Sample records for scan test time

  1. Detection and characterization of Budd-Chiari syndrome with inferior vena cava obstruction: Comparison of fixed and flexible delayed scan time of computed tomography venography.

    PubMed

    Zhou, Peng-Li; Wu, Gang; Han, Xin-Wei; Bi, Yong-Hua; Zhang, Wen-Guang; Wu, Zheng-Yang

    2017-06-01

    To compare the results of computed tomography venography (CTV) with a fixed and a flexible delayed scan time for Budd-Chiari syndrome (BCS) with inferior vena cava (IVC) obstruction. A total of 209 consecutive BCS patients with IVC obstruction underwent either a CTV with a fixed delayed scan time of 180s (n=87) or a flexible delayed scan time for good image quality according to IVC blood flow in color Doppler ultrasonography (n=122). The IVC blood flow velocity was measured using a color Doppler ultrasound prior to CT scan. Image quality was classified as either good, moderate, or poor. Image quality, surrounding structures and the morphology of the IVC obstruction were compared between the two groups using a χ 2 -test or paired or unpaired t-tests as appropriate. Inter-observer agreement was assessed using Kappa statistics. There was no significant difference in IVC blood flow velocity between the two groups. Overall image quality, surrounding structures and IVC obstruction morphology delineation on the flexible delayed scan time of CTV images were rated better relative to those obtained by fixed delayed scan time of CTV images (p<0.001). Evaluation of CTV data sets was significantly facilitated with flexible delayed scan time of CTV. There were no significant differences in Kappa statistics between Group A and Group B. The flexible delayed scan time of CTV was associated with better detection and more reliable characterization of BCS with IVC obstruction compared to a fixed delayed scan time. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Life without Scan-Tron: Tests as Thinking.

    ERIC Educational Resources Information Center

    Posner, Richard

    1987-01-01

    Claims that written tests are superior to objective, scan-tron tests in literature, composition, and vocabulary because they require students to think on paper. Describes the following types of in-class written tests and examines the advantages of each: literary essay, topical composition, imitation, brief answer, timed rewrites, and vocabulary…

  3. SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardan, R; Popple, R

    2015-06-15

    Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh formore » collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.« less

  4. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.

    PubMed

    Takahashi, Kunihiko; Kulldorff, Martin; Tango, Toshiro; Yih, Katherine

    2008-04-11

    Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.

  5. [The application of the prospective space-time statistic in early warning of infectious disease].

    PubMed

    Yin, Fei; Li, Xiao-Song; Feng, Zi-Jian; Ma, Jia-Qi

    2007-06-01

    To investigate the application of prospective space-time scan statistic in the early stage of detecting infectious disease outbreaks. The prospective space-time scan statistic was tested by mimicking daily prospective analyses of bacillary dysentery data of Chengdu city in 2005 (3212 cases in 102 towns and villages). And the results were compared with that of purely temporal scan statistic. The prospective space-time scan statistic could give specific messages both in spatial and temporal. The results of June indicated that the prospective space-time scan statistic could timely detect the outbreaks that started from the local site, and the early warning message was powerful (P = 0.007). When the merely temporal scan statistic for detecting the outbreak was sent two days later, and the signal was less powerful (P = 0.039). The prospective space-time scan statistic could make full use of the spatial and temporal information in infectious disease data and could timely and effectively detect the outbreaks that start from the local sites. The prospective space-time scan statistic could be an important tool for local and national CDC to set up early detection surveillance systems.

  6. Scan path entropy and arrow plots: capturing scanning behavior of multiple observers

    PubMed Central

    Hooge, Ignace; Camps, Guido

    2013-01-01

    Designers of visual communication material want their material to attract and retain attention. In marketing research, heat maps, dwell time, and time to AOI first hit are often used as evaluation parameters. Here we present two additional measures (1) “scan path entropy” to quantify gaze guidance and (2) the “arrow plot” to visualize the average scan path. Both are based on string representations of scan paths. The latter also incorporates transition matrices and time required for 50% of the observers to first hit AOIs (T50). The new measures were tested in an eye tracking study (48 observers, 39 advertisements). Scan path entropy is a sensible measure for gaze guidance and the new visualization method reveals aspects of the average scan path and gives a better indication in what order global scanning takes place. PMID:24399993

  7. Performance of the NIRS fast scanning system for heavy-ion radiotherapy.

    PubMed

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Shirai, Toshiyuki; Takei, Yuka; Takeshita, Eri; Mizushima, Kota; Iwata, Yoshiyuki; Himukai, Takeshi; Mori, Shinichiro; Fukuda, Shigekazu; Minohara, Shinichi; Takada, Eiichi; Murakami, Takeshi; Noda, Koji

    2010-11-01

    A project to construct a new treatment facility, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy at NIRS. This new treatment facility is equipped with a 3D irradiation system with pencil-beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To achieve fast rescanning within an acceptable irradiation time, the authors developed a fast scanning system. In order to verify the validity of the design and to demonstrate the performance of the fast scanning prior to use in the new treatment facility, a new scanning-irradiation system was developed and installed into the existing HIMAC physics-experiment course. The authors made strong efforts to develop (1) the fast scanning magnet and its power supply, (2) the high-speed control system, and (3) the beam monitoring. The performance of the system including 3D dose conformation was tested by using the carbon beam from the HIMAC accelerator. The performance of the fast scanning system was verified by beam tests. Precision of the scanned beam position was less than +/-0.5 mm. By cooperating with the planning software, the authors verified the homogeneity of the delivered field within +/-3% for the 3D delivery. This system took only 20 s to deliver the physical dose of 1 Gy to a spherical target having a diameter of 60 mm with eight rescans. In this test, the average of the spot-staying time was considerably reduced to 154 micros, while the minimum staying time was 30 micros. As a result of this study, the authors verified that the new scanning delivery system can produce an accurate 3D dose distribution for the target volume in combination with the planning software.

  8. Value of brain scanning in the management of strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antunes, J.L.; Schlesinger, E.B.; Michelsen, W.J.

    1975-01-01

    The usefulness of brain scanning in the diagnosis and management of strokes was evaluated in 313 serial cases. Of 38 patients with transient ischemic attacks (TIAs), only one had a positive test. The optimal time for scanning completed strokes was between seven and 14 days after onset. The pattern of uptake was characteristic of a vascular lesion in 76.8 percent. When uptake was indistinguishable from tumor, follow-up scans were useful. Patients with negative scans in the second week have a significantly better prognosis than the ones with a positive study. Cerebral angiography and brain scan correlated well in 56 patientsmore » who had both tests performed. The postmortem findings in 12 cases again emphasize the importance of the correct timing of the study, and the fact that a brain scan does not usually demonstrate lesions smaller than 2 cm in diameter. It is concluded that the brain scan represents a useful tool in the diagnosis of strokes and helps in predicting the degree of recovery following a vascular insult.« less

  9. Setup of a photomultiplier tube test bench for LHAASO-KM2A

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Zhang, Zhong-Quan; Tian, Ye; Du, Yan-Yan; Zhao, Xiao; Shen, Fu-Wang; Li, Chang-Yu; Sun, Yan-Sheng; Feng, Cun-Feng

    2016-08-01

    To fulfill the requirements for testing the photomultiplier tubes (PMTs) of the electromagnetic detector at the Large High Altitude Air Shower Observatory (LHAASO), a multi-functional PMT test bench with a two-dimensional scanning system has been developed. With this 2D scanning system, 16 PMTs can be scanned simultaneously for characteristics tests, including uniformity, cathode transit time difference, single photo-electron spectrum, gain vs. high voltage, linear behavior and dark noise. The programmable hardware and intelligent software of the test bench make it convenient to use and provide reliable results. The test methods are described in detail and primary results are presented. Supported by NSFC (11075096) SDNFS (ZR2011AM007), China

  10. SU-E-J-240: Development of a Novel 4D MRI Sequence for Real-Time Liver Tumor Tracking During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, L; Burmeister, J; Ye, Y

    2015-06-15

    Purpose: To develop a Novel 4D MRI Technique that is feasible for realtime liver tumor tracking during radiotherapy. Methods: A volunteer underwent an abdominal 2D fast EPI coronal scan on a 3.0T MRI scanner (Siemens Inc., Germany). An optimal set of parameters was determined based on image quality and scan time. A total of 23 slices were scanned to cover the whole liver in the test scan. For each scan position, the 2D images were retrospectively sorted into multiple phases based on breathing signal extracted from the images. Consequently the 2D slices with same phase numbers were stacked to formmore » one 3D image. Multiple phases of 3D images formed the 4D MRI sequence representing one breathing cycle. Results: The optimal set of scan parameters were: TR= 57ms, TE= 19ms, FOV read= 320mm and flip angle= 30°, which resulted in a total scan time of 14s for 200 frames (FMs) per slice and image resolution of (2.5mm,2.5mm,5.0mm) in three directions. Ten phases of 3D images were generated, each of which had 23 slices. Based on our test scan, only 100FMs were necessary for the phase sorting process which may lower the scan time to 7s/100FMs/slice. For example, only 5 slices/35s are necessary for a 4D MRI scan to cover liver tumor size ≤ 2cm leading to the possibility of tumor trajectory tracking every 35s during treatment. Conclusion: The novel 4D MRI technique we developed can reconstruct a 4D liver MRI sequence representing one breathing cycle (7s/ slice) without an external monitor. This technique can potentially be used for real-time liver tumor tracking during radiotherapy.« less

  11. Excitation-scanning hyperspectral imaging microscope

    PubMed Central

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  12. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.

  13. Accuracy, reliability, and efficiency of intraoral scanners for full-arch impressions: a systematic review of the clinical evidence.

    PubMed

    Goracci, Cecilia; Franchi, Lorenzo; Vichi, Alessandro; Ferrari, Marco

    2016-08-01

    The interest on intraoral scanners for digital impressions has been growing and new devices are continuously introduced on the market. It is timely to verify whether the several scanners proposed for full-arch digital impressions have been tested under clinical conditions for validity, repeatability, reproducibility, as well as for time efficiency, and patient acceptance. An electronic search of the literature was conducted through PubMed, Scopus, Cochrane Library, Web of Science, and Embase, entering the query terms 'digital impression', 'intraoral digital impression', 'intraoral scanning', 'intraoral scanner', 'intraoral digital scanner', combined by the Boolean operator 'OR'. No language or time limitation was applied. Only studies where digital full-arch impressions had been recorded intraorally were considered. In only eight studies full-arch scans had been performed intraorally. Only four studies reported data on validity, repeatability, reproducibility of digital measurements and their samples were limited to subjects in complete permanent dentition. Only two intraoral scanners, Lava COS and iTero, were tested. Scanning times were measured in six studies and varied largely. Patients' acceptance of intraoral scanning was evaluated in four studies, but it was not specifically assessed for children. The scientific evidence so far collected on intraoral scanning is neither exhaustive, nor up-to-date. Data from full-arch scans performed in children should be collected. For a meaningful assessment of time efficiency, agreement should be reached on the procedural steps to be included in the computation of scanning time. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Characterization of C/Enhanced SiC Composite During Creep-Rupture Tests Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.

    2004-01-01

    An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.

  15. Access-in-turn test architecture for low-power test application

    NASA Astrophysics Data System (ADS)

    Wang, Weizheng; Wang, JinCheng; Wang, Zengyun; Xiang, Lingyun

    2017-03-01

    This paper presents a novel access-in-turn test architecture (AIT-TA) for testing of very large scale integrated (VLSI) designs. In the proposed scheme, each scan cell in a chain receives test data from shift-in line in turn while pushing its test response to the shift-out line. It solves the power problem of conventional scan architecture to a great extent and suppresses significantly the switching activity during shift and capture operation with acceptable hardware overhead. Thus, it can help to implement the test at much higher operation frequencies resulting shorter test application time. The proposed test approach enhances the architecture of conventional scan flip-flops and backward compatible with existing test pattern generation and simulation techniques. Experimental results obtained for some larger ISCAS'89 and ITC'99 benchmark circuits illustrate effectiveness of the proposed low-power test application scheme.

  16. Feasibility study: real-time 3-D ultrasound imaging of the brain.

    PubMed

    Smith, Stephen W; Chu, Kengyeh; Idriss, Salim F; Ivancevich, Nikolas M; Light, Edward D; Wolf, Patrick D

    2004-10-01

    We tested the feasibility of real-time, 3-D ultrasound (US) imaging in the brain. The 3-D scanner uses a matrix phased-array transducer of 512 transmit channels and 256 receive channels operating at 2.5 MHz with a 15-mm diameter footprint. The real-time system scans a 65 degrees pyramid, producing up to 30 volumetric scans per second, and features up to five image planes as well as 3-D rendering, 3-D pulsed-wave and color Doppler. In a human subject, the real-time 3-D scans produced simultaneous transcranial horizontal (axial), coronal and sagittal image planes and real-time volume-rendered images of the gross anatomy of the brain. In a transcranial sheep model, we obtained real-time 3-D color flow Doppler scans and perfusion images using bolus injection of contrast agents into the internal carotid artery.

  17. Pressure scanning choices - Rotary vs electronic

    NASA Astrophysics Data System (ADS)

    Pemberton, Addison

    The choices available for present-day pressure scanning applications are described. Typical pressure scanning applications include wind tunnels, flight testing, turbine engine testing, process control, and laboratory/bench testing. The Scanivalve concept is discussed and it is noted that their use eliminates the cost of multiple individual pressure transducers and their signal conditioners as well as associated wiring for each pressure to be measured. However, they are limited to a maximum acquisition speed of 20 ports/sec/scanner. The advantages of electronic pressure scanners include in-situ calibration on demand, fast data acquisition speed, and high reliability. On the other hand, they are three times more expensive than rotary Scanivalves.

  18. Mouse manipulation through single-switch scanning.

    PubMed

    Blackstien-Adler, Susie; Shein, Fraser; Quintal, Janet; Birch, Shae; Weiss, Patrice L Tamar

    2004-01-01

    Given the current extensive reliance on the graphical user interface, independent access to computer software requires that users be able to manipulate a pointing device of some type (e.g., mouse, trackball) or be able to emulate a mouse by some other means (e.g., scanning). The purpose of the present study was to identify one or more optimal single-switch scanning mouse emulation strategies. Four alternative scanning strategies (continuous Cartesian, discrete Cartesian, rotational, and hybrid quadrant/continuous Cartesian) were selected for testing based on current market availability as well as on theoretical considerations of their potential speed and accuracy. Each strategy was evaluated using a repeated measures study design by means of a test program that permitted mouse emulation via any one of four scanning strategies in a motivating environment; response speed and accuracy could be automatically recorded and considered in view of the motor, cognitive, and perceptual demands of each scanning strategy. Ten individuals whose disabilities required them to operate a computer via single-switch scanning participated in the study. Results indicated that Cartesian scanning was the preferred and most effective scanning strategy. There were no significant differences between results from the Continuous Cartesian and Discrete Cartesian scanning strategies. Rotational scanning was quite slow with respect to the other strategies, although it was equally accurate. Hybrid Quadrant scanning improved access time but at the cost of fewer correct selections. These results demonstrated the importance of testing and comparing alternate single-switch scanning strategies.

  19. A log-Weibull spatial scan statistic for time to event data.

    PubMed

    Usman, Iram; Rosychuk, Rhonda J

    2018-06-13

    Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial scan statistics based on the exponential and Weibull distributions. We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type I differential censoring and power have been investigated through simulated data. Methods are also illustrated on time to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in Alberta during 2010-2011. We found northern regions of Alberta had longer times to specialist visit than other areas. We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.

  20. MNE Scan: Software for real-time processing of electrophysiological data.

    PubMed

    Esch, Lorenz; Sun, Limin; Klüber, Viktor; Lew, Seok; Baumgarten, Daniel; Grant, P Ellen; Okada, Yoshio; Haueisen, Jens; Hämäläinen, Matti S; Dinh, Christoph

    2018-06-01

    Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus, they are well suited for real-time monitoring and analysis of neuronal activity. Real-time MEG/EEG data processing allows adjustment of the stimuli to the subject's responses for optimizing the acquired information especially by providing dynamically changing displays to enable neurofeedback. We introduce MNE Scan, an acquisition and real-time analysis software based on the multipurpose software library MNE-CPP. MNE Scan allows the development and application of acquisition and novel real-time processing methods in both research and clinical studies. The MNE Scan development follows a strict software engineering process to enable approvals required for clinical software. We tested the performance of MNE Scan in several device-independent use cases, including, a clinical epilepsy study, real-time source estimation, and Brain Computer Interface (BCI) application. Compared to existing tools we propose a modular software considering clinical software requirements expected by certification authorities. At the same time the software is extendable and freely accessible. We conclude that MNE Scan is the first step in creating a device-independent open-source software to facilitate the transition from basic neuroscience research to both applied sciences and clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. 3D model assisted fully automated scanning laser Doppler vibrometer measurements

    NASA Astrophysics Data System (ADS)

    Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve

    2017-12-01

    In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle

  2. Scanning-electron-microscope used in real-time study of friction and wear

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.

  3. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, A; Rangaraj, D; Perez-Andujar, A

    2016-06-15

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each weremore » calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.« less

  4. Consistency of metabolic tumor volume of non-small-cell lung cancer primary tumor measured using 18F-FDG PET/CT at two different tracer uptake times.

    PubMed

    Liu, Haiping; Chen, Ping; Wroblewski, Kristen; Hou, Peng; Zhang, Chen-Peng; Jiang, Yulei; Pu, Yonglin

    2016-01-01

    The objective of this study was to test the hypothesis that the metabolic tumor volume (MTV) of primary non-small-cell lung cancer is not sensitive to differences in F-fluorodeoxyglucose (F-FDG) uptake time, and to compare this consistency of MTV measurements with that of standardized uptake value (SUV) and total lesion glycolysis (TLG). Under Institutional Review Board approval, 134 consecutive patients with histologically proven non-small-cell lung cancer underwent F-FDG PET/computed tomography scanning at about 1 h (early) and 2 h (delayed) after intravenous injection of F-FDG. MTV, SUV, and TLG of the primary tumor were all measured. Student's t-test and Wilcoxon's signed-rank test for paired data were used to compare MTV, SUV, and TLG between the two scans. The intraclass correlation coefficient (ICC) was used to assess agreement in PET parameters between the two scans and between the measurements made by two observers. MTV was not significantly different (P=0.17) between the two scans. However, SUVmax, SUVmean, SUVpeak, and TLG increased significantly from the early to the delayed scans (P<0.0001 for all). The median percentage change between the two scans in MTV (1.65%) was smaller than in SUVmax (11.76%), SUVmean(10.57%), SUVpeak(13.51%), and TLG (14.34%); the ICC of MTV (0.996) was greater than that of SUVmax (0.933), SUVmean (0.952), SUVpeak (0.928), and TLG (0.982). Interobserver agreement between the two radiologists was excellent for MTV, SUV, and TLG on both scans (ICC: 0.934-0.999). MTV is not sensitive to common clinical variations in F-FDG uptake time, its consistency is greater than that of SUVmax, SUVmean, SUVpeak, and TLG, and it has excellent interobserver agreement.

  5. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  6. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  7. Report on Electrochemcial Corrosion Testing of 241-SY-102 Grab Samples from the 2012 Grab Sampling Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, Richard B.; Lamothe, Margaret E.

    2013-05-30

    This report describes the results of the electrochemical testing performed on tank 241-SY-102 (SY-102) grab samples that were collected in support of corrosion mitigation. The objective of the work presented here was to determine corrosion resistance of tank SY-102 to the grab samples collected using electrochemical methods up to 50°C as well as to satisfy data quality objectives. Grab samples were collected at multiple elevations from Riser 003. The electrochemical corrosion testing was planned to consist of linear polarization resistance testing (LPR) and cyclic potentiodynamic polarization (CPP) testing at 50°C. The temperature would be lowered to 40 °C and themore » test repeated if the CPP curve indicated pitting corrosion at 50°C. Ifno pitting was indicated by the CPP curve, then a duplicate scan would be repeated at 50°C to confirm the first result. The testing would be complete if the duplicate CPP scan was consistent with the first. This report contains the CPP results of the testing of grab sample 2SY-12-03 and 2SY-12-03DUP composite sample tested under these conditions. There was no indication of pitting at 50°C, and the duplicate scan was in agreement with the first scan. Since no further testing was required, a third scan with a shorter rest time was performed and is present in this report.« less

  8. MO-FG-CAMPUS-JeP2-02: Audiovisual Biofeedback Guided Respiratory-Gated MRI: An Investigation of Tumor Definition and Scan Time for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D; Pollock, S; Keall, P

    Purpose: Breathing consistency variations can cause respiratory-related motion blurring and artifacts and increase in MRI scan time due to inadequate respiratory-gating and discarding of breathing cycles. In a previous study the concept of audiovisual biofeedback (AV) guided respiratory-gated MRI was tested with healthy volunteers and it demonstrated image quality improvement on anatomical structures and scan time reduction. This study tests the applicability of AV-guided respiratorygated MRI for lung cancer in a prospective patient study. Methods: Image quality and scan time were investigated in thirteen lung cancer patients who underwent two 3T MRI sessions. In the first MRI session (pre-treatment), respiratory-gatedmore » MR images with free breathing (FB) and AV were acquired at inhalation and exhalation. An RF navigator placed on the liver dome was employed for the respiratory-gated MRI. This was repeated in the second MRI session (mid-treatment). Lung tumors were delineated on each dataset. FB and AV were compared in terms of (1) tumor definition assessed by lung tumor contours and (2) intra-patient scan time variation using the total image acquisition time of inhalation and exhalation datasets from the first and second MRI sessions across 13 lung cancer patients. Results: Compared to FB AV-guided respiratory-gated MRI improved image quality for contouring tumors with sharper boundaries and less blurring resulted in the improvement of tumor definition. Compared to FB the variation of intra-patient scan time with AV was reduced by 48% (p<0.001) from 54 s to 28 s. Conclusion: This study demonstrated that AV-guided respiratorygated MRI improved the quality of tumor images and fixed tumor definition for lung cancer. These results suggest that audiovisual biofeedback breathing guidance has the potential to control breathing for adequate respiratory-gating for lung cancer imaging and radiotherapy.« less

  9. Phase 0 Trial of Itraconazole for Early-Stage Non-Small Cell Lung Cancer

    DTIC Science & Technology

    2016-10-01

    tissue and blood sampling in addition to magnetic resonance imaging ( MRI ) scans for biomarker analysis. At the time of surgery, resected tissue will...original proposal, these subjects underwent study-related MRI scans, skin biopsies, blood tests, treatment with itraconazole, and surgical resection...not complete serial MRIs scans. Task 2: Determine anti-angiogenic effects of itraconazole Subtask 2a: Blood-based PD studies As described in the

  10. A non-contact time-domain scanning brain imaging system: first in-vivo results

    NASA Astrophysics Data System (ADS)

    Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Dalla Mora, A.; Tosi, A.; Wabnitz, H.; Macdonald, R.

    2013-06-01

    We present results of first in-vivo tests of an optical non-contact scanning imaging system, intended to study oxidative metabolism related processes in biological tissue by means of time-resolved near-infrared spectroscopy. Our method is a novel realization of the short source-detector separation approach and based on a fast-gated single-photon avalanche diode to detect late photons only. The scanning system is built in quasi-confocal configuration and utilizes polarizationsensitive detection. It scans an area of 4×4 cm2, recording images with 32×32 pixels, thus creating a high density of source-detector pairs. To test the system we performed a range of in vivo measurements of hemodynamic changes in several types of biological tissues, i.e. skin (Valsalva maneuver), muscle (venous and arterial occlusions) and brain (motor and cognitive tasks). Task-related changes in hemoglobin concentrations were clearly detected in skin and muscle. The brain activation shows weaker, but yet detectable changes. These changes were localized in pixels near the motor cortex area (C3). However, it was found that even very short hair substantially impairs the measurement. Thus the applicability of the scanner is limited to hairless parts of body. The results of our first in-vivo tests prove the feasibility of non-contact scanning imaging as a first step towards development of a prototype for biological tissue imaging for various medical applications.

  11. Near-real-time mosaics from high-resolution side-scan sonar

    USGS Publications Warehouse

    Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.

    1991-01-01

    High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.

  12. Dynamic scan control in STEM: Spiral scans

    DOE PAGES

    Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.; ...

    2016-06-13

    Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less

  13. Dynamic scan control in STEM: Spiral scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less

  14. Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterisation

    NASA Astrophysics Data System (ADS)

    Chiariotti, P.; Martarelli, M.; Castellini, P.

    2017-03-01

    Dynamic behaviour of timing belts has always interested the engineering community over the years. Nowadays, there are several numerical methods to predict the dynamics of these systems. However, the tuning of such models by experimental approaches still represents an issue: an accurate characterisation does require a measurement in operating conditions since the belt mounting condition might severely affect its dynamic behaviour. Moreover, since the belt is constantly moving during running conditions, non-contact measurement methods are needed. Laser Doppler Vibrometry (LDV) and imaging techniques do represent valid candidates for this purpose. This paper aims at describing the use of Continuous Scanning LDV (CSLDV) as a tool for the dynamic characterisation of timing belts in IC (Internal Combustion) engines (cylinder head). The high-spatial resolution data that can be collected in short testing time makes CSLDV highly suitable for such application. The measurement on a moving surface, however, represents a challenge for CSLDV. The paper discusses how the belt in-plane speed influences CSLDV signal and how an order-based multi-harmonic excitation might affect the recovery of Operational Deflection Shapes in a CSLDV test. A comparison with a standard Discrete Scanning LDV measurement is also given in order to show that a CSLDV test, if well designed, can indeed provide the same amount of information in a drastically reduced amount of time.

  15. Randomized, single-blind, factorial design study of the interaction of food and time on intestinal activity in 99mTc-tetrofosmin stress myocardial perfusion scintigraphy.

    PubMed

    Lyngholm, Ann Marie; Pedersen, Begitte H; Petersen, Lars J

    2008-09-01

    Intestinal activity at the inferior myocardial wall represents an issue for assessment of myocardial perfusion imaging (MPI) with 99mTc-labelled tracers. The aim of this study was to investigate the effect of time and food on upper abdominal activity in 99mTc-tetrofosmin MPI. The study population consisted of 152 consecutive patients referred for routine MPI. All patients underwent 2-day stress-rest 99mTc-tetrofosmin single-photon emission computed tomography MPI. Before stress testing, patients were randomized in a factorial design to four different regimens. Group A: early scan (image acquisition initiated within 15 min after injection of the tracer) and no food; group B: early scan and food (two pieces of white bread with butter and a minimum of 450 ml of water); group C: late scan (image acquisition 30-60 min after injection of the tracer) and no food; and group D: late and scan with food. Patients underwent standard bicycle exercise or pharmacological stress test. The degree of upper abdominal activity was evaluated by trained observers blinded to the randomization code. The primary endpoint was the proportion of accepted scans in the intention-to-treat population in stress MPI. The results showed statistical significant impact on both time and food on upper abdominal activity. The primary endpoint showed that the acceptance rate improved from 55% in group A to 100% success rate in group D. An early scan reduced the acceptance rate by 30% versus a late scan [hazard ratio 0.70, 95% confidence interval 0.58-0.84; P<0.0001], whereas the addition of food improved the success rate versus no food by 27% (hazard ratio 1.27, 95% confidence interval 1.07-1.51; P=0.006). No significant interaction between food and time was observed. An analysis of accepted scans according to the actual scan time and food consumption confirmed the findings of the intention-to-treat analysis. In addition, similar findings were seen in 116 of 152 patients with a rest MPI (success rate of 53% in group A vs. 96% in group D). A combination of solid food and water administered after injection of the tracer and delayed image acquisition led to significant and clinically relevant decrease of interfering upper abdominal activity in 99mTc-tetrofosmin MPI.

  16. Knowledge-based tracking algorithm

    NASA Astrophysics Data System (ADS)

    Corbeil, Allan F.; Hawkins, Linda J.; Gilgallon, Paul F.

    1990-10-01

    This paper describes the Knowledge-Based Tracking (KBT) algorithm for which a real-time flight test demonstration was recently conducted at Rome Air Development Center (RADC). In KBT processing, the radar signal in each resolution cell is thresholded at a lower than normal setting to detect low RCS targets. This lower threshold produces a larger than normal false alarm rate. Therefore, additional signal processing including spectral filtering, CFAR and knowledge-based acceptance testing are performed to eliminate some of the false alarms. TSC's knowledge-based Track-Before-Detect (TBD) algorithm is then applied to the data from each azimuth sector to detect target tracks. In this algorithm, tentative track templates are formed for each threshold crossing and knowledge-based association rules are applied to the range, Doppler, and azimuth measurements from successive scans. Lastly, an M-association out of N-scan rule is used to declare a detection. This scan-to-scan integration enhances the probability of target detection while maintaining an acceptably low output false alarm rate. For a real-time demonstration of the KBT algorithm, the L-band radar in the Surveillance Laboratory (SL) at RADC was used to illuminate a small Cessna 310 test aircraft. The received radar signal wa digitized and processed by a ST-100 Array Processor and VAX computer network in the lab. The ST-100 performed all of the radar signal processing functions, including Moving Target Indicator (MTI) pulse cancelling, FFT Doppler filtering, and CFAR detection. The VAX computers performed the remaining range-Doppler clustering, beamsplitting and TBD processing functions. The KBT algorithm provided a 9.5 dB improvement relative to single scan performance with a nominal real time delay of less than one second between illumination and display.

  17. Surface characterization and testing II; Proceedings of the Meeting, San Diego, CA, Aug. 10, 11, 1989

    NASA Technical Reports Server (NTRS)

    Greivenkamp, John E. (Editor); Young, Matt (Editor)

    1989-01-01

    Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.

  18. Scanning ultrasonic probe

    DOEpatents

    Kupperman, David S.; Reimann, Karl J.

    1982-01-01

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and analyzed at one time and their positions accurately located in a single pass down the test specimen.

  19. Scanning ultrasonic probe

    DOEpatents

    Kupperman, D.S.; Reimann, K.J.

    1980-12-09

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and anlayzed at one time and their positions accurately located in a single pass down the test specimen.

  20. Introduction of a pan-scan protocol for blunt trauma activations: what are the consequences?

    PubMed

    James, Melissa K; Schubl, Sebastian D; Francois, Michael P; Doughlin, Geoffrey K; Lee, Shi-Wen

    2017-01-01

    The aim of this study is to determine if the introduction of a pan-scan protocol during the initial assessment for blunt trauma activations would affect missed injuries, incidental findings, treatment times, radiation exposure, and cost. A 6-month prospective study was performed on patients with blunt trauma at a level 1 trauma center. During the last 3 months of the study, a pan-scan protocol was introduced to the trauma assessment. Categorical data were analyzed by Fisher exact test and continuous data were analyzed by Mann-Whitney nonparametric test. There were a total of 220 patients in the pre-pan-scan period and 206 patients during the pan-scan period. There was no significant difference in injury severity or mortality between the groups. Introduction of the pan-scan protocol substantially reduced the incidence of missed injuries from 3.2% to 0.5%, the length of stay in the emergency department by 68.2 minutes (95% confidence interval [CI], -134.4 to -2.1), and the mean time to the first operating room visit by 1465 minutes (95% CI, -2519 to -411). In contrast, fixed computed tomographic scan cost increased by $48.1 (95% CI, 32-64.1) per patient; however, total radiology cost per patient decreased by $50 (95% CI, -271.1 to 171.4). In addition, the rate of incidental findings increased by 14.4% and the average radiation exposure per patient was 8.2 mSv (95% CI, 5.0-11.3) greater during the pan-scan period. Although there are advantages to whole-body computed tomography, elucidation of the appropriate blunt trauma patient population is warranted when implementing a pan-scan protocol. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. SU-E-J-261: Statistical Analysis and Chaotic Dynamics of Respiratory Signal of Patients in BodyFix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, D; Huq, M; Bednarz, G

    Purpose: To quantify respiratory signal of patients in BodyFix undergoing 4DCT scan with and without immobilization cover. Methods: 20 pairs of respiratory tracks recorded with RPM system during 4DCT scan were analyzed. Descriptive statistic was applied to selected parameters of exhale-inhale decomposition. Standardized signals were used with the delay method to build orbits in embedded space. Nonlinear behavior was tested with surrogate data. Sample entropy SE, Lempel-Ziv complexity LZC and the largest Lyapunov exponents LLE were compared. Results: Statistical tests show difference between scans for inspiration time and its variability, which is bigger for scans without cover. The same ismore » for variability of the end of exhalation and inhalation. Other parameters fail to show the difference. For both scans respiratory signals show determinism and nonlinear stationarity. Statistical test on surrogate data reveals their nonlinearity. LLEs show signals chaotic nature and its correlation with breathing period and its embedding delay time. SE, LZC and LLE measure respiratory signal complexity. Nonlinear characteristics do not differ between scans. Conclusion: Contrary to expectation cover applied to patients in BodyFix appears to have limited effect on signal parameters. Analysis based on trajectories of delay vectors shows respiratory system nonlinear character and its sensitive dependence on initial conditions. Reproducibility of respiratory signal can be evaluated with measures of signal complexity and its predictability window. Longer respiratory period is conducive for signal reproducibility as shown by these gauges. Statistical independence of the exhale and inhale times is also supported by the magnitude of LLE. The nonlinear parameters seem more appropriate to gauge respiratory signal complexity since its deterministic chaotic nature. It contrasts with measures based on harmonic analysis that are blind for nonlinear features. Dynamics of breathing, so crucial for 4D-based clinical technologies, can be better controlled if nonlinear-based methodology, which reflects respiration characteristic, is applied. Funding provided by Varian Medical Systems via Investigator Initiated Research Project.« less

  2. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system

    PubMed Central

    Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J.; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. PMID:28886112

  3. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system.

    PubMed

    Mathes, Robert W; Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method's implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System's C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis.

  4. Applications of multiscale change point detections to monthly stream flow and rainfall in Xijiang River in southern China, part I: correlation and variance

    NASA Astrophysics Data System (ADS)

    Zhu, Yuxiang; Jiang, Jianmin; Huang, Changxing; Chen, Yongqin David; Zhang, Qiang

    2018-04-01

    This article, as part I, introduces three algorithms and applies them to both series of the monthly stream flow and rainfall in Xijiang River, southern China. The three algorithms include (1) normalization of probability distribution, (2) scanning U test for change points in correlation between two time series, and (3) scanning F-test for change points in variances. The normalization algorithm adopts the quantile method to normalize data from a non-normal into the normal probability distribution. The scanning U test and F-test have three common features: grafting the classical statistics onto the wavelet algorithm, adding corrections for independence into each statistic criteria at given confidence respectively, and being almost objective and automatic detection on multiscale time scales. In addition, the coherency analyses between two series are also carried out for changes in variance. The application results show that the changes of the monthly discharge are still controlled by natural precipitation variations in Xijiang's fluvial system. Human activities disturbed the ecological balance perhaps in certain content and in shorter spells but did not violate the natural relationships of correlation and variance changes so far.

  5. How does signal fade on photo-stimulable storage phosphor imaging plates when scanned with a delay and what is the effect on image quality?

    PubMed

    Ang, Dan B; Angelopoulos, Christos; Katz, Jerald O

    2006-11-01

    The goals of this in vitro study were to determine the effect of signal fading of DenOptix photo-stimulable storage phosphor imaging plates scanned with a delay and to determine the effect on the diagnostic quality of the image. In addition, we sought to correlate signal fading with image spatial resolution and average pixel intensity values. Forty-eight images were obtained of a test specimen apparatus and scanned at 6 delayed time intervals: immediately scanned, 1 hour, 8 hours, 24 hours, 72 hours, and 168 hours. Six general dentists using Vixwin2000 software performed a measuring task to determine the location of an endodontic file tip and root apex. One-way ANOVA with repeated measures was used to determine the effect of signal fading (delayed scan time) on diagnostic image quality and average pixel intensity value. There was no statistically significant difference in diagnostic image quality resulting from signal fading. No difference was observed in spatial resolution of the images. There was a statistically significant difference in the pixel intensity analysis of an 8-step aluminum wedge between immediate scanning and 24-hour delayed scan time. There was an effect of delayed scanning on the average pixel intensity value. However, there was no effect on image quality and raters' ability to perform a clinical identification task. Proprietary software of the DenOptix digital imaging system demonstrates an excellent ability to process a delayed scan time signal and create an image of diagnostic quality.

  6. Intraoral 3D Scanning or Dental Impressions for the Assessment of Dental Arch Relationships in Cleft Care: Which is Superior?

    PubMed

    Chalmers, E V; McIntyre, G T; Wang, W; Gillgrass, T; Martin, C B; Mossey, P A

    2016-09-01

    This study was undertaken to evaluate intraoral 3D scans for assessing dental arch relationships and obtain patient/parent perceptions of impressions and intraoral 3D scanning. Forty-three subjects with nonsyndromic unilateral cleft lip and palate (UCLP) had impressions taken for plaster models. These and the teeth were scanned using the R700 Orthodontic Study Model Scanner and Trios® Digital Impressions Scanner (3Shape A/S, Copenhagen, Denmark) to create indirect and direct digital models. All model formats were scored by three observers on two occasions using the GOSLON and modified Huddart Bodenham (MHB) indices. Participants and parents scored their perceptions of impressions and scanning from 1 (very good) to 5 (very bad). Intra- and interexaminer reliability were tested using GOSLON and MHB data (Cronbach's Alpha >0.9). Bland and Altman plots were created for MHB data, with each model medium (one-sample t tests, P < .05) and questionnaire data (Wilcoxon signed ranks P < .05) tested. Intra- and interexaminer reliability (>0.9) were good for all formats with the direct digital models having the lowest interexaminer differences. Participants had higher ratings for scanning comfort (84.8%) than impressions (44.2%) (P < .05) and for scanning time (56.6%) than impressions (51.2%) (P > .05). None disliked scanning, but 16.3% disliked impressions. Data for parents and children positively correlated (P < .05). Reliability of scoring dental arch relationships using intraoral 3D scans was superior to indirect digital and to plaster models; Subjects with UCLP preferred intra-oral 3D scanning to dental impressions, mirrored by parents/carers; This study supports the replacement of conventional impressions with intra-oral 3D scans in longitudinal evaluations of the outcomes of cleft care.

  7. Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes.

    PubMed

    Kushnirsky, Marina; Nguyen, Vinh; Katz, Joel S; Steinklein, Jared; Rosen, Lisa; Warshall, Craig; Schulder, Michael; Knisely, Jonathan P S

    2016-02-01

    Contrast-enhanced MRI is the preeminent diagnostic test for brain metastasis (BM). Detection of BMs for stereotactic radiosurgery (SRS) planning may improve with a time delay following administration of a high-relaxivity agent for 1.5-T and 3-T imaging systems. Metastasis detection with time-delayed MRI was evaluated in this study. Fifty-three volumetric MRI studies from 38 patients undergoing SRS for BMs were evaluated. All studies used 0.1-mmol/kg gadobenate dimeglumine (MultiHance; Bracco Diagnostics) immediately after injection, followed by 2 more axial T1-weighted sequences after 5-minute intervals (final image acquisition commenced 15 minutes after contrast injection). Two studies were motion limited and excluded. Two hundred eighty-seven BMs were identified. The studies were randomized and examined separately by 3 radiologists, who were blinded to the temporal sequence. Each radiologist recorded the number of BMs detected per scan. A Wilcoxon signed-rank test compared BM numbers between scans. One radiologist determined the scan on which BMs were best defined. All confirmed, visible tumors were contoured using iPlan RT treatment planning software on each of the 3 MRI data sets. A linear mixed model was used to analyze volume changes. The interclass correlations for Scans 1, 2, and 3 were 0.7392, 0.7951, and 0.7290, respectively, demonstrating excellent interrater reliability. At least 1 new lesion was detected in the second scan as compared with the first in 35.3% of subjects (95% CI 22.4%-49.9%). The increase in BM numbers between Scans 1 and 2 ranged from 1 to 10. At least 1 new lesion was detected in the third scan as compared with the second in 21.6% of subjects (95% CI 11.3%-35.3%). The increase in BM numbers between Scans 2 and 3 ranged from 1 to 9. Between Scans 1 and 3, additional tumors were seen on 43.1% of scans (increase ranged from 1 to 14). The median increase in tumor number for all comparisons was 1. There was a significant increase in number of BMs detected from Scan 1 to Scan 2 (p < 0.0367) and from Scan 1 to Scan 3 (p < 0.0264). In 34 of the 51 subjects (66.7%), the radiologist selected the third scan as the one providing the clearest tumor definition. There was an average 25.4% increase in BM volume between Scans 1 and 2 (p < 0.0001) and a 9% increase in BM volume between Scans 2 and 3 (p = 0.0001). In patients who are being prepared for SRS of BMs, delayed MRI after contrast injection revealed more targets that needed treatment. In addition, apparent treatment volumes increased with a time delay. To avoid missing tumors that could be treated at the time of planned SRS and resultant "treatment failures," the authors recommend that postcontrast MR images be acquired between 10 and 15 minutes after injection in patients undergoing SRS for treatment of BMs.

  8. Automated microdensitometer for digitizing astronomical plates

    NASA Technical Reports Server (NTRS)

    Angilello, J.; Chiang, W. H.; Elmegreen, D. M.; Segmueller, A.

    1984-01-01

    A precision microdensitometer was built under control of an IBM S/1 time-sharing computer system. The instrument's spatial resolution is better than 20 microns. A raster scan of an area of 10x10 sq mm (500x500 raster points) takes 255 minutes. The reproducibility is excellent and the stability is good over a period of 30 hours, which is significantly longer than the time required for most scans. The intrinsic accuracy of the instrument was tested using Kodak standard filters, and it was found to be better than 3%. A comparative accuracy was tested measuring astronomical plates of galaxies for which absolute photoelectric photometry data were available. The results showed an accuracy excellent for astronomical applications.

  9. 47 CFR 2.1515 - Spectral measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Radiobeacons (EPIRBs) Environmental and Operational Test Procedures § 2.1515 Spectral measurements. (a) Set-up... controls as follows: I.F. bandwidth: 10 kHz Video filter: OFF or as wide as possible Scan time: 100 ms./div. Amplitude scale: 10 dB/div. Scan width: 20 Hz/div. Center frequency: 121.5 MHz Step (3) Record the signal...

  10. Clinical and computerized evaluation in study of temporo-mandibular joint intracapsular disease.

    PubMed

    Ciavarella, D; Mastrovincenzo, M; Sabatucci, A; Parziale, V; Granatelli, F; Violante, F; Bossù, M; Lo Muzio, L; Chimenti, C

    2010-03-01

    In this work authors show a diagnostic criteria in study of TMID: neuro occlusal clinical evaluation (NOE), T-Scan 2 system and surface electromyography (sEMG). Nine patients 25-30 years old with TMID problem and 9 healthy group control have been selected and examined. On each patients it has been performed NOE, T-Scan and sEMG test. NOE has been calculated on each patient photos lateral mandibular excursion angle called: masticatory functional angle (AFM). T-Scan System is a computerized occlusal analyzer that provide in-depth understanding of the overall balance of the occlusion. At the same time of T-Scan record sEMG tests, in resting position and in maximum clench, have been performed. In healthy control there were no AFM difference. In no healthy group there were difference between the two AFM greater than 6 degrees. T-Scan COF showed how in healthy group control there was never a difference of COF greater than 5%. In no healthy group the difference were greater than 5% P<0.05. T-scan showed difference of time force in maximum intercuspidation (MIFT) in healthy respect TMID patients. In healthy patients MIFT was higher than TMID patients P<0.05. sEMG test showed in non healthy group a great asymmetrical activation of masseter (MM). MM activation were greater on side affected by joint sound than the balance side P<0.001. sEMG show how in TMID patients maximum masseter activation is always lower than maximum masseter activation of healthy subjects P<0.001. Neuro occlusal clinical evaluation (NOE) in TMID patients is supported by instrumental evaluation.

  11. Improving efficiency and decreasing scanning time of sonographic examination of the shoulder by using a poster illustrating proper shoulder positioning to the patient.

    PubMed

    Shah, Amit; Amin, Maslah; Srinivasan, Sriram; Botchu, Rajesh

    2015-09-01

    Patients often have difficulty performing the various movements required for ideal positioning to enable accurate sonographic (US) assessment of the shoulder; this may result from pain and or unclear oral instructions. We performed this study to ascertain whether the use of a poster depicting the positions required during the examination would decrease scanning time and hence improve the overall efficiency of shoulder US. We retrospectively compared results from 50 consecutive patients who underwent US examination without (group 1) and 50 with (group 2) the use of an illustrative poster produced by the European Society of Musculoskeletal Radiology. The difference in mean scanning time between the two groups was analyzed with Student's two-tailed t test. There was a statistically significant difference in scanning time between the two groups (group 1: 3 minutes and 5 seconds versus group 2: 2 minutes and 9 seconds; p < 0.0001). The patients in group 2, especially those who had hearing difficulty, found the poster useful. The use of a poster illustrating positioning of the shoulder during an US examination is an effective way to improve patient compliance and significantly decreases scanning time. © 2014 Wiley Periodicals, Inc.

  12. [Evaluation of the quality of three-dimensional data acquired by using two kinds of structure light intra-oral scanner to scan the crown preparation model].

    PubMed

    Zhang, X Y; Li, H; Zhao, Y J; Wang, Y; Sun, Y C

    2016-07-01

    To quantitatively evaluate the quality and accuracy of three-dimensional (3D) data acquired by using two kinds of structure intra-oral scanner to scan the typical teeth crown preparations. Eight typical teeth crown preparations model were scanned 3 times with two kinds of structured light intra-oral scanner(A, B), as test group. A high precision model scanner were used to scan the model as true value group. The data above the cervical margin was extracted. The indexes of quality including non-manifold edges, the self-intersections, highly-creased edges, spikes, small components, small tunnels, small holes and the anount of triangles were measured with the tool of mesh doctor in Geomagic studio 2012. The scanned data of test group were aligned to the data of true value group. 3D deviations of the test group compared with true value group were measured for each scanned point, each preparation and each group. Independent-samples Mann-Whitney U test was applied to analyze 3D deviations for each scanned point of A and B group. Correlation analysis was applied to index values and 3D deviation values. The total number of spikes in A group was 96, and that in B group and true value group were 5 and 0 respectively. Trueness: A group 8.0 (8.3) μm, B group 9.5 (11.5) μm(P>0.05). Correlation analysis of the number of spikes with data precision of A group was r=0.46. In the study, the qulity of the scanner B is better than scanner A, the difference of accuracy is not statistically significant. There is correlation between quality and data precision of the data scanned with scanner A.

  13. Testing and validation of multi-lidar scanning strategies for wind energy applications: Testing and validation of multi-lidar scanning strategies for wind energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Bonin, Timothy A.; Klein, Petra M.

    Several factors cause lidars to measure different values of turbulence than an anemometer on a tower, including volume averaging, instrument noise, and the use of a scanning circle to estimate the wind field. One way to avoid the use of a scanning circle is to deploy multiple scanning lidars and point them toward the same volume in space to collect velocity measurements and extract high-resolution turbulence information. This paper explores the use of two multi-lidar scanning strategies, the tri-Doppler technique and the virtual tower technique, for measuring 3-D turbulence. In Summer 2013, a vertically profiling Leosphere WindCube lidar and threemore » Halo Photonics Streamline lidars were operated at the Southern Great Plains Atmospheric Radiation Measurement site to test these multi-lidar scanning strategies. During the first half of the field campaign, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every second. Next, all three scanning lidars were used to build a “virtual tower” above the WindCube lidar. Results indicate that the tri-Doppler technique measures higher values of horizontal turbulence than the WindCube lidar under stable atmospheric conditions, reduces variance contamination under unstable conditions, and can measure highresolution profiles of mean wind speed and direction. The virtual tower technique provides adequate turbulence information under stable conditions but cannot capture the full temporal variability of turbulence experienced under unstable conditions because of the time needed to readjust the scans.« less

  14. Prospective Evaluation of Light Scatter Technology Paired with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Rapid Diagnosis of Urinary Tract Infections

    PubMed Central

    Montgomery, Sandra; Roman, Kiana; Ngyuen, Lan; Cardenas, Ana Maria; Knox, James; Tomaras, Andrew P.

    2017-01-01

    ABSTRACT Urinary tract infections are one of the most common reasons for health care visits. Diagnosis and optimal treatment often require a urine culture, which takes an average of 1.5 to 2 days from urine collection to results, delaying optimal therapy. Faster, but accurate, alternatives are needed. Light scatter technology has been proposed for several years as a rapid screening tool, whereby negative specimens are excluded from culture. A commercially available light scatter device, BacterioScan 216Dx (BacterioScan, Inc.), has recently been advertised for this application. Paired use of mass spectrometry (MS) for bacterial identification and automated-system-based susceptibility testing straight from the light scatter suspension might provide dramatic improvement in times to a result. The present study prospectively evaluated the BacterioScan device, with culture as the reference standard. Positive light scatter specimens were used for downstream rapid matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS organism identification and automated-system-based antimicrobial susceptibility testing. Prospective evaluation of 439 urine samples showed a sensitivity of 96.5%, a specificity of 71.4%, and positive and negative predictive values of 45.1% and 98.8%, respectively. MALDI-TOF MS analysis of the suspension after density-based selection yielded a sensitivity of 72.1% and a specificity of 96.9%. Antimicrobial susceptibility testing of the samples identified by MALDI-TOF MS produced an overall categorical agreement of 99.2%. Given the high sensitivity and negative predictive value of results obtained, BacterioScan 216Dx is a reasonable approach for urine screening and might produce negative results in as few as 3 h, with no downstream workup. Paired rapid identification and susceptibility testing might be useful when MALDI-TOF MS results in an organism identification, and it might decrease the time to a result by more than 24 h. PMID:28356414

  15. Prospective Evaluation of Light Scatter Technology Paired with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Rapid Diagnosis of Urinary Tract Infections.

    PubMed

    Montgomery, Sandra; Roman, Kiana; Ngyuen, Lan; Cardenas, Ana Maria; Knox, James; Tomaras, Andrew P; Graf, Erin H

    2017-06-01

    Urinary tract infections are one of the most common reasons for health care visits. Diagnosis and optimal treatment often require a urine culture, which takes an average of 1.5 to 2 days from urine collection to results, delaying optimal therapy. Faster, but accurate, alternatives are needed. Light scatter technology has been proposed for several years as a rapid screening tool, whereby negative specimens are excluded from culture. A commercially available light scatter device, BacterioScan 216Dx (BacterioScan, Inc.), has recently been advertised for this application. Paired use of mass spectrometry (MS) for bacterial identification and automated-system-based susceptibility testing straight from the light scatter suspension might provide dramatic improvement in times to a result. The present study prospectively evaluated the BacterioScan device, with culture as the reference standard. Positive light scatter specimens were used for downstream rapid matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS organism identification and automated-system-based antimicrobial susceptibility testing. Prospective evaluation of 439 urine samples showed a sensitivity of 96.5%, a specificity of 71.4%, and positive and negative predictive values of 45.1% and 98.8%, respectively. MALDI-TOF MS analysis of the suspension after density-based selection yielded a sensitivity of 72.1% and a specificity of 96.9%. Antimicrobial susceptibility testing of the samples identified by MALDI-TOF MS produced an overall categorical agreement of 99.2%. Given the high sensitivity and negative predictive value of results obtained, BacterioScan 216Dx is a reasonable approach for urine screening and might produce negative results in as few as 3 h, with no downstream workup. Paired rapid identification and susceptibility testing might be useful when MALDI-TOF MS results in an organism identification, and it might decrease the time to a result by more than 24 h. Copyright © 2017 American Society for Microbiology.

  16. Client-centred development of an infrared thermal access switch for a young adult with severe spastic quadriplegic cerebral palsy.

    PubMed

    Memarian, Negar; Venetsanopoulos, Anastasios N; Chau, Tom

    2011-01-01

    This study reports a client-centred development of a non-contact access switch based on an infrared thermal imaging of mouth opening-closing activity of an individual with severe spastic quadriplegic cerebral palsy. Over a 6-month period, the client participated in five test sessions to inform the development of an infrared thermal switch. The client completed eight stimulus-response trials (switch test) and eight word-matching trials (scan test) using the infrared thermal switch and provided subjective feedback throughout. For the switch test, the client achieved an average correct activation rate of 90% and average response time of 2.4 s. His mean correct activation rate on the scan test improved from 65 to 80% over the course of system development, with an average response time of 11.7 s. An infrared thermography switch tuned to a client's extant orofacial gestures is a practical non-invasive access solution and warrants further research in clients with severe physical disability.

  17. A New High Channel-Count, High Scan-Rate, Data Acquisition System for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Sekula, Martin K.; Piatak, David J.; Simmons, Scott A.; Babel, Walter C.; Collins, Jesse G.; Ramey, James M.; Heald, Dean M.

    2016-01-01

    A data acquisition system upgrade project, known as AB-DAS, is underway at the NASA Langley Transonic Dynamics Tunnel. AB-DAS will soon serve as the primary data system and will substantially increase the scan-rate capabilities and analog channel count while maintaining other unique aeroelastic and dynamic test capabilities required of the facility. AB-DAS is configurable, adaptable, and enables buffet and aeroacoustic tests by synchronously scanning all analog channels and recording the high scan-rate time history values for each data quantity. AB-DAS is currently available for use as a stand-alone data system with limited capabilities while development continues. This paper describes AB-DAS, the design methodology, and the current features and capabilities. It also outlines the future work and projected capabilities following completion of the data system upgrade project.

  18. Reliable identification of deep sulcal pits: the effects of scan session, scanner, and surface extraction tool.

    PubMed

    Im, Kiho; Lee, Jong-Min; Jeon, Seun; Kim, Jong-Heon; Seo, Sang Won; Na, Duk L; Grant, P Ellen

    2013-01-01

    Sulcal pit analysis has been providing novel insights into brain function and development. The purpose of this study was to evaluate the reliability of sulcal pit extraction with respect to the effects of scan session, scanner, and surface extraction tool. Five subjects were scanned 4 times at 3 MRI centers and other 5 subjects were scanned 3 times at 2 MRI centers, including 1 test-retest session. Sulcal pits were extracted on the white matter surfaces reconstructed with both Montreal Neurological Institute and Freesurfer pipelines. We estimated similarity of the presence of sulcal pits having a maximum value of 1 and their spatial difference within the same subject. The tests showed high similarity of the sulcal pit presence and low spatial difference. The similarity was more than 0.90 and the spatial difference was less than 1.7 mm in most cases according to different scan sessions or scanners, and more than 0.85 and about 2.0 mm across surface extraction tools. The reliability of sulcal pit extraction was more affected by the image processing-related factors than the scan session or scanner factors. Moreover, the similarity of sulcal pit distribution appeared to be largely influenced by the presence or absence of the sulcal pits on the shallow and small folds. We suggest that our sulcal pit extraction from MRI is highly reliable and could be useful for clinical applications as an imaging biomarker.

  19. Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention

    PubMed Central

    Sampaio-Baptista, Cassandra; Scholz, Jan; Jenkinson, Mark; Thomas, Adam G.; Filippini, Nicola; Smit, Gabrielle; Douaud, Gwenaëlle; Johansen-Berg, Heidi

    2014-01-01

    The ability to predict learning performance from brain imaging data has implications for selecting individuals for training or rehabilitation interventions. Here, we used structural MRI to test whether baseline variations in gray matter (GM) volume correlated with subsequent performance after a long-term training of a complex whole-body task. 44 naïve participants were scanned before undertaking daily juggling practice for 6 weeks, following either a high intensity or a low intensity training regime. To assess performance across the training period participants' practice sessions were filmed. Greater GM volume in medial occipito-parietal areas at baseline correlated with steeper learning slopes. We also tested whether practice time or performance outcomes modulated the degree of structural brain change detected between the baseline scan and additional scans performed immediately after training and following a further 4 weeks without training. Participants with better performance had higher increases in GM volume during the period following training (i.e., between scans 2 and 3) in dorsal parietal cortex and M1. When contrasting brain changes between the practice intensity groups, we did not find any straightforward effects of practice time though practice modulated the relationship between performance and GM volume change in dorsolateral prefrontal cortex. These results suggest that practice time and performance modulate the degree of structural brain change evoked by long-term training regimes. PMID:24680712

  20. The Healthy Brain Network Serial Scanning Initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions

    PubMed Central

    O’Connor, David; Potler, Natan Vega; Kovacs, Meagan; Xu, Ting; Ai, Lei; Pellman, John; Vanderwal, Tamara; Parra, Lucas C.; Cohen, Samantha; Ghosh, Satrajit; Escalera, Jasmine; Grant-Villegas, Natalie; Osman, Yael; Bui, Anastasia; Craddock, R. Cameron

    2017-01-01

    Abstract Background: Although typically measured during the resting state, a growing literature is illustrating the ability to map intrinsic connectivity with functional MRI during task and naturalistic viewing conditions. These paradigms are drawing excitement due to their greater tolerability in clinical and developing populations and because they enable a wider range of analyses (e.g., inter-subject correlations). To be clinically useful, the test-retest reliability of connectivity measured during these paradigms needs to be established. This resource provides data for evaluating test-retest reliability for full-brain connectivity patterns detected during each of four scan conditions that differ with respect to level of engagement (rest, abstract animations, movie clips, flanker task). Data are provided for 13 participants, each scanned in 12 sessions with 10 minutes for each scan of the four conditions. Diffusion kurtosis imaging data was also obtained at each session. Findings: Technical validation and demonstrative reliability analyses were carried out at the connection-level using the Intraclass Correlation Coefficient and at network-level representations of the data using the Image Intraclass Correlation Coefficient. Variation in intrinsic functional connectivity across sessions was generally found to be greater than that attributable to scan condition. Between-condition reliability was generally high, particularly for the frontoparietal and default networks. Between-session reliabilities obtained separately for the different scan conditions were comparable, though notably lower than between-condition reliabilities. Conclusions: This resource provides a test-bed for quantifying the reliability of connectivity indices across subjects, conditions and time. The resource can be used to compare and optimize different frameworks for measuring connectivity and data collection parameters such as scan length. Additionally, investigators can explore the unique perspectives of the brain's functional architecture offered by each of the scan conditions. PMID:28369458

  1. Delay test generation for synchronous sequential circuits

    NASA Astrophysics Data System (ADS)

    Devadas, Srinivas

    1989-05-01

    We address the problem of generating tests for delay faults in non-scan synchronous sequential circuits. Delay test generation for sequential circuits is a considerably more difficult problem than delay testing of combinational circuits and has received much less attention. In this paper, we present a method for generating test sequences to detect delay faults in sequential circuits using the stuck-at fault sequential test generator STALLION. The method is complete in that it will generate a delay test sequence for a targeted fault given sufficient CPU time, if such a sequence exists. We term faults for which no delay test sequence exists, under out test methodology, sequentially delay redundant. We describe means of eliminating sequential delay redundancies in logic circuits. We present a partial-scan methodology for enhancing the testability of difficult-to-test of untestable sequential circuits, wherein a small number of flip-flops are selected and made controllable/observable. The selection process guarantees the elimination of all sequential delay redundancies. We show that an intimate relationship exists between state assignment and delay testability of a sequential machine. We describe a state assignment algorithm for the synthesis of sequential machines with maximal delay fault testability. Preliminary experimental results using the test generation, partial-scan and synthesis algorithm are presented.

  2. Golden angle based scanning for robust corneal topography with OCT

    PubMed Central

    Wagner, Joerg; Goldblum, David; Cattin, Philippe C.

    2017-01-01

    Corneal topography allows the assessment of the cornea’s refractive power which is crucial for diagnostics and surgical planning. The use of optical coherence tomography (OCT) for corneal topography is still limited. One limitation is the susceptibility to disturbances like blinking of the eye. This can result in partially corrupted scans that cannot be evaluated using common methods. We present a new scanning method for reliable corneal topography from partial scans. Based on the golden angle, the method features a balanced scan point distribution which refines over measurement time and remains balanced when part of the scan is removed. The performance of the method is assessed numerically and by measurements of test surfaces. The results confirm that the method enables numerically well-conditioned and reliable corneal topography from partially corrupted scans and reduces the need for repeated measurements in case of abrupt disturbances. PMID:28270961

  3. Corrosion of Metal Films with Defective Surface Protection Layers.

    DTIC Science & Technology

    1980-07-01

    ranged from 1 x 10- 10 to I x 10-9 A and were fairly constant (within a factor of 2) throughout the test, except for one line pair which intermit ...SCE) OOV (SCE) ( I -0.5V (b.) -0.5V FAST SCAN SLOW SCAN 0.05 Hz 0.01 Hz Figure 39. E-vs-I curves for gold-trimetal substrate. and Au 3+ *.dation states...an additional complication because the fast scan time may not provide for the diffusion of constituents for the electrochemical process. However, the

  4. Specific attentional dysfunction in adults following early start of cannabis use.

    PubMed

    Ehrenreich, H; Rinn, T; Kunert, H J; Moeller, M R; Poser, W; Schilling, L; Gigerenzer, G; Hoehe, M R

    1999-03-01

    The present study tested the hypothesis that chronic interference by cannabis with endogenous cannabinoid systems during peripubertal development causes specific and persistent brain alterations in humans. As an index of cannabinoid action, visual scanning, along with other attentional functions, was chosen. Visual scanning undergoes a major maturation process around age 12-15 years and, in addition, the visual system is known to react specifically and sensitively to cannabinoids. From 250 individuals consuming cannabis regularly, 99 healthy pure cannabis users were selected. They were free of any other past or present drug abuse, or history of neuropsychiatric disease. After an interview, physical examination, analysis of routine laboratory parameters, plasma/urine analyses for drugs, and MMPI testing, users and respective controls were subjected to a computer-assisted attention test battery comprising visual scanning, alertness, divided attention, flexibility, and working memory. Of the potential predictors of test performance within the user group, including present age, age of onset of cannabis use, degree of acute intoxication (THC+THCOH plasma levels), and cumulative toxicity (estimated total life dose), an early age of onset turned out to be the only predictor, predicting impaired reaction times exclusively in visual scanning. Early-onset users (onset before age 16; n = 48) showed a significant impairment in reaction times in this function, whereas late-onset users (onset after age 16; n = 51) did not differ from controls (n = 49). These data suggest that beginning cannabis use during early adolescence may lead to enduring effects on specific attentional functions in adulthood. Apparently, vulnerable periods during brain development exist that are subject to persistent alterations by interfering exogenous cannabinoids.

  5. Real-time operating system for a multi-laser/multi-detector system

    NASA Technical Reports Server (NTRS)

    Coles, G.

    1980-01-01

    The laser-one hazard detector system, used on the Rensselaer Mars rover, is reviewed briefly with respect to the hardware subsystems, the operation, and the results obtained. A multidetector scanning system was designed to improve on the original system. Interactive support software was designed and programmed to implement real time control of the rover or platform with the elevation scanning mast. The formats of both the raw data and the post-run data files were selected. In addition, the interface requirements were selected and some initial hardware-software testing was completed.

  6. NAVIS-An UGV Indoor Positioning System Using Laser Scan Matching for Large-Area Real-Time Applications

    PubMed Central

    Tang, Jian.; Chen, Yuwei.; Jaakkola, Anttoni.; Liu, Jinbing.; Hyyppä, Juha.; Hyyppä, Hannu.

    2014-01-01

    Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application. PMID:24999715

  7. NAVIS-An UGV indoor positioning system using laser scan matching for large-area real-time applications.

    PubMed

    Tang, Jian; Chen, Yuwei; Jaakkola, Anttoni; Liu, Jinbing; Hyyppä, Juha; Hyyppä, Hannu

    2014-07-04

    Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application.

  8. Enhanced visualization of acute macular neuroretinopathy by Heidelberg Retina Tomography.

    PubMed

    Mirshahi, Alireza; Scharioth, Gàbor B; Klais, Christina M C; Baatz, Holger

    2006-08-01

    We report Heidelberg Retina Tomography (HRT) findings in a case of bilateral acute macular neuroretinopathy in a 22-year-old man. In addition to fundus photography, fluorescein and indocyanine green angiography, and visual field testing, HRT scans of the macula were performed early in the disease and at a follow up of 2 months. We found typical paracentral scotomata in visual field testing corresponding to sharply delineated, hyporeflective areas of the macula as visualized in HRT II scans. Those lesions were almost invisible on regular fundus photographs. Angiography results were unremarkable. The lesion size decreased over time. The visibility of the lesions was markedly enhanced by HRT scans, thus the diagnosis and follow up of acute macular neuroretinopathy could be facilitated by this non-invasive imaging technique.

  9. The ultrasound brain helmet: feasibility study of multiple simultaneous 3D scans of cerebral vasculature.

    PubMed

    Smith, Stephen W; Ivancevich, Nikolas M; Lindsey, Brooks D; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A; Laskowitz, Daniel T

    2009-02-01

    We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time three-dimensional (3D) scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging (Durham, NC, USA) real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64 degrees pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128 degrees sector, two simultaneous parasagittal images merged into a 128 degrees x 64 degrees C-mode plane and a simultaneous 64 degrees axial image. Real-time 3D color Doppler scans from a skull phantom with latex blood vessel were obtained after contrast agent injection as a proof of concept. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.

  10. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  11. Asteroid detection using a single multi-wavelength CCD scan

    NASA Astrophysics Data System (ADS)

    Melton, Jonathan

    2016-09-01

    Asteroid detection is a topic of great interest due to the possibility of diverting possibly dangerous asteroids or mining potentially lucrative ones. Currently, asteroid detection is generally performed by taking multiple images of the same patch of sky separated by 10-15 minutes, then subtracting the images to find movement. However, this is time consuming because of the need to revisit the same area multiple times per night. This paper describes an algorithm that can detect asteroids using a single CCD camera scan, thus cutting down on the time and cost of an asteroid survey. The algorithm is based on the fact that some telescopes scan the sky at multiple wavelengths with a small time separation between the wavelength components. As a result, an object moving with sufficient speed will appear in different places in different wavelength components of the same image. Using image processing techniques we detect the centroids of points of light in the first component and compare these positions to the centroids in the other components using a nearest neighbor algorithm. The algorithm was used on a test set of 49 images obtained from the Sloan telescope in New Mexico and found 100% of known asteroids with only 3 false positives. This algorithm has the advantage of decreasing the amount of time required to perform an asteroid scan, thus allowing more sky to be scanned in the same amount of time or freeing a telescope for other pursuits.

  12. The effect of immersion time to low carbon steel hardness and microstructure with hot dip galvanizing coating method

    NASA Astrophysics Data System (ADS)

    Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.

    2018-01-01

    Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.

  13. Module generation for self-testing integrated systems

    NASA Astrophysics Data System (ADS)

    Vanriessen, Ronald Pieter

    Hardware used for self test in VLSI (Very Large Scale Integrated) systems is reviewed, and an architecture to control the test hardware in an integrated system is presented. Because of the increase of test times, the use of self test techniques has become practically and economically viable for VLSI systems. Beside the reduction in test times and costs, self test also provides testing at operational speeds. Therefore, a suitable combination of scan path and macrospecific (self) tests is required to reduce test times and costs. An expert system that can be used in a silicon compilation environment is presented. The approach requires a minimum of testability knowledge from a system designer. A user friendly interface was described for specifying and modifying testability requirements by a testability expert. A reason directed backtracking mechanism is used to solve selection failures. Both the hierarchical testable architecture and the design for testability expert system are used in a self test compiler. The definition of a self test compiler was given. A self test compiler is a software tool that selects an appropriate test method for every macro in a design. The hardware to control a macro test will be included in the design automatically. As an example, the integration of the self-test compiler in a silicon compilation system PIRAMID was described. The design of a demonstrator circuit by self test compiler is described. This circuit consists of two self testable macros. Control of the self test hardware is carried out via the test access port of the boundary scan standard.

  14. Evaluation of Two Commercial Systems for Automated Processing, Reading, and Interpretation of Lyme Borreliosis Western Blots▿

    PubMed Central

    Binnicker, M. J.; Jespersen, D. J.; Harring, J. A.; Rollins, L. O.; Bryant, S. C.; Beito, E. M.

    2008-01-01

    The diagnosis of Lyme borreliosis (LB) is commonly made by serologic testing with Western blot (WB) analysis serving as an important supplemental assay. Although specific, the interpretation of WBs for diagnosis of LB (i.e., Lyme WBs) is subjective, with considerable variability in results. In addition, the processing, reading, and interpretation of Lyme WBs are laborious and time-consuming procedures. With the need for rapid processing and more objective interpretation of Lyme WBs, we evaluated the performances of two automated interpretive systems, TrinBlot/BLOTrix (Trinity Biotech, Carlsbad, CA) and BeeBlot/ViraScan (Viramed Biotech AG, Munich, Germany), using 518 serum specimens submitted to our laboratory for Lyme WB analysis. The results of routine testing with visual interpretation were compared to those obtained by BLOTrix analysis of MarBlot immunoglobulin M (IgM) and IgG and by ViraScan analysis of ViraBlot and ViraStripe IgM and IgG assays. BLOTrix analysis demonstrated an agreement of 84.7% for IgM and 87.3% for IgG compared to visual reading and interpretation. ViraScan analysis of the ViraBlot assays demonstrated agreements of 85.7% for IgM and 94.2% for IgG, while ViraScan analysis of the ViraStripe IgM and IgG assays showed agreements of 87.1 and 93.1%, respectively. Testing by the automated systems yielded an average time savings of 64 min/run compared to processing, reading, and interpretation by our current procedure. Our findings demonstrated that automated processing and interpretive systems yield results comparable to those of visual interpretation, while reducing the subjectivity and time required for Lyme WB analysis. PMID:18463211

  15. Evaluation of two commercial systems for automated processing, reading, and interpretation of Lyme borreliosis Western blots.

    PubMed

    Binnicker, M J; Jespersen, D J; Harring, J A; Rollins, L O; Bryant, S C; Beito, E M

    2008-07-01

    The diagnosis of Lyme borreliosis (LB) is commonly made by serologic testing with Western blot (WB) analysis serving as an important supplemental assay. Although specific, the interpretation of WBs for diagnosis of LB (i.e., Lyme WBs) is subjective, with considerable variability in results. In addition, the processing, reading, and interpretation of Lyme WBs are laborious and time-consuming procedures. With the need for rapid processing and more objective interpretation of Lyme WBs, we evaluated the performances of two automated interpretive systems, TrinBlot/BLOTrix (Trinity Biotech, Carlsbad, CA) and BeeBlot/ViraScan (Viramed Biotech AG, Munich, Germany), using 518 serum specimens submitted to our laboratory for Lyme WB analysis. The results of routine testing with visual interpretation were compared to those obtained by BLOTrix analysis of MarBlot immunoglobulin M (IgM) and IgG and by ViraScan analysis of ViraBlot and ViraStripe IgM and IgG assays. BLOTrix analysis demonstrated an agreement of 84.7% for IgM and 87.3% for IgG compared to visual reading and interpretation. ViraScan analysis of the ViraBlot assays demonstrated agreements of 85.7% for IgM and 94.2% for IgG, while ViraScan analysis of the ViraStripe IgM and IgG assays showed agreements of 87.1 and 93.1%, respectively. Testing by the automated systems yielded an average time savings of 64 min/run compared to processing, reading, and interpretation by our current procedure. Our findings demonstrated that automated processing and interpretive systems yield results comparable to those of visual interpretation, while reducing the subjectivity and time required for Lyme WB analysis.

  16. High-Performance Scanning Acousto-Ultrasonic System

    NASA Technical Reports Server (NTRS)

    Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew

    2006-01-01

    A high-performance scanning acousto-ultrasonic system, now undergoing development, is designed to afford enhanced capabilities for imaging microstructural features, including flaws, inside plate specimens of materials. The system is expected to be especially helpful in analyzing defects that contribute to failures in polymer- and ceramic-matrix composite materials, which are difficult to characterize by conventional scanning ultrasonic techniques and other conventional nondestructive testing techniques. Selected aspects of the acousto-ultrasonic method have been described in several NASA Tech Briefs articles in recent years. Summarizing briefly: The acousto-ultrasonic method involves the use of an apparatus like the one depicted in the figure (or an apparatus of similar functionality). Pulses are excited at one location on a surface of a plate specimen by use of a broadband transmitting ultrasonic transducer. The stress waves associated with these pulses propagate along the specimen to a receiving transducer at a different location on the same surface. Along the way, the stress waves interact with the microstructure and flaws present between the transducers. The received signal is analyzed to evaluate the microstructure and flaws. The specific variant of the acousto-ultrasonic method implemented in the present developmental system goes beyond the basic principle described above to include the following major additional features: Computer-controlled motorized translation stages are used to automatically position the transducers at specified locations. Scanning is performed in the sense that the measurement, data-acquisition, and data-analysis processes are repeated at different specified transducer locations in an array that spans the specimen surface (or a specified portion of the surface). A pneumatic actuator with a load cell is used to apply a controlled contact force. In analyzing the measurement data for each pair of transducer locations in the scan, the total (multimode) acousto-ultrasonic response of the specimen is utilized. The analysis is performed by custom software that extracts parameters of signals in the time and frequency domains. The computer hardware and software provide both real-time and postscan processing and display options. For example, oscilloscope displays of waveforms and power spectral densities are available in real time. Images can be computed while scanning continues. Signals can be digitally preprocessed and/or post-processed by filtering, windowing, time-segmenting, and running-waveform-averaging algorithms. In addition, the software affords options for off-line simulation of the waveform-data-acquisition and scanning processes. In tests, the system has been shown to be capable of characterizing microstructural changes and defects in SiC/SiC and C/SiC ceramic-matrix composites. Delaminations, variations in density, microstructural changes attributable to infiltration by silicon, and crack-space indications (defined in the next sentence) have been revealed in images formed from several time- and frequency-domain parameters of scanning acousto-ultrasonic signals. The crack-space indications were image features that were not revealed by other nondestructive testing methods and are so named because they turned out to mark locations where cracking eventually occurred.

  17. Prospective study of serial 18F-FDG PET and 18F-fluoride (18F-NaF) PET to predict time to skeletal related events, time-to-progression, and survival in patients with bone-dominant metastatic breast cancer.

    PubMed

    Peterson, Lanell M; O'Sullivan, Janet; Wu, Qian Vicky; Novakova-Jiresova, Alena; Jenkins, Isaac; Lee, Jean H; Shields, Andrew; Montgomery, Susan; Linden, Hannah M; Gralow, Julie R; Gadi, Vijayakrishna K; Muzi, Mark; Kinahan, Paul E; Mankoff, David A; Specht, Jennifer M

    2018-05-10

    Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18 F-FDG PET was predictive of time to skeletal related events (tSRE) and time-to-progression (TTP). 18 F-NaF PET improves bone metastasis detection compared to bone scans. We prospectively tested 18 F-FDG PET and 18 F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (BD MBC). Methods: Patients with BD MBC were imaged with 18 F-FDG PET and 18 F-NaF PET prior to starting new therapy (scan1) and again at a range of times centered around approximately 4 months later (scan2). SUV max and SULpeak were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18 F-FDG PET and 18 F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) criteria were also applied. Survival curves for mPERCIST compared response categories of Complete Response+Partial Response+Stable Disease versus Progressive Disease (CR+PR+SD vs PD) for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher FDG SULpeak at scan2 predicted shorter time to tSRE ( P = <0.001) and TTP ( P = 0.044). Higher FDG SUV max at scan2 predicted a shorter time to tSRE ( P = <0.001). A multivariable model using FDG SUV max of the index lesion at scan1 plus the difference in SUV max of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18 F-FDG PET mPERCIST, tSRE and TTP were longer in responders (CR, PR, or stable) compared to non-responders (PD) ( P = 0.007, 0.028 respectively), with a trend toward improved survival ( P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18 F-NaF PET was associated with longer OS ( P = 0.027). Conclusion: Changes in 18 F-FDG PET parameters during therapy are predictive of tSRE and TTP, but not OS. mPERCIST evaluation in bone lesions may be useful in assessing response to therapy and is worthy of evaluation in multicenter, prospective trials. Serial 18 F-NaF PET was associated with OS, but was not useful for predicting TTP or tSRE in BD MBC. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. (Full field) optical coherence tomography and applications

    NASA Astrophysics Data System (ADS)

    Buchroithner, Boris; Hannesschläger, Günther; Leiss-Holzinger, Elisabeth; Prylepa, Andrii; Heise, Bettina

    2018-03-01

    This paper illustrates specific features and use of optical coherence tomography (OCT) in the raster-scanning and in comparison in the full field version of this imaging technique. Cases for nondestructive testing are discussed alongside other application schemes. In particular monitoring time-dependent processes and probing of birefringent specimens are considered here. In the context of polymer testing birefringence mapping may often provide information about internal strain and stress states. Recent results obtained with conventional raster-scanning OCT systems, with (dual and single-shot) full field OCT configurations, and with polarization-sensitive versions of (full field) OCT are presented here.

  19. Programmable logic controller performance enhancement by field programmable gate array based design.

    PubMed

    Patel, Dhruv; Bhatt, Jignesh; Trivedi, Sanjay

    2015-01-01

    PLC, the core element of modern automation systems, due to serial execution, exhibits limitations like slow speed and poor scan time. Improved PLC design using FPGA has been proposed based on parallel execution mechanism for enhancement of performance and flexibility. Modelsim as simulation platform and VHDL used to translate, integrate and implement the logic circuit in FPGA. Xilinx's Spartan kit for implementation-testing and VB has been used for GUI development. Salient merits of the design include cost-effectiveness, miniaturization, user-friendliness, simplicity, along with lower power consumption, smaller scan time and higher speed. Various functionalities and applications like typical PLC and industrial alarm annunciator have been developed and successfully tested. Results of simulation, design and implementation have been reported. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    NASA Technical Reports Server (NTRS)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  1. Comparison between multi-shot gradient echo EPI and balanced SSFP in unenhanced 3T MRA of thoracic aorta in healthy volunteers.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Nagayama, Yasunori; Oda, Seitaro; Utsunomiya, Daisuke; Kidoh, Masafumi; Yuki, Hideaki; Hirata, Kenichiro; Namimoto, Tomohiro; Kitajima, Mika; Morita, Kosuke; Funama, Yoshinori; Takemura, Atsushi; Tokuyasu, Shinichi; Okuaki, Tomoyuki; Yamashita, Yasuyuki

    2017-11-01

    The purpose of this study was to compare scan time and image quality between magnetic resonance angiography (MRA) of the thoracic aorta using a multi-shot gradient echo planar imaging (MSG-EPI) and MRA using balanced steady-state free precession (b-SSFP). Healthy volunteers (n=17) underwent unenhanced thoracic aorta MRA using balanced steady-state free precession (b-SSFP) and MSG-EPI sequences on a 3T MRI. The acquisition time, total scan time, signal-to-noise ratio (SNR) of the thoracic aorta, and the coefficient of variation (CV) of thoracic aorta were compared with paired t-tests. Two radiologists independently recorded the images' contrast, noise, sharpness, artifacts, and overall quality on a 4-point scale. The acquisition time was 36.2% shorter for MSG-EPI than b-SSFP (115.5±14.4 vs 181.0±14.9s, p<0.01). The total scan time was 40.4% shorter for MSG-EPI than b-SSFP (272±78 vs 456±144s, p<0.01). There was no significant difference in mean SNR between MSG-EPI and b-SSFP scans (17.3±3.6 vs 15.2±4.3, p=0.08). The CV was significantly lower for MSG-EPI than b-SSFP (0.2±0.1 vs. 0.5±0.2, p<0.01). All qualitative scores except for image noise were significantly higher in MSG-EPI than b-SSFP scans (p<0.05). The MSG-EPI sequence is a promising technique for shortening scan time and yielding more homogenous image quality in MRA of thoracic aorta on 3T scanners compared with the b-SSFP. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Automated extraction of subdural electrode grid from post-implant MRI scans for epilepsy surgery

    NASA Astrophysics Data System (ADS)

    Pozdin, Maksym A.; Skrinjar, Oskar

    2005-04-01

    This paper presents an automated algorithm for extraction of Subdural Electrode Grid (SEG) from post-implant MRI scans for epilepsy surgery. Post-implant MRI scans are corrupted by the image artifacts caused by implanted electrodes. The artifacts appear as dark spherical voids and given that the cerebrospinal fluid is also dark in T1-weigthed MRI scans, it is a difficult and time-consuming task to manually locate SEG position relative to brain structures of interest. The proposed algorithm reliably and accurately extracts SEG from post-implant MRI scan, i.e. finds its shape and position relative to brain structures of interest. The algorithm was validated against manually determined electrode locations, and the average error was 1.6mm for the three tested subjects.

  3. Modeling Ballistic Response of Ultra-High-Molecular-Weight Polyethylene (UHMWPE)

    DTIC Science & Technology

    2016-07-01

    posttest panels. Fig. 5 Variables to be compared between model and experiments The 6 tests and available test data are listed in Table 2. The first 3...Time history of center BFD for the 3 BFD tests Figure 24 shows the damages in the panels from posttest CT scan of the UHMWPE panels and the

  4. A simple rule for the costs of vigilance: empirical evidence from a social forager.

    PubMed Central

    Cowlishaw, Guy; Lawes, Michael J.; Lightbody, Margaret; Martin, Alison; Pettifor, Richard; Rowcliffe, J. Marcus

    2004-01-01

    It is commonly assumed that anti-predator vigilance by foraging animals is costly because it interrupts food searching and handling time, leading to a reduction in feeding rate. When food handling does not require visual attention, however, a forager may handle food while simultaneously searching for the next food item or scanning for predators. We present a simple model of this process, showing that when the length of such compatible handling time Hc is long relative to search time S, specifically Hc/S > 1, it is possible to perform vigilance without a reduction in feeding rate. We test three predictions of this model regarding the relationships between feeding rate, vigilance and the Hc/S ratio, with data collected from a wild population of social foragers (samango monkeys, Cercopithecus mitis erythrarchus). These analyses consistently support our model, including our key prediction: as Hc/S increases, the negative relationship between feeding rate and the proportion of time spent scanning becomes progressively shallower. This pattern is more strongly driven by changes in median scan duration than scan frequency. Our study thus provides a simple rule that describes the extent to which vigilance can be expected to incur a feeding rate cost. PMID:15002768

  5. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    NASA Astrophysics Data System (ADS)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  6. Race does not predict the development of metastases in men with nonmetastatic castration-resistant prostate cancer.

    PubMed

    Whitney, Colette A; Howard, Lauren E; Amling, Christopher L; Aronson, William J; Cooperberg, Matthew R; Kane, Christopher J; Terris, Martha K; Freedland, Stephen J

    2016-12-15

    Although race is associated with prostate cancer progression in early stage disease, once men have advanced disease, it is unclear whether race continues to predict a poor outcome. The authors hypothesized that, in an equal-access setting among patients with castration-resistant prostate cancer (CRPC) and no known metastases (M0/Mx), black men would receive imaging tests at similar rates as nonblack men (ie, there would be an equal opportunity to detect metastases) but would have a higher risk of metastatic disease. In total, 837 men who were diagnosed with M0/Mx CRPC during 2000 through 2014 from 5 Veterans Affairs hospitals in the SEARCH (Shared Equal Access Regional Cancer Hospital) database were analyzed. Data on all imaging tests after CRPC diagnosis were collected, including date, type, and outcome. Multivariable Cox models were used to test associations between race and the time to first metastasis, first bone metastasis, first bone scan, second bone scan among men who had a negative first bone scan, and overall survival. Black men (n = 306) were equally as likely as nonblack men (n = 531) to receive a first and second bone scan after a diagnosis of CRPC. There were no significant differences in the risk of developing any metastases, bone metastases, time to bone scans, or overall survival between black men and nonblack men (all P > .2). The lack of racial differences in the development of metastases and scanning practices observed in this study suggests that, once men have a diagnosis of M0/Mx CRPC, race may not be a prognostic factor. Efforts to understand prostate cancer racial disparities may derive greater benefit by focusing on the risk of developing prostate cancer and on the outcomes of men who have early stage disease. Cancer 2016;122:3848-3855. © 2016 American Cancer Society. © 2016 American Cancer Society.

  7. Thyroid stunning: fact or fiction?

    PubMed

    McDougall, I Ross; Iagaru, Andrei

    2011-03-01

    Stunning of thyroid tissue by diagnostic activities of (131)I has been described by some investigators and refuted by others. The support both for and against stunning has at times been enthusiastic and vigorous. We present the data from both sides of the debate in an attempt to highlight the strengths and deficiencies in the investigations cited. Clinical, animal, and in vitro studies are included. There are considerable differences in clinical practice, such as the administered activity for diagnostic whole-body scan, delay between diagnostic scan and treatment, time between treatment and posttherapy scanning, and timing of follow-up studies, that have to be analyzed with care. Other factors that often cannot be judged, such as levels of thyroid-stimulating hormone and serum iodine at time of diagnostic testing versus treatment could have an influence on stunning. Larger diagnostic doses and longer delays to therapy appear to increase the likelihood of stunning. The stunning effect of early-absorbed radiation from the therapy should also be considered. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Virtobot--a multi-functional robotic system for 3D surface scanning and automatic post mortem biopsy.

    PubMed

    Ebert, Lars Christian; Ptacek, Wolfgang; Naether, Silvio; Fürst, Martin; Ross, Steffen; Buck, Ursula; Weber, Stefan; Thali, Michael

    2010-03-01

    The Virtopsy project, a multi-disciplinary project that involves forensic science, diagnostic imaging, computer science, automation technology, telematics and biomechanics, aims to develop new techniques to improve the outcome of forensic investigations. This paper presents a new approach in the field of minimally invasive virtual autopsy for a versatile robotic system that is able to perform three-dimensional (3D) surface scans as well as post mortem image-guided soft tissue biopsies. The system consists of an industrial six-axis robot with additional extensions (i.e. a linear axis to increase working space, a tool-changing system and a dedicated safety system), a multi-slice CT scanner with equipment for angiography, a digital photogrammetry and 3D optical surface-scanning system, a 3D tracking system, and a biopsy end effector for automatic needle placement. A wax phantom was developed for biopsy accuracy tests. Surface scanning times were significantly reduced (scanning times cut in half, calibration three times faster). The biopsy module worked with an accuracy of 3.2 mm. Using the Virtobot, the surface-scanning procedure could be standardized and accelerated. The biopsy module is accurate enough for use in biopsies in a forensic setting. The Virtobot can be utilized for several independent tasks in the field of forensic medicine, and is sufficiently versatile to be adapted to different tasks in the future. (c) 2009 John Wiley & Sons, Ltd.

  9. Precision of guided scanning procedures for full-arch digital impressions in vivo.

    PubMed

    Zimmermann, Moritz; Koller, Christina; Rumetsch, Moritz; Ender, Andreas; Mehl, Albert

    2017-11-01

    System-specific scanning strategies have been shown to influence the accuracy of full-arch digital impressions. Special guided scanning procedures have been implemented for specific intraoral scanning systems with special regard to the digital orthodontic workflow. The aim of this study was to evaluate the precision of guided scanning procedures compared to conventional impression techniques in vivo. Two intraoral scanning systems with implemented full-arch guided scanning procedures (Cerec Omnicam Ortho; Ormco Lythos) were included along with one conventional impression technique with irreversible hydrocolloid material (alginate). Full-arch impressions were taken three times each from 5 participants (n = 15). Impressions were then compared within the test groups using a point-to-surface distance method after best-fit model matching (OraCheck). Precision was calculated using the (90-10%)/2 quantile and statistical analysis with one-way repeated measures ANOVA and post hoc Bonferroni test was performed. The conventional impression technique with alginate showed the lowest precision for full-arch impressions with 162.2 ± 71.3 µm. Both guided scanning procedures performed statistically significantly better than the conventional impression technique (p < 0.05). Mean values for group Cerec Omnicam Ortho were 74.5 ± 39.2 µm and for group Ormco Lythos 91.4 ± 48.8 µm. The in vivo precision of guided scanning procedures exceeds conventional impression techniques with the irreversible hydrocolloid material alginate. Guided scanning procedures may be highly promising for clinical applications, especially for digital orthodontic workflows.

  10. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.

  11. Improved Visualization of Glaucomatous Retinal Damage Using High-speed Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Mumcuoglu, Tarkan; Wollstein, Gadi; Wojtkowski, Maciej; Kagemann, Larry; Ishikawa, Hiroshi; Gabriele, Michelle L.; Srinivasan, Vivek; Fujimoto, James G.; Duker, Jay S.; Schuman, Joel S.

    2009-01-01

    Purpose To test if improving optical coherence tomography (OCT) resolution and scanning speed improves the visualization of glaucomatous structural changes as compared with conventional OCT. Design Prospective observational case series. Participants Healthy and glaucomatous subjects in various stages of disease. Methods Subjects were scanned at a single visit with commercially available OCT (StratusOCT) and high-speed ultrahigh-resolution (hsUHR) OCT. The prototype hsUHR OCT had an axial resolution of 3.4 μm (3 times higher than StratusOCT), with an A-scan rate of 24 000 hertz (60 times faster than StratusOCT). The fast scanning rate allowed the acquisition of novel scanning patterns such as raster scanning, which provided dense coverage of the retina and optic nerve head. Main Outcome Measures Discrimination of retinal tissue layers and detailed visualization of retinal structures. Results High-speed UHR OCT provided a marked improvement in tissue visualization as compared with StratusOCT. This allowed the identification of numerous retinal layers, including the ganglion cell layer, which is specifically prone to glaucomatous damage. Fast scanning and the enhanced A-scan registration properties of hsUHR OCT provided maps of the macula and optic nerve head with unprecedented detail, including en face OCT fundus images and retinal nerve fiber layer thickness maps. Conclusion High-speed UHR OCT improves visualization of the tissues relevant to the detection and management of glaucoma. PMID:17884170

  12. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    NASA Astrophysics Data System (ADS)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  13. A real-time computer for monitoring a rapid-scanning Fourier spectrometer

    NASA Technical Reports Server (NTRS)

    Michel, G.

    1973-01-01

    A real-time Fourier computer has been designed and tested as part of the Lunar and Planetary Laboratory's program of airborne infrared astronomy using Fourier spectroscopy. The value and versatility of this device are demonstrated with specific examples of laboratory and in-flight applications.

  14. Measurements agreement between low-cost and high-level handheld 3D scanners to scan the knee for designing a 3D printed knee brace

    PubMed Central

    2018-01-01

    Use of additive manufacturing is growing rapidly in the orthotics field. This technology allows orthotics to be designed directly on digital scans of limbs. However, little information is available about scanners and 3D scans. The aim of this study is to look at the agreement between manual measurements, high-level and low-cost handheld 3D scanners. We took two manual measurements and three 3D scans with each scanner from 14 lower limbs. The lower limbs were divided into 17 sections of 30mm each from 180mm above the mid-patella to 300mm below. Time to record and to process the three 3D scans for scanners methods were compared with Student t-test while Bland-Altman plots were used to study agreement between circumferences of each section from the three methods. The record time was 97s shorter with high-level scanner than with the low-cost (p = .02) while the process time was nine times quicker with the low-cost scanner (p < .01). An overestimation of 2.5mm was found in high-level scanner compared to manual measurement, but with a better repeatability between measurements. The low-cost scanner tended to overestimate the circumferences from 0.1% to 1.5%, overestimation being greater for smaller circumferences. In conclusion, 3D scanners provide more information about the shape of the lower limb, but the reliability depends on the 3D scanner and the size of the scanned segment. Low-cost scanners could be useful for clinicians because of the simple and fast process, but attention should be focused on accuracy, which depends on the scanned body segment. PMID:29320560

  15. Measurements agreement between low-cost and high-level handheld 3D scanners to scan the knee for designing a 3D printed knee brace.

    PubMed

    Dessery, Yoann; Pallari, Jari

    2018-01-01

    Use of additive manufacturing is growing rapidly in the orthotics field. This technology allows orthotics to be designed directly on digital scans of limbs. However, little information is available about scanners and 3D scans. The aim of this study is to look at the agreement between manual measurements, high-level and low-cost handheld 3D scanners. We took two manual measurements and three 3D scans with each scanner from 14 lower limbs. The lower limbs were divided into 17 sections of 30mm each from 180mm above the mid-patella to 300mm below. Time to record and to process the three 3D scans for scanners methods were compared with Student t-test while Bland-Altman plots were used to study agreement between circumferences of each section from the three methods. The record time was 97s shorter with high-level scanner than with the low-cost (p = .02) while the process time was nine times quicker with the low-cost scanner (p < .01). An overestimation of 2.5mm was found in high-level scanner compared to manual measurement, but with a better repeatability between measurements. The low-cost scanner tended to overestimate the circumferences from 0.1% to 1.5%, overestimation being greater for smaller circumferences. In conclusion, 3D scanners provide more information about the shape of the lower limb, but the reliability depends on the 3D scanner and the size of the scanned segment. Low-cost scanners could be useful for clinicians because of the simple and fast process, but attention should be focused on accuracy, which depends on the scanned body segment.

  16. Predicting psychopharmacological drug effects on actual driving performance (SDLP) from psychometric tests measuring driving-related skills.

    PubMed

    Verster, Joris C; Roth, Thomas

    2012-03-01

    There are various methods to examine driving ability. Comparisons between these methods and their relationship with actual on-road driving is often not determined. The objective of this study was to determine whether laboratory tests measuring driving-related skills could adequately predict on-the-road driving performance during normal traffic. Ninety-six healthy volunteers performed a standardized on-the-road driving test. Subjects were instructed to drive with a constant speed and steady lateral position within the right traffic lane. Standard deviation of lateral position (SDLP), i.e., the weaving of the car, was determined. The subjects also performed a psychometric test battery including the DSST, Sternberg memory scanning test, a tracking test, and a divided attention test. Difference scores from placebo for parameters of the psychometric tests and SDLP were computed and correlated with each other. A stepwise linear regression analysis determined the predictive validity of the laboratory test battery to SDLP. Stepwise regression analyses revealed that the combination of five parameters, hard tracking, tracking and reaction time of the divided attention test, and reaction time and percentage of errors of the Sternberg memory scanning test, together had a predictive validity of 33.4%. The psychometric tests in this test battery showed insufficient predictive validity to replace the on-the-road driving test during normal traffic.

  17. Dynamic performance of MEMS deformable mirrors for use in an active/adaptive two-photon microscope

    NASA Astrophysics Data System (ADS)

    Zhang, Christian C.; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.

    2016-03-01

    Active optics can facilitate two-photon microscopic imaging deep in tissue. We are investigating fast focus control mirrors used in concert with an aberration correction mirror to control the axial position of focus and system aberrations dynamically during scanning. With an adaptive training step, sample-induced aberrations may be compensated as well. If sufficiently fast and precise, active optics may be able to compensate under-corrected imaging optics as well as sample aberrations to maintain diffraction-limited performance throughout the field of view. Toward this end we have measured a Boston Micromachines Corporation Multi-DM 140 element deformable mirror, and a Revibro Optics electrostatic 4-zone focus control mirror to characterize dynamic performance. Tests for the Multi-DM included both step response and sinusoidal frequency sweeps of specific Zernike modes. For the step response we measured 10%-90% rise times for the target Zernike amplitude, and wavefront rms error settling times. Frequency sweeps identified the 3dB bandwidth of the mirror when attempting to follow a sinusoidal amplitude trajectory for a specific Zernike mode. For five tested Zernike modes (defocus, spherical aberration, coma, astigmatism and trefoil) we find error settling times for mode amplitudes up to 400nm to be less than 52 us, and 3 dB frequencies range from 6.5 kHz to 10 kHz. The Revibro Optics mirror was tested for step response only, with error settling time of 80 μs for a large 3 um defocus step, and settling time of only 18 μs for a 400nm spherical aberration step. These response speeds are sufficient for intra-scan correction at scan rates typical of two-photon microscopy.

  18. Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner.

    PubMed

    Müller, Philipp; Ender, Andreas; Joda, Tim; Katsoulis, Joannis

    2016-04-01

    Little information is available on the impact of different scan strategies on the accuracy of full-arch scans with intraoral scanners. The aim of this in-vitro study was to investigate the trueness and precision of full-arch maxillary digital impressions comparing three scan strategies. Three scan strategies (A, B, and C) were applied each five times on one single model (A, first buccal surfaces, return from occlusal-palatal; B, first occlusal-palatal, return buccal; C, S-type one-way). The TRIOS Pod scanner (3shape, Copenhagen, Denmark) with a color detector was used for these digital impressions. A cast of a maxillary dentate jaw was fabricated and scanned with an industrial reference scanner. This full-arch data record was digitally superimposed with the test scans (trueness) and within-group comparison was performed for each group (precision). The values within the 90/10 percentiles from the digital superimposition were used for calculation and group comparisons with nonparametric tests (ANOVA, post-hoc Bonferroni). The trueness (mean ± standard deviation) was 17.9 ± 16.4 μm for scan strategy A, 17.1 ± 13.7 μm for B, and 26.8 ± 14.7 μm for C without statistically significant difference. The precision was lowest for scan strategy A (35.0 ± 51.1 μm) and significantly different to B (7.9 ± 5.6 μm) and C (8.5 ± 6.3 μm). Scan strategy B may be recommended as it provides the highest trueness and precision in full-arch scans and therefore minimizes inaccuracies in the final reconstruction.

  19. Improved Real-Time Scan Matching Using Corner Features

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Moussa, A. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, Abu B.

    2016-06-01

    The automation of unmanned vehicle operation has gained a lot of research attention, in the last few years, because of its numerous applications. The vehicle localization is more challenging in indoor environments where absolute positioning measurements (e.g. GPS) are typically unavailable. Laser range finders are among the most widely used sensors that help the unmanned vehicles to localize themselves in indoor environments. Typically, automatic real-time matching of the successive scans is performed either explicitly or implicitly by any localization approach that utilizes laser range finders. Many accustomed approaches such as Iterative Closest Point (ICP), Iterative Matching Range Point (IMRP), Iterative Dual Correspondence (IDC), and Polar Scan Matching (PSM) handles the scan matching problem in an iterative fashion which significantly affects the time consumption. Furthermore, the solution convergence is not guaranteed especially in cases of sharp maneuvers or fast movement. This paper proposes an automated real-time scan matching algorithm where the matching process is initialized using the detected corners. This initialization step aims to increase the convergence probability and to limit the number of iterations needed to reach convergence. The corner detection is preceded by line extraction from the laser scans. To evaluate the probability of line availability in indoor environments, various data sets, offered by different research groups, have been tested and the mean numbers of extracted lines per scan for these data sets are ranging from 4.10 to 8.86 lines of more than 7 points. The set of all intersections between extracted lines are detected as corners regardless of the physical intersection of these line segments in the scan. To account for the uncertainties of the detected corners, the covariance of the corners is estimated using the extracted lines variances. The detected corners are used to estimate the transformation parameters between the successive scan using least squares. These estimated transformation parameters are used to calculate an adjusted initialization for scan matching process. The presented method can be employed solely to match the successive scans and also can be used to aid other accustomed iterative methods to achieve more effective and faster converge. The performance and time consumption of the proposed approach is compared with ICP algorithm alone without initialization in different scenarios such as static period, fast straight movement, and sharp manoeuvers.

  20. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    NASA Astrophysics Data System (ADS)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  1. Operating parameters effect on physico-chemical characteristics of nanocrystalline apatite coatings electrodeposited on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Pham, Thi Nam; Thanh Dinh, Thi Mai; Thom Nguyen, Thi; Phuong Nguyen, Thu; Kergourlay, E.; Grossin, D.; Bertrand, G.; Pebere, N.; Marcelin, S. J.; Charvillat, C.; Drouet, C.

    2017-09-01

    Hydroxyapatite (HAp) was known as a bone implant material due to its biocompatibility, bioactive, chemical stability and its compositional similarity to natural bone. In this work nanocrystalline HAp coatings were prepared on 316L stainless steel (316LSS) substrates using a potentio-dynamic method (potential scanning in the range from 0 to  -1.6 V/SCE) in the presence of dissolved 3  ×  10-2 M Ca(NO3)2  +  1.8  ×  10-2 M NH4H2PO4  +  0.15 M NaNO3 and 6% H2O2 (w/w). We report the influence of experimental conditions such as temperature (25 °C-60 °C), scanning rate (1 mV s-1-10 mV s-1) and scanning times (1 times-7 times) on the morphology, structure and composition of the HAp coatings by FTIR, XRD and SEM analysis. The results show that the morphology and purity of the HAp coating were greatly affected by temperature, scanning rate and reaction time with rate of 5 mV s-1, reaction time of 26.67 min (corresponding 5 scanning times) and 25 °C, giving better coatings. The in vivo test results after 3 months grafting on femur of dogs of HAp/316LSS material showed that: the material did not induce any osteitis, osteomyelitis or structural abnormalities. The osteitis and osteomyelitis were not observed in microscopy images.

  2. Ice Shapes on a Tail Rotor

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Testing of a thermally-protected helicopter rotor in the Icing Research Tunnel (IRT) was completed. Data included inter-cycle and cold blade ice shapes. Accreted ice shapes were thoroughly documented, including tracing, scanning and photographing. This was the first time this scanning capability was used outside of NASA. This type of data has never been obtained for a rotorcraft before. This data will now be used to validate the latest generation of icing analysis tools.

  3. The ultrasound brain helmet: early human feasibility study of multiple simultaneous 3D scans of cerebral vasculature

    NASA Astrophysics Data System (ADS)

    Lindsey, Brooks D.; Ivancevich, Nikolas M.; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A.; Laskowitz, Daniel T.; Smith, Stephen W.

    2009-02-01

    We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time 3D scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64° pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128° sector, two simultaneous parasagittal images merged into a 128° × 64° C-mode plane, and a simultaneous 64° axial image. Real-time 3D color Doppler images acquired in initial clinical studies after contrast injection demonstrate flow in several representative blood vessels. An offline Doppler rendering of data from two transducers simultaneously scanning via the temporal windows provides an early visualization of the flow in vessels on both sides of the brain. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission, thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.

  4. Study on digital closed-loop system of silicon resonant micro-sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yefeng; He, Mengke

    2008-10-01

    Designing a micro, high reliability weak signal extracting system is a critical problem need to be solved in the application of silicon resonant micro-sensor. The closed-loop testing system based on FPGA uses software to replace hardware circuit which dramatically decrease the system's mass and power consumption and make the system more compact, both correlation theory and frequency scanning scheme are used in extracting weak signal, the adaptive frequency scanning arithmetic ensures the system real-time. The error model was analyzed to show the solution to enhance the system's measurement precision. The experiment results show that the closed-loop testing system based on FPGA has the personality of low power consumption, high precision, high-speed, real-time etc, and also the system is suitable for different kinds of Silicon Resonant Micro-sensor.

  5. The Healthy Brain Network Serial Scanning Initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions.

    PubMed

    O'Connor, David; Potler, Natan Vega; Kovacs, Meagan; Xu, Ting; Ai, Lei; Pellman, John; Vanderwal, Tamara; Parra, Lucas C; Cohen, Samantha; Ghosh, Satrajit; Escalera, Jasmine; Grant-Villegas, Natalie; Osman, Yael; Bui, Anastasia; Craddock, R Cameron; Milham, Michael P

    2017-02-01

    Although typically measured during the resting state, a growing literature is illustrating the ability to map intrinsic connectivity with functional MRI during task and naturalistic viewing conditions. These paradigms are drawing excitement due to their greater tolerability in clinical and developing populations and because they enable a wider range of analyses (e.g., inter-subject correlations). To be clinically useful, the test-retest reliability of connectivity measured during these paradigms needs to be established. This resource provides data for evaluating test-retest reliability for full-brain connectivity patterns detected during each of four scan conditions that differ with respect to level of engagement (rest, abstract animations, movie clips, flanker task). Data are provided for 13 participants, each scanned in 12 sessions with 10 minutes for each scan of the four conditions. Diffusion kurtosis imaging data was also obtained at each session. Technical validation and demonstrative reliability analyses were carried out at the connection-level using the Intraclass Correlation Coefficient and at network-level representations of the data using the Image Intraclass Correlation Coefficient. Variation in intrinsic functional connectivity across sessions was generally found to be greater than that attributable to scan condition. Between-condition reliability was generally high, particularly for the frontoparietal and default networks. Between-session reliabilities obtained separately for the different scan conditions were comparable, though notably lower than between-condition reliabilities. This resource provides a test-bed for quantifying the reliability of connectivity indices across subjects, conditions and time. The resource can be used to compare and optimize different frameworks for measuring connectivity and data collection parameters such as scan length. Additionally, investigators can explore the unique perspectives of the brain's functional architecture offered by each of the scan conditions. © The Author 2017. Published by Oxford University Press.

  6. Detection of tanker defects with infrared thermography

    NASA Technical Reports Server (NTRS)

    Kantsios, A. G.

    1980-01-01

    Infrared scanning technique for finding defects in secondary barrier of liquid natural gas (LNG) tank has been successfully tested on ship under construction at Newport News Shipbuilding and Dry Dock Company. Technique determines defects with minimal expenditure of time and manpower. Tests could be repeated during life of tanker and make more complicated testing unnecessary. Tests also confirmed that tank did not have any major defects, and tank was certified.

  7. A controlled statistical study to assess measurement variability as a function of test object position and configuration for automated surveillance in a multicenter longitudinal COPD study (SPIROMICS).

    PubMed

    Guo, Junfeng; Wang, Chao; Chan, Kung-Sik; Jin, Dakai; Saha, Punam K; Sieren, Jered P; Barr, R G; Han, MeiLan K; Kazerooni, Ella; Cooper, Christopher B; Couper, David; Newell, John D; Hoffman, Eric A

    2016-05-01

    A test object (phantom) is an important tool to evaluate comparability and stability of CT scanners used in multicenter and longitudinal studies. However, there are many sources of error that can interfere with the test object-derived quantitative measurements. Here the authors investigated three major possible sources of operator error in the use of a test object employed to assess pulmonary density-related as well as airway-related metrics. Two kinds of experiments were carried out to assess measurement variability caused by imperfect scanning status. The first one consisted of three experiments. A COPDGene test object was scanned using a dual source multidetector computed tomographic scanner (Siemens Somatom Flash) with the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) inspiration protocol (120 kV, 110 mAs, pitch = 1, slice thickness = 0.75 mm, slice spacing = 0.5 mm) to evaluate the effects of tilt angle, water bottle offset, and air bubble size. After analysis of these results, a guideline was reached in order to achieve more reliable results for this test object. Next the authors applied the above findings to 2272 test object scans collected over 4 years as part of the SPIROMICS study. The authors compared changes of the data consistency before and after excluding the scans that failed to pass the guideline. This study established the following limits for the test object: tilt index ≤0.3, water bottle offset limits of [-6.6 mm, 7.4 mm], and no air bubble within the water bottle, where tilt index is a measure incorporating two tilt angles around x- and y-axis. With 95% confidence, the density measurement variation for all five interested materials in the test object (acrylic, water, lung, inside air, and outside air) resulting from all three error sources can be limited to ±0.9 HU (summed in quadrature), when all the requirements are satisfied. The authors applied these criteria to 2272 SPIROMICS scans and demonstrated a significant reduction in measurement variation associated with the test object. Three operator errors were identified which significantly affected the usability of the acquired scan images of the test object used for monitoring scanner stability in a multicenter study. The authors' results demonstrated that at the time of test object scan receipt at a radiology core laboratory, quality control procedures should include an assessment of tilt index, water bottle offset, and air bubble size within the water bottle. Application of this methodology to 2272 SPIROMICS scans indicated that their findings were not limited to the scanner make and model used for the initial test but was generalizable to both Siemens and GE scanners which comprise the scanner types used within the SPIROMICS study.

  8. A controlled statistical study to assess measurement variability as a function of test object position and configuration for automated surveillance in a multicenter longitudinal COPD study (SPIROMICS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Junfeng; Newell, John D.; Wang, Chao

    Purpose: A test object (phantom) is an important tool to evaluate comparability and stability of CT scanners used in multicenter and longitudinal studies. However, there are many sources of error that can interfere with the test object-derived quantitative measurements. Here the authors investigated three major possible sources of operator error in the use of a test object employed to assess pulmonary density-related as well as airway-related metrics. Methods: Two kinds of experiments were carried out to assess measurement variability caused by imperfect scanning status. The first one consisted of three experiments. A COPDGene test object was scanned using a dualmore » source multidetector computed tomographic scanner (Siemens Somatom Flash) with the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) inspiration protocol (120 kV, 110 mAs, pitch = 1, slice thickness = 0.75 mm, slice spacing = 0.5 mm) to evaluate the effects of tilt angle, water bottle offset, and air bubble size. After analysis of these results, a guideline was reached in order to achieve more reliable results for this test object. Next the authors applied the above findings to 2272 test object scans collected over 4 years as part of the SPIROMICS study. The authors compared changes of the data consistency before and after excluding the scans that failed to pass the guideline. Results: This study established the following limits for the test object: tilt index ≤0.3, water bottle offset limits of [−6.6 mm, 7.4 mm], and no air bubble within the water bottle, where tilt index is a measure incorporating two tilt angles around x- and y-axis. With 95% confidence, the density measurement variation for all five interested materials in the test object (acrylic, water, lung, inside air, and outside air) resulting from all three error sources can be limited to ±0.9 HU (summed in quadrature), when all the requirements are satisfied. The authors applied these criteria to 2272 SPIROMICS scans and demonstrated a significant reduction in measurement variation associated with the test object. Conclusions: Three operator errors were identified which significantly affected the usability of the acquired scan images of the test object used for monitoring scanner stability in a multicenter study. The authors’ results demonstrated that at the time of test object scan receipt at a radiology core laboratory, quality control procedures should include an assessment of tilt index, water bottle offset, and air bubble size within the water bottle. Application of this methodology to 2272 SPIROMICS scans indicated that their findings were not limited to the scanner make and model used for the initial test but was generalizable to both Siemens and GE scanners which comprise the scanner types used within the SPIROMICS study.« less

  9. Gallbladder radionuclide scan

    MedlinePlus

    ... Gallbladder scan; Biliary scan; Cholescintigraphy; HIDA; Hepatobiliary nuclear imaging scan ... test results. This test is combined with other imaging (such as CT or ultrasound). After the gallbladder ...

  10. Thyroid scan

    MedlinePlus

    ... thyroid; Radioactive iodine uptake and scan test - thyroid; Nuclear scan - thyroid ... the test. Ask your provider or the radiology/nuclear medicine team performing the scan about taking precautions.

  11. Comparison of BD Phoenix to Vitek 2, MicroScan MICroSTREP, and Etest for Antimicrobial Susceptibility Testing of Streptococcus pneumoniae▿

    PubMed Central

    Mittman, Scott A.; Huard, Richard C.; Della-Latta, Phyllis; Whittier, Susan

    2009-01-01

    The performance of the BD Phoenix Automated Microbiology System (BD Diagnostic Systems) was compared to those of the Vitek 2 (bioMérieux), the MicroScan MICroSTREP plus (Siemens), and Etest (bioMérieux) for antibiotic susceptibility tests (AST) of 311 clinical isolates of Streptococcus pneumoniae. The overall essential agreement (EA) between each test system and the reference microdilution broth reference method for S. pneumoniae AST results was >95%. For Phoenix, the EAs of individual antimicrobial agents ranged from 90.4% (clindamycin) to 100% (vancomycin and gatifloxacin). The categorical agreements (CA) of Phoenix, Vitek 2, MicroScan, and Etest for penicillin were 95.5%, 94.2%, 98.7%, and 97.7%, respectively. The overall CA for Phoenix was 99.3% (1 very major error [VME] and 29 minor errors [mEs]), that for Vitek 2 was 98.8% (7 VMEs and 28 mEs), and those for MicroScan and Etest were 99.5% each (19 and 13 mEs, respectively). The average times to results for Phoenix, Vitek 2, and the manual methods were 12.1 h, 9.8 h, and 24 h, respectively. From these data, the Phoenix AST results demonstrated a high degree of agreement with all systems evaluated, although fewer VMEs were observed with the Phoenix than with the Vitek 2. Overall, both automated systems provided reliable AST results for the S. pneumoniae-antibiotic combinations in half the time required for the manual methods, rendering them more suitable for the demands of expedited reporting in the clinical setting. PMID:19741088

  12. Complete-arch accuracy of intraoral scanners.

    PubMed

    Treesh, Joshua C; Liacouras, Peter C; Taft, Robert M; Brooks, Daniel I; Raiciulescu, Sorana; Ellert, Daniel O; Grant, Gerald T; Ye, Ling

    2018-04-30

    Intraoral scanners have shown varied results in complete-arch applications. The purpose of this in vitro study was to evaluate the complete-arch accuracy of 4 intraoral scanners based on trueness and precision measurements compared with a known reference (trueness) and with each other (precision). Four intraoral scanners were evaluated: CEREC Bluecam, CEREC Omnicam, TRIOS Color, and Carestream CS 3500. A complete-arch reference cast was created and printed using a 3-dimensional dental cast printer with photopolymer resin. The reference cast was digitized using a laboratory-based white light 3-dimensional scanner. The printed reference cast was scanned 10 times with each intraoral scanner. The digital standard tessellation language (STL) files from each scanner were then registered to the reference file and compared with differences in trueness and precision using a 3-dimensional modeling software. Additionally, scanning time was recorded for each scan performed. The Wilcoxon signed rank, Kruskal-Wallis, and Dunn tests were used to detect differences for trueness, precision, and scanning time (α=.05). Carestream CS 3500 had the lowest overall trueness and precision compared with Bluecam and TRIOS Color. The fourth scanner, Omnicam, had intermediate trueness and precision. All of the scanners tended to underestimate the size of the reference file, with exception of the Carestream CS 3500, which was more variable. Based on visual inspection of the color rendering of signed differences, the greatest amount of error tended to be in the posterior aspects of the arch, with local errors exceeding 100 μm for all scans. The single capture scanner Carestream CS 3500 had the overall longest scan times and was significantly slower than the continuous capture scanners TRIOS Color and Omnicam. Significant differences in both trueness and precision were found among the scanners. Scan times of the continuous capture scanners were faster than the single capture scanners. Published by Elsevier Inc.

  13. A novel approach to measure elemental concentrations in cation exchange resins using XRF-scanning technique, and its potential in water pollution studies

    NASA Astrophysics Data System (ADS)

    Huang, Jyh-Jaan; Lin, Sheng-Chi; Löwemark, Ludvig; Liou, Ya-Hsuan; Chang, Queenie; Chang, Tsun-Kuo; Wei, Kuo-Yen; Croudace, Ian W.

    2016-04-01

    X-ray fluorescence (XRF) core-scanning is a fast, and convenient technique to assess elemental variations for a wide variety of research topics. However, the XRF scanning counts are often considered a semi-quantitative measurement due to possible absorption or scattering caused by down core variability in physical properties. To overcome this problem and extend the applications of XRF-scanning to water pollution studies, we propose to use cation exchange resin (IR-120) as an "elemental carrier", and to analyze the resins using the Itrax-XRF core scanner. The use of resin minimizes the matrix effects during the measurements, and can be employed in the field in great numbers due to its low price. Therefore, the fast, and non-destructive XRF-scanning technique can provide a quick and economical method to analyze environmental pollution via absorption in the resin. Five standard resin samples were scanned by the Itrax-XRF core scanner at different exposure times (1 s, 5 s, 15 s, 30 s, 100 s) to allow the comparisons of scanning counts with the absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in pollution studies (Ca, Ti, Cr, Ni, Cu, Zn, and Pb) were examined for the different exposure times. The result shows that within the test range (from few ppm to thousands ppm), the correlation coefficients are all higher than 0.97, even at the shortest exposure time (1 s). Therefore, we propose to use this method in the field to monitor for example sewage disposal events. The low price of resin, and fast, multi elements and precise XRF-scanning technique provide a viable, cost- and time-effective approach that allows large sample numbers to be processed. In this way, the properties and sources of wastewater pollution can be traced for the purpose of environmental monitoring and environmental forensics.

  14. Defining the reliability of sonoanatomy identification by novices in ultrasound-guided pediatric ilioinguinal and iliohypogastric nerve blockade.

    PubMed

    Ford, Simon; Dosani, Maryam; Robinson, Ashley J; Campbell, G Claire; Ansermino, J Mark; Lim, Joanne; Lauder, Gillian R

    2009-12-01

    The ilioinguinal (II)/iliohypogastric (IH) nerve block is a safe, frequently used block that has been improved in efficacy and safety by the use of ultrasound guidance. We assessed the frequency with which pediatric anesthesiologists with limited experience with ultrasound-guided regional anesthesia could correctly identify anatomical structures within the inguinal region. Our primary outcome was to compare the frequency of correct identification of the transversus abdominis (TA) muscle with the frequency of correct identification of the II/IH nerves. We used 2 ultrasound machines with different capabilities to assess a potential equipment effect on success of structure identification and time taken for structure identification. Seven pediatric anesthesiologists with <6 mo experience with ultrasound-guided regional anesthesia performed a total of 127 scans of the II region in anesthetized children. The muscle planes and the II and IH nerves were identified and labeled. The ultrasound images were reviewed by a blinded expert to mark accuracy of structure identification and time taken for identification. Two ultrasound machines (Sonosite C180plus and Micromaxx, both from Sonosite, Bothell, WA) were used. There was no difference in the frequency of correct identification of the TA muscle compared with the II/IH nerves (chi(2) test, TA versus II, P = 0.45; TA versus IH, P = 0.50). Ultrasound machine selection did show a nonsignificant trend in improving correct II/IH nerve identification (II nerve chi(2) test, P = 0.02; IH nerve chi(2) test, P = 0.04; Bonferroni corrected significance 0.17) but not for the muscle planes (chi(2) test, P = 0.83) or time taken (1-way analysis of variance, P = 0.07). A curve of improving accuracy with number of scans was plotted, with reliability of TA recognition occurring after 14-15 scans and II/IH identification after 18 scans. We have demonstrated that although there is no difference in the overall accuracy of muscle plane versus II/IH nerve identification, the muscle planes are reliably identified after fewer scans of the inguinal region. We suggest that a reliable end point for the inexperienced practitioner of ultrasound-guided II/IH nerve block may be the TA/internal oblique plane where the nerves are reported to be found in 100% of cases.

  15. Smoke and mirrors: Ultra-rapid-scan FT-IR spectrometry

    NASA Astrophysics Data System (ADS)

    Manning, C. J.

    1998-06-01

    Fourier transform-infrared spectrometers have dominated the marketplace and the experimental literature of vibrational spectroscopy for almost three decades. These versatile instruments have been applied to a wide variety of measurements in both industrial and research settings. There has been, however, an ongoing need for enhanced time resolution. Limitations of time resolution in FT-IR measurements arise from the modulation frequencies intrinsic to the spectral multiplexing. Events which are slower than the minimum scan time, about 40 milliseconds at 4-cm-1 resolution, can be readily monitored with conventional instrumentation. For shorter transients, various step-scan, stroboscopic and asynchronous methods have been demonstrated to provide excellent time resolution, down to nanoseconds, but these approaches are limited to events which can be repeated many times with minimal variations. Some of these methods are also susceptible to low-frequency noise sources. The intrinsic scan time of conventional FT-IR spectrometers is limited by the force that can be applied to the moving mirror. In commercial systems the moving mirror is invariably driven by a voice coil linear motor. The maximum force that can be exerted by the voice coil is sharply limited to a few Newtons. It is desirable to decrease the scan time by a large factor, but the required force scales as the square of the scan rate, while the voltage applied to the coil must scale as the cube of the rate. A more suitable approach to very-rapid-scan FT-IR spectrometry may be the use of rotating optical components which do not have to turn around at the end of travel. There is, however, an apparent symmetry mismatch between rotating elements and the nominally planar wavefronts in a Michelson interferometer. In spite of the mismatch, numerous interferometer designs based on rotating elements have been proposed and demonstrated. Some of these designs are suitable for operation with scan times from tens of milliseconds to milliseconds, and perhaps faster, at 4-cm-1 resolution. A novel interferometer design utilizing a single-sided precessing disk mirror allows a complete interferogram to be measured in 1 millisecond or less. A prototype instrument of this design has been constructed and tested. One application reported here is the measurement of a transient combustion event. While combustion reactions can be conveniently repeated under some circumstances, such as with gas-phase reactants, the shot-to-shot variation is unacceptably large for step-scan measurements. Preliminary data, illustrating operation and performance of the system, are presented. It is thought that the high modulation frequencies have resulted in superior rejection of multiplicative noise.

  16. Solving the Swath Segment Selection Problem

    NASA Technical Reports Server (NTRS)

    Knight, Russell; Smith, Benjamin

    2006-01-01

    Several artificial-intelligence search techniques have been tested as means of solving the swath segment selection problem (SSSP) -- a real-world problem that is not only of interest in its own right, but is also useful as a test bed for search techniques in general. In simplest terms, the SSSP is the problem of scheduling the observation times of an airborne or spaceborne synthetic-aperture radar (SAR) system to effect the maximum coverage of a specified area (denoted the target), given a schedule of downlinks (opportunities for radio transmission of SAR scan data to a ground station), given the limit on the quantity of SAR scan data that can be stored in an onboard memory between downlink opportunities, and given the limit on the achievable downlink data rate. The SSSP is NP complete (short for "nondeterministic polynomial time complete" -- characteristic of a class of intractable problems that can be solved only by use of computers capable of making guesses and then checking the guesses in polynomial time).

  17. A Prospective, Matched Comparison Study of SUV Measurements From Time-of-Flight Versus Non-Time-of-Flight PET/CT Scanners.

    PubMed

    Thompson, Holly M; Minamimoto, Ryogo; Jamali, Mehran; Barkhodari, Amir; von Eyben, Rie; Iagaru, Andrei

    2016-07-01

    As quantitative F-FDG PET numbers and pooling of results from different PET/CT scanners become more influential in the management of patients, it becomes imperative that we fully interrogate differences between scanners to fully understand the degree of scanner bias on the statistical power of studies. Participants with body mass index (BMI) greater than 25, scheduled on a time-of-flight (TOF)-capable PET/CT scanner, had a consecutive scan on a non-TOF-capable PET/CT scanner and vice versa. SUVmean in various tissues and SUVmax of malignant lesions were measured from both scans, matched to each subject. Data were analyzed using a mixed-effects model, and statistical significance was determined using equivalence testing, with P < 0.05 being significant. Equivalence was established in all baseline organs, except the cerebellum, matched per patient between scanner types. Mixed-effects method analysis of lesions, repeated between scan types and matched per patient, demonstrated good concordance between scanner types. Patients could be scanned on either a TOF or non-TOF-capable PET/CT scanner without clinical compromise to quantitative SUV measurements.

  18. Evaluation of the Effect of Light and Scanning Time Delay on The Image Quality of Intra Oral Photostimulable Phosphor Plates

    PubMed Central

    Eskandarloo, Amir; Yousefi, Arman; Soheili, Setareh; Ghazikhanloo, Karim; Amini, Payam; Mohammadpoor, Haniyeh

    2017-01-01

    Background: Nowadays, digital radiography is widely used in dental practice. One of the most common types is Photo Stimulated Phosphor Plate (PSP). Objective: The aims of this experimental study were to evaluate the impacts of different combinations of storage conditions and varying delays in reading of digital images captured using PSPs. Methods: Standardized images of a step wedges were obtained using PSPs from the Digora digital systems. Plates were exposed and immediately scanned to produce the baseline gold standard. The plates were re-exposed and stored in four different storage conditions: white light, yellow light, natural light environment and dark room, then scanned after 10 and 30 minutes and 4 and 8 hours. Objective analysis was conducted by density measurements and the data were analyzed statistically using GEE test. Subjective analysis was performed by two oral and maxillofacial radiologists and the results were analyzed using McNemar’s test. Results: The results from GEE analysis show that in the natural light environment, the densities in 10 minutes did not differ from the baseline. The mean densities decreased significantly during the time in all environments. The mean densities in step 2 for the dark room environment decreased with a slighter slope in comparison to yellow environment significantly. Conclusion: PSP images showed significant decrease in the density in plates scanned for 10 minutes or longer after exposure which may not be detected clinically. The yellow light environment had a different impact on the quality of PSP images. The spatial resolution did not change significantly with time. PMID:29430262

  19. Evaluation of the Effect of Light and Scanning Time Delay on The Image Quality of Intra Oral Photostimulable Phosphor Plates.

    PubMed

    Eskandarloo, Amir; Yousefi, Arman; Soheili, Setareh; Ghazikhanloo, Karim; Amini, Payam; Mohammadpoor, Haniyeh

    2017-01-01

    Nowadays, digital radiography is widely used in dental practice. One of the most common types is Photo Stimulated Phosphor Plate (PSP). The aims of this experimental study were to evaluate the impacts of different combinations of storage conditions and varying delays in reading of digital images captured using PSPs. Standardized images of a step wedges were obtained using PSPs from the Digora digital systems. Plates were exposed and immediately scanned to produce the baseline gold standard. The plates were re-exposed and stored in four different storage conditions: white light, yellow light, natural light environment and dark room, then scanned after 10 and 30 minutes and 4 and 8 hours. Objective analysis was conducted by density measurements and the data were analyzed statistically using GEE test. Subjective analysis was performed by two oral and maxillofacial radiologists and the results were analyzed using McNemar's test. The results from GEE analysis show that in the natural light environment, the densities in 10 minutes did not differ from the baseline. The mean densities decreased significantly during the time in all environments. The mean densities in step 2 for the dark room environment decreased with a slighter slope in comparison to yellow environment significantly. PSP images showed significant decrease in the density in plates scanned for 10 minutes or longer after exposure which may not be detected clinically. The yellow light environment had a different impact on the quality of PSP images. The spatial resolution did not change significantly with time.

  20. Optical scanning tests of complex CMOS microcircuits

    NASA Technical Reports Server (NTRS)

    Levy, M. E.; Erickson, J. J.

    1977-01-01

    The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.

  1. A wavefront reconstruction method for 3-D cylindrical subsurface radar imaging.

    PubMed

    Flores-Tapia, Daniel; Thomas, Gabriel; Pistorius, Stephen

    2008-10-01

    In recent years, the use of radar technology has been proposed in a wide range of subsurface imaging applications. Traditionally, linear scan trajectories are used to acquire data in most subsurface radar applications. However, novel applications, such as breast microwave imaging and wood inspection, require the use of nonlinear scan trajectories in order to adjust to the geometry of the scanned area. This paper proposes a novel reconstruction algorithm for subsurface radar data acquired along cylindrical scan trajectories. The spectrum of the collected data is processed in order to locate the spatial origin of the target reflections and remove the spreading of the target reflections which results from the different signal travel times along the scan trajectory. The proposed algorithm was successfully tested using experimental data collected from phantoms that mimic high contrast subsurface radar scenarios, yielding promising results. Practical considerations such as spatial resolution and sampling constraints are discussed and illustrated as well.

  2. Real-time chirp-coded imaging with a programmable ultrasound biomicroscope.

    PubMed

    Bosisio, Mattéo R; Hasquenoph, Jean-Michel; Sandrin, Laurent; Laugier, Pascal; Bridal, S Lori; Yon, Sylvain

    2010-03-01

    Ultrasound biomicroscopy (UBM) of mice can provide a testing ground for new imaging strategies. The UBM system presented in this paper facilitates the development of imaging and measurement methods with programmable design, arbitrary waveform coding, broad bandwidth (2-80 MHz), digital filtering, programmable processing, RF data acquisition, multithread/multicore real-time display, and rapid mechanical scanning (

  3. Results of a laboratory experiment that tests rotating unbalanced-mass devices for scanning gimbaled payloads and free-flying spacecraft

    NASA Technical Reports Server (NTRS)

    Alhorn, D. C.; Polites, M. E.

    1994-01-01

    Rotating unbalanced-mass (RUM) devices are a new way to scan space-based, balloon-borne, and ground-based gimbaled payloads, like x-ray and gamma-ray telescopes. They can also be used to scan free-flying spacecraft. Circular scans, linear scans, and raster scans can be generated. A pair of RUM devices generates the basic scan motion and an auxiliary control system using torque motors, control moment gyros, or reaction wheels keeps the scan centered on the target and produces some complementary motion for raster scanning. Previous analyses and simulation results show that this approach offers significant power savings compared to scanning only with the auxiliary control system, especially with large payloads and high scan frequencies. However, these claims have never been proven until now. This paper describes a laboratory experiment which tests the concept of scanning a gimbaled payload with RUM devices. A description of the experiment is given and test results that prove the concept are presented. The test results are compared with those from a computer simulation model of the experiment and the differences are discussed.

  4. Further testing and development of simulation models for UT inspections of armor

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.; Richter, Nathaniel; Thompson, R. Bruce

    2012-05-01

    In previous work we introduced an approach for simulating ultrasonic pulse/echo immersion inspections of multi-layer armor panels. Model inputs include the thickness, density, velocity and attenuation of each armor layer, the focal properties of the transducer, and a measured calibration signal. The basic model output is a response-versus-time waveform (ultrasonic A-scan) which includes echoes from all interfaces including those arising from reverberations within layers. Such A-scans can be predicted both for unflawed panels and panels containing a large disbond at any given interface. In this paper we continue our testing of the simulation software, applying it now to an armor panel consisting of SiC ceramic tiles fully embedded in a titanium-alloy matrix. An interesting specimen of such armor became available in which some tile/metal interfaces appear to be well bonded, while others have disbonded areas of various sizes. We compare measured and predicted A-scans for UT inspections, and also demonstrate an extension of the model to predict ultrasonic C-scans over regions containing a small, isolated disbond.

  5. [Effect of glyceryl triacetate on properties of PLA/PBAT blends].

    PubMed

    Yang, Nan; Wang, Xiyuan; Weng, Yunxuan; Jin, Yujuan; Zhang, Min

    2016-06-25

    Poly lactic acid (PLA)/Poly (butyleneadipate-co-terephthalate)(PBAT) and glyceryl triacetate (GTA) blend were prepared by torque rheometer, and the effect of GTA on thermodynamical performance, mechanical properties and microstructure of PLA/PBAT composites were studied using differential scanning calorimeter(DSC), dynamic mechanical analysis(DMA), universal testing machine, impact testing machine and scanning electron microscope(SEM). After adding GTA, Tg values of the two phases gradually became closer, blends cold crystallization temperature and melting temperature decreased. When with 3 phr GTA, the dispersed phase particle size of PLA/PBAT blend decreased. Mechanics performance test showed that the elongation at break and impact strength of the PLA/PBAT blend was greatly increased with 3 phr GTA, and the elongation at break increased 2.6 times, improved from 17.7% to 64.1%.

  6. Semiautomated analysis of small-animal PET data.

    PubMed

    Kesner, Adam L; Dahlbom, Magnus; Huang, Sung-Cheng; Hsueh, Wei-Ann; Pio, Betty S; Czernin, Johannes; Kreissl, Michael; Wu, Hsiao-Ming; Silverman, Daniel H S

    2006-07-01

    The objective of the work reported here was to develop and test automated methods to calculate biodistribution of PET tracers using small-animal PET images. After developing software that uses visually distinguishable organs and other landmarks on a scan to semiautomatically coregister a digital mouse phantom with a small-animal PET scan, we elastically transformed the phantom to conform to those landmarks in 9 simulated scans and in 18 actual PET scans acquired of 9 mice. Tracer concentrations were automatically calculated in 22 regions of interest (ROIs) reflecting the whole body and 21 individual organs. To assess the accuracy of this approach, we compared the software-measured activities in the ROIs of simulated PET scans with the known activities, and we compared the software-measured activities in the ROIs of real PET scans both with manually established ROI activities in original scan data and with actual radioactivity content in immediately harvested tissues of imaged animals. PET/atlas coregistrations were successfully generated with minimal end-user input, allowing rapid quantification of 22 separate tissue ROIs. The simulated scan analysis found the method to be robust with respect to the overall size and shape of individual animal scans, with average activity values for all organs tested falling within the range of 98% +/- 3% of the organ activity measured in the unstretched phantom scan. Standardized uptake values (SUVs) measured from actual PET scans using this semiautomated method correlated reasonably well with radioactivity content measured in harvested organs (median r = 0.94) and compared favorably with conventional SUV correlations with harvested organ data (median r = 0.825). A semiautomated analytic approach involving coregistration of scan-derived images with atlas-type images can be used in small-animal whole-body radiotracer studies to estimate radioactivity concentrations in organs. This approach is rapid and less labor intensive than are traditional methods, without diminishing overall accuracy. Such techniques have the possibility of saving time, effort, and the number of animals needed for such assessments.

  7. Detecting Genomic Clustering of Risk Variants from Sequence Data: Cases vs. Controls

    PubMed Central

    Schaid, Daniel J.; Sinnwell, Jason P.; McDonnell, Shannon K.; Thibodeau, Stephen N.

    2013-01-01

    As the ability to measure dense genetic markers approaches the limit of the DNA sequence itself, taking advantage of possible clustering of genetic variants in, and around, a gene would benefit genetic association analyses, and likely provide biological insights. The greatest benefit might be realized when multiple rare variants cluster in a functional region. Several statistical tests have been developed, one of which is based on the popular Kulldorff scan statistic for spatial clustering of disease. We extended another popular spatial clustering method – Tango’s statistic – to genomic sequence data. An advantage of Tango’s method is that it is rapid to compute, and when single test statistic is computed, its distribution is well approximated by a scaled chi-square distribution, making computation of p-values very rapid. We compared the Type-I error rates and power of several clustering statistics, as well as the omnibus sequence kernel association test (SKAT). Although our version of Tango’s statistic, which we call “Kernel Distance” statistic, took approximately half the time to compute than the Kulldorff scan statistic, it had slightly less power than the scan statistic. Our results showed that the Ionita-Laza version of Kulldorff’s scan statistic had the greatest power over a range of clustering scenarios. PMID:23842950

  8. Age-Related Differences in Test-Retest Reliability in Resting-State Brain Functional Connectivity

    PubMed Central

    Song, Jie; Desphande, Alok S.; Meier, Timothy B.; Tudorascu, Dana L.; Vergun, Svyatoslav; Nair, Veena A.; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Bellec, Pierre; Prabhakaran, Vivek

    2012-01-01

    Resting-state functional MRI (rs-fMRI) has emerged as a powerful tool for investigating brain functional connectivity (FC). Research in recent years has focused on assessing the reliability of FC across younger subjects within and between scan-sessions. Test-retest reliability in resting-state functional connectivity (RSFC) has not yet been examined in older adults. In this study, we investigated age-related differences in reliability and stability of RSFC across scans. In addition, we examined how global signal regression (GSR) affects RSFC reliability and stability. Three separate resting-state scans from 29 younger adults (18–35 yrs) and 26 older adults (55–85 yrs) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available as part of the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 92 regions of interest (ROIs) with 5 cubic mm radius, derived from the default, cingulo-opercular, fronto-parietal and sensorimotor networks, were previously defined based on a recent study. Mean time series were extracted from each of the 92 ROIs from each scan and three matrices of z-transformed correlation coefficients were created for each subject, which were then used for evaluation of multi-scan reliability and stability. The young group showed higher reliability of RSFC than the old group with GSR (p-value = 0.028) and without GSR (p-value <0.001). Both groups showed a high degree of multi-scan stability of RSFC and no significant differences were found between groups. By comparing the test-retest reliability of RSFC with and without GSR across scans, we found significantly higher proportion of reliable connections in both groups without GSR, but decreased stability. Our results suggest that aging is associated with reduced reliability of RSFC which itself is highly stable within-subject across scans for both groups, and that GSR reduces the overall reliability but increases the stability in both age groups and could potentially alter group differences of RSFC. PMID:23227153

  9. Solid State Mini-RPV Color Imaging System

    DTIC Science & Technology

    1975-09-12

    completed in the design and construction phase . Con- siderations are now in progress for conducting field tests of the equipment against "real world...Simplified Parallel Injection Configuration 2-21 CID Parallel Injection Configuration 2-23 Element Rate Timing 2-25 Horizontal Input and Phase Line...Timing 2-26 Line Reset /Injection Timing 2-27 Line Rate Timing (Start of Readout) 2-28 Driver A4 Block Diagram 2-31 Element Scan Time Base

  10. Influence of Scan Duration on Pulmonary Capillary Hemorrhage Induced by Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2016-08-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and display this as "comet tail" artifacts (CTAs) after a time delay. To test the hypothesis that no PCH occurs for brief scans, anesthetized rats were scanned using a 6-MHz linear array for different durations. PCH was characterized by ultrasound CTAs, micro-computed tomography (μCT), and measurements of fixed lung tissue. The μCT images revealed regions of PCH, sometimes penetrating the entire depth of a lobe, which were reflected in the fixed tissue measurements. At -3 dB of power, PCH was substantial for 300-s scans, but not significant for 25-s scans. At 0 dB, PCH was not strongly dependent on scan durations of 300 to 10 s. Contrary to the hypothesis, CTAs were not evident during most 10-s scans (p > 0.05), but PCH was significant (p = 0.02), indicating that PCH could occur without evidence of the injury in the images. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Quantification of left ventricular functional parameter values using 3D spiral bSSFP and through-time non-Cartesian GRAPPA.

    PubMed

    Barkauskas, Kestutis J; Rajiah, Prabhakar; Ashwath, Ravi; Hamilton, Jesse I; Chen, Yong; Ma, Dan; Wright, Katherine L; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole

    2014-09-11

    The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.

  12. (Un)targeted Scanning of Locks of Hair for Drugs of Abuse by Direct Analysis in Real Time-High-Resolution Mass Spectrometry.

    PubMed

    Duvivier, Wilco F; van Putten, Marc R; van Beek, Teris A; Nielen, Michel W F

    2016-02-16

    Forensic hair evidence can be used to obtain retrospective timelines of drug use by analysis of hair segments. However, this is a laborious and time-consuming process, and mass spectrometric (MS) imaging techniques, which show great potential for single-hair targeted analysis, are less useful due to differences in hair growth rate between individual hairs. As an alternative, a fast untargeted analysis method was developed that uses direct analysis in real time-high-resolution mass spectrometry (DART-HRMS) to longitudinally scan intact locks of hair without extensive sample preparation or segmentation. The hair scan method was validated for cocaine against an accredited liquid chromatography/tandem mass spectrometry (LC/MS/MS) method. The detection limit for cocaine in hair was found to comply with the cutoff value of 0.5 ng/mg recommended by the Society of Hair Testing; that is, the DART hair scan method is amenable to forensic cases. Under DART conditions, no significant thermal degradation of cocaine occurred. The standard DART spot size of 5.1 ± 1.1 mm could be improved to 3.3 ± 1.0 mm, corresponding to approximately 10 days of hair growth, by using a high spatial resolution exit cone. By use of data-dependent product ion scans, multiple drugs of abuse could be detected in a single drug user hair scan with confirmation of identity by both exact mass and MS/HRMS fragmentation patterns. Furthermore, full-scan high-resolution data were retrospectively interrogated versus a list of more than 100 compounds and revealed additional hits and temporal profiles in good correlation with reported drug use.

  13. Time of flight dependent linearity in diffuse imaging: how effective is it to evaluate the spatial resolution by measuring the edge response function?

    PubMed

    Ortiz-Rascón, E; Bruce, N C; Rodríguez-Rosales, A A; Garduño-Mejía, J

    2016-03-01

    We describe the behavior of linearity in diffuse imaging by evaluating the differences between time-resolved images produced by photons arriving at the detector at different times. Two approaches are considered: Monte Carlo simulations and experimental results. The images of two complete opaque bars embedded in a transparent or in a turbid medium with a slab geometry are analyzed; the optical properties of the turbid medium sample are close to those of breast tissue. A simple linearity test was designed involving a direct comparison between the intensity profile produced by two bars scanned at the same time and the intensity profile obtained by adding two profiles of each bar scanned one at a time. It is shown that the linearity improves substantially when short time of flight photons are used in the imaging process, but even then the nonlinear behavior prevails. As the edge response function (ERF) has been used widely for testing the spatial resolution in imaging systems, the main implication of a time dependent linearity is the weakness of the linearity assumption when evaluating the spatial resolution through the ERF in diffuse imaging systems, and the need to evaluate the spatial resolution by other methods.

  14. SU-E-U-02: The Development of a Practical Ultrasonic System for Cross-Sectional Imaging of Small Animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamp, J; Karmanos Cancer Institute - International Imaging Center, Detroit, MI; Malyarenko, E

    Purpose: To test the feasibility of developing a practical medium frequency ultrasound tomography method for small animal imaging. The ability to produce cross-sectional or full body images of a live small animal using a low-cost tabletop ultrasound scanner without any special license would be very beneficial to long term biological studies, where repeated scanning is often required over an extended period of time. Methods: The cross sectional images were produced by compounding multiple B-scans of a laboratory phantom or an animal acquired at different projection angles. Two imaging systems were used to test the concept. The first system included amore » programmable 64-channel phased array controller driving a 128-channel, 5–10 MHz linear probe to produce 143 B-Mode projections of the spinning object. The second system designed and manufactured in house, produced 64 or 128 B-Mode projections with a single unfocused 8 MHz transducer scanning with a 0.116 mm step size. Results: The phased array system provided good penetration through the phantoms/mice (with the exception of the lungs) and allowed to acquire data in a very short time. The cross-sectional images have enough resolution and dynamic range to detect both high- and low-contrast organs. The single transducer system takes longer to scan, and the data require more sophisticated processing. To date, our images allow seeing details as small as 1–2 mm in the phantoms and in small animals, with the contrast mostly due to highly reflecting bones and air inclusions. Conclusion: The work indicates that very detailed and anatomically correct images can be created by relatively simple and inexpensive means. With more advanced algorithms and improved system design, scan time can be reduced considerably, enabling high-resolution full 3D imaging. This will allow for quick and easy scans that can help monitor tumor growth and/or regression without contributing any dose to the animal. The authors would like to acknowledge the financial and engineering support from Tessonics.« less

  15. Neurologic, neuropsychologic, and computed cranial tomography scan abnormalities in 2- to 10-year survivors of small-cell lung cancer.

    PubMed

    Johnson, B E; Becker, B; Goff, W B; Petronas, N; Krehbiel, M A; Makuch, R W; McKenna, G; Glatstein, E; Ihde, D C

    1985-12-01

    In order to evaluate the relationship between neurologic function and cranial irradiation, 20 patients treated on National Cancer Institute (NCI) small-cell lung cancer (SCLC) trials who were alive and free of cancer 2.4 to 10.6 years (median, 6.2) from the start of therapy were studied. All were tested with a neurologic history and examination, mental status examination, neuropsychologic testing, and review of serial computed cranial tomography (CCT) scans. Fifteen patients had been treated with prophylactic cranial irradiation (PCI), two patients with therapeutic cranial irradiation, and three received no cranial irradiation. All patients but one were ambulatory and none were institutionalized. Fifteen patients (75%) had neurologic complaints, 13 (65%) had abnormal neurologic examinations, 12 (60%) had abnormal mental status examinations, 13 (65%) had abnormal neuropsychologic testing, and 15 (75%) had abnormal CCT scans. Compared with those given low-dose maintenance chemotherapy during PCI using 200 to 300 rad per fraction, patients who were given high-dose induction chemotherapy during the time of cranial irradiation or large radiotherapy fractions (400 rad) were more likely to have abnormal mental status examinations (6/6 v 4/9) and abnormal neuropsychologic tests (6/6 v 4/9), but no major difference in CCT findings was present. CCT scans in the majority of cases (11/18) showed progressive ventricular dilatation or cerebral atrophy up to 8 years after stopping therapy. We conclude neurologic abnormalities are common in long-term survivors of SCLC, and may be more prominent in patients given high-dose chemotherapy during cranial irradiation or treated with large radiotherapy fractions. The CCT scan abnormalities are common and progressive years after prophylactic cranial irradiation and chemotherapy are stopped.

  16. Apparatus and method for ultrasonic reconstruction and testing of a turbine rotor blade attachment structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, P.F.

    1995-04-25

    An apparatus and method for ultrasonic reconstruction and testing of a non-visible turbine rotor blade attachment structure is described. The method of the invention includes positioning transducers at a first location to obtain slot region scan data corresponding to a slot region of the non-visible turbine rotor blade attachment structure, and positioning transducers at a second location to obtain straddle-mount region scan data corresponding to a straddle-mount region of the non-visible turbine rotor blade attachment structure. The shape of the non-visible turbine rotor blade attachment structure is reconstructed from the slot region scan data and the straddle-mount region scan datamore » to form reconstruction data. The reconstruction data is used to select test scan positions for ultrasonic testing. Ultrasonic testing is then performed at the selected test scan positions. 11 figs.« less

  17. Synchrotron X-ray micro-tomography at the Advanced Light Source: Developments in high-temperature in-situ mechanical testing

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Mandal, P.; Czabaj, M.; Gao, Y.; Maillet, E.; Blank, B.; Larson, N. M.; Ritchie, R. O.; Gludovatz, B.; Acevedo, C.; Liu, D.

    2017-06-01

    At the Advanced Light Source (ALS), Beamline 8.3.2 performs hard X-ray micro-tomography under conditions of high temperature, pressure, mechanical loading, and other realistic conditions using environmental test cells. With scan times of 10s-100s of seconds, the microstructural evolution of materials can be directly observed over multiple time steps spanning prescribed changes in the sample environment. This capability enables in-situ quasi-static mechanical testing of materials. We present an overview of our in-situ mechanical testing capabilities and recent hardware developments that enable flexural testing at high temperature and in combination with acoustic emission analysis.

  18. Automated optical testing of LWIR objective lenses using focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be easily and accurately measured with this system.

  19. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    NASA Astrophysics Data System (ADS)

    Navarro, Jorge

    The goal of this study presented is to determine the best available nondestructive technique necessary to collect validation data as well as to determine burnup and cooling time of the fuel elements on-site at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal, the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements nondestructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed were used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results, it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however, in order to enhance the quality of the spectra collected using this scintillator, a deconvolution method was developed. Following the development of the deconvolution method for ATR applications, the technique was tested using one-isotope, multi-isotope, and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr 3 detector in an above the water configuration and deconvolution algorithms.

  20. Commissioning of an integrated platform for time-resolved treatment delivery in scanned ion beam therapy by means of optical motion monitoring.

    PubMed

    Fattori, G; Saito, N; Seregni, M; Kaderka, R; Pella, A; Constantinescu, A; Riboldi, M; Steidl, P; Cerveri, P; Bert, C; Durante, M; Baroni, G

    2014-12-01

    The integrated use of optical technologies for patient monitoring is addressed in the framework of time-resolved treatment delivery for scanned ion beam therapy. A software application has been designed to provide the therapy control system (TCS) with a continuous geometrical feedback by processing the external surrogates tridimensional data, detected in real-time via optical tracking. Conventional procedures for phase-based respiratory phase detection were implemented, as well as the interface to patient specific correlation models, in order to estimate internal tumor motion from surface markers. In this paper, particular attention is dedicated to the quantification of time delays resulting from system integration and its compensation by means of polynomial interpolation in the time domain. Dedicated tests to assess the separate delay contributions due to optical signal processing, digital data transfer to the TCS and passive beam energy modulation actuation have been performed. We report the system technological commissioning activities reporting dose distribution errors in a phantom study, where the treatment of a lung lesion was simulated, with both lateral and range beam position compensation. The zero-delay systems integration with a specific active scanning delivery machine was achieved by tuning the amount of time prediction applied to lateral (14.61 ± 0.98 ms) and depth (34.1 ± 6.29 ms) beam position correction signals, featuring sub-millimeter accuracy in forward estimation. Direct optical target observation and motion phase (MPh) based tumor motion discretization strategies were tested, resulting in 20.3(2.3)% and 21.2(9.3)% median (IQR) percentual relative dose difference with respect to static irradiation, respectively. Results confirm the technical feasibility of the implemented strategy towards 4D treatment delivery, with negligible percentual dose deviations with respect to static irradiation.

  1. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    PubMed

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Real time 3D visualization of intraoperative organ deformations using structured dictionary.

    PubMed

    Wang, Dan; Tewfik, Ahmed H

    2012-04-01

    Restricted visualization of the surgical field is one of the most critical challenges for minimally invasive surgery (MIS). Current intraoperative visualization systems are promising. However, they can hardly meet the requirements of high resolution and real time 3D visualization of the surgical scene to support the recognition of anatomic structures for safe MIS procedures. In this paper, we present a new approach for real time 3D visualization of organ deformations based on optical imaging patches with limited field-of-view and a single preoperative scan of magnetic resonance imaging (MRI) or computed tomography (CT). The idea for reconstruction is motivated by our empirical observation that the spherical harmonic coefficients corresponding to distorted surfaces of a given organ lie in lower dimensional subspaces in a structured dictionary that can be learned from a set of representative training surfaces. We provide both theoretical and practical designs for achieving these goals. Specifically, we discuss details about the selection of limited optical views and the registration of partial optical images with a single preoperative MRI/CT scan. The design proposed in this paper is evaluated with both finite element modeling data and ex vivo experiments. The ex vivo test is conducted on fresh porcine kidneys using 3D MRI scans with 1.2 mm resolution and a portable laser scanner with an accuracy of 0.13 mm. Results show that the proposed method achieves a sub-3 mm spatial resolution in terms of Hausdorff distance when using only one preoperative MRI scan and the optical patch from the single-sided view of the kidney. The reconstruction frame rate is between 10 frames/s and 39 frames/s depending on the complexity of the test model.

  3. [Clinical effect of three dimensional human body scanning system BurnCalc in the evaluation of burn wound area].

    PubMed

    Lu, J; Wang, L; Zhang, Y C; Tang, H T; Xia, Z F

    2017-10-20

    Objective: To validate the clinical effect of three dimensional human body scanning system BurnCalc developed by our research team in the evaluation of burn wound area. Methods: A total of 48 burn patients treated in the outpatient department of our unit from January to June 2015, conforming to the study criteria, were enrolled in. For the first 12 patients, one wound on the limbs or torso was selected from each patient. The stability of the system was tested by 3 attending physicians using three dimensional human body scanning system BurnCalc to measure the area of wounds individually. For the following 36 patients, one wound was selected from each patient, including 12 wounds on limbs, front torso, and side torso, respectively. The area of wounds was measured by the same attending physician using transparency tracing method, National Institutes of Health (NIH) Image J method, and three dimensional human body scanning system BurnCalc, respectively. The time for getting information of 36 wounds by three methods was recorded by stopwatch. The stability among the testers was evaluated by the intra-class correlation coefficient (ICC). Data were processed with randomized blocks analysis of variance and Bonferroni test. Results: (1) Wound area of patients measured by three physicians using three dimensional human body scanning system BurnCalc was (122±95), (121±95), and (123±96) cm(2,) respectively, and there was no statistically significant difference among them ( F =1.55, P >0.05). The ICC among 3 physicians was 0.999. (2) The wound area of limbs of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (84±50), (76±46), and (84±49) cm(2,) respectively. There was no statistically significant difference in the wound area of limbs of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of limbs of patients measured by NIH Image J method was smaller than that measured by transparency tracing method and three dimensional human body scanning system BurnCalc (with P values below 0.05). There was no statistically significant difference in the wound area of front torso of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc ( F =0.33, P >0.05). The wound area of side torso of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (169±88), (150±80), and (169±86) cm(2,) respectively. There was no statistically significant difference in the wound area of side torso of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of side torso of patients measured by NIH Image J method was smaller than that measured by transparency tracing method and three dimensional human body scanning system BurnCalc (with P values below 0.05). (3) The time for getting information of wounds of patients by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (77±14), (10±3), and (9±3) s, respectively. The time for getting information of wounds of patients by transparency tracing method was longer than that by NIH Image J method and three dimensional human body scanning system BurnCalc (with P values below 0.05). The time for getting information of wounds of patients by three dimensional human body scanning system BurnCalc was close to that by NIH Image J method ( P >0.05). Conclusions: The three dimensional human body scanning system BurnCalc is stable and can accurately evaluate the wound area on limbs and torso of burn patients.

  4. [Comparative effects of ginkgo biloba extracts on psychomotor performances and memory in healthy subjects].

    PubMed

    Warot, D; Lacomblez, L; Danjou, P; Weiller, E; Payan, C; Puech, A J

    1991-01-01

    The effect on psychomotor and mnesic performances of acute oral dose (600 mg) of 2 Ginkgo biloba extracts were evaluated in twelve healthy female in a dummy placebo-controlled double blind study. Tests were performed comprising: objective measures of vigilance [critical flicker frequency (CFF), choice reaction time (CRT)], memory tasks (pictures and Sternberg scanning tests) and self-rating evaluation (visual analogue scales). Tests session took place before and 1 hour post-dosing. No statistically significant changes from placebo were observed on CFF, CRT or subjective rating of drug effects. No differences between treatment were evidenced on Sternberg scanning test and pictures recognition. Comparing to baseline, free recall score, while decreasing under placebo and Ginkgo, remained the same under Tanakan. As the differences between treatment are localized on one test, it appears important to examine the reproductility in healthy subjects. In order to verify the clinical relevance of these results, they need to be replicated in older healthy volunteers with age-associated memory impairment.

  5. Hierarchical pictorial structures for simultaneously localizing multiple organs in volumetric pre-scan CT

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Song, Qi; Das, Bipul; Yin, Zhye

    2015-03-01

    Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a challenging task with many applications such as personalized scan planning and dose reporting. In the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the primary scan or from an existing primary scan. To localize organs in such diverse data, we propose a new learning based framework that we call hierarchical pictorial structures (HPS) which builds multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) the local appearance and shape of structures, and (2) a generative global model that learns probabilistic, structural arrangement. Our main contribution is twofold. First we embed the pictorial structures approach in a hierarchical framework which reduces test time image interpretation and allows for the incorporation of additional geometric constraints that robustly guide model fitting in the presence of noise. Second we guide our HPS framework with the probabilistic cost maps extracted using random decision forests using volumetric 3D HOG features which makes our model fast to train and fast to apply to novel test data and posses a high degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 mins to compute and all organs are located with suitably high accuracy for our clinical applications such as personalized scan planning for radiation dose reduction. We assess our method using a database of volumetric CT scans from 81 subjects with widely varying age and pathology and with simulated ultra-low dose cadaver pre-scan data.

  6. Hotspot detection using space-time scan statistics on children under five years of age in Depok

    NASA Astrophysics Data System (ADS)

    Verdiana, Miranti; Widyaningsih, Yekti

    2017-03-01

    Some problems that affect the health level in Depok is the high malnutrition rates from year to year and the more spread infectious and non-communicable diseases in some areas. Children under five years old is a vulnerable part of population to get the malnutrition and diseases. Based on this reason, it is important to observe the location and time, where and when, malnutrition in Depok happened in high intensity. To obtain the location and time of the hotspots of malnutrition and diseases that attack children under five years old, space-time scan statistics method can be used. Space-time scan statistic is a hotspot detection method, where the area and time of information and time are taken into account simultaneously in detecting the hotspots. This method detects a hotspot with a cylindrical scanning window: the cylindrical pedestal describes the area, and the height of cylinder describe the time. Cylinders formed is a hotspot candidate that may occur, which require testing of hypotheses, whether a cylinder can be summed up as a hotspot. Hotspot detection in this study carried out by forming a combination of several variables. Some combination of variables provides hotspot detection results that tend to be the same, so as to form groups (clusters). In the case of infant health level in Depok city, Beji health care center region in 2011-2012 is a hotspot. According to the combination of the variables used in the detection of hotspots, Beji health care center is most frequently as a hotspot. Hopefully the local government can take the right policy to improve the health level of children under five in the city of Depok.

  7. Single-Breath-Hold Whole-heart Unenhanced Coronary MRA Using Multi-shot Gradient Echo EPI at 3T: Comparison with Free-breathing Turbo-field-echo Coronary MRA on Healthy Volunteers.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Nagayama, Yasunori; Oda, Seitaro; Utsunomiya, Daisuke; Kidoh, Masafumi; Yuki, Hideaki; Hirata, Kenichiro; Namimoto, Tomohiro; Kitajima, Mika; Morita, Kosuke; Funama, Yoshinori; Takemura, Atsushi; Okuaki, Tomoyuki; Yamashita, Yasuyuki

    2018-04-10

    We investigated the feasibility of single breath hold unenhanced coronary MRA using multi-shot gradient echo planar imaging (MSG-EPI) on a 3T-scanner. Fourteen volunteers underwent single breath hold coronary MRA with a MSG-EPI and free-breathing turbo field echo (TFE) coronary MRA at 3T. The acquisition time, signal to noise ratio (SNR), and the contrast of the sequences were compared with the paired t-test. Readers evaluated the image contrast, noise, sharpness, artifacts, and the overall image quality. The acquisition time was 88.1% shorter for MSG-EPI than TFE (24.7 ± 2.5 vs 206.4 ± 23.1 sec, P < 0.01). The SNR was significantly higher on MSG-EPI than TFE scans (P < 0.01). There was no significant difference in the contrast on MSG-EPI and TFE scans (1.8 ± 0.3 vs 1.9 ± 0.3, P = 0.24). There was no significant difference in image contrast, image sharpness, and overall image quality between two scan techniques. The score of image noise and artifact were significantly higher on MSG-EPI than TFE scans (P < 0.05). The single breath hold MSG-EPI sequence is a promising technique for shortening the scan time and for preserving the image quality of unenhanced whole heart coronary MRA on a 3T scanner.

  8. Fast susceptibility-weighted imaging with three-dimensional short-axis propeller (SAP)-echo-planar imaging.

    PubMed

    Holdsworth, Samantha J; Yeom, Kristen W; Moseley, Michael E; Skare, S

    2015-05-01

    Susceptibility-weighted imaging (SWI) in neuroimaging can be challenging due to long scan times of three-dimensional (3D) gradient recalled echo (GRE), while faster techniques such as 3D interleaved echo-planar imaging (iEPI) are prone to motion artifacts. Here we outline and implement a 3D short-axis propeller echo-planar imaging (SAP-EPI) trajectory as a faster, motion-correctable approach for SWI. Experiments were conducted on a 3T MRI system. The 3D SAP-EPI, 3D iEPI, and 3D GRE SWI scans were acquired on two volunteers. Controlled motion experiments were conducted to test the motion-correction capability of 3D SAP-EPI. The 3D SAP-EPI SWI data were acquired on two pediatric patients as a potential alternative to 2D GRE used clinically. The 3D GRE images had a better target resolution (0.47 × 0.94 × 2 mm, scan time = 5 min), iEPI and SAP-EPI images (resolution = 0.94 × 0.94 × 2 mm) were acquired in a faster scan time (1:52 min) with twice the brain coverage. SAP-EPI showed motion-correction capability and some immunity to undersampling from rejected data. While 3D SAP-EPI suffers from some geometric distortion, its short scan time and motion-correction capability suggest that SAP-EPI may be a useful alternative to GRE and iEPI for use in SWI, particularly in uncooperative patients. © 2014 Wiley Periodicals, Inc.

  9. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively, 3D scan time of 500 micros was achieved with a trapezoidal scan profile, generating five new slices per sweep at 1000 Hz scan rate. The system was applied to 3 wt.% and 6 wt.% HPC methanol gelled droplet combustion in 1 atm, and at room temperature. The system had sufficient spatial and temporal resolution to provide a more complete picture of the complex asymmetrical and random flame structure of the gelled droplet combustion. However, the technique had limited capabilities for resolving the impinging jet spray combustion flow field. For the ammonium perchlorate (AP)/ hydroxyl-terminated polybutadiene (HTPB) combustion study with 3D OH PLIF, 40 wt.% coarse AP crystal (400 microm), 40 wt.% fine AP crystal (20 microm), and 20 wt.% HTPB binder formulation with pellet diameter of 6.35 mm was used. The scan rate was reduced to 250 Hz, resulting in 20 images generated per scan, 500 scans per second, and 2 ms scan time, with 1.5 mm scan distance. The test pressure ranged from 3.4 - 6.1 atm of nitrogen, with test temperature at room condition. The results from 3D OH PLIF of AP/HTPB combustion showed a diffusion flame structure, with a lack of OH in the middle of the flame. This is the first time a direct observation of the diffusion flame and the OH structure have been made at elevated pressure. The preliminary results show a good agreement with the BDP model, with a second order increase in the diffusion flame height with increased coarse crystal diameter. Although the scan of 3D OH PLIF is non-instantaneous, no other systems in the literature can scan reacting flow field at such a high 3D repetition rate. Since the identification of the transient flame patterns is facilitated by the ability to visualize the flame front at multiple planes, the 3D OH PLIF technique offers great promise as a diagnostic for dynamic combustion events.

  10. From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration

    NASA Astrophysics Data System (ADS)

    Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans

    2009-05-01

    A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.

  11. Angiography with a multifunctional line scanning ophthalmoscope

    PubMed Central

    Ferguson, R. Daniel; Patel, Ankit H.; Vazquez, Vanessa; Husain, Deeba

    2012-01-01

    Abstract. A multifunctional line scanning ophthalmoscope (mLSO) was designed, constructed, and tested on human subjects. The mLSO could sequentially acquire wide-field, confocal, near-infrared reflectance, fluorescein angiography (FA), and indocyanine green angiography (ICGA) retinal images. The system also included a retinal tracker (RT) and a photodynamic therapy laser treatment port. The mLSO was tested in a pilot clinical study on human subjects with and without retinal disease. The instrument exhibited robust retinal tracking and high-contrast line scanning imaging. The FA and ICGA angiograms showed a similar appearance of hyper- and hypo-pigmented disease features and a nearly equivalent resolution of fine capillaries compared to a commercial flood-illumination fundus imager. An mLSO-based platform will enable researchers and clinicians to image human and animal eyes with a variety of modalities and deliver therapeutic beams from a single automated interface. This approach has the potential to improve patient comfort and reduce imaging session times, allowing clinicians to better diagnose, plan, and conduct patient procedures with improved outcomes. PMID:22463040

  12. An Ultrasonic Wheel-Array Probe

    NASA Astrophysics Data System (ADS)

    Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.

    2004-02-01

    This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.

  13. On the torque and wear behavior of selected thin film MOS2 lubricated gimbal bearings

    NASA Technical Reports Server (NTRS)

    Bohner, John J.; Conley, Peter L.

    1988-01-01

    During the thermal vacuum test phase of the GOES 7 spacecraft, the primary scan mirror system exhibited unacceptably high drive friction. The observed friction was found to correlate with small misalignments in the mirror structure and unavoidable loads induced by the vehicle spin. An intensive effort to understand and document the performance of the scan mirror bearing system under these loads is described. This effort involved calculation of the bearing loads and expected friction torque, comparison of the computed values to test data, and verification of the lubrication system performance and limitations under external loads. The study culminated in a successful system launch in February of 1987. The system has operated as predicted since that time.

  14. Application of Laser Scanning for Creating Geological Documentation

    NASA Astrophysics Data System (ADS)

    Buczek, Michał; Paszek, Martyna; Szafarczyk, Anna

    2018-03-01

    A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR) can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud) in combination with the photographs. The results were compared with the geological cross-section.

  15. Thyroid Scan and Uptake

    MedlinePlus

    ... minutes prior to the test. When it is time for the imaging to begin, you will lie down on a moveable examination table with your head tipped backward and neck extended. The gamma camera will then take a series of images, capturing images of the thyroid gland ...

  16. Design and application of a small size SAFT imaging system for concrete structure

    NASA Astrophysics Data System (ADS)

    Shao, Zhixue; Shi, Lihua; Shao, Zhe; Cai, Jian

    2011-07-01

    A method of ultrasonic imaging detection is presented for quick non-destructive testing (NDT) of concrete structures using synthesized aperture focusing technology (SAFT). A low cost ultrasonic sensor array consisting of 12 market available low frequency ultrasonic transducers is designed and manufactured. A channel compensation method is proposed to improve the consistency of different transducers. The controlling devices for array scan as well as the virtual instrument for SAFT imaging are designed. In the coarse scan mode with the scan step of 50 mm, the system can quickly give an image display of a cross section of 600 mm (L) × 300 mm (D) by one measurement. In the refined scan model, the system can reduce the scan step and give an image display of the same cross section by moving the sensor array several times. Experiments on staircase specimen, concrete slab with embedded target, and building floor with underground pipe line all verify the efficiency of the proposed method.

  17. A novel optical rotary encoder with eccentricity self-detection ability.

    PubMed

    Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2017-11-01

    Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.

  18. A novel optical rotary encoder with eccentricity self-detection ability

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2017-11-01

    Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.

  19. Proof of concept demonstration for coherent beam pattern measurements of KID detectors

    NASA Astrophysics Data System (ADS)

    Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.

    2016-07-01

    Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.

  20. Atom Optics for Bose-Einstein Condensates (BEC)

    DTIC Science & Technology

    2012-04-25

    Electron Micrograph of the Top View of Test Chip A .......................................29 11. A Scanning Electron Micrograph of the Cross...Sectional View of Test Chip A .....................29 12. A Scanning Electron Micrograph of the Top View of Test Chip B...30 13. A Scanning Electron Micrograph of the Cross Sectional View of Test Chip B .....................30 14. Toner Masks for Etching

  1. Reproducibility and repeatability of semi-quantitative 18F-fluorodihydrotestosterone (FDHT) uptake metrics in castration-resistant prostate cancer metastases: a prospective multi-center study.

    PubMed

    Vargas, Hebert Alberto; Kramer, Gem M; Scott, Andrew M; Weickhardt, Andrew; Meier, Andreas A; Parada, Nicole; Beattie, Bradley J; Humm, John L; Staton, Kevin D; Zanzonico, Pat B; Lyashchenko, Serge K; Lewis, Jason S; Yaqub, Maqsood; Sosa, Ramon E; van den Eertwegh, Alfons J; Davis, Ian D; Ackermann, Uwe; Pathmaraj, Kunthi; Schuit, Robert C; Windhorst, Albert D; Chua, Sue; Weber, Wolfgang A; Larson, Steven M; Scher, Howard I; Lammertsma, Adriaan A; Hoekstra, Otto; Morris, Michael J

    2018-04-06

    18 F-fluorodihydrotestosterone ( 18 F-FDHT) is a radiolabeled analogue of the androgen receptor's primary ligand that is currently being credentialed as a biomarker for prognosis, response, and pharmacodynamic effects of new therapeutics. As part of the biomarker qualification process, we prospectively assessed its reproducibility and repeatability in men with metastatic castration-resistant prostate cancer (mCRPC). Methods: We conducted a prospective multi-institutional study of mCRPC patients undergoing two (test/re-test) 18 F-FDHT PET/CT scans on two consecutive days. Two independent readers evaluated all examinations and recorded standardized uptake values (SUVs), androgen receptor-positive tumor volumes (ARTV), and total lesion uptake (TLU) for the most avid lesion detected in each of 32 pre-defined anatomical regions. The relative absolute difference and reproducibility coefficient (RC) of each metric were calculated between the test and re-test scans. Linear regression analyses, intra-class correlation coefficients (ICC), and Bland-Altman plots were used to evaluate repeatability of 18 F-FDHT metrics. The coefficient of variation (COV) and ICC were used to assess inter-observer reproducibility. Results: Twenty-seven patients with 140 18 F-FDHT-avid regions were included. The best repeatability among 18 F-FDHT uptake metrics was found for SUV metrics (SUV max , SUVmean, and SUVpeak), with no significant differences in repeatability found among them. Correlations between the test and re-test scans were strong for all SUV metrics (R2 ≥ 0.92; ICC ≥ 0.97). The RCs of the SUV metrics ranged from 21.3% for SUVpeak to 24.6% for SUV max The test and re-test ARTV and TLU, respectively, were highly correlated (R2 and ICC ≥ 0.97), although variability was significantly higher than that for SUV (RCs > 46.4%). The PSA levels, Gleason score, weight, and age did not affect repeatability, nor did total injected activity, uptake measurement time, or differences in uptake time between the two scans. Including the single most avid lesion per patient, the five most avid lesions per patient, only lesions ≥ 4.2 mL, only lesions with an SUV ≥ 4 g/mL, or normalizing of SUV to area under the parent plasma activity concentration-time curve did not significantly affect repeatability. All metrics showed high inter-observer reproducibility (ICC > 0.98; COV < 0.2-10.8%). Conclusion: 18 F-FDHT is a highly reproducible means of imaging mCRPC. Amongst 18 F-FDHT uptake metrics, SUV had the highest repeatability among the measures assessed. These performance characteristics lend themselves to further biomarker development and clinical qualification of the tracer. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. A Boundary Scan Test Vehicle for Direct Chip Attach Testing

    NASA Technical Reports Server (NTRS)

    Parsons, Heather A.; DAgostino, Saverio; Arakaki, Genji

    2000-01-01

    To facilitate the new faster, better and cheaper spacecraft designs, smaller more mass efficient avionics and instruments are using higher density electronic packaging technologies such as direct chip attach (DCA). For space flight applications, these technologies need to have demonstrated reliability and reasonably well defined fabrication and assembly processes before they will be accepted as baseline designs in new missions. As electronics shrink in size, not only can repair be more difficult, but 49 probing" circuitry can be very risky and it becomes increasingly more difficult to identify the specific source of a problem. To test and monitor these new technologies, the Direct Chip Attach Task, under NASA's Electronic Parts and Packaging Program (NEPP), chose the test methodology of boundary scan testing. The boundary scan methodology was developed for interconnect integrity and functional testing at hard to access electrical nodes. With boundary scan testing, active devices are used and failures can be identified to the specific device and lead. This technology permits the incorporation of "built in test" into almost any circuit and thus gives detailed test access to the highly integrated electronic assemblies. This presentation will describe boundary scan, discuss the development of the boundary scan test vehicle for DCA and current plans for testing of direct chip attach configurations.

  3. Seasonality of Admissions for Mania: Results From a General Hospital Psychiatric Unit in Pondicherry, India

    PubMed Central

    Sarkar, Siddharth

    2015-01-01

    Introduction: Bipolar disorder is affected by variables that modulate circadian rhythm, including seasonal variations. There is evidence of a seasonal pattern of admissions of mania in various geographical settings, though its timing varies by region and climate. Variables such as age and gender have been shown to affect seasonality in some studies. Methodology: Data on monthly admission patterns for mania at a general hospital psychiatry unit in Pondicherry, India, were collected for 4 years (2010–2013) and analyzed for seasonality and seasonal peaks. The effects of age and gender were analyzed separately. Results: There was overall evidence of a seasonal pattern of admissions for mania (P < .01, Friedman test for seasonality), with a peak beginning during the rainy season and ending before summer (P < .0.1, Ratchet circular scan test). Male sex (P < .005, Ratchet circular scan test) and age > 25 years (P < .005, Ratchet circular scan test) were specifically associated with this seasonal peak. Discussion: The effect of seasons on mania is complex and is modulated by a variety of variables. Our study is consistent with earlier research findings: a greater degree of seasonality for mania in men. It is possible that climatic and individual variables interact to determine seasonal patterns in bipolar disorder in a given setting. PMID:26644962

  4. Towards aging mechanisms of cross-linked polyethylene (XLPE) cable insulation materials in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.

  5. Mobile 3D laser scanning technology application in the surveying of urban underground rail transit

    NASA Astrophysics Data System (ADS)

    Han, Youmei; Yang, Bogang; Zhen, Yinan

    2016-11-01

    Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.

  6. Position-sensitive scanning fluorescence correlation spectroscopy.

    PubMed

    Skinner, Joseph P; Chen, Yan; Müller, Joachim D

    2005-08-01

    Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.

  7. Concept for facilitating analyst-mediated interpretation of qualitative chromatographic-mass spectral data: an alternative to manual examination of extracted ion chromatograms.

    PubMed

    Borges, Chad R

    2007-07-01

    A chemometrics-based data analysis concept has been developed as a substitute for manual inspection of extracted ion chromatograms (XICs), which facilitates rapid, analyst-mediated interpretation of GC- and LC/MS(n) data sets from samples undergoing qualitative batchwise screening for prespecified sets of analytes. Automatic preparation of data into two-dimensional row space-derived scatter plots (row space plots) eliminates the need to manually interpret hundreds to thousands of XICs per batch of samples while keeping all interpretation of raw data directly in the hands of the analyst-saving great quantities of human time without loss of integrity in the data analysis process. For a given analyte, two analyte-specific variables are automatically collected by a computer algorithm and placed into a data matrix (i.e., placed into row space): the first variable is the ion abundance corresponding to scan number x and analyte-specific m/z value y, and the second variable is the ion abundance corresponding to scan number x and analyte-specific m/z value z (a second ion). These two variables serve as the two axes of the aforementioned row space plots. In order to collect appropriate scan number (retention time) information, it is necessary to analyze, as part of every batch, a sample containing a mixture of all analytes to be tested. When pure standard materials of tested analytes are unavailable, but representative ion m/z values are known and retention time can be approximated, data are evaluated based on two-dimensional scores plots from principal component analysis of small time range(s) of mass spectral data. The time-saving efficiency of this concept is directly proportional to the percentage of negative samples and to the total number of samples processed simultaneously.

  8. In vivo effects of two acidic soft drinks on shear bond strength of metal orthodontic brackets with and without resin infiltration treatment.

    PubMed

    Hammad, Shaza M; Enan, Enas T

    2013-07-01

    To evaluate the in vivo effects of two acidic soft drinks (Coca-Cola and Sprite) on the shear bond strength of metal orthodontic brackets with and without resin infiltration treatment. In addition, the enamel surface was evaluated, after debonding, using a scanning electron microscope. Sixty noncarious maxillary premolars, scheduled for extraction in 30 orthodontic patients, were used. Patients were randomly divided into two groups according to the soft drink tested (Coca-Cola or Sprite). In each group, application of resin infiltration (Icon. DMG, Hamburg, Germany) was done on one side only before bonding of brackets. Patients were told to rinse their mouth with their respective soft drink at room temperature for 5 minutes, three times a day for 3 months. Shear bond strength was tested with a universal testing machine. After shearing test, a scanning electron microscope was used to evaluate enamel erosion. Statistical analysis was performed by twoway analysis of variance followed by the least significant difference test. The Coca-Cola group without resin infiltration showed the lowest resistance to shearing forces. Scanning electron micrographs of both groups after resin application showed a significant improvement compared with results without resin use, as the enamel appeared smoother and less erosive. Pretreatment with the infiltrating resin has proved to result in a significant improvement in shear bond strength, regardless of the type of soft drink consumed.

  9. Identifying and classifying hyperostosis frontalis interna via computerized tomography.

    PubMed

    May, Hila; Peled, Nathan; Dar, Gali; Hay, Ori; Abbas, Janan; Masharawi, Youssef; Hershkovitz, Israel

    2010-12-01

    The aim of this study was to recognize the radiological characteristics of hyperostosis frontalis interna (HFI) and to establish a valid and reliable method for its identification and classification. A reliability test was carried out on 27 individuals who had undergone a head computerized tomography (CT) scan. Intra-observer reliability was obtained by examining the images three times, by the same researcher, with a 2-week interval between each sample ranking. The inter-observer test was performed by three independent researchers. A validity test was carried out using two methods for identifying and classifying HFI: 46 cadaver skullcaps were ranked twice via computerized tomography scans and then by direct observation. Reliability and validity were calculated using Kappa test (SPSS 15.0). Reliability tests of ranking HFI via CT scans demonstrated good results (K > 0.7). As for validity, a very good consensus was obtained between the CT and direct observation, when moderate and advanced types of HFI were present (K = 0.82). The suggested classification method for HFI, using CT, demonstrated a sensitivity of 84%, specificity of 90.5%, and positive predictive value of 91.3%. In conclusion, volume rendering is a reliable and valid tool for identifying HFI. The suggested three-scale classification is most suitable for radiological diagnosis of the phenomena. Considering the increasing awareness of HFI as an early indicator of a developing malady, this study may assist radiologists in identifying and classifying the phenomena.

  10. Multiple echo multi-shot diffusion sequence.

    PubMed

    Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A

    2014-04-01

    To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.

  11. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...

  12. Mental chronometry with simple linear regression.

    PubMed

    Chen, J Y

    1997-10-01

    Typically, mental chronometry is performed by means of introducing an independent variable postulated to affect selectively some stage of a presumed multistage process. However, the effect could be a global one that spreads proportionally over all stages of the process. Currently, there is no method to test this possibility although simple linear regression might serve the purpose. In the present study, the regression approach was tested with tasks (memory scanning and mental rotation) that involved a selective effect and with a task (word superiority effect) that involved a global effect, by the dominant theories. The results indicate (1) the manipulation of the size of a memory set or of angular disparity affects the intercept of the regression function that relates the times for memory scanning with different set sizes or for mental rotation with different angular disparities and (2) the manipulation of context affects the slope of the regression function that relates the times for detecting a target character under word and nonword conditions. These ratify the regression approach as a useful method for doing mental chronometry.

  13. Eye movements during the Rorschach test in schizophrenia.

    PubMed

    Hori, Yasuko; Fukuzako, Hiroshi; Sugimoto, Yoko; Takigawa, Morikuni

    2002-08-01

    In order to understand relationships between scanning behaviors, characteristics of visual stimuli and the clinical symptoms in schizophrenia, eye movements of 37 schizophrenic patients and 36 controls were recorded using an eye-mark recorder during a free-response period in a Rorschach test. Four cards (I, II, V and VIII) were used. Data were analyzed during 15 s from the presentation of each card. For all cards, the number of eye fixations and the number of eye fixation areas were fewer, and total scanning length and mean scanning length were shorter for schizophrenic patients than for controls. For card II, in the non-popular response group, eye fixation frequency upon area 5 + 6 (red) was higher for schizophrenic patients. For card VIII, in the popular response group, eye fixation frequency upon area 5 + 6 (pink) was lower for schizophrenic patients. For cards II and VIII, the number of eye fixations was inversely correlated with negative symptoms. For card II, total scanning length tended to be inversely correlated with negative symptoms, and mean eye fixation time was correlated with negative symptoms. The number of eye fixation areas was inversely correlated with positive symptoms. For card VIII, eye fixation frequency in a stimulative area tended to be correlated with positive symptoms. Scanning behaviors in schizophrenic patients are affected by characteristics of visual stimuli, and partially by clinical symptoms.

  14. High frequency copolymer ultrasonic transducer array of size-effective elements

    NASA Astrophysics Data System (ADS)

    Decharat, Adit; Wagle, Sanat; Habib, Anowarul; Jacobsen, Svein; Melandsø, Frank

    2018-02-01

    A layer-by-layer deposition method for producing dual-layer ultrasonic transducers from piezoelectric copolymers has been developed. The method uses a combination of customized and standard processing to obtain 2D array transducers with electrical connection of the individual elements routed directly to the rear of the substrate. A numerical model was implemented to study basic parameters effecting the transducer characteristics. Key elements of the array were characterized and evaluated, demonstrating its viability of 2D imaging. Signal reproducibility of the prototype array was studied by characterizing the variations of the center frequency (≈42 MHz) and bandwidth (≈25 MHz) of the acoustic. Object identification was also tested and parameterized by acoustic-field beamwidth as well as proper scan step size. Simple tests to illustrate a benefit of multi-element scan on lowering the inspection time were conducted. Structural imaging of the test structure underneath multi-layered wave media (glass plate and distilled water) was also performed. The prototype presented in this work is an important step towards realizing an inexpensive, compact array of individually operated copolymer transducers that can serve in a fast/volumetric high frequency (HF) ultrasonic scanning platform.

  15. High-speed scanning of critical structures in aviation using coordinate measurement machine and the laser ultrasonic.

    PubMed

    Swornowski, Pawel J

    2012-01-01

    Aviation is one of the know-how spheres containing a great deal of responsible sub-assemblies, in this case landing gear. The necessity for reducing production cycle times while achieving better quality compels metrologists to look for new and improved ways to perform inspection of critical structures. This article describes the ability to determine the shape deviation and location of defects in landing gear using coordinate measuring machines and laser ultrasonic with high-speed scanning. A nondestructive test is the basis for monitoring microcrack and corrosion propagation in the context of a damage-tolerant design approach. This article presents an overview of the basics and of the various metrological aspects of coordinate measurement and a nondestructive testing method in terms of high-speed scanning. The new test method (laser ultrasonic) promises to produce the necessary increase in inspection quality, but this is limited by the wide range of materials, geometries, and structure aeronautic parts used. A technique combining laser ultrasonic and F-SAFT (Fourier-Synthetic Aperture Focusing Technique) processing has been proposed for the detection of small defects buried in landing gear. The experimental results of landing gear inspection are also presented. © Wiley Periodicals, Inc.

  16. Recording and wear characteristics of 4 and 8 mm helical scan tapes

    NASA Technical Reports Server (NTRS)

    Peter, Klaus J.; Speliotis, Dennis E.

    1993-01-01

    Performance data of media on helical scan tape systems (4 and 8 mm) is presented and various types of media are compared. All measurements were performed on a standard MediaLogic model ML4500 Tape Evaluator System with a Flash Converter option for time based measurements. The 8 mm tapes are tested on an Exabyte 8200 drive and 4 mm tapes on an Archive Python drive; in both cases, the head transformer is directly connected to a Media Logic Read/Write circuit and test electronics. The drive functions only as a tape transport and its data recover circuits are not used. Signal to Noise, PW 50, Peak Shift and Wear Test data is used to compare the performance of MP (metal particle), BaFe, and metal evaporate (ME). ME tape is the clear winner in magnetic performance but its susceptibility to wear and corrosion, make it less than ideal for data storage.

  17. Human abdomen recognition using camera and force sensor in medical robot system for automatic ultrasound scan.

    PubMed

    Bin Mustafa, Ammar Safwan; Ishii, Takashi; Matsunaga, Yoshiki; Nakadate, Ryu; Ishii, Hiroyuki; Ogawa, Kouji; Saito, Akiko; Sugawara, Motoaki; Niki, Kiyomi; Takanishi, Atsuo

    2013-01-01

    Physicians use ultrasound scans to obtain real-time images of internal organs, because such scans are safe and inexpensive. However, people in remote areas face difficulties to be scanned due to aging society and physician's shortage. Hence, it is important to develop an autonomous robotic system to perform remote ultrasound scans. Previously, we developed a robotic system for automatic ultrasound scan focusing on human's liver. In order to make it a completely autonomous system, we present in this paper a way to autonomously localize the epigastric region as the starting position for the automatic ultrasound scan. An image processing algorithm marks the umbilicus and mammary papillae on a digital photograph of the patient's abdomen. Then, we made estimation for the location of the epigastric region using the distances between these landmarks. A supporting algorithm distinguishes rib position from epigastrium using the relationship between force and displacement. We implemented these algorithms with the automatic scanning system into an apparatus: a Mitsubishi Electric's MELFA RV-1 six axis manipulator. Tests on 14 healthy male subjects showed the apparatus located the epigastric region with a success rate of 94%. The results suggest that image recognition was effective in localizing a human body part.

  18. Visual Scan Paths and Recognition of Facial Identity in Autism Spectrum Disorder and Typical Development

    PubMed Central

    Wilson, C. Ellie; Palermo, Romina; Brock, Jon

    2012-01-01

    Background Previous research suggests that many individuals with autism spectrum disorder (ASD) have impaired facial identity recognition, and also exhibit abnormal visual scanning of faces. Here, two hypotheses accounting for an association between these observations were tested: i) better facial identity recognition is associated with increased gaze time on the Eye region; ii) better facial identity recognition is associated with increased eye-movements around the face. Methodology and Principal Findings Eye-movements of 11 children with ASD and 11 age-matched typically developing (TD) controls were recorded whilst they viewed a series of faces, and then completed a two alternative forced-choice recognition memory test for the faces. Scores on the memory task were standardized according to age. In both groups, there was no evidence of an association between the proportion of time spent looking at the Eye region of faces and age-standardized recognition performance, thus the first hypothesis was rejected. However, the ‘Dynamic Scanning Index’ – which was incremented each time the participant saccaded into and out of one of the core-feature interest areas – was strongly associated with age-standardized face recognition scores in both groups, even after controlling for various other potential predictors of performance. Conclusions and Significance In support of the second hypothesis, results suggested that increased saccading between core-features was associated with more accurate face recognition ability, both in typical development and ASD. Causal directions of this relationship remain undetermined. PMID:22666378

  19. Results from a Prototype Proton-CT Head Scanner

    NASA Astrophysics Data System (ADS)

    Johnson, R. P.; Bashkirov, V. A.; Coutrakon, G.; Giacometti, V.; Karbasi, P.; Karonis, N. T.; Ordoñez, C. E.; Pankuch, M.; Sadrozinski, H. F.-W.; Schubert, K. E.; Schulte, R. W.

    We are exploring low-dose proton radiography and computed tomography (pCT) as techniques to improve the accuracy of proton treatment planning and to provide artifact-free images for verification and adaptive therapy at the time of treatment. Here we report on comprehensive beam test results with our prototype pCT head scanner. The detector system and data acquisition attain a sustained rate of more than a million protons individually measured per second, allowing a full CT scan to be completed in six minutes or less of beam time. In order to assess the performance of the scanner for proton radiography as well as computed tomography, we have performed numerous scans of phantoms at the Northwestern Medicine Chicago Proton Center including a custom phantom designed to assess the spatial resolution, a phantom to assess the measurement of relative stopping power, and a dosimetry phantom. Some images, performance, and dosimetry results from those phantom scans are presented together with a description of the instrument, the data acquisition system, and the calibration methods.

  20. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  1. A novel approach to water polution monitoring by combining ion exchange resin and XRF-scanning technique

    NASA Astrophysics Data System (ADS)

    Huang, J. J.; Lin, S. C.; Löwemark, L.; Liou, Y. H.; Chang, Q. M.; Chang, T. K.; Wei, K. Y.; Croudace, I. W. C.

    2017-12-01

    Due to the rapid industrial expansion, environments are subject to irregular fluctuations and spatial distributions in pollutant concentrations. This study proposes to use ion exchange resin accompanied with the XRF-scanning technique to monitor environmental pollution. As a passive sampling sorbent, the use of ion exchange resin provides a rapid, low cost and simple method to detect episodic pollution signals with a high spatial sampling density. In order to digest large quantities of samples, the fast and non-destructive Itrax-XRF core scanner has been introduced to assess elemental concentrations in the resin samples. Although the XRF scanning results are often considered as a semi-quantitative measurement due to possible absorption or scattering caused by the physical variabilities of scanned materials, the use of resin can minimize such influences owing to the standarization of the sample matrix. In this study, 17 lab-prepared standard resin samples were scanned with the Itrax-XRF core scanner (at 100 s exposure time with the Mo-tube) and compared with the absolute elemental concentrations. Six elements generally used in pollution studies (Cr, Mn, Ni, Cu, Zn, and Pb) were selected, and their regression lines and correlation coefficients were determined. In addition, 5 standard resin samples were scanned at different exposure time settings (1 s, 5 s, 15 s, 30 s, 100 s) to address the influence of exposure time on the accuracy of the measurements. The results show that within the test range (from few ppm to thousands ppm), the correlation coefficients are higher than 0.97, even at the shortest exposure time (1 s). Furthermore, a pilot field survey with 30 resin samples has been conducted in a potentially polluted farm area in central Taiwan to demonstrate the feasibility of this novel approach. The polluted hot zones could be identified and the properties and sources of wastewater pollution can therefore be traced over large areas for the purposes of environmental monitoring and environmental forensics.

  2. Statistical analysis of an inter-laboratory comparison of small-scale safety and thermal testing of RDX

    DOE PAGES

    Brown, Geoffrey W.; Sandstrom, Mary M.; Preston, Daniel N.; ...

    2014-11-17

    In this study, the Integrated Data Collection Analysis (IDCA) program has conducted a proficiency test for small-scale safety and thermal (SSST) testing of homemade explosives (HMEs). Described here are statistical analyses of the results from this test for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of the RDX Class 5 Type II standard. The material was tested as a well-characterized standard several times during the proficiency test to assess differences among participants and the range of results that may arise for well-behaved explosive materials.

  3. The GPM Common Calibrated Brightness Temperature Product

    NASA Technical Reports Server (NTRS)

    Stout, John; Berg, Wesley; Huffman, George; Kummerow, Chris; Stocker, Erich

    2005-01-01

    The Global Precipitation Measurement (GPM) project will provide a core satellite carrying the GPM Microwave Imager (GMI) and will use microwave observations from a constellation of other satellites. Each partner with a satellite in the constellation will have a calibration that meets their own requirements and will decide on the format to archive their brightness temperature (Tb) record in GPM. However, GPM multi-sensor precipitation algorithms need to input intercalibrated Tb's in order to avoid differences among sensors introducing artifacts into the longer term climate record of precipitation. The GPM Common Calibrated Brightness Temperature Product is intended to address this problem by providing intercalibrated Tb data, called "Tc" data, where the "c" stands for common. The precipitation algorithms require a Tc file format that is both generic and flexible enough to accommodate the different passive microwave instruments. The format will provide detailed information on the processing history in order to allow future researchers to have a record of what was done. The format will be simple, including the main items of scan time, latitude, longitude, and Tc. It will also provide spacecraft orientation, spacecraft location, orbit, and instrument scan type (cross-track or conical). Another simplification is to store data in real numbers, avoiding the ambiguity of scaled data. Finally, units and descriptions will be provided in the product. The format is built on the concept of a swath, which is a series of scans that have common geolocation and common scan geometry. Scan geometry includes pixels per scan, sensor orientation, scan type, and incidence angles. The Tc algorithm and data format are being tested using the pre-GPM Precipitation Processing System (PPS) software to generate formats and 1/0 routines. In the test, data from SSM/I, TMI, AMSR-E, and WindSat are being processed and written as Tc products.

  4. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing of the previously fixed transducers for ultrasonic velocity measurements.

  5. Feasibility for detection of autofluorescent signatures in rat organs using a novel excitation-scanning hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Favreau, Peter F.; Deal, Joshua A.; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2016-04-01

    The natural fluorescence (autofluorescence) of tissues has been noted as a biomarker for cancer for several decades. Autofluorescence contrast between tumors and healthy tissues has been of significant interest in endoscopy, leading to development of autofluorescence endoscopes capable of visualizing 2-3 fluorescence emission wavelengths to achieve maximal contrast. However, tumor detection with autofluorescence endoscopes is hindered by low fluorescence signal and limited quantitative information, resulting in prolonged endoscopic procedures, prohibitive acquisition times, and reduced specificity of detection. Our lab has designed a novel excitation-scanning hyperspectral imaging system with high fluorescence signal detection, low acquisition time, and enhanced spectral discrimination. In this study, we surveyed a comprehensive set of excised tissues to assess the feasibility of detecting tissue-specific pathologies using excitation-scanning. Fresh, untreated tissue specimens were imaged from 360 to 550 nm on an inverted fluorescence microscope equipped with a set of thin-film tunable filters (Semrock, A Unit of IDEX). Images were subdivided into training and test sets. Automated endmember extraction (ENVI 5.1, Exelis) with PCA identified endmembers within training images of autofluorescence. A spectral library was created from 9 endmembers. The library was used for identification of endmembers in test images. Our results suggest (1) spectral differentiation of multiple tissue types is possible using excitation scanning; (2) shared spectra between tissue types; and (3) the ability to identify unique morphological features in disparate tissues from shared autofluorescent components. Future work will focus on isolating specific molecular signatures present in tissue spectra, and elucidating the contribution of these signatures in pathologies.

  6. The beam test of muon detector parameters for the SHiP experiment at CERN

    NASA Astrophysics Data System (ADS)

    Likhacheva, V. L.; Kudenko, Yu. G.; Mefodiev, A. V.; Mineev, O. V.; Khotyantsev, A. N.

    2018-01-01

    Scintillation detectors based on extruded plastics have been tested in a 10 GeV/c beam at CERN. The scintillation signal readout was provided using optical wavelength shifting fibers Y11 Kuraray and Hamamatsu MPPC micropixel avalanche photodiodes. The light yield was scanned along and across the detectors. Time resolution was found by fitting the MPPC digitized pulse rise and other methods.

  7. Mapping dynamic social networks in real life using participants' own smartphones.

    PubMed

    Boonstra, Tjeerd W; E Larsen, Mark; Christensen, Helen

    2015-11-01

    Interpersonal relationships are vital for our daily functioning and wellbeing. Social networks may form the primary means by which environmental influences determine individual traits. Several studies have shown the influence of social networks on decision-making, behaviors and wellbeing. Smartphones have great potential for measuring social networks in a real world setting. Here we tested the feasibility of using people's own smartphones as a data collection platform for face-to-face interactions. We developed an application for iOS and Android to collect Bluetooth data and acquired one week of data from 14 participants in our organization. The Bluetooth scanning statistics were used to quantify the time-resolved connection strength between participants and define the weights of a dynamic social network. We used network metrics to quantify changes in network topology over time and non-negative matrix factorization to identify cliques or subgroups that reoccurred during the week. The scanning rate varied considerably between smartphones running Android and iOS and egocentric networks metrics were correlated with the scanning rate. The time courses of two identified subgroups matched with two meetings that took place that week. These findings demonstrate the feasibility of using participants' own smartphones to map social network, whilst identifying current limitations of using generic smartphones. The bias introduced by variations in scanning rate and missing data is an important limitation that needs to be addressed in future studies.

  8. A cryogenic multichannel electronically scanned pressure module

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.

    1992-01-01

    Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.

  9. Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum

    NASA Astrophysics Data System (ADS)

    Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.

    2018-03-01

    The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.

  10. A fast infrared scanning technique for nondestructive testing

    NASA Astrophysics Data System (ADS)

    Hartikainen, Jari

    1989-04-01

    A simple and fast thermal NDT measurement system is described and its usefulness is demonstrated using a honeycomb structure as a test sample. The sample is heated with a hot air jet and the surface temperature differences due to subsurface defects are detected with a single HgCdTe detector. An image of the sample is formed by scanning over the sample surface with a deflection mirror in the y direction while moving the sample in the x direction. The measurement time is typically 6 s per image and several images are averaged to improve signal to noise ratio. The main advantages of this system compared to conventional infrared camera techniques are considerably reduced cost and the ease with which the system can be modified to various applications.

  11. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, Jorge

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent tomore » the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method for ATR applications the technique was tested using one-isotope, multi-isotope and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr3 detector in an above the water configuration and deconvolution algorithms.« less

  12. Normal and keratoconic corneal epithelial thickness mapping using Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, Yan; Tan, Ou; Huang, David

    2011-03-01

    The detection of early-stage keratoconus is one of the most important safety issues in screening candidates for corneal refractive surgeries. We propose to use epithelial thickness maps to assist the diagnosis of keratoconus. The corneal epithelial thickness in normal and keratoconic eyes was mapped with optical coherence tomography (OCT). A Fourier-domain OCT system capable of acquiring 26,000 axial-scans per second was used. It has an axial resolution of 5μm in cornea. A pachymetry scan pattern (8 radials, 1024 axial-scans each, 6mm diameter, repeat 3 times) centered at the pupil center was used to image the cornea. The 3 repeated radial scans on each meridian were registered and averaged. Then the anterior corneal, posterior corneal and epithelial boundaries were segmented automatically with a computer algorithm by increased signal intensity at corresponding boundaries. The epithelial thickness map was generated by interpolating epithelial thickness profile calculated from each meridian. Normal and keratoconic eyes (24 eyes each) were scanned 3 times. The central epithelial thickness in normal eyes was thicker than those of keratoconic eyes (mean difference 2.1 μm, t-test p=0.05). The epithelium was thinner superiorly than inferiorly in normal eyes (mean difference -1.4+/-1.1μm, p<0.001) while thicker superiorly than inferiorly in keratoconic eyes (2.0+/-4.1 μm, p=0.02).

  13. Automatic classication of pulmonary function in COPD patients using trachea analysis in chest CT scans

    NASA Astrophysics Data System (ADS)

    van Rikxoort, E. M.; de Jong, P. A.; Mets, O. M.; van Ginneken, B.

    2012-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease that is characterized by airflow limitation. COPD is clinically diagnosed and monitored using pulmonary function testing (PFT), which measures global inspiration and expiration capabilities of patients and is time-consuming and labor-intensive. It is becoming standard practice to obtain paired inspiration-expiration CT scans of COPD patients. Predicting the PFT results from the CT scans would alleviate the need for PFT testing. It is hypothesized that the change of the trachea during breathing might be an indicator of tracheomalacia in COPD patients and correlate with COPD severity. In this paper, we propose to automatically measure morphological changes in the trachea from paired inspiration and expiration CT scans and investigate the influence on COPD GOLD stage classification. The trachea is automatically segmented and the trachea shape is encoded using the lengths of rays cast from the center of gravity of the trachea. These features are used in a classifier, combined with emphysema scoring, to attempt to classify subjects into their COPD stage. A database of 187 subjects, well distributed over the COPD GOLD stages 0 through 4 was used for this study. The data was randomly divided into training and test set. Using the training scans, a nearest mean classifier was trained to classify the subjects into their correct GOLD stage using either emphysema score, tracheal shape features, or a combination. Combining the proposed trachea shape features with emphysema score, the classification performance into GOLD stages improved with 11% to 51%. In addition, an 80% accuracy was achieved in distinguishing healthy subjects from COPD patients.

  14. Wildfire cluster detection using space-time scan statistics

    NASA Astrophysics Data System (ADS)

    Tonini, M.; Tuia, D.; Ratle, F.; Kanevski, M.

    2009-04-01

    The aim of the present study is to identify spatio-temporal clusters of fires sequences using space-time scan statistics. These statistical methods are specifically designed to detect clusters and assess their significance. Basically, scan statistics work by comparing a set of events occurring inside a scanning window (or a space-time cylinder for spatio-temporal data) with those that lie outside. Windows of increasing size scan the zone across space and time: the likelihood ratio is calculated for each window (comparing the ratio "observed cases over expected" inside and outside): the window with the maximum value is assumed to be the most probable cluster, and so on. Under the null hypothesis of spatial and temporal randomness, these events are distributed according to a known discrete-state random process (Poisson or Bernoulli), which parameters can be estimated. Given this assumption, it is possible to test whether or not the null hypothesis holds in a specific area. In order to deal with fires data, the space-time permutation scan statistic has been applied since it does not require the explicit specification of the population-at risk in each cylinder. The case study is represented by Florida daily fire detection using the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product during the period 2003-2006. As result, statistically significant clusters have been identified. Performing the analyses over the entire frame period, three out of the five most likely clusters have been identified in the forest areas, on the North of the country; the other two clusters cover a large zone in the South, corresponding to agricultural land and the prairies in the Everglades. Furthermore, the analyses have been performed separately for the four years to analyze if the wildfires recur each year during the same period. It emerges that clusters of forest fires are more frequent in hot seasons (spring and summer), while in the South areas they are widely present along the whole year. The analysis of fires distribution to evaluate if they are statistically more frequent in some area or/and in some period of the year, can be useful to support fire management and to focus on prevention measures.

  15. Accuracy of the Heidelberg Spectralis in the alignment between near-infrared image and tomographic scan in a model eye: a multicenter study.

    PubMed

    Barteselli, Giulio; Bartsch, Dirk-Uwe; Viola, Francesco; Mojana, Francesca; Pellegrini, Marco; Hartmann, Kathrin I; Benatti, Eleonora; Leicht, Simon; Ratiglia, Roberto; Staurenghi, Giovanni; Weinreb, Robert N; Freeman, William R

    2013-09-01

    To evaluate temporal changes and predictors of accuracy in the alignment between simultaneous near-infrared image and optical coherence tomography (OCT) scan on the Heidelberg Spectralis using a model eye. Laboratory investigation. After calibrating the device, 6 sites performed weekly testing of the alignment for 12 weeks using a model eye. The maximum error was compared with multiple variables to evaluate predictors of inaccurate alignment. Variables included the number of weekly scanned patients, total number of OCT scans and B-scans performed, room temperature and its variation, and working time of the scanning laser. A 4-week extension study was subsequently performed to analyze short-term changes in the alignment. The average maximum error in the alignment was 15 ± 6 μm; the greatest error was 35 μm. The error increased significantly at week 1 (P = .01), specifically after the second imaging study (P < .05); reached a maximum after the eighth patient (P < .001); and then varied randomly over time. Predictors for inaccurate alignment were temperature variation and scans per patient (P < .001). For each 1 unit of increase in temperature variation, the estimated increase in maximum error was 1.26 μm. For the average number of scans per patient, each increase of 1 unit increased the error by 0.34 μm. Overall, the accuracy of the Heidelberg Spectralis was excellent. The greatest error happened in the first week after calibration, and specifically after the second imaging study. To improve the accuracy, room temperature should be kept stable and unnecessary scans should be avoided. The alignment of the device does not need to be checked on a regular basis in the clinical setting, but it should be checked after every other patient for more precise research purposes. Published by Elsevier Inc.

  16. Accuracy of complete-arch model using an intraoral video scanner: An in vitro study.

    PubMed

    Jeong, Il-Do; Lee, Jae-Jun; Jeon, Jin-Hun; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul

    2016-06-01

    Information on the accuracy of intraoral video scanners for long-span areas is limited. The purpose of this in vitro study was to evaluate and compare the trueness and precision of an intraoral video scanner, an intraoral still image scanner, and a blue-light scanner for the production of digital impressions. Reference scan data were obtained by scanning a complete-arch model. An identical model was scanned 8 times using an intraoral video scanner (CEREC Omnicam; Sirona) and an intraoral still image scanner (CEREC Bluecam; Sirona), and stone casts made from conventional impressions of the same model were scanned 8 times with a blue-light scanner as a control (Identica Blue; Medit). Accuracy consists of trueness (the extent to which the scan data differ from the reference scan) and precision (the similarity of the data from multiple scans). To evaluate precision, 8 scans were superimposed using 3-dimensional analysis software; the reference scan data were then superimposed to determine the trueness. Differences were analyzed using 1-way ANOVA and post hoc Tukey HSD tests (α=.05). Trueness in the video scanner group was not significantly different from that in the control group. However, the video scanner group showed significantly lower values than those of the still image scanner group for all variables (P<.05), except in tolerance range. The root mean square, standard deviations, and mean negative precision values for the video scanner group were significantly higher than those for the other groups (P<.05). Digital impressions obtained by the intraoral video scanner showed better accuracy for long-span areas than those captured by the still image scanner. However, the video scanner was less accurate than the laboratory scanner. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. A nuclear scanning method for estimating wear level nonuniformities

    NASA Astrophysics Data System (ADS)

    Ivanov, E. A.; Pascovici, G.; Racolta, P. M.

    1993-09-01

    The residual radioactivity measuring method has been upgraded to estimate wear level nonuniformities in the circumference of a piston ring after a certain working time in the combustion engine testing bench. The piston ring was irradiated by the thin layer activation (TLA) technique and its radioactivity was continuously monitored.

  18. Impact of a bladder scan protocol on discharge efficiency within a care pathway for ambulatory inguinal herniorraphy.

    PubMed

    Antonescu, I; Baldini, G; Watson, D; Kaneva, P; Fried, G M; Khwaja, K; Vassiliou, M C; Carli, F; Feldman, L S

    2013-12-01

    Postoperative urinary retention (POUR) is a common complication of ambulatory inguinal herniorraphy, with an incidence reaching 38%, and many surgeons require patients to void before discharge. This study aimed to assess whether the implementation of a bladder scan-based voiding protocol reduces the time until discharge after ambulatory inguinal herniorraphy without increasing the rate of POUR. As part of a perioperative care pathway, a protocol was implemented to standardize decision making after elective inguinal hernia repair (February 2012). Patients were assessed with a bladder scan, and those with <600 mL of urine were discharged home, whereas those with more than 600 mL of urine had an in-and-out catheterization before discharge. The patients received written information about urinary symptoms and instructions to present to the emergency department if they were unable to void at home. An audit of scheduled outpatient inguinal hernia repairs between October 2011 and July 2012 was performed. Comparisons were made using the t test, Fisher's exact test, and Wilcoxon rank sum test where appropriate. Statistical significance was defined a priori as a p value lower than 0.05. During the study period, 124 patients underwent hernia repair: 60 before and 64 after implementation of the protocol. The findings showed no significant differences in patient characteristics, laparoscopic approach (35 vs. 33%; p = 0.80), proportion receiving general anesthesia (70 vs. 73%; p = 0.67), or amount of intravenous fluids given (793 vs. 663 mL; p = 0.07). The proportion of patients voiding before discharge was higher after protocol implementation (73 vs. 89%; p = 0.02). The protocol had no impact on median time to discharge (190 vs. 205 min; p = 0.60). Only one patient in each group presented to the emergency department with POUR (2%). After ambulatory inguinal herniorraphy, implementation of a bladder scan-based voiding protocol did not result in earlier discharge. The incidence of POUR was lower than reported in the literature.

  19. Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method

    PubMed Central

    Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu

    2016-01-01

    A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis. PMID:28029121

  20. Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method.

    PubMed

    Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu

    2016-12-24

    A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis.

  1. Scanning-time evaluation of Digimarc Barcode

    NASA Astrophysics Data System (ADS)

    Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan

    2015-03-01

    This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.

  2. Bio-Corrosion of Magnesium Alloys for Orthopaedic Applications

    PubMed Central

    Brooks, Emily K.; Ehrensberger, Mark T.

    2017-01-01

    Three Mg alloys, Mg–1.34% Ca–3% Zn (MCZ), Mg–1.34% Ca–3% Zn–0.2% Sr (MCZS), and Mg–2% Sr (MS), were examined to understand their bio-corrosion behavior. Electrochemical impedance spectroscopy and polarization scans were performed after 6 days of immersion in cell culture medium, and ion release and changes in media pH were tracked over a 28 day time period. Scanning electron microscopy (SEM) of alloy microstructure was performed to help interpret the results of the electrochemical testing. Results indicate that corrosion resistance of the alloys is as follows: MCZ > MCZS > MS. PMID:28862647

  3. Spatial and Temporal Extrapolation of Disdrometer Size Distributions Based on a Lagrangian Trajectory Model of Falling Rain

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Kasparis, Takis; Jones, W. Linwood; Metzger, Philip T.

    2009-01-01

    Methodologies to improve disdrometer processing, loosely based on mathematical techniques common to the field of particle flow and fluid mechanics, are examined and tested. The inclusion of advection and vertical wind field estimates appear to produce significantly improved results in a Lagrangian hydrometeor trajectory model, in spite of very strict assumptions of noninteracting hydrometeors, constant vertical air velocity, and time independent advection during the scan time interval. Wind field data can be extracted from each radar elevation scan by plotting and analyzing reflectivity contours over the disdrometer site and by collecting the radar radial velocity data to obtain estimates of advection. Specific regions of disdrometer spectra (drop size versus time) often exhibit strong gravitational sorting signatures, from which estimates of vertical velocity can be extracted. These independent wind field estimates become inputs and initial conditions to the Lagrangian trajectory simulation of falling hydrometeors.

  4. An audit of imaging test utilization for the management of lymphoma in an oncology hospital: implications for resource planning?

    PubMed

    Schwartz, A; Gospodarowicz, M K; Khalili, K; Pintilie, M; Goddard, S; Keller, A; Tsang, R W

    2006-02-01

    The purpose of this study was to assist with resource planning by examining the pattern of physician utilization of imaging procedures for lymphoma patients in a dedicated oncology hospital. The proportion of imaging tests ordered for routine follow up with no specific clinical indication was quantified, with specific attention to CT scans. A 3-month audit was performed. The reasons for ordering all imaging procedures (X-rays, CT scans, ultrasound, nuclear scan and MRI) were determined through a retrospective chart review. 411 lymphoma patients had 686 assessments (sets of imaging tests) and 981 procedures (individual imaging tests). Most procedures were CT scans (52%) and chest radiographs (30%). The most common reasons for ordering imaging were assessing response (23%), and investigating new symptoms (19%). Routine follow up constituted 21% of the assessments (142/686), and of these, 82% were chest radiographs (116/142), while 24% (34/142) were CT scans. With analysis restricted to CT scans (296 assessments in 248 patients), the most common reason for ordering CT scans were response evaluation (40%), and suspicion of recurrence and/or new symptom (23%). Follow-up CT scans done with no clinical indication comprised 8% (25/296) of all CT assessments. Staging CT scans were under-represented at 6% of all assessments. Imaging with CT scans for follow up of asymptomatic patients is infrequent. However, scans done for staging new lymphoma patients were unexpectedly low in frequency, due to scans done elsewhere prior to referral. This analysis uncovered utilization patterns, helped resource planning and provided data to reduce unnecessary imaging procedures.

  5. MO-F-16A-01: Implementation of MPPG TPS Verification Tests On Various Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smilowitz, J; Bredfeldt, J; Geurts, M

    2014-06-15

    Purpose: To demonstrate the implementation of the Medical Physics Practice Guideline (MPPG) for dose calculation and beam parameters verification of treatment planning systems (TPS). Methods: We implemented the draft TPS MPPG for three linacs: Varian Trilogy, TomoHDA and Elekta Infinity. Static and modulated test plans were created. The static fields are different than used in commissioning. Data was collected using ion chambers and diodes in a scanning water tank, Delta4 phantom and a custom phantom. MatLab and Microsoft Excel were used to create analysis tools to compare reference DICOM dose with scan data. This custom code allowed for the interpolation,more » registration and gamma analysis of arbitrary dose profiles. It will be provided as open source code. IMRT fields were validated with Delta4 registration and comparison tools. The time for each task was recorded. Results: The tests confirmed the strengths, and revealed some limitations, of our TPS. The agreement between calculated and measured dose was reported for all beams. For static fields, percent depth dose and profiles were analyzed with criteria in the draft MPPG. The results reveal areas of slight mismatch with the model (MLC leaf penumbra, buildup region.) For TomoTherapy, the IMRT plan 2%/2 mm gamma analysis revealed poorest agreement in the low dose regions. For one static test plan for all 10MV Trilogy photon beams, the plan generation, scan queue creation, data collection, data analysis and report took 2 hours, excluding tank setup. Conclusions: We have demonstrated the implementation feasibility of the TPS MPPG. This exercise generated an open source tool for dose comparisons between scan data and DICOM dose data. An easily reproducible and efficient infrastructure with streamlined data collection was created for repeatable robust testing of the TPS. The tests revealed minor discrepancies in our models and areas for improvement that are being investigated.« less

  6. A degradation-based sorting method for lithium-ion battery reuse.

    PubMed

    Chen, Hao; Shen, Julia

    2017-01-01

    In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells.

  7. Progress of Multi-Beam Long Trace-Profiler Development

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Kilaru, Kiranmayee; Merthe, Daniel J.; Kester, Thomas; McKinney, Wayne R.; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2012-01-01

    The multi-beam long trace profiler (LTP) under development at NASA s Marshall Space Flight Center[1] is designed to increase the efficiency of metrology of replicated X-ray optics. The traditional LTP operates on a single laser beam that scans along the test surface to detect the slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. As metrology constitutes a significant fraction of the time spent in optics production, an increase in the efficiency of metrology helps in decreasing the cost of fabrication of the x-ray optics and in improving their quality. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. A collaborative feasibility study has been made and specifications were fixed for a multi-beam long trace profiler. The progress made in the development of this metrology system is presented.

  8. Can genetic algorithms help virus writers reshape their creations and avoid detection?

    NASA Astrophysics Data System (ADS)

    Abu Doush, Iyad; Al-Saleh, Mohammed I.

    2017-11-01

    Different attack and defence techniques have been evolved over time as actions and reactions between black-hat and white-hat communities. Encryption, polymorphism, metamorphism and obfuscation are among the techniques used by the attackers to bypass security controls. On the other hand, pattern matching, algorithmic scanning, emulation and heuristic are used by the defence team. The Antivirus (AV) is a vital security control that is used against a variety of threats. The AV mainly scans data against its database of virus signatures. Basically, it claims a virus if a match is found. This paper seeks to find the minimal possible changes that can be made on the virus so that it will appear normal when scanned by the AV. Brute-force search through all possible changes can be a computationally expensive task. Alternatively, this paper tries to apply a Genetic Algorithm in solving such a problem. Our proposed algorithm is tested on seven different malware instances. The results show that in all the tested malware instances only a small change in each instance was good enough to bypass the AV.

  9. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...

  10. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Xu, Chang-Han; Chiu, Yi-Fan; Yeh, Po-Wei; Chen, Jian-Zhang

    2016-08-01

    SnO2/CNT electrodes for supercapacitors are fabricated by first screen-printing pastes containing SnO2 nanoparticles and CNTs on carbon cloth, following which nitrogen atmospheric pressure plasma jet (APPJ) sintering is performed at various APPJ scan rates. The APPJ scan rates change the time intervals for which the reactive plasma species and the heat of the nitrogen APPJs influence the designated sintering spot on the carbon cloth, resulting in APPJ-sintered SnO2/CNT nanocomposites with different properties. The water contact angle decreases with the APPJ scan rate. The improved wettability can facilitate the penetration of the electrolyte into the nanopores of the SnO2/CNT nanocomposites, thereby improving the charge storage and specific capacitance of the supercapacitors. Among the three tested APPJ scan rates, 1.5, 3, and 6 mm s-1, the SnO2/CNT supercapacitor sintered by APPJ under the lowest APPJ scan rate of 1.5 mm s-1 shows the best specific capacitance of ˜90 F g-1 as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. A high APPJ scan rate may result in low degree of materials activation and sintering, leading to poorer performance of SnO2/CNT supercapacitors. The results suggest the feasibility of an APPJ roll-to-roll process for the fabrication of SnO2/CNT nanocomposite supercapacitors.

  11. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images.

    PubMed

    Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.

  12. Low-Frequency Fluctuations of the Resting Brain: High Magnitude Does Not Equal High Reliability

    PubMed Central

    Jia, Wenbin; Liao, Wei; Li, Xun; Huang, Huiyuan; Yuan, Jianhua; Zang, Yu-Feng; Zhang, Han

    2015-01-01

    The amplitude of low-frequency fluctuation (ALFF) measures low-frequency oscillations of the blood-oxygen-level-dependent signal, characterizing local spontaneous activity during the resting state. ALFF is a commonly used measure for resting-state functional magnetic resonance imaging (rs-fMRI) in numerous basic and clinical neuroscience studies. Using a test-retest rs-fMRI dataset consisting of 21 healthy subjects and three repetitive scans, we found that several key brain regions with high ALFF intensities (or magnitude) had poor reliability. Such regions included the posterior cingulate cortex, the medial prefrontal cortex in the default mode network, parts of the right and left thalami, and the primary visual and motor cortices. The above finding was robust with regard to different sample sizes (number of subjects), different scanning parameters (repetition time) and variations of test-retest intervals (i.e., intra-scan, intra-session, and inter-session reliability), as well as with different scanners. Moreover, the qualitative, map-wise results were validated further with a region-of-interest-based quantitative analysis using “canonical” coordinates as reported previously. Therefore, we suggest that the reliability assessments be incorporated in future ALFF studies, especially for the brain regions with a large ALFF magnitude as listed in our paper. Splitting single data into several segments and assessing within-scan “test-retest” reliability is an acceptable alternative if no “real” test-retest datasets are available. Such evaluations might become more necessary if the data are collected with clinical scanners whose performance is not as good as those that are used for scientific research purposes and are better maintained because the lower signal-to-noise ratio may further dampen ALFF reliability. PMID:26053265

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Casey W.; Green, Garrett; Noticewala, Sonal S.

    Purpose: Validated models are needed to justify strategies to define planning target volumes (PTVs) for intact cervical cancer used in clinical practice. Our objective was to independently validate a previously published shape model, using data collected prospectively from clinical trials. Methods and Materials: We analyzed 42 patients with intact cervical cancer treated with daily fractionated pelvic intensity modulated radiation therapy and concurrent chemotherapy in one of 2 prospective clinical trials. We collected online cone beam computed tomography (CBCT) scans before each fraction. Clinical target volume (CTV) structures from the planning computed tomography scan were cast onto each CBCT scan aftermore » rigid registration and manually redrawn to account for organ motion and deformation. We applied the 95% isodose cloud from the planning computed tomography scan to each CBCT scan and computed any CTV outside the 95% isodose cloud. The primary aim was to determine the proportion of CTVs that were encompassed within the 95% isodose volume. A 1-sample t test was used to test the hypothesis that the probability of complete coverage was different from 95%. We used mixed-effects logistic regression to assess effects of time and patient variability. Results: The 95% isodose line completely encompassed 92.3% of all CTVs (95% confidence interval, 88.3%-96.4%), not significantly different from the 95% probability anticipated a priori (P=.19). The overall proportion of missed CTVs was small: the grand mean of covered CTVs was 99.9%, and 95.2% of misses were located in the anterior body of the uterus. Time did not affect coverage probability (P=.71). Conclusions: With the clinical implementation of a previously proposed PTV definition strategy based on a shape model for intact cervical cancer, the probability of CTV coverage was high and the volume of CTV missed was low. This PTV expansion strategy is acceptable for clinical trials and practice; however, we recommend daily image guidance to avoid systematic large misses in select patients.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basavatia, A; Kalnicki, S; Garg, M

    Purpose: To implement a clinically useful palm vein pattern recognition biometric system to treat the correct treatment plan to the correct patient each and every time and to check-in the patient into the department to access the correct medical record. Methods: A commercially available hand vein scanning system was paired to Aria and utilized an ADT interface from the hospital electronic health system. Integration at two points in Aria, version 11 MR2, first at the appointment tracker screen for the front desk medical record access and second at the queue screen on the 4D treatment console took place for patientmore » daily time-out. A test patient was utilized to check accuracy of identification as well as to check that no unintended interactions take place between the 4D treatment console and the hand vein scanning system. This system has been in clinical use since December 2013. Results: Since implementation, 445 patients have been enrolled into our biometric system. 95% of patients learn the correct methodology of hand placement on the scanner in the first try. We have had two instances of patient not found because of a bad initial scan. We simply erased the scanned metric and the patient enrolled again in those cases. The accuracy of the match is 100% for each patient, we have not had one patient misidentified. We can state this because we still use patient photo and date of birth as identifiers. A QA test patient is run monthly to check the integrity of the system. Conclusion: By utilizing palm vein scans along with the date of birth and patient photo, another means of patient identification now exits. This work indicates the successful implementation of technology in the area of patient safety by closing the gap of treating the wrong plan to a patient in radiation oncology. FOJP Service Corporation covered some of the costs of the hardware and software of the palm vein pattern recognition biometric system.« less

  15. Utility of bone scanning in detecting occult skeletal metastases from cervical carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, R.D.; Alderson, P.O.; Rosenshein, N.B.

    1979-11-01

    Bone scans were obtained in 100 patients with carcinoma of the cervix in order to search for occult skeletal metastases. Scans revealed metastases in 4 patients with advanced stages of disease, but the scans in 79 patients with Stage 0, I, or II disease were negative. The scans in 14 patients showed renal asymmetry; 11 of these had obstructive uropathy due to tumor invasion or radiation therapy. Bone scanning does not seem warranted as a screening test in asymptomatic patients with Stage 0, I, or II carcinoma. If the test is done, renal symmetry should be carefully evaluated.

  16. Large-aperture space optical system testing based on the scanning Hartmann.

    PubMed

    Wei, Haisong; Yan, Feng; Chen, Xindong; Zhang, Hao; Cheng, Qiang; Xue, Donglin; Zeng, Xuefeng; Zhang, Xuejun

    2017-03-10

    Based on the Hartmann testing principle, this paper proposes a novel image quality testing technology which applies to a large-aperture space optical system. Compared with the traditional testing method through a large-aperture collimator, the scanning Hartmann testing technology has great advantages due to its simple structure, low cost, and ability to perform wavefront measurement of an optical system. The basic testing principle of the scanning Hartmann testing technology, data processing method, and simulation process are presented in this paper. Certain simulation results are also given to verify the feasibility of this technology. Furthermore, a measuring system is developed to conduct a wavefront measurement experiment for a 200 mm aperture optical system. The small deviation (6.3%) of root mean square (RMS) between experimental results and interferometric results indicates that the testing system can measure low-order aberration correctly, which means that the scanning Hartmann testing technology has the ability to test the imaging quality of a large-aperture space optical system.

  17. Self-gated golden-angle spiral 4D flow MRI.

    PubMed

    Bastkowski, Rene; Weiss, Kilian; Maintz, David; Giese, Daniel

    2018-01-17

    The acquisition of 4D flow magnetic resonance imaging (MRI) in cardiovascular applications has recently made large progress toward clinical feasibility. The need for simultaneous compensation of cardiac and breathing motion still poses a challenge for widespread clinical use. Especially, breathing motion, addressed by gating approaches, can lead to unpredictable and long scan times. The current work proposes a time-efficient self-gated 4D flow sequence that exploits up to 100% of the acquired data and operates at a predictable scan time. A self-gated golden-angle spiral 4D flow sequence was implemented and tested in 10 volunteers. Data were retrospectively binned into respiratory and cardiac states and reconstructed using a conjugate-gradient sensitivity encoding reconstruction. Net flow curves, stroke volumes, and peak flow in the aorta were evaluated and compared to a conventional Cartesian 4D flow sequence. Additionally, flow quantities reconstructed from 50% to 100% of the self-gated 4D flow data were compared. Self-gating signals for respiratory and cardiac motion were extracted for all volunteers. Flow quantities were in agreement with the standard Cartesian scan. Mean differences in stroke volumes and peak flow of 7.6 ± 11.5 and 4.0 ± 79.9 mL/s were obtained, respectively. By retrospectively increasing breathing navigator efficiency while decreasing acquisition times (15:06-07:33 minutes), 50% of the acquired data were sufficient to measure stroke volumes with errors under 9.6 mL. The feasibility to acquire respiratory and cardiac self-gated 4D flow data at a predictable scan time was demonstrated. Magn Reson Med, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  18. WE-DE-BRA-09: Fast Megavoltage CT Imaging with Rapid Scan Time and Low Imaging Dose in Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magome, T; University of Tokyo Hospital, Tokyo; University of Minnesota, Minneapolis, MN

    Purpose: Megavoltage computed tomography (MVCT) imaging has been widely used for daily patient setup with helical tomotherapy (HT). One drawback of MVCT is its very long imaging time, owing to slow couch speed. The purpose of this study was to develop an MVCT imaging method allowing faster couch speeds, and to assess its accuracy for image guidance for HT. Methods: Three cadavers (mimicking closest physiological and physical system of patients) were scanned four times with couch speeds of 1, 2, 3, and 4 mm/s. The resulting MVCT images were reconstructed using an iterative reconstruction (IR) algorithm. The MVCT images weremore » registered with kilovoltage CT images, and the registration errors were compared with the errors with conventional filtered back projection (FBP) algorithm. Moreover, the fast MVCT imaging was tested in three cases of total marrow irradiation as a clinical trial. Results: Three-dimensional registration errors of the MVCT images reconstructed with the IR algorithm were significantly smaller (p < 0.05) than the errors of images reconstructed with the FBP algorithm at fast couch speeds (3, 4 mm/s). The scan time and imaging dose at a speed of 4 mm/s were reduced to 30% of those from a conventional coarse mode scan. For the patient imaging, a limited number of conventional MVCT (1.2 mm/s) and fast MVCT (3 mm/s) reveals acceptable reduced imaging time and dose able to use for anatomical registration. Conclusion: Fast MVCT with IR algorithm maybe clinically feasible alternative for rapid 3D patient localization. This technique may also be useful for calculating daily dose distributions or organ motion analyses in HT treatment over a wide area.« less

  19. The Effect of Baggase Ash on Fly Ash-Based Geopolimer Binder

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Banugraha, R.; Alfi, M.; Abdullah, M. M. A. B.

    2018-06-01

    Geopolymer concrete is an environmentally friendly concrete. However, the geopolymer binder has a problem with setting time; mainly the composition comprises high calcium fly ash. This study utilized bagasse ash to improve setting time on fly ash-based geopolymer binder. The characterization of bagasse ash was carried out by using chemical and phase analysis, while the morphology characterization was examined by scanning electron microscope (SEM). The setting time test and the compressive strength test used standard ASTM C 191-04 and ASTM C39 / C39M respectively. The compressive strength of the samples determined at 3, 28 and 56 days. The result compared the requirement of the standards.

  20. Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis

    PubMed Central

    Sun, Yinghua; Sun, Yang; Stephens, Douglas; Xie, Hongtao; Phipps, Jennifer; Saroufeem, Ramez; Southard, Jeffrey; Elson, Daniel S.; Marcu, Laura

    2011-01-01

    Simultaneous time- and wavelength-resolved fluorescence spectroscopy (STWRFS) was developed and tested for the dynamic characterization of atherosclerotic tissue ex vivo and arterial vessels in vivo. Autofluorescence, induced by a 337 nm, 700 ps pulsed laser, was split to three wavelength sub-bands using dichroic filters, with each sub-band coupled into a different length of optical fiber for temporal separation. STWRFS allows for fast recording/analysis (few microseconds) of time-resolved fluorescence emission in these sub-bands and rapid scanning. Distinct compositions of excised human atherosclerotic aorta were clearly discriminated over scanning lengths of several centimeters based on fluorescence lifetime and the intensity ratio between 390 and 452 nm. Operation of STWRFS blood flow was further validated in pig femoral arteries in vivo using a single-fiber probe integrated with an ultrasound imaging catheter. Current results demonstrate the potential of STWRFS as a tool for real-time optical characterization of arterial tissue composition and for atherosclerosis research and diagnosis. PMID:21369214

  1. Online Self-Administered Cognitive Testing Using the Amsterdam Cognition Scan: Establishing Psychometric Properties and Normative Data.

    PubMed

    Feenstra, Heleen Em; Vermeulen, Ivar E; Murre, Jaap Mj; Schagen, Sanne B

    2018-05-30

    Online tests enable efficient self-administered assessments and consequently facilitate large-scale data collection for many fields of research. The Amsterdam Cognition Scan is a new online neuropsychological test battery that measures a broad variety of cognitive functions. The aims of this study were to evaluate the psychometric properties of the Amsterdam Cognition Scan and to establish regression-based normative data. The Amsterdam Cognition Scan was self-administrated twice from home-with an interval of 6 weeks-by 248 healthy Dutch-speaking adults aged 18 to 81 years. Test-retest reliability was moderate to high and comparable with that of equivalent traditional tests (intraclass correlation coefficients: .45 to .80; .83 for the Amsterdam Cognition Scan total score). Multiple regression analyses indicated that (1) participants' age negatively influenced all (12) cognitive measures, (2) gender was associated with performance on six measures, and (3) education level was positively associated with performance on four measures. In addition, we observed influences of tested computer skills and of self-reported amount of computer use on cognitive performance. Demographic characteristics that proved to influence Amsterdam Cognition Scan test performance were included in regression-based predictive formulas to establish demographically adjusted normative data. Initial results from a healthy adult sample indicate that the Amsterdam Cognition Scan has high usability and can give reliable measures of various generic cognitive ability areas. For future use, the influence of computer skills and experience should be further studied, and for repeated measurements, computer configuration should be consistent. The reported normative data allow for initial interpretation of Amsterdam Cognition Scan performances. ©Heleen EM Feenstra, Ivar E Vermeulen, Jaap MJ Murre, Sanne B Schagen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 30.05.2018.

  2. Relation of trophic changes in the central nervous system, measured by the width of cordical sulci, to the clinical course of anorexia nervosa (II).

    PubMed

    Nogal, Pawel; Pniewska-Siark, Barbara; Lewinski, Andrzej

    2008-12-01

    In patients with anorexia nervosa (AN), computer tomography (CT) scanning and/or magnetic resonance imaging (MR) are usually applied to visualise trophic changes of the brain, resulting from considerable malnutrition or general cachexia of the organism. The goal of the study was an evaluation attempt of the degree of trophic changes in the central nervous system (CNS) of girls with AN, following CT scanning of the brain, together with an analysis of selected clinical and diagnostic parameters, related to the trophic changes in question. The study involved fifty-five (55) female patients with AN. Following CT of the brain - scanning of the cortical sulci - four (4) groups of the patients were identified. The following classification of lesions was applied: Group I - width of cortical sulci < 1.5 mm - standard; Group II - the presence of cortical sulci of width < 1.5 mm and 1.5-3 mm; Group III - width of cortical sulci 1.5-3 mm; Group IV - the presence of cortical sulci of width at 1.5-3 mm and > 3 mm. We did not observe any patient with AN in whom the width of all the cortical sulci was bigger than 3 mm (Group V). In all the groups, clinical parameters, as well as routine laboratory tests and selected hormonal tests, were analysed. In the performed CT scanning of the head in patients with AN, trophic changes in the CNS (as evaluated by the width of cortical sulci) were revealed in 67.3% of the patients. Among the studied groups, statistically significant differences were found for: body weight loss (BWL), the percent of BWL (BWL%), the BWL to disease duration ratio (BWL/time) and BWL%/time, serum concentrations of potassium, calcium, glucose, total protein and urea, as well as serum concentrations of LH, E2, cortisol, FT3 and FT4. The most pronounced disturbances were observed in Group IV, while the least ones - in Group I. In CT scanning of the head, trophic changes in the CNS were observed in girls with AN, measured by the width of cortical sulci. The higher severity of trophic changes in the CNS was associated with higher BWL/time ratio, higher hypercortisolemia, more enhanced hypogonadotrophic hypogonadism, disorders in the peripheral metabolism of the thyroid hormones and with the obtained values of routine laboratory tests, indicating some tendency towards hypovolemia.

  3. Role of fluorine-18 fluoride PET-CT scan in the assessment of unilateral condylar hyperplasia in faciomandibular asymmetry patients: a preliminary study.

    PubMed

    Ahmed, Rais; Singh, Satinder P; Mittal, Bhagwant R; Rattan, Vidya; Parghane, Rahul; Utreja, Ashok

    2016-03-01

    This prospective study was aimed to determine and quantify the change in mandibular condylar hyperactivity over a period of time by using a fluorine-18 (18F) fluoride PET-computed tomography (CT) scan. Sixteen patients (age 19.50 ± 2.58 years) with noticeable faciomandibular asymmetry caused by unilateral condylar hyperplasia (UCH) were included in the test group and underwent an 18F-fluoride PET-CT scan at the beginning of the study (T0); these patients were then followed up for a minimum of 12 months, after which the 18F-fluoride PET-CT scan was repeated at first follow-up (T1). An age-matched control group consisted of 10 patients with apparently symmetrical faces whose PET-CT scans were acquired for some other medical conditions. Statistical analysis of maximum standardized uptake values (SUV max) obtained through 18F-fluoride PET-CT was performed using the paired t-test. Mean SUV max of the affected condyle at T0 and T1 was 9.18 ± 4.07 and 9.18 ± 3.88, respectively. The mean SUV max of the contralateral condyle at T0 and T1 was 6.21 ± 2.30 and 6.66 ± 2.64, respectively. The mean right-left difference in tracer uptake between the test and control groups both at T0 and T1 was statistically significant. Right-left percentage difference of isotope uptake of the test group was 16.87 ± 15.75% at T0 and 14.97 ± 12.72% at T1. Right-left percentage difference of isotope uptake of the control group was 5.51 ± 5.72%. Although these differences were statistically significant, their clinical relevance was insignificant. SUV max of the higher uptake side and the lower uptake side of the control group was 5.63 ± 1.85 and 5.09 ± 1.83, respectively. Great diversity exists in the clinical presentation of UCH. The growth trend of UCH is highly variable because of the age and sex of patients. The results of the present study show that the 18F-fluoride PET-CT scan may guide us in determining the right time and in making the right choice of surgico-orthodontic intervention in UCH patients. The clinical presentation and SUV max of PET-CT of UCH patients were in agreement with each other. The baseline values of the control group indicated that these could also be used to differentiate normal from abnormal condylar growth in potential class III skeletal pattern cases - that is, patients having sagittal skeletal dysplasia resulting from either maxillary deficiency or mandibular protrusion, or both in combination, thus resulting in a concave facial profile.

  4. Scanning transmission ion micro-tomography (STIM-T) of biological specimens.

    PubMed

    Schwertner, Micheal; Sakellariou, Arthur; Reinert, Tilo; Butz, Tilman

    2006-05-01

    Computed tomography (CT) was applied to sets of Scanning Transmission Ion Microscopy (STIM) projections recorded at the LIPSION ion beam laboratory (Leipzig) in order to visualize the 3D-mass distribution in several specimens. Examples for a test structure (copper grid) and for biological specimens (cartilage cells, cygospore) are shown. Scanning Transmission Micro-Tomography (STIM-T) at a resolution of 260 nm was demonstrated for the first time. Sub-micron features of the Cu-grid specimen were verified by scanning electron microscopy. The ion energy loss measured during a STIM-T experiment is related to the mass density of the specimen. Typically, biological specimens can be analysed without staining. Only shock freezing and freeze-drying is required to preserve the ultra-structure of the specimen. The radiation damage to the specimen during the experiment can be neglected. This is an advantage compared to other techniques like X-ray micro-tomography. At present, the spatial resolution is limited by beam position fluctuations and specimen vibrations.

  5. Time density curve analysis for C-arm FDCT PBV imaging.

    PubMed

    Kamran, Mudassar; Byrne, James V

    2016-04-01

    Parenchymal blood volume (PBV) estimation using C-arm flat detector computed tomography (FDCT) assumes a steady-state contrast concentration in cerebral vasculature for the scan duration. Using time density curve (TDC) analysis, we explored if the steady-state assumption is met for C-arm CT PBV scans, and how consistent the contrast-material dynamics in cerebral vasculature are across patients. Thirty C-arm FDCT datasets of 26 patients with aneurysmal-SAH, acquired as part of a prospective study comparing C-arm CT PBV with MR-PWI, were analysed. TDCs were extracted from the 2D rotational projections. Goodness-of-fit of TDCs to a steady-state horizontal-line-model and the statistical similarity among the individual TDCs were tested. Influence of the differences in TDC characteristics on the agreement of resulting PBV measurements with MR-CBV was calculated. Despite identical scan parameters and contrast-injection-protocol, the individual TDCs were statistically non-identical (p < 0.01). Using Dunn's multiple comparisons test, of the total 435 individual comparisons among the 30 TDCs, 330 comparisons (62%) reached statistical significance for difference. All TDCs deviated significantly (p < 0.01) from the steady-state horizontal-line-model. PBV values of those datasets for which the TDCs showed largest deviations from the steady-state model demonstrated poor agreement and correlation with MR-CBV, compared with the PBV values of those datasets for which the TDCs were closer to steady-state. For clinical C-arm CT PBV examinations, the administered contrast material does not reach the assumed 'ideal steady-state' for the duration of scan. Using a prolonged injection protocol, the degree to which the TDCs approximate the ideal steady-state influences the agreement of resulting PBV measurements with MR-CBV. © The Author(s) 2016.

  6. Time density curve analysis for C-arm FDCT PBV imaging

    PubMed Central

    Byrne, James V

    2016-01-01

    Introduction Parenchymal blood volume (PBV) estimation using C-arm flat detector computed tomography (FDCT) assumes a steady-state contrast concentration in cerebral vasculature for the scan duration. Using time density curve (TDC) analysis, we explored if the steady-state assumption is met for C-arm CT PBV scans, and how consistent the contrast-material dynamics in cerebral vasculature are across patients. Methods Thirty C-arm FDCT datasets of 26 patients with aneurysmal-SAH, acquired as part of a prospective study comparing C-arm CT PBV with MR-PWI, were analysed. TDCs were extracted from the 2D rotational projections. Goodness-of-fit of TDCs to a steady-state horizontal-line-model and the statistical similarity among the individual TDCs were tested. Influence of the differences in TDC characteristics on the agreement of resulting PBV measurements with MR-CBV was calculated. Results Despite identical scan parameters and contrast-injection-protocol, the individual TDCs were statistically non-identical (p < 0.01). Using Dunn's multiple comparisons test, of the total 435 individual comparisons among the 30 TDCs, 330 comparisons (62%) reached statistical significance for difference. All TDCs deviated significantly (p < 0.01) from the steady-state horizontal-line-model. PBV values of those datasets for which the TDCs showed largest deviations from the steady-state model demonstrated poor agreement and correlation with MR-CBV, compared with the PBV values of those datasets for which the TDCs were closer to steady-state. Conclusion For clinical C-arm CT PBV examinations, the administered contrast material does not reach the assumed ‘ideal steady-state’ for the duration of scan. Using a prolonged injection protocol, the degree to which the TDCs approximate the ideal steady-state influences the agreement of resulting PBV measurements with MR-CBV. PMID:26769736

  7. Towards automatic patient positioning and scan planning using continuously moving table MR imaging.

    PubMed

    Koken, Peter; Dries, Sebastian P M; Keupp, Jochen; Bystrov, Daniel; Pekar, Vladimir; Börnert, Peter

    2009-10-01

    A concept is proposed to simplify patient positioning and scan planning to improve ease of use and workflow in MR. After patient preparation in front of the scanner the operator selects the anatomy of interest by a single push-button action. Subsequently, the patient table is moved automatically into the scanner, while real-time 3D isotropic low-resolution continuously moving table scout scanning is performed using patient-independent MR system settings. With a real-time organ identification process running in parallel and steering the scanner, the target anatomy can be positioned fully automatically in the scanner's sensitive volume. The desired diagnostic examination of the anatomy of interest can be planned and continued immediately using the geometric information derived from the acquired 3D data. The concept was implemented and successfully tested in vivo in 12 healthy volunteers, focusing on the liver as the target anatomy. The positioning accuracy achieved was on the order of several millimeters, which turned out to be sufficient for initial planning purposes. Furthermore, the impact of nonoptimal system settings on the positioning performance, the signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) was investigated. The present work proved the basic concept of the proposed approach as an element of future scan automation. (c) 2009 Wiley-Liss, Inc.

  8. Construction and testing of a Scanning Laser Radar (SLR), phase 2

    NASA Technical Reports Server (NTRS)

    Flom, T.; Coombes, H. D.

    1971-01-01

    The scanning laser radar overall system is described. Block diagrams and photographs of the hardware are included with the system description. Detailed descriptions of all the subsystems that make up the scanning laser radar system are included. Block diagrams, photographs, and detailed optical and electronic schematics are used to help describe such subsystem hardware as the laser, beam steerer, receiver optics and detector, control and processing electronics, visual data displays, and the equipment used on the target. Tests were performed on the scanning laser radar to determine its acquisition and tracking performance and to determine its range and angle accuracies while tracking a moving target. The tests and test results are described.

  9. Corneal permeability changes in dry eye disease: an observational study.

    PubMed

    Fujitani, Kenji; Gadaria, Neha; Lee, Kyu-In; Barry, Brendan; Asbell, Penny

    2016-05-13

    Diagnostic tests for dry eye disease (DED), including ocular surface disease index (OSDI), tear breakup time (TBUT), corneal fluorescein staining, and lissamine staining, have great deal of variability. We investigated whether fluorophotometry correlated with previously established DED diagnostic tests and whether it could serve as a novel objective metric to evaluate DED. Dry eye patients who have had established signs or symptoms for at least 6 months were included in this observational study. Normal subjects with no symptoms of dry eyes served as controls. Each eye had a baseline fluorescein scan prior to any fluorescein dye. Fluorescein dye was then placed into both eyes, rinsed with saline solution, and scanned at 5, 10, 15, and 30 min. Patients were administered the following diagnostic tests to correlate with fluorophotometry: OSDI, TBUT, fluorescein, and lissamine. Standard protocols were used. P < 0.05 was considered significant. Fifty eyes from 25 patients (DED = 22 eyes, 11 patients; Normal = 28 eyes, 14 patients) were included. Baseline scans of the dry eye and control groups did not show any statistical difference (p = 0.84). Fluorescein concentration of DED and normal patients showed statistical significance at all time intervals (p < 10(-5), 0.001, 0.002, 0.049 for 5, 10, 15, & 30 min respectively). Fluorophotometry values converged towards baseline as time elapsed, but both groups were still statistically different at 30 min (p < 0.01). We used four fluorophotometry scoring methods and correlated them with OSDI, TBUT, fluorescein, and lissamine along with adjusted and aggregate scores. The four scoring schemes did not show any significant correlations with the other tests, except for correlations seen with lissamine and 10 (p = 0.045, 0.034) and 15 min (p = 0.013, 0.012), and with aggregate scores and 15 min (p = 0.042, 0.017). Fluorophotometry generally did not correlate with any other DED tests, even though it showed capability of differentiating between DED and normal eyes up to 30 min after fluorescein dye instillation. There may be an aspect of DED that is missed in the current regimen of DED tests and only captured with fluorophotometry. Adding fluorophotometry may be useful in screening, diagnosing, and monitoring patients with DED.

  10. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Time analyzing image converter with a microchannel plate at the input

    NASA Astrophysics Data System (ADS)

    Dashevskiĭ, B. E.; Podvyaznikov, V. A.; Prokhorov, A. M.; Chevokin, V. K.

    1989-08-01

    An image converter with interchangeable photocathodes was used in tests on a microchannel plate employed as a photoemitter. The image converter was operated in the linear slit-scanning regime. This image converter was found to be a promising tool for laser plasma diagnostics.

  11. A novel fibrinogen variant--Praha I: hypofibrinogenemia associated with gamma Gly351Ser substitution.

    PubMed

    Kotlín, Roman; Chytilová, Martina; Suttnar, Jirí; Salaj, Peter; Riedel, Tomás; Santrůcek, Jirí; Klener, Pavel; Dyr, Jan Evangelista

    2007-05-01

    A 25-yr-old man from Prague had abnormal bleeding after several surgical operations with low fibrinogen level and hypofibrinogenemia was suspected. The patient, 25 yr-old male had a low fibrinogen concentration as determined by the thrombin time and immunoturbidimetrical method. His 48-yr-old mother presented with normal coagulation tests, normal fibrinogen level and reported no history of bleeding. To identify the genetic mutation responsible for this hypofibrinogen, genomic DNA extracted from the blood was analyzed. Fibrin polymerization measurement, kinetics of fibrinopeptide release, fibrinogen clottability measurement, mass spectroscopy, and scanning electron microscopy were performed. DNA sequencing showed heterogeneous fibrinogen gammaG351S mutation in the propositus. The mutant chain was found not to be expressed to the circulation by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Scanning electron micrographs of the patient's fibrin clot as well as kinetics of fibrinopeptide release and fibrin polymerization were found to be normal. A case of hypofibrinogenemia gammaG351S was found by routine coagulation testing and was genetically identified.

  12. Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility.

    PubMed

    Zhang, Xiaoyan; Sun, Xuguang; Wang, Zhiqun; Zhang, Yang; Hou, Wenbo

    2012-11-21

    To investigate the biofilm-forming capacity of Fusarium solani, Cladosporium sphaerospermum, and Acremonium implicatum, and the activities of antifungal agents against the three keratitis-associated fungi. The architecture of biofilms was analyzed using scanning electron microscopy and confocal scanning laser microscopy (CSLM). Susceptibility against six antifungal drugs was measured using the CLSI M38-A method and XTT reduction assay. Time course analyses of CSLM revealed that biofilm formation occurred in an organized fashion through four distinct developmental phases: adhesion, germling formation, microcolony formation, and biofilm maturation. Scanning electron microscopy revealed that mature biofilms displayed a complex three-dimensional structure, consisting of coordinated network of hyphal structures glued by the extracellular matrix (ECM). The antifungal susceptibility testing demonstrated a time-dependent decrease in efficacy for all six antifungal agents as the complexity of fungal hyphal structures developed. Natamycin (NAT), amphotericin B (AMB), and NAT were the most effective against F. solani, C. sphaerospermum, and A. implicatum biofilm, respectively. Corneal isolates of F. solani, C. sphaerospermum, and A. implicatum could produce biofilms that were resistant to antifungal agents in vitro.

  13. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... An abdominal CT scan makes detailed pictures of the structures inside your belly very quickly. This test may be used to look ...

  14. Pediatric minor head trauma: do cranial CT scans change the therapeutic approach?

    PubMed

    Andrade, Felipe P; Montoro, Roberto; Oliveira, Renan; Loures, Gabriela; Flessak, Luana; Gross, Roberta; Donnabella, Camille; Puchnick, Andrea; Suzuki, Lisa; Regacini, Rodrigo

    2016-10-01

    1) To verify clinical signs correlated with appropriate cranial computed tomography scan indications and changes in the therapeutic approach in pediatric minor head trauma scenarios. 2) To estimate the radiation exposure of computed tomography scans with low dose protocols in the context of trauma and the additional associated risk. Investigators reviewed the medical records of all children with minor head trauma, which was defined as a Glasgow coma scale ≥13 at the time of admission to the emergency room, who underwent computed tomography scans during the years of 2013 and 2014. A change in the therapeutic approach was defined as a neurosurgical intervention performed within 30 days, hospitalization, >12 hours of observation, or neuro-specialist evaluation. Of the 1006 children evaluated, 101 showed some abnormality on head computed tomography scans, including 49 who were hospitalized, 16 who remained under observation and 36 who were dismissed. No patient underwent neurosurgery. No statistically significant relationship was observed between patient age, time between trauma and admission, or signs/symptoms related to trauma and abnormal imaging results. A statistically significant relationship between abnormal image results and a fall higher than 1.0 meter was observed (p=0.044). The mean effective dose was 2.0 mSv (0.1 to 6.8 mSv), corresponding to an estimated additional cancer risk of 0.05%. A computed tomography scan after minor head injury in pediatric patients did not show clinically relevant abnormalities that could lead to neurosurgical indications. Patients who fell more than 1.0 m were more likely to have changes in imaging tests, although these changes did not require neurosurgical intervention; therefore, the use of computed tomography scans may be questioned in this group. The results support the trend of more careful indications for cranial computed tomography scans for children with minor head trauma.

  15. Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.

    1992-01-01

    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

  16. A Method to Determine Angular Orientation of a Projectile Using a Polarization Scanning Reference Source

    NASA Astrophysics Data System (ADS)

    Kankipati, Venkata Varun

    This thesis presents a method to determine the angular orientation of a projectile in flight, by mechanically scanning a linearly polarized, microwave reference source. In particular, the research focuses on real time measurement of the roll angle. A 10 GHz, linearly polarized electromagnetic wave is radiated toward the projectile by means of a 10 dB horn antenna. The projectile is equipped with a backward facing 10 dB horn antenna, which has orientation, namely roll angle, sensitivity. The response of the received signal follows a cosine law, producing a maximum when the receiver orientation is aligned with the transmitting polarization. As expected, the peak response shifts in response to the roll-angle, however, unambiguous recovery of the angle requires synchronization with the polarization orientation of the source. This has been achieved through the use of a unique transmitter power sequence, which includes a start-of-scan and end-of-scan time stamp. Based on the above concept, a complete system comprising a polarization scanning reference source, the receiving antenna mounted on a vehicle, and pertinent electronic components, has been tested for both line of sight and non-line of sight applications. The transmitter antenna, mounted on a computer controlled stepper motor allowed source polarization to be scanned from -90° to 90° in 0.3 seconds. The receiving antenna continuously samples the received electromagnetic background at the source frequency and uses a RF detector and a data acquisition system to record the subsequent time-varying voltage signal, which is processed to recover the roll-angle. Measurements in an anechoic chamber were used to confirm the efficacy of the system and field trials, using a transmitter power of 2 W, were successfully demonstrated over a distance of 0.15 miles. The distance limit can be extended by increasing the transmitter power, receiver sensitivity and increase source frequency.

  17. 83. Ventricular Enlargement and Progressive Reduction in Cortical Gray Matter Are Linked in Prodromal Youth Who Develop Psychosis

    PubMed Central

    Chung, Yoonho; Haut, Kristen; He, George; Van Erp, Theo; McEwen, Sarah; Addington, Jean; Bearden, Carrie; Cadenhead, Kristin; Cornblatt, Barbara; Mathalon, Daniel; McGlashan, Thomas; Perkins, Diana; Seidman, Larry; Tsuang, Ming; Walker, Elaine; Woods, Scott; Cannon, Tyrone

    2017-01-01

    Abstract Background: In a recent prospective longitudinal neuroimaging study, clinical high-risk (CHR) individuals who later developed full-blown psychosis showed an accelerated rate of gray matter thinning in superior and medial prefrontal cortex (PFC) and expansion of the ventricular system after applying a stringent correction for multiple comparisons. Although cortical and subcortical volume loss and enlarged ventricles are well characterized structural brain abnormalities among patients with schizophrenia, no prior study has evaluated whether these progressive changes of neuroanatomical indicators are linked in time prior to onset of psychosis. Therefore, we investigated the relationship between the changes in cortical gray matter thickness and ventricular volume using the longitudinal neuroimaging data from the North American Prodrome Longitudinal Study (NAPLS) at the whole-brain level. Methods: MRI structural data were acquired at baseline and 12-month follow-up, and follow-up scans for those who developed fully psychotic symptoms were assessed at the point of conversion. In total, 37 CHR cases who converted to psychosis, 230 CHR cases who did not convert (nonconverters), and 132 healthy comparison subjects had usable baseline and second time point scans. Imaging measures were first transformed to annualized rates of percent change (ARCH) in each cortical vertex. Interval is the time between BL and FU scans in years. Relationships between ARCH of total ventricle volume and ARCH of cortical gray matter values were tested vertex-wise using the general linear model. Among the subjects with BL and 12-FU data available, 125 CHR cases and 66 controls were followed to an additional third time point for a 24-month MRI assessment. For the purpose of testing the replicability of our main hypotheses, neuroanatomical ARCH measures between the 12 and 24 month follow-ups were also computed with a parallel set of statistical tests as described earlier. Results: The results showed that ventricular expansion is linked in time to progressive reduction of gray matter, rather than to structural changes in proximal subcortical regions, in a broadly distributed set of cortical regions among CHR youth, including superior, medial, lateral, and inferior PFC, superior temporal gyrus, and parietal cortices. In contrast, the healthy controls did not show the same pattern of associations. The main findings were further replicated using a third assessment wave of MRI scans in a subset of study participants who were followed for an additional year. Conclusion: In summary, expansion of the ventricular spaces is linked in time with an accelerated rate of widespread cortical thinning prior to psychosis onset. The cortical regions experiencing altered maturation during the psychosis prodrome may be more widespread than the regionally specific clusters that have been identified in previous case–control studies

  18. Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology

    PubMed Central

    Clinton, Lani K.; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J.

    2016-01-01

    The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. PMID:27558176

  19. Automated Guided-Wave Scanning Developed to Characterize Materials and Detect Defects

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Gyekenyeski, Andrew L.; Roth, Don J.

    2004-01-01

    The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center has developed a scanning system that uses guided waves to characterize materials and detect defects. The technique uses two ultrasonic transducers to interrogate the condition of a material. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen, and the receiving transducer detects the signal after it has passed through the material. The aim of the method is to correlate certain parameters in both the time and frequency domains of the detected waveform to characteristics of the material between the two transducers. The scanning system is shown. The waveform parameters of interest include the attenuation due to internal damping, waveform shape parameters, and frequency shifts due to material changes. For the most part, guided waves are used to gauge the damage state and defect growth of materials subjected to various mechanical or environmental loads. The technique has been applied to polymer matrix composites, ceramic matrix composites, and metal matrix composites as well as metallic alloys. Historically, guided wave analysis has been a point-by-point, manual technique with waveforms collected at discrete locations and postprocessed. Data collection and analysis of this type limits the amount of detail that can be obtained. Also, the manual movement of the sensors is prone to user error and is time consuming. The development of an automated guided-wave scanning system has allowed the method to be applied to a wide variety of materials in a consistent, repeatable manner. Experimental studies have been conducted to determine the repeatability of the system as well as compare the results obtained using more traditional NDE methods. The following screen capture shows guided-wave scan results for a ceramic matrix composite plate, including images for each of nine calculated parameters. The system can display up to 18 different wave parameters. Multiple scans of the test specimen demonstrated excellent repeatability in the measurement of all the guided-wave parameters, far exceeding the traditional point-by-point technique. In addition, the scan was able to detect a subsurface defect that was confirmed using flash thermography This technology is being further refined to provide a more robust and efficient software environment. Future hardware upgrades will allow for multiple receiving transducers and the ability to scan more complex surfaces. This work supports composite materials development and testing under the Ultra-Efficient Engine Technology (UEET) Project, but it also will be applied to other material systems under development for a wide range of applications.

  20. Method for decreasing CT simulation time of complex phantoms and systems through separation of material specific projection data

    NASA Astrophysics Data System (ADS)

    Divel, Sarah E.; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.

    2017-03-01

    Computer simulation is a powerful tool in CT; however, long simulation times of complex phantoms and systems, especially when modeling many physical aspects (e.g., spectrum, finite detector and source size), hinder the ability to realistically and efficiently evaluate and optimize CT techniques. Long simulation times primarily result from the tracing of hundreds of line integrals through each of the hundreds of geometrical shapes defined within the phantom. However, when the goal is to perform dynamic simulations or test many scan protocols using a particular phantom, traditional simulation methods inefficiently and repeatedly calculate line integrals through the same set of structures although only a few parameters change in each new case. In this work, we have developed a new simulation framework that overcomes such inefficiencies by dividing the phantom into material specific regions with the same time attenuation profiles, acquiring and storing monoenergetic projections of the regions, and subsequently scaling and combining the projections to create equivalent polyenergetic sinograms. The simulation framework is especially efficient for the validation and optimization of CT perfusion which requires analysis of many stroke cases and testing hundreds of scan protocols on a realistic and complex numerical brain phantom. Using this updated framework to conduct a 31-time point simulation with 80 mm of z-coverage of a brain phantom on two 16-core Linux serves, we have reduced the simulation time from 62 hours to under 2.6 hours, a 95% reduction.

  1. A degradation-based sorting method for lithium-ion battery reuse

    PubMed Central

    Chen, Hao

    2017-01-01

    In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells. PMID:29023485

  2. Near-Infrared Spectroscopy: A Promising Prehospital Tool for Management of Traumatic Brain Injury.

    PubMed

    Peters, Joost; Van Wageningen, Bas; Hoogerwerf, Nico; Tan, Edward

    2017-08-01

    Introduction Early identification of traumatic brain injury (TBI) is essential. Near-infrared spectroscopy (NIRS) can be used in prehospital settings for non-invasive monitoring and the diagnosis of patients who may require surgical intervention. The handheld NIRS Infrascanner (InfraScan Inc.; Philadelphia, Pennsylvania USA) uses eight symmetrical scan points to detect intracranial bleeding. A scanner was tested in a physician-staffed helicopter Emergency Medical Service (HEMS). The results were compared with those obtained using in-hospital computed tomography (CT) scans. Scan time, ease-of-use, and change in treatment were scored. A total of 25 patients were included. Complete scans were performed in 60% of patients. In 15 patients, the scan was abnormal, and in one patient, the scan resulted in a treatment change. Compared with the results of CT scanning, the Infrascanner obtained a sensitivity of 93.3% and a specificity of 78.6%. Most patients had severe TBI with indication for transport to a trauma center prior to scanning. In one patient, the scan resulted in a treatment change. Evaluation of patients with less severe TBI is needed to support the usefulness of the Infrascanner as a prehospital triage tool. Promising results were obtained using the InfraScan NIRS device in prehospital screening for intracranial hematomas in TBI patients. High sensitivity and good specificity were found. Further research is necessary to determine the beneficial effects of enhanced prehospital screening on triage, survival, and quality of life in TBI patients. Peters J , Van Wageningen B , Hoogerwerf N , Tan E . Near-infrared spectroscopy: a promising prehospital tool for management of traumatic brain injury. Prehosp Disaster Med. 2017;32(4):414-418.

  3. SU-E-J-36: Comparison of CBCT Image Quality for Manufacturer Default Imaging Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, G

    Purpose CBCT is being increasingly used in patient setup for radiotherapy. Often the manufacturer default scan modes are used for performing these CBCT scans with the assumption that they are the best options. To quantitatively assess the image quality of these scan modes, all of the scan modes were tested as well as options with the reconstruction algorithm. Methods A CatPhan 504 phantom was scanned on a TrueBeam Linear Accelerator using the manufacturer scan modes (FSRT Head, Head, Image Gently, Pelvis, Pelvis Obese, Spotlight, & Thorax). The Head mode scan was then reconstructed multiple times with all filter options (Smooth,more » Standard, Sharp, & Ultra Sharp) and all Ring Suppression options (Disabled, Weak, Medium, & Strong). An open source ImageJ tool was created for analyzing the CatPhan 504 images. Results The MTF curve was primarily dictated by the voxel size and the filter used in the reconstruction algorithm. The filters also impact the image noise. The CNR was worst for the Image Gently mode, followed by FSRT Head and Head. The sharper the filter, the worse the CNR. HU varied significantly between scan modes. Pelvis Obese had lower than expected HU values than most while the Image Gently mode had higher than expected HU values. If a therapist tried to use preset window and level settings, they would not show the desired tissue for some scan modes. Conclusion Knowing the image quality of the set scan modes, will enable users to better optimize their setup CBCT. Evaluation of the scan mode image quality could improve setup efficiency and lead to better treatment outcomes.« less

  4. A Real-Time High Performance Data Compression Technique For Space Applications

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.

    2000-01-01

    A high performance lossy data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on block-transform combined with bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate. The lossy coder is described. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Hardware implementations are in development; a functional chip set is expected by the end of 2001.

  5. Considerations for ultrasonic testing application for on-orbit NDE

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  6. A new spherical scanning system for infrared reflectography of paintings

    NASA Astrophysics Data System (ADS)

    Gargano, M.; Cavaliere, F.; Viganò, D.; Galli, A.; Ludwig, N.

    2017-03-01

    Infrared reflectography is an imaging technique used to visualize the underdrawings of ancient paintings; it relies on the fact that most pigment layers are quite transparent to infrared radiation in the spectral band between 0.8 μm and 2.5 μm. InGaAs sensor cameras are nowadays the most used devices to visualize the underdrawings but due to the small size of the detectors, these cameras are usually mounted on scanning systems to record high resolution reflectograms. This work describes a portable scanning system prototype based on a peculiar spherical scanning system built through a light weight and low cost motorized head. The motorized head was built with the purpose of allowing the refocusing adjustment needed to compensate the variable camera-painting distance during the rotation of the camera. The prototype has been tested first in laboratory and then in-situ for the Giotto panel "God the Father with Angels" with a 256 pixel per inch resolution. The system performance is comparable with that of other reflectographic devices with the advantage of extending the scanned area up to 1 m × 1 m, with a 40 min scanning time. The present configuration can be easily modified to increase the resolution up to 560 pixels per inch or to extend the scanned area up to 2 m × 2 m.

  7. Kilovoltage cone-beam CT: Comparative dose and image quality evaluations in partial and full-angle scan protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sangroh; Yoo, Sua; Yin Fangfang

    2010-07-15

    Purpose: To assess imaging dose of partial and full-angle kilovoltage CBCT scan protocols and to evaluate image quality for each protocol. Methods: The authors obtained the CT dose index (CTDI) of the kilovoltage CBCT protocols in an on-board imager by ion chamber (IC) measurements and Monte Carlo (MC) simulations. A total of six new CBCT scan protocols were evaluated: Standard-dose head (100 kVp, 151 mA s, partial-angle), low-dose head (100 kVp, 75 mA s, partial-angle), high-quality head (100 kVp, 754 mA s, partial-angle), pelvis (125 kVp, 706 mA s, full-angle), pelvis spotlight (125 kVp, 752 mA s, partial-angle), and low-dosemore » thorax (110 kVp, 271 mA s, full-angle). Using the point dose method, various CTDI values were calculated by (1) the conventional weighted CTDI (CTDI{sub w}) calculation and (2) Bakalyar's method (CTDI{sub wb}). The MC simulations were performed to obtain the CTDI{sub w} and CTDI{sub wb}, as well as from (3) central slice averaging (CTDI{sub 2D}) and (4) volume averaging (CTDI{sub 3D}) techniques. The CTDI values of the new protocols were compared to those of the old protocols (full-angle CBCT protocols). Image quality of the new protocols was evaluated following the CBCT image quality assurance (QA) protocol [S. Yoo et al., ''A quality assurance program for the on-board imager registered ,'' Med. Phys. 33(11), 4431-4447 (2006)] testing Hounsfield unit (HU) linearity, spatial linearity/resolution, contrast resolution, and HU uniformity. Results: The CTDI{sub w} were found as 6.0, 3.2, 29.0, 25.4, 23.8, and 7.7 mGy for the new protocols, respectively. The CTDI{sub w} and CTDI{sub wb} differed within +3% between IC measurements and MC simulations. Method (2) results were within {+-}12% of method (1). In MC simulations, the CTDI{sub w} and CTDI{sub wb} were comparable to the CTDI{sub 2D} and CTDI{sub 3D} with the differences ranging from -4.3% to 20.6%. The CTDI{sub 3D} were smallest among all the CTDI values. CTDI{sub w} of the new protocols were found as {approx}14 times lower for standard head scan and 1.8 times lower for standard body scan than the old protocols, respectively. In the image quality QA tests, all the protocols except low-dose head and low-dose thorax protocols were within the tolerance in the HU verification test. The HU value for the two protocols was always higher than the nominal value. All the protocols passed the spatial linearity/resolution and HU uniformity tests. In the contrast resolution test, only high-quality head and pelvis scan protocols were within the tolerance. In addition, crescent effect was found in the partial-angle scan protocols. Conclusions: The authors found that CTDI{sub w} of the new CBCT protocols has been significantly reduced compared to the old protocols with acceptable image quality. The CTDI{sub w} values in the point dose method were close to the volume averaging method within 9%-21% for all the CBCT scan protocols. The Bakalyar's method produced more accurate dose estimation within 14%. The HU inaccuracy from low-dose head and low-dose thorax protocols can render incorrect dose results in the treatment planning system. When high soft-tissue contrast data are desired, high-quality head or pelvis scan protocol is recommended depending on the imaging area. The point dose method can be applicable to estimate CBCT dose with reasonable accuracy in the clinical environment.« less

  8. Nondestructive Testing Information Analysis Center, 1979.

    DTIC Science & Technology

    1980-09-01

    transmission and reflectometry Ultrasonic imaging Spectrum analysis Acoustic emission * LIQUID PENETRANT TESTING Dye penetrants Fluorescent penetrants...OPTICAL TESTING Visual testing Optical reflectometry and transmission Holography * THERMAL TESTING Infrared radiometry The rmography 13 The present...on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, and the monthly Engineering Index and Science Abstracts. New books

  9. Office-based ultrasound screening for abdominal aortic aneurysm

    PubMed Central

    Blois, Beau

    2012-01-01

    Abstract Objective To assess the efficacy of an office-based, family physician–administered ultrasound examination to screen for abdominal aortic aneurysm (AAA). Design A prospective observational study. Consecutive patients were approached by nonphysician staff. Setting Rural family physician offices in Grand Forks and Revelstoke, BC. Participants The Canadian Society for Vascular Surgery screening recommendations for AAA were used to help select patients who were at risk of AAA. All men 65 years of age or older were included. Women 65 years of age or older were included if they were current smokers or had diabetes, hypertension, a history of coronary artery disease, or a family history of AAA. Main outcome measures A focused “quick screen,” which measured the maximal diameter of the abdominal aorta using point-of-care ultrasound technology, was performed in the office by a resident physician trained in emergency ultrasonography. Each patient was then booked for a criterion standard scan (ie, a conventional abdominal ultrasound scan performed by a technician and interpreted by a radiologist). The maximal abdominal aortic diameter measured by ultrasound in the office was compared with that measured by the criterion standard method. The time to screen each patient was recorded. Results Forty-five patients were included in data analysis; 62% of participants were men. The mean age was 73 years. The mean pairwise difference between the office-based ultrasound scan and the criterion standard scan was not statistically significant. The mean absolute difference between the 2 scans was 0.20 cm (95% CI 0.15 to 0.25 cm). Correlation between the scans was 0.81. The office-based ultrasound scan had both a sensitivity and a specificity of 100%. The mean time to screen each patient was 212 seconds (95% CI 194 to 230 seconds). Conclusion Abdominal aortic aneurysm screening can be safely performed in the office by family physicians who are trained to use point-of-care ultrasound technology. The screening test can be completed within the time constraints of a busy family practice office visit. The benefit of screening for AAA in rural patients might be great if local diagnostic ultrasound service and emergent transport to a vascular surgeon are not available. PMID:22518906

  10. Office-based ultrasound screening for abdominal aortic aneurysm.

    PubMed

    Blois, Beau

    2012-03-01

    To assess the efficacy of an office-based, family physician–administered ultrasound examination to screen for abdominal aortic aneurysm (AAA). A prospective observational study. Consecutive patients were approached by nonphysician staff. Rural family physician offices in Grand Forks and Revelstoke, BC. The Canadian Society for Vascular Surgery screening recommendations for AAA were used to help select patients who were at risk of AAA. All men 65 years of age or older were included. Women 65 years of age or older were included if they were current smokers or had diabetes, hypertension, a history of coronary artery disease, or a family history of AAA. A focused “quick screen”, which measured the maximal diameter of the abdominal aorta using point-of-care ultrasound technology, was performed in the office by a resident physician trained in emergency ultrasonography. Each patient was then booked for a criterion standard scan (i.e., a conventional abdominal ultrasound scan performed by a technician and interpreted by a radiologist). The maximal abdominal aortic diameter measured by ultrasound in the office was compared with that measured by the criterion standard method. The time to screen each patient was recorded. Forty-five patients were included in data analysis; 62% of participants were men. The mean age was 73 years. The mean pairwise difference between the office-based ultrasound scan and the criterion standard scan was not statistically significant. The mean absolute difference between the 2 scans was 0.20 cm (95% CI 0.15 to 0.25 cm). Correlation between the scans was 0.81. The office-based ultrasound scan had both a sensitivity and a specificity of 100%. The mean time to screen each patient was 212 seconds (95% CI 194 to 230 seconds). Abdominal aortic aneurysm screening can be safely performed in the office by family physicians who are trained to use point-of- care ultrasound technology. The screening test can be completed within the time constraints of a busy family practice office visit. The benefit of screening for AAA in rural patients might be great if local diagnostic ultrasound service and emergent transport to a vascular surgeon are not available.

  11. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images

    PubMed Central

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing. PMID:29023597

  12. An Investigation into the Trueness and Precision of Copy Denture Templates Produced by Rapid Prototyping and Conventional Means.

    PubMed

    Davda, K; Osnes, C; Dillon, S; Wu, J; Hyde, P; Keeling, A

    2017-12-01

    To assess the trueness and precision of copy denture templates produced using traditional methods and 3D printing. Six copies of a denture were made using: 1. Conventional technique with silicone putty in an impression tray (CT). 2. Conventional technique with no impression tray (CNT). 3. 3D scanning and printing (3D). Scan trueness and precision was investigated by scanning a denture six times and comparing five scans to the sixth. Then the scans of the six CT, CNT and 3D dentures were compared by aligning, in turn, the copies of each denture to the scanned original. Outcome measures were the mean surface-to-surface distance, standard deviation of that distance and the maximum distance. Student's unpaired t-tests with Bonferroni correction were used to analyse the results. The repeated scans of the original denture showed a scan trueness of 0.013mm (SD 0.002) and precision of 0.013mm (SD 0.002). Trueness: CT templates, 0.168mm (0.047), CNT templates 0.195mm (0.034) and 3D 0.103mm (0.021). Precision: CT templates 0.158mm (0.037), CNT 0.233mm (0.073), 3D 0.090mm (0.017). For each outcome measure the 3D templates demonstrated an improvement which was statistically significant (p⟨0.05). 3D printed copy denture templates reproduced the original with greater trueness and precision than conventional techniques. Copyright© 2017 Dennis Barber Ltd.

  13. Evaluation of the accuracy of extraoral laboratory scanners with a single-tooth abutment model: A 3D analysis.

    PubMed

    Mandelli, Federico; Gherlone, Enrico; Gastaldi, Giorgio; Ferrari, Marco

    2017-10-01

    The aim of this study was to compare the accuracy of different laboratory scanners using a calibrated coordinate measuring machine as reference. A sand blasted titanium reference model (RM) was scanned with an industrial 3D scanner in order to obtain a reference digital model (dRM) that was saved in the standard tessellation format (.stl). RM was scanned ten times with each one of the tested scanners (GC Europe Aadva, Zfx Evolution, 3Shape D640, 3Shape D700, NobilMetal Sinergia, EGS DScan3, Open Technologies Concept Scan Top) and all the scans were exported in .stl format for the comparison. All files were imported in a dedicated software (Geomagic Qualify 2013). Accuracy was evaluated calculating trueness and precision. Trueness values (μm [95% confidence interval]) were: Aadva 7,7 [6,8-8,5]; Zfx Evolution 9,2 [8,6-9,8]; D640 18,1 [12,2-24,0]; D700 12,8 [12,4-13,3]; Sinergia 31,1 [26,3-35,9]; DScan3 15,6 [11,5-19,7]; Concept Scan Top 28,6 [25,6-31,6]. Differences between scanners were statistically significant (p<.0005). Precision values (μm [95% CI]) were: Aadva 4,0 [3,8-4,2]; Zfx Evolution 5,1 [4,4-5,9]; D640 12,7 [12,4-13,1]; D700 11,0 [10,7-11,3]; Sinergia 16,3 [15,0-17,5]; DScan3 9,5 [8,3-10,6]; Concept Scan Top 19,5 [19,1-19,8]. Differences between scanners were statistically significant (p<.0005). The use a standardized scanning procedure fabricating a titanium reference model is useful to compare trueness and precision of different laboratory scanners; two laboratory scanners (Aadva, Zfx Evolution) were significantly better that other tested scanners. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. A methodology of SiP testing based on boundary scan

    NASA Astrophysics Data System (ADS)

    Qin, He; Quan, Haiyang; Han, Yifei; Zhu, Tianrui; Zheng, Tuo

    2017-10-01

    System in Package (SiP) play an important role in portable, aerospace and military electronic with the microminiaturization, light weight, high density, and high reliability. At present, SiP system test has encountered the problem on system complexity and malfunction location with the system scale exponentially increase. For SiP system, this paper proposed a testing methodology and testing process based on the boundary scan technology. Combining the character of SiP system and referencing the boundary scan theory of PCB circuit and embedded core test, the specific testing methodology and process has been proposed. The hardware requirement of the under test SiP system has been provided, and the hardware platform of the testing has been constructed. The testing methodology has the character of high test efficiency and accurate malfunction location.

  15. Parallax scanning methods for stereoscopic three-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Mayhew, Christopher A.; Mayhew, Craig M.

    2012-03-01

    Under certain circumstances, conventional stereoscopic imagery is subject to being misinterpreted. Stereo perception created from two static horizontally separated views can create a "cut out" 2D appearance for objects at various planes of depth. The subject volume looks three-dimensional, but the objects themselves appear flat. This is especially true if the images are captured using small disparities. One potential explanation for this effect is that, although three-dimensional perception comes primarily from binocular vision, a human's gaze (the direction and orientation of a person's eyes with respect to their environment) and head motion also contribute additional sub-process information. The absence of this information may be the reason that certain stereoscopic imagery appears "odd" and unrealistic. Another contributing factor may be the absence of vertical disparity information in a traditional stereoscopy display. Recently, Parallax Scanning technologies have been introduced, which provide (1) a scanning methodology, (2) incorporate vertical disparity, and (3) produce stereo images with substantially smaller disparities than the human interocular distances.1 To test whether these three features would improve the realism and reduce the cardboard cutout effect of stereo images, we have applied Parallax Scanning (PS) technologies to commercial stereoscopic digital cinema productions and have tested the results with a panel of stereo experts. These informal experiments show that the addition of PS information into the left and right image capture improves the overall perception of three-dimensionality for most viewers. Parallax scanning significantly increases the set of tools available for 3D storytelling while at the same time presenting imagery that is easy and pleasant to view.

  16. An Improved Source-Scanning Algorithm for Locating Earthquake Clusters or Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kao, H.; Hsu, S.

    2010-12-01

    The Source-scanning Algorithm (SSA) was originally introduced in 2004 to locate non-volcanic tremors. Its application was later expanded to the identification of earthquake rupture planes and the near-real-time detection and monitoring of landslides and mud/debris flows. In this study, we further improve SSA for the purpose of locating earthquake clusters or aftershock sequences when only a limited number of waveform observations are available. The main improvements include the application of a ground motion analyzer to separate P and S waves, the automatic determination of resolution based on the grid size and time step of the scanning process, and a modified brightness function to utilize constraints from multiple phases. Specifically, the improved SSA (named as ISSA) addresses two major issues related to locating earthquake clusters/aftershocks. The first one is the massive amount of both time and labour to locate a large number of seismic events manually. And the second one is to efficiently and correctly identify the same phase across the entire recording array when multiple events occur closely in time and space. To test the robustness of ISSA, we generate synthetic waveforms consisting of 3 separated events such that individual P and S phases arrive at different stations in different order, thus making correct phase picking nearly impossible. Using these very complicated waveforms as the input, the ISSA scans all model space for possible combination of time and location for the existence of seismic sources. The scanning results successfully associate various phases from each event at all stations, and correctly recover the input. To further demonstrate the advantage of ISSA, we apply it to the waveform data collected by a temporary OBS array for the aftershock sequence of an offshore earthquake southwest of Taiwan. The overall signal-to-noise ratio is inadequate for locating small events; and the precise arrival times of P and S phases are difficult to determine. We use one of the largest aftershocks that can be located by conventional methods as our reference event to calibrate the controlling parameters of ISSA. These parameters include the overall Vp/Vs ratio (because a precise S velocity model was unavailable), the length of scanning time window, and the weighting factor for each station. Our results show that ISSA is not only more efficient in locating earthquake clusters/aftershocks, but also capable of identifying many events missed by conventional phase-picking methods.

  17. Clinical experience with real-time ultrasound

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then received on a television and audio monitor. We also test live transmission of pediatric echocardiograms using the EMMI from a remote hospital to the Bowman Gray School of Medicine (BGSM) via a GCNS2000 ATM switch. This replaces the current method of having these studies transferred to a VHS tape and then mailed overnight to our pediatric cardiologist for review. This test should provide valuable insight into the staffing and operational requirements of a tele-ultrasound unit with pediatric echocardiogram capabilities. The EMMI thus provides a means for the radiologist to be in constant communication with the technologist to guide the scanning of areas in question and enable general problem solving. Live scans are sent from one EMMI at the remote site to the other EMMI at the review station in the radiology department via the GCNS2000 switch. This arrangement allows us to test the use of public ATM services for this application as this switch is a wide area, central office ATM switch. Static images are sent using the DICOM standard when available, otherwise the established institutional digital radiology methods are used.

  18. Effect of improper scan alignment on retinal nerve fiber layer thickness measurements using Stratus optical coherence tomograph.

    PubMed

    Vizzeri, Gianmarco; Bowd, Christopher; Medeiros, Felipe A; Weinreb, Robert N; Zangwill, Linda M

    2008-08-01

    Misalignment of the Stratus optical coherence tomograph scan circle placed by the operator around the optic nerve head (ONH) during each retinal nerve fiber layer (RNFL) examination can affect the instrument reproducibility and its theoretical ability to detect true structural changes in the RNFL thickness over time. We evaluated the effect of scan circle placement on RNFL measurements. Observational clinical study. Sixteen eyes of 8 normal participants were examined using the Stratus optical coherence tomograph Fast RNFL thickness acquisition protocol (software version 4.0.7; Carl Zeiss Meditec, Dublin, CA). Four consecutive images were taken by the same operator with the circular scan centered on the optic nerve head. Four images each with the scan displaced superiorly, inferiorly, temporally, and nasally were also acquired. Differences in average and sectoral RNFL thicknesses were determined. For the centered scans, the coefficients of variation (CV) and the intraclass correlation coefficient for the average RNFL thickness measured were calculated. When the average RNFL thickness of the centered scans was compared with the average RNFL thickness of the displaced scans individually using analysis of variance with post-hoc analysis, no difference was found between the average RNFL thickness of the nasally (105.2 microm), superiorly (106.2 microm), or inferiorly (104.1 microm) displaced scans and the centered scans (106.4 microm). However, a significant difference (analysis of variance with Dunnett's test: F=8.82, P<0.0001) was found between temporally displaced scans (115.8 microm) and centered scans. Significant differences in sectoral RNFL thickness measurements were found between centered and each displaced scan. The coefficient of variation for average RNFL thickness was 1.75% and intraclass correlation coefficient was 0.95. In normal eyes, average RNFL thickness measurements are robust and similar with significant superior, inferior, and nasal scan displacement, but average RNFL thickness is greater when scans are displaced temporally. Parapapillary scan misalignment produces significant changes in RNFL assessment characterized by an increase in measured RNFL thickness in the quadrant in which the scan is closer to the disc, and a significant decrease in RNFL thickness in the quadrant in which the scan is displaced further from the optic disc.

  19. In vivo, noncontact, real-time, optical and spectroscopic assessment of the immediate local physiological response to spinal cord injury in a rat model

    NASA Astrophysics Data System (ADS)

    Fillioe, Seth; Bishop, Kyle Kelly; Jannini, Alexander Vincent Struck; Kim, Jon; McDonough, Ricky; Ortiz, Steve; Goodisman, Jerry; Hasenwinkel, Julie; Chaiken, J.

    2018-02-01

    We report a small study to test a methodology for real-time probing of chemical and physical changes in spinal cords in the immediate aftermath of a localized contusive injury. Raman spectroscopy, optical profilimetry and scanning NIR autofluorescence images were obtained simultaneously in vivo, within a 3 x 7 mm field, on spinal cords that had been surgically exposed between T9 and T10. The collected data was used alone and/or combined in a unique algorithm. A total of six rats were studied in two N=3 groups i.e. Injured and Control. A single 830 nm laser (100 μm round spot) was either 1) spatially scanned across the cord or 2) held at a specified location relative to the injury for a longer period of time to improve signal to noise in the Raman spectra. Line scans reveal photobleaching effects and surface profiles possibly allowing identification of the anterior median longitudinal artery. Analysis of the Raman spectra suggest that the tissues were equally hypoxic for both the control and injured animals i.e. a possible artifact of anesthesia and surgery. On the other hand, only injured cords display Raman features possibly indicating that extensive, localized protein phosphorylation occurs in minutes following spinal cord trauma.

  20. Measurement of Choroidal Perfusion and Thickness Following Systemic Sildenafil (Viagra®)

    PubMed Central

    Kim, David Y.; Silverman, Ronald H.; Chan, R.V. Paul; Khanifar, Aziz A.; Rondeau, Mark; Lloyd, Harriet; Schlegel, Peter; Coleman, D. Jackson

    2011-01-01

    Objective To demonstrate anatomic and physiologic changes in the human choroid following systemic sildenafil citrate (ViagraR) using enhanced depth imaging spectral domain-optical coherence tomography (EDI-OCT) and swept-scan high frequency digital ultrasound. Methods Seven healthy male subjects (mean age 32.7 years) were evaluated at baseline and two hours after ingesting 50 mg of sildenafil. Swept-scan high frequency digital ultrasound and EDI-OCT were utilized to measure choroidal perfusion and thickness, respectively. Results were read by masked observers. The Wilcoxon signed-rank test and t-test were used to analyze differences in choroidal flow and thickness at baseline and two hours after ingestion of sildenafil. Results Two hours following sildenafil, increased choroidal perfusion was observed in 11 of 12 eyes measured by swept-scan high frequency digital ultrasound. The mean increase was 3.46 (±2.00) times baseline with a range of 0.47 to 7.80 times baseline (p=0.004). Increased choroidal thickness was observed in 12 of 12 eyes measured with EDI-OCT. The average choroidal thickness increased by 11.6% temporal to the fovea, 9.3% nasal to the fovea, and 10.7% underneath the fovea (p<0.001 for all values). Conclusions Choroidal perfusion and thickness both increase in response to systemic sildenafil. These changes could secondarily affect retinal function, explain previously reported clinical symptoms, and potentially be a useful adjunct for treatment of ocular diseases that would benefit from increased choroidal blood flow. PMID:22974308

  1. Rapid age determination of oysters using LA-ICP-MS line scans of shell Mg/Ca ratios

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Durham, S. R.; Goodwin, D. H.

    2016-02-01

    Magnesium to calcium (Mg/Ca) ratios exhibit a strong temperature dependence in foraminifera and corals, but not in bivalve mollusks. Various studies have reported Mg/Ca-temperature relationships with R2 values ranging from 0.3 to 0.8 and significantly different relationships for bivalves growing at different salinities. However, this poor temperature correlation does not render Mg/Ca data useless. A weak temperature dependence would allow time (seasons and years) to be determined along the growth axis of shells. This would provide information about age, growth rate and also allow other proxies to be aligned with time. Typically, oxygen isotopes (δ18O) are used to age shells without clear periodic growth lines, which is time consuming and expensive. Line scans using laser ablation systems can cover several centimeters of shell in a few minutes. We test this method on the resilifer of two oyster species (Crassostrea gigas and C. virginica) using a 193 nm Laser-Ablation-ICP-MS. Living oysters were collected from San Francisco Bay, North Carolina, South Carolina, and the Gulf of Mexico; fossil shells (Pleistocene) were also collected in South Carolina. Shells were sampled for δ18O values and Mg/Ca ratios. We use annual cycles in δ18O values to confidently determine age, then apply the Mg/Ca technique. Shells of both species exhibit annual cyclicity in Mg/Ca ratios using spot and line scan laser sampling, which matche the seasonal cyclicity determined using δ18O values. Results show a good correlation between ages determined using the different methods. We conclude that LA-ICP-MS line scans offer a rapid and inexpensive technique for determining age, growth rate, and timing of shell growth in oyster reslifers.

  2. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated bronchial tree segmentation and airway wall thickness measurement tools. Improvements in Hounsfield unit calibration have to be performed when the interest of the study lies in determining and quantifying parenchymal changes and rely on estimating partial volume contributions of underlying structures to voxel densities.

  3. Mobile Laser Scanning Systems for Measuring the Clearance Gauge of Railways: State of Play, Testing and Outlook

    PubMed Central

    Mikrut, Sławomir; Kohut, Piotr; Pyka, Krystian; Tokarczyk, Regina; Barszcz, Tomasz; Uhl, Tadeusz

    2016-01-01

    The paper contains a survey of mobile scanning systems for measuring the railway clearance gauge. The research was completed as part of the project carried out for the PKP (PKP Polish Railway Lines S.A., Warsaw, Poland) in 2011–2013. The authors conducted experiments, including a search for the latest solutions relating to mobile measurement systems that meet the basic requirement. At the very least, these solutions needed to be accurate and have the ability for quick retrieval of data. In the paper, specifications and the characteristics of the component devices of the scanning systems are described. Based on experiments, the authors did some examination of the selected mobile systems to be applied for measuring the clearance gauge. The Riegl (VMX-250) and Z+F (Zoller + Fröhlich) Solution were tested. Additional test measurements were carried out within a 30-kilometer section of the Warsaw-Kraków route. These measurements were designed so as to provide various elements of the railway infrastructure, the track geometry and the installed geodetic control network. This ultimately made it possible to reduce the time for the preparation of geodetic reference measurements for the testing of the accuracy of the selected systems. Reference measurements included the use of the polar method to select profiles perpendicular to the axis of the track. In addition, the coordinates selected were well defined as measuring points of the objects of the infrastructure of the clearance gauge. All of the tested systems meet the accuracy requirements initially established (within the range of 2 cm as required by the PKP). The tested systems have shown their advantages and disadvantages. PMID:27187400

  4. A Comprehensive Pitting Study of High Velocity Oxygen Fuel Inconel 625 Coating by Using Electrochemical Testing Techniques

    NASA Astrophysics Data System (ADS)

    Niaz, Akbar; Khan, Sajid Ullah

    2016-01-01

    In the present work, Inconel 625 was coated on a mild steel substrate using a high velocity oxygen fuel coating process. The pitting propensity of the coating was tested by using open circuit potential versus time, potentiodynamic polarization, electrochemical potentiokinetic reactivation, and scanning electrochemical microscopy. The pitting propensity of the coating was compared with bulk Inconel 625 alloy. The results confirmed that there were regions of different electrochemical activities on the coating which have caused pitting corrosion.

  5. Experimenting Galileo on Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Fantinato, Samuele; Pozzobon, Oscar; Gamba, Giovanni; Chiara, Andrea Dalla; Montagner, Stefano; Giordano, Pietro; Crisci, Massimo; Enderle, Werner; Chelmins, David T.; Sands, Obed S.; hide

    2016-01-01

    The SCaN Testbed is an advanced integrated communications system and laboratory facility installed on the International Space Station (ISS) in 2012. The testbed incorporates a set of new generation of Software Defined Radio (SDR) technologies intended to allow researchers to develop, test, and demonstrate new communications, networking, and navigation capabilities in the actual environment of space. Qascom, in cooperation with ESA and NASA, is designing a Software Defined Radio GalileoGPS Receiver capable to provide accurate positioning and timing to be installed on the ISS SCaN Testbed. The GalileoGPS waveform will be operated in the JPL SDR that is constituted by several hardware components that can be used for experimentations in L-Band and S-Band. The JPL SDR includes an L-Band Dorne Margolin antenna mounted onto a choke ring. The antenna is connected to a radio front end capable to provide one bit samples for the three GNSS frequencies (L1, L2 and L5) at 38 MHz, exploiting the subharmonic sampling. The baseband processing is then performed by an ATMEL AT697 processor (100 MIPS) and two Virtex 2 FPGAs. The JPL SDR supports the STRS (Space Telecommunications Radio System) that provides common waveform software interfaces, methods of instantiation, operation, and testing among different compliant hardware and software products. The standard foresees the development of applications that are modular, portable, reconfigurable, and reusable. The developed waveform uses the STRS infrastructure-provided application program interfaces (APIs) and services to load, verify, execute, change parameters, terminate, or unload an application. The project is divided in three main phases. 1)Design and Development of the GalileoGPS waveform for the SCaN Testbed starting from Qascom existing GNSS SDR receiver. The baseline design is limited to the implementation of the single frequency Galileo and GPS L1E1 receiver even if as part of the activity it will be to assess the feasibility of a dual frequency implementation (L1E1+L5E5a) in the same SDR platform.2)Qualification and test the GalileoGPS waveform using ground systems available at the NASA Glenn Research Center. Experimenters can have access to two SCaN Testbed ground based systems for development and verification: the Experimenter Development System (EDS) that is intended to provide initial opportunity for software testing and basic functional validation and the Ground Integration Unit (GIU) that is a high fidelity version of the SCaN Testbed flight system and is therefore used for more controlled final development testing and verification testing.3)Perform in-orbit validation and experimentation: The experimentation phase will consists on the collection of raw measurements (pseudorange, Carrier phase, CN0) in space, assessment on the quality of the measurements and the receiver performances in terms of signal acquisition, tracking, etc. Finally computation of positioning in space (Position, Velocity and time) and assessment of its performance.(Complete abstract in attached document).

  6. Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for intraoperative neurochemical monitoring.

    PubMed

    Kimble, Christopher J; Johnson, David M; Winter, Bruce A; Whitlock, Sidney V; Kressin, Kenneth R; Horne, April E; Robinson, Justin C; Bledsoe, Jonathan M; Tye, Susannah J; Chang, Su-Youne; Agnesi, Filippo; Griessenauer, Christoph J; Covey, Daniel; Shon, Young-Min; Bennet, Kevin E; Garris, Paul A; Lee, Kendall H

    2009-01-01

    The Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) measures extracellular neurotransmitter concentration in vivo and displays the data graphically in nearly real time. WINCS implements two electroanalytical methods, fast-scan cyclic voltammetry (FSCV) and fixed-potential amperometry (FPA), to measure neurotransmitter concentrations at an electrochemical sensor, typically a carbon-fiber microelectrode. WINCS comprises a battery-powered patient module and a custom software application (WINCSware) running on a nearby personal computer. The patient module impresses upon the electrochemical sensor either a constant potential (for FPA) or a time-varying waveform (for FSCV). A transimpedance amplifier converts the resulting current to a signal that is digitized and transmitted to the base station via a Bluetooth radio link. WINCSware controls the operational parameters for FPA or FSCV, and records the transmitted data stream. Filtered data is displayed in various formats, including a background-subtracted plot of sequential FSCV scans - a representation that enables users to distinguish the signatures of various analytes with considerable specificity. Dopamine, glutamate, adenosine and serotonin were selected as analytes for test trials. Proof-of-principle tests included in vitro flow-injection measurements and in vivo measurements in rat and pig. Further testing demonstrated basic functionality in a 3-Tesla MRI unit. WINCS was designed in compliance with consensus standards for medical electrical device safety, and it is anticipated that its capability for real-time intraoperative monitoring of neurotransmitter release at an implanted sensor will prove useful for advancing functional neurosurgery.

  7. Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Todd, L. A.

    A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sels, Seppe, E-mail: Seppe.Sels@uantwerpen.be; Ribbens, Bart; Mertens, Luc

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposedmore » methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical experiments.« less

  9. Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology.

    PubMed

    Urbanová, Petra; Hejna, Petr; Jurda, Mikoláš

    2015-05-01

    Three-dimensional surface technologies particularly close range photogrammetry and optical surface scanning have recently advanced into affordable, flexible and accurate techniques. Forensic postmortem investigation as performed on a daily basis, however, has not yet fully benefited from their potentials. In the present paper, we tested two approaches to 3D external body documentation - digital camera-based photogrammetry combined with commercial Agisoft PhotoScan(®) software and stereophotogrammetry-based Vectra H1(®), a portable handheld surface scanner. In order to conduct the study three human subjects were selected, a living person, a 25-year-old female, and two forensic cases admitted for postmortem examination at the Department of Forensic Medicine, Hradec Králové, Czech Republic (both 63-year-old males), one dead to traumatic, self-inflicted, injuries (suicide by hanging), the other diagnosed with the heart failure. All three cases were photographed in 360° manner with a Nikon 7000 digital camera and simultaneously documented with the handheld scanner. In addition to having recorded the pre-autopsy phase of the forensic cases, both techniques were employed in various stages of autopsy. The sets of collected digital images (approximately 100 per case) were further processed to generate point clouds and 3D meshes. Final 3D models (a pair per individual) were counted for numbers of points and polygons, then assessed visually and compared quantitatively using ICP alignment algorithm and a cloud point comparison technique based on closest point to point distances. Both techniques were proven to be easy to handle and equally laborious. While collecting the images at autopsy took around 20min, the post-processing was much more time-demanding and required up to 10h of computation time. Moreover, for the full-body scanning the post-processing of the handheld scanner required rather time-consuming manual image alignment. In all instances the applied approaches produced high-resolution photorealistic, real sized or easy to calibrate 3D surface models. Both methods equally failed when the scanned body surface was covered with body hair or reflective moist areas. Still, it can be concluded that single camera close range photogrammetry and optical surface scanning using Vectra H1 scanner represent relatively low-cost solutions which were shown to be beneficial for postmortem body documentation in forensic pathology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Accuracy of Buccal Scan Procedures for the Registration of Habitual Intercuspation.

    PubMed

    Zimmermann, M; Ender, A; Attin, T; Mehl, A

    2018-04-09

    Accurate reproduction of the jaw relationship is important in many fields of dentistry. Maximum intercuspation can be registered with digital buccal scan procedures implemented in the workflow of many intraoral scanning systems. The aim of this study was to investigate the accuracy of buccal scan procedures with intraoral scanning devices for the registration of habitual intercuspation in vivo. The hypothesis was that there is no statistically significant difference for buccal scan procedures compared to registration methods with poured model casts. Ten individuals (full dentition, no dental rehabilitations) were subjects for five different habitual intercuspation registration methods: (CI) poured model casts, manual hand registration, buccal scan with inEOS X5; (BC) intraoral scan, buccal scan with CEREC Bluecam; (OC4.2) intraoral scan, buccal scan with CEREC Omnicam software version 4.2; (OC4.5β) intraoral scan, buccal scan with CEREC Omnicam version 4.5β; and (TR) intraoral scan, buccal scan with Trios 3. Buccal scan was repeated three times. Analysis of rotation (Rot) and translation (Trans) parameters was performed with difference analysis software (OraCheck). Statistical analysis was performed with one-way analysis of variance and the post hoc Scheffé test ( p<0.05). Statistical analysis showed no significant ( p>0.05) differences in terms of translation between groups CI_Trans (98.74±112.01 μm), BC_Trans (84.12±64.95 μm), OC4.2_Trans (60.70±35.08 μm), OC4.5β_Trans (68.36±36.67 μm), and TR_Trans (66.60±64.39 μm). For rotation, there were no significant differences ( p>0.05) for groups CI_Rot (0.23±0.25°), BC_Rot (0.73±0.52°), OC4.2_Rot (0.45±0.31°), OC4.5β_Rot (0.50±0.36°), and TR_Rot (0.47±0.65°). Intraoral scanning devices allow the reproduction of the static relationship of the maxillary and mandibular teeth with the same accuracy as registration methods with poured model casts.

  11. Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.; Mann, J.; Courtney, M.; Sjöholm, M.

    2008-05-01

    At RISØ DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed.

  12. Recent Advances in X-ray Cone-beam Computed Laminography.

    PubMed

    O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas

    2016-10-06

    X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.

  13. Breadboard linear array scan imager using LSI solid-state technology

    NASA Technical Reports Server (NTRS)

    Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.

    1976-01-01

    The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.

  14. Evaluation of Motor Neuron Excitability by CMAP Scanning with Electric Modulated Current

    PubMed Central

    Araújo, Tiago; Candeias, Rui; Nunes, Neuza; Gamboa, Hugo

    2015-01-01

    Introduction. Compound Muscle Action Potential (CMAP) scan is a noninvasive promissory technique for neurodegenerative pathologies diagnosis. In this work new CMAP scan protocols were implemented to study the influence of electrical pulse waveform on peripheral nerve excitability. Methods. A total of 13 healthy subjects were tested. Stimulation was performed with an increasing intensities range from 4 to 30 mA. The procedure was repeated 4 times per subject, using a different single pulse stimulation waveform: monophasic square and triangular and quadratic and biphasic square. Results. Different waveforms elicit different intensity-response amplitude curves. The square pulse needs less current to generate the same response amplitude regarding the other waves and this effect is gradually decreasing for the triangular, quadratic, and biphasic pulse, respectively. Conclusion. The stimulation waveform has a direct influence on the stimulus-response slope and consequently on the motoneurons excitability. This can be a new prognostic parameter for neurodegenerative disorders. PMID:26413499

  15. Cytocompatibility and uptake of halloysite clay nanotubes.

    PubMed

    Vergaro, Viviana; Abdullayev, Elshad; Lvov, Yuri M; Zeitoun, Andre; Cingolani, Roberto; Rinaldi, Ross; Leporatti, Stefano

    2010-03-08

    Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes.

  16. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-01-01

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272

  17. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shijun; Yao Jianhua; Liu Jiamin

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less

  18. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    NASA Astrophysics Data System (ADS)

    Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.

    1991-03-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.

  19. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, M.; Campbell, D.R.; Johnson, C.W.

    1991-01-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less

  20. Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology.

    PubMed

    Hayden, Randall T; Clinton, Lani K; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J

    2016-11-01

    The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Off-resonance suppression for multispectral MR imaging near metallic implants.

    PubMed

    den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens

    2015-01-01

    Metal artifact reduction in MRI within clinically feasible scan-times without through-plane aliasing. Existing metal artifact reduction techniques include view angle tilting (VAT), which resolves in-plane distortions, and multispectral imaging (MSI) techniques, such as slice encoding for metal artifact correction (SEMAC) and multi-acquisition with variable resonances image combination (MAVRIC), that further reduce image distortions, but significantly increase scan-time. Scan-time depends on anatomy size and anticipated total spectral content of the signal. Signals outside the anticipated spatial region may cause through-plane back-folding. Off-resonance suppression (ORS), using different gradient amplitudes for excitation and refocusing, is proposed to provide well-defined spatial-spectral selectivity in MSI to allow scan-time reduction and flexibility of scan-orientation. Comparisons of MSI techniques with and without ORS were made in phantom and volunteer experiments. Off-resonance suppressed SEMAC (ORS-SEMAC) and outer-region suppressed MAVRIC (ORS-MAVRIC) required limited through-plane phase encoding steps compared with original MSI. Whereas SEMAC (scan time: 5'46") and MAVRIC (4'12") suffered from through-plane aliasing, ORS-SEMAC and ORS-MAVRIC allowed alias-free imaging in the same scan-times. ORS can be used in MSI to limit the selected spatial-spectral region and contribute to metal artifact reduction in clinically feasible scan-times while avoiding slice aliasing. © 2014 Wiley Periodicals, Inc.

  2. Bone mineral density test

    MedlinePlus

    ... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...

  3. Utility of High Throughput Screening Techniques to Predict Stability of Monoclonal Antibody Formulations During Early Stage Development.

    PubMed

    Goldberg, Deborah S; Lewus, Rachael A; Esfandiary, Reza; Farkas, David C; Mody, Neil; Day, Katrina J; Mallik, Priyanka; Tracka, Malgorzata B; Sealey, Smita K; Samra, Hardeep S

    2017-08-01

    Selecting optimal formulation conditions for monoclonal antibodies for first time in human clinical trials is challenging due to short timelines and reliance on predictive assays to ensure product quality and adequate long-term stability. Accelerated stability studies are considered to be the gold standard for excipient screening, but they are relatively low throughput and time consuming. High throughput screening (HTS) techniques allow for large amounts of data to be collected quickly and easily, and can be used to screen solution conditions for early formulation development. The utility of using accelerated stability compared to HTS techniques (differential scanning light scattering and differential scanning fluorescence) for early formulation screening was evaluated along with the impact of excipients of various types on aggregation of monoclonal antibodies from multiple IgG subtypes. The excipient rank order using quantitative HTS measures was found to correlate with accelerated stability aggregation rate ranking for only 33% (by differential scanning fluorescence) to 42% (by differential scanning light scattering) of the antibodies tested, due to the high intrinsic stability and minimal impact of excipients on aggregation rates and HTS data. Also explored was a case study of employing a platform formulation instead of broader formulation screening for early formulation development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Fast scanning mode and its realization in a scanning acoustic microscope

    NASA Astrophysics Data System (ADS)

    Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian

    2012-03-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  5. Overview of Imaging Tests

    MedlinePlus

    ... Overview of Imaging Tests Angiography Computed Tomography (CT) Magnetic Resonance Imaging (MRI) Plain X-Rays Radionuclide Scanning ... and radionuclide scanning Sound waves, as in ultrasonography Magnetic fields, as in magnetic resonance imaging (MRI) Substances ...

  6. Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.

    2017-11-01

    A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.

  7. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 1: Scanner development, laboratory and field testing and system modeling

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.

  8. THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY II: DATA ANALYSIS AND THE TIMING OF 10 NEW PULSARS, INCLUDING A RELATIVISTIC BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Ryan S.; Kaspi, Victoria M.; Archibald, Anne M.

    2013-02-15

    We have completed a 350 MHz Drift-scan Survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered {approx}10,300 deg{sup 2} and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, 7 of which are recycled pulsars. A companion paper by Boyles et al. describes the survey strategy, sky coverage, and instrumental setup, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, andmore » follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources-two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.« less

  9. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    PubMed

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection resolution along the scanning direction increased from 4.0 cycles/mm [at 10% modulation-transfer-function (MTF)] in DBT to 5.1 cycles/mm in s-DBT at magnification factor of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s-DBT system scanning time is 6.3 s for a 15-view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. A prototype s-DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x-ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x-ray focal spot motion. The scanner speed of s-DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demonstrated the long term stability of CNT x-ray source array with typical clinical operation lifetime over 3 years.

  10. Comparison of PA imaging by narrow beam scanning and one-shot broad beam excitation

    NASA Astrophysics Data System (ADS)

    Xia, Jinjun; Wei, Chen-Wei; Huang, Lingyun; Pelivanov, I. M.; O'Donnell, Matthew

    2011-03-01

    Current systems designed for deep photoacoustic (PA) imaging typically use a low repetition rate, high power pulsed laser to provide a ns-scale pulse illuminating a large tissue volume. Acoustic signals recorded on each laser firing can be used to reconstruct a complete 2-D (3-D) image of sources of heat release within that region. Using broad-beam excitation, the maximum frame rate of the imaging system is restricted by the pulse repetition rate of the laser. An alternate illumination approach is proposed based on fast scanning by a low energy (~ 1 mJ) high repetition rate (up to a few kHz) narrow laser beam (~1 mm) along the tissue surface over a region of interest. A final PA image is produced from the summation of individual PA images reconstructed at each laser beam position. This concept can take advantage of high repetition rate fiber lasers to create PA images with much higher frame rates than current systems, enabling true real-time integration of photoacoustics with ultrasound imaging. As an initial proof of concept, we compare conventional broad beam illumination to a scanned beam approach in a simple model system. Two transparent teflon tubes with diameters of 1.6 mm and 0.8 mm were filled with ink having an absorption coefficient of 5 cm-1. These tubes were buried inside chicken breast tissue acting as an optical scattering medium. They were separated by 3 mm or 10 mm to test spatial and contrast resolution for the two scan formats. The excitation wavelength was 700 nm. The excitation source is a traditional OPO pumped by a Q-switched Nd:YAG laser with doubler. Photoacoustic images were reconstructed using signals from a small, scanned PVDF transducer acting as an acoustic array. Two different illumination schemes were compared: one was 15 mm x 10 mm in cross section and acted as the broad beam; the other was 5 mm x 2 mm in cross section (15 times smaller than the broad beam case) and was scanned over an area equivalent to broad beam illumination. Multiple images obtained during narrow beam scanning were added together to form one PA image equivalent to the single-shot broad beam one. Results of the phantom study indicate that PA images formed by narrow beam scanning excitation can be equivalent to one shot broad beam illumination in signal to noise ratio and spatial resolution. Future studies will focus on high repetition-rate laser sources and scan formats appropriate for real-time, integrated deep photoacoustic/ultrasonic imaging.

  11. Five-year Retrospective Review of Physician and Non-physician Performed Ultrasound in a Canadian Critical Care Helicopter Emergency Medical Service.

    PubMed

    O'Dochartaigh, Domhnall; Douma, Matthew; MacKenzie, Mark

    2017-01-01

    To describe the use of prehospital ultrasonography (PHUS) to support interventions, when used by physician and non-physician air medical crew (AMC), in a Canadian helicopter emergency medical service (HEMS). A retrospective review was conducted of consecutive patients who underwent ultrasound examination during HEMS care from January 1, 2009 through March 10, 2014. An a priori created data form was used to record patient demographics, type of ultrasound scan performed, ultrasound findings, location of scan, type of interventions supported by PHUS, factors that affected PHUS completion, and quality indicator(s). Data analysis was performed through descriptive statistics, Student's t-test for continuous variables, Z-test for proportions, and Mann-Whitney U Test for nonparametric data. Outcomes included interventions supported by PHUS, factors associated with incomplete scans, and quality indicators associated with PHUS use. Differences between physician and AMC groups were also assessed. PHUS was used in 455 missions, 318 by AMC and 137 by physicians. In combined trauma and medical patients, in the AMC group interventions were supported by PHUS in 26% of cases (95% CI 18-34). For transport physicians the percentage support was found to be significantly greater at 45% of cases (95% CI 34-56) p = < 0.006. Incomplete PHUS scans were common and reasons included patient obesity, lack of time, patient access, and clinical reasons. Quality indicators associated with PHUS were rarely identified. The use of PHUS by both physicians and non-physicians was found to support interventions in select trauma and medical patients. Key words: emergency medical services; aircraft; helicopter; air ambulance; ultrasonography; emergency care, prehospital; prehospital emergency care.

  12. Suspected pulmonary embolism and lung scan interpretation: Trial of a Bayesian reporting method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, D.M.; Philbrick, J.T.; Schoonover, F.W.

    The objective of this research is to determine whether a Bayesian method of lung scan (LS) reporting could influence the management of patients with suspected pulmonary embolism (PE). The study is performed by the following: (1) A descriptive study of the diagnostic process for suspected PE using the new reporting method; (2) a non-experimental evaluation of the reporting method comparing prospective patients and historical controls; and (3) a survey of physicians' reactions to the reporting innovation. Of 148 consecutive patients enrolled at the time of LS, 129 were completely evaluated; 75 patients scanned the previous year served as controls. Themore » LS results of patients with suspected PE were reported as posttest probabilities of PE calculated from physician-provided pretest probabilities and the likelihood ratios for PE of LS interpretations. Despite the Bayesian intervention, the confirmation or exclusion of PE was often based on inconclusive evidence. PE was considered by the clinician to be ruled out in 98% of patients with posttest probabilities less than 25% and ruled in for 95% of patients with posttest probabilities greater than 75%. Prospective patients and historical controls were similar in terms of tests ordered after the LS (e.g., pulmonary angiography). Patients with intermediate or indeterminate lung scan results had the highest proportion of subsequent testing. Most physicians (80%) found the reporting innovation to be helpful, either because it confirmed clinical judgement (94 cases) or because it led to additional testing (7 cases). Despite the probabilistic guidance provided by the study, the diagnosis of PE was often neither clearly established nor excluded. While physicians appreciated the innovation and were not confused by the terminology, their clinical decision making was not clearly enhanced.« less

  13. Lidar-based Research and Innovation at DTU Wind Energy - a Review

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.

    2014-06-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars (short-range system), and another consisting of three synchronized pulsed wind lidar systems (long-range system). Today, wind lidar profilers and WindScanners are routinely deployed and operated during field tests and measurement campaigns. Lidars have been installed and operated from ground, on offshore platforms, and also as scanning lidars integrated in operating turbines. As a result, wind profiles and also detailed 3D scanning of wind and turbulence fields have been achieved: 1) of the free wind aloft, 2) over complex terrain, 3) at coastal ranges with land-sea interfaces, 4) offshore, 5) in turbine inflow induction zone, and 6) of the complex and turbulent flow fields in the wakes inside wind parks.

  14. Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range

    NASA Astrophysics Data System (ADS)

    Yu, Anchi; Ye, Xiong; Ionascu, Dan; Cao, Wenxiang; Champion, Paul M.

    2005-11-01

    An electronically delayed two-color pump-probe instrument was developed using two synchronized laser systems. The instrument has picosecond time resolution and can perform scans over hundreds of nanoseconds without the beam divergence and walk-off effects that occur using standard spatial delay systems. A unique picosecond Ti :sapphire regenerative amplifier was also constructed without the need for pulse stretching and compressing optics. The picosecond regenerative amplifier has a broad wavelength tuning range, which suggests that it will make a significant contribution to two-color pump-probe experiments. To test this instrument we studied the rotational correlation relaxation of myoglobin (τr=8.2±0.5ns) in water as well as the geminate rebinding kinetics of oxygen to myoglobin (kg1=1.7×1011s-1, kg2=3.4×107s-1). The results are consistent with, and improve upon, previous studies.

  15. Biofilms of vaginal Lactobacillus in vitro test.

    PubMed

    Wei, Xiao-Yu; Zhang, Rui; Xiao, Bing-Bing; Liao, Qin-Ping

    2017-01-01

    This paper focuses on biofilms of Lactobacillus spp. - a type of normal flora isolated from healthy human vaginas of women of childbearing age; thereupon, it broadens the research scope of investigation of vaginal normal flora. The static slide culture method was adopted to foster biofilms, marked by specific fluorescence staining. Laser scanning confocal and scanning electron microscopy were used to observe the microstructure of the biofilms. Photographs taken from the microstructure were analysed to calculate the density of the biofilms. The body of Lactobacillus spp., though red, turned yellow when interacting with the green extracellular polysaccharides. The structure of the biofilm and aquaporin within the biofilm were imaged. Lactobacillus density increases over time. This study provides convincing evidence that Lactobacillus can form biofilms and grow over time in vitro. This finding establishes an important and necessary condition for selecting proper strains for the pharmaceutics of vaginal ecology.

  16. Investigation and evaluation of a computer program to minimize three-dimensional flight time tracks

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    The program for the DC 8-D3 flight planning was slightly modified for the three dimensional flight planning for DC 10 aircrafts. Several test runs of the modified program over the North Atlantic and North America were made for verifying the program. While geopotential height and temperature were used in a previous program as meteorological data, the modified program uses wind direction and speed and temperature received from the National Weather Service. A scanning program was written to collect required weather information from the raw data received in a packed decimal format. Two sets of weather data, the 12-hour forecast and 24-hour forecast based on 0000 GMT, are used for dynamic processes in testruns. In order to save computing time only the weather data of the North Atlantic and North America is previously stored in a PCF file and then scanned one by one.

  17. Landsat-5 bumper-mode geometric correction

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.

  18. Decreasing Medication Turnaround Time with Digital Scanning Technology in a Canadian Health Region

    PubMed Central

    Neville, Heather; Nodwell, Lisa; Alsharif, Sahar

    2014-01-01

    Background: Reducing medication turnaround time can improve efficiency, patient safety, and quality of care in the hospital setting. Digital scanning technology (DST) can be used to electronically transmit scanned prescriber orders to a pharmacy computer queue for verification and processing, which may help to improve medication turnaround time. Objectives: To evaluate medication turnaround time before and after implementation of DST for all medications and for antibiotics only. Methods: Medication turnaround times were evaluated retrospectively for periods before (June 6–10, 2011) and after (September 26–30, 2011) implementation of DST at 2 hospital sites in 1 health region. Medication turnaround time was defined as the time from composition of a medication order by the prescriber to its verification by the pharmacy (phase 1) and the time from prescriber composition to administration to the patient by a nurse (total). Median turnaround times were analyzed with SPSS software using the Mann–Whitney U test. Results: In total, 304 and 244 medication orders were audited before and after DST implementation, respectively. Median phase 1 turnaround time for all medications declined significantly, from 2 h 23 min before DST implementation to 1 h 33 min after DST implementation (p < 0.001). Antibiotics were also processed significantly faster (1 h 51 min versus 1 h 9 min, p = 0.015). However, total turnaround time for all medications did not differ significantly (5 h 15 min versus 5 h 0 min, p = 0.42). Conclusions: Implementation of DST was associated with a 50-min decrease in medication turnaround time for the period from when an order was prescribed to the time it was processed by the pharmacy. Regular evaluation of medication turnaround times is recommended to compare with benchmarks, to ensure that hospital standards are being met, and to measure the effects of policy changes and implementation of new technology on medication-use processes. PMID:25548397

  19. Decreasing medication turnaround time with digital scanning technology in a canadian health region.

    PubMed

    Neville, Heather; Nodwell, Lisa; Alsharif, Sahar

    2014-11-01

    Reducing medication turnaround time can improve efficiency, patient safety, and quality of care in the hospital setting. Digital scanning technology (DST) can be used to electronically transmit scanned prescriber orders to a pharmacy computer queue for verification and processing, which may help to improve medication turnaround time. To evaluate medication turnaround time before and after implementation of DST for all medications and for antibiotics only. Medication turnaround times were evaluated retrospectively for periods before (June 6-10, 2011) and after (September 26-30, 2011) implementation of DST at 2 hospital sites in 1 health region. Medication turnaround time was defined as the time from composition of a medication order by the prescriber to its verification by the pharmacy (phase 1) and the time from prescriber composition to administration to the patient by a nurse (total). Median turnaround times were analyzed with SPSS software using the Mann-Whitney U test. In total, 304 and 244 medication orders were audited before and after DST implementation, respectively. Median phase 1 turnaround time for all medications declined significantly, from 2 h 23 min before DST implementation to 1 h 33 min after DST implementation (p < 0.001). Antibiotics were also processed significantly faster (1 h 51 min versus 1 h 9 min, p = 0.015). However, total turnaround time for all medications did not differ significantly (5 h 15 min versus 5 h 0 min, p = 0.42). Implementation of DST was associated with a 50-min decrease in medication turnaround time for the period from when an order was prescribed to the time it was processed by the pharmacy. Regular evaluation of medication turnaround times is recommended to compare with benchmarks, to ensure that hospital standards are being met, and to measure the effects of policy changes and implementation of new technology on medication-use processes.

  20. Fast ultra-wideband microwave spectral scanning utilizing photonic wavelength- and time-division multiplexing.

    PubMed

    Li, Yihan; Kuse, Naoya; Fermann, Martin

    2017-08-07

    A high-speed ultra-wideband microwave spectral scanning system is proposed and experimentally demonstrated. Utilizing coherent dual electro-optical frequency combs and a recirculating optical frequency shifter, the proposed system realizes wavelength- and time-division multiplexing at the same time, offering flexibility between scan speed and size, weight and power requirements (SWaP). High-speed spectral scanning spanning from ~1 to 8 GHz with ~1.2 MHz spectral resolution is achieved experimentally within 14 µs. The system can be easily scaled to higher bandwidth coverage, faster scanning speed or finer spectral resolution with suitable hardware.

  1. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera.

    PubMed

    Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi; Uchida, Kenji; Igarashi, Yuko; Yokoyama, Tsuyoshi; Takahashi, Masaki; Shiba, Chie; Yoshimura, Mana; Tokuuye, Koichi; Yamashina, Akira

    2013-01-01

    Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest (99m)Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time.

  2. Direct-detected rapid-scan EPR at 250 MHz

    NASA Astrophysics Data System (ADS)

    Stoner, James W.; Szymanski, Dennis; Eaton, Sandra S.; Quine, Richard W.; Rinard, George A.; Eaton, Gareth R.

    2004-09-01

    EPR spectra at 250 MHz for a single crystal of lithium phthalocyanine (LiPc) in the absence of oxygen and for a deoxygenated aqueous solution of a Nycomed triarylmethyl (trityl-CD 3) radical were obtained at scan rates between 1.3 × 10 3 and 3.4 × 10 5 G/s. These scan rates are rapid relative to the reciprocals of the electron spin relaxation times (LiPc: T1=3.5 μs and T2=2.5 μs; trityl: T1=12 μs and T2=11.5 μs) and cause characteristic oscillations in the direct-detected absorption spectra. For a given scan rate, shorter values of T2 and increased inhomogeneous broadening cause less deep oscillations that damp out more quickly than for longer T2. There is excellent agreement between experimental and calculated lineshapes and signal amplitudes as a function of radiofrequency magnetic field ( B1) and scan rate. When B1 is adjusted for maximum signal amplitude as a function of scan rate, signal intensity for constant number of scans is enhanced by up to a factor of three relative to slow scans. The number of scans that can be averaged in a defined period of time is proportional to the scan rate, which further enhances signal amplitude per unit time. Longer relaxation times cause the maximum signal intensity to occur at slower scan rates. These experiments provide the first systematic characterization of direct-detected rapid-scan EPR signals.

  3. Scanning Mode Sensor for Detection of Flow Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1998-01-01

    A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry. Schlieren, and shadowgraph techniques. These techniques. however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.

  4. Scanning Mode Sensor for Detection of Flow Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1996-01-01

    A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry, Schlieren, and shadowgraph techniques. These techniques, however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.

  5. Accuracy, repeatability, and reproducibility of Artemis very high-frequency digital ultrasound arc-scan lateral dimension measurements

    PubMed Central

    Reinstein, Dan Z.; Archer, Timothy J.; Silverman, Ronald H.; Coleman, D. Jackson

    2008-01-01

    Purpose To determine the accuracy, repeatability, and reproducibility of measurement of lateral dimensions using the Artemis (Ultralink LLC) very high-frequency (VHF) digital ultrasound (US) arc scanner. Setting London Vision Clinic, London, United Kingdom. Methods A test object was measured first with a micrometer and then with the Artemis arc scanner. Five sets of 10 consecutive B-scans of the test object were performed with the scanner. The test object was removed from the system between each scan set. One expert observer and one newly trained observer separately measured the lateral dimension of the test object. Two-factor analysis of variance was performed. The accuracy was calculated as the average bias of the scan set averages. The repeatability and reproducibility coefficients were calculated. The coefficient of variation (CV) was calculated for repeatability and reproducibility. Results The test object was measured to be 10.80 mm wide. The mean lateral dimension bias was 0.00 mm. The repeatability coefficient was 0.114 mm. The reproducibility coefficient was 0.026 mm. The repeatability CV was 0.38%, and the reproducibility CV was 0.09%. There was no statistically significant variation between observers (P = .0965). There was a statistically significant variation between scan sets (P = .0036) attributed to minor vertical changes in the alignment of the test object between consecutive scan sets. Conclusion The Artemis VHF digital US arc scanner obtained accurate, repeatable, and reproducible measurements of lateral dimensions of the size commonly found in the anterior segment. PMID:17081860

  6. Mathematical modeling of tomographic scanning of cylindrically shaped test objects

    NASA Astrophysics Data System (ADS)

    Kapranov, B. I.; Vavilova, G. V.; Volchkova, A. V.; Kuznetsova, I. S.

    2018-05-01

    The paper formulates mathematical relationships that describe the length of the radiation absorption band in the test object for the first generation tomographic scan scheme. A cylindrically shaped test object containing an arbitrary number of standard circular irregularities is used to perform mathematical modeling. The obtained mathematical relationships are corrected with respect to chemical composition and density of the test object material. The equations are derived to calculate the resulting attenuation radiation from cobalt-60 isotope when passing through the test object. An algorithm to calculate the radiation flux intensity is provided. The presented graphs describe the dependence of the change in the γ-quantum flux intensity on the change in the radiation source position and the scanning angle of the test object.

  7. Evaluating the risk of appendiceal perforation when using ultrasound as the initial diagnostic imaging modality in children with suspected appendicitis.

    PubMed

    Alerhand, Stephen; Meltzer, James; Tay, Ee Tein

    2017-08-01

    Ultrasound scan has gained attention for diagnosing appendicitis due to its avoidance of ionizing radiation. However, studies show that ultrasound scan carries inferior sensitivity to computed tomography scan. A non-diagnostic ultrasound scan could increase the time to diagnosis and appendicectomy, particularly if follow-up computed tomography scan is needed. Some studies suggest that delaying appendicectomy increases the risk of perforation. To investigate the risk of appendiceal perforation when using ultrasound scan as the initial diagnostic imaging modality in children with suspected appendicitis. We retrospectively reviewed 1411 charts of children ≤17 years old diagnosed with appendicitis at two urban academic medical centers. Patients who underwent ultrasound scan first were compared to those who underwent computed tomography scan first. In the sub-group analysis, patients who only received ultrasound scan were compared to those who received initial ultrasound scan followed by computed tomography scan. Main outcome measures were appendiceal perforation rate and time from triage to appendicectomy. In 720 children eligible for analysis, there was no significant difference in perforation rate between those who had initial ultrasound scan and those who had initial computed tomography scan (7.3% vs. 8.9%, p = 0.44), nor in those who had ultrasound scan only and those who had initial ultrasound scan followed by computed tomography scan (8.0% vs. 5.6%, p = 0.42). Those patients who had ultrasound scan first had a shorter triage-to-incision time than those who had computed tomography scan first (9.2 (IQR: 5.9, 14.0) vs. 10.2 (IQR: 7.3, 14.3) hours, p = 0.03), whereas those who had ultrasound scan followed by computed tomography scan took longer than those who had ultrasound scan only (7.8 (IQR: 5.3, 11.6) vs. 15.1 (IQR: 10.6, 20.6), p < 0.001). Children < 12 years old receiving ultrasound scan first had lower perforation rate (p = 0.01) and shorter triage-to-incision time (p = 0.003). Children with suspected appendicitis receiving ultrasound scan as the initial diagnostic imaging modality do not have increased risk of perforation compared to those receiving computed tomography scan first. We recommend that children <12 years of age receive ultrasound scan first.

  8. Effects of hyperglycemia on fluorine-18-fluorodeoxyglucose biodistribution in a large oncology clinical practice.

    PubMed

    Rosica, Dillenia; Cheng, Su-Chun; Hudson, Margo; Sakellis, Christopher; Van den Abbeele, Annick D; Kim, Chun K; Jacene, Heather A

    2018-05-01

    Suggested cutoff points of blood glucose levels (BGL) before F-FDG PET/CT scanning vary between 120 and 200 mg/dl in current guidelines. This study's purpose was to compare the frequency of abnormal fluorine-18-fluorodeoxyglucose (F-FDG) biodistribution on PET/CT scans of patients with various ranges of abnormal BGL and to determine the effect of BGL greater than 200 mg/dl on F-FDG uptake in various organs. F-FDG PET/CT scans were retrospectively reviewed for 325 patients with BGL greater than 120 mg/dl at the time of scan and 112 with BGL less than or equal to 120 mg/dl. F-FDG biodistribution was categorized as normal, mildly abnormal, or abnormal by visual analysis of brain, background soft tissue, and muscle. Mean standardized uptake values (SUVmean) in brain, liver, fat (flank), gluteal muscle, and blood pool (aorta) were recorded. F-FDG biodistribution frequencies were assessed using a nonparametric χ-test for trend. Normal organ SUVs were compared using Kruskal-Wallis tests using the following BGL groupings: ≤120, 121-150, 151-200, and ≥201 mg/dl. Although higher BGL were significantly associated with an increased proportion of abnormal biodistribution (P<0.001), most patients with BGL less than or equal to 200 mg/dl had normal or mildly abnormal biodistribution. Average brain SUVmean significantly decreased with higher BGL groupings (P<0.001). Average aorta, gluteal muscle, and liver SUVmean did not significantly differ among groups with BGL greater than 120 mg/dl (P=0.66, 0.84, and 0.39, respectively), but were significantly lower in those with BGL less than or equal to 120 mg/dl (P≤0.001). Flank fat SUVmean was not significantly different among BGL groups (P=0.67). Abnormal F-FDG biodistribution is associated with higher BGL at the time of scan, but the effects are negligible or mild in most patients with BGL less than 200 mg/dl. Although mildly increased soft tissue uptake is seen with BGL greater than 120 mg/dl, decline in brain metabolic activity correlated the most with various BGL.

  9. 3D CT cerebral angiography technique using a 320-detector machine with a time-density curve and low contrast medium volume: comparison with fixed time delay technique.

    PubMed

    Das, K; Biswas, S; Roughley, S; Bhojak, M; Niven, S

    2014-03-01

    To describe a cerebral computed tomography angiography (CTA) technique using a 320-detector CT machine and a small contrast medium volume (35 ml, 15 ml for test bolus). Also, to compare the quality of these images with that of the images acquired using a larger contrast medium volume (90 or 120 ml) and a fixed time delay (FTD) of 18 s using a 16-detector CT machine. Cerebral CTA images were acquired using a 320-detector machine by synchronizing the scanning time with the time of peak enhancement as determined from the time-density curve (TDC) using a test bolus dose. The quality of CTA images acquired using this technique was compared with that obtained using a FTD of 18 s (by 16-detector CT), retrospectively. Average densities in four different intracranial arteries, overall opacification of arteries, and the degree of venous contamination were graded and compared. Thirty-eight patients were scanned using the TDC technique and 40 patients using the FTD technique. The arterial densities achieved by the TDC technique were higher (significant for supraclinoid and basilar arteries, p < 0.05). The proportion of images deemed as having "good" arterial opacification was 95% for TDC and 90% for FTD. The degree of venous contamination was significantly higher in images produced by the FTD technique (p < 0.001%). Good diagnostic quality CTA images with significant reduction of venous contamination can be achieved with a low contrast medium dose using a 320-detector machine by coupling the time of data acquisition with the time of peak enhancement. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  10. Dengue hemorrhagic fever and typhoid fever association based on spatial standpoint using scan statistics in DKI Jakarta

    NASA Astrophysics Data System (ADS)

    Hervind, Widyaningsih, Y.

    2017-07-01

    Concurrent infection with multiple infectious agents may occur in one patient, it appears frequently in dengue hemorrhagic fever (DHF) and typhoid fever. This paper depicted association between DHF and typhoid based on spatial point of view. Since paucity of data regarding dengue and typhoid co-infection, data that be used are the number of patients of those diseases in every district (kecamatan) in Jakarta in 2014 and 2015 obtained from Jakarta surveillance website. Poisson spatial scan statistics is used to detect DHF and typhoid hotspots area district in Jakarta separately. After obtain the hotspot, Fisher's exact test is applied to validate association between those two diseases' hotspot. The result exhibit hotspots of DHF and typhoid are located around central Jakarta. The further analysis used Poisson space-time scan statistics to reveal the hotspot in term of spatial and time. DHF and typhoid fever more likely occurr from January until May in the area which is relatively similar with pure spatial result. Preventive action could be done especially in the hotspot areas and it is required further study to observe the causes based on characteristics of the hotspot area.

  11. Evaluation of the polymerization shrinkage of experimental flowable composite resins through optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Mota, Cláudia C. B. O.; Souza, Alex F.; Cajazeira, Marlus R. R.; Gerbi, Marleny E. M. M.; Gomes, Anderson S. L.

    2018-02-01

    This study evaluated the polymerization shrinkage of two experimental flowable composite resins (CR) with different proportions of Urethane dimethacrylate (UDMA)/triethylene glycol dimethacrylate (TEGDMA) monomers in the organic matrix (50:50 and 60:40, respectively). A commercially available flowable CR, Tetric N-Flow (Ivoclair Vivadent, Liechtenstein, Germany), was employed as the control group. The resins were inserted in a cylindrical teflon mold (7 mm diameter, 0.6 mm height) and scanned with OCT before photoactivation, immediately after and 15 minutes after light-curing (Radii-Cal, SDI, Australia, 1,200 mW/cm2 ) exposure. A Callisto SD-OCT system (Thorlabs Inc, USA), operating at 930 nm central wavelength was employed for imaging acquisition. Cross-sectional OCT images were captured with 8 mm transverse scanning (2000x512 matrix), and processed by the ImageJ software, for comparison between the scanning times and between groups. Pearson correlation showed significant shrinkage for all groups in each time analyzed. Kruskal-Wallis test showed greater polymerization shrinkage for the 50:50 UDMA/TEGDMA group (p=0.001), followed by the control group (p=0.018). TEGDMA concentration was proportionally related to the polymerization shrinkage of the flowable composite resins.

  12. The Episodic Engram Transformed: Time Reduces Retrieval-Related Brain Activity but Correlates It with Memory Accuracy

    ERIC Educational Resources Information Center

    Furman, Orit; Mendelsohn, Avi; Dudai, Yadin

    2012-01-01

    We took snapshots of human brain activity with fMRI during retrieval of realistic episodic memory over several months. Three groups of participants were scanned during a memory test either hours, weeks, or months after viewing a documentary movie. High recognition accuracy after hours decreased after weeks and remained at similar levels after…

  13. Design and Implementation of a Mechanical Control System for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Bowden, William

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) will use technological improvements in low noise mixers to provide precise data on the Earth's atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a real time control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with a FPGA-based setup, we chose to use a low cost processor development kit manufactured by XMOS. The XMOS architecture allows parallel execution of multiple tasks on separate threads-making it ideal for this application and is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. For these reasons, the XMOS technology is an attractive, cost effective, alternative to FPGA-based technologies for this design and similar rapid prototyping projects.

  14. Fracture overprinting history using Markov chain analysis: Windsor-Kennetcook subbasin, Maritimes Basin, Canada

    NASA Astrophysics Data System (ADS)

    Snyder, Morgan E.; Waldron, John W. F.

    2018-03-01

    The deformation history of the Upper Paleozoic Maritimes Basin, Atlantic Canada, can be partially unraveled by examining fractures (joints, veins, and faults) that are well exposed on the shorelines of the macrotidal Bay of Fundy, in subsurface core, and on image logs. Data were collected from coastal outcrops and well core across the Windsor-Kennetcook subbasin, a subbasin in the Maritimes Basin, using the circular scan-line and vertical scan-line methods in outcrop, and FMI Image log analysis of core. We use cross-cutting and abutting relationships between fractures to understand relative timing of fracturing, followed by a statistical test (Markov chain analysis) to separate groups of fractures. This analysis, previously used in sedimentology, was modified to statistically test the randomness of fracture timing relationships. The results of the Markov chain analysis suggest that fracture initiation can be attributed to movement along the Minas Fault Zone, an E-W fault system that bounds the Windsor-Kennetcook subbasin to the north. Four sets of fractures are related to dextral strike slip along the Minas Fault Zone in the late Paleozoic, and four sets are related to sinistral reactivation of the same boundary in the Mesozoic.

  15. Fat Imaging via Magnetic Resonance Imaging (MRI) in Young Children (Ages 1-4 Years) without Sedation

    PubMed Central

    Shearrer, Grace E.; House, Benjamin T.; Gallas, Michelle C.; Luci, Jeffrey J.; Davis, Jaimie N.

    2016-01-01

    Introduction This pilot study developed techniques to perform Magnetic Resonance Imaging (MRI) of specific fat deposition in 18 children (age 18 months to 4 years). Methods The children engaged in a series of practice tests to become acclimated to the scanner noises, reduce claustrophobia, and rehearse holding still for a set time. The practice tests assessed if the child could remain still for two minutes while watching a video, first while lying on a blanket, second, on the blanket with headphones, and third, in the mock scanner. The children who passed the three practice tests were then scanned with a 3T Siemens Skyra magnet. Abdominal fat distribution (region of interest (ROI) from the top of the ileac crest to the bottom of the ribcage) volume was measured using 2-point DIXON technique. This region was chosen to give an indication of the body composition around the liver. Results Twelve out of eighteen participants successfully completed the actual MRI scan. Chi-squared test showed no significant difference between male and female pass-fail rates. The median age of completed scans was 36 months, whereas the median age for children unable to complete a scan was 28 months. The average total trunk fat was 240.9±85.2mL and the average total VAT was 37.7±25.9mLand liver fat was not quantifiable due to physiological motion. Several strategies (modeling, videos, and incentives) were identified to improve pediatric imaging in different age ranges. Conclusion Using an age-specific and tailored protocol, we were able to successfully use MRI for fat imaging in a majority of young children. Development of such protocols enables researchers to better understand the etiology of fat deposition in young children, which can be used to aid in the prevention and treatment of adiposity. PMID:26901881

  16. Fat Imaging via Magnetic Resonance Imaging (MRI) in Young Children (Ages 1-4 Years) without Sedation.

    PubMed

    Shearrer, Grace E; House, Benjamin T; Gallas, Michelle C; Luci, Jeffrey J; Davis, Jaimie N

    2016-01-01

    This pilot study developed techniques to perform Magnetic Resonance Imaging (MRI) of specific fat deposition in 18 children (age 18 months to 4 years). The children engaged in a series of practice tests to become acclimated to the scanner noises, reduce claustrophobia, and rehearse holding still for a set time. The practice tests assessed if the child could remain still for two minutes while watching a video, first while lying on a blanket, second, on the blanket with headphones, and third, in the mock scanner. The children who passed the three practice tests were then scanned with a 3T Siemens Skyra magnet. Abdominal fat distribution (region of interest (ROI) from the top of the ileac crest to the bottom of the ribcage) volume was measured using 2-point DIXON technique. This region was chosen to give an indication of the body composition around the liver. Twelve out of eighteen participants successfully completed the actual MRI scan. Chi-squared test showed no significant difference between male and female pass-fail rates. The median age of completed scans was 36 months, whereas the median age for children unable to complete a scan was 28 months. The average total trunk fat was 240.9±85.2mL and the average total VAT was 37.7±25.9mLand liver fat was not quantifiable due to physiological motion. Several strategies (modeling, videos, and incentives) were identified to improve pediatric imaging in different age ranges. Using an age-specific and tailored protocol, we were able to successfully use MRI for fat imaging in a majority of young children. Development of such protocols enables researchers to better understand the etiology of fat deposition in young children, which can be used to aid in the prevention and treatment of adiposity.

  17. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    PubMed

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  18. Efficient Imaging and Real-Time Display of Scanning Ion Conductance Microscopy Based on Block Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing

    2014-07-01

    Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.

  19. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  20. Real time coarse orientation detection in MR scans using multi-planar deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Bhatia, Parmeet S.; Reda, Fitsum; Harder, Martin; Zhan, Yiqiang; Zhou, Xiang Sean

    2017-02-01

    Automatically detecting anatomy orientation is an important task in medical image analysis. Specifically, the ability to automatically detect coarse orientation of structures is useful to minimize the effort of fine/accurate orientation detection algorithms, to initialize non-rigid deformable registration algorithms or to align models to target structures in model-based segmentation algorithms. In this work, we present a deep convolution neural network (DCNN)-based method for fast and robust detection of the coarse structure orientation, i.e., the hemi-sphere where the principal axis of a structure lies. That is, our algorithm predicts whether the principal orientation of a structure is in the northern hemisphere or southern hemisphere, which we will refer to as UP and DOWN, respectively, in the remainder of this manuscript. The only assumption of our method is that the entire structure is located within the scan's field-of-view (FOV). To efficiently solve the problem in 3D space, we formulated it as a multi-planar 2D deep learning problem. In the training stage, a large number coronal-sagittal slice pairs are constructed as 2-channel images to train a DCNN to classify whether a scan is UP or DOWN. During testing, we randomly sample a small number of coronal-sagittal 2-channel images and pass them through our trained network. Finally, coarse structure orientation is determined using majority voting. We tested our method on 114 Elbow MR Scans. Experimental results suggest that only five 2-channel images are sufficient to achieve a high success rate of 97.39%. Our method is also extremely fast and takes approximately 50 milliseconds per 3D MR scan. Our method is insensitive to the location of the structure in the FOV.

  1. Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI

    PubMed Central

    2013-01-01

    Background Activity of disease in patients with multiple sclerosis (MS) is monitored by detecting and delineating hyper-intense lesions on MRI scans. The Minimum Area Contour Change (MACC) algorithm has been created with two main goals: a) to improve inter-operator agreement on outlining regions of interest (ROIs) and b) to automatically propagate longitudinal ROIs from the baseline scan to a follow-up scan. Methods The MACC algorithm first identifies an outer bound for the solution path, forms a high number of iso-contour curves based on equally spaced contour values, and then selects the best contour value to outline the lesion. The MACC software was tested on a set of 17 FLAIR MRI images evaluated by a pair of human experts and a longitudinal dataset of 12 pairs of T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images that had lesion analysis ROIs drawn by a single expert operator. Results In the tests where two human experts evaluated the same MRI images, the MACC program demonstrated that it could markedly reduce inter-operator outline error. In the longitudinal part of the study, the MACC program created ROIs on follow-up scans that were in close agreement to the original expert’s ROIs. Finally, in a post-hoc analysis of 424 follow-up scans 91% of propagated MACC were accepted by an expert and only 9% of the final accepted ROIS had to be created or edited by the expert. Conclusion When used with an expert operator's verification of automatically created ROIs, MACC can be used to improve inter- operator agreement and decrease analysis time, which should improve data collected and analyzed in multicenter clinical trials. PMID:24004511

  2. The Role of a Coronary Artery Calcium Scan in Type 1 Diabetes

    PubMed Central

    Eaton, R. Philip; Schade, David S.

    2016-01-01

    Abstract The coronary artery calcium (CAC) scan has recently emerged as a reproducible noninvasive test to detect asymptomatic atherosclerotic coronary artery disease. It has several advantages over the traditional cardiac stress testing modalities, including lower cost, greater sensitivity for nonobstructing coronary artery lesions, and excellent prognostic value when combined with the Framingham risk parameters. Its chief disadvantage is that it does not identify obstructing coronary artery lesions or noncalcified coronary artery plaque. A CAC scan utilizes a chest computed tomogram and computer software to calculate the amount of calcium in the four main coronary vessels. Calcium is deposited in coronary plaques so that the greater the calcium score, the greater the plaque burden. This, in turn, is the basis for predicting a 10–15-year risk of a cardiovascular event. Individuals with a zero calcium score have a very low 10-year risk of a cardiovascular event. Obtaining a calcium score in a diabetic patient permits rational decisions for prescribing statin therapy. In patients with a zero score, the initiation of statin therapy is not recommended because the 5-year incidence of atherosclerotic cardiovascular disease is so low. In patients with diabetes, it is recommended to repeat the calcium scan in 4–5 years to permit timely therapy in the event that the score becomes positive. Since statins mildly increase coronary calcium as part of the stabilization of plaque, a reduction in the calcium score should not be anticipated. However, progression of the calcium score by more than 15%/year (calculated from a repeat CAC scan) provides additional prognostic information of an indication of progression of atherosclerosis. In summary, the coronary calcium score is a major clinical advance for noninvasively detecting coronary artery disease and managing antiatherosclerotic therapy in type 1 diabetes. PMID:27585206

  3. Test-retest reliability of high angular resolution diffusion imaging acquisition within medial temporal lobe connections assessed via tract based spatial statistics, probabilistic tractography and a novel graph theory metric.

    PubMed

    Kuhn, T; Gullett, J M; Nguyen, P; Boutzoukas, A E; Ford, A; Colon-Perez, L M; Triplett, W; Carney, P R; Mareci, T H; Price, C C; Bauer, R M

    2016-06-01

    This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.

  4. Concussion

    MedlinePlus

    ... symptoms. They may test your senses, balance, reflexes, memory, and thinking. In some cases, the doctor will order tests to scan your brain. These include a computed tomography (CT) or magnetic resonance imaging (MRI) scan. They take a picture of your ...

  5. Visual scanning behavior is related to recognition performance for own- and other-age faces

    PubMed Central

    Proietti, Valentina; Macchi Cassia, Viola; dell’Amore, Francesca; Conte, Stefania; Bricolo, Emanuela

    2015-01-01

    It is well-established that our recognition ability is enhanced for faces belonging to familiar categories, such as own-race faces and own-age faces. Recent evidence suggests that, for race, the recognition bias is also accompanied by different visual scanning strategies for own- compared to other-race faces. Here, we tested the hypothesis that these differences in visual scanning patterns extend also to the comparison between own and other-age faces and contribute to the own-age recognition advantage. Participants (young adults with limited experience with infants) were tested in an old/new recognition memory task where they encoded and subsequently recognized a series of adult and infant faces while their eye movements were recorded. Consistent with findings on the other-race bias, we found evidence of an own-age bias in recognition which was accompanied by differential scanning patterns, and consequently differential encoding strategies, for own-compared to other-age faces. Gaze patterns for own-age faces involved a more dynamic sampling of the internal features and longer viewing time on the eye region compared to the other regions of the face. This latter strategy was extensively employed during learning (vs. recognition) and was positively correlated to discriminability. These results suggest that deeply encoding the eye region is functional for recognition and that the own-age bias is evident not only in differential recognition performance, but also in the employment of different sampling strategies found to be effective for accurate recognition. PMID:26579056

  6. Targeting regional pediatric congenital hearing loss using a spatial scan statistic.

    PubMed

    Bush, Matthew L; Christian, Warren Jay; Bianchi, Kristin; Lester, Cathy; Schoenberg, Nancy

    2015-01-01

    Congenital hearing loss is a common problem, and timely identification and intervention are paramount for language development. Patients from rural regions may have many barriers to timely diagnosis and intervention. The purpose of this study was to examine the spatial and hospital-based distribution of failed infant hearing screening testing and pediatric congenital hearing loss throughout Kentucky. Data on live births and audiological reporting of infant hearing loss results in Kentucky from 2009 to 2011 were analyzed. The authors used spatial scan statistics to identify high-rate clusters of failed newborn screening tests and permanent congenital hearing loss (PCHL), based on the total number of live births per county. The authors conducted further analyses on PCHL and failed newborn hearing screening tests, based on birth hospital data and method of screening. The authors observed four statistically significant (p < 0.05) high-rate clusters with failed newborn hearing screenings in Kentucky, including two in the Appalachian region. Hospitals using two-stage otoacoustic emission testing demonstrated higher rates of failed screening (p = 0.009) than those using two-stage automated auditory brainstem response testing. A significant cluster of high rate of PCHL was observed in Western Kentucky. Five of the 54 birthing hospitals were found to have higher relative risk of PCHL, and two of those hospitals are located in a very rural region of Western Kentucky within the cluster. This spatial analysis in children in Kentucky has identified specific regions throughout the state with high rates of congenital hearing loss and failed newborn hearing screening tests. Further investigation regarding causative factors is warranted. This method of analysis can be useful in the setting of hearing health disparities to focus efforts on regions facing high incidence of congenital hearing loss.

  7. Observations on the Use of SCAN To Identify Children at Risk for Central Auditory Processing Disorder.

    ERIC Educational Resources Information Center

    Emerson, Maria F.; And Others

    1997-01-01

    The SCAN: A Screening Test for Auditory Processing Disorders was administered to 14 elementary children with a history of otitis media and 14 typical children, to evaluate the validity of the test in identifying children with central auditory processing disorder. Another experiment found that test results differed based on the testing environment…

  8. Computerized Maze Navigation and On-Road Performance by Drivers With Dementia

    PubMed Central

    Ott, Brian R.; Festa, Elena K.; Amick, Melissa M.; Grace, Janet; Davis, Jennifer D.; Heindel, William C.

    2012-01-01

    This study examined the ability of computerized maze test performance to predict the road test performance of cognitively impaired and normal older drivers. The authors examined 133 older drivers, including 65 with probable Alzheimer disease, 23 with possible Alzheimer disease, and 45 control subjects without cognitive impairment. Subjects completed 5 computerized maze tasks employing a touch screen and pointer as well as a battery of standard neuropsychological tests. Parameters measured for mazes included errors, planning time, drawing time, and total time. Within 2 weeks, subjects were examined by a professional driving instructor on a standardized road test modeled after the Washington University Road Test. Road test total score was significantly correlated with total time across the 5 mazes. This maze score was significant for both Alzheimer disease subjects and control subjects. One maze in particular, requiring less than 2 minutes to complete, was highly correlated with driving performance. For the standard neuropsychological tests, highest correlations were seen with Trail Making A (TrailsA) and the Hopkins Verbal Learning Tests Trial 1 (HVLT1). Multiple regression models for road test score using stepwise subtraction of maze and neuropsychological test variables revealed significant independent contributions for total maze time, HVLT1, and TrailsA for the entire group; total maze time and HVLT1 for Alzheimer disease subjects; and TrailsA for normal subjects. As a visual analog of driving, a brief computerized test of maze navigation time compares well to standard neuropsychological tests of psychomotor speed, scanning, attention, and working memory as a predictor of driving performance by persons with early Alzheimer disease and normal elders. Measurement of maze task performance appears to be useful in the assessment of older drivers at risk for hazardous driving. PMID:18287166

  9. Bone scan

    MedlinePlus

    ... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...

  10. Study into Point Cloud Geometric Rigidity and Accuracy of TLS-Based Identification of Geometric Bodies

    NASA Astrophysics Data System (ADS)

    Klapa, Przemyslaw; Mitka, Bartosz; Zygmunt, Mariusz

    2017-12-01

    Capability of obtaining a multimillion point cloud in a very short time has made the Terrestrial Laser Scanning (TLS) a widely used tool in many fields of science and technology. The TLS accuracy matches traditional devices used in land surveying (tacheometry, GNSS - RTK), but like any measurement it is burdened with error which affects the precise identification of objects based on their image in the form of a point cloud. The point’s coordinates are determined indirectly by means of measuring the angles and calculating the time of travel of the electromagnetic wave. Each such component has a measurement error which is translated into the final result. The XYZ coordinates of a measuring point are determined with some uncertainty and the very accuracy of determining these coordinates is reduced as the distance to the instrument increases. The paper presents the results of examination of geometrical stability of a point cloud obtained by means terrestrial laser scanner and accuracy evaluation of solids determined using the cloud. Leica P40 scanner and two different settings of measuring points were used in the tests. The first concept involved placing a few balls in the field and then scanning them from various sides at similar distances. The second part of measurement involved placing balls and scanning them a few times from one side but at varying distances from the instrument to the object. Each measurement encompassed a scan of the object with automatic determination of its position and geometry. The desk studies involved a semiautomatic fitting of solids and measurement of their geometrical elements, and comparison of parameters that determine their geometry and location in space. The differences of measures of geometrical elements of balls and translations vectors of the solids centres indicate the geometrical changes of the point cloud depending on the scanning distance and parameters. The results indicate the changes in the geometry of scanned objects depending on the point cloud quality and distance from the measuring instrument. Varying geometrical dimensions of the same element suggest also that the point cloud does not keep a stable geometry of measured objects.

  11. Socio-economic variation in CT scanning in Northern England, 1990-2002

    PubMed Central

    2012-01-01

    Background Socio-economic status is known to influence health throughout life. In childhood, studies have shown increased injury rates in more deprived settings. Socio-economic status may therefore be related to rates of certain medical procedures, such as computed tomography (CT) scans. This study aimed to assess socio-economic variation among young people having CT scans in Northern England between 1990 and 2002 inclusive. Methods Electronic data were obtained from Radiology Information Systems of all nine National Health Service hospital Trusts in the region. CT scan data, including sex, date of scan, age at scan, number and type of scans were assessed in relation to quintiles of Townsend deprivation scores, obtained from linkage of postcodes with census data, using χ2 tests and Spearman rank correlations. Results During the study period, 39,676 scans were recorded on 21,089 patients, with 38,007 scans and 19,485 patients (11344 male and 8132 female) linkable to Townsend scores. The overall distributions of both scans and patients by quintile of Townsend deprivation scores were significantly different to the distributions of Townsend scores from the census wards included in the study (p < 0.0001). There was a significant association between type of scan and deprivation quintile (p < 0.0001), primarily due to the higher proportions of head scans in the three most deprived quintiles, and slightly higher proportions of chest scans and abdomen and pelvis scans in the least deprived groups. There was also a significant association (p < 0.0001) between the patient's age at the time of the CT scan and Townsend deprivation quintiles, with slightly increasing proportions of younger children with increasing deprivation. A similar association with age (p < 0.0001) was seen when restricting the data to include only the first scan of each patient. The number of scans per patient was also associated with Townsend deprivation quintiles (p = 0.014). Conclusions Social inequalities exist in the numbers of young people undergoing CT scans with those from deprived areas more likely to do so. This may reflect the rates of injuries in these individuals and implies that certain groups within the population may receive higher radiation doses than others due to medical procedures. PMID:22283843

  12. Dip-coated ZrO2-Y2O3 coatings tested in molten salts for CSP applications

    NASA Astrophysics Data System (ADS)

    Pérez, Francisco Javier; Encinas-Sánchez, Víctor; Lasanta, María Isabel; de Miguel, María Teresa; García-Martín, Gustavo

    2017-06-01

    In the present work, the behaviour of ZrO2 - Y2O3 coatings in contact with molten salts at 500 °C has been studied. The coatings were prepared by sol-gel and deposited by dip-coating on AISI 304 specimens previously prepared by sanding and polishing. The behaviour in contact with molten salt was studied through static corrosion tests by the immersion of the coated samples in an alkali-nitrate mixture with a composition of 60 wt.% NaNO3/40 wt.% KNO3 (commonly known as Solar Salt). Prior to test, the deposited coatings were characterized using Scanning Electron Microscopy and X-Ray Diffraction, showing a compacted, homogeneous and uniform aspect and t-YSZ as main component. After corrosion tests, the samples were characterized via gravimetric, Scanning Electron Microscopy and X-Ray Diffraction. The results show a good behaviour of the coated samples compared with the bare coupon samples. However after 1000 h of testing m-ZrO2 appears in the composition,. At this preliminary study, results confirm the suitability of ZrO2 - Y2O3 coatings in solar applications after those working hours, although it is necessary to optimize the coating and study its behaviour at longer times.

  13. Influence of gantry rotation time and scan mode on image quality in ultra-high-resolution CT system.

    PubMed

    Honda, Osamu; Yanagawa, Masahiro; Hata, Akinori; Kikuchi, Noriko; Miyata, Tomo; Tsukagoshi, Shinsuke; Uranishi, Ayumi; Tomiyama, Noriyuki

    2018-06-01

    To investigate the image quality of helical scan (HS) mode and non-helical scan (non-HS) mode on ultra-high-resolution CT in different gantry rotation time. non-HS with 0.35 s/rot (non-HS200 mA/0.35 s). Three observers compared each non-HS image with HS image, and scored non-HS images by using 3-point scale, paying attention to normal findings, abnormal findings, noise, streak artifact, and overall image quality. Statistical analysis was performed with Steel-Dwass test. Overall image quality (score: 2.45) and noise (score: 2.42) of non-HS 200 mA/1.5s was statistically best (p < 0.0005). Overall Image quality and noise of non-HS200 mA/0.75 s (score: 2.0) was comparable to that of HS200 mA/1.5 s. CTDIvol of HS200 mA/1.5 s is 23.2 mGy. CTDIvol of non-HS200 mA/1.5 s, non-HS200 mA/0.75 s, non-HS200 mA/0.35 s is 19.2 mGy, 9.8 mGy, 4.7 mGy. Overall image quality and noise of non-helical scan is better than that of helical scan in the same rotation time. Overall Image quality of non-HS200 mA/0.75 s is comparable to that of HS200 mA/1.5 s, though the radiation dose of non-HS200 mA/0.75 s is lower than that of HS200 mA/1.5 s. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Image-derived input function in PET brain studies: blood-based methods are resistant to motion artifacts.

    PubMed

    Zanotti-Fregonara, Paolo; Liow, Jeih-San; Comtat, Claude; Zoghbi, Sami S; Zhang, Yi; Pike, Victor W; Fujita, Masahiro; Innis, Robert B

    2012-09-01

    Image-derived input function (IDIF) from carotid arteries is an elegant alternative to full arterial blood sampling for brain PET studies. However, a recent study using blood-free IDIFs found that this method is particularly vulnerable to patient motion. The present study used both simulated and clinical [11C](R)-rolipram data to assess the robustness of a blood-based IDIF method (a method that is ultimately normalized with blood samples) with regard to motion artifacts. The impact of motion on the accuracy of IDIF was first assessed with an analytical simulation of a high-resolution research tomograph using a numerical phantom of the human brain, equipped with internal carotids. Different degrees of translational (from 1 to 20 mm) and rotational (from 1 to 15°) motions were tested. The impact of motion was then tested on the high-resolution research tomograph dynamic scans of three healthy volunteers, reconstructed with and without an online motion correction system. IDIFs and Logan-distribution volume (VT) values derived from simulated and clinical scans with motion were compared with those obtained from the scans with motion correction. In the phantom scans, the difference in the area under the curve (AUC) for the carotid time-activity curves was up to 19% for rotations and up to 66% for translations compared with the motionless simulation. However, for the final IDIFs, which were fitted to blood samples, the AUC difference was 11% for rotations and 8% for translations. Logan-VT errors were always less than 10%, except for the maximum translation of 20 mm, in which the error was 18%. Errors in the clinical scans without motion correction appeared to be minor, with differences in AUC and Logan-VT always less than 10% compared with scans with motion correction. When a blood-based IDIF method is used for neurological PET studies, the motion of the patient affects IDIF estimation and kinetic modeling only minimally.

  15. A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings.

    PubMed

    Corera, Íñigo; Eciolaza, Adrián; Rubio, Oliver; Malanda, Armando; Rodríguez-Falces, Javier; Navallas, Javier

    2018-01-11

    Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components. Graphical Abstract The raw scanning-EMG signal (left figure) is processed by the MLSS algorithm in order to remove the artifact interference. Firstly, artifacts are detected from the raw signal, obtaining a validity mask (central figure) that determines the samples that have been contaminated by artifacts. Secondly, a least-squares smoothing procedure in the spatial dimension is applied to the raw signal using the not contaminated samples according to the validity mask. The resulting MLSS-processed scanning-EMG signal (right figure) is clean of artifact interference.

  16. Adult soft tissue sarcoma

    MedlinePlus

    ... or intestines Breathing problems Exams and Tests Your health care provider will ask you about your medical history and do a physical exam. Other tests may include: X-rays CT scan MRI PET scan If your provider suspects cancer, you might ...

  17. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... MoreBMI Calculator Complete Blood Count (CBC)Blood Test: Lipid PanelRapid Strep TestPelvic UltrasoundAbdominal UltrasoundCT Head ScanPap Smear ( ... because it can provide images of internal body structures. It is more like a CT scan than ...

  18. Microwave scanning beam approach and landing system phased array antenna.

    DOT National Transportation Integrated Search

    1971-09-01

    The design, operating instructions, detailed logic circuitry, and antenna test range results for the electronic circular scanning phased array developed at TSC (DOTSCAN) are described. Components developed for this effort are also described, and test...

  19. 40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...

  20. 40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...

  1. 40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...

  2. 40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...

  3. 40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...

  4. Estimating statistical isotropy violation in CMB due to non-circular beam and complex scan in minutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pant, Nidhi; Das, Santanu; Mitra, Sanjit

    Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spurious signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper,more » we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a complex scan and thus reduces the need for extensive numerical simulation worth tens of thousands of CPU hours into minutes long calculations. As an illustrative example, we use WMAP beams and scanning strategy to demonstrate the easability, usability and efficiency of our method. We test all our analytical results against that from exact numerical simulations.« less

  5. Smart align -- A new tool for robust non-rigid registration of scanning microscope data

    DOE PAGES

    Jones, Lewys; Yang, Hao; Pennycook, Timothy J.; ...

    2015-07-10

    Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the carefulmore » alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.« less

  6. Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia.

    PubMed

    Fan, Yuzhou; Luo, Liangping; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining; Fan, Yifang

    2017-01-01

    Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a "virtual organ" from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times-thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted.

  7. Smart align -- A new tool for robust non-rigid registration of scanning microscope data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Lewys; Yang, Hao; Pennycook, Timothy J.

    Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the carefulmore » alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.« less

  8. A novel system to diagnose cutaneous adverse drug reactions employing the cellscan--comparison with histamine releasing test and Inf-gamma Releasing Test.

    PubMed

    Goldberg, Ilan; Gilburd, Boris; Kravitz, Martine Szyper; Kivity, Shmuel; Chaim, Berta Ben; Klein, Tirza; Schiffenbauer, Yael; Trubniykovr, Ela; Brenner, Sarah; Shoenfeld, Yehuda

    2005-03-01

    There are several mechanisms to describe allergic drug reactions yet the methods to diagnose them are limited. To compare several conventional clinical and laboratory methods to diagnose skin reactions to drugs to a new method of diagnosing drug reactions by the CellScan system. The study entailed 21 patients who were diagnosed as suffering from drug eruptions, and 105 healthy controls with no history of drug allergy. The drugs were classified into two groups according to suspicion of causing drug allergy: high and low. Most of the patients were on more than one drug, leading to 41 patient-drug interactions (assays). Histamine releasing test (HRT), interferon (INF)-gamma releasing test and CellScan examination were performed on lymphocytes of the patients and controls. The HRTwas interpreted as positive in 9 out of 18 (50%) patients and in 13 out of 35 (37%) assays. Based on the INF-gamma releasing test, positive results were observed in 16 out of 21 (76%) patients and in 24 out of 41 (59%) assays. In the CellScan test (CST), positive results were observed in 17 out of 21 (81%) patients and in 29 out of 41 (71%) assays. The rate of identifying the drug for eruption in the high suspicion level drugs was 9 out of 22 (41%) assays in the HRT, 20 out of 24 (83%) assays in the INF-gamma releasing test, and 21 out of 24 (87%) studies with the CellScan method. The rate of determining of the drug that caused the eruption in the low suspicion level drugs was 4 out of 13 (31 %) in the HRT, 4 out of 17 (24%) assays in the INF-gamma releasing test, and 8 out of 17 (47%) analyses in the CST. When examined in the CellScan, 99 out of 105 (94%) controls were interpreted as negative. This preliminary study indicates that the CellScan seems to be an easy and promising method for the detection of drugs responsible for adverse skin reactions. In contrast to the HRT and to the Interferon-gamma secretion test, the CellScan method is characterized by its ability to track and monitor the reaction of individual cells. By measuring the kinetic parameters of selected cells before and after adding the suspected drug, we were able to identify the culprit drug. The CellScan method had the highest sensitivity, and the interferon-gamma secretion test had the highest specificity for detection of the culprit drug. In contrast, the analysis of 105 normal control sera disclosed a high specificity of 94% for the CellScan method.

  9. Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy.

    PubMed

    Bravo-Zanoguera, Miguel E; Laris, Casey A; Nguyen, Lam K; Oliva, Mike; Price, Jeffrey H

    2007-01-01

    Efficient image cytometry of a conventional microscope slide means rapid acquisition and analysis of 20 gigapixels of image data (at 0.3-microm sampling). The voluminous data motivate increased acquisition speed to enable many biomedical applications. Continuous-motion time-delay-and-integrate (TDI) scanning has the potential to speed image acquisition while retaining sensitivity, but the challenge of implementing high-resolution autofocus operating simultaneously with acquisition has limited its adoption. We develop a dynamic autofocus system for this need using: 1. a "volume camera," consisting of nine fiber optic imaging conduits to charge-coupled device (CCD) sensors, that acquires images in parallel from different focal planes, 2. an array of mixed analog-digital processing circuits that measure the high spatial frequencies of the multiple image streams to create focus indices, and 3. a software system that reads and analyzes the focus data streams and calculates best focus for closed feedback loop control. Our system updates autofocus at 56 Hz (or once every 21 microm of stage travel) to collect sharply focused images sampled at 0.3x0.3 microm(2)/pixel at a stage speed of 2.3 mms. The system, tested by focusing in phase contrast and imaging long fluorescence strips, achieves high-performance closed-loop image-content-based autofocus in continuous scanning for the first time.

  10. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    NASA Astrophysics Data System (ADS)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  11. Bone metastases from breast cancer at the time or radical mastectomy as detected by bone scan. Eight-year follow-up.

    PubMed

    Sklaroff, R B; Sklaroff, D M

    1976-07-01

    Sixty-four women with Stage II breast cancer who had Sr85 bone scans at the time of radical mastectomy were followed for 8 years in a prospective study. Those women with positive scans had a slight, but statistically significant, increased incidence of metastic disease, particularly for metastases to bone.However, 40% of those women with positive bone scans and negative roentgenograms survived 8 years without evidence of any metastatic disease. Therefore, it has not been shown at this time that bone scans should be obtained in order to exclude bone metastasis before regional therapy for breast cancer is instituted. Also, a significant percentage of women with negative bone scans developed both bone and soft tissue metastases. As many as 30% of asymptomatic women with a history of breast cancer and positive bone scans and negative bone roentgenograms may still harbor disease in bone after 8 years.

  12. MWPC prototyping and performance test for the STAR inner TPC upgrade

    NASA Astrophysics Data System (ADS)

    Shen, Fuwang; Wang, Shuai; Kong, Fangang; Bai, Shiwei; Li, Changyu; Videbæk, Flemming; Xu, Zhangbu; Zhu, Chengguang; Xu, Qinghua; Yang, Chi

    2018-07-01

    A new prototype of STAR inner Time Projection Chamber (iTPC) MWPC sector has been fabricated and tested in an X-ray test system. The wire chamber built at Shandong University has a wire tension precision better than 6% and wire pitch precision better than 10 μm. The gas gain uniformity and energy resolution are measured to be better than 1% (RMS) and 20% (FWHM), respectively, using an 55Fe X-ray source. The iTPC upgrade project is to replace all 24 STAR TPC inner sectors as a crucial detector upgrade for the RHIC beam energy scan phase II program. The test results show that the constructed iTPC prototype meets all project requirements.

  13. RTSPM: real-time Linux control software for scanning probe microscopy.

    PubMed

    Chandrasekhar, V; Mehta, M M

    2013-01-01

    Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.

  14. Machine learning algorithm for automatic detection of CT-identifiable hyperdense lesions associated with traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Keshavamurthy, Krishna N.; Leary, Owen P.; Merck, Lisa H.; Kimia, Benjamin; Collins, Scott; Wright, David W.; Allen, Jason W.; Brock, Jeffrey F.; Merck, Derek

    2017-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability in the United States. Time to treatment is often related to patient outcome. Access to cerebral imaging data in a timely manner is a vital component of patient care. Current methods of detecting and quantifying intracranial pathology can be time-consuming and require careful review of 2D/3D patient images by a radiologist. Additional time is needed for image protocoling, acquisition, and processing. These steps often occur in series, adding more time to the process and potentially delaying time-dependent management decisions for patients with traumatic brain injury. Our team adapted machine learning and computer vision methods to develop a technique that rapidly and automatically detects CT-identifiable lesions. Specifically, we use scale invariant feature transform (SIFT)1 and deep convolutional neural networks (CNN)2 to identify important image features that can distinguish TBI lesions from background data. Our learning algorithm is a linear support vector machine (SVM)3. Further, we also employ tools from topological data analysis (TDA) for gleaning insights into the correlation patterns between healthy and pathological data. The technique was validated using 409 CT scans of the brain, acquired via the Progesterone for the Treatment of Traumatic Brain Injury phase III clinical trial (ProTECT_III) which studied patients with moderate to severe TBI4. CT data were annotated by a central radiologist and included patients with positive and negative scans. Additionally, the largest lesion on each positive scan was manually segmented. We reserved 80% of the data for training the SVM and used the remaining 20% for testing. Preliminary results are promising with 92.55% prediction accuracy (sensitivity = 91.15%, specificity = 93.45%), indicating the potential usefulness of this technique in clinical scenarios.

  15. Effects of gradient encoding and number of signal averages on fractional anisotropy and fiber density index in vivo at 1.5 tesla.

    PubMed

    Widjaja, E; Mahmoodabadi, S Z; Rea, D; Moineddin, R; Vidarsson, L; Nilsson, D

    2009-01-01

    Tensor estimation can be improved by increasing the number of gradient directions (NGD) or increasing the number of signal averages (NSA), but at a cost of increased scan time. To evaluate the effects of NGD and NSA on fractional anisotropy (FA) and fiber density index (FDI) in vivo. Ten healthy adults were scanned on a 1.5T system using nine different diffusion tensor sequences. Combinations of 7 NGD, 15 NGD, and 25 NGD with 1 NSA, 2 NSA, and 3 NSA were used, with scan times varying from 2 to 18 min. Regions of interest (ROIs) were placed in the internal capsules, middle cerebellar peduncles, and splenium of the corpus callosum, and FA and FDI were calculated. Analysis of variance was used to assess whether there was a difference in FA and FDI of different combinations of NGD and NSA. There was no significant difference in FA of different combinations of NGD and NSA of the ROIs (P>0.005). There was a significant difference in FDI between 7 NGD/1 NSA and 25 NGD/3 NSA in all three ROIs (P<0.005). There were no significant differences in FDI between 15 NGD/3 NSA, 25 NGD/1 NSA, and 25 NGD/2 NSA and 25 NGD/3 NSA in all ROIs (P>0.005). We have not found any significant difference in FA with varying NGD and NSA in vivo in areas with relatively high anisotropy. However, lower NGD resulted in reduced FDI in vivo. With larger NGD, NSA has less influence on FDI. The optimal sequence among the nine sequences tested with the shortest scan time was 25 NGD/1 NSA.

  16. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-12-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.

  17. Predicting stem total and assortment volumes in an industrial Pinus taeda L. forest plantation using airborne laser scanning data and random forest

    Treesearch

    Carlos Alberto Silva; Carine Klauberg; Andrew Thomas Hudak; Lee Alexander Vierling; Wan Shafrina Wan Mohd Jaafar; Midhun Mohan; Mariano Garcia; Antonio Ferraz; Adrian Cardil; Sassan Saatchi

    2017-01-01

    Improvements in the management of pine plantations result in multiple industrial and environmental benefits. Remote sensing techniques can dramatically increase the efficiency of plantation management by reducing or replacing time-consuming field sampling. We tested the utility and accuracy of combining field and airborne lidar data with Random Forest, a supervised...

  18. Rascal Air-to-Ground Guided Missiles

    DTIC Science & Technology

    1947-04-30

    versions of antennas in a comparatively short time. Their present test equipment Is limited to X, S , and the lower frequency bands . They specialise...system (assuming power supply of 28 volts d.c, and cles 115 volts a.c.). a final report showing in detail the study, work, s and...research program: Subject Discussed Radar Relay K- Band Rapid Scan System Clearances Search Antenna Ultrasonic Trainers Free Flight Symposium

  19. Synchronous Stroboscopic Electronic Speckle Pattern Interferometry

    NASA Astrophysics Data System (ADS)

    Soares, Oliverio D. D.

    1986-10-01

    Electronic Speckle Pattern Interferometry (E.S.P.I) oftenly called Electronic Holography is a practical powerful technique in non-destructive testing. Practical capabilities of the technique have been improved by fringe betterment and the control of analysis in the time domain, in particular, the scanning of the vibration cycle, with introduction of: synchronized amplitude and phase modulated pulse illumination, microcomputer control, fibre optics design, and moire evaluation techniques.

  20. Tracking scanning laser ophthalmoscope (TSLO)

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Magill, John C.; White, Michael A.; Elsner, Ann E.; Webb, Robert H.

    2003-07-01

    The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applications, including hyperspectral imaging, multifocal electroretinography (MFERG), perimetry, quantification of macular and photo-pigmentation, imaging of neovascularization and other subretinal structures (drusen, hyper-, and hypo-pigmentation), and endogenous fluorescence imaging. Optical hardware features include dual wavelength imaging and detection, integrated monochromator, higher-order motion control, and a stimulus source. The system software consists of a real-time feedback control algorithm and a user interface. Software enhancements include automatic bias correction, asymmetric feature tracking, image averaging, automatic track re-lock, and acquisition and logging of uncompressed images and video files. Normal adult subjects were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO stabilized images in all test subjects during ordinary saccades up to 500 deg/sec with an inter-frame accuracy better than 0.05 deg. Feature lock was maintained for minutes despite subject eye blinking. Successful frame averaging allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.

  1. Eye Movement Patterns for Novice Teen Drivers Does 6 Months of Driving Experience Make a Difference?

    PubMed Central

    Olsen, Erik C. B.; Lee, Suzanne E.; Simons-Morton, Bruce G.

    2009-01-01

    Attention to the road is essential to safe driving, but the development of appropriate eye glance scanning behaviors may require substantial driving experience. Novice teen drivers may focus almost exclusively on the road ahead rather than scanning the mirrors, and when performing secondary tasks, they may spend more time with eyes on the task than on the road. This paper examines the extent to which the scanning of novice teens improves with experience. For this study, 18 novice teen (younger than 17.5 years old) and 18 experienced adult drivers performed a set of in-vehicle tasks and a baseline driving segment on a test track, the teens within 4 weeks of licensure and then again 6 months later. This paper addresses the following questions: Did teen eye glance performance improve from initial assessment? Did teens and adults still differ after 6 months? Results for some tasks showed that rearview and left mirror–window (LM-W) glances improved for teens from initial testing to the 6-month follow-up and that some differences between teens and adults at initial testing were no longer significant at the 6-month follow-up, suggesting significant learning effects. The frequency of rearview and LM-W glances during secondary tasks improved among teens at the 6-month follow-up, but teens still had significantly fewer glances to mirrors than did adults when engaged in a secondary task. PMID:19763225

  2. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    PubMed

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-10-01

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may provide guidance on how to effectively reduce BDT and may be used to identifying deteriorating machine performance. © 2017 American Association of Physicists in Medicine.

  3. Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method.

    PubMed

    Chen, Sihai; Lai, Jianjun; Dai, Jun; Ma, Hong; Wang, Hongchen; Yi, Xinjian

    2009-12-21

    By magnetron controlled sputtering system, a new nanostructured metastable monoclinic phase VO2 (B) thin film has been fabricated. The testing result shows that this nanostructured VO2 (B) thin film has high temperature coefficient of resistance (TCR) of -7%/K. Scanning electron microscopy measurement shows that the average grain diameter of the VO2 (B) crystallite is between 100 and 250 nm. After post annealed, VO2 (B) crystallite is changed into monoclinic (M) phase VO2 (M) crystallite with the average grain diameter between 20 and 50 nm. A set up of testing the thin film switching time is established. The test result shows the switching time is about 50 ms. With the nanostructured VO2 (B) and VO2 (M) thin films, optical switches and high sensitivity detectors will be presented.

  4. Formation of a hydrophobic and corrosion resistant coating on magnesium alloy via a one-step hydrothermal method.

    PubMed

    Zheng, Tianxu; Hu, Yaobo; Zhang, Yuxin; Pan, Fusheng

    2017-11-01

    A hydrophobic coating was fabricated on the surface of magnesium alloy using a simple one-step hydrothermal method with the use of environmentally friendly agent. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle test were used to characterize the surfaces. Corrosion behavior in a 3.5wt.% NaCl solution was evaluated using OCP time curves test, potentiodynamic polarization test and EIS analysis. The findings show that the substrate is covered by the coating of magnesium hydroxide and magnesium stearate, reaching a contact angle of around 146°. Corrosion behavior show huge improvement, the progress with increase of treatment time could be related to the increased growth rate of coating. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Galantowicz, J. F.; Picton, J.; Root, B.

    2017-12-01

    Passive microwave remote sensing can provided a distinct perspective on flood events by virtue of wide sensor fields of view, frequent observations from multiple satellites, and sensitivity through clouds and vegetation. During Hurricanes Harvey and Irma, we used AMSR2 (Advanced Microwave Scanning Radiometer 2, JAXA) data to map flood extents starting from the first post-storm rain-free sensor passes. Our standard flood mapping algorithm (FloodScan) derives flooded fraction from 22-km microwave data (AMSR2 or NASA's GMI) in near real time and downscales it to 90-m resolution using a database built from topography, hydrology, and Global Surface Water Explorer data and normalized to microwave data footprint shapes. During Harvey and Irma we tested experimental versions of the algorithm designed to map the maximum post-storm flood extent rapidly and made a variety of map products available immediately for use in storm monitoring and response. The maps have several unique features including spanning the entire storm-affected area and providing multiple post-storm updates as flood water shifted and receded. From the daily maps we derived secondary products such as flood duration, maximum flood extent (Figure 1), and flood depth. In this presentation, we describe flood extent evolution, maximum extent, and local details as detected by the FloodScan algorithm in the wake of Harvey and Irma. We compare FloodScan results to other available flood mapping resources, note observed shortcomings, and describe improvements made in response. We also discuss how best-estimate maps could be updated in near real time by merging FloodScan products and data from other remote sensing systems and hydrological models.

  6. N-SCAN: new vibromodulation system for detection and monitoring of cracks and other contact-type defects

    NASA Astrophysics Data System (ADS)

    Donskoy, Dmitri; Ekimov, Alexander; Luzzato, Emile; Lottiaux, Jean-Louis; Stoupin, Stanislav; Zagrai, Andrei

    2003-08-01

    In recent years, innovative vibro-modulation technique has been introduced for detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies on the contact area of the interface modulating passing through ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for detection and differentiation of the contact-type defects from other structural and material inhomogeneities. Vibro-modulation technique has been implemented in N-SCAN damage detection system. The system consists of a digital synthesizer, high and low frequency amplifiers, a magnetostrictive shaker, ultrasonic transducers and a PC-based data acquisition/processing station with N-SCAN software. The ability of the system to detect contact-type defects was experimentally verified using specimens of simple and complex geometries made of steel, aluminum, composites and other structural materials. N-SCAN proved to be very effective for nondestructive testing of full-scale structures ranging from 24 foot-long gun barrels to stainless steel pipes used in nuclear power plants. Among advantages of the system are applicability for the wide range of structural materials and for structures with complex geometries, real time data processing, convenient interface for system operation, simplicity of interpretation of results, no need for sensor scanning along structure, onsite inspection of large structures at a fraction of time as compared with conventional techniques. This paper describes the basic principles of nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction and justification of signal processing algorithm. It is also presents examples of practical implementation and application of the technique.

  7. Ga-68-DOTATOC: Feasibility of high throughput screening by small animal PET using a clinical high-resolution PET/CT scanner

    NASA Astrophysics Data System (ADS)

    Hofmann, Michael; Weitzel, Thilo; Krause, Thomas

    2006-12-01

    As radio peptide tracers have been developed in recent years for the high sensitive detection of neuroendocrine tumors, still the broad application of other peptides to breast and prostate cancer is missing. A rapid screening of new peptides can, in theory, be based on in vivo screening in animals by PET/CT. To test this hypothesis and to asses the minimum screening time needed per animal, we used the application of Ga-68-DOTATOC PET/CT in rats as test system. The Ga-68-DOTATOC yields in a hot spot imaging with minimal background. To delineate liver and spleen, we performed PET/CT of 10 animals on a SIEMENS Biograph 16 LSO HIGHREZ after intravenous injection of 1.5 MBq Ga-68-DOTATOC per animal. Animals were mounted in an '18 slot' holding device and scanned for a single-bed position. The emission times for the PET scan was varied from 1 to 20 min. The images were assessed first for "PET only" and afterwards in PET/CT fusion mode. The detection of the two organs was good at emission times down to 1 min in PET/CT fusion mode. In the "PET only" scans, the liver was clearly to be identified down to 1 min emission in all animals. But the spleen could only be delineated only by 1 min of emission in the PET/CT-fusion mode. In conclusion the screening of "hot spot" enriching peptides is feasible. "PET only" is in terms of delineation of small organs by far inferior to PET/CT fusion. If animal tumors are above a diameter of 10 mm small, animal PET/CT using clinical high resolution scanners will enable rapid screening. Even the determination of bio-distributions becomes feasible by using list mode tools. The time for the whole survey of 18 animals including anesthesia, preparation and mounting was approximately 20 min. By use of several holding devices mounted simultaneously, a survey time of less than 1 h for 180 animals can be expected.

  8. Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much.

    PubMed

    He, Bryan; De Sa, Christopher; Mitliagkas, Ioannis; Ré, Christopher

    2016-01-01

    Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.

  9. Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much

    PubMed Central

    He, Bryan; De Sa, Christopher; Mitliagkas, Ioannis; Ré, Christopher

    2016-01-01

    Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance. PMID:28344429

  10. Automatic detection of axillary lymphadenopathy on CT scans of untreated chronic lymphocytic leukemia patients

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.

    2012-03-01

    Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.

  11. Novel Covariance-Based Neutrality Test of Time-Series Data Reveals Asymmetries in Ecological and Economic Systems

    PubMed Central

    Burby, Joshua W.; Lacker, Daniel

    2016-01-01

    Systems as diverse as the interacting species in a community, alleles at a genetic locus, and companies in a market are characterized by competition (over resources, space, capital, etc) and adaptation. Neutral theory, built around the hypothesis that individual performance is independent of group membership, has found utility across the disciplines of ecology, population genetics, and economics, both because of the success of the neutral hypothesis in predicting system properties and because deviations from these predictions provide information about the underlying dynamics. However, most tests of neutrality are weak, based on static system properties such as species-abundance distributions or the number of singletons in a sample. Time-series data provide a window onto a system’s dynamics, and should furnish tests of the neutral hypothesis that are more powerful to detect deviations from neutrality and more informative about to the type of competitive asymmetry that drives the deviation. Here, we present a neutrality test for time-series data. We apply this test to several microbial time-series and financial time-series and find that most of these systems are not neutral. Our test isolates the covariance structure of neutral competition, thus facilitating further exploration of the nature of asymmetry in the covariance structure of competitive systems. Much like neutrality tests from population genetics that use relative abundance distributions have enabled researchers to scan entire genomes for genes under selection, we anticipate our time-series test will be useful for quick significance tests of neutrality across a range of ecological, economic, and sociological systems for which time-series data are available. Future work can use our test to categorize and compare the dynamic fingerprints of particular competitive asymmetries (frequency dependence, volatility smiles, etc) to improve forecasting and management of complex adaptive systems. PMID:27689714

  12. Qualification of the RSRM case membrane case-to-insulation bondline inspection using the Thiokol Corporation ultrasonic RSRM bondline inspection system

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Qualification testing of Combustion Engineering's AMDATA Intraspect/98 Data Acquisition and Imaging System that applies to the redesigned solid rocket motor (RSRM) case membrane case-to-insulation bondline inspection was performed. Testing was performed at M-67, the Thiokol Corp. RSRM Assembly Facility. The purpose of the inspection was to verify the integrity of the case membrane case-to-insulation bondline. The case membrane scanner was calibrated on the redesigned solid rocket motor case segment calibration standard, which had an intentional 1.0 by 1.0 in. case-to-insulation unbond. The case membrane scanner was then used to scan a 20 by 20 in. membrane area of the case segment. Calibration of the scanner was then rechecked on the calibration standard to ensure that the calibration settings did not change during the case membrane scan. This procedure was successfully performed five times to qualify the unbond detection capability of the case membrane scanner.

  13. Applications of β-limit dextrin as a matrix forming excipient for fast disintegrating buccal dosage formats.

    PubMed

    Qi, Xin; Tester, Richard; Liu, Yu; Mullin, Margaret

    2012-01-01

    To compare the properties of buccal delivery matrices (wafers) made with dextrin, β-limit dextrin and pre-gelatinised starch. The constituent α-glucans were tested for their mucoadhesive properties in solution plus their content of crystalline material (differential scanning calorimetry, DSC). Wafers were made by lyophilisation of aqueous solutions/dispersions of the α-glucans. Physical properties of the wafers were evaluated using texture analysis, dissolution coupled to photography and scanning electron microscopy (SEM). The results highlighted how the β-limit dextrins chemical and physical properties were ideally suited for the production of buccal delivery wafers. Dissolution testing confirmed the excellent hydration profile of the β-limit dextrin (within wafers) with time. Using SEM it was evident that the homogeneous "bee-hive" like structure of the β-limit dextrin wafers, unlike the other α-glucans, provided a rapidly hydratable strong porous matrix. The β-limit dextrin α-glucan makes a superb (lyophilised) mucoadhesive delivery structure for the delivery of active agents to the buccal mucosa.

  14. A novel fibrinogen variant--Liberec: dysfibrinogenaemia associated with gamma Tyr262Cys substitution.

    PubMed

    Kotlín, Roman; Sobotková, Alzbeta; Suttnar, Jirí; Salaj, Peter; Walterová, Lenka; Riedel, Tomás; Reicheltová, Zuzana; Dyr, Jan Evangelista

    2008-08-01

    A 22-yr-old woman had abnormal preoperative coagulation test results and congenital dysfibrinogenaemia was suspected. The patient from Liberec (Czech Republic) had a low fibrinogen plasma level as determined by Clauss method, normal fibrinogen level as determined by immunoturbidimetrical method, and prolonged thrombin time. To identify the genetic mutation responsible for this dysfibrinogen, genomic DNA extracted from the blood was analysed. Fibrin polymerisation measurement, kinetics of fibrinopeptide release, fibrinogen clottability measurement and scanning electron microscopy were performed. DNA sequencing showed the heterozygous fibrinogen gamma Y262C mutation. Kinetics of fibrinopeptide release was normal, however fibrin polymerisation was impaired. Fibrinogen clottability measurement showed that only about 45% molecules of fibrinogen are involved in the clot formation. Scanning electron microscopy revealed thicker fibres, which were significantly different from the normal control. A case of dysfibrinogenaemia, found by routine coagulation testing, was genetically identified as a novel fibrinogen variant (gamma Y262C) that has been named Liberec.

  15. Fast and Robust STEM Reconstruction in Complex Environments Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N.

    2016-06-01

    Terrestrial Laser Scanning (TLS) is an effective tool in forest research and management. However, accurate estimation of tree parameters still remains challenging in complex forests. In this paper, we present a novel algorithm for stem modeling in complex environments. This method does not require accurate delineation of stem points from the original point cloud. The stem reconstruction features a self-adaptive cylinder growing scheme. This algorithm is tested for a landslide region in the federal state of Vorarlberg, Austria. The algorithm results are compared with field reference data, which show that our algorithm is able to accurately retrieve the diameter at breast height (DBH) with a root mean square error (RMSE) of ~1.9 cm. This algorithm is further facilitated by applying an advanced sampling technique. Different sampling rates are applied and tested. It is found that a sampling rate of 7.5% is already able to retain the stem fitting quality and simultaneously reduce the computation time significantly by ~88%.

  16. Preparation and in vitro/in vivo Evaluation of Lacidipine by Adsorption onto Fumed Silica Using Supercritical Carbon Dioxide.

    PubMed

    Geng, Yajie; Fu, Qiang; Guo, Bei; Li, Yun; Zhang, Xiangrong; Wang, Xianglin; Zhang, Tianhong

    2016-01-01

    The aim of this study was to design a silica-supported solid dispersion of lacidipine (LCDP) to enhance the dissolution rate and oral absorption using supercritical CO2 (scCO2) as a solvent. The formulation was characterized using differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy and fourier transformed infrared spectroscopy. In the dissolution test, LCDP-scCO2 formulation showed a significantly enhanced dissolution compared with LCDPsilica physical mixture and a faster dissolution rate than Lacipil® under different dissolution conditions. In an in vivo test, the area under concentration-time curve and Cmax of LCDP-scCO2 formulation was 9.23 and 23.78 fold greater than LCDP-silica physical mixture (1:15, w/w), respectively, whereas the corresponding values were 1.92 and 2.80 fold greater than Lacipil®, respectively. Our results showed that the solid dispersion prepared by supercritical fluids technology is a feasible method to enhance the oral bioavailability of LCDP.

  17. Computer Vision Malaria Diagnostic Systems-Progress and Prospects.

    PubMed

    Pollak, Joseph Joel; Houri-Yafin, Arnon; Salpeter, Seth J

    2017-01-01

    Accurate malaria diagnosis is critical to prevent malaria fatalities, curb overuse of antimalarial drugs, and promote appropriate management of other causes of fever. While several diagnostic tests exist, the need for a rapid and highly accurate malaria assay remains. Microscopy and rapid diagnostic tests are the main diagnostic modalities available, yet they can demonstrate poor performance and accuracy. Automated microscopy platforms have the potential to significantly improve and standardize malaria diagnosis. Based on image recognition and machine learning algorithms, these systems maintain the benefits of light microscopy and provide improvements such as quicker scanning time, greater scanning area, and increased consistency brought by automation. While these applications have been in development for over a decade, recently several commercial platforms have emerged. In this review, we discuss the most advanced computer vision malaria diagnostic technologies and investigate several of their features which are central to field use. Additionally, we discuss the technological and policy barriers to implementing these technologies in low-resource settings world-wide.

  18. Nondestructive Testing Information Analysis Center, 1982.

    DTIC Science & Technology

    1983-03-01

    RF Fields Microwaves Magnetic Flux Analysis Magnetic Particles * ULTRASONIC AND ACOUSTIC TESTING Ultrasonic Transmission and Reflectometry Ultrasonic... Reflectometry and Transmission Holography THERMAL TESTING Infrared Radiometry Thermography 3 The present organization and personnel of NTIAC are...the current core and secondary serials. As an added check on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, as well as the

  19. The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Markiewicz, Jakub Stefan

    2016-06-01

    The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.

  20. TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.M. Wight; G.A. Moore; S.C. Taylor

    2008-10-01

    This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculationsmore » for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.« less

  1. Phase-sensitive dual-inversion recovery for accelerated carotid vessel wall imaging.

    PubMed

    Bonanno, Gabriele; Brotman, David; Stuber, Matthias

    2015-03-01

    Dual-inversion recovery (DIR) is widely used for magnetic resonance vessel wall imaging. However, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. Therefore, an extension of phase-sensitive (PS) DIR is proposed for carotid vessel wall imaging. The statistical distribution of the phase signal after DIR is probed to segment carotid lumens and suppress their residual blood signal. The proposed PS-DIR technique was characterized over a broad range of inversion times. Multislice imaging was then implemented by interleaving the acquisition of 3 slices after DIR. Quantitative evaluation was then performed in healthy adult subjects and compared with conventional DIR imaging. Single-slice PS-DIR provided effective blood-signal suppression over a wide range of inversion times, enhancing wall-lumen contrast and vessel wall conspicuity for carotid arteries. Multislice PS-DIR imaging with effective blood-signal suppression is enabled. A variant of the PS-DIR method has successfully been implemented and tested for carotid vessel wall imaging. This technique removes timing constraints related to inversion recovery, enhances wall-lumen contrast, and enables a 3-fold increase in volumetric coverage at no extra cost in scanning time.

  2. 4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis.

    PubMed

    Negahdar, M J; Kadbi, Mo; Kendrick, Michael; Stoddard, Marcus F; Amini, Amir A

    2016-03-01

    The utility of four-dimensional (4D) spiral flow in imaging of stenotic flows in both phantoms and human subjects with aortic stenosis is investigated. The method performs 4D flow acquisitions through a stack of interleaved spiral k-space readouts. Relative to conventional 4D flow, which performs Cartesian readout, the method has reduced echo time. Thus, reduced flow artifacts are observed when imaging high-speed stenotic flows. Four-dimensional spiral flow also provides significant savings in scan times relative to conventional 4D flow. In vitro experiments were performed under both steady and pulsatile flows in a phantom model of severe stenosis (one inch diameter at the inlet, with 87% area reduction at the throat of the stenosis) while imaging a 6-cm axial extent of the phantom, which included the Gaussian-shaped stenotic narrowing. In all cases, gradient strength and slew rate for standard clinical acquisitions, and identical field of view and resolution were used. For low steady flow rates, quantitative and qualitative results showed a similar level of accuracy between 4D spiral flow (echo time [TE] = 2 ms, scan time = 40 s) and conventional 4D flow (TE = 3.6 ms, scan time = 1:01 min). However, in the case of high steady flow rates, 4D spiral flow (TE = 1.57 ms, scan time = 38 s) showed better visualization and accuracy as compared to conventional 4D flow (TE = 3.2 ms, scan time = 51 s). At low pulsatile flow rates, a good agreement was observed between 4D spiral flow (TE = 2 ms, scan time = 10:26 min) and conventional 4D flow (TE = 3.6 ms, scan time = 14:20 min). However, in the case of high flow-rate pulsatile flows, 4D spiral flow (TE = 1.57 ms, scan time = 10:26 min) demonstrated better visualization as compared to conventional 4D flow (TE = 3.2 ms, scan time = 14:20 min). The feasibility of 4D spiral flow was also investigated in five normal volunteers and four subjects with mild-to-moderate aortic stenosis. The approach achieved TE = 1.68 ms and scan time = 3:44 min. The conventional sequence achieved TE = 2.9 ms and scan time = 5:23 min. In subjects with aortic stenosis, we also compared both MRI methods with Doppler ultrasound (US) in the measurement of peak velocity, time to peak systolic velocity, and eject time. Bland-Altman analysis revealed that, when comparing peak velocities, the discrepancy between Doppler US and 4D spiral flow was significantly less than the discrepancy between Doppler and 4D Cartesian flow (2.75 cm/s vs. 10.25 cm/s), whereas the two MR methods were comparable (-5.75 s vs. -6 s) for time to peak. However, for the estimation of eject time, relative to Doppler US, the discrepancy for 4D conventional flow was smaller than that of 4D spiral flow (-16.25 s vs. -20 s). Relative to conventional 4D flow, 4D spiral flow achieves substantial reductions in both the TE and scan times; therefore, utility for it should be sought in a variety of in vivo and complex flow imaging applications. © 2015 Wiley Periodicals, Inc.

  3. Feasibility of 4D flow MR imaging of the brain with either Cartesian y-z radial sampling or k-t SENSE: comparison with 4D Flow MR imaging using SENSE.

    PubMed

    Sekine, Tetsuro; Amano, Yasuo; Takagi, Ryo; Matsumura, Yoshio; Murai, Yasuo; Kumita, Shinichiro

    2014-01-01

    A drawback of time-resolved 3-dimensional phase contrast magnetic resonance (4D Flow MR) imaging is its lengthy scan time for clinical application in the brain. We assessed the feasibility for flow measurement and visualization of 4D Flow MR imaging using Cartesian y-z radial sampling and that using k-t sensitivity encoding (k-t SENSE) by comparison with the standard scan using SENSE. Sixteen volunteers underwent 3 types of 4D Flow MR imaging of the brain using a 3.0-tesla scanner. As the standard scan, 4D Flow MR imaging with SENSE was performed first and then followed by 2 types of acceleration scan-with Cartesian y-z radial sampling and with k-t SENSE. We measured peak systolic velocity (PSV) and blood flow volume (BFV) in 9 arteries, and the percentage of particles arriving from the emitter plane at the target plane in 3 arteries, visually graded image quality in 9 arteries, and compared these quantitative and visual data between the standard scan and each acceleration scan. 4D Flow MR imaging examinations were completed in all but one volunteer, who did not undergo the last examination because of headache. Each acceleration scan reduced scan time by 50% compared with the standard scan. The k-t SENSE imaging underestimated PSV and BFV (P < 0.05). There were significant correlations for PSV and BFV between the standard scan and each acceleration scan (P < 0.01). The percentage of particles reaching the target plane did not differ between the standard scan and each acceleration scan. For visual assessment, y-z radial sampling deteriorated the image quality of the 3 arteries. Cartesian y-z radial sampling is feasible for measuring flow, and k-t SENSE offers sufficient flow visualization; both allow acquisition of 4D Flow MR imaging with shorter scan time.

  4. Reconstruction-of-difference (RoD) imaging for cone-beam CT neuro-angiography

    NASA Astrophysics Data System (ADS)

    Wu, P.; Stayman, J. W.; Mow, M.; Zbijewski, W.; Sisniega, A.; Aygun, N.; Stevens, R.; Foos, D.; Wang, X.; Siewerdsen, J. H.

    2018-06-01

    Timely evaluation of neurovasculature via CT angiography (CTA) is critical to the detection of pathology such as ischemic stroke. Cone-beam CTA (CBCT-A) systems provide potential advantages in the timely use at the point-of-care, although challenges of a relatively slow gantry rotation speed introduce tradeoffs among image quality, data consistency and data sparsity. This work describes and evaluates a new reconstruction-of-difference (RoD) approach that is robust to such challenges. A fast digital simulation framework was developed to test the performance of the RoD over standard reference reconstruction methods such as filtered back-projection (FBP) and penalized likelihood (PL) over a broad range of imaging conditions, grouped into three scenarios to test the trade-off between data consistency, data sparsity and peak contrast. Two experiments were also conducted using a CBCT prototype and an anthropomorphic neurovascular phantom to test the simulation findings in real data. Performance was evaluated primarily in terms of normalized root mean square error (NRMSE) in comparison to truth, with reconstruction parameters chosen to optimize performance in each case to ensure fair comparison. The RoD approach reduced NRMSE in reconstructed images by up to 50%–53% compared to FBP and up to 29%–31% compared to PL for each scenario. Scan protocols well suited to the RoD approach were identified that balance tradeoffs among data consistency, sparsity and peak contrast—for example, a CBCT-A scan with 128 projections acquired in 8.5 s over a 180°  +  fan angle half-scan for a time attenuation curve with ~8.5 s time-to-peak and 600 HU peak contrast. With imaging conditions such as the simulation scenarios of fixed data sparsity (i.e. varying levels of data consistency and peak contrast), the experiments confirmed the reduction of NRMSE by 34% and 17% compared to FBP and PL, respectively. The RoD approach demonstrated superior performance in 3D angiography compared to FBP and PL in all simulation and physical experiments, suggesting the possibility of CBCT-A on low-cost, mobile imaging platforms suitable to the point-of-care. The algorithm demonstrated accurate reconstruction with a high degree of robustness against data sparsity and inconsistency.

  5. Large photocathode 20-inch PMT testing methods for the JUNO experiment

    NASA Astrophysics Data System (ADS)

    Anfimov, N.

    2017-06-01

    The 20 kt Liquid Scintillator (LS) JUNO detector is being constructed by the International Collaboration in China, with the primary goal of addressing the question of neutrino mass ordering (hierarchy). The main challenge for JUNO is to achieve a record energy resolution, ~ 3% at 1 MeV of energy released in the LS, which is required to perform the neutrino mass hierarchy determination. About 20 000 large 20'' PMTs with high Photon Detection Efficiency (PDE) and good photocathode uniformity will ensure an approximately 80% surface coverage of the JUNO detector. The JUNO collaboration is preparing equipment for the mass tests of all PMTs using 4 dedicated containers. Each container consists of 36 drawers. Each drawer will test a single PMT. This approach allows us to test 144 PMTs in parallel. The primary measurement in the container will be the PMT response to illumination of its photocathode by a low-intensity uniform light. Each of the 20000 PMTs will undergo the container test. Additionally, a dedicated scanning system was constructed for sampled tests of PMTs that allows us to study the variation of the PDE over the entire PMT photocathode surface. A sophisticated laboratory for PMT testing was recently built. It includes a dark room where the scanning station is housed. The core of the scanning station is a rotating frame with 7 LED sources of calibrated short light flashes that are placed along the photocathode surface covering zenith angles from the top of a PMT to its equator. It allows for the testing of individual PMTs in all relevant aspects by scanning the photocathode and identifying any potential problems. The collection efficiency of a large PMT is known to be very sensitive to the Earth Magnetic Field (EMF), therefore, understanding the necessary level of EMF suppression is crucial for the JUNO Experiment. A dark room with Helmholtz coils compensating the EMF components is available for these tests at a JUNO facility. The Hamamatsu R12860 20'' PMT is a candidate for the JUNO experiment. In this article the container design and mass-testing method, the scanning setup and scanning method are briefly described and preliminary results for performance test of this PMT are reported.

  6. Vertical electrical impedance evaluation of asphalt overlays on concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Baxter, Jared S.; Guthrie, W. Spencer; Waters, Tenli; Barton, Jeffrey D.; Mazzeo, Brian A.

    2018-04-01

    Vertical electrical impedance scanning of concrete bridge decks is a non-destructive method for quantifying the degree of protection provided to steel reinforcement against the ingress of corrosive agents. Four concrete bridge decks with asphalt overlays in northern Utah were evaluated using scanning vertical electrical impedance measurements in this study. At the time of testing, the bridges ranged in age from 21 to 34 years, and asphalt overlays had been in place for 7 to 22 years, depending on the bridge. Electrical impedance measurements were collected using a previously constructed apparatus that consisted of six probes spanning a transverse distance of 12 ft. The impedance measurements were compared to surface cracking observations and cores obtained from the same four bridge decks. The results presented in this paper demonstrate the utility of scanning vertical electrical impedance measurements for detecting cracks in asphalt overlays and quantifying their severity. In addition, the results demonstrate the sensitivity of impedance measurements to the presence of an intact membrane beneath the asphalt overlay.

  7. Entropy, instrument scan and pilot workload

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Stephens, A. T.; Vivaudou, M.; Harris, R. L., Jr.; Ephrath, A. R.

    1982-01-01

    Correlation and information theory which analyze the relationships between mental loading and visual scanpath of aircraft pilots are described. The relationship between skill, performance, mental workload, and visual scanning behavior are investigated. The experimental method required pilots to maintain a general aviation flight simulator on a straight and level, constant sensitivity, Instrument Landing System (ILS) course with a low level of turbulence. An additional periodic verbal task whose difficulty increased with frequency was used to increment the subject's mental workload. The subject's looppoint on the instrument panel during each ten minute run was computed via a TV oculometer and stored. Several pilots ranging in skill from novices to test pilots took part in the experiment. Analysis of the periodicity of the subject's instrument scan was accomplished by means of correlation techniques. For skilled pilots, the autocorrelation of instrument/dwell times sequences showed the same periodicity as the verbal task. The ability to multiplex simultaneous tasks increases with skill. Thus autocorrelation provides a way of evaluating the operator's skill level.

  8. Stress reactions involving the pars interarticularis in young athletes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, D.W.; Wiltse, L.L.; Dingeman, R.D.

    A stress reaction involving the pars interarticularis of the lumbar spine was confirmed in seven young athletes with a positive technetium pyrophosphate bone scan. No pars defects were detectable on their lumbosacral roentgenograms, which included oblique views. The return to normal levels of radioactive uptake on repeat bone scans correlated closely with their clinical course. If the bony reaction is recognized early, it may heal at a subroentgenographic level and prevent the development of lumbar spondylolysis. These early lesions usually show unilateral increased uptake at one lumbar level on the bone scan and, initially, the athlete localizes the pain tomore » the corresponding unilateral lumbar paraspinous area. The ''one-legged hyperextension test'' is positive on the ipsilateral side and aggravates the pain. Treatment consists of avoiding the aggravating activities and resting. The average time for return to pain-free competition was 7.3 months. These developing defects may be the source of considerable prolonged disability in the young athlete, particularly if undiagnosed and untreated.« less

  9. Validating New Software for Semiautomated Liver Volumetry--Better than Manual Measurement?

    PubMed

    Noschinski, L E; Maiwald, B; Voigt, P; Wiltberger, G; Kahn, T; Stumpp, P

    2015-09-01

    This prospective study compared a manual program for liver volumetry with semiautomated software. The hypothesis was that the semiautomated software would be faster, more accurate and less dependent on the evaluator's experience. Ten patients undergoing hemihepatectomy were included in this IRB approved study after written informed consent. All patients underwent a preoperative abdominal 3-phase CT scan, which was used for whole liver volumetry and volume prediction for the liver part to be resected. Two different types of software were used: 1) manual method: borders of the liver had to be defined per slice by the user; 2) semiautomated software: automatic identification of liver volume with manual assistance for definition of Couinaud segments. Measurements were done by six observers with different experience levels. Water displacement volumetry immediately after partial liver resection served as the gold standard. The resected part was examined with a CT scan after displacement volumetry. Volumetry of the resected liver scan showed excellent correlation to water displacement volumetry (manual: ρ = 0.997; semiautomated software: ρ = 0.995). The difference between the predicted volume and the real volume was significantly smaller with the semiautomated software than with the manual method (33% vs. 57%, p = 0.002). The semiautomated software was almost four times faster for volumetry of the whole liver (manual: 6:59 ± 3:04 min; semiautomated: 1:47 ± 1:11 min). Both methods for liver volumetry give an estimated liver volume close to the real one. The tested semiautomated software is faster, more accurate in predicting the volume of the resected liver part, gives more reproducible results and is less dependent on the user's experience. Both tested types of software allow exact volumetry of resected liver parts. Preoperative prediction can be performed more accurately with the semiautomated software. The semiautomated software is nearly four times faster than the tested manual program and less dependent on the user's experience. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Development of Phased-Array Ultrasonic Testing Acceptability Criteria : (Phase II)

    DOT National Transportation Integrated Search

    2014-10-01

    The preliminary technical approach and scan plans developed during phase I of this research was implemented on testing four butt-weld specimens. The ray path analysis carried out to develop the scan plans and the preliminary data analysis indicated t...

  11. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    PubMed

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. TH-CD-209-10: Scanning Proton Arc Therapy (SPArc) - The First Robust and Delivery-Efficient Spot Scanning Proton Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X; Li, X; Zhang, J

    Purpose: To develop a delivery-efficient proton spot-scanning arc therapy technique with robust plan quality. Methods: We developed a Scanning Proton Arc(SPArc) optimization algorithm integrated with (1)Control point re-sampling by splitting control point into adjacent sub-control points; (2)Energy layer re-distribution by assigning the original energy layers to the new sub-control points; (3)Energy layer filtration by deleting low MU weighting energy layers; (4)Energy layer re-sampling by sampling additional layers to ensure the optimal solution. A bilateral head and neck oropharynx case and a non-mobile lung target case were tested. Plan quality and total estimated delivery time were compared to original robust optimizedmore » multi-field step-and-shoot arc plan without SPArc optimization (Arcmulti-field) and standard robust optimized Intensity Modulated Proton Therapy(IMPT) plans. Dose-Volume-Histograms (DVH) of target and Organ-at-Risks (OARs) were analyzed along with all worst case scenarios. Total delivery time was calculated based on the assumption of a 360 degree gantry room with 1 RPM rotation speed, 2ms spot switching time, beam current 1nA, minimum spot weighting 0.01 MU, energy-layer-switching-time (ELST) from 0.5 to 4s. Results: Compared to IMPT, SPArc delivered less integral dose(−14% lung and −8% oropharynx). For lung case, SPArc reduced 60% of skin max dose, 35% of rib max dose and 15% of lung mean dose. Conformity Index is improved from 7.6(IMPT) to 4.0(SPArc). Compared to Arcmulti-field, SPArc reduced number of energy layers by 61%(276 layers in lung) and 80%(1008 layers in oropharynx) while kept the same robust plan quality. With ELST from 0.5s to 4s, it reduced 55%–60% of Arcmulti-field delivery time for the lung case and 56%–67% for the oropharynx case. Conclusion: SPArc is the first robust and delivery-efficient proton spot-scanning arc therapy technique which could be implemented in routine clinic. For modern proton machine with ELST close to 0.5s, SPArc would be a popular treatment option for both single and multi-room center.« less

  13. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  14. Soft tissue-preserving computer-aided impression: a novel concept using ultrasonic 3D-scanning.

    PubMed

    Vollborn, Thorsten; Habor, Daniel; Pekam, Fabrice Chuembou; Heger, Stefan; Marotti, Juliana; Reich, Sven; Wolfart, Stefan; Tinschert, Joachim; Radermacher, Klaus

    2014-01-01

    Subgingival preparations are often affected by blood and saliva during impression taking, regardless of whether one is using compound impression techniques or intraoral digital scanning methods. The latter are currently based on optical principles and therefore also need clean and dry surfaces. In contrast, ultrasonic waves are able to non-invasively penetrate gingiva, saliva, and blood, leading to decisive advantages, as cleaning and drying of the oral cavity becomes unnecessary. In addition, the application of ultrasound may facilitate the detection of subgingival structures without invasive manipulation, thereby reducing the risk of secondary infection and treatment time, and increasing patient comfort. Ultrasound devices commonly available for medical application and for the testing of materials are only suitable to a limited extent, as their resolution, precision, and design do not fulfill the requirements for intraoral scanning. The aim of this article is to describe the development of a novel ultrasound technology that enables soft tissue-preserving digital impressions of preparations for the CAD/CAM-based production of dental prostheses. The concept and development of the high-resolution ultrasound technique and the corresponding intraoral scanning system, as well as the integration into the CAD/CAM process chain, is presented.

  15. Bone scan as a screening test for missed fractures in severely injured patients.

    PubMed

    Lee, K-J; Jung, K; Kim, J; Kwon, J

    2014-12-01

    In many cases, patients with severe blunt trauma have multiple fractures throughout the body. These fractures are not often detectable by history or physical examination, and their diagnosis can be delayed or even missed. Thus, screening test fractures of the whole body is required after initial management. We performed this study to evaluate the reliability of bone scans for detecting missed fractures in patients with multiple severe traumas and we analyzed the causes of missed fractures by using bone scan. A bone scan is useful as a screening test for fractures of the entire body of severe trauma patients who are passed the acute phase. We reviewed the electronic medical records of severe trauma patients who underwent a bone scan from September 2009 to December 2010. Demographic and medical data were compared and statistically analyzed to determine whether missed fractures were detected after bone scan in the two groups. A total of 382 patients who had an injury severity score [ISS] greater than 16 points with multiple traumas visited the emergency room. One hundred and thirty-one patients underwent bone scan and 81 patients were identified with missed fractures by bone scan. The most frequent location for missed fractures was the rib area (55 cases, 41.98%), followed by the extremities (42 cases, 32.06%). The missed fractures that required surgery or splint were most common in extremities (11 cases). In univariate analysis, higher ISS scores and mechanism of injury were related with the probability that missed fractures would be found with a bone scan. The ISS score was statistically significant in multivariate analysis. Bone scan is an effective method of detecting missed fractures among patients with multiple severe traumas. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Multi-level scanning method for defect inspection

    DOEpatents

    Bokor, Jeffrey; Jeong, Seongtae

    2002-01-01

    A method for performing scanned defect inspection of a collection of contiguous areas using a specified false-alarm-rate and capture-rate within an inspection system that has characteristic seek times between inspection locations. The multi-stage method involves setting an increased false-alarm-rate for a first stage of scanning, wherein subsequent stages of scanning inspect only the detected areas of probable defects at lowered values for the false-alarm-rate. For scanning inspection operations wherein the seek time and area uncertainty is favorable, the method can substantially increase inspection throughput.

  17. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2003-01-01

    We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.

  18. Planck 2013 results. VII. HFI time response and beams

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper characterizes the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency Instrument (HFI) detectors. The effective beam is theangular response including the effect of the optics, detectors, data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the cosmic microwave background angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: a) the optical response of the telescope and feeds; b) the processing of the time-ordered data and deconvolution of the bolometric and electronic transfer function; and c) the merging of several surveys to produce maps. The time response transfer functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5°) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total solid angle. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects. The correlation structure of these ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100 GHz up to multipole ℓ ~ 1500, and below 0.5% at 143 and 217 GHz up to ℓ ~ 2000.

  19. Barium Sulfate

    MedlinePlus

    ... and intestine using x-rays or computed tomography (CAT scan, CT scan; a type of body scan that uses a ... be clearly seen by x-ray examination or CT scan. ... more times before an x-ray examination or CT scan.If you are using a barium sulfate enema, ...

  20. A fast and reliable method for daily quality assurance in spot scanning proton therapy with a compact and inexpensive phantom.

    PubMed

    Bizzocchi, Nicola; Fracchiolla, Francesco; Schwarz, Marco; Algranati, Carlo

    2017-01-01

    In a radiotherapy center, daily quality assurance (QA) measurements are performed to ensure that the equipment can be safely used for patient treatment on that day. In a pencil beam scanning (PBS) proton therapy center, spot positioning, spot size, range, and dose output are usually verified every day before treatments. We designed, built, and tested a new, reliable, sensitive, and inexpensive phantom, coupled with an array of ionization chambers, for daily QA that reduces the execution times while preserving the reliability of the test. The phantom is provided with 2 pairs of wedges to sample the Bragg peak at different depths to have a transposition on the transverse plane of the depth dose. Three "boxes" are used to check spot positioning and delivered dose. The box thickness helps spread the single spot and to fit a Gaussian profile on a low resolution detector. We tested whether our new QA solution could detect errors larger than our action levels: 1 mm in spot positioning, 2 mm in range, and 10% in spot size. Execution time was also investigated. Our method is able to correctly detect 98% of spots that are actually in tolerance for spot positioning and 99% of spots out of 1 mm tolerance. All range variations greater than the threshold (2 mm) were correctly detected. The analysis performed over 1 month showed a very good repeatability of spot characteristics. The time taken to perform the daily quality assurance is 20 minutes, a half of the execution time of the former multidevice procedure. This "in-house build" phantom substitutes 2 very expensive detectors (a multilayer ionization chamber [MLIC] and a strip chamber, reducing by 5 times the cost of the equipment. We designed, built, and validated a phantom that allows for accurate, sensitive, fast, and inexpensive daily QA procedures in proton therapy with PBS. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  1. Micropillar Compression Technique Applied to Micron-Scale Mudstone Elasto-Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Boyce, B.; Buchheit, T.; Heath, J. E.; Chidsey, T.; Michael, J.

    2010-12-01

    Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems.

    PubMed

    Farr, J B; Dessy, F; De Wilde, O; Bietzer, O; Schönenberg, D

    2013-07-01

    The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so. The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool. The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not. The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton spot size and associated resolution, factors of magnetic optics, and vacuum length. The need and benefit of mutielement detectors and high-resolution sensors was also shown. The use of a fluence map analytical software tool was particularly effective in characterizing the dynamic proton energy-layer scanning.

  3. Comparison of prone versus supine 18F-FDG-PET of locally advanced breast cancer: Phantom and preliminary clinical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Jason M.; Rani, Sudheer D.; Li, Xia

    2015-07-15

    Purpose: Previous studies have demonstrated how imaging of the breast with patients lying prone using a supportive positioning device markedly facilitates longitudinal and/or multimodal image registration. In this contribution, the authors’ primary objective was to determine if there are differences in the standardized uptake value (SUV) derived from [{sup 18}F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in breast tumors imaged in the standard supine position and in the prone position using a specialized positioning device. Methods: A custom positioning device was constructed to allow for breast scanning in the prone position. Rigid and nonrigid phantom studies evaluated differences in prone andmore » supine PET. Clinical studies comprised 18F-FDG-PET of 34 patients with locally advanced breast cancer imaged in the prone position (with the custom support) followed by imaging in the supine position (without the support). Mean and maximum values (SUV{sub peak} and SUV{sub max}, respectively) were obtained from tumor regions-of-interest for both positions. Prone and supine SUV were linearly corrected to account for the differences in 18F-FDG uptake time. Correlation, Bland–Altman, and nonparametric analyses were performed on uptake time-corrected and uncorrected data. Results: SUV from the rigid PET breast phantom imaged in the prone position with the support device was 1.9% lower than without the support device. In the nonrigid PET breast phantom, prone SUV with the support device was 5.0% lower than supine SUV without the support device. In patients, the median (range) difference in uptake time between prone and supine scans was 16.4 min (13.4–30.9 min), which was significantly—but not completely—reduced by the linear correction method. SUV{sub peak} and SUV{sub max} from prone versus supine scans were highly correlated, with concordance correlation coefficients of 0.91 and 0.90, respectively. Prone SUV{sub peak} and SUV{sub max} were significantly lower than supine in both original and uptake time-adjusted data across a range of index times (P < < 0.0001, Wilcoxon signed rank test). Before correcting for uptake time differences, Bland–Altman analyses revealed proportional bias between prone and supine measurements (SUV{sub peak} and SUV{sub max}) that increased with higher levels of FDG uptake. After uptake time correction, this bias was significantly reduced (P < 0.01). Significant prone-supine differences, with regard to the spatial distribution of lesions relative to isocenter, were observed between the two scan positions, but this was poorly correlated with the residual (uptake time-corrected) prone-supine SUV{sub peak} difference (P = 0.78). Conclusions: Quantitative 18F-FDG-PET/CT of the breast in the prone position is not deleteriously affected by the support device but yields SUV that is consistently lower than those obtained in the standard supine position. SUV differences between scans arising from FDG uptake time differences can be substantially reduced, but not removed entirely, with the current correction method. SUV from the two scan orientations is quantitatively different and should not be assumed equivalent or interchangeable within the same subject. These findings have clinical relevance in that they underscore the importance of patient positioning while scanning as a clinical variable that must be accounted for with longitudinal PET measurement, for example, in the assessment of treatment response.« less

  4. Image Quality Analysis and Optical Performance Requirement for Micromirror-Based Lissajous Scanning Displays

    PubMed Central

    Du, Weiqi; Zhang, Gaofei; Ye, Liangchen

    2016-01-01

    Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions. PMID:27187390

  5. Image Quality Analysis and Optical Performance Requirement for Micromirror-Based Lissajous Scanning Displays.

    PubMed

    Du, Weiqi; Zhang, Gaofei; Ye, Liangchen

    2016-05-11

    Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions.

  6. Microstructure characterization in domestically-made TP310HNbN austenitic stainless steel after creep test

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Lin, Lin; Hou, Shufang; Wang, Bohan

    Microstructure characterization of domestically-made TP310HNbN austenitic stainless steel after creep test was investigated by means of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results revealed that M23C6 carbides precipitated both inside grains and at the grain boundaries and NbCrN particles were located inside grains for creep-rupture samples. It was clear that sigma phase and NbC particles precipitated inside grains for the creep-rupture sample at 670 C. M23C6 carbides with lattice parameter of three times of the austenite matrix grow in a cube to cube orientation relationship with the matrix. The amount of M23C6 carbide particles obviously increased with the testing time prolonged. Deformation hardening induced an enhanced hardness nearby rupture surface for the creep-rupture samples with a short testing time. For the domestically-made TP310HNbN steel, great attention should be paid to the distribution, size and amount of sigma phase and M23C6 during service.

  7. Confocal fluorometer for diffusion tracking in 3D engineered tissue constructs

    NASA Astrophysics Data System (ADS)

    Daly, D.; Zilioli, A.; Tan, N.; Buttenschoen, K.; Chikkanna, B.; Reynolds, J.; Marsden, B.; Hughes, C.

    2016-03-01

    We present results of the development of a non-contacting instrument, called fScan, based on scanning confocal fluorometry for assessing the diffusion of materials through a tissue matrix. There are many areas in healthcare diagnostics and screening where it is now widely accepted that the need for new quantitative monitoring technologies is a major pinch point in patient diagnostics and in vitro testing. With the increasing need to interpret 3D responses this commonly involves the need to track the diffusion of compounds, pharma-active species and cells through a 3D matrix of tissue. Methods are available but to support the advances that are currently only promised, this monitoring needs to be real-time, non-invasive, and economical. At the moment commercial meters tend to be invasive and usually require a sample of the medium to be removed and processed prior to testing. This methodology clearly has a number of significant disadvantages. fScan combines a fiber based optical arrangement with a compact, free space optical front end that has been integrated so that the sample's diffusion can be measured without interference. This architecture is particularly important due to the "wet" nature of the samples. fScan is designed to measure constructs located within standard well plates and a 2-D motion stage locates the required sample with respect to the measurement system. Results are presented that show how the meter has been used to evaluate movements of samples through collagen constructs in situ without disturbing their kinetic characteristics. These kinetics were little understood prior to these measurements.

  8. WE-G-18A-02: Calibration-Free Combined KV/MV Short Scan CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M; Loo, B; Bazalova, M

    Purpose: To combine orthogonal kilo-voltage (kV) and Mega-voltage (MV) projection data for short scan cone-beam CT to reduce imaging time on current radiation treatment systems, using a calibration-free gain correction method. Methods: Combining two orthogonal projection data sets for kV and MV imaging hardware can reduce the scan angle to as small as 110° (90°+fan) such that the total scan time is ∼18 seconds, or within a breath hold. To obtain an accurate reconstruction, the MV projection data is first linearly corrected using linear regression using the redundant data from the start and end of the sinogram, and then themore » combined data is reconstructed using the FDK method. To correct for the different changes of attenuation coefficients in kV/MV between soft tissue and bone, the forward projection of the segmented bone and soft tissue from the first reconstruction in the redundant region are added to the linear regression model. The MV data is corrected again using the additional information from the segmented image, and combined with kV for a second FDK reconstruction. We simulated polychromatic 120 kVp (conventional a-Si EPID with CsI) and 2.5 MVp (prototype high-DQE MV detector) projection data with Poisson noise using the XCAT phantom. The gain correction and combined kV/MV short scan reconstructions were tested with head and thorax cases, and simple contrast-to-noise ratio measurements were made in a low-contrast pattern in the head. Results: The FDK reconstruction using the proposed gain correction method can effectively reduce artifacts caused by the differences of attenuation coefficients in the kV/MV data. The CNRs of the short scans for kV, MV, and kV/MV are 5.0, 2.6 and 3.4 respectively. The proposed gain correction method also works with truncated projections. Conclusion: A novel gain correction and reconstruction method was developed to generate short scan CBCT from orthogonal kV/MV projections. This work is supported by NIH Grant 5R01CA138426-05.« less

  9. Evaluation of scanning earth sensor mechanism on engineering test satellite 4

    NASA Technical Reports Server (NTRS)

    Ikeuchi, M.; Wakabayashi, Y.; Ohkami, Y.; Kida, T.; Ishigaki, T.; Matsumoto, M.

    1983-01-01

    The results of the analysis and the evaluation of flight data obtained from the horizon sensor test project are described. The rotary mechanism of the scanning earth sensor composed of direct drive motor and bearings using solid lubricant is operated satisfactorily. The transmitted flight data from Engineering Test Satellite IV was evaluated in comparison with the design value.

  10. Development and experimental testing of an optical micro-spectroscopic technique incorporating true line-scan excitation.

    PubMed

    Biener, Gabriel; Stoneman, Michael R; Acbas, Gheorghe; Holz, Jessica D; Orlova, Marianna; Komarova, Liudmila; Kuchin, Sergei; Raicu, Valerică

    2013-12-27

    Multiphoton micro-spectroscopy, employing diffraction optics and electron-multiplying CCD (EMCCD) cameras, is a suitable method for determining protein complex stoichiometry, quaternary structure, and spatial distribution in living cells using Förster resonance energy transfer (FRET) imaging. The method provides highly resolved spectra of molecules or molecular complexes at each image pixel, and it does so on a timescale shorter than that of molecular diffusion, which scrambles the spectral information. Acquisition of an entire spectrally resolved image, however, is slower than that of broad-bandwidth microscopes because it takes longer times to collect the same number of photons at each emission wavelength as in a broad bandwidth. Here, we demonstrate an optical micro-spectroscopic scheme that employs a laser beam shaped into a line to excite in parallel multiple sample voxels. The method presents dramatically increased sensitivity and/or acquisition speed and, at the same time, has excellent spatial and spectral resolution, similar to point-scan configurations. When applied to FRET imaging using an oligomeric FRET construct expressed in living cells and consisting of a FRET acceptor linked to three donors, the technique based on line-shaped excitation provides higher accuracy compared to the point-scan approach, and it reduces artifacts caused by photobleaching and other undesired photophysical effects.

  11. Time-frequency dynamics of resting-state brain connectivity measured with fMRI.

    PubMed

    Chang, Catie; Glover, Gary H

    2010-03-01

    Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-driven decompositions computed across the duration of the scan. However, evidence from both task-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit dynamic changes within time scales of seconds to minutes. In the present study, we investigated the dynamic behavior of resting-state connectivity across the course of a single scan, performing a time-frequency coherence analysis based on the wavelet transform. We focused on the connectivity of the posterior cingulate cortex (PCC), a primary node of the default-mode network, examining its relationship with both the "anticorrelated" ("task-positive") network as well as other nodes of the default-mode network. It was observed that coherence and phase between the PCC and the anticorrelated network was variable in time and frequency, and statistical testing based on Monte Carlo simulations revealed the presence of significant scale-dependent temporal variability. In addition, a sliding-window correlation procedure identified other regions across the brain that exhibited variable connectivity with the PCC across the scan, which included areas previously implicated in attention and salience processing. Although it is unclear whether the observed coherence and phase variability can be attributed to residual noise or modulation of cognitive state, the present results illustrate that resting-state functional connectivity is not static, and it may therefore prove valuable to consider measures of variability, in addition to average quantities, when characterizing resting-state networks. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  12. Comparison Between Laser Scanning and Automated 3d Modelling Techniques to Reconstruct Complex and Extensive Cultural Heritage Areas

    NASA Astrophysics Data System (ADS)

    Fassi, F.; Fregonese, L.; Ackermann, S.; De Troia, V.

    2013-02-01

    In Cultural Heritage field, the necessity to survey objects in a fast manner, with the ability to repeat the measurements several times for deformation or degradation monitoring purposes, is increasing. In this paper, two significant cases, an architectonical one and an archaeological one, are presented. Due to different reasons and emergency situations, the finding of the optimal solution to enable quick and well-timed survey for a complete digital reconstruction of the object is required. In both cases, two survey methods have been tested and used: a laser scanning approach that allows to obtain high-resolution and complete scans within a short time and a photogrammetric one that allows the three-dimensional reconstruction of the object from images. In the last months, several methodologies, including free or low cost techniques, have arisen. These kinds of software allow the fully automatically three-dimensional reconstruction of objects from images, giving back a dense point cloud and, in some case, a surfaced mesh model. In this paper some comparisons between the two methodologies above mentioned are presented, using the example of some real cases of study. The surveys have been performed by employing both photogrammetry and laser scanner techniques. The methodological operational choices, depending on the required goal, the difficulties encountered during the survey with these methods, the execution time (that is the key parameter), and finally the obtained results, are fully described and examinated. On the final 3D model, an analytical comparison has been made, to analyse the differences, the tolerances, the possibility of accuracy improvement and the future developments.

  13. A space-time scan statistic for detecting emerging outbreaks.

    PubMed

    Tango, Toshiro; Takahashi, Kunihiko; Kohriyama, Kazuaki

    2011-03-01

    As a major analytical method for outbreak detection, Kulldorff's space-time scan statistic (2001, Journal of the Royal Statistical Society, Series A 164, 61-72) has been implemented in many syndromic surveillance systems. Since, however, it is based on circular windows in space, it has difficulty correctly detecting actual noncircular clusters. Takahashi et al. (2008, International Journal of Health Geographics 7, 14) proposed a flexible space-time scan statistic with the capability of detecting noncircular areas. It seems to us, however, that the detection of the most likely cluster defined in these space-time scan statistics is not the same as the detection of localized emerging disease outbreaks because the former compares the observed number of cases with the conditional expected number of cases. In this article, we propose a new space-time scan statistic which compares the observed number of cases with the unconditional expected number of cases, takes a time-to-time variation of Poisson mean into account, and implements an outbreak model to capture localized emerging disease outbreaks more timely and correctly. The proposed models are illustrated with data from weekly surveillance of the number of absentees in primary schools in Kitakyushu-shi, Japan, 2006. © 2010, The International Biometric Society.

  14. Scanning Optical Head with Nontilted Reference Beam: Assuring Nanoradian Accuracy for a New Generation Surface Profiler in the Large-Slope Testing Range

    DOE PAGES

    Qian, Shinan

    2011-01-01

    Nmore » anoradian Surface Profilers (SPs) are required for state-of-the-art synchrotron radiation optics and high-precision optical measurements. ano-radian accuracy must be maintained in the large-angle test range. However, the beams' notable lateral motions during tests of most operating profilers, combined with the insufficiencies of their optical components, generate significant errors of ∼ 1  μ rad rms in the measurements. The solution to nano-radian accuracy for the new generation of surface profilers in this range is to apply a scanning optical head, combined with nontilted reference beam. I describe here my comparison of different scan modes and discuss some test results.« less

  15. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    NASA Astrophysics Data System (ADS)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  16. A Miniature Forward-imaging B-scan Optical Coherence Tomography Probe to Guide Real-time Laser Ablation

    PubMed Central

    Li, Zhuoyan; Shen, Jin H.; Kozub, John A.; Prasad, Ratna; Lu, Pengcheng; Joos, Karen M.

    2014-01-01

    Background and Objective Investigations have shown that pulsed lasers tuned to 6.1 μm in wavelength are capable of ablating ocular and neural tissue with minimal collateral damage. This study investigated whether a miniature B-scan forward-imaging optical coherence tomography (OCT) probe can be combined with the laser to provide real-time visual feedback during laser incisions. Study Design/Methods and Materials A miniature 25-gauge B-scan forward-imaging OCT probe was developed and combined with a 250 μm hollow-glass waveguide to permit delivery of 6.1 μm laser energy. A gelatin mixture and both porcine corneal and retinal tissues were simultaneously imaged and lased (6.1 μm, 10 Hz, 0.4-0.7 mJ) through air. The ablation studies were observed and recorded in real time. The crater dimensions were measured using OCT imaging software (Bioptigen, Durham, NC). Histological analysis was performed on the ocular tissues. Results The combined miniature forward-imaging OCT and mid-infrared laser-delivery probe successfully imaged real-time tissue ablation in gelatin, corneal tissue, and retinal tissue. Application of a constant number of 60 pulses at 0.5 mJ/pulse to the gelatin resulted in a mean crater depth of 123 ± 15 μm. For the corneal tissue, there was a significant correlation between the number of pulses used and depth of the lased hole (Pearson correlation coefficient = 0.82; P = 0.0002). Histological analysis of the cornea and retina tissues showed discrete holes with minimal thermal damage. Conclusions A combined miniature OCT and laser -delivery probe can monitor real-time tissue laser ablation. With additional testing and improvements, this novel instrument has the future possibility of effectively guiding surgeries by simultaneously imaging and ablating tissue. PMID:24648326

  17. Time–temperature superposition principle applied to a kenaf-fiber/high-density polyethylene composite

    Treesearch

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson

    2005-01-01

    The time–temperature superposition principle was applied to the viscoelastic properties of a kenaf- fiber/high-density polyethylene (HDPE) composite, and its validity was tested. With a composite of 50% kenaf fibers, 48% HDPE, and 2% compatibilizer, frequency scans from a dynamic mechanical analyzer were performed in the range of 0.1–10 Hz at five different...

  18. Direct Test for Neuroinflammation with [11C]DAP-713-PET Scanning

    DTIC Science & Technology

    2015-10-01

    individuals suffering from the Gulf War Illness (GWI). We are using quantitative positron emission tomography (PET) using [11C]DPA-713 (DPA). DPA...suffering from the Gulf War Illness (GWI). We are using quantitative positron emission tomography (PET) using [11C]DPA-713 (DPA). DPA binds to the... Resistant Prostate Cancer Time commitments: 0.12 calendar months Supporting Agency: CDMRP Grants Contact: TBD PI: Denmeade Co-Investigator

  19. Subjective vs. Documented Reality: A Case Study of Long-Term Real-Life Autobiographical Memory

    ERIC Educational Resources Information Center

    Mendelsohn, Avi; Furman, Orit; Navon, Inbal; Dudai, Yadin

    2009-01-01

    A young woman was filmed during 2 d of her ordinary life. A few months and then again a few years later she was tested for the memory of her experiences in those days while undergoing fMRI scanning. As time passed, she came to accept more false details as true. After months, activity of a network considered to subserve autobiographical memory was…

  20. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences.

    PubMed

    Taron, Jana; Martirosian, Petros; Erb, Michael; Kuestner, Thomas; Schwenzer, Nina F; Schmidt, Holger; Honndorf, Valerie S; Weiβ, Jakob; Notohamiprodjo, Mike; Nikolaou, Konstantin; Schraml, Christina

    2016-10-01

    To systematically evaluate image characteristics of simultaneous-multislice (SMS)-accelerated diffusion-weighted imaging (DWI) of the liver using different breathing schemes in comparison to standard sequences. DWI of the liver was performed in 10 healthy volunteers and 12 patients at 1.5T using an SMS-accelerated echo planar imaging sequence performed with respiratory-triggering and free breathing (SMS-RT, SMS-FB). Standard DWI sequences served as reference (STD-RT, STD-FB). Reduction of scan time by SMS-acceleration was measured. Image characteristics of SMS-DWI and STD-DWI with both breathing schemes were analyzed quantitatively (apparent diffusion coefficient [ADC], signal-to-noise ratio [SNR]) and qualitatively (5-point Likert scale, 5 = excellent). Qualitative and quantitative parameters were compared using Friedman test and Dunn-Bonferroni post-hoc method with P-values < 0.05 considered statistically significant. SMS-DWI provided diagnostic image quality in volunteers and patients both with RT and FB with a reduction of scan time of 70% (0:56 vs. 3:20 min in FB). Overall image quality did not significantly differ between FB and RT acquisition in both STD and SMS sequences (median STD-RT 5.0, STD-FB 4.5, SMS-RT: 4.75; SMS-FB: 4.5; P = 0.294). SNR in the right hepatic lobe was comparable between the four tested sequences. ADC values were significantly lower in SMS-DWI compared to STD-DWI irrespective of the breathing scheme (1.2 ± 0.2 × 10(-3) mm(2) /s vs. 1.0 ± 0.2 × 10(-3) mm(2) /s; P < 0.001). SMS-acceleration provides considerable scan time reduction for hepatic DWI with equivalent image quality compared to the STD technique both using RT and FB. Discrepancies in ADC between STD-DWI and SMS-DWI need to be considered when transferring the SMS technique to clinical routine reading. J. MAGN. RESON. IMAGING 2016;44:865-879. © 2016 International Society for Magnetic Resonance in Medicine.

  1. A Spiral Spin-Echo MR Imaging Technique for Improved Flow Artifact Suppression in T1-Weighted Postcontrast Brain Imaging: A Comparison with Cartesian Turbo Spin-Echo.

    PubMed

    Li, Z; Hu, H H; Miller, J H; Karis, J P; Cornejo, P; Wang, D; Pipe, J G

    2016-04-01

    A challenge with the T1-weighted postcontrast Cartesian spin-echo and turbo spin-echo brain MR imaging is the presence of flow artifacts. Our aim was to develop a rapid 2D spiral spin-echo sequence for T1-weighted MR imaging with minimal flow artifacts and to compare it with a conventional Cartesian 2D turbo spin-echo sequence. T1-weighted brain imaging was performed in 24 pediatric patients. After the administration of intravenous gadolinium contrast agent, a reference Cartesian TSE sequence with a scanning time of 2 minutes 30 seconds was performed, followed by the proposed spiral spin-echo sequence with a scanning time of 1 minutes 18 seconds, with similar spatial resolution and volumetric coverage. The results were reviewed independently and blindly by 3 neuroradiologists. Scores from a 3-point scale were assigned in 3 categories: flow artifact reduction, subjective preference, and lesion conspicuity, if any. The Wilcoxon signed rank test was performed to evaluate the reviewer scores. The t test was used to evaluate the SNR. The Fleiss κ coefficient was calculated to examine interreader agreement. In 23 cases, spiral spin-echo was scored over Cartesian TSE in flow artifact reduction (P < .001). In 21 cases, spiral spin-echo was rated superior in subjective preference (P < .001). Ten patients were identified with lesions, and no statistically significant difference in lesion conspicuity was observed between the 2 sequences. There was no statistically significant difference in SNR between the 2 techniques. The Fleiss κ coefficient was 0.79 (95% confidence interval, 0.65-0.93). The proposed spiral spin-echo pulse sequence provides postcontrast images with minimal flow artifacts at a faster scanning time than its Cartesian TSE counterpart. © 2016 by American Journal of Neuroradiology.

  2. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part B: Scan mirror assembly data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Data from the thematic mapper scan mirror assembly (SMA) acceptance test are presented. Documentation includes: (1) a list of the acceptance test discrepancies; (2) flight 1 SMA test data book; (3) flight 1 SMA environmental report; (4) the configuration verification index; (5) the flight 1 SMA test failure reports; (6) the flight 1 data tapes log; and (7) the requests for deviation/waivers.

  3. Application of KinectTM and wireless technology for patient data recording and viewing system in the course of surgery

    NASA Astrophysics Data System (ADS)

    Ong, Aira Patrice R.; Bugtai, Nilo T.; Aldaba, Luis Miguel M.; Madrangca, Astrid Valeska H.; Que, Giselle V.; Que, Miles Frederick L.; Tan, Kean Anderson. S.

    2017-02-01

    In modern operating room (OR) conditions, a patient's computed tomography (CT) or magnetic resonance imaging (MRI) scans are some of the most important resources during surgical procedures. In practice, the surgeon is impelled to scrub out and back in every time he needs to scroll through scan images in mid-operation. To prevent leaving the operating table, many surgeons rely on assistants or nurses and give instructions to manipulate the computer for them, which can be cumbersome and frustrating. As a motivation for this study, the use of touchless (non-contact) gesture-based interface in medical practice is incorporated to have aseptic interactions with the computer systems and with the patient's data. The system presented in this paper is composed of three main parts: the Trek Ai-Ball Camera, the Microsoft Kinect™, and the computer software. The incorporation of these components and the developed software allows the user to perform 13 hand gestures, which have been tested to be 100 percent accurate. Based on the results of the tests performed on the system performance, the conclusions made regarding the time efficiency of the viewing system, the quality and the safety of the recording system has gained positive feedback from consulting doctors.

  4. NDE of hybrid armor structures using acoustography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, Jaswinder S.; Pergantis, Charles G.

    2011-06-23

    The US Army is investigating the use of composite materials to deliver lightweight and more effective armor protection systems to soldiers and other army assets. However, widespread use of such hybrid armor will require a reliable but fast NDE methodology to ensure integrity of these components during manufacturing and while in service. Traditional ultrasonic inspection of such hybrid armor structures may prove to be very effective, but point-by-point ultrasonic scanning is inherently time-consuming and manufacturing slowdowns could develop in high-volume production of such armor systems. In this paper, we report on the application of acoustography for the NDE of hybridmore » armor structures. Acoustography differs from conventional ultrasonic testing in that test objects are inspected in full field, analogously to real time x-ray imaging. The approach uses a novel, super high resolution large area acousto-optic (AO) sensor, which allows image formation through simple ultrasound shadow casting, analogous to x-ray image formation. This NDE approach offers significant inspection speed advantage over conventional point-by-point ultrasonic scanning procedures and is well-suited for high volume production. We will report initial results on a number of hybrid armor plate specimens employing composite materials that are being investigated by the US Army. Acoustography NDE results will also be verified using other complimentary NDE methods.« less

  5. Effects of a topically applied wound ointment on epidermal wound healing studied by in vivo fluorescence laser scanning microscopy analysis

    NASA Astrophysics Data System (ADS)

    Lange-Asschenfeldt, Bernhard; Alborova, Alena; Krüger-Corcoran, Daniela; Patzelt, Alexa; Richter, Heike; Sterry, Wolfram; Kramer, Axel; Stockfleth, Eggert; Lademann, Jürgen

    2009-09-01

    Epidermal wound healing is a complex and dynamic regenerative process necessary to reestablish skin integrity. Fluorescence confocal laser scanning microscopy (FLSM) is a noninvasive imaging technique that has previously been used for evaluation of inflammatory and neoplastic skin disorders in vivo and at high resolution. We employed FLSM to investigate the evolution of epidermal wound healing noninvasively over time and in vivo. Two suction blisters were induced on the volar forearms of the study participants, followed by removal of the epidermis. To study the impact of wound ointment on the process of reepithelization, test sites were divided into two groups, of which one test site was left untreated as a negative control. FLSM was used for serial/consecutive evaluations up to 8 days. FLSM was able to visualize the development of thin keratinocyte layers developing near the wound edge and around hair follicles until the entire epidermis has been reestablished. Wounds treated with the wound ointment were found to heal significantly faster than untreated wounds. This technique allows monitoring of the kinetics of wound healing noninvasively and over time, while offering new insights into the potential effects of topically applied drugs on the process of tissue repair.

  6. Development of a dual-energy computed tomography quality control program: Characterization of scanner response and definition of relevant parameters for a fast-kVp switching dual-energy computed tomography system.

    PubMed

    Nute, Jessica L; Jacobsen, Megan C; Stefan, Wolfgang; Wei, Wei; Cody, Dianna D

    2018-04-01

    A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. A streamlined scan protocol was developed to further investigate the effects of CTDIvol and rotation time while limiting data collection to the DEQC body phantom. Further data collection will be pursued to determine baseline values and statistically based failure thresholds for the validation of long-term DECT scanner performance. © 2018 American Association of Physicists in Medicine.

  7. MWPC prototyping and performance test for the STAR inner TPC upgrade

    DOE PAGES

    Shen, Fuwang; Wang, Shuai; Kong, Fangang; ...

    2018-04-16

    A new prototype of STAR inner Time Projection Chamber (iTPC) MWPC sector has been fabricated and tested in an X-ray test system. The wire chamber built at Shandong University has a wire tension precision better than 6% and wire pitch precision better than 10 μm. The gas gain uniformity and energy resolution are measured to be better than 1% (RMS) and 20% (FWHM), respectively, using an 55Fe X-ray source. The iTPC upgrade project is to replace all 24 STAR TPC inner sectors as a crucial detector upgrade for the RHIC beam energy scan phase II program. Furthermore, the test resultsmore » show that the constructed iTPC prototype meets all project requirements.« less

  8. MWPC prototyping and performance test for the STAR inner TPC upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Fuwang; Wang, Shuai; Kong, Fangang

    A new prototype of STAR inner Time Projection Chamber (iTPC) MWPC sector has been fabricated and tested in an X-ray test system. The wire chamber built at Shandong University has a wire tension precision better than 6% and wire pitch precision better than 10 μm. The gas gain uniformity and energy resolution are measured to be better than 1% (RMS) and 20% (FWHM), respectively, using an 55Fe X-ray source. The iTPC upgrade project is to replace all 24 STAR TPC inner sectors as a crucial detector upgrade for the RHIC beam energy scan phase II program. Furthermore, the test resultsmore » show that the constructed iTPC prototype meets all project requirements.« less

  9. Benchmarking contactless acquisition sensor reproducibility for latent fingerprint trace evidence

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Dittmann, Jana

    2015-03-01

    Optical, nano-meter range, contactless, non-destructive sensor devices are promising acquisition techniques in crime scene trace forensics, e.g. for digitizing latent fingerprint traces. Before new approaches are introduced in crime investigations, innovations need to be positively tested and quality ensured. In this paper we investigate sensor reproducibility by studying different scans from four sensors: two chromatic white light sensors (CWL600/CWL1mm), one confocal laser scanning microscope, and one NIR/VIS/UV reflection spectrometer. Firstly, we perform an intra-sensor reproducibility testing for CWL600 with a privacy conform test set of artificial-sweat printed, computer generated fingerprints. We use 24 different fingerprint patterns as original samples (printing samples/templates) for printing with artificial sweat (physical trace samples) and their acquisition with contactless sensory resulting in 96 sensor images, called scan or acquired samples. The second test set for inter-sensor reproducibility assessment consists of the first three patterns from the first test set, acquired in two consecutive scans using each device. We suggest using a simple feature space set in spatial and frequency domain known from signal processing and test its suitability for six different classifiers classifying scan data into small differences (reproducible) and large differences (non-reproducible). Furthermore, we suggest comparing the classification results with biometric verification scores (calculated with NBIS, with threshold of 40) as biometric reproducibility score. The Bagging classifier is nearly for all cases the most reliable classifier in our experiments and the results are also confirmed with the biometric matching rates.

  10. Excimer laser annealing of NiTi shape memory alloy thin film

    NASA Astrophysics Data System (ADS)

    Xie, Qiong; Huang, Weimin; Hong, Ming Hui; Song, Wendong; Chong, Tow Chong

    2003-02-01

    NiTi Shape Memory Alloy (SMA) is with great potential for actuation in microsystems. It is particularly suitable for medical applications due to its excellent biocompatibility. In MEMS, local annealing of SMA is required in the process of fabrication. In this paper, local annealing of Ni52Ti48 SMA with excimer laser is proposed for the first time. The Ni52Ti48 thin film in a thickness of 5 μm was deposited on Si (100) wafer by sputtering at room temperature. After that, the thin film was annealed by excimer laser (248nm KrF laser) for the first time. Field-Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) were used to characterize the surface profile of the deposited film after laser annealing. The phase transformation was measured by Differential Scanning Calorimeter (DSC) test. It is concluded that NiTi film sputtering on Si(100) substrate at room temperature possesses phase transformation after local laser annealing but with cracks.

  11. Automated terrestrial laser scanning with near-real-time change detection - monitoring of the Séchilienne landslide

    NASA Astrophysics Data System (ADS)

    Kromer, Ryan A.; Abellán, Antonio; Hutchinson, D. Jean; Lato, Matt; Chanut, Marie-Aurelie; Dubois, Laurent; Jaboyedoff, Michel

    2017-05-01

    We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.

  12. Investigating the Intersession Reliability of Dynamic Brain-State Properties.

    PubMed

    Smith, Derek M; Zhao, Yrian; Keilholz, Shella D; Schumacher, Eric H

    2018-06-01

    Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.

  13. Time-Gated Orthogonal Scanning Automated Microscopy (OSAM) for High-speed Cell Detection and Analysis

    NASA Astrophysics Data System (ADS)

    Lu, Yiqing; Xi, Peng; Piper, James A.; Huo, Yujing; Jin, Dayong

    2012-11-01

    We report a new development of orthogonal scanning automated microscopy (OSAM) incorporating time-gated detection to locate rare-event organisms regardless of autofluorescent background. The necessity of using long-lifetime (hundreds of microseconds) luminescent biolabels for time-gated detection implies long integration (dwell) time, resulting in slow scan speed. However, here we achieve high scan speed using a new 2-step orthogonal scanning strategy to realise on-the-fly time-gated detection and precise location of 1-μm lanthanide-doped microspheres with signal-to-background ratio of 8.9. This enables analysis of a 15 mm × 15 mm slide area in only 3.3 minutes. We demonstrate that detection of only a few hundred photoelectrons within 100 μs is sufficient to distinguish a target event in a prototype system using ultraviolet LED excitation. Cytometric analysis of lanthanide labelled Giardia cysts achieved a signal-to-background ratio of two orders of magnitude. Results suggest that time-gated OSAM represents a new opportunity for high-throughput background-free biosensing applications.

  14. Model-based damage evaluation of layered CFRP structures

    NASA Astrophysics Data System (ADS)

    Munoz, Rafael; Bochud, Nicolas; Rus, Guillermo; Peralta, Laura; Melchor, Juan; Chiachío, Juan; Chiachío, Manuel; Bond, Leonard J.

    2015-03-01

    An ultrasonic evaluation technique for damage identification of layered CFRP structures is presented. This approach relies on a model-based estimation procedure that combines experimental data and simulation of ultrasonic damage-propagation interactions. The CFPR structure, a [0/90]4s lay-up, has been tested in an immersion through transmission experiment, where a scan has been performed on a damaged specimen. Most ultrasonic techniques in industrial practice consider only a few features of the received signals, namely, time of flight, amplitude, attenuation, frequency contents, and so forth. In this case, once signals are captured, an algorithm is used to reconstruct the complete signal waveform and extract the unknown damage parameters by means of modeling procedures. A linear version of the data processing has been performed, where only Young modulus has been monitored and, in a second nonlinear version, the first order nonlinear coefficient β was incorporated to test the possibility of detection of early damage. The aforementioned physical simulation models are solved by the Transfer Matrix formalism, which has been extended from linear to nonlinear harmonic generation technique. The damage parameter search strategy is based on minimizing the mismatch between the captured and simulated signals in the time domain in an automated way using Genetic Algorithms. Processing all scanned locations, a C-scan of the parameter of each layer can be reconstructed, obtaining the information describing the state of each layer and each interface. Damage can be located and quantified in terms of changes in the selected parameter with a measurable extension. In the case of the nonlinear coefficient of first order, evidence of higher sensitivity to damage than imaging the linearly estimated Young Modulus is provided.

  15. Low bandwidth eye tracker for scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Harvey, Zachary G.; Dubra, Alfredo; Cahill, Nathan D.; Lopez Alarcon, Sonia

    2012-02-01

    The incorporation of adaptive optics to scanning ophthalmoscopes (AOSOs) has allowed for in vivo, noninvasive imaging of the human rod and cone photoreceptor mosaics. Light safety restrictions and power limitations of the current low-coherence light sources available for imaging result in each individual raw image having a low signal to noise ratio (SNR). To date, the only approach used to increase the SNR has been to collect large number of raw images (N >50), to register them to remove the distortions due to involuntary eye motion, and then to average them. The large amplitude of involuntary eye motion with respect to the AOSO field of view (FOV) dictates that an even larger number of images need to be collected at each retinal location to ensure adequate SNR over the feature of interest. Compensating for eye motion during image acquisition to keep the feature of interest within the FOV could reduce the number of raw frames required per retinal feature, therefore significantly reduce the imaging time, storage requirements, post-processing times and, more importantly, subject's exposure to light. In this paper, we present a particular implementation of an AOSO, termed the adaptive optics scanning light ophthalmoscope (AOSLO) equipped with a simple eye tracking system capable of compensating for eye drift by estimating the eye motion from the raw frames and by using a tip-tilt mirror to compensate for it in a closed-loop. Multiple control strategies were evaluated to minimize the image distortion introduced by the tracker itself. Also, linear, quadratic and Kalman filter motion prediction algorithms were implemented and tested and tested using both simulated motion (sinusoidal motion with varying frequencies) and human subjects. The residual displacement of the retinal features was used to compare the performance of the different correction strategies and prediction methods.

  16. Longitudinal Analysis of Mouse SDOCT Volumes

    PubMed Central

    Antony, Bhavna J.; Carass, Aaron; Lang, Andrew; Kim, Byung-Jin; Zack, Donald J.; Prince, Jerry L.

    2017-01-01

    Spectral-domain optical coherence tomography (SDOCT), in addition to its routine clinical use in the diagnosis of ocular diseases, has begun to find increasing use in animal studies. Animal models are frequently used to study disease mechanisms as well as to test drug efficacy. In particular, SDOCT provides the ability to study animals longitudinally and non-invasively over long periods of time. However, the lack of anatomical landmarks makes the longitudinal scan acquisition prone to inconsistencies in orientation. Here, we propose a method for the automated registration of mouse SDOCT volumes. The method begins by accurately segmenting the blood vessels and the optic nerve head region in the scans using a pixel classification approach. The segmented vessel maps from follow-up scans were registered using an iterative closest point (ICP) algorithm to the baseline scan to allow for the accurate longitudinal tracking of thickness changes. Eighteen SDOCT volumes from a light damage model study were used to train a random forest utilized in the pixel classification step. The area under the curve (AUC) in a leave-one-out study for the retinal blood vessels and the optic nerve head (ONH) was found to be 0.93 and 0.98, respectively. The complete proposed framework, the retinal vasculature segmentation and the ICP registration, was applied to a secondary set of scans obtained from a light damage model. A qualitative assessment of the registration showed no registration failures. PMID:29138527

  17. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging.

    PubMed

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R

    2017-11-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.

  18. Longitudinal analysis of mouse SDOCT volumes

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Carass, Aaron; Lang, Andrew; Kim, Byung-Jin; Zack, Donald J.; Prince, Jerry L.

    2017-03-01

    Spectral-domain optical coherence tomography (SDOCT), in addition to its routine clinical use in the diagnosis of ocular diseases, has begun to fund increasing use in animal studies. Animal models are frequently used to study disease mechanisms as well as to test drug efficacy. In particular, SDOCT provides the ability to study animals longitudinally and non-invasively over long periods of time. However, the lack of anatomical landmarks makes the longitudinal scan acquisition prone to inconsistencies in orientation. Here, we propose a method for the automated registration of mouse SDOCT volumes. The method begins by accurately segmenting the blood vessels and the optic nerve head region in the scans using a pixel classification approach. The segmented vessel maps from follow-up scans were registered using an iterative closest point (ICP) algorithm to the baseline scan to allow for the accurate longitudinal tracking of thickness changes. Eighteen SDOCT volumes from a light damage model study were used to train a random forest utilized in the pixel classification step. The area under the curve (AUC) in a leave-one-out study for the retinal blood vessels and the optic nerve head (ONH) was found to be 0.93 and 0.98, respectively. The complete proposed framework, the retinal vasculature segmentation and the ICP registration, was applied to a secondary set of scans obtained from a light damage model. A qualitative assessment of the registration showed no registration failures.

  19. Improving Spleen Volume Estimation via Computer Assisted Segmentation on Clinically Acquired CT Scans

    PubMed Central

    Xu, Zhoubing; Gertz, Adam L.; Burke, Ryan P.; Bansal, Neil; Kang, Hakmook; Landman, Bennett A.; Abramson, Richard G.

    2016-01-01

    OBJECTIVES Multi-atlas fusion is a promising approach for computer-assisted segmentation of anatomical structures. The purpose of this study was to evaluate the accuracy and time efficiency of multi-atlas segmentation for estimating spleen volumes on clinically-acquired CT scans. MATERIALS AND METHODS Under IRB approval, we obtained 294 deidentified (HIPAA-compliant) abdominal CT scans on 78 subjects from a recent clinical trial. We compared five pipelines for obtaining splenic volumes: Pipeline 1–manual segmentation of all scans, Pipeline 2–automated segmentation of all scans, Pipeline 3–automated segmentation of all scans with manual segmentation for outliers on a rudimentary visual quality check, Pipelines 4 and 5–volumes derived from a unidimensional measurement of craniocaudal spleen length and three-dimensional splenic index measurements, respectively. Using Pipeline 1 results as ground truth, the accuracy of Pipelines 2–5 (Dice similarity coefficient [DSC], Pearson correlation, R-squared, and percent and absolute deviation of volume from ground truth) were compared for point estimates of splenic volume and for change in splenic volume over time. Time cost was also compared for Pipelines 1–5. RESULTS Pipeline 3 was dominant in terms of both accuracy and time cost. With a Pearson correlation coefficient of 0.99, average absolute volume deviation 23.7 cm3, and 1 minute per scan, Pipeline 3 yielded the best results. The second-best approach was Pipeline 5, with a Pearson correlation coefficient 0.98, absolute deviation 46.92 cm3, and 1 minute 30 seconds per scan. Manual segmentation (Pipeline 1) required 11 minutes per scan. CONCLUSION A computer-automated segmentation approach with manual correction of outliers generated accurate splenic volumes with reasonable time efficiency. PMID:27519156

  20. Pheochromocytoma, diagnosis and treatment: Review of the literature.

    PubMed

    Farrugia, F A; Martikos, G; Tzanetis, P; Charalampopoulos, A; Misiakos, E; Zavras, N; Sotiropoulos, D

    2017-07-01

    We conducted an extensive review of the literature and tried to cite the most recent recommendations concerning the pheochromocytoma (PHEO). Pub Med and Google Scholar databases were searched systematically for studies concerning pheochromocytomas (intra-adrenal paragangliomas) from 1980 until 2016. Bibliographies were searched to find additional articles. More than four times elevation of plasma fractionated metanephrines or elevated 24-h urinary fractionated metanephrines are keys to diagnosing pheochromocytoma. If the results are equivocal then we perform the clonidine test. If we have not done it already, we preferably do a CT scan and/or an MRI scan. The patient needs pre-treatment with α1-blockers at least 10-14 days before operation. Alternatives or sometimes adjuncts are Calcium Channels Blockers and/or β-Blockers. Several familial syndromes are associated with PHEO and genetic testing should be considered. The biggest problem for pheochromocytoma is to suspect it in the first place. Elevated metanephrines establish the diagnosis. With the proper preoperative preparation the risks during operation and the postoperative period are minimal. If there is a risk of the hereditable mutation, it is strongly suggested that all the patients with pheochromocytoma need clinical genetic testing.

  1. Wavelength-Agile Optical Sensor for Exhaust Plume and Cryogenic Fluid Interrogation

    NASA Technical Reports Server (NTRS)

    Sanders, Scott T.; Chiaverini, Martin J.; Gramer, Daniel J.

    2004-01-01

    Two optical sensors developed in UW-Madison labs were evaluated for their potential to characterize rocket engine exhaust plumes and liquid oxygen (LOX) fluid properties. The plume sensor is based on wavelength-agile absorption spectroscopy A device called a chirped white pulse emitter (CWPE) is used to generate the wavelength agile light, scanning, for example, 1340 - 1560 nm every microsecond. Properties of the gases in the rocket plume (for example temperature and water mole fraction) can be monitored using these wavelength scans. We have performed preliminary tests in static gas cells, a laboratory GOX/GH2 thrust chamber, and a solid-fuel hybrid thrust chamber, and these initial tests demonstrate the potential of the CWPE for monitoring rocket plumes. The LOX sensor uses an alternative to wavelength agile sensing: two independent, fixed-wavelength lasers are combined into a single fiber. One laser is absorbed by LOX and the other not: by monitoring the differential transmission the LOX concentration in cryogenic feed lines can be inferred. The sensor was successful in interrogating static LOX pools in laboratory tests. Even in ice- and bubble-laden cryogenic fluids, LOX concentrations were measured to better than 1% with a 3 microsec time constant.

  2. Improving the properties of geopolymer containing oil-contaminated clay, metakaolin, and blast furnace slag by applying nano-SiO2.

    PubMed

    Luo, Huan-Lin; Lin, Deng-Fong; Chen, Shih-Chieh

    2017-07-01

    In this study, geopolymer specimens based on calcined oil-contaminated clays (OCCs), metakaolin replacements of OCCs, and blast furnace slag were manufactured by the addition of nano-SiO 2 to improve their properties. The effects of adding 0, 1, 2, or 3% nano-SiO 2 on the properties and microstructures of the geopolymer specimens were determined using compressive strength tests, flow tests, setting time tests, scanning electron microscopy (SEM), and silicon nuclear magnetic resonance spectroscopy (Si-NMR). The results showed that the setting time and flowability of the geopolymer specimens decreased and the compressive strength increased as the amount of nano-SiO 2 increased. These results were supported by the SEM and Si-NMR assays. This study suggests that the addition of nano-SiO 2 was beneficial and improved the properties of the geopolymer specimens containing calcined OCC.

  3. Social responsibility tools in online gambling: a survey of attitudes and behavior among Internet gamblers.

    PubMed

    Griffiths, Mark D; Wood, Richard T A; Parke, Jonathan

    2009-08-01

    To date, little empirical research has focused on social responsibility in gambling. This study examined players' attitudes and behavior toward using the social responsibility tool PlayScan designed by the Swedish gaming company Svenska Spel. Via PlayScan, players have the option to utilize various social responsibility control tools (e.g., personal gaming budgets, self-diagnostic tests of gambling habits, self-exclusion options). A total of 2,348 participants took part in an online questionnaire study. Participants were clientele of the Svenska Spel online gambling Web site. Results showed that just over a quarter of players (26%) had used PlayScan. The vast majority of those who had activated PlayScan (almost 9 in 10 users) said that PlayScan was easy to use. Over half of PlayScan users (52%) said it was useful; 19% said it was not. Many features were seen as useful by online gamblers, including limit setting (70%), viewing their gambling profile (49%), self-exclusion facilities (42%), self-diagnostic problem gambling tests (46%), information and support for gambling issues (40%), and gambling profile predictions (36%). In terms of actual (as opposed to theoretical) use, over half of PlayScan users (56%) had set spending limits, 40% had taken a self-diagnostic problem gambling test, and 17% had used a self-exclusion feature.

  4. Comparison of demons deformable registration-based methods for texture analysis of serial thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Fei, Xianhan M.; Tuohy, Rachel E.; Armato, Samuel G.

    2013-02-01

    To determine how 19 image texture features may be altered by three image registration methods, "normal" baseline and follow-up computed tomography (CT) scans from 27 patients were analyzed. Nineteen texture feature values were calculated in over 1,000 32x32-pixel regions of interest (ROIs) randomly placed in each baseline scan. All three methods used demons registration to map baseline scan ROIs to anatomically matched locations in the corresponding transformed follow-up scan. For the first method, the follow-up scan transformation was subsampled to achieve a voxel size identical to that of the baseline scan. For the second method, the follow-up scan was transformed through affine registration to achieve global alignment with the baseline scan. For the third method, the follow-up scan was directly deformed to the baseline scan using demons deformable registration. Feature values in matched ROIs were compared using Bland- Altman 95% limits of agreement. For each feature, the range spanned by the 95% limits was normalized to the mean feature value to obtain the normalized range of agreement, nRoA. Wilcoxon signed-rank tests were used to compare nRoA values across features for the three methods. Significance for individual tests was adjusted using the Bonferroni method. nRoA was significantly smaller for affine-registered scans than for the resampled scans (p=0.003), indicating lower feature value variability between baseline and follow-up scan ROIs using this method. For both of these methods, however, nRoA was significantly higher than when feature values were calculated directly on demons-deformed followup scans (p<0.001). Across features and methods, nRoA values remained below 26%.

  5. Age-related differences in the response of leg muscle cross-sectional area and water diffusivity measures to a period of supine rest.

    PubMed

    Lorbergs, Amanda L; Noseworthy, Michael D; MacIntyre, Norma J

    2015-06-01

    The object was to assess whether cross-sectional area (CSA) and water diffusion properties of leg muscles in young and older women change with increased time spent in supine rest. Healthy young (n = 9, aged 20-30 years) and older (n = 9, aged 65-75 years) women underwent MRI scanning of the right leg at baseline, 30 and 60 min of supine rest. Muscle CSA was derived from proton density images. Water diffusion properties [apparent diffusion coefficient (ADC) and fractional anisotropy (FA)] of the tibialis anterior and posterior, soleus, and medial and lateral heads of the gastrocnemius were derived from diffusion tensor imaging (DTI). Repeated measures ANOVAs and Bonferroni post hoc tests determined the effects of time and group on each muscle outcome. In both groups, muscle CSA and FA did not significantly change over time, whereas ADC significantly decreased. A greater decline at 30 min for young women was only observed for ADC in the medial gastrocnemius. Regardless of age, ADC values decreased with fluid shift associated with time spent supine, whereas CSA and FA were not affected. For leg muscle assessment in young and older women, DTI scanning protocols should consider the amount of time spent in a recumbent position.

  6. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results show that both of the temperature and H2O concentration rose with the arrival of detonation wave. With the increase of the vertical distance between the detonation tube nozzle and the laser path, the time of temperature and concentration coming to the peak delayed, and the temperature variation trend tended to slow down. At 20 cm from detonation tube nozzle, the maximum temperature hit 1 329 K and the maximum H2O concentration of 0.19 occurred at 4 ms after ignition. The research can provide with us the support for expanding the detonation test field with absorption spectroscopy technology, and can also help to promote the detonation mechanism research and to enhance the level of detonation engine control technology.

  7. Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.

    PubMed

    Wang, X; Jiao, Y; Tang, T; Wang, H; Lu, Z

    2013-12-19

    Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. The goals of this study were twofold: to investigate the test-retest reliability of temporal patterns for ICNs, and to analyze these informative univariate metrics. Additionally, a correlation analysis was performed to enhance interpretability. Our study included three datasets: (a) short- and long-term scans, (b) multi-band echo-planar imaging (mEPI), and (c) eyes open or closed. Using dual regression, we obtained the time courses of ICNs for each subject. To produce temporal patterns for ICNs, we applied two categories of univariate metrics: network-wise complexity and network-wise low-frequency oscillation. Furthermore, we validated the test-retest reliability for each metric. The network-wise temporal patterns for most ICNs (especially for default mode network, DMN) exhibited moderate-to-high reliability and reproducibility under different scan conditions. Network-wise complexity for DMN exhibited fair reliability (ICC<0.5) based on eyes-closed sessions. Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Imaging flaws in thin metal plates using a magneto-optic device

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.

    1992-01-01

    An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.

  9. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  10. Ultrafast photon counting applied to resonant scanning STED microscopy.

    PubMed

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  11. A comparison of visual inspection time measures in children with cerebral palsy.

    PubMed

    Kaufman, Jacqueline N; Donders, Jacobus; Warschausky, Seth

    2014-05-01

    This study examined the performance of children with and without cerebral palsy on two inspection time (IT) tests, as accessible nonspeeded response measures of cognitive processing speed. Participants, ages 8 to 16, included 66 children with congenital CP and 119 typically developing peers. Measures were two visual IT tasks with identical target stimuli but differential response strategies either via a traditional dual-key method or with an assistive technology pressure switch interface and response option scanning. The CP group had slower IT than the control group independent of test version. Log transformations were used to address skew, and transformed mean intraclass correlations showed moderate agreement between test versions for both participant groups. Bland-Altman plots showed that at higher mean IT thresholds, greater discrepancies between test version scores were observed. Findings support the feasibility of developing tests that reduce speeded motor response demands. Future test development should incorporate increased gradations of difficulty at the extremes of neuropsychological functioning to more accurately assess the performance of individuals whose conditions are associated with atypical performance levels. (c) 2014 APA, all rights reserved.

  12. Interactive lung segmentation in abnormal human and animal chest CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less

  13. Normal saline as a natural intravascular contrast agent for dynamic perfusion-weighted MRI of the brain: Proof of concept at 1.5T.

    PubMed

    Jara, Hernán; Mian, Asim; Sakai, Osamu; Anderson, Stephan W; Horn, Mitchel J; Norbash, Alexander M; Soto, Jorge A

    2016-12-01

    Gadolinium-based contrast agents have associated risks. Normal saline (NS) is a nontoxic sodium chloride water solution that can significantly increase the magnetic resonance imaging (MRI) relaxation times of blood via transient hemodilution (THD). The purpose of this pilot study was to test in vivo in the head the potential of normal saline as a safer, exogenous perfusion contrast agent. This Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study was approved by the local Institutional Review Board (IRB): 12 patients were scanned with T 1 -weighted inversion recovery turbo spin echo pulse sequence at 1.5T. The dynamic inversion recovery pulse sequence was run before, during, and after the NS injection for up to 5 minutes: 100 ml of NS was power-injected via antecubital veins at 3-4 ml/s. Images were processed to map maximum enhancement area-under-the-curve, time-to-peak, and mean-transit-time. These maps were used to identify the areas showing significant NS injection-related signal and to generate enhancement time curves. Hardware and pulse sequence stability were studied via phantom experimentation. Main features of the time curves were tested against theoretical modeling of THD signal effects using inversion recovery pulse sequences. Pearson correlation coefficient (R) mapping was used to differentiate genuine THD effects from motion confounders and noise. The scans of 8 out of 12 patients showed NS injection-related effects that correlate in magnitude with tissue type (gray matter ∼15% and white matter ∼3%). Motion artifacts prevented ascertaining NS signal effects in the remaining four patients. Positive and negative time curves were observed in vivo and this dual THD signal polarity was also observed in the theoretical simulations. R-histograms that were approximately constant in the range 0.1 < |R| < 0.8 and leading to correlation fractions of F corr (|R| > 0.5) = 0.45 and 0.59 were found to represent scans with genuine THD signal effects. A measurable perfusion effect in brain tissue was demonstrated in vivo using NS as an injectable intravascular contrast agent. J. Magn. Reson. Imaging 2016;44:1580-1591. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Electromagnetic Real Time Navigation in the Region of the Posterior Pelvic Ring: An Experimental In-Vitro Feasibility Study and Comparison of Image Guided Techniques.

    PubMed

    Pishnamaz, Miguel; Wilkmann, Christoph; Na, Hong-Sik; Pfeffer, Jochen; Hänisch, Christoph; Janssen, Max; Bruners, Philipp; Kobbe, Philipp; Hildebrand, Frank; Schmitz-Rode, Thomas; Pape, Hans-Christoph

    2016-01-01

    Electromagnetic tracking is a relatively new technique that allows real time navigation in the absence of radiation. The aim of this study was to prove the feasibility of this technique for the treatment of posterior pelvic ring fractures and to compare the results with established image guided procedures. Tests were performed in pelvic specimens (Sawbones®) with standardized sacral fractures (Type Denis I or II). A gel matrix simulated the operative approach and a cover was used to disable visual control. The electromagnetic setup was performed by using a custom made carbon reference plate and a prototype stainless steel K-wire with an integrated sensor coil. Four different test series were performed: Group OCT: Optical navigation using preoperative CT-scans; group O3D: Optical navigation using intraoperative 3-D-fluoroscopy; group Fluoro: Conventional 2-D-fluoroscopy; group EMT: Electromagnetic navigation combined with a preoperative Dyna-CT. Accuracy of screw placement was analyzed by standardized postoperative CT-scan for each specimen. Operation time and intraoperative radiation exposure for the surgeon was documented. All data was analyzed using SPSS (Version 20, 76 Chicago, IL, USA). Statistical significance was defined as p< 0.05. 160 iliosacral screws were placed (40 per group). EMT resulted in a significantly higher incidence of optimal screw placement (EMT: 36/40) compared to the groups Fluoro (30/40; p< 0.05) and OCT (31/40; p< 0.05). Results between EMT and O3D were comparable (O3D: 37/40; n.s.). Also, the operation time was comparable between groups EMT and O3D (EMT 7.62 min vs. O3D 7.98 min; n.s.), while the surgical time was significantly shorter compared to the Fluoro group (10.69 min; p< 0.001) and the OCT group (13.3 min; p< 0.001). Electromagnetic guided iliosacral screw placement is a feasible procedure. In our experimental setup, this method was associated with improved accuracy of screw placement and shorter operation time when compared with the conventional fluoroscopy guided technique and compared to the optical navigation using preoperative CT-scans. Further studies are necessary to rule out drawbacks of this technique regarding ferromagnetic objects.

  15. Image acquisition optimization of a limited-angle intrafraction verification (LIVE) system for lung radiotherapy.

    PubMed

    Zhang, Yawei; Deng, Xinchen; Yin, Fang-Fang; Ren, Lei

    2018-01-01

    Limited-angle intrafraction verification (LIVE) has been previously developed for four-dimensional (4D) intrafraction target verification either during arc delivery or between three-dimensional (3D)/IMRT beams. Preliminary studies showed that LIVE can accurately estimate the target volume using kV/MV projections acquired over orthogonal view 30° scan angles. Currently, the LIVE imaging acquisition requires slow gantry rotation and is not clinically optimized. The goal of this study is to optimize the image acquisition parameters of LIVE for different patient respiratory periods and gantry rotation speeds for the effective clinical implementation of the system. Limited-angle intrafraction verification imaging acquisition was optimized using a digital anthropomorphic phantom (XCAT) with simulated respiratory periods varying from 3 s to 6 s and gantry rotation speeds varying from 1°/s to 6°/s. LIVE scanning time was optimized by minimizing the number of respiratory cycles needed for the four-dimensional scan, and imaging dose was optimized by minimizing the number of kV and MV projections needed for four-dimensional estimation. The estimation accuracy was evaluated by calculating both the center-of-mass-shift (COMS) and three-dimensional volume-percentage-difference (VPD) between the tumor in estimated images and the ground truth images. The robustness of LIVE was evaluated with varied respiratory patterns, tumor sizes, and tumor locations in XCAT simulation. A dynamic thoracic phantom (CIRS) was used to further validate the optimized imaging schemes from XCAT study with changes of respiratory patterns, tumor sizes, and imaging scanning directions. Respiratory periods, gantry rotation speeds, number of respiratory cycles scanned and number of kV/MV projections acquired were all positively correlated with the estimation accuracy of LIVE. Faster gantry rotation speed or longer respiratory period allowed less respiratory cycles to be scanned and less kV/MV projections to be acquired to estimate the target volume accurately. Regarding the scanning time minimization, for patient respiratory periods of 3-4 s, gantry rotation speeds of 1°/s, 2°/s, 3-6°/s required scanning of five, four, and three respiratory cycles, respectively. For patient respiratory periods of 5-6 s, the corresponding respiratory cycles required in the scan changed to four, three, and two cycles, respectively. Regarding the imaging dose minimization, for patient respiratory periods of 3-4 s, gantry rotation speeds of 1°/s, 2-4°/s, 5-6°/s required acquiring of 7, 5, 4 kV and MV projections, respectively. For patient respiratory periods of 5-6 s, 5 kV and 5 MV projections are sufficient for all gantry rotation speeds. The optimized LIVE system was robust against breathing pattern, tumor size and tumor location changes. In the CIRS study, the optimized LIVE system achieved the average center-of-mass-shift (COMS)/volume-percentage-difference (VPD) of 0.3 ± 0.1 mm/7.7 ± 2.0% for the scanning time priority case, 0.2 ± 0.1 mm/6.1 ± 1.2% for the imaging dose priority case, respectively, among all gantry rotation speeds tested. LIVE was robust against different scanning directions investigated. The LIVE system has been preliminarily optimized for different patient respiratory periods and treatment gantry rotation speeds using digital and physical phantoms. The optimized imaging parameters, including number of respiratory cycles scanned and kV/MV projection numbers acquired, provide guidelines for optimizing the scanning time and imaging dose of the LIVE system for its future evaluations and clinical implementations through patient studies. © 2017 American Association of Physicists in Medicine.

  16. Finding the ’RITE’ Acquisition Environment for Navy C2 Software

    DTIC Science & Technology

    2015-05-01

    Boiler plate contract language - Gov purpose Rights • Adding expectation of quality to contracting language • Template SOW’s created Pr...Debugger MCCABE IQ Static Analysis Cyclomatic Complexity and KSLOC. All Languages HP Fortify Security Scan STIG and Vulnerabilities Security & IA...GSSAT (GOTS) Security Scan STIG and Vulnerabilities AutoIT Automated Test Scripting Engine for Automation Functional Testing TestComplete Automated

  17. Usability of a barcode scanning system as a means of data entry on a PDA for self-report health outcome questionnaires: a pilot study in individuals over 60 years of age

    PubMed Central

    Boissy, Patrick; Jacobs, Karen; Roy, Serge H

    2006-01-01

    Background Throughout the medical and paramedical professions, self-report health status questionnaires are used to gather patient-reported outcome measures. The objective of this pilot study was to evaluate in individuals over 60 years of age the usability of a PDA-based barcode scanning system with a text-to-speech synthesizer to collect data electronically from self-report health outcome questionnaires. Methods Usability of the system was tested on a sample of 24 community-living older adults (7 men, 17 women) ranging in age from 63 to 93 years. After receiving a brief demonstration on the use of the barcode scanner, participants were randomly assigned to complete two sets of 16 questions using the bar code wand scanner for one set and a pen for the other. Usability was assessed using directed interviews with a usability questionnaire and performance-based metrics (task times, errors, sources of errors). Results Overall, participants found barcode scanning easy to learn, easy to use, and pleasant. Participants were marginally faster in completing the 16 survey questions when using pen entry (20/24 participants). The mean response time with the barcode scanner was 31 seconds longer than traditional pen entry for a subset of 16 questions (p = 0.001). The responsiveness of the scanning system, expressed as first scan success rate, was less than perfect, with approximately one-third of first scans requiring a rescan to successfully capture the data entry. The responsiveness of the system can be explained by a combination of factors such as the location of the scanning errors, the type of barcode used as an answer field in the paper version, and the optical characteristics of the barcode scanner. Conclusion The results presented in this study offer insights regarding the feasibility, usability and effectiveness of using a barcode scanner with older adults as an electronic data entry method on a PDA. While participants in this study found their experience with the barcode scanning system enjoyable and learned to become proficient in its use, the responsiveness of the system constitutes a barrier to wide-scale use of such a system. Optimizing the graphical presentation of the information on paper should significantly increase the system's responsiveness. PMID:17184533

  18. Reproducibility of a peripheral quantitative computed tomography scan protocol to measure the material properties of the second metatarsal.

    PubMed

    Chaplais, Elodie; Greene, David; Hood, Anita; Telfer, Scott; du Toit, Verona; Singh-Grewal, Davinder; Burns, Joshua; Rome, Keith; Schiferl, Daniel J; Hendry, Gordon J

    2014-07-19

    Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec(-1). The reference line was positioned at the most distal portion of the 2(nd) metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI - mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI - mid shaft (ICC 0.99; CV% 3.2). The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2(nd) metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures.

  19. Reproducibility of a peripheral quantitative computed tomography scan protocol to measure the material properties of the second metatarsal

    PubMed Central

    2014-01-01

    Background Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Methods Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec-1. The reference line was positioned at the most distal portion of the 2nd metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Results Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI – mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI – mid shaft (ICC 0.99; CV% 3.2). Conclusions The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2nd metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures. PMID:25037451

  20. The Selection of Computed Tomography Scanning Schemes for Lengthy Symmetric Objects

    NASA Astrophysics Data System (ADS)

    Trinh, V. B.; Zhong, Y.; Osipov, S. P.

    2017-04-01

    . The article describes the basic computed tomography scan schemes for lengthy symmetric objects: continuous (discrete) rotation with a discrete linear movement; continuous (discrete) rotation with discrete linear movement to acquire 2D projection; continuous (discrete) linear movement with discrete rotation to acquire one-dimensional projection and continuous (discrete) rotation to acquire of 2D projection. The general method to calculate the scanning time is discussed in detail. It should be extracted the comparison principle to select a scanning scheme. This is because data are the same for all scanning schemes: the maximum energy of the X-ray radiation; the power of X-ray radiation source; the angle of the X-ray cone beam; the transverse dimension of a single detector; specified resolution and the maximum time, which is need to form one point of the original image and complies the number of registered photons). It demonstrates the possibilities of the above proposed method to compare the scanning schemes. Scanning object was a cylindrical object with the mass thickness is 4 g/cm2, the effective atomic number is 15 and length is 1300 mm. It analyzes data of scanning time and concludes about the efficiency of scanning schemes. It examines the productivity of all schemes and selects the effective one.

  1. Females scan more than males: a potential mechanism for sex differences in recognition memory.

    PubMed

    Heisz, Jennifer J; Pottruff, Molly M; Shore, David I

    2013-07-01

    Recognition-memory tests reveal individual differences in episodic memory; however, by themselves, these tests provide little information regarding the stage (or stages) in memory processing at which differences are manifested. We used eye-tracking technology, together with a recognition paradigm, to achieve a more detailed analysis of visual processing during encoding and retrieval. Although this approach may be useful for assessing differences in memory across many different populations, we focused on sex differences in face memory. Females outperformed males on recognition-memory tests, and this advantage was directly related to females' scanning behavior at encoding. Moreover, additional exposures to the faces reduced sex differences in face recognition, which suggests that males may be able to improve their recognition memory by extracting more information at encoding through increased scanning. A strategy of increased scanning at encoding may prove to be a simple way to enhance memory performance in other populations with memory impairment.

  2. Comparative Geometrical Investigations of Hand-Held Scanning Systems

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Przybilla, H.-J.; Lindstaedt, M.; Tschirschwitz, F.; Misgaiski-Hass, M.

    2016-06-01

    An increasing number of hand-held scanning systems by different manufacturers are becoming available on the market. However, their geometrical performance is little-known to many users. Therefore the Laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has carried out geometrical accuracy tests with the following systems in co-operation with the Bochum University of Applied Sciences (Laboratory for Photogrammetry) as well as the Humboldt University in Berlin (Institute for Computer Science): DOTProduct DPI-7, Artec Spider, Mantis Vision F5 SR, Kinect v1 + v2, Structure Sensor and Google's Project Tango. In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data were acquired by measurement with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  3. Design and Validation Testing of TruckScan to Assay Large Sacks of Fukushima Radioactive Debris on a Truck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Atsuo; Bronson, Frazier

    As a result of the March 2011 earthquake and resulting tsunami in Japan, there was a serious accident at the Fukushima Dai-ichi Nuclear Power Plant. This accident has contaminated soil and vegetation in a wide area around the plant. Decontamination projects over the last 4 years have resulted in large numbers of 1 cubic meter canvas bags of debris, commonly called Super Sacks [SS]. These are currently stored nearby where they were generated, but starting in 2015, they will be moved to various Interim Storage Facilities [ISF]. Trucks will typically carry 8-20 of these SSs. When the trucks arrive atmore » the ISF they need to be rapidly sorted into groups according to radioactivity level, for efficient subsequent processing. Canberra Industries, Inc. [CI] has designed a new truck monitoring system 'TruckScan' for use at these ISFs. The TruckScan system must measure the entire truck loaded with multiple closely packed SSs, and generate a nuclide specific assay report showing the radioactivity in each individual SS. The Canberra-Japan office, along with Obayashi Corporation have performed validation testing to demonstrate to the regulatory authorities that the proposed technique was sufficiently accurate. These validation tests were conducted at a temporary storage area in Fukushima prefecture. Decontaminated waste of various representative types and of various levels of radioactivity was gathered and mixed to create homogeneous volumes. These volumes were sampled multiple times and assayed with laboratory HPGe detectors to determine the reference concentration of each pile. Multiple SSs were loaded from each pile. Some of the SSs were filled 50% full, others 75% full, and others 100% full, to represent the typical loading configuration of the existing SSs in the field. The content of the SSs are either sand, soil, or vegetation with densities ranging from 0.3 g/cc - 1.6 g/cc. These SSs with known concentrations of Cs-134 and Cs-137 were then loaded onto trucks in a variety of configurations, typical of how they might be on the real trucks. A partial system was installed at the site and used to assay these trucks with the various loading configurations. Whereas the full system will have 8 collimated 3 x 3'' NaI detectors, the test system only had two detectors; therefore the truck was moved and counted 4 times. The data were acquired and analyzed with the Canberra Genie software to determine the peak counts for both Cesium nuclides. That data was then analyzed with a prototype version of a Maximum Entropy algorithm, to determine the individual SS activity. The goal of the validation tests was to demonstrate that the system could detect 1000 Bq/kg in 15 seconds, and to determine how accurately it could quantify individual SSs. The validation tests demonstrated that the product would perform as predicted. The TruckScan results were consistent with the sample assay results [y = 1.0029 x, R{sup 2} = 0.914]. The Total Propagated Uncertainty, including both uncertainties from these tests and others that were estimated but not tested was 16.6% percent. (authors)« less

  4. Identifying sighting clusters of endangered taxa with historical records.

    PubMed

    Duffy, Karl J

    2011-04-01

    The probability and time of extinction of taxa is often inferred from statistical analyses of historical records. Many of these analyses require the exclusion of multiple records within a unit of time (i.e., a month or a year). Nevertheless, spatially explicit, temporally aggregated data may be useful for identifying clusters of sightings (i.e., sighting clusters) in space and time. Identification of sighting clusters highlights changes in the historical recording of endangered taxa. I used two methods to identify sighting clusters in historical records: the Ederer-Myers-Mantel (EMM) test and the space-time permutation scan (STPS). I applied these methods to the spatially explicit sighting records of three species of orchids that are listed as endangered in the Republic of Ireland under the Wildlife Act (1976): Cephalanthera longifolia, Hammarbya paludosa, and Pseudorchis albida. Results with the EMM test were strongly affected by the choice of the time interval, and thus the number of temporal samples, used to examine the records. For example, sightings of P. albida clustered when the records were partitioned into 20-year temporal samples, but not when they were partitioned into 22-year temporal samples. Because the statistical power of EMM was low, it will not be useful when data are sparse. Nevertheless, the STPS identified regions that contained sighting clusters because it uses a flexible scanning window (defined by cylinders of varying size that move over the study area and evaluate the likelihood of clustering) to detect them, and it identified regions with high and regions with low rates of orchid sightings. The STPS analyses can be used to detect sighting clusters of endangered species that may be related to regions of extirpation and may assist in the categorization of threat status. ©2010 Society for Conservation Biology.

  5. 1.5 nm fabrication of test patterns for characterization of metrological systems

    DOE PAGES

    Babin, Sergey; Calafiore, Giuseppe; Peroz, Christophe; ...

    2015-11-06

    Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns at a scale about ten times smaller than the measured features. The fabrication of patterns with linewidths down to 1.5 nm is described. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location. This pseudorandom test pattern is used to characterize dimensional metrology equipment over its entire dynamic range by extracting the modulation transfer function of the system. The test pattern contains alternating lines of silicon and tungsten silicide, eachmore » according to its designed width. As a result, the fabricated test samples were imaged using a transmission electron microscope, a scanning electron microscope, and an atomic force microscope. (C) 2015 American Vacuum Society.« less

  6. Long-term reproducibility of phantom signal intensities in nonuniformity corrected STIR-MRI examinations of skeletal muscle.

    PubMed

    Viddeleer, Alain R; Sijens, Paul E; van Ooijen, Peter M A; Kuypers, Paul D L; Hovius, Steven E R; Oudkerk, Matthijs

    2009-08-01

    Nerve regeneration could be monitored by comparing MRI image intensities in time, as denervated muscles display increased signal intensity in STIR sequences. In this study long-term reproducibility of STIR image intensity was assessed under clinical conditions and the required image intensity nonuniformity correction was improved by using phantom scans obtained at multiple positions. Three-dimensional image intensity nonuniformity was investigated in phantom scans. Next, over a three-year period, 190 clinical STIR hand scans were obtained using a standardized acquisition protocol, and corrected for intensity nonuniformity by using the results of phantom scanning. The results of correction with 1, 3, and 11 phantom scans were compared. The image intensities in calibration tubes close to the hands were measured every time to determine the reproducibility of our method. With calibration, the reproducibility of STIR image intensity improved from 7.8 to 6.4%. Image intensity nonuniformity correction with 11 phantom scans gave significantly better results than correction with 1 or 3 scans. The image intensities in clinical STIR images acquired at different times can be compared directly, provided that the acquisition protocol is standardized and that nonuniformity correction is applied. Nonuniformity correction is preferably based on multiple phantom scans.

  7. Predicting student performance in sonographic scanning using spatial ability as an ability determinent of skill acquisition

    NASA Astrophysics Data System (ADS)

    Clem, Douglas Wayne

    Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and interpretation of these medical images. Using Ackerman's theory of ability determinants of skilled performance as a conceptual framework, this study explored the relationship of spatial ability and learning sonographic scanning. Beginning first year sonography students from four different educational institutions were administered a spatial abilities test prior to their initial scanning lab coursework. The students' spatial test scores were compared with their scanning competency performance scores. A significant relationship between the students' spatial ability scores and their scanning performance scores was found. This result suggests that the use of spatial ability tests for admission to sonography programs may improve candidate selection, as well as assist programs in adjusting instruction and curriculum for students who demonstrate low spatial ability.

  8. Feasibility and Limitations of Vaccine Two-Dimensional Barcoding Using Mobile Devices.

    PubMed

    Bell, Cameron; Guerinet, Julien; Atkinson, Katherine M; Wilson, Kumanan

    2016-06-23

    Two-dimensional (2D) barcoding has the potential to enhance documentation of vaccine encounters at the point of care. However, this is currently limited to environments equipped with dedicated barcode scanners and compatible record systems. Mobile devices may present a cost-effective alternative to leverage 2D vaccine vial barcodes and improve vaccine product-specific information residing in digital health records. Mobile devices have the potential to capture product-specific information from 2D vaccine vial barcodes. We sought to examine the feasibility, performance, and potential limitations of scanning 2D barcodes on vaccine vials using 4 different mobile phones. A unique barcode scanning app was developed for Android and iOS operating systems. The impact of 4 variables on the scan success rate, data accuracy, and time to scan were examined: barcode size, curvature, fading, and ambient lighting conditions. Two experimenters performed 4 trials 10 times each, amounting to a total of 2160 barcode scan attempts. Of the 1832 successful scans performed in this evaluation, zero produced incorrect data. Five-millimeter barcodes were the slowest to scan, although only by 0.5 seconds on average. Barcodes with up to 50% fading had a 100% success rate, but success rate deteriorated beyond 60% fading. Curved barcodes took longer to scan compared with flat, but success rate deterioration was only observed at a vial diameter of 10 mm. Light conditions did not affect success rate or scan time between 500 lux and 20 lux. Conditions below 20 lux impeded the device's ability to scan successfully. Variability in scan time was observed across devices in all trials performed. 2D vaccine barcoding is possible using mobile devices and is successful under the majority of conditions examined. Manufacturers utilizing 2D barcodes should take into consideration the impact of factors that limit scan success rates. Future studies should evaluate the effect of mobile barcoding on workflow and vaccine administrator acceptance.

  9. A planar near-field scanning technique for bistatic radar cross section measurements

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S.; Walton, E. K.

    1990-01-01

    A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.

  10. Wind Tunnel Testing of a One-Dimensional Laser Beam Scanning and Laser Sheet Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram

    2012-01-01

    A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.

  11. Chest CT in children: anesthesia and atelectasis.

    PubMed

    Newman, Beverley; Krane, Elliot J; Gawande, Rakhee; Holmes, Tyson H; Robinson, Terry E

    2014-02-01

    There has been an increasing tendency for anesthesiologists to be responsible for providing sedation or anesthesia during chest CT imaging in young children. Anesthesia-related atelectasis noted on chest CT imaging has proven to be a common and troublesome problem, affecting image quality and diagnostic sensitivity. To evaluate the safety and effectiveness of a standardized anesthesia, lung recruitment, controlled-ventilation technique developed at our institution to prevent atelectasis for chest CT imaging in young children. Fifty-six chest CT scans were obtained in 42 children using a research-based intubation, lung recruitment and controlled-ventilation CT scanning protocol. These studies were compared with 70 non-protocolized chest CT scans under anesthesia taken from 18 of the same children, who were tested at different times, without the specific lung recruitment and controlled-ventilation technique. Two radiology readers scored all inspiratory chest CT scans for overall CT quality and atelectasis. Detailed cardiorespiratory parameters were evaluated at baseline, and during recruitment and inspiratory imaging on 21 controlled-ventilation cases and 8 control cases. Significant differences were noted between groups for both quality and atelectasis scores with optimal scoring demonstrated in the controlled-ventilation cases where 70% were rated very good to excellent quality scans compared with only 24% of non-protocol cases. There was no or minimal atelectasis in 48% of the controlled ventilation cases compared to 51% of non-protocol cases with segmental, multisegmental or lobar atelectasis present. No significant difference in cardiorespiratory parameters was found between controlled ventilation and other chest CT cases and no procedure-related adverse events occurred. Controlled-ventilation infant CT scanning under general anesthesia, utilizing intubation and recruitment maneuvers followed by chest CT scans, appears to be a safe and effective method to obtain reliable and reproducible high-quality, motion-free chest CT images in children.

  12. Comparison of CT Fluoroscopy-Guided Manual and CT-Guided Robotic Positioning System for In Vivo Needle Placements in Swine Liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornelis, F.; Takaki, H.; Laskhmanan, M.

    PurposeTo compare CT fluoroscopy-guided manual and CT-guided robotic positioning system (RPS)-assisted needle placement by experienced IR physicians to targets in swine liver.Materials and MethodsManual and RPS-assisted needle placement was performed by six experienced IR physicians to four 5 mm fiducial seeds placed in swine liver (n = 6). Placement performance was assessed for placement accuracy, procedure time, number of confirmatory scans, needle manipulations, and procedure radiation dose. Intra-modality difference in performance for each physician was assessed using paired t test. Inter-physician performance variation for each modality was analyzed using Kruskal–Wallis test.ResultsPaired comparison of manual and RPS-assisted placements to a target by the samemore » physician indicated accuracy outcomes was not statistically different (manual: 4.53 mm; RPS: 4.66 mm; p = 0.41), but manual placement resulted in higher total radiation dose (manual: 1075.77 mGy/cm; RPS: 636.4 mGy/cm; p = 0.03), required more confirmation scans (manual: 6.6; RPS: 1.6; p < 0.0001) and needle manipulations (manual: 4.6; RPS: 0.4; p < 0.0001). Procedure time for RPS was longer than manual placement (manual: 6.12 min; RPS: 9.7 min; p = 0.0003). Comparison of inter-physician performance during manual placement indicated significant differences in the time taken to complete placements (p = 0.008) and number of repositions (p = 0.04) but not in other study measures (p > 0.05). Comparison of inter-physician performance during RPS-assisted placement suggested statistically significant differences in procedure time (p = 0.02) and not in other study measures (p > 0.05).ConclusionsCT-guided RPS-assisted needle placement reduced radiation dose, number of confirmatory scans, and needle manipulations when compared to manual needle placement by experienced IR physicians, with equivalent accuracy.« less

  13. Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.

    2006-02-01

    Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.

  14. Long range lidar data processing for validating LES of wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Trabucchi, D.; van Dooren, M.; Vollmer, L.; Schneemann, J.; Trujillo, J. J.; Witha, B.; Kühn, M.

    2014-12-01

    Scanning wind lidars offer the possibility to compare full-scale measurements in the wake of a wind turbine with LES wind fields calculated for the same test case. Due to the novelty and the peculiarity of lidar measurements, a comparison between experimental data and simulation results is non-trivial and several methods can be applied. This study presents validation methods for single and dual-doppler lidar measurements respectively.Consecutive azimuthal scans - commonly indicated as Plan Position Indicator (PPI) - at a low fixed elevation and centered on the wind turbine wake provide the radial wind speed, i.e. the wind component along the laser beam, on an almost flat polar grid. This data can be directly compared with the radial wind speed evaluated at the measurement point from the simulated wind field. This approach provides a detailed spatial description of the wind field and can be applied to averaged data for steady analysis. For the comparison with LES results, time average and spatial interpolation of the computed wind field are needed. Moreover, a proper wind direction should be chosen to evaluate the radial wind speed.With two lidars performing consecutive PPI scans over the same region from different places it is possible to estimate the horizontal wind field where the scanned regions overlap. Due to the limits in the synchronization of the PPI scans by the lidars, only steady analysis based on time averaged data can be done. A horizontal grid based on the one used for the LES is overlapped to the region covered by the two non-co-planar scans. The horizontal wind field at a considered point can be evaluated solving the system given by at least two non-aligned radial directions about this point. For each node, the data sampled by the lidars in a well defined volume during the considered time interval is used to write this system. Moreover, a discrete approximation of the continuity equation is applied to link the solutions for all the grid nodes. Instead of an interpolation on the LES wind field, this approach requires a temporal and vertical average over the considered time and height intervals.The application of these two approaches to lidar measurements performed in the offshore wind farm »alpha ventus« is presented in this work. The results are going to be used to evaluate different wind turbine wake models applied to LES.

  15. Space Communications and Navigation (SCaN) Network Simulation Tool Development and Its Use Cases

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Borgen, Richard; Nguyen, Sam; Segui, John; Stoenescu, Tudor; Wang, Shin-Ywan; Woo, Simon; Barritt, Brian; Chevalier, Christine; Eddy, Wesley

    2009-01-01

    In this work, we focus on the development of a simulation tool to assist in analysis of current and future (proposed) network architectures for NASA. Specifically, the Space Communications and Navigation (SCaN) Network is being architected as an integrated set of new assets and a federation of upgraded legacy systems. The SCaN architecture for the initial missions for returning humans to the moon and beyond will include the Space Network (SN) and the Near-Earth Network (NEN). In addition to SCaN, the initial mission scenario involves a Crew Exploration Vehicle (CEV), the International Space Station (ISS) and NASA Integrated Services Network (NISN). We call the tool being developed the SCaN Network Integration and Engineering (SCaN NI&E) Simulator. The intended uses of such a simulator are: (1) to characterize performance of particular protocols and configurations in mission planning phases; (2) to optimize system configurations by testing a larger parameter space than may be feasible in either production networks or an emulated environment; (3) to test solutions in order to find issues/risks before committing more significant resources needed to produce real hardware or flight software systems. We describe two use cases of the tool: (1) standalone simulation of CEV to ISS baseline scenario to determine network performance, (2) participation in Distributed Simulation Integration Laboratory (DSIL) tests to perform function testing and verify interface and interoperability of geographically dispersed simulations/emulations.

  16. GOES-R SUVI EUV Flatfields Generated Using Boustrophedon Scans

    NASA Astrophysics Data System (ADS)

    Shing, L.; Edwards, C.; Mathur, D.; Vasudevan, G.; Shaw, M.; Nwachuku, C.

    2017-12-01

    The Solar Ultraviolet Imager (SUVI) is mounted on the Solar Pointing Platform (SPP) of the Geostationary Operational Environmental Satellite, GOES-R. SUVI is a Generalized Cassegrain telescope with a large field of view that employs multilayer coatings optimized to operate in six extreme ultraviolet (EUV) narrow bandpasses centered at 9.4, 13.1, 17.1, 19.5, 28.4 and 30.4 nm. The SUVI CCD flatfield response was determined using two different techniques; The Kuhn-Lin-Lorentz (KLL) Raster and a new technique called, Dynamic Boustrophedon Scans. The new technique requires less time to collect the data and is also less sensitive to Solar features compared with the KLL method. This paper presents the flatfield results of the SUVI using this technique during Post Launch Testing (PLT).

  17. Life-assessment technique for nuclear power plant cables

    NASA Astrophysics Data System (ADS)

    Bartoníček, B.; Hnát, V.; Plaček, V.

    1998-06-01

    The condition of polymer-based cable material can be best characterized by measuring elongation at break of its insulating materials. However, it is not often possible to take sufficiently large samples for measurement with the tensile testing machine. The problem has been conveniently solved by utilizing differential scanning calorimetry technique. From the tested cable, several microsamples are taken and the oxidation induction time (OIT) is determined. For each cable which is subject to the assessment of the lifetime, the correlation of OIT with elongation at break and the correlation of elongation at break with the cable service time has to be performed. A reliable assessment of the cable lifetime depends on accuracy of these correlations. Consequently, synergistic effects well known at this time - dose rate effects and effects resulting from the different sequence of applying radiation and elevated temperature must be taken into account.

  18. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber.

    PubMed

    Touriño, Sonia; Fuguet, Elisabet; Jáuregui, Olga; Saura-Calixto, Fulgencio; Cascante, Marta; Torres, Josep Lluís

    2008-11-01

    Grape antioxidant dietary fiber (GADF) is a dietary supplement that combines the benefits of both fiber and antioxidants that help prevent cancer and cardiovascular diseases. The antioxidant polyphenolic components in GADF probably help prevent cancer in the digestive tract, where they are bioavailable. Mass spectrometry coupled to liquid chromatography is a powerful tool for the analysis of complex plant derivatives such as GADF. We use a combination of MS techniques, namely liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) on a triple quadrupole, for the identification of the polyphenolic constituents of the soluble fraction of GADF. First, we separated the mixture into four fractions which were tested for phenolic constituents using the TOF system in the full scan mode. The high sensitivity and resolution of the TOF detector over the triple quadrupole facilitate the preliminary characterization of the fractions. Then we used LC/ESI-MS/MS to identify the individual phenols through MS/MS experiments (product ion scan, neutral loss scan, precursor ion scan). Finally, most of the identities were unequivocally confirmed by accurate mass measurements on the TOF spectrometer. LC/ESI-TOF-MS combined with MS/MS correctly identifies the bioactive polyphenolic components from the soluble fraction of GADF. High-resolution TOF-MS is particularly useful for identifying the structure of compounds with the same LC/ESI-MS/MS fragmentation patterns.

  19. Safe Active Scanning for Energy Delivery Systems Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helms, J.; Salazar, B.; Scheibel, P.

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into themore » details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.« less

  20. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokovikov, Mikhail, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru; Chudinov, Vasiliy, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru; Bilalov, Dmitry, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru

    2014-11-14

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer andmore » a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.« less

  1. Observation of Live Ticks (Haemaphysalis flava) by Scanning Electron Microscopy under High Vacuum Pressure

    PubMed Central

    Ishigaki, Yasuhito; Nakamura, Yuka; Oikawa, Yosaburo; Yano, Yasuhiro; Kuwabata, Susumu; Nakagawa, Hideaki; Tomosugi, Naohisa; Takegami, Tsutomu

    2012-01-01

    Scanning electron microscopes (SEM), which image sample surfaces by scanning with an electron beam, are widely used for steric observations of resting samples in basic and applied biology. Various conventional methods exist for SEM sample preparation. However, conventional SEM is not a good tool to observe living organisms because of the associated exposure to high vacuum pressure and electron beam radiation. Here we attempted SEM observations of live ticks. During 1.5×10−3 Pa vacuum pressure and electron beam irradiation with accelerated voltages (2–5 kV), many ticks remained alive and moved their legs. After 30-min observation, we removed the ticks from the SEM stage; they could walk actively under atmospheric pressure. When we tested 20 ticks (8 female adults and 12 nymphs), they survived for two days after SEM observation. These results indicate the resistance of ticks against SEM observation. Our second survival test showed that the electron beam, not vacuum conditions, results in tick death. Moreover, we describe the reaction of their legs to electron beam exposure. These findings open the new possibility of SEM observation of living organisms and showed the resistance of living ticks to vacuum condition in SEM. These data also indicate, for the first time, the usefulness of tick as a model system for biology under extreme condition. PMID:22431980

  2. Elliptical field-of-view PROPELLER imaging.

    PubMed

    Devaraj, Ajit; Pipe, James G

    2009-09-01

    Traditionally two-dimensional scans are designed to support an isotropic field-of-view (iFOV). When imaging elongated objects, significant savings in scan time can potentially be achieved by supporting an elliptical field-of-view (eFOV). This work presents an empirical closed-form solution to adapt the PROPELLER trajectory for an eFOV. The proposed solution is built on the geometry of the PROPELLER trajectory permitting the scan prescription and data reconstruction to remain largely similar to standard PROPELLER. The achieved FOV is experimentally validated by the point spread function (PSF) of a phantom scan. The details of potential savings in scan time and the signal-to-noise ratio (SNR) performance in comparison to iFOV scans for both phantom and in-vivo images are also described.

  3. Dual tunneling-unit scanning tunneling microscope for length measurement based on crystalline lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Higuchi, T.; Nishioki, N.

    1997-01-01

    A dual tunneling-unit scanning tunneling microscope (DTU STM) was developed for nm order length measurement with wide scan range. The crystalline lattice of highly oriented pyrolitic graphite (HOPG) was used as reference scale. A reference unit was set up on top of a test unit. The reference sample holder and the probe tip of test unit were attached to one single XY scanner on either surface, while the test sample holder was open. This enables simultaneous acquisition of wide images of HOPG and test sample. The length in test sample image was measured by counting the number of HOPG lattices.more » An inchworm actuator and an impact drive mechanism were introduced to roughly position probe tips. The XY scanner was designed to be elastic to eliminate image distortion. Some comparison experiments using two HOPG chips were carried out in air. The DTU STM is confirmed to be a stable and more powerful device for length measurement which has nanometer accuracy when covering a wide scan range up to several micrometers, and is capable of measuring comparatively large and heavy samples. {copyright} {ital 1997 American Vacuum Society.}« less

  4. Comparison of digital scanning and polyvinyl siloxane impression techniques by dental students: instructional efficiency and attitudes towards technology.

    PubMed

    Marti, A M; Harris, B T; Metz, M J; Morton, D; Scarfe, W C; Metz, C J; Lin, W-S

    2017-08-01

    With increasing use of digital scanning with restorative procedures in the dental office, it becomes necessary that educational institutions adopt instructional methodology for introducing this technology together with conventional impression techniques. To compare the time differences between instructing dental students on digital scanning (DS) (LAVA C.O.S. digital impression system) and a conventional impression technique (CI) (polyvinyl siloxane), and to compare students' attitudes and beliefs towards both techniques. Volunteer sophomore dental students (n = 25) with no prior experience in clinical impressions were recruited and IRB consent obtained. Participants responded to a pre-and post-exposure questionnaire. Participants were instructed on the use of both DS and CI for a single tooth full coverage crown restoration using a consecutive sequence of video lecture, investigator-led demonstration and independent impression exercise. The time necessary for each step (minutes) was recorded. Statistical significance was calculated using dependent t-tests (time measurements) and 2-sample Mann-Whitney (questionnaire responses). The time spent teaching students was greater for DS than CI for video lecture (15.95 and 10.07 min, P = 0.0000), demonstration time (9.06 and 4.70 min, P = 0.0000) and impression time (18.17 and 8.59 min, P = 0.0000). Prior to the instruction and practice, students considered themselves more familiar with CI (3.96) than DS (1.96) (P = 0.0000). After the instruction and practice, participants reported CI technique proved significantly easier than expected (pre-instruction: 3.52 and post-instruction: 4.08, P = 0.002). However, overall participants' perception of ease of use for DS was not influenced by this instruction and practice experience (pre-instruction: 3.84 and post-instruction: 3.56, P = 0.106). Despite the results, 96% of participants expressed an expectation that DS will become their predominant impression technique during their careers. Dental students with no clinical experience have high expectations for digital scanning, and despite their initial difficulty, expect it to become their primary impression technique during their professional futures. The instructional time necessary for introducing DS into the curriculum is significantly greater than CI in both classroom (lecture) and clinical simulation settings (investigator-led demonstration). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Adaptive statistical pattern classifiers for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C.; Pace, M. O.; Raulston, H. S.

    1975-01-01

    A technique for the adaptive estimation of nonstationary statistics necessary for Bayesian classification is developed. The basic approach to the adaptive estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest and (2) a projection of the parameters in time or position. A divergence criterion is developed to monitor algorithm performance. Comparative results of adaptive and nonadaptive classifier tests are presented for simulated four dimensional spectral scan data.

  6. In vivo tooth-color measurement with a new 3D intraoral scanning system in comparison to conventional digital and visual color determination methods.

    PubMed

    Mehl, Albert; Bosch, Gabriel; Fischer, Carolin; Ender, Andreas

    Three-dimensional (3D) intraoral scanning systems allow for the simultaneous acquisition of 3D information about tooth surfaces and a photorealistic view of the patient's tooth colors. The goal of this study was the in vivo comparison of a new 3D scanner with a color acquisition mode and conventional visual and digital color measurements. The colors of 40 teeth of 20 patients were evaluated in seven ways: 1) By dentists using the Vita 3D-Master; 2) By dental technicians using the Vita 3D-Master; 3) With the 3Shape Trios device; 4) With the Vita Easyshade device; 5) With the Vita Easyshade Advance device; 6) With the SpectroShade device; and 7) With the SpectroShade Micro device. Digital measurements of Groups 3 to 7 were repeated three times for each tooth. For all groups, both the CIE Lab values and the Vita 3D-Master values were recorded. The repeatability and relative accuracy of the Vita 3D-Master values were analyzed statistically using Pearson's chi-squared test (α < 0.05). ΔE values were calculated from the CIE Lab values, which served as a basis for performing multidimensional scaling (MDS) and evaluating differences between the groups using the one-way ANOVA with post hoc Tamhane's test (α < 0.05). The results of the ΔE values showed that clinically relevant differences between the evaluation by dentists, dental technicians, and the intraoral scanning device (3Shape) are negligible. The intraoral 3D scanning device (Group 3) and the digital systems (Groups 4 to 7) did not differ significantly in the repeatability of color shade management. The SpectroShade Micro (Group 7) had significantly better relative accuracy than the other devices. The results demonstrate that intraoral scanning systems can be used to measure both tooth color and tooth surface in 3D. Intraoral optical scanning devices allow for the acquisition of accurate 3D surface data. Tooth color can be evaluated simultaneously and can be used to determine the color of restorations without requiring additional conventional color-measurement methods.

  7. Low sidelobe level and high time resolution for metallic ultrasonic testing with linear-chirp-Golay coded excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaying; Gang, Tie; Ye, Chaofeng; Cong, Sen

    2018-04-01

    Linear-chirp-Golay (LCG)-coded excitation combined with pulse compression is proposed in this paper to improve the time resolution and suppress sidelobe in ultrasonic testing. The LCG-coded excitation is binary complementary pair Golay signal with linear-chirp signal applied on every sub pulse. Compared with conventional excitation which is a common ultrasonic testing method using a brief narrow pulse as exciting signal, the performances of LCG-coded excitation, in terms of time resolution improvement and sidelobe suppression, are studied via numerical and experimental investigations. The numerical simulations are implemented using Matlab K-wave toolbox. It is seen from the simulation results that time resolution of LCG excitation is 35.5% higher and peak sidelobe level (PSL) is 57.6 dB lower than linear-chirp excitation with 2.4 MHz chirp bandwidth and 3 μs time duration. In the B-scan experiment, time resolution of LCG excitation is higher and PSL is lower than conventional brief pulse excitation and chirp excitation. In terms of time resolution, LCG-coded signal has better performance than chirp signal. Moreover, the impact of chirp bandwidth on LCG-coded signal is less than that on chirp signal. In addition, the sidelobe of LCG-coded signal is lower than that of chirp signal with pulse compression.

  8. The Clouds and the Earth's Radiant Energy System Elevation Bearing Assembly Life Test

    NASA Technical Reports Server (NTRS)

    Brown, Phillip L.; Miller, James B.; Jones, William R., Jr.; Rasmussen, Kent; Wheeler, Donald R.; Rana, Mauro; Peri, Frank

    1999-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) elevation scan bearings lubricated with Pennzane SHF X2000 and 2% lead naphthenate (PbNp) were life tested for a seven-year equivalent Low Earth Orbit (LEO) operation. The bearing life assembly was tested continuously at an accelerated and normal rate using the scanning patterns developed for the CERES Earth Observing System AM-1 mission. A post-life-test analysis was performed on the collected data, bearing wear, and lubricant behavior.

  9. DC-8 scanning lidar characterization of aircraft contrails and cirrus clouds

    NASA Technical Reports Server (NTRS)

    Nielsen, Norman B.; Uthe, Edward E. (Principal Investigator)

    1996-01-01

    A Subsonic Assessment (SASS) element of the overall Atmospheric Effects of Aviation Project (AEAP) was initiated by NASA to assess the atmospheric impact of subsonic aircraft. SRI was awarded a project to develop and test a scanning backscatter lidar for installation on the NASA DC-8 (year 1), participate in the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program (year 2), and conduct a comprehensive analysis of field data (year 3). A scanning mirror pod attached to the DC-8 aircraft provides for scanning lidar observations ahead of the DC-8 and fixed-angle upward or downward observations. The lidar system installed within the DC-8 transmits 275 MJ at 1.06 gm wavelength or about 130 mJ at 1.06 and 0.53 gm simultaneously. Range-resolved aerosol backscatter is displayed in real time in terms of cloud/contrail spatial distributions. The objectives of the project are to map contrail/cloud vertical distributions ahead of DC-8; provide DC-8 guidance into enhanced scattering layers; document DC-8 flight path intersection of contrail and cloud geometries (in-situ measurement positions relative to cloud/contrail shape and an extension of in-situ measurements into the vertical -- integrated contrail/cloud properties); analyze contrail/cloud radiative properties with LIRAD (combined lidar and radiometry) technique; evaluate mean particle sizes of aircraft emissions from two-wavelength observations; study contrail/cloud interactions, diffusion, and mass decay/growth; and make observations in the near-field of aircraft engine emissions. The scanning mirror pod may also provide a scanning capability for other remote sensing instruments.

  10. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  11. Optimization of coronary attenuation in coronary computed tomography angiography using diluted contrast material.

    PubMed

    Kawaguchi, Naoto; Kurata, Akira; Kido, Teruhito; Nishiyama, Yoshiko; Kido, Tomoyuki; Miyagawa, Masao; Ogimoto, Akiyoshi; Mochizuki, Teruhito

    2014-01-01

    The purpose of this study was to evaluate a personalized protocol with diluted contrast material (CM) for coronary computed tomography angiography (CTA). One hundred patients with suspected coronary artery disease underwent retrospective electrocardiogram-gated coronary CTA on a 256-slice multidetector-row CT scanner. In the diluted CM protocol (n=50), the optimal scan timing and CM dilution rate were determined by the timing bolus scan, with 20% CM dilution (5ml/s during 10s) being considered suitable to achieve the target arterial attenuation of 350 Hounsfield units (HU). In the body weight (BW)-adjusted protocol (n=50, 222mg iodine/kg), only the optimal scan timing was determined by the timing bolus scan. The injection rate and volume in the timing bolus scan and real scan were identical between the 2 protocols. We compared the means and variations in coronary attenuation between the 2 protocols. Coronary attenuation (mean±SD) in the diluted CM and BW-adjusted protocols was 346.1±23.9 HU and 298.8±45.2 HU, respectively. The diluted CM protocol provided significantly higher coronary attenuation and lower variance than did the BW-adjusted protocol (P<0.05, in each). The diluted CM protocol facilitates more uniform attenuation on coronary CTA in comparison with the BW-adjusted protocol.  

  12. Eye Exam: Is a Laser Retina Scan Worthwhile?

    MedlinePlus

    Healthy Lifestyle Adult health Is a laser retina scan necessary? My eye care provider offers the test, but I'm not sure if I need it. Answers from Alaina ... Softing Hataye, O.D. For most people, a laser retina scan isn't necessary. If you choose ...

  13. Digital Video of Live-Scan Fingerprint Data

    National Institute of Standards and Technology Data Gateway

    NIST Digital Video of Live-Scan Fingerprint Data (PC database for purchase)   NIST Special Database 24 contains MPEG-2 (Moving Picture Experts Group) compressed digital video of live-scan fingerprint data. The database is being distributed for use in developing and testing of fingerprint verification systems.

  14. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  15. Discovering Visual Scanning Patterns in a Computerized Cancellation Test

    ERIC Educational Resources Information Center

    Huang, Ho-Chuan; Wang, Tsui-Ying

    2013-01-01

    The purpose of this study was to develop an attention sequential mining mechanism for investigating the sequential patterns of children's visual scanning process in a computerized cancellation test. Participants had to locate and cancel the target amongst other non-targets in a structured form, and a random form with Chinese stimuli. Twenty-three…

  16. Computed tomography scan to detect traumatic arthrotomies and identify periarticular wounds not requiring surgical intervention: an improvement over the saline load test.

    PubMed

    Konda, Sanjit R; Davidovitch, Roy I; Egol, Kenneth A

    2013-09-01

    To report our experience with computed tomography (CT) scans to detect traumatic arthrotomies of the knee (TAK) joint based on the presence of intra-articular air. Retrospective review. Level I trauma center. Sixty-two consecutive patients (63 knees) underwent a CT scan of the knee in the emergency department and had a minimum of 14 days follow-up. Cohort of 37 patients (37 knees) from the original 62 patients who underwent a saline load test (SLT). CT scan and SLT. Positive traumatic arthrotomy of the knee (+TAK) was defined as operating room (OR) confirmation of an arthrotomy or no intra-articular air on CT scan (-iaCT) (and -SLT if performed) with follow-up revealing a septic knee. Periarticular wound equivalent to no traumatic arthrotomy (pw = (-TAK)) was defined as OR evaluation revealing no arthrotomy or -iaCT (and -SLT if performed) with follow-up revealing no septic knee. All 32 knees with intra-articular air on CT scan (+iaCT) had OR confirmation of a TAK and none of these patients had a knee infection at a mean follow-up of 140.0 ± 279.6 days. None of the 31 patients with -iaCT had a knee infection at a mean follow-up of 291.0 ± 548.1 days. Based on these results, the sensitivity and specificity of the CT scan to detect +TAK and pw = (-TAK) was 100%. In a subgroup of 37 patients that received both a CT scan and the conventional SLT, the sensitivity and specificity of the CT scan was 100% compared with 92% for the SLT (P < 0.001). CT scan performs better than the conventional SLT to detect traumatic knee arthrotomies and identify periarticular knee wounds that do not require surgical intervention and should be considered a valid diagnostic test in the appropriate clinical setting. Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  17. Chromatic dispersive confocal technology for intra-oral scanning: first in-vitro results

    NASA Astrophysics Data System (ADS)

    Ertl, T.; Zint, M.; Konz, A.; Brauer, E.; Hörhold, H.; Hibst, R.

    2015-02-01

    Various test objects, plaster models, partially equipped with extracted teeth and pig jaws representing various clinical situations of tooth preparations were used for in-vitro scanning tests with an experimental intra-oral scanning system based on chromatic-dispersive confocal technology. Scanning results were compared against data sets of the same object captured by an industrial μCT measuring system. Compared to μCT data an average error of 18 - 30 μm was achieved for a single tooth scan area and less than 40 to 60 μm error measured over the restoration + the neighbor teeth and pontic areas up to 7 units. Mean error for a full jaw is within 100 - 140 μm. The length error for a 3 - 4 unit bridge situation form contact point to contact point is below 100 μm and excellent interproximal surface coverage and prep margin clarity was achieved.

  18. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: AMSU-A1 Antenna Drive Subsystem, PN 1331720-2, S/N 106

    NASA Technical Reports Server (NTRS)

    Luu, D.

    1999-01-01

    This is the Performance Verification Report, AMSU-A1 Antenna Drive Subsystem, P/N 1331720-2, S/N 106, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The antenna drive subsystem of the METSAT AMSU-A1, S/N 106, P/N 1331720-2, completed acceptance testing per A-ES Test Procedure AE-26002/lD. The test included: Scan Motion and Jitter, Pulse Load Bus Peak Current and Rise Time, Resolver Reading and Position Error, Gain/ Phase Margin, and Operational Gain Margin. The drive motors and electronic circuitry were also tested at the component level. The drive motor test includes: Starting Torque Test, Motor Commutation Test, Resolver Operation/ No-Load Speed Test, and Random Vibration. The electronic circuitry was tested at the Circuit Card Assembly (CCA) level of production; each test exercised all circuit functions. The transistor assembly was tested during the W3 cable assembly (1356941-1) test.

  19. Relationship between Cough-Associated Changes in CSF Flow and Disease Severity in Chiari I Malformation: An Exploratory Study Using Real-Time MRI.

    PubMed

    Bezuidenhout, A F; Khatami, D; Heilman, C B; Kasper, E M; Patz, S; Madan, N; Zhao, Y; Bhadelia, R A

    2018-05-10

    Currently no quantitative objective test exists to determine disease severity in a patient with Chiari I malformation. Our aim was to correlate disease severity in symptomatic patients with Chiari I malformation with cough-associated changes in CSF flow as measured with real-time MR imaging. Thirteen symptomatic patients with Chiari I malformation (tonsillar herniation of ≥5 mm) were prospectively studied. A real-time, flow-sensitized pencil-beam MR imaging scan was used to measure CSF stroke volume during rest and immediately following coughing and relaxation periods (total scan time, 90 seconds). Multiple posterior fossa and craniocervical anatomic measurements were also obtained. Patients were classified into 2 groups by neurosurgeons blinded to MR imaging measurements: 1) nonspecific Chiari I malformation (5/13)-Chiari I malformation with nonspecific symptoms like non-cough-related or mild occasional cough-related headache, neck pain, dizziness, paresthesias, and/or trouble swallowing; 2) specific Chiari I malformation (8/13)-patients with Chiari I malformation with specific symptoms and/or objective findings like severe cough-related headache, myelopathy, syringomyelia, and muscle atrophy. The Spearman correlation was used to determine correlations between MR imaging measurements and disease severity, and both groups were also compared using a Mann-Whitney U test. There was a significant negative correlation between the percentage change in CSF stroke volume (resting to postcoughing) and Chiari I malformation disease severity ( R = 0.59; P = .03). Mann-Whitney comparisons showed the percentage change in CSF stroke volume (resting to postcoughing) to be significantly different between patient groups ( P = .04). No other CSF flow measurement or anatomic measure was significantly different between the groups. Our exploratory study suggests that assessment of CSF flow response to a coughing challenge has the potential to become a valuable objective noninvasive test for clinical assessment of disease severity in patients with Chiari I malformation. © 2018 by American Journal of Neuroradiology.

  20. Patients' preferences when comparing analogue implant impressions using a polyether impression material versus digital impressions (Intraoral Scan) of dental implants.

    PubMed

    Wismeijer, Daniel; Mans, Ronny; van Genuchten, Michiel; Reijers, Hajo A

    2014-10-01

    The primary objective of this clinical study was to assess the patients' perception of the difference between an analogue impression approach on the one hand and an intra-oral scan (IO scan) on the other when restoring implants in the non-aesthetic zone. A second objective was to analyse the difference in time needed to perform these two procedures. Thirty consecutive patients who had received 41 implants (Straumann tissue level) in the non-aesthetic zone in an implant-based referral practice setting in the Netherlands. As they were to receive crown and or bridge work on the implants, in one session, the final impressions were taken with both an analogue technique and with an intraoral scan. Patients were also asked if, directly after the treatment was carried out, they would be prepared to fill out a questionnaire on their perception of both techniques. The time involved following these two procedures was also recorded. The preparatory activities of the treatment, the taste of the impression material and the overall preference of the patients were significantly in favour of the IO scan. The bite registration, the scan head and gag reflex positively tended to the IO scan, but none of these effects were significant. The overall time involved with the IO scan was more negatively perceived than the analogue impression. Overall less time was involved when following the analogue impression technique than with the IO scan. The overall preference of the patients in our sample is significantly in favour of the approach using the IO scan. This preference relates mainly to the differences between the compared approaches with respect to taste effects and their preparatory activities. The patients did perceive the duration of IO scan more negatively than the analogue impression approach. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Top