana; Andersen, Erik Henning; Ravn, Lisbet; Nèmery, Michel C; Lind, Morten N; Boel, Thomas; Ulriksen, Peter Sommer; Iversen, Kasper K

    2018-02-17

    Several large trials have evaluated the effect of CT screening based on specific symptoms, with varying outcomes. Screening of patients with CT based on their prognosis alone has not been examined before. For moderate-to-high risk patients presenting in the emergency department (ED), the potential gain from a CT scan might outweigh the risk of radiation exposure. We hypothesized that an accelerated "multiple rule out" CT screening of moderate-to-high risk patients will detect many clinically unrecognized diagnoses that affect change in treatment. Patients ≥ 40 years, triaged as high-risk or moderate-to-high risk according to vital signs, were eligible for inclusion. Patients were scanned with a combined ECG-gated and dual energy CT scan of cerebrum, thorax, and abdomen. The impact of the CT scan on patient diagnosis and treatment was examined prospectively by an expert panel. A total of 100 patients were included in the study, (53% female, mean age 73 years [age range, 43-93]). The scan lead to change in treatment or additional examinations in 37 (37%) patients, of which 24 (24%) were diagnostically significant, change in acute treatment in 11 (11%) cases and previously unrecognized malignant tumors in 10 (10%) cases. The mean size specific radiation dose was 15.9 mSv (± 3.1 mSv). Screening with a multi-rule out CT scan of high-risk patients in an ED is feasible and result in discovery of clinically unrecognized diagnoses and malignant tumors, but at the cost of radiation exposure and downstream examinations. The clinical impact of these findings should be evaluated in a larger randomized cohort.

  7. True color scanning laser ophthalmoscopy and optical coherence tomography handheld probe

    PubMed Central

    LaRocca, Francesco; Nankivil, Derek; Farsiu, Sina; Izatt, Joseph A.

    2014-01-01

    Scanning laser ophthalmoscopes (SLOs) are able to achieve superior contrast and axial sectioning capability compared to fundus photography. However, SLOs typically use monochromatic illumination and are thus unable to extract color information of the retina. Previous color SLO imaging techniques utilized multiple lasers or narrow band sources for illumination, which allowed for multiple color but not “true color” imaging as done in fundus photography. We describe the first “true color” SLO, handheld color SLO, and combined color SLO integrated with a spectral domain optical coherence tomography (OCT) system. To achieve accurate color imaging, the SLO was calibrated with a color test target and utilized an achromatizing lens when imaging the retina to correct for the eye’s longitudinal chromatic aberration. Color SLO and OCT images from volunteers were then acquired simultaneously with a combined power under the ANSI limit. Images from this system were then compared with those from commercially available SLOs featuring multiple narrow-band color imaging. PMID:25401032

  8. Environmental Scanning as a Public Health Tool: Kentucky's Human Papillomavirus Vaccination Project.

    PubMed

    Wilburn, Amanda; Vanderpool, Robin C; Knight, Jennifer R

    2016-08-18

    Borrowing from business, quality improvement programs, and strategic planning principles, environmental scanning is gaining popularity in public health practice and research and is advocated as an assessment and data collection tool by federal funding agencies and other health-related organizations. Applicable to a range of current and emerging health topics, environmental scans - through various methods - assess multiple facets of an issue by engaging stakeholders who can ask or answer research questions, exploring related policy, critiquing published and gray literature, collecting and analyzing qualitative and quantitative data in both primary and secondary forms, disseminating findings to internal and external stakeholders, and informing subsequent planning and decision making. To illustrate the environmental scanning process in a public health setting and showcase its value to practitioners in the field, we describe a federally funded environmental scan for a human papillomavirus vaccination project in Kentucky.

  9. Fast Exact Search in Hamming Space With Multi-Index Hashing.

    PubMed

    Norouzi, Mohammad; Punjani, Ali; Fleet, David J

    2014-06-01

    There is growing interest in representing image data and feature descriptors using compact binary codes for fast near neighbor search. Although binary codes are motivated by their use as direct indices (addresses) into a hash table, codes longer than 32 bits are not being used as such, as it was thought to be ineffective. We introduce a rigorous way to build multiple hash tables on binary code substrings that enables exact k-nearest neighbor search in Hamming space. The approach is storage efficient and straight-forward to implement. Theoretical analysis shows that the algorithm exhibits sub-linear run-time behavior for uniformly distributed codes. Empirical results show dramatic speedups over a linear scan baseline for datasets of up to one billion codes of 64, 128, or 256 bits.

  10. A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus).

    PubMed

    Chapman, Mark A; Pashley, Catherine H; Wenzler, Jessica; Hvala, John; Tang, Shunxue; Knapp, Steven J; Burke, John M

    2008-11-01

    Genomic scans for selection are a useful tool for identifying genes underlying phenotypic transitions. In this article, we describe the results of a genome scan designed to identify candidates for genes targeted by selection during the evolution of cultivated sunflower. This work involved screening 492 loci derived from ESTs on a large panel of wild, primitive (i.e., landrace), and improved sunflower (Helianthus annuus) lines. This sampling strategy allowed us to identify candidates for selectively important genes and investigate the likely timing of selection. Thirty-six genes showed evidence of selection during either domestication or improvement based on multiple criteria, and a sequence-based test of selection on a subset of these loci confirmed this result. In view of what is known about the structure of linkage disequilibrium across the sunflower genome, these genes are themselves likely to have been targeted by selection, rather than being merely linked to the actual targets. While the selection candidates showed a broad range of putative functions, they were enriched for genes involved in amino acid synthesis and protein catabolism. Given that a similar pattern has been detected in maize (Zea mays), this finding suggests that selection on amino acid composition may be a general feature of the evolution of crop plants. In terms of genomic locations, the selection candidates were significantly clustered near quantitative trait loci (QTL) that contribute to phenotypic differences between wild and cultivated sunflower, and specific instances of QTL colocalization provide some clues as to the roles that these genes may have played during sunflower evolution.

  11. Applications of synergistic combination of remote sensing and in-situ measurements on urban monitoring of air quality

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Dominguez, Victor; Campmier, Mark; Wu, Yonghua; Arend, Mark; Vladutescu, Daniela Viviana; Gross, Barry; Moshary, Fred

    2017-08-01

    In this study, multiple remote sensing and in-situ measurements are combined in order to obtain a comprehensive understanding of the aerosol distribution in New York City. Measurement of the horizontal distribution of aerosols is performed using a scanning eye-safe elastic-backscatter micro-pulse lidar. Vertical distribution of aerosols is measured with a co-located ceilometer. Furthermore, our analysis also includes in-situ measurements of particulate matter and wind speed and direction. These observations combined show boundary layer dynamics as well as transport and inhomogeneous spatial distribution of aerosols, which are of importance for air quality monitoring.

  12. A segmentation algorithm based on image projection for complex text layout

    NASA Astrophysics Data System (ADS)

    Zhu, Wangsheng; Chen, Qin; Wei, Chuanyi; Li, Ziyang

    2017-10-01

    Segmentation algorithm is an important part of layout analysis, considering the efficiency advantage of the top-down approach and the particularity of the object, a breakdown of projection layout segmentation algorithm. Firstly, the algorithm will algorithm first partitions the text image, and divided into several columns, then for each column scanning projection, the text image is divided into several sub regions through multiple projection. The experimental results show that, this method inherits the projection itself and rapid calculation speed, but also can avoid the effect of arc image information page segmentation, and also can accurate segmentation of the text image layout is complex.

  13. Value of FDG PET in the assessment of patients with multiple myeloma.

    PubMed

    Bredella, Miriam A; Steinbach, Lynne; Caputo, Gary; Segall, George; Hawkins, Randall

    2005-04-01

    Our objective was to evaluate if whole-body PET with FDG is able to detect bone marrow involvement in patients with multiple myeloma and to assess its appearance and distribution pattern. Seventeen whole-body FDG PET scans were performed in 13 patients with multiple myeloma. Four patients were referred for evaluation of extent of disease pretherapy and nine patients were referred for assessment of therapy response (chemotherapy, radiation therapy, bone marrow transplant). FDG PET images were evaluated for distribution and uptake pattern. Standardized uptake values were obtained to quantify FDG uptake. Results of other imaging examinations (MRI, CT, radiography), laboratory data, biopsies, and the clinical course were used for verification of detected lesions. FDG PET was able to detect medullary involvement of multiple myeloma. There were two false-negative results. In one patient, the radiographic skeletal survey showed subcentimeter lytic lesions within the ribs that were not detected on FDG PET and in the other patient, a lytic lesion detected on radiographs showed only mildly increased FDG uptake that was not identified prospectively. There was one false-positive FDG PET result in a patient who had undergone radiation therapy 3 weeks before PET. FDG PET was helpful in differentiating between posttherapeutic changes and residual/recurrent tumor and in assessing response to therapy. FDG PET resulted in upstaging of disease in four patients, which influenced subsequent management and prognosis. Sensitivity of FDG PET in detecting myelomatous involvement was 85% and specificity was 92%. FDG PET is able to detect bone marrow involvement in patients with multiple myeloma. FDG PET is useful in assessing extent of disease at time of initial diagnosis, contributing to staging that is more accurate. FDG PET is also useful for evaluating therapy response.

  14. TU-F-CAMPUS-J-01: Dosimetric Effects of HU Changes During the Course of Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, C; Yin, L; Ainsley, C

    2015-06-15

    Purpose: To characterize the changes in Hounsfield unit (HU) in lung radiotherapy with proton beams during the course of treatment and to study the effect on the proton plan dose distribution. Methods: Twenty consecutive patients with non-small cell lung cancer treated with proton radiotherapy who underwent multiple CT scans including the planning CT and weekly verification CTs were studied. HU histograms were computed for irradiated lung volumes in beam paths for all scans using the same treatment plan. Histograms for un-irradiated lung volume were used as control to characterize inter-scan variations. HU statistics were calculated for both irradiated and un-irradiatedmore » lung volumes for each patient scan. Further, multiple CT scans based on the same planning CT were generated by replacing the HU of the lung based on the verification CT scans HU values. Using the same beam arrangement, we created plans for each of the altered CT scans to study the dosimetric effect using the dose volume histogram. Results: Lung HU decreased for irradiated lung volume during the course of radiotherapy. The magnitude of this change increased with total irradiation dose. On average, HU changed by −53.8 in the irradiated volume. This change resulted in less than 0.5mm of beam overshoot in tissue for every 1cm beam traversed in the irradiated lung. The dose modification is about +3% for the lung, and less than +1% for the primary tumor. Conclusion: HU of the lung decrease throughout the course of radiation therapy. This change results in a beam overshoot (e.g. 3mm for 6cm of lung traversed) and causes a small dose modification in the overall plan. However, this overshoot does not affect the quality of plans since the margins used in planning, based on proton range uncertainty, are greater. HU needs to change by 150 units before re-planning is warranted.« less

  15. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    PubMed

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. Robotic inspection of fiber reinforced composites using phased array UT

    NASA Astrophysics Data System (ADS)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  17. Shared Aperture Multiplexed (SAM) Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1999-01-01

    A concept is introduced in which a single optic containing several holographic optical elements, are employed to effect multiple fields of view as an alternative to mechanically scanned lidar receivers.

  18. Imaging graphite in air by scanning tunneling microscopy - Role of the tip

    NASA Technical Reports Server (NTRS)

    Colton, R. J.; Baker, S. M.; Driscoll, R. J.; Youngquist, M. G.; Baldeschwieler, J. D.; Kaiser, W. J.

    1988-01-01

    Atomically resolved images of highly oriented pyrolytic graphite (HOPG) in air at point contact have been obtained. Direct contact between tip and sample or contact through a contamination layer provides a conduction mechanism in addition to the exponential tunneling mechanism responsible for scanning tunneling microscopy (STM) imaging. Current-voltage (I-V) spectra were obtained while scanning in the current imaging mode with the feedback circuit interrupted in order to study the graphite imaging mechanism. Multiple tunneling tips are probably responsible for images without the expected hexagonal or trigonal symmetry. The observations indicate that the use of HOPG for testing and calibration of STM instrumentation may be misleading.

  19. Imaging of high-angle annular dark-field scanning transmission electron microscopy and observations of GaN-based violet laser diodes.

    PubMed

    Shiojiri, M; Saijo, H

    2006-09-01

    The first part of this paper is devoted to physics, to explain high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and to interpret why HAADF-STEM imaging is incoherent, instructing a strict definition of interference and coherence of electron waves. Next, we present our recent investigations of InGaN/GaN multiple quantum wells and AlGaN/GaN strained-layer superlattice claddings in GaN-based violet laser diodes, which have been performed by HAADF-STEM and high-resolution field-emission gun scanning electron microscopy.

  20. Pressure scanning choices - Rotary vs electronic

    NASA Astrophysics Data System (ADS)

    Pemberton, Addison

    The choices available for present-day pressure scanning applications are described. Typical pressure scanning applications include wind tunnels, flight testing, turbine engine testing, process control, and laboratory/bench testing. The Scanivalve concept is discussed and it is noted that their use eliminates the cost of multiple individual pressure transducers and their signal conditioners as well as associated wiring for each pressure to be measured. However, they are limited to a maximum acquisition speed of 20 ports/sec/scanner. The advantages of electronic pressure scanners include in-situ calibration on demand, fast data acquisition speed, and high reliability. On the other hand, they are three times more expensive than rotary Scanivalves.

  1. Status of Multi-beam Long Trace-profiler Development

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Merthe, Daniel J.; Kilaru, Kiranmayee; Kester, Thomas; Ramsey, Brian; McKinney, Wayne R.; Takacs, Peter Z.; Dahir, A.; Yashchuk, Valeriy V.

    2013-01-01

    The multi-beam long trace profiler (MB-LTP) is under development at NASA's Marshall Space Flight Center. The traditional LTPs scans the surface under the test by a single laser beam directly measuring the surface figure slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. The progress for a multi-beam long trace profiler development is presented.

  2. Coastal Zone Color Scanner atmospheric correction algorithm - Multiple scattering effects

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Castano, Diego J.

    1987-01-01

    Errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm are analyzed. The analysis is based on radiative transfer computations in model atmospheres, in which the aerosols and molecules are distributed vertically in an exponential manner, with most of the aerosol scattering located below the molecular scattering. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates, making it possible to determine the errors along typical CZCS scan lines. Information provided by the analysis makes it possible to judge the efficacy of the current algorithm with the current sensor and to estimate the impact of the algorithm-induced errors on a variety of applications.

  3. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-03-01

    A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.

  4. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.

  5. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    NASA Astrophysics Data System (ADS)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  6. On the Use of Deep Convective Clouds to Characterize Response versus Scan-angle for MODIS Reflective Solar Bands

    NASA Astrophysics Data System (ADS)

    Bhatt, R.; Doelling, D. R.; Scarino, B. R.; Gopalan, A.; Haney, C.

    2016-12-01

    MODIS is a cross-track scanning radiometer with a two-sided scan mirror that images the Earth with an angular field of view of 55° on either side of the nadir. The reflectance of the scan mirror is not uniform and is a function of angle of incidence (AOI), as well as wavelength. This feature of the scan mirror is described by response versus scan-angle (RVS), and was characterized for all reflective solar bands (RSBs), for both MODIS instruments prior to launch. The RVS characteristic of the two MODIS instruments has changed on orbit and, therefore, must be tracked precisely over time to ensure high-quality data in the MODIS products. The MODIS Characterization Support Team (MCST) utilizes the onboard solar diffuser (SD) and lunar measurements to track the RVS changes at two fixed AOIs. The RVS at the remaining AOIs is characterized using the earth view (EV) responses from multiple pseudo-invariant desert sites located in Northern Africa. The drawback of this approach is the assumption that all of the desert sites imaged by the MODIS sensors at different AOIs are radiometrically stable during the same period of time. In addition, the desert samples do not always have continuous AOI coverage as they are limited by the 16-day repeat cycle of the satellite orbit, and by clear-sky conditions over the deserts. This paper proposes a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCCs) as an invariant calibration target. The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Because DCCs are distributed across the entirety of the tropics, they provide a continuum of AOI measurements. Initial results have shown that the Aqua-MODIS Collection 6 band 1 level 1b radiances show considerable residual, or artifact, RVS dependencies, especially on the left side of the cross-track scan. Long-term drifts, up to 2.3%, have been observed at certain AOIs. Temporal correction factors are computed using the DCC trends from 12 scan intervals encompassing all AOIs, and their effectiveness in correcting the observed RVS artifact is evaluated using the Libya-1 pseudo-invariant desert site. The desert and DCC temporal scan dependent trends are reduced to less than 1 standard error after the RVS correction.

  7. Extrapulmonary disseminated tuberculosis with tuberculous adrenalitis: a stitch in time saves nine.

    PubMed

    Rajasekharan, Chandrasekharan; Ajithkumar, Sivasankarannair; Anto, Varghese; Parvathy, Rajasekharan

    2013-05-17

    A 40-year-old manual labourer presented with easy fatiguability, recurrent vomiting and loss of weight of 3 months, duration. Upon examination, there was significant axillary and cervical lymphadenopathy. No pallor, icterus or clubbing was evident. There was generalised hyperpigmentation and multiple oral ulcers. The blood pressure 90/60 mm Hg in the right upper limb in the supine position. Investigations showed a low serum cortisol. Mantoux test was strongly positive (20 mm).A fine needle aspiration biopsy of the cervical lymph node revealed reactive changes. Bone marrow aspiration and biopsy were normal. Cervical lymph node biopsy showed caseating granulomas suggestive of tuberculous lymphadenitis. A CT scan of the abdomen showed bilaterally enlarged adrenal glands with hypodense areas suggestive of necrosis. He was diagnosed with extrapulmonary disseminated tuberculosis with tuberculous adrenalitis. He was started on directly observed therapy (DOTS) for disseminated tuberculosis and 40 mg of prednisolone. He is improving with treatment.

  8. Diffusion Tensor Imaging as a Biomarker to Differentiate Acute Disseminated Encephalomyelitis From Multiple Sclerosis at First Demyelination.

    PubMed

    Aung, Wint Yan; Massoumzadeh, Parinaz; Najmi, Safa; Salter, Amber; Heaps, Jodi; Benzinger, Tammie L S; Mar, Soe

    2018-01-01

    There are no clinical features or biomarkers that can reliably differentiate acute disseminated encephalomyelitis from multiple sclerosis at the first demyelination attack. Consequently, a final diagnosis is sometimes delayed by months and years of follow-up. Early treatment for multiple sclerosis is recommended to reduce long-term disability. Therefore, we intend to explore neuroimaging biomarkers that can reliably distinguish between the two diagnoses. We reviewed prospectively collected clinical, standard MRI and diffusion tensor imaging data from 12 pediatric patients who presented with acute demyelination with and without encephalopathy. Patients were followed for an average of 6.5 years to determine the accuracy of final diagnosis. Final diagnosis was determined using 2013 International Pediatric MS Study Group criteria. Control subjects consisted of four age-matched healthy individuals for each patient. The study population consisted of six patients with central nervous system demyelination with encephalopathy with a presumed diagnosis of acute disseminated encephalomyelitis and six without encephalopathy with a presumed diagnosis of multiple sclerosis or clinically isolated syndrome at high risk for multiple sclerosis. During follow-up, two patients with initial diagnosis of acute disseminated encephalomyelitis were later diagnosed with multiple sclerosis. Diffusion tensor imaging region of interest analysis of baseline scans showed differences between final diagnosis of multiple sclerosis and acute disseminated encephalomyelitis patients, whereby low fractional anisotropy and high radial diffusivity occurred in multiple sclerosis patients compared with acute disseminated encephalomyelitis patients and the age-matched controls. Fractional anisotropy and radial diffusivity measures may have the potential to serve as biomarkers for distinguishing acute disseminated encephalomyelitis from multiple sclerosis at the onset. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Frontal parenchymal atrophy measures in multiple sclerosis.

    PubMed

    Locatelli, Laura; Zivadinov, Robert; Grop, Attilio; Zorzon, Marino

    2004-10-01

    The aim of this study was to establish whether, in a cross-sectional study, the normalized measures of whole and regional brain atrophy correlate better with tests assessing the cognitive function than the absolute brain atrophy measures. The neuropsychological performances and disability have been assessed in 39 patients with relapsing-remitting multiple sclerosis (MS). T1- and T2-lesion load (LL) of total brain and frontal lobes (FLs) were measured using a reproducible semiautomated technique. The whole brain volume and the regional brain parenchymal volume (RBPV) of FLs were obtained using a computerized interactive program, which incorporates semiautomated and automated segmentation processes. Normalized measures of brain atrophy, i.e., brain parenchymal fraction (BPF) and regional brain parenchymal fraction (RBPF) of FLs, were calculated. The scan-rescan, inter- and intrarater coefficient of variation (COV) and intraclass correlation coefficient (ICC) have been estimated. The RBPF of FLs showed an acceptable level of reproducibility which ranged from 1.7% for intrarater variability to 3.2% for scan-rescan variability. The mean ICC was 0.88 (CI 0.82-0.93). The RBPF of FLs demonstrated stronger magnitudes of correlation with neuropsychological functioning, disability and quantitative MRI lesion measures than RBPV. These differences were statistically significant: P<0.001 for Stroop Color Word Interference test, P<0.001 for Paced Auditory Serial Addition Test, P=0.04 for Standard Raven Progressive Matrices, P=0.049 for Expanded Disability Status Scale, P=0.01 for T2-LL of FLs and P<0.001 for T1-LL of FLs. BPF demonstrated significant correlations with tests assessing cognitive functions, whereas BPAV did not. The correlation analysis results were supported by the results of multiple regression analysis which showed that only the normalized brain atrophy measures were associated with tests exploring the cognitive functions. These data suggest that RBPF is a reproducible and sensitive method for measuring frontal parenchymal atrophy. The normalized measures of whole and regional brain parenchymal atrophy should be preferred to absolute measures in future studies that correlate neuropsychological performances and brain atrophy measures in patients with MS.

  10. Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes.

    PubMed

    Han, Weina; Jiang, Lan; Li, Xiaowei; Liu, Pengjun; Xu, Le; Lu, YongFeng

    2013-07-01

    Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.

  11. Driving with hemianopia: IV. Head scanning and detection at intersections in a simulator.

    PubMed

    Bowers, Alex R; Ananyev, Egor; Mandel, Aaron J; Goldstein, Robert B; Peli, Eli

    2014-03-13

    Using a driving simulator, we examined the effects of homonymous hemianopia (HH) on head scanning behaviors at intersections and evaluated the role of inadequate head scanning in detection failures. Fourteen people with complete HH and without cognitive decline or visual neglect and 12 normally sighted (NV) current drivers participated. They drove in an urban environment following predetermined routes, which included multiple intersections. Head scanning behaviors were quantified at T-intersections (n = 32) with a stop or yield sign. Participants also performed a pedestrian detection task. The relationship between head scanning and detection was examined at 10 intersections. For HH drivers, the first scan was more likely to be toward the blind than the seeing hemifield. They also made a greater proportion of head scans overall to the blind side than did the NV drivers to the corresponding side (P = 0.003). However, head scan magnitudes of HH drivers were smaller than those of the NV group (P < 0.001). Drivers with HH had impaired detection of blind-side pedestrians due either to not scanning in the direction of the pedestrian or to an insufficient scan magnitude (left HH detected only 46% and right HH 8% at the extreme left and right of the intersection, respectively). Drivers with HH demonstrated compensatory head scan patterns, but not scan magnitudes. Inadequate scanning resulted in blind-side detection failures, which might place HH drivers at increased risk for collisions at intersections. Scanning training tailored to specific problem areas identified in this study might be beneficial.

  12. Simultaneous quantification of multiple components in rat plasma by UPLC-MS/MS and pharmacokinetic study after oral administration of Huangqi decoction.

    PubMed

    Zeng, Jia-Kai; Li, Yuan-Yuan; Wang, Tian-Ming; Zhong, Jie; Wu, Jia-Sheng; Liu, Ping; Zhang, Hua; Ma, Yue-Ming

    2018-05-01

    A rapid, sensitive and accurate UPLC-MS/MS method was developed for the simultaneous quantification of components of Huangqi decoction (HQD), such as calycosin-7-O-β-d-glucoside, calycosin-glucuronide, liquiritin, formononetin-glucuronide, isoliquiritin, liquiritigenin, ononin, calycosin, isoliquiritigenin, formononetin, glycyrrhizic acid, astragaloside IV, cycloastragenol, and glycyrrhetinic acid, in rat plasma. After plasma samples were extracted by protein precipitation, chromatographic separation was performed with a C 18 column, using a gradient of methanol and 0.05% acetic acid containing 4mm ammonium acetate as the mobile phase. Multiple reaction monitoring scanning was performed to quantify the analytes, and the electrospray ion source polarity was switched between positive and negative modes in a single run of 10 min. Method validation showed that specificity, linearity, accuracy, precision, extraction recovery, matrix effect and stability for 14 components met the requirements for their quantitation in biological samples. The established method was successfully applied to the pharmacokinetic study of multiple components in rats after intragastric administration of HQD. The results clarified the pharmacokinetic characteristics of multiple components found in HQD. This research provides useful information for understanding the relation between the chemical components of HQD and their therapeutic effects. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances

    PubMed Central

    Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo

    2017-01-01

    Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors. PMID:28211506

  14. A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic in multiple cancers.

    PubMed

    Hanley, Christopher J; Noble, Fergus; Ward, Matthew; Bullock, Marc; Drifka, Cole; Mellone, Massimiliano; Manousopoulou, Antigoni; Johnston, Harvey E; Hayden, Annette; Thirdborough, Steve; Liu, Yuming; Smith, David M; Mellows, Toby; Kao, W John; Garbis, Spiros D; Mirnezami, Alex; Underwood, Tim J; Eliceiri, Kevin W; Thomas, Gareth J

    2016-02-02

    Collagen structure has been shown to influence tumor cell invasion, metastasis and clinical outcome in breast cancer. However, it remains unclear how it affects other solid cancers. Here we utilized multi-photon laser scanning microscopy and Second Harmonic Generation to identify alterations to collagen fiber structure within the tumor stroma of head & neck, esophageal and colorectal cancers. Image segmentation algorithms were then applied to quantitatively characterize these morphological changes, showing that elongated collagen fibers significantly correlated with poor clinical outcome (Log Rank p < 0.05). We used TGF-β treatment to model fibroblast conversion to smooth muscle actin SMA-positive cancer associated fibroblasts (CAFs) and found that these cells induce the formation of elongated collagen fibers in vivo. However, proteomic/transcriptomic analysis of SMA-positive CAFs cultured ex-vivo showed significant heterogeneity in the expression of genes with collagen fibril organizing gene ontology. Notably, stratifying patients according to stromal SMA-positivity and collagen fiber elongation was found to provide a highly significant correlation with poor survival in all 3 cancer types (Log Rank p ≤ 0.003). In summary, we show that increased collagen fiber length correlates with poor patient survival in multiple tumor types and that only a sub-set of SMA-positive CAFs can mediate the formation of this collagen structure.

  15. Digitally grown AlInAsSb for high gain separate absorption, grading, charge, and multiplication avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Lyu, Yuexi; Han, Xi; Sun, Yaoyao; Jiang, Zhi; Guo, Chunyan; Xiang, Wei; Dong, Yinan; Cui, Jie; Yao, Yuan; Jiang, Dongwei; Wang, Guowei; Xu, Yingqiang; Niu, Zhichuan

    2018-01-01

    We report on the growth of high quality GaSb-based AlInAsSb quaternary alloy by molecular beam epitaxy (MBE) to fabricate avalanche photodiodes (APDs). By means of high resolution X-ray diffraction (HRXRD) and scanning transmission electron microscope (STEM), phase separation phenomenon of AlInAsSb random alloy with naturally occurring vertical superlattice configuration was demonstrated. To overcome the tendency for phase segregation while maintaining a highly crystalline film, a digital alloy technique with migration-enhanced epitaxy growth method was employed, using a shutter sequence of AlSb, AlAs, AlSb, Sb, In, InAs, In, Sb. AlInAsSb digital alloy has proved to be reproducible and consistent with single phase, showing sharp satellite peaks on HRXRD rocking curve and smooth surface morphology under atomic force microscopy (AFM). Using optimized digital alloy, AlInAsSb separate absorption, grading, charge, and multiplication (SAGCM) APD was grown and fabricated. At room temperature, the device showed high performance with low dark current density of ∼14.1 mA/cm2 at 95% breakdown and maximum stable gain before breakdown as high as ∼200, showing the potential for further applications in optoelectronic devices.

  16. Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans

    NASA Astrophysics Data System (ADS)

    Efrain Humpire-Mamani, Gabriel; Arindra Adiyoso Setio, Arnaud; van Ginneken, Bram; Jacobs, Colin

    2018-04-01

    Automatic localization of organs and other structures in medical images is an important preprocessing step that can improve and speed up other algorithms such as organ segmentation, lesion detection, and registration. This work presents an efficient method for simultaneous localization of multiple structures in 3D thorax-abdomen CT scans. Our approach predicts the location of multiple structures using a single multi-label convolutional neural network for each orthogonal view. Each network takes extra slices around the current slice as input to provide extra context. A sigmoid layer is used to perform multi-label classification. The output of the three networks is subsequently combined to compute a 3D bounding box for each structure. We used our approach to locate 11 structures of interest. The neural network was trained and evaluated on a large set of 1884 thorax-abdomen CT scans from patients undergoing oncological workup. Reference bounding boxes were annotated by human observers. The performance of our method was evaluated by computing the wall distance to the reference bounding boxes. The bounding boxes annotated by the first human observer were used as the reference standard for the test set. Using the best configuration, we obtained an average wall distance of 3.20~+/-~7.33 mm in the test set. The second human observer achieved 1.23~+/-~3.39 mm. For all structures, the results were better than those reported in previously published studies. In conclusion, we proposed an efficient method for the accurate localization of multiple organs. Our method uses multiple slices as input to provide more context around the slice under analysis, and we have shown that this improves performance. This method can easily be adapted to handle more organs.

  17. Element-specific spectral imaging of multiple contrast agents: a phantom study

    NASA Astrophysics Data System (ADS)

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  18. Application of Scan Statistics to Detect Suicide Clusters in Australia

    PubMed Central

    Cheung, Yee Tak Derek; Spittal, Matthew J.; Williamson, Michelle Kate; Tung, Sui Jay; Pirkis, Jane

    2013-01-01

    Background Suicide clustering occurs when multiple suicide incidents take place in a small area or/and within a short period of time. In spite of the multi-national research attention and particular efforts in preparing guidelines for tackling suicide clusters, the broader picture of epidemiology of suicide clustering remains unclear. This study aimed to develop techniques in using scan statistics to detect clusters, with the detection of suicide clusters in Australia as example. Methods and Findings Scan statistics was applied to detect clusters among suicides occurring between 2004 and 2008. Manipulation of parameter settings and change of area for scan statistics were performed to remedy shortcomings in existing methods. In total, 243 suicides out of 10,176 (2.4%) were identified as belonging to 15 suicide clusters. These clusters were mainly located in the Northern Territory, the northern part of Western Australia, and the northern part of Queensland. Among the 15 clusters, 4 (26.7%) were detected by both national and state cluster detections, 8 (53.3%) were only detected by the state cluster detection, and 3 (20%) were only detected by the national cluster detection. Conclusions These findings illustrate that the majority of spatial-temporal clusters of suicide were located in the inland northern areas, with socio-economic deprivation and higher proportions of indigenous people. Discrepancies between national and state/territory cluster detection by scan statistics were due to the contrast of the underlying suicide rates across states/territories. Performing both small-area and large-area analyses, and applying multiple parameter settings may yield the maximum benefits for exploring clusters. PMID:23342098

  19. Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis.

    PubMed Central

    Filippi, M; Campi, A; Martinelli, V; Colombo, B; Yousry, T; Canal, N; Scotti, G; Comi, G

    1995-01-01

    This study was performed to evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) increases the sensitivity of brain MRI for detecting enhancing lesions in patients with primary progressive multiple sclerosis (PPMS). T1 weighted brain MRI was obtained for 10 patients with PPMS in two sessions. In the first session, one scan was obtained five to seven minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, one scan before and two scans five to seven minutes and one hour after the injection of 0.3 mmol/kg Gd-DTPA (triple dose) were obtained. Four enhancing lesions were detected in two patients when the standard dose of Gd-DTPA was used. The numbers of enhancing lesions increased to 13 and the numbers of patients with such lesions to five when the triple dose of Gd-DTPA was used and to 14 and six in the one hour delayed scans. The mean contrast ratio for enhancing lesions detected with the triple dose of Gd-DTPA was higher than those for lesions present in both the standard dose (P < 0.0009) and the one hour delayed scans (P = 0.04). These data indicate that with a triple dose of Gd-DTPA many more enhancing lesions can be detected in patients with PPMS. This is important both for planning clinical trials and for detecting the presence of inflammation in vivo in the lesions of such patients. Images PMID:8530944

  20. Visualizing the 3D Architecture of Multiple Erythrocytes Infected with Plasmodium at Nanoscale by Focused Ion Beam-Scanning Electron Microscopy

    PubMed Central

    Soares Medeiros, Lia Carolina; De Souza, Wanderley; Jiao, Chengge; Barrabin, Hector; Miranda, Kildare

    2012-01-01

    Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures. PMID:22432024

  1. Detection and Site Localization of Phosphorylcholine-Modified Peptides by NanoLC-ESI-MS/MS Using Precursor Ion Scanning and Multiple Reaction Monitoring Experiments

    NASA Astrophysics Data System (ADS)

    Timm, Thomas; Lenz, Christof; Merkel, Dietrich; Sadiffo, Christian; Grabitzki, Julia; Klein, Jochen; Lochnit, Guenter

    2015-03-01

    Phosphorylcholine (PC)-modified biomolecules like lipopolysaccharides, glycosphingolipids, and (glyco)proteins are widespread, highly relevant antigens of parasites, since this small hapten shows potent immunomodulatory capacity, which allows the establishment of long-lasting infections of the host. Especially for PC-modified proteins, structural data is rare because of the zwitterionic nature of the PC substituent, resulting in low sensitivities and unusual but characteristic fragmentation patterns. We have developed a targeted mass spectrometric approach using hybrid triple quadrupole/linear ion trap (QTRAP) mass spectrometry coupled to nanoflow chromatography for the sensitive detection of PC-modified peptides from complex proteolytic digests, and the localization of the PC-modification within the peptide backbone. In a first step, proteolytic digests are screened using precursor ion scanning for the marker ions of choline ( m/z 104.1) and phosphorylcholine ( m/z 184.1) to establish the presence of PC-modified peptides. Potential PC-modified precursors are then subjected to a second analysis using multiple reaction monitoring (MRM)-triggered product ion spectra for the identification and site localization of the modified peptides. The approach was first established using synthetic PC-modified synthetic peptides and PC-modified model digests. Following the optimization of key parameters, we then successfully applied the method to the detection of PC-peptides in the background of a proteolytic digest of a whole proteome. This methodological invention will greatly facilitate the detection of PC-substituted biomolecules and their structural analysis.

  2. NASA Integrated Network COOP

    NASA Technical Reports Server (NTRS)

    Anderson, Michael L.; Wright, Nathaniel; Tai, Wallace

    2012-01-01

    Natural disasters, terrorist attacks, civil unrest, and other events have the potential of disrupting mission-essential operations in any space communications network. NASA's Space Communications and Navigation office (SCaN) is in the process of studying options for integrating the three existing NASA network elements, the Deep Space Network, the Near Earth Network, and the Space Network, into a single integrated network with common services and interfaces. The need to maintain Continuity of Operations (COOP) after a disastrous event has a direct impact on the future network design and operations concepts. The SCaN Integrated Network will provide support to a variety of user missions. The missions have diverse requirements and include anything from earth based platforms to planetary missions and rovers. It is presumed that an integrated network, with common interfaces and processes, provides an inherent advantage to COOP in that multiple elements and networks can provide cross-support in a seamless manner. The results of trade studies support this assumption but also show that centralization as a means of achieving integration can result in single points of failure that must be mitigated. The cost to provide this mitigation can be substantial. In support of this effort, the team evaluated the current approaches to COOP, developed multiple potential approaches to COOP in a future integrated network, evaluated the interdependencies of the various approaches to the various network control and operations options, and did a best value assessment of the options. The paper will describe the trade space, the study methods, and results of the study.

  3. Thrust noise minimization in long-term laser ablation of propellant material in the nanosecond and picosecond regime

    NASA Astrophysics Data System (ADS)

    Lorbeer, Raoul-Amadeus; Scharring, Stefan; Karg, Stephanie; Pastow, Jan; Pastuschka, Lisa; Förster, Daniel Johannes; Eckel, Hans-Albert

    2017-01-01

    The avoidance of any moving parts in a microthruster exhibits a great potential for low-noise thrust generation in the micronewton range. This is required, e.g., for scientific missions that need attitude and orbit control systems with exquisite precision. Laser ablation propulsion offers the opportunity of permanent inertia-free, electro-optical delivery of laser energy to access the propellant entirely without moving it. New propellant is accessed by ablating the previous surface in layers, essentially damaging the surface with a laser over and over again. The resulting surface properties for different fluences and scanning patterns were investigated for multiple layers of aluminum, copper, and gold. The pulse-length-specific issues of various ablation mechanisms such as vaporization, spallation, and phase explosion are accounted for by the use of a 10-ps laser system and a 500-ps laser system. We show that the surface roughness produced with 500-ps laser pulses is approximately twice the surface roughness generated by using 10-ps laser pulses. Furthermore, with 500-ps pulses, the surface roughness shows low dependency on the fluence for carefully chosen scanning parameters. Therefore, we conclude that laser pulse duration differences in the picosecond and nanosecond regimes will not necessarily alter surface roughness properties.

  4. A scanning tunnelling microscopy study of C and N adsorption phases on the vicinal Ni(100) surfaces Ni(810) and Ni(911)

    NASA Astrophysics Data System (ADS)

    Driver, S. M.; Toomes, R. L.; Woodruff, D. P.

    2016-04-01

    The influence of N and C chemisorption on the morphology and local structure of nominal Ni(810) and Ni(911) surfaces, both vicinal to (100) but with [001] and [ 01 1 bar ] step directions, respectively, has been investigated using scanning tunnelling microscopy (STM) and low energy electron diffraction. Ni(911) undergoes substantial step bunching in the presence of both adsorbates, with the (911)/N surface showing (411) facets, whereas for Ni(810), multiple steps 2-4 layers high are more typical. STM atomic-scale images show the (2 × 2)pg 'clock' reconstruction on the (100) terraces of the (810) surfaces with both C and N, although a second c(2 × 2) structure, most readily reconciled with a 'rumpling' reconstruction, is also seen on Ni(810)/N. On Ni(911), the clock reconstruction is not seen on the (100) terraces with either adsorbate, and these images are typified by protrusions on a (1 × 1) mesh. This absence of clock reconstruction is attributed to the different constraints imposed on the lateral movements of the surface Ni atoms adjacent to the up-step edge of the terraces with a [ 01 1 bar ] step direction.

  5. Elucidating the genetic architecture of familial schizophrenia using rare copy number variant and linkage scans.

    PubMed

    Xu, Bin; Woodroffe, Abigail; Rodriguez-Murillo, Laura; Roos, J Louw; van Rensburg, Elizabeth J; Abecasis, Gonçalo R; Gogos, Joseph A; Karayiorgou, Maria

    2009-09-29

    To elucidate the genetic architecture of familial schizophrenia we combine linkage analysis with studies of fine-level chromosomal variation in families recruited from the Afrikaner population in South Africa. We demonstrate that individually rare inherited copy number variants (CNVs) are more frequent in cases with familial schizophrenia as compared to unaffected controls and affect almost exclusively genic regions. Interestingly, we find that while the prevalence of rare structural variants is similar in familial and sporadic cases, the type of variants is markedly different. In addition, using a high-density linkage scan with a panel of nearly 2,000 markers, we identify a region on chromosome 13q34 that shows genome-wide significant linkage to schizophrenia and show that in the families not linked to this locus, there is evidence for linkage to chromosome 1p36. No causative CNVs were identified in either locus. Overall, our results from approaches designed to detect risk variants with relatively low frequency and high penetrance in a well-defined and relatively homogeneous population, provide strong empirical evidence supporting the notion that multiple genetic variants, including individually rare ones, that affect many different genes contribute to the genetic risk of familial schizophrenia. They also highlight differences in the genetic architecture of the familial and sporadic forms of the disease.

  6. Defect-mediated transport and electronic irradiation effect in individual domains of CVD-grown monolayer MoS 2

    DOE PAGES

    Durand, Corentin; Zhang, Xiaoguang; Fowlkes, Jason; ...

    2015-01-16

    We study the electrical transport properties of atomically thin individual crystalline grains of MoS 2 with four-probe scanning tunneling microscopy. The monolayer MoS 2 domains are synthesized by chemical vapor deposition on SiO 2/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carriermore » density of the material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS 2 layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS 2. Finally, our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS 2.« less

  7. Scan line graphics generation on the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    1988-01-01

    Described here is how researchers implemented a scan line graphics generation algorithm on the Massively Parallel Processor (MPP). Pixels are computed in parallel and their results are applied to the Z buffer in large groups. To perform pixel value calculations, facilitate load balancing across the processors and apply the results to the Z buffer efficiently in parallel requires special virtual routing (sort computation) techniques developed by the author especially for use on single-instruction multiple-data (SIMD) architectures.

  8. Early In-Theater Management of Combat-Related Traumatic Brain Injury: A Prospective, Observational Study to Identify Opportunities for Performance Improvement

    DTIC Science & Technology

    2015-05-18

    Head computed tomographic scan most commonly found skull fracture (68.9%), subdural hematoma (54.1%), and cerebral contusion (51.4%). Hypertonic saline...were common on presentation. Head computed tomographic scan most commonly found skull fracture (68.9%), subdural hematoma (54.1%), and cerebral con...reported was skull fracture, occurring in 68.9% of patients. The most common type of intracranial hemorrhage was subdural hematoma (54.1%). Multiple

  9. The ultrasound brain helmet: early human feasibility study of multiple simultaneous 3D scans of cerebral vasculature

    NASA Astrophysics Data System (ADS)

    Lindsey, Brooks D.; Ivancevich, Nikolas M.; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A.; Laskowitz, Daniel T.; Smith, Stephen W.

    2009-02-01

    We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time 3D scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64° pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128° sector, two simultaneous parasagittal images merged into a 128° × 64° C-mode plane, and a simultaneous 64° axial image. Real-time 3D color Doppler images acquired in initial clinical studies after contrast injection demonstrate flow in several representative blood vessels. An offline Doppler rendering of data from two transducers simultaneously scanning via the temporal windows provides an early visualization of the flow in vessels on both sides of the brain. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission, thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.

  10. 3D face recognition based on multiple keypoint descriptors and sparse representation.

    PubMed

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying; Lu, Jianwei

    2014-01-01

    Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD) and the sparse representation-based classification (SRC). We call the proposed method 3DMKDSRC for short. Specifically, with 3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions. Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm.

  11. Brown Adipose Tissue Quantification in Human Neonates Using Water-Fat Separated MRI

    PubMed Central

    Rasmussen, Jerod M.; Entringer, Sonja; Nguyen, Annie; van Erp, Theo G. M.; Guijarro, Ana; Oveisi, Fariba; Swanson, James M.; Piomelli, Daniele; Wadhwa, Pathik D.

    2013-01-01

    There is a major resurgence of interest in brown adipose tissue (BAT) biology, particularly regarding its determinants and consequences in newborns and infants. Reliable methods for non-invasive BAT measurement in human infants have yet to be demonstrated. The current study first validates methods for quantitative BAT imaging of rodents post mortem followed by BAT excision and re-imaging of excised tissues. Identical methods are then employed in a cohort of in vivo infants to establish the reliability of these measures and provide normative statistics for BAT depot volume and fat fraction. Using multi-echo water-fat MRI, fat- and water-based images of rodents and neonates were acquired and ratios of fat to the combined signal from fat and water (fat signal fraction) were calculated. Neonatal scans (n = 22) were acquired during natural sleep to quantify BAT and WAT deposits for depot volume and fat fraction. Acquisition repeatability was assessed based on multiple scans from the same neonate. Intra- and inter-rater measures of reliability in regional BAT depot volume and fat fraction quantification were determined based on multiple segmentations by two raters. Rodent BAT was characterized as having significantly higher water content than WAT in both in situ as well as ex vivo imaging assessments. Human neonate deposits indicative of bilateral BAT in spinal, supraclavicular and axillary regions were observed. Pairwise, WAT fat fraction was significantly greater than BAT fat fraction throughout the sample (ΔWAT-BAT = 38%, p<10−4). Repeated scans demonstrated a high voxelwise correlation for fat fraction (Rall = 0.99). BAT depot volume and fat fraction measurements showed high intra-rater (ICCBAT,VOL = 0.93, ICCBAT,FF = 0.93) and inter-rater reliability (ICCBAT,VOL = 0.86, ICCBAT,FF = 0.93). This study demonstrates the reliability of using multi-echo water-fat MRI in human neonates for quantification throughout the torso of BAT depot volume and fat fraction measurements. PMID:24205024

  12. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, A; Rangaraj, D; Perez-Andujar, A

    2016-06-15

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each weremore » calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.« less

  13. Gabor fusion master slave optical coherence tomography

    PubMed Central

    Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller; Bang, Ole; Rivet, Sylvain; Keane, Pearse A.; Heath, David-Garway; Rajendram, Ranjan; Podoleanu, Adrian

    2017-01-01

    This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT system, where dynamic focusing is possible. The Gabor filtering processing following collection of multiple data from different focus positions is different from that utilized by a conventional swept source OCT system using a Fast Fourier transform (FFT) to produce an A-scan. Instead of selecting the bright parts of A-scans for each focus position, to be placed in a final B-scan image (or in a final volume), and discarding the rest, the MS principle can be employed to advantageously deliver signal from the depths within each focus range only. The MS procedure is illustrated on creating volumes of data of constant transversal resolution from a cucumber and from an insect by repeating data acquisition for 4 different focus positions. In addition, advantage is taken from the tolerance to dispersion of the MS principle that allows automatic compensation for dispersion created by layers above the object of interest. By combining the two techniques, Gabor filtering and Master/Slave, a powerful imaging instrument is demonstrated. The master/slave technique allows simultaneous display of three categories of images in one frame: multiple depth en-face OCT images, two cross-sectional OCT images and a confocal like image obtained by averaging the en-face ones. We also demonstrate the superiority of MS-OCT over its FFT based counterpart when used with a Gabor filtering OCT instrument in terms of the speed of assembling the fused volume. For our case, we show that when more than 4 focus positions are required to produce the final volume, MS is faster than the conventional FFT based procedure. PMID:28270987

  14. Continued Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Wincheski, Russell; Jablonski, David; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are used in essentially all NASA spacecraft, launch. vehicles and payloads to contain high-pressure fluids for propulsion, life support systems and science experiments. Failure of any COPV either in flight or during ground processing would result in catastrophic damage to the spacecraft or payload, and could lead to loss of life. Therefore, NASA continues to investigate new methods to non-destructively inspect (NDE) COPVs for structural anomalies and to provide a means for in-situ structural health monitoring (SHM) during operational service. Partnering with JENTEK Sensors, engineers at NASA, Kennedy Space Center have successfully conducted a proof-of-concept study to develop Meandering Winding Magnetometer (MWM) eddy current sensors designed to make direct measurements of the stresses of the internal layers of a carbon fiber composite wrapped COPV. During this study three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed good correlation with actual surface strain gage measurements. MWM-Array technology for scanning COPVs can reliably be used to image and detect mechanical damage. To validate this conclusion, several COPVs were scanned to obtain a baseline, and then each COPV was impacted at varying energy levels and then rescanned. The baseline subtracted images were used to demonstrate damage detection. These scans were performed with two different MWM-Arrays. with different geometries for near-surface and deeper penetration imaging at multiple frequencies and in multiple orientations of the linear MWM drive. This presentation will include a review of micromechanical models that relate measured sensor responses to composite material constituent properties, validated by the proof of concept study, as the basis for SHM and NDE data analysis as well as potential improvements including design changes to miniaturize and make the sensors durable in the vacuum of space

  15. Automated adipose study for assessing cancerous human breast tissue using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gan, Yu; Yao, Xinwen; Chang, Ernest W.; Bin Amir, Syed A.; Hibshoosh, Hanina; Feldman, Sheldon; Hendon, Christine P.

    2017-02-01

    Breast cancer is the third leading cause of death in women in the United States. In human breast tissue, adipose cells are infiltrated or replaced by cancer cells during the development of breast tumor. Therefore, an adipose map can be an indicator of identifying cancerous region. We developed an automated classification method to generate adipose map within human breast. To facilitate the automated classification, we first mask the B-scans from OCT volumes by comparing the signal noise ratio with a threshold. Then, the image was divided into multiple blocks with a size of 30 pixels by 30 pixels. In each block, we extracted texture features such as local standard deviation, entropy, homogeneity, and coarseness. The features of each block were input to a probabilistic model, relevance vector machine (RVM), which was trained prior to the experiment, to classify tissue types. For each block within the B-scan, RVM identified the region with adipose tissue. We calculated the adipose ratio as the number of blocks identified as adipose over the total number of blocks within the B-scan. We obtained OCT images from patients (n = 19) in Columbia medical center. We automatically generated the adipose maps from 24 B-scans including normal samples (n = 16) and cancerous samples (n = 8). We found the adipose regions show an isolated pattern that in cancerous tissue while a clustered pattern in normal tissue. Moreover, the adipose ratio (52.30 ± 29.42%) in normal tissue was higher than the that in cancerous tissue (12.41 ± 10.07%).

  16. Multiple approaches to detect outliers in a genome scan for selection in ocellated lizards (Lacerta lepida) along an environmental gradient.

    PubMed

    Nunes, Vera L; Beaumont, Mark A; Butlin, Roger K; Paulo, Octávio S

    2011-01-01

    Identification of loci with adaptive importance is a key step to understand the speciation process in natural populations, because those loci are responsible for phenotypic variation that affects fitness in different environments. We conducted an AFLP genome scan in populations of ocellated lizards (Lacerta lepida) to search for candidate loci influenced by selection along an environmental gradient in the Iberian Peninsula. This gradient is strongly influenced by climatic variables, and two subspecies can be recognized at the opposite extremes: L. lepida iberica in the northwest and L. lepida nevadensis in the southeast. Both subspecies show substantial morphological differences that may be involved in their local adaptation to the climatic extremes. To investigate how the use of a particular outlier detection method can influence the results, a frequentist method, DFDIST, and a Bayesian method, BayeScan, were used to search for outliers influenced by selection. Additionally, the spatial analysis method was used to test for associations of AFLP marker band frequencies with 54 climatic variables by logistic regression. Results obtained with each method highlight differences in their sensitivity. DFDIST and BayeScan detected a similar proportion of outliers (3-4%), but only a few loci were simultaneously detected by both methods. Several loci detected as outliers were also associated with temperature, insolation or precipitation according to spatial analysis method. These results are in accordance with reported data in the literature about morphological and life-history variation of L. lepida subspecies along the environmental gradient. © 2010 Blackwell Publishing Ltd.

  17. Protein alignment algorithms with an efficient backtracking routine on multiple GPUs.

    PubMed

    Blazewicz, Jacek; Frohmberg, Wojciech; Kierzynka, Michal; Pesch, Erwin; Wojciechowski, Pawel

    2011-05-20

    Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment. In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable. The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.

  18. Large-region acoustic source mapping using a movable array and sparse covariance fitting.

    PubMed

    Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L

    2017-01-01

    Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].

  19. Proof of concept demonstration for coherent beam pattern measurements of KID detectors

    NASA Astrophysics Data System (ADS)

    Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.

    2016-07-01

    Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.

  20. Autoblocker: a system for detecting and blocking of network scanning based on analysis of netflow data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobyshev, A.; Lamore, D.; Demar, P.

    2004-12-01

    In a large campus network, such at Fermilab, with tens of thousands of nodes, scanning initiated from either outside of or within the campus network raises security concerns. This scanning may have very serious impact on network performance, and even disrupt normal operation of many services. In this paper we introduce a system for detecting and automatic blocking excessive traffic of different kinds of scanning, DoS attacks, virus infected computers. The system, called AutoBlocker, is a distributed computing system based on quasi-real time analysis of network flow data collected from the border router and core switches. AutoBlocker also has anmore » interface to accept alerts from IDS systems (e.g. BRO, SNORT) that are based on other technologies. The system has multiple configurable alert levels for the detection of anomalous behavior and configurable trigger criteria for automated blocking of scans at the core or border routers. It has been in use at Fermilab for about 2 years, and has become a very valuable tool to curtail scan activity within the Fermilab campus network.« less

  1. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    PubMed

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R G; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  2. Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection.

    PubMed

    Schwering, Monika; Song, Joanna; Louie, Marie; Turner, Raymond J; Ceri, Howard

    2013-09-01

    A model biofilm, formed of multiple species from environmental drinking water, including opportunistic pathogens, was created to explore the tolerance of multi-species biofilms to chlorine levels typical of water-distribution systems. All species, when grown planktonically, were killed by concentrations of chlorine within the World Health Organization guidelines (0.2-5.0 mg l(-1)). Higher concentrations (1.6-40-fold) of chlorine were required to eradicate biofilm populations of these strains, ~70% of biofilms tested were not eradicated by 5.0 mg l(-1) chlorine. Pathogenic bacteria within the model multi-species biofilms had an even more substantial increase in chlorine tolerance; on average ~700-1100 mg l(-1) chlorine was required to eliminate pathogens from the biofilm, 50-300-fold higher than for biofilms comprising single species. Confocal laser scanning microscopy of biofilms showed distinct 3D structures and multiple cell morphologies and arrangements. Overall, this study showed a substantial increase in the chlorine tolerance of individual species with co-colonization in a multi-species biofilm that was far beyond that expected as a result of biofilm growth on its own.

  3. A model of distributed phase aberration for deblurring phase estimated from scattering.

    PubMed

    Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2010-01-01

    Correction of aberration in ultrasound imaging uses the response of a point reflector or its equivalent to characterize the aberration. Because a point reflector is usually unavailable, its equivalent is obtained using statistical methods, such as processing reflections from multiple focal regions in a random medium. However, the validity of methods that use reflections from multiple points is limited to isoplanatic patches for which the aberration is essentially the same. In this study, aberration is modeled by an offset phase screen to relax the isoplanatic restriction. Methods are developed to determine the depth and phase of the screen and to use the model for compensation of aberration as the beam is steered. Use of the model to enhance the performance of the noted statistical estimation procedure is also described. Experimental results obtained with tissue-mimicking phantoms that implement different models and produce different amounts of aberration are presented to show the efficacy of these methods. The improvement in b-scan resolution realized with the model is illustrated. The results show that the isoplanatic patch assumption for estimation of aberration can be relaxed and that propagation-path characteristics and aberration estimation are closely related.

  4. Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI.

    PubMed

    Liu, Peiying; Welch, Babu G; Li, Yang; Gu, Hong; King, Darlene; Yang, Yihong; Pinho, Marco; Lu, Hanzhang

    2017-02-01

    Diagnosis and treatment monitoring of cerebrovascular diseases routinely require hemodynamic imaging of the brain. Current methods either only provide part of the desired information or require the injection of multiple exogenous agents. In this study, we developed a multiparametric imaging scheme for the imaging of brain hemodynamics and function using gas-inhalation MRI. The proposed technique uses a single MRI scan to provide simultaneous measurements of baseline venous cerebral blood volume (vCBV), cerebrovascular reactivity (CVR), bolus arrival time (BAT), and resting-state functional connectivity (fcMRI). This was achieved with a novel, concomitant O 2 and CO 2 gas inhalation paradigm, rapid MRI image acquisition with a 9.3min BOLD sequence, and an advanced algorithm to extract multiple hemodynamic information from the same dataset. In healthy subjects, CVR and vCBV values were 0.23±0.03%/mmHg and 0.0056±0.0006%/mmHg, respectively, with a strong correlation (r=0.96 for CVR and r=0.91 for vCBV) with more conventional, separate acquisitions that take twice the scan time. In patients with Moyamoya syndrome, CVR in the stenosis-affected flow territories (typically anterior-cerebral-artery, ACA, and middle-cerebral-artery, MCA, territories) was significantly lower than that in posterior-cerebral-artery (PCA), which typically has minimal stenosis, flow territories (0.12±0.06%/mmHg vs. 0.21±0.05%/mmHg, p<0.001). BAT of the gas bolus was significantly longer (p=0.008) in ACA/MCA territories, compared to PCA, and the maps were consistent with the conventional contrast-enhanced CT perfusion method. FcMRI networks were robustly identified from the gas-inhalation MRI data after factoring out the influence of CO 2 and O 2 on the signal time course. The spatial correspondence between the gas-data-derived fcMRI maps and those using a separate, conventional fcMRI scan was excellent, showing a spatial correlation of 0.58±0.17 and 0.64±0.20 for default mode network and primary visual network, respectively. These findings suggest that advanced gas-inhalation MRI provides reliable measurements of multiple hemodynamic parameters within a clinically acceptable imaging time and is suitable for patient examinations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Multiparametric imaging of brain hemodynamics and function using gas-inhalation MRI

    PubMed Central

    Liu, Peiying; Welch, Babu G.; Li, Yang; Gu, Hong; King, Darlene; Yang, Yihong; Pinho, Marco; Lu, Hanzhang

    2016-01-01

    Diagnosis and treatment monitoring of cerebrovascular diseases routinely require hemodynamic imaging of the brain. Current methods either only provide part of the desired information or require the injection of multiple exogenous agents. In this study, we developed a multiparametric imaging scheme for the imaging of brain hemodynamics and function using gas-inhalation MRI. The proposed technique uses a single MRI scan to provide simultaneous measurements of baseline venous cerebral blood volume (vCBV), cerebrovascular reactivity (CVR), bolus arrival time (BAT), and resting-state functional connectivity (fcMRI). This was achieved with a novel, concomitant O2 and CO2 gas inhalation paradigm, rapid MRI image acquisition with a 9.3 min BOLD sequence, and an advanced algorithm to extract multiple hemodynamic information from the same dataset. In healthy subjects, CVR and vCBV values were 0.23±0.03 %/mmHg and 0.0056±0.0006 %/mmHg, respectively, with a strong correlation (r=0.96 for CVR and r=0.91 for vCBV) with more conventional, separate acquisitions that take twice the scan time. In patients with Moyamoya syndrome, CVR in the stenosis-affected flow territories (typically anterior-cerebral-artery, ACA, and middle-cerebral-artery, MCA, territories) was significantly lower than that in posterior-cerebral-artery (PCA), which typically has minimal stenosis, flow territories (0.12±0.06 %/mmHg vs. 0.21±0.05 %/mmHg, p<0.001). BAT of the gas bolus was significantly longer (p=0.008) in ACA/MCA territories, compared to PCA, and the maps were consistent with the conventional contrast-enhanced CT perfusion method. FcMRI networks were robustly identified from the gas-inhalation MRI data after factoring out the influence of CO2 and O2 on the signal time course. The spatial correspondence between the gas-data-derived fcMRI maps and those using a separate, conventional fcMRI scan was excellent, showing a spatial correlation of 0.58±0.17 and 0.64±0.20 for default mode network and primary visual network, respectively. These findings suggest that advanced gas-inhalation MRI provides reliable measurements of multiple hemodynamic parameters within a clinically acceptable imaging time and is suitable for patient examinations. PMID:27693197

  6. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    DOE PAGES

    Parish, Chad M.; Miller, Michael K.

    2014-12-09

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer to micrometer scale materials analysis. The application of these methods is applied to NFAs as a test case and is compared to both conventional STEM methods as well as complementary methods such as scanning electron microscopy and atom probe tomography.more » In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis.« less

  7. [Management of hepatic injuries with multiple trauma in the emergency unit. Report of three cases].

    PubMed

    Qamouss, Y; Belyamani, L; Azendour, H; Balkhi, H; Haimeur, C; Atmani, M

    2006-01-01

    The problems put by the blunt hepatic injuries at the multiple traumas are discussed after the exposition of three observations. 60% of the blunt hepatic injuries are due to the accidents of the public way. The strategy diagnosis and therapeutic facing a hepatic lesion remains guided by the patient's state haemodynamic. The exam essential to the arrival in the sieve of the emergencies is the abdominal scan that searches for one extrusion intra and possibly retroperitoneal and analyze the hepatic parenchyrma. However, it depends extensively on the experience of the echographist. The city scan stood to the first plan of the medical imagery: it permits a precise diagnosis of the parenchymateuses hepatic lesions, specify the abundance of the hemoperitoine, facilitate the therapeutic conduct in presence of associated lesions and the surveillance of the blunt hepatic injuries.

  8. A spatial scan statistic for compound Poisson data.

    PubMed

    Rosychuk, Rhonda J; Chang, Hsing-Ming

    2013-12-20

    The topic of spatial cluster detection gained attention in statistics during the late 1980s and early 1990s. Effort has been devoted to the development of methods for detecting spatial clustering of cases and events in the biological sciences, astronomy and epidemiology. More recently, research has examined detecting clusters of correlated count data associated with health conditions of individuals. Such a method allows researchers to examine spatial relationships of disease-related events rather than just incident or prevalent cases. We introduce a spatial scan test that identifies clusters of events in a study region. Because an individual case may have multiple (repeated) events, we base the test on a compound Poisson model. We illustrate our method for cluster detection on emergency department visits, where individuals may make multiple disease-related visits. Copyright © 2013 John Wiley & Sons, Ltd.

  9. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  10. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections

    PubMed Central

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T. G.; Hendriks, Wiljan J. A. J.; Cortés, Jesús M.; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  11. Tuberculous Dactylitis with Concomitant Thyroid Involvement: A Rare Presentation of Childhood Tuberculosis.

    PubMed

    Qamar, Sobia; Naz, Farrah; Naz, Samia; Ejaz, Iftikhar

    2017-03-01

    Extrapulmonary tuberculosis rarely presents as thyroid involvement along with other manifestations, and poses a diagnostic challenge on account of paucibacillary nature of disease. In general, the diagnosis of tuberculosis is based on epidemiological risk factors, clinical features, imaging studies, in addition to a positive skin testing or Interferon Gamma Release Assay (IGRA). A 14-year boy presented with history of fever and weight loss for one year. On examination, he had painful swelling of fingers and toes along with a painless thyroid nodule and squint. Hand X-ray showed lytic-sclerotic lesions in phalanges. MRI of brian showed multiple ring enhancing lesions and radionuclide thyroid scan showed multinodular goitre. Histology showed epithelioid cell granulomas (thyroid and bone) and tuberculomas of brain confirmed tuberculosis. He responded well to four-drug anti-tuberculous therapy and his fever, squint, thyroid nodule, and dactylitis disappeared. Tuberculosis of thyroid, a rare phenomenon, can be diagnosed and treated well; if clinical index of suspicion is kept high, particularly in tuberculosis prevalent areas.

  12. Progression of regional grey matter atrophy in multiple sclerosis

    PubMed Central

    Marinescu, Razvan V; Young, Alexandra L; Firth, Nicholas C; Jorge Cardoso, M; Tur, Carmen; De Angelis, Floriana; Cawley, Niamh; Brownlee, Wallace J; De Stefano, Nicola; Laura Stromillo, M; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Geurts, Jeroen J G; Vrenken, Hugo; Wottschel, Viktor; Leurs, Cyra E; Uitdehaag, Bernard; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A; Chard, Declan; Thompson, Alan J; Barkhof, Frederik; Alexander, Daniel C; Ciccarelli, Olga

    2018-01-01

    Abstract See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article. Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis. PMID:29741648

  13. Progression of regional grey matter atrophy in multiple sclerosis.

    PubMed

    Eshaghi, Arman; Marinescu, Razvan V; Young, Alexandra L; Firth, Nicholas C; Prados, Ferran; Jorge Cardoso, M; Tur, Carmen; De Angelis, Floriana; Cawley, Niamh; Brownlee, Wallace J; De Stefano, Nicola; Laura Stromillo, M; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Geurts, Jeroen J G; Vrenken, Hugo; Wottschel, Viktor; Leurs, Cyra E; Uitdehaag, Bernard; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A; Chard, Declan; Thompson, Alan J; Barkhof, Frederik; Alexander, Daniel C; Ciccarelli, Olga

    2018-06-01

    See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article.Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis.

  14. Why do women seek ultrasound scans from commercial providers during pregnancy?

    PubMed

    Roberts, Julie; Griffiths, Frances E; Verran, Alice; Ayre, Catherine

    2015-05-01

    The commercial availability of ultrasound scans for pregnant women has been controversial yet little is known about why women make use of such services. This article reports on semi-structured interviews with women in the UK who have booked a commercial scan, focusing on the reasons women gave for booking commercially provided ultrasound during a low-risk pregnancy. Participants' reasons for booking a scan are presented in five categories: finding out the sex of the foetus; reassurance; seeing the baby; acquiring keepsakes and facilitating bonding. Our analysis demonstrates that women's reasons for booking commercial scans are often multiple and are shaped by experiences of antenatal care as well as powerful cultural discourses related to 'good' parenting and the use of technology in pregnancy. Sociological and public debate about the availability of commercial ultrasound and its social and personal impacts should consider the wider sociocultural context that structures women's choices to make use of such services. © 2015 Foundation for the Sociology of Health & Illness.

  15. A system architecture for sharing de-identified, research-ready brain scans and health information across clinical imaging centers.

    PubMed

    Chervenak, Ann L; van Erp, Theo G M; Kesselman, Carl; D'Arcy, Mike; Sobell, Janet; Keator, David; Dahm, Lisa; Murry, Jim; Law, Meng; Hasso, Anton; Ames, Joseph; Macciardi, Fabio; Potkin, Steven G

    2012-01-01

    Progress in our understanding of brain disorders increasingly relies on the costly collection of large standardized brain magnetic resonance imaging (MRI) data sets. Moreover, the clinical interpretation of brain scans benefits from compare and contrast analyses of scans from patients with similar, and sometimes rare, demographic, diagnostic, and treatment status. A solution to both needs is to acquire standardized, research-ready clinical brain scans and to build the information technology infrastructure to share such scans, along with other pertinent information, across hospitals. This paper describes the design, deployment, and operation of a federated imaging system that captures and shares standardized, de-identified clinical brain images in a federation across multiple institutions. In addition to describing innovative aspects of the system architecture and our initial testing of the deployed infrastructure, we also describe the Standardized Imaging Protocol (SIP) developed for the project and our interactions with the Institutional Review Board (IRB) regarding handling patient data in the federated environment.

  16. A System Architecture for Sharing De-Identified, Research-Ready Brain Scans and Health Information Across Clinical Imaging Centers

    PubMed Central

    Chervenak, Ann L.; van Erp, Theo G.M.; Kesselman, Carl; D’Arcy, Mike; Sobell, Janet; Keator, David; Dahm, Lisa; Murry, Jim; Law, Meng; Hasso, Anton; Ames, Joseph; Macciardi, Fabio; Potkin, Steven G.

    2015-01-01

    Progress in our understanding of brain disorders increasingly relies on the costly collection of large standardized brain magnetic resonance imaging (MRI) data sets. Moreover, the clinical interpretation of brain scans benefits from compare and contrast analyses of scans from patients with similar, and sometimes rare, demographic, diagnostic, and treatment status. A solution to both needs is to acquire standardized, research-ready clinical brain scans and to build the information technology infrastructure to share such scans, along with other pertinent information, across hospitals. This paper describes the design, deployment, and operation of a federated imaging system that captures and shares standardized, de-identified clinical brain images in a federation across multiple institutions. In addition to describing innovative aspects of the system architecture and our initial testing of the deployed infrastructure, we also describe the Standardized Imaging Protocol (SIP) developed for the project and our interactions with the Institutional Review Board (IRB) regarding handling patient data in the federated environment. PMID:22941984

  17. Influence of micro-oxidation on joints of C/C composites and GH3044 for large-size aerospace parts

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohong; Jin, Xiuxiu; Yan, Ningning; Yang, Li

    2017-11-01

    To improve the bonding strength of carbon/carbon (C/C) composites and GH3044 nickel-based superalloy, the bonding interlayer with Ti/Ni/Cu/Ni multiple foils were prepared by a two-step technique involving micro-oxidation and partial transient liquid phase (PTLP) process. Interface characteristics and mechanical behavior of joints were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser scanning confocal microscope (LSCM) and energy X-ray dispersive spectrometer (EDS). Results show that a porous layer on C/C composites is formed by micro-oxidation for more than 2 min at 1073 K in air, which provides a diffusion path for liquid phase to infiltrate into C/C substrate and generate a wedge interlocking interface. After micro-oxidation for 4 min, the shear strength of joints reaches 32.09 ± 1.98 MPa what is 36.73% higher than that of joints without micro-oxidation (23.47 ± 1.15 MPa). The increase of shear strength remarkably depends on physical interlocking and chemical bonding at porous interface.

  18. UV-Vis spectrophotometric studies of self-oxidation/dissociation of quaternary ammonium permanganates (QAP) - impact of solvent polarity

    NASA Astrophysics Data System (ADS)

    Bank, Suraj Prakash; Guru, Partha Sarathi; Dash, Sukalyan

    2015-05-01

    Self-oxidation/dissociation of some quaternary ammonium permanganates (QAPs), such as cetyltrimethylammonium permanganate (CTAP) and tetrabutylammonium permanganate (TBAP), have been studied spectrophotometrically in six different organic solvent media of different polarities wherein the compounds show good solubility and stability. The optical densities of the substrates at zero time (ODo) and first-order rate constants of dissociation (k1) have been determined from their successive scanning for 40 min. At comparable experimental conditions, absorption capabilities of the substrates are compared from the ODo values in various organic media; the stability of the solutions is compared from the successive scan spectra in those media. The ODo values and the k1 values have been plotted against some solvent parameters to understand their effects on the absorbance and reactivity of the QAPs. These data are also subjected to multiple regression analysis to explain the influence of various solvent parameters on the ion-pairing properties of the substrates, thus elucidating their effects on the process of self-oxidation/dissociation of the substrates.

  19. Multiple-Primitives Hierarchical Classification of Airborne Laser Scanning Data in Urban Areas

    NASA Astrophysics Data System (ADS)

    Ni, H.; Lin, X. G.; Zhang, J. X.

    2017-09-01

    A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects.

  20. Case report: liver abscess pyogenic after peritonitis appendix perforation

    NASA Astrophysics Data System (ADS)

    Damanik, E. H.; Ginting, F.

    2018-03-01

    Two of the most common liver abscess is anamoebic liver abscess and pyogenic liver abscess (PLA). PLA could be as singular or multiple abscesses. It is usually caused by Klebsiella pneumonia and Escherichia coli. Historically, PLA is usually caused by acute appendicitis, but with developed of surgical practice and microbiology, the number of events has decreased. Here we present a case of a39-year-old woman that developed a PLA after she had an appendectomy about six months ago. An ultrasonogram and abdominal scan showed an abscess in the right lobe. We performed paracentesis, and the result from the pus culturewas positive for Escherichia coli with Extended-Spectrum Beta-Lactamase (ESBL) (+) that showed the same as the culture from lesion taken from her appendix. This report emphasizes the fact that, nowadays we still found Pyogenic liver abscess after peritonitis appendix perforation.

  1. Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes

    DOEpatents

    Crewe, Albert V.

    2000-01-01

    Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.

  2. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, A.C.; Zheng, W.; Haacke, E.M.

    To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximalmore » to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.« less

  3. Multiple system atrophy following chronic carbon disulfide exposure.

    PubMed Central

    Frumkin, H

    1998-01-01

    Carbon disulfide toxicity is well characterized. The principal target organ is the nervous system, although cardiovascular, reproductive, ophthalmologic, and other effects are also recognized. The neurotoxicity manifests in three ways: encephalopathy, peripheral and cranial nerve dysfunction, and movement abnormalities. This report describes a case of olivopontocerebellar atrophy, a form of multiple system atrophy, developing in an adult after over 30 years of occupational exposure to carbon disulfide. The patient presented with the insidious onset of balance problems, impotence, and irritability, without tremor, cogwheel rigidity, bradykinesia, or changes in facial expression. Over the next few years severe ataxia developed, and the clinical diagnosis was confirmed with computed tomography and magnetic resonance imaging scans. The patient experienced multiple medical complications and died approximately 9 years after diagnosis. This case is consistent with a large body of clinical and experimental literature, much of it 50 years old, showing that carbon disulfide can cause movement disorders. It also serves as a reminder that movement disorders, ranging from parkinsonism to dystonia, are associated with a variety of toxic exposures such as manganese, carbon monoxide, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and medications. Images Figure 1 PMID:9721261

  4. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    NASA Astrophysics Data System (ADS)

    Habib, Charbel A.; Zheng, Weili; Mark Haacke, E.; Webb, Sam; Nichol, Helen

    2010-07-01

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.

  5. Laser-Based Slam with Efficient Occupancy Likelihood Map Learning for Dynamic Indoor Scenes

    NASA Astrophysics Data System (ADS)

    Li, Li; Yao, Jian; Xie, Renping; Tu, Jinge; Feng, Chen

    2016-06-01

    Location-Based Services (LBS) have attracted growing attention in recent years, especially in indoor environments. The fundamental technique of LBS is the map building for unknown environments, this technique also named as simultaneous localization and mapping (SLAM) in robotic society. In this paper, we propose a novel approach for SLAMin dynamic indoor scenes based on a 2D laser scanner mounted on a mobile Unmanned Ground Vehicle (UGV) with the help of the grid-based occupancy likelihood map. Instead of applying scan matching in two adjacent scans, we propose to match current scan with the occupancy likelihood map learned from all previous scans in multiple scales to avoid the accumulation of matching errors. Due to that the acquisition of the points in a scan is sequential but not simultaneous, there unavoidably exists the scan distortion at different extents. To compensate the scan distortion caused by the motion of the UGV, we propose to integrate a velocity of a laser range finder (LRF) into the scan matching optimization framework. Besides, to reduce the effect of dynamic objects such as walking pedestrians often existed in indoor scenes as much as possible, we propose a new occupancy likelihood map learning strategy by increasing or decreasing the probability of each occupancy grid after each scan matching. Experimental results in several challenged indoor scenes demonstrate that our proposed approach is capable of providing high-precision SLAM results.

  6. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry for quick detection of sulfur-oxidizing bacteria in environmental water samples

    NASA Astrophysics Data System (ADS)

    Sun, Chengjun; Jiang, Fenghua; Gao, Wei; Li, Xiaoyun; Yu, Yanzhen; Yin, Xiaofei; Wang, Yong; Ding, Haibing

    2017-01-01

    Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry (EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time (within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.

  7. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.

    PubMed

    Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E

    2017-12-11

    Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.

  8. Three-dimensional quantitative T1 and T2 mapping of the carotid artery: Sequence design and in vivo feasibility.

    PubMed

    Coolen, Bram F; Poot, Dirk H J; Liem, Madieke I; Smits, Loek P; Gao, Shan; Kotek, Gyula; Klein, Stefan; Nederveen, Aart J

    2016-03-01

    A novel three-dimensional (3D) T1 and T2 mapping protocol for the carotid artery is presented. A 3D black-blood imaging sequence was adapted allowing carotid T1 and T2 mapping using multiple flip angles and echo time (TE) preparation times. B1 mapping was performed to correct for spatially varying deviations from the nominal flip angle. The protocol was optimized using simulations and phantom experiments. In vivo scans were performed on six healthy volunteers in two sessions, and in a patient with advanced atherosclerosis. Compensation for patient motion was achieved by 3D registration of the inter/intrasession scans. Subsequently, T1 and T2 maps were obtained by maximum likelihood estimation. Simulations and phantom experiments showed that the bias in T1 and T2 estimation was < 10% within the range of physiological values. In vivo T1 and T2 values for carotid vessel wall were 844 ± 96 and 39 ± 5 ms, with good repeatability across scans. Patient data revealed altered T1 and T2 values in regions of atherosclerotic plaque. The 3D T1 and T2 mapping of the carotid artery is feasible using variable flip angle and variable TE preparation acquisitions. We foresee application of this technique for plaque characterization and monitoring plaque progression in atherosclerotic patients. © 2015 Wiley Periodicals, Inc.

  9. Complex terrain experiments in the New European Wind Atlas.

    PubMed

    Mann, J; Angelou, N; Arnqvist, J; Callies, D; Cantero, E; Arroyo, R Chávez; Courtney, M; Cuxart, J; Dellwik, E; Gottschall, J; Ivanell, S; Kühn, P; Lea, G; Matos, J C; Palma, J M L M; Pauscher, L; Peña, A; Rodrigo, J Sanz; Söderberg, S; Vasiljevic, N; Rodrigues, C Veiga

    2017-04-13

    The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiments of which some are nearly completed while others are in the planning stage. All experiments focus on the flow properties that are relevant for wind turbines, so the main focus is the mean flow and the turbulence at heights between 40 and 300 m. Also extreme winds, wind shear and veer, and diurnal and seasonal variations of the wind are of interest. Common to all the experiments is the use of Doppler lidar systems to supplement and in some cases replace completely meteorological towers. Many of the lidars will be equipped with scan heads that will allow for arbitrary scan patterns by several synchronized systems. Two pilot experiments, one in Portugal and one in Germany, show the value of using multiple synchronized, scanning lidar, both in terms of the accuracy of the measurements and the atmospheric physical processes that can be studied. The experimental data will be used for validation of atmospheric flow models and will by the end of the project be freely available.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Authors.

  10. A novel liquid chromatography Orbitrap mass spectrometry method with full scan for simultaneous determination of multiple bioactive constituents of Shenkang injection in rat tissues: Application to tissue distribution and pharmacokinetic studies.

    PubMed

    Yang, Jie; Sun, Zhi; Li, Duolu; Duan, Fei; Li, Zhuolun; Lu, Jingli; Shi, Yingying; Xu, Tanye; Zhang, Xiaojian

    2018-06-07

    Shenkang injection is a traditional Chinese formula with good curative effect on chronic renal failure. In this paper, a novel, rapid and sensitive ultra high performance liquid chromatography coupled with Q Exactive hybrid quadrupole orbitrap high resolution accurate mass spectrometry was developed and validated for simultaneous determination of seven bioactive constituents of Shenkang injection in rat plasma and tissues after intravenous administration. Acetonitrile was used as protein precipitation agent in biological samples dispose with carbamazepine as internal standard. The chromatographic separation was carried out on a C 18 column with a gradient mobile phase consisting of acetonitrile and water (containing 0.1% formic acid). The MS analysis was performed in the full scan positive and negative ion mode. The lower limits of quantification for the seven analytes in rat plasma and tissues were 0.1-10 ng/mL. The validated method was successfully applied to tissue distribution and pharmacokinetic studies of Shenkang injection after intravenous administration. The results of the tissue distribution study showed that the high concentration of seven constituents were primarily in the kidney tract. This is the first time to report the application of Q-Orbitrap with full scan mass spectrometry in tissue distribution and pharmacokinetic studies of Shenkang injection. This article is protected by copyright. All rights reserved.

  11. Complex terrain experiments in the New European Wind Atlas

    PubMed Central

    Angelou, N.; Callies, D.; Cantero, E.; Arroyo, R. Chávez; Courtney, M.; Cuxart, J.; Dellwik, E.; Gottschall, J.; Ivanell, S.; Kühn, P.; Lea, G.; Matos, J. C.; Palma, J. M. L. M.; Peña, A.; Rodrigo, J. Sanz; Söderberg, S.; Vasiljevic, N.; Rodrigues, C. Veiga

    2017-01-01

    The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiments of which some are nearly completed while others are in the planning stage. All experiments focus on the flow properties that are relevant for wind turbines, so the main focus is the mean flow and the turbulence at heights between 40 and 300 m. Also extreme winds, wind shear and veer, and diurnal and seasonal variations of the wind are of interest. Common to all the experiments is the use of Doppler lidar systems to supplement and in some cases replace completely meteorological towers. Many of the lidars will be equipped with scan heads that will allow for arbitrary scan patterns by several synchronized systems. Two pilot experiments, one in Portugal and one in Germany, show the value of using multiple synchronized, scanning lidar, both in terms of the accuracy of the measurements and the atmospheric physical processes that can be studied. The experimental data will be used for validation of atmospheric flow models and will by the end of the project be freely available. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265025

  12. Reinvestigating the surface and bulk electronic properties of Cd3As2

    NASA Astrophysics Data System (ADS)

    Roth, S.; Lee, H.; Sterzi, A.; Zacchigna, M.; Politano, A.; Sankar, R.; Chou, F. C.; Di Santo, G.; Petaccia, L.; Yazyev, O. V.; Crepaldi, A.

    2018-04-01

    Cd3As2 is widely considered among the few materials realizing the three-dimensional (3D) Dirac semimetal phase. Linearly dispersing states, responsible for the ultrahigh charge mobility, have been reported by several angle-resolved photoelectron spectroscopy (ARPES) investigations. However, in spite of the general agreement between these studies, some details are at odds. From scanning tunneling microscopy and optical experiments under magnetic field, a puzzling scenario emerges in which multiple states show linear dispersion at different energy scales. Here, we solve this apparent controversy by reinvestigating the electronic properties of the (112) surface of Cd3As2 by combining ARPES and theoretical calculations. We disentangle the presence of massive and massless metallic bulk and surface states, characterized by different symmetries. Our systematic experimental and theoretical study clarifies the complex band dispersion of Cd3As2 by extending the simplistic 3D Dirac semimetal model to account for multiple bulk and surface states crossing the Fermi level, and thus contributing to the unique material transport properties.

  13. Design of dual multiple aperture devices for dynamical fluence field modulated CT.

    PubMed

    Mathews, Aswin John; Tilley, Steven; Gang, Grace; Kawamoto, Satomi; Zbijewski, Wojciech; Siewerdsen, Jeffrey H; Levinson, Reuven; Webster Stayman, J

    2016-07-01

    A Multiple Aperture Device (MAD) is a novel x-ray beam modulator that uses binary filtration on a fine scale to spatially modulate an x-ray beam. Using two MADs in series enables a large variety of fluence profiles by shifting the MADS relative to each other. This work details the design and control of dual MADs for a specific class of desired fluence patterns. Specifically, models of MAD operation are integrated into a best fit objective followed by CMA-ES optimization. To illustrate this framework we demonstrate the design process for an abdominal phantom with the goal of uniform detected signal. Achievable fluence profiles show good agreement with target fluence profiles, and the ability to flatten projections when a phantom is scanned is demonstrated. Simulated data reconstruction using traditional tube current modulation (TCM) and MAD filtering with TCM are investigated with the dual MAD system demonstrating more uniformity in noise and illustrating the potential for dose reduction under a maximum noise level constraint.

  14. [A sixty-year-old man suffering from multiple system atrophy with pneumatosis intestinalis].

    PubMed

    Shimizu, Fumitaka; Kawai, Motoharu; Ogasawara, Jun-Ichi; Negoro, Kiyoshi; Kanda, Takashi

    2007-01-01

    We herein report a 60-year-old man demonstrating multiple system atrophy of the cerebellar type (MSA-C) with a five-year of clinical history, who developed severe constipation followed by watery diarrhea. An abdominal CT scan showed free air in the abdominal cavity and extensive pericolic gas accumulation in the ascending and transverse colon. He was diagnosed to have pneumatosis intestinalis (PI). The air in the abdominal cavity as well as in the wall of the colon thereafter disappeared after nine days' of conservative therapy. The presense of chronic idiopathic intestinal pseudo-obstruction due to severe dysautonomia and a longstanding bed-ridden state may have been the cause of PI in this patient. This is the first case report of PI associated with MSA; however, the association of PI may have been overlooked in this disorder because of severe constipation and diarrhea, the two cardinal symptoms of PI, which happen to also be two of the typical symptoms of MSA itself.

  15. Polyethylenimine/silk fibroin multilayers deposited nanofibrics for cell culture.

    PubMed

    Ye, Xinguo; Li, Sheng; Chen, Xuanxuan; Zhan, Yingfei; Li, Xiaonan

    2017-01-01

    Scaffold with good three-dimensional (3D) structure and appropriate surface modification is essential to tissue regeneration in the treatment of tissue or organ failure. Silk fibroin (SF) is a promising scaffolding material with high biocompatibility, cytocompatibility, biodegradability and flexibility. In this study, positively charged polyethylenimine (PEI) and negatively charged SF assembled alternately onto cellulose nanofibrous substrates hydrolyzed from electrospun cellulose acetate nanofibrous mats. The obtained nanofibrous membranes modified with multiple layers of PEI/SF were characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. L929 cells were applied to examine the cytocompatibility of PEI/SF coated membranes. The results demonstrated that the nanofibrous membranes after modification with multiple layers of PEI/SF maintained 3D nanofibrous structure, and cells cultured on them showed good adherence and spreading on them as well, which indicated that PEI/SF coated membranes had potential application in tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Active sensing in the categorization of visual patterns

    PubMed Central

    Yang, Scott Cheng-Hsin; Lengyel, Máté; Wolpert, Daniel M

    2016-01-01

    Interpreting visual scenes typically requires us to accumulate information from multiple locations in a scene. Using a novel gaze-contingent paradigm in a visual categorization task, we show that participants' scan paths follow an active sensing strategy that incorporates information already acquired about the scene and knowledge of the statistical structure of patterns. Intriguingly, categorization performance was markedly improved when locations were revealed to participants by an optimal Bayesian active sensor algorithm. By using a combination of a Bayesian ideal observer and the active sensor algorithm, we estimate that a major portion of this apparent suboptimality of fixation locations arises from prior biases, perceptual noise and inaccuracies in eye movements, and the central process of selecting fixation locations is around 70% efficient in our task. Our results suggest that participants select eye movements with the goal of maximizing information about abstract categories that require the integration of information from multiple locations. DOI: http://dx.doi.org/10.7554/eLife.12215.001 PMID:26880546

  17. SEM image quality enhancement technology for bright field mask

    NASA Astrophysics Data System (ADS)

    Fukuda, Naoki; Chihara, Yuta; Shida, Soichi; Ito, Keisuke

    2013-09-01

    Bright-field photomasks are used to print small contact holes via ArF immersion multiple patterning lithography. There are some technical difficulties when small floating dots are to be measured by SEM tools because of a false imaging shadow. However, a new scan technology of Multi Vision Metrology SEMTM E3630 presents a solution for this issue. The combination of new scan technology and the other MVM-SEM® functions can provide further extended applications with more accurate measurement results.

  18. Multiple Strategy Bio-Detection Sensor Platforms Made From Carbon and Polymer Materials

    DTIC Science & Technology

    2006-01-31

    strands for detection purposes using the cyclic voltammetry (impedance) method. 6. Design of an actual set (Au patttern) to best detect the DNA binding. 7...chronoamperometry and cyclic voltammetry are used for electropolymerization. When chronoamperometry is used, the applied potential was kept at 0.8V, and the...others remained constant. When cyclic voltammetry is used, the scan rate is kept at 1OOmV/s with a scan range from -0.4V tol.OV. The thickness or the

  19. A Tale of Two Cities - HSI-DOAS Measurements of Air Quality

    NASA Astrophysics Data System (ADS)

    Graves, Rosemarie; Leigh, Roland; Anand, Jasdeep; McNally, Michael; Lawrence, James; Monks, Paul

    2013-04-01

    Differential Optical Absorption Spectroscopy is now commonly used as an air quality measuring system; primarily through the measurements of nitrogen dioxide (NO2) both as a ground-based and satellite technique. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95˚ field of view (FOV) between the zenith and 5˚ below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1˚ per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. CityScan has been deployed in both London and Bologna, Italy during 2012. The London deployment took place as part of the large NERC funded ClearfLo project in January and July/August. CityScan was deployed in Bologna in June as part of the large EU project PEGASOS. Analysis of both of these campaigns of data will be used to give unprecedented levels of spatial information to air quality measurements whilst also showing the difference in air quality between a relatively isolated mega city and a smaller city situated in a very polluted region; in this case the Po Valley. Results from multiple CityScan instruments will be used in conjunction with data from ground based in-situ monitor networks to evaluate the ability of in-situ monitors to effectively assess the air quality in an urban environment. Trend analysis will also be shown to demonstrate any changes in the air quality in London during the time of the Olympic Games in comparison with a normal summer.

  20. Magnetic resonance imaging in stress fractures and shin splints.

    PubMed

    Aoki, Yoshimitsu; Yasuda, Kazunori; Tohyama, Harukazu; Ito, Hirokazu; Minami, Akio

    2004-04-01

    The purpose of the current study was to determine whether stress fractures and shin splints could be discriminated with MRI in the early phase. Twenty-two athletes, who had pain in the middle or distal part of their leg during or after sports activity, were evaluated with radiographs and MRI scans. Stress fractures were diagnosed when consecutive radiographs showed local periosteal reaction or a fracture line, and shin splints were diagnosed in all the other cases. In all eight patients with stress fractures, an abnormally wide high signal in the localized bone marrow was the most detectable in the coronal fat-suppressed MRI scan. In 11 patients with shin splints, the coronal fat-suppressed MRI scans showed a linear abnormally high signal along the medial posterior surface of the tibia, and in seven patients with shin splints, the MRI scans showed a linear abnormally high signal along the medial bone marrow. No MRI scans of shin splints showed an abnormally wide high signal in the bone marrow as observed on MRI scans of stress fractures. This study showed that fat-suppressed MRI is useful for discrimination between stress fracture and shin splints before radiographs show a detectable periosteal reaction in the tibia.

  1. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.

    1991-01-01

    The following subject areas are covered: General Reflector Antenna Systems Program version 7(GRASP7); Multiple Reflector Analysis Program for Cylindrical Antennas (MRAPCA); Tri-Reflector 2D Synthesis Code (TRTDS); a geometrical optics and a physical optics synthesis techniques; beam scanning reflector, the type 2 and 6 reflectors, spherical reflector, and multiple reflector imaging systems; and radiometric array design.

  2. Multiple-Coil, Pulse-Induction Metal Detector

    NASA Technical Reports Server (NTRS)

    Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.

    1988-01-01

    Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.

  3. Analysis of patient CT dose data using virtualdose

    NASA Astrophysics Data System (ADS)

    Bennett, Richard

    X-ray computer tomography has many benefits to medical and research applications. Recently, over the last decade CT has had a large increase in usage in hospitals and medical diagnosis. In pediatric care, from 2000 to 2006, abdominal CT scans increased by 49 % and chest CT by 425 % in the emergency room (Broder 2007). Enormous amounts of effort have been performed across multiple academic and government groups to determine an accurate measure of organ dose to patients who undergo a CT scan due to the inherent risks with ionizing radiation. Considering these intrinsic risks, CT dose estimating software becomes a necessary tool that health care providers and radiologist must use to determine many metrics to base the risks versus rewards of having an x-ray CT scan. This thesis models the resultant organ dose as body mass increases for patients with all other related scan parameters fixed. In addition to this,this thesis compares a modern dose estimating software, VirtualDose CT to two other programs, CT-Expo and ImPACT CT. The comparison shows how the software's theoretical basis and the phantom they use to represent the human body affect the range of results in organ dose. CT-Expo and ImPACT CT dose estimating software uses a different model for anatomical representation of the organs in the human body and the results show how that approach dramatically changes the outcome. The results categorizes four datasets as compared to the three software types where the appropriate phantom was available. Modeling was done to simulate chest abdominal pelvis scans and whole body scans. Organ dose difference versus body mass index shows as body mass index (BMI) ranges from 23.5 kg/m 2 to 45 kg/m2 the amount of organ dose also trends a percent change from -4.58 to -176.19 %. Comparing organ dose difference with increasing x-ray tube potential from 120 kVp to 140 kVp the percent change in organ dose increases from 55 % to 65 % across all phantoms. In comparing VirtualDose to CT-Expo for organ dose difference versus age, male phantoms show percent difference of -19 % to 25 % for various organs minus bone surface and breast tissues results. Finally, for organ dose difference across all software for average adult phantom the results range from -45 % to 6 % in the comparison of ImPACT CT to VirtualDose and -27 % to 66 % for the comparison of CT-Expo to VirtualDose. In the comparison for increased BMI (done only in VirtualDose), results show that with all other parameters fixed, the organ dose goes down as BMI increases, which is due to the increase in adipose tissue and bulk of the patient model. The range of results when comparing all the three softwares have a wide range, in some cases greater than 150 %, it is evident that using a different anatomical basis for the human phantom and the theoretical basis for the dose estimation will cause fluctuation in the results. Therefore, choosing the software with the most accurate human phantom will provide a closer range to the true dose to the organ.

  4. Automated four color CD4/CD8 analysis of leukocytes by scanning fluorescence microscopy using Quantum dots

    NASA Astrophysics Data System (ADS)

    Bocsi, Jozsef; Mittag, Anja; Varga, Viktor S.; Molnar, Bela; Tulassay, Zsolt; Sack, Ulrich; Lenz, Dominik; Tarnok, Attila

    2006-02-01

    Scanning Fluorescence Microscope (SFM) is a new technique for automated motorized microscopes to measure multiple fluorochrome labeled cells (Bocsi et al. Cytometry 2004, 61A:1). The ratio of CD4+/CD8+ cells is an important in immune diagnostics in immunodeficiency and HIV. Therefor a four-color staining protocol (DNA, CD3, CD4 and CD8) for automated SFM analysis of lymphocytes was developed. EDTA uncoagulated blood was stained with organic and inorganic (Quantum dots) fluorochromes in different combinations. Aliquots of samples were measured by Flow Cytometry (FCM) and SFM. By SFM specimens were scanned and digitized using four fluorescence filter sets. Automated cell detection (based on Hoechst 33342 fluorescence), CD3, CD4 and CD8 detection were performed, CD4/CD8 ratio was calculated. Fluorescence signals were well separable on SFM and FCM. Passing and Bablok regression of all CD4/CD8 ratios obtained by FCM and SFM (F(X)=0.0577+0.9378x) are in the 95% confidence interval. Cusum test did not show significant deviation from linearity (P>0.10). This comparison indicates that there is no systemic bias between the two different methods. In SFM analyses the inorganic Quantum dot staining was very stable in PBS in contrast to the organic fluorescent dyes, but bleached shortly after mounting with antioxidant and free radical scavenger mounting media. This shows the difficulty of combinations of organic dyes and Quantum dots. Slide based multi-fluorescence labeling system and automated SFM are applicable tools for the CD4/CD8 ratio determination in peripheral blood samples. Quantum Dots are stable inorganic fluorescence labels that may be used as reliable high resolution dyes for cell labeling.

  5. A case of cetuximab-related tumour lysis syndrome in metastatic rectal carcinoma

    PubMed Central

    Haroon, Muhammad; Kwong, Whye Yan; Cantwell, Brian; Walker, Frank

    2010-01-01

    A 60-year-old man was diagnosed with a moderately differentiated adenocarcinoma in November 2006. The computed tomography (CT), magnetic resonance imaging (MRI) and whole-body positron emission tomography–CT (PET–CT) scan showed the presence of multiple liver metastases which were confined to its right lobe. He had the first session of a combined therapy with cetuximab and 5-fluorouracil (5-FU) in March 2009; however, soon afterwards, he presented with the symptoms, signs and biochemistry suggestive of tumour lysis syndrome. Our unusual case highlights that tumour lysis syndrome can also develop in ‘low risk’ category tumours, and that clinicians should be vigilant in identifying at-risk patients. PMID:28657052

  6. A New All Solid State Approach to Gaseous Pollutant Detection

    NASA Technical Reports Server (NTRS)

    Brown, V.; Tamstorf, K.

    1971-01-01

    Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.

  7. Hyperspectral light sheet microscopy

    NASA Astrophysics Data System (ADS)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  8. Hyperspectral light sheet microscopy.

    PubMed

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O; Huisken, Jan

    2015-09-02

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  9. Prostate-Specific Membrane Antigen-Negative Metastases-A Potential Pitfall in Prostate-Specific Membrane Antigen PET.

    PubMed

    Noto, Benjamin; Auf der Springe, Katharina; Huss, Sebastian; Allkemper, Thomas; Stegger, Lars

    2018-06-01

    Ga-PSMA-11 PET/CT was performed in a 74-year-old man because of biochemical recurrence of prostate cancer following radiation therapy of the prostate gland 24 months earlier. Besides focal nuclide accumulation in the prostate gland suggestive of local recurrence, PET scan revealed no further pathologic uptake. However, CT showed multiple pulmonic nodules suggestive of metastases. Thoracotomy and pathologic examination revealed the nodules to be prostate cancer metastasis. Furthermore, immunohistochemical staining with PSMA antibodies demonstrated a virtual lack of PSMA expression. This case demonstrates the possibility of PSMA-negative metastases of prostate cancer an important pitfall that should be known to physicians interpreting PSMA PET.

  10. Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2017-09-01

    A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  11. Metal artifact reduction for CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Martz, Harry; Cosman, Pamela

    2015-01-01

    In aviation security, checked luggage is screened by computed tomography scanning. Metal objects in the bags create artifacts that degrade image quality. Though there exist metal artifact reduction (MAR) methods mainly in medical imaging literature, they require knowledge of the materials in the scan, or are outlier rejection methods. To improve and evaluate a MAR method we previously introduced, that does not require knowledge of the materials in the scan, and gives good results on data with large quantities and different kinds of metal. We describe in detail an optimization which de-emphasizes metal projections and has a constraint for beam hardening and scatter. This method isolates and reduces artifacts in an intermediate image, which is then fed to a previously published sinogram replacement method. We evaluate the algorithm for luggage data containing multiple and large metal objects. We define measures of artifact reduction, and compare this method against others in MAR literature. Metal artifacts were reduced in our test images, even for multiple and large metal objects, without much loss of structure or resolution. Our MAR method outperforms the methods with which we compared it. Our approach does not make assumptions about image content, nor does it discard metal projections.

  12. Evaluation of the utility of 99m Tc-MDP bone scintigraphy versus MIBG scintigraphy and cross-sectional imaging for staging patients with neuroblastoma.

    PubMed

    Gauguet, Jean-Marc; Pace-Emerson, Tamara; Grant, Frederick D; Shusterman, Suzanne; DuBois, Steven G; Frazier, A Lindsay; Voss, Stephan D

    2017-11-01

    Accurate staging of neuroblastoma requires multiple imaging examinations. The purpose of this study was to determine the relative contribution of 99m Tc-methylene diphosphonate (MDP) bone scintigraphy (bone scan) versus metaiodobenzylguanidine scintigraphy (MIBG scan) for accurate staging of neuroblastoma. A medical record search by the identified patients with neuroblastoma from 1993 to 2012 who underwent both MIBG and bone scan for disease staging. Cross-sectional imaging was used to corroborate the scintigraphy results. Clinical records were used to correlate imaging findings with clinical staging and patient management. One hundred thirty-two patients underwent both MIBG and bone scan for diagnosis. All stage 1 (n = 12), 2 (n = 8), and 4S (n = 4) patients had a normal bone scan with no skeletal MIBG uptake. Six of 30 stage 3 patients had false (+) bone scans. In the 78 stage 4 patients, 58/78 (74%) were both skeletal MIBG(+)/bone scan (+). In 56 of the 58 cases, skeletal involvement detected with MIBG was equal to or greater than that detected by bone scan. Only 3/78 had (-) skeletal MIBG uptake and (+) bone scans; all 3 had other sites of metastatic disease. Five of 78 had (+) skeletal MIBG with a (-) bone scan, while 12/78 had no skeletal involvement by either MIBG or bone scan. In no case did a positive bone scan alone determine a stage 4 designation. In the staging of neuroblastoma, 99m Tc-MDP bone scintigraphy does not identify unique sites of disease that affect disease stage or clinical management, and in the majority of cases bone scans can be omitted from the routine neuroblastoma staging algorithm. © 2017 Wiley Periodicals, Inc.

  13. Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome

    PubMed Central

    Politis, Marios; Su, Paul; Turkheimer, Federico E.; Malik, Omar; Keihaninejad, Shiva; Wu, Kit; Waldman, Adam; Reynolds, Richard; Nicholas, Richard; Piccini, Paola

    2015-01-01

    The most accurate predictor of the subsequent development of multiple sclerosis in clinically isolated syndrome is the presence of lesions at magnetic resonance imaging. We used in vivo positron emission tomography with 11C-(R)-PK11195, a biomarker of activated microglia, to investigate the normal-appearing white matter and grey matter of subjects with clinically isolated syndrome to explore its role in the development of multiple sclerosis. Eighteen clinically isolated syndrome and eight healthy control subjects were recruited. Baseline assessment included: history, neurological examination, expanded disability status scale, magnetic resonance imaging and PK11195-positron emission tomography scans. All assessments except the PK11195-positron emission tomography scan were repeated over 2 years. SUPERPK methodology was used to measure the binding potential relative to the non-specific volume, BPND. We show a global increase of normal-appearing white matter PK11195 BPND in clinically isolated syndrome subjects compared with healthy controls (P = 0.014). Clinically isolated syndrome subjects with T2 magnetic resonance imaging lesions had higher PK11195 BPND in normal-appearing white matter (P = 0.009) and their normal-appearing white matter PK11195 BPND correlated with the Expanded Disability Status Scale (P = 0.007; r = 0.672). At 2 years those who developed dissemination in space or multiple sclerosis, had higher PK11195 BPND in normal-appearing white matter at baseline (P = 0.007 and P = 0.048, respectively). Central grey matter PK11195 BPND was increased in subjects with clinically isolated syndrome compared to healthy controls but no difference was found in cortical grey matter PK11195 BPND. Microglial activation in clinically isolated syndrome normal-appearing white matter is diffusely increased compared with healthy control subjects and is further increased in those who have magnetic resonance imaging lesions. Furthermore microglial activation in clinically isolated syndrome normal-appearing white matter is also higher in those subjects who developed multiple sclerosis at 2 years. Our finding, if replicated in a larger study, could be of prognostic value and aid early treatment decisions in clinically isolated syndrome. PMID:25416179

  14. Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Galantowicz, J. F.; Picton, J.; Root, B.

    2017-12-01

    Passive microwave remote sensing can provided a distinct perspective on flood events by virtue of wide sensor fields of view, frequent observations from multiple satellites, and sensitivity through clouds and vegetation. During Hurricanes Harvey and Irma, we used AMSR2 (Advanced Microwave Scanning Radiometer 2, JAXA) data to map flood extents starting from the first post-storm rain-free sensor passes. Our standard flood mapping algorithm (FloodScan) derives flooded fraction from 22-km microwave data (AMSR2 or NASA's GMI) in near real time and downscales it to 90-m resolution using a database built from topography, hydrology, and Global Surface Water Explorer data and normalized to microwave data footprint shapes. During Harvey and Irma we tested experimental versions of the algorithm designed to map the maximum post-storm flood extent rapidly and made a variety of map products available immediately for use in storm monitoring and response. The maps have several unique features including spanning the entire storm-affected area and providing multiple post-storm updates as flood water shifted and receded. From the daily maps we derived secondary products such as flood duration, maximum flood extent (Figure 1), and flood depth. In this presentation, we describe flood extent evolution, maximum extent, and local details as detected by the FloodScan algorithm in the wake of Harvey and Irma. We compare FloodScan results to other available flood mapping resources, note observed shortcomings, and describe improvements made in response. We also discuss how best-estimate maps could be updated in near real time by merging FloodScan products and data from other remote sensing systems and hydrological models.

  15. Deep Space Wide Area Search Strategies

    NASA Astrophysics Data System (ADS)

    Capps, M.; McCafferty, J.

    There is an urgent need to expand the space situational awareness (SSA) mission beyond catalog maintenance to providing near real-time indications and warnings of emerging events. While building and maintaining a catalog of space objects is essential to SSA, this does not address the threat of uncatalogued and uncorrelated deep space objects. The Air Force therefore has an interest in transformative technologies to scan the geostationary (GEO) belt for uncorrelated space objects. Traditional ground based electro-optical sensors are challenged in simultaneously detecting dim objects while covering large areas of the sky using current CCD technology. Time delayed integration (TDI) scanning has the potential to enable significantly larger coverage rates while maintaining sensitivity for detecting near-GEO objects. This paper investigates strategies of employing TDI sensing technology from a ground based electro-optical telescope, toward providing tactical indications and warnings of deep space threats. We present results of a notional wide area search TDI sensor that scans the GEO belt from three locations: Maui, New Mexico, and Diego Garcia. Deep space objects in the NASA 2030 debris catalog are propagated over multiple nights as an indicative data set to emulate notional uncatalogued near-GEO orbits which may be encountered by the TDI sensor. Multiple scan patterns are designed and simulated, to compare and contrast performance based on 1) efficiency in coverage, 2) number of objects detected, and 3) rate at which detections occur, to enable follow-up observations by other space surveillance network (SSN) sensors. A step-stare approach is also modeled using a dedicated, co-located sensor notionally similar to the Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) tower. Equivalent sensitivities are assumed. This analysis quantifies the relative benefit of TDI scanning for the wide area search mission.

  16. Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI

    PubMed Central

    2013-01-01

    Background Activity of disease in patients with multiple sclerosis (MS) is monitored by detecting and delineating hyper-intense lesions on MRI scans. The Minimum Area Contour Change (MACC) algorithm has been created with two main goals: a) to improve inter-operator agreement on outlining regions of interest (ROIs) and b) to automatically propagate longitudinal ROIs from the baseline scan to a follow-up scan. Methods The MACC algorithm first identifies an outer bound for the solution path, forms a high number of iso-contour curves based on equally spaced contour values, and then selects the best contour value to outline the lesion. The MACC software was tested on a set of 17 FLAIR MRI images evaluated by a pair of human experts and a longitudinal dataset of 12 pairs of T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images that had lesion analysis ROIs drawn by a single expert operator. Results In the tests where two human experts evaluated the same MRI images, the MACC program demonstrated that it could markedly reduce inter-operator outline error. In the longitudinal part of the study, the MACC program created ROIs on follow-up scans that were in close agreement to the original expert’s ROIs. Finally, in a post-hoc analysis of 424 follow-up scans 91% of propagated MACC were accepted by an expert and only 9% of the final accepted ROIS had to be created or edited by the expert. Conclusion When used with an expert operator's verification of automatically created ROIs, MACC can be used to improve inter- operator agreement and decrease analysis time, which should improve data collected and analyzed in multicenter clinical trials. PMID:24004511

  17. Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: Procedure development using CaliBrain structural MRI data

    PubMed Central

    2009-01-01

    Background Structural Magnetic Resonance Imaging (sMRI) of the brain is employed in the assessment of a wide range of neuropsychiatric disorders. In order to improve statistical power in such studies it is desirable to pool scanning resources from multiple centres. The CaliBrain project was designed to provide for an assessment of scanner differences at three centres in Scotland, and to assess the practicality of pooling scans from multiple-centres. Methods We scanned healthy subjects twice on each of the 3 scanners in the CaliBrain project with T1-weighted sequences. The tissue classifier supplied within the Statistical Parametric Mapping (SPM5) application was used to map the grey and white tissue for each scan. We were thus able to assess within scanner variability and between scanner differences. We have sought to correct for between scanner differences by adjusting the probability mappings of tissue occupancy (tissue priors) used in SPM5 for tissue classification. The adjustment procedure resulted in separate sets of tissue priors being developed for each scanner and we refer to these as scanner specific priors. Results Voxel Based Morphometry (VBM) analyses and metric tests indicated that the use of scanner specific priors reduced tissue classification differences between scanners. However, the metric results also demonstrated that the between scanner differences were not reduced to the level of within scanner variability, the ideal for scanner harmonisation. Conclusion Our results indicate the development of scanner specific priors for SPM can assist in pooling of scan resources from different research centres. This can facilitate improvements in the statistical power of quantitative brain imaging studies. PMID:19445668

  18. Cost effectiveness of the addition of a comprehensive CT scan to the abdomen and pelvis for the detection of cancer after unprovoked venous thromboembolism.

    PubMed

    Coyle, Kathryn; Carrier, Marc; Lazo-Langner, Alejandro; Shivakumar, Sudeep; Zarychanski, Ryan; Tagalakis, Vicky; Solymoss, Susan; Routhier, Nathalie; Douketis, James; Coyle, Douglas

    2017-03-01

    Unprovoked venous thromboembolism (VTE) can be the first manifestation of cancer. It is unclear if extensive screening for occult cancer including a comprehensive computed tomography (CT) scan of the abdomen/pelvis is cost-effective in this patient population. To assess the health care related costs, number of missed cancer cases and health related utility values of a limited screening strategy with and without the addition of a comprehensive CT scan of the abdomen/pelvis and to identify to what extent testing should be done in these circumstances to allow early detection of occult cancers. Cost effectiveness analysis using data that was collected alongside the SOME randomized controlled trial which compared an extensive occult cancer screening including a CT of the abdomen/pelvis to a more limited screening strategy in patients with a first unprovoked VTE, was used for the current analyses. Analyses were conducted with a one-year time horizon from a Canadian health care perspective. Primary analysis was based on complete cases, with sensitivity analysis using appropriate multiple imputation methods to account for missing data. Data from a total of 854 patients with a first unprovoked VTE were included in these analyses. The addition of a comprehensive CT scan was associated with higher costs ($551 CDN) with no improvement in utility values or number of missed cancers. Results were consistent when adopting multiple imputation methods. The addition of a comprehensive CT scan of the abdomen/pelvis for the screening of occult cancer in patients with unprovoked VTE is not cost effective, as it is both more costly and not more effective in detecting occult cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Onset of multiple sclerosis before adulthood leads to failure of age-expected brain growth

    PubMed Central

    Aubert-Broche, Bérengère; Fonov, Vladimir; Narayanan, Sridar; Arnold, Douglas L.; Araujo, David; Fetco, Dumitru; Till, Christine; Sled, John G.; Collins, D. Louis

    2014-01-01

    Objective: To determine the impact of pediatric-onset multiple sclerosis (MS) on age-expected brain growth. Methods: Whole brain and regional volumes of 36 patients with relapsing-remitting MS onset prior to 18 years of age were segmented in 185 longitudinal MRI scans (2–11 scans per participant, 3-month to 2-year scan intervals). MRI scans of 25 age- and sex-matched healthy normal controls (NC) were also acquired at baseline and 2 years later on the same scanner as the MS group. A total of 874 scans from 339 participants from the NIH-funded MRI study of normal brain development acquired at 2-year intervals were used as an age-expected healthy growth reference. All data were analyzed with an automatic image processing pipeline to estimate the volume of brain and brain substructures. Mixed-effect models were built using age, sex, and group as fixed effects. Results: Significant group and age interactions were found with the adjusted models fitting brain volumes and normalized thalamus volumes (p < 10−4). These findings indicate a failure of age-normative brain growth for the MS group, and an even greater failure of thalamic growth. In patients with MS, T2 lesion volume correlated with a greater reduction in age-expected thalamic volume. To exclude any scanner-related influence on our data, we confirmed no significant interaction of group in the adjusted models between the NC and NIH MRI Study of Normal Brain Development groups. Conclusions: Our results provide evidence that the onset of MS during childhood and adolescence limits age-expected primary brain growth and leads to subsequent brain atrophy, implicating an early onset of the neurodegenerative aspect of MS. PMID:25378667

  20. Z-Scan Analysis: a New Method to Determine the Oxidative State of Low-Density Lipoprotein and Its Association with Multiple Cardiometabolic Biomarkers

    NASA Astrophysics Data System (ADS)

    de Freitas, Maria Camila Pruper; Figueiredo Neto, Antonio Martins; Giampaoli, Viviane; da Conceição Quintaneiro Aubin, Elisete; de Araújo Lima Barbosa, Milena Maria; Damasceno, Nágila Raquel Teixeira

    2016-04-01

    The great atherogenic potential of oxidized low-density lipoprotein has been widely described in the literature. The objective of this study was to investigate whether the state of oxidized low-density lipoprotein in human plasma measured by the Z-scan technique has an association with different cardiometabolic biomarkers. Total cholesterol, high-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-I and apolipoprotein B, paraoxonase-1, and glucose were analyzed using standard commercial kits, and low-density lipoprotein cholesterol was estimated using the Friedewald equation. A sandwich enzyme-linked immunosorbent assay was used to detect electronegative low-density lipoprotein. Low-density lipoprotein and high-density lipoprotein sizes were determined by Lipoprint® system. The Z-scan technique was used to measure the non-linear optical response of low-density lipoprotein solution. Principal component analysis and correlations were used respectively to resize the data from the sample and test association between the θ parameter, measured with the Z-scan technique, and the principal component. A total of 63 individuals, from both sexes, with mean age 52 years (±11), being overweight and having high levels of total cholesterol and low levels of high-density lipoprotein cholesterol, were enrolled in this study. A positive correlation between the θ parameter and more anti-atherogenic pattern for cardiometabolic biomarkers together with a negative correlation for an atherogenic pattern was found. Regarding the parameters related with an atherogenic low-density lipoprotein profile, the θ parameter was negatively correlated with a more atherogenic pattern. By using Z-scan measurements, we were able to find an association between oxidized low-density lipoprotein state and multiple cardiometabolic biomarkers in samples from individuals with different cardiovascular risk factors.

Top