Ion exchange purification of scandium
Herchenroeder, Laurie A.; Burkholder, Harvey R.
1990-10-23
An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.
Ion exchange purification of scandium
Herchenroeder, L.A.; Burkholder, H.R.
1990-10-23
An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.
Hydrometallurgical methods of recovery of scandium from the wastes of various technologies
NASA Astrophysics Data System (ADS)
Molchanova, T. V.; Akimova, I. D.; Smirnov, K. M.; Krylova, O. K.; Zharova, E. V.
2017-03-01
The recovery of scandium from the wastes of the production of uranium, titanium, iron-vanadium, and alumina is studied. The applied acid schemes of scandium transfer to a solution followed by ion-exchange recovery and extraction concentration of scandium ensure the precipitation of crude scandium oxides containing up to 5% Sc2O3. Scandium oxides of 99.96-99.99% purity are formed after additional refining of these crude oxides according to an extraction technology using a mixture 15% multiradical phosphine oxide or Cyanex-925 + 15% tributyl phosphate in kerosene.
Effect of scandium on the microstructure and ageing behaviour of cast Al-6Mg alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaiser, M.S.; Datta, S.; Roychowdhury, A.
2008-11-15
Microstructural modification and grain refinement due to addition of scandium in Al-6Mg alloy has been studied. Transmission electron microscopy is used to understand the microstructure and precipitation behaviour in Al-6Mg alloy doped with scandium. It is seen from the microstructure that the dendrites of the cast Al-6Mg alloy have been refined significantly due to addition of scandium. Increasing amount of scandium leads to a greater dendrite refinement. The age hardening effect in scandium added Al-6Mg alloys has been studied by subjecting the alloys containing varying amount of scandium ranging from 0.2 wt.% to 0.6 wt.% to isochronal and isothermal ageingmore » at various temperatures for different times. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides.« less
Scandium recovery from slags after oxidized nickel ore processing
NASA Astrophysics Data System (ADS)
Smyshlyaev, Denis; Botalov, Maxim; Bunkov, Grigory; Rychkov, Vladimir; Kirillov, Evgeny; Kirillov, Sergey; Semenishchev, Vladimir
2017-09-01
One of the possible sources of scandium production - waste (slags) from processing of oxidized nickel ores, has been considered in present research work. The hydrometallurgical method has been selected as the primary for scandium extraction. Different reagents for leaching of scandium, such as sulfuric acid, various carbonate salts and fluorides, have been tested. Sulfuric acid has been recognized as an optimal leaching reagent. Sulfuric acid concentration of 100 g L-1 allowed recovering up to 97 % of scandium.
Separation of thorium ions from wolframite and scandium concentrates using graphene oxide.
Jankovský, Ondřej; Sedmidubský, David; Šimek, Petr; Klímová, Kateřina; Bouša, Daniel; Boothroyd, Chris; Macková, Anna; Sofer, Zdeněk
2015-10-14
The separation of rare metals from the ores and commercially available compounds is an important issue due to the need of their high purity in advanced materials and devices. Important examples of two highly important elements that co-exist in the ores are scandium and thorium. Scandium containing ores and consequently also commercially available scandium compounds often contain traces of thorium which is very difficult to separate. We used graphene oxide for the selective sorption of thorium ions from scandium and thorium mixtures originating from the mined ores as well as from commercially available scandium salts. Our results showed that graphene oxide has an extreme affinity towards thorium ions. After the sorption process the graphene oxide contained over 20 wt% of thorium while the amount of scandium sorbed on GO was very low. This phenomenon of high sorption selectivity of graphene oxide can be applied in industry for the purification of various chemicals containing scandium and for separation of thorium containing mixtures. Alternatively, this methodology can be used for preconcentration of thorium from low-grade ores and its further use in the new generation of nuclear reactors.
Superalloy material with improved weldability
Allen, David B.; Wagner, Gregg P.; Seth, Brij B.
2004-02-24
A fusion weldable superalloy containing 0.005-0.5 wt. % scandium. In one embodiment, the superalloy may have a composition similar to IN-939 alloy, but having added scandium and having only 0.005-0.040 wt. % zirconium. A gas turbine component may be formed by an investment casting of such a scandium-containing superalloy, and may include a fusion weld repaired area. A scandium-containing nickel-based superalloy coated with an MCrAlY bond coat will have improved cyclic oxidation resistance due to the sulfur-gettering effect of the scandium.
Method of making crack-free zirconium hydride
Sullivan, Richard W.
1980-01-01
Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.
Wang, Chen; Xiang, Li; Yang, Yan; Fang, Jian; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng
2018-04-11
Alkylidene-bridged scandium-copper/silver heterobimetallic complexes were synthesized and structurally characterized. The complexes contain different Sc-C and M-C (M=Cu I , Ag I ) bonds. The reactivity of the scandium-copper heterobimetallic complex was also studied, which reveals that the heterobimetallic complex is a reaction intermediate for the transmetalation of akylidene group from Sc III to Cu I . The scandium-copper heterobimetallic complex also undergoes an addition reaction with CO, resulting in the formation of a new C=C double bond. DFT calculations were used to study the bonding and the subsequent reactivity with CO of the scandium-copper heterobimetallic complex. It clearly demonstrates a cooperative effect between the two metal centers through the formation of a direct Sc⋅⋅⋅Cu interaction that drives the reactivity with CO. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Applied research of shaking table for scandium concentration from a silicate ore
NASA Astrophysics Data System (ADS)
Yan, P.; Zhang, G. F.; Gao, L.; Shi, B. H.; Shi, Z.; Yang, Y. D.
2018-03-01
A poor magnetite iron ore is a super large independent scandium deposit with over the multi-billion potential utilizable value. Shaking table separation is very useful for impurities removing and scandium content increasing as a follow-up step of high-intensity magnetic separation. In the present study, a satisfactory index, namely scandium content of 83.10 g/t and recovery rate of 79.45 wt%, was obtained by shaking table separation. The good result was achieved under the conditions which the parameters were feed concentrate of 18 wt%, feeding quantity of 11 L/min, stroke frequency of 275 times/min and stroke of 17mm.
Recovery of Scandium from Leachate of Sulfation-Roasted Bayer Red Mud by Liquid-Liquid Extraction
NASA Astrophysics Data System (ADS)
Liu, Zhaobo; Li, Hongxu; Jing, Qiankun; Zhang, Mingming
2017-11-01
The leachate obtained from sulfation-roasted Bayer red mud is suitable for extraction of scandium by liquid-liquid solvent extraction because it contains trace amounts of Fe3+ and Si4+. In this study, a completely new metallurgical process for selective recovery of scandium from Bayer red mud was proposed. The extraction performances of Sc3+, Fe3+, Al3+, Si4+, Ca2+, and Na+ from synthetic leachate of sulfation-roasted red mud were first investigated using organophosphorus extractants (di-2-ethylhexyl phosphoric acid P204 and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester P507) and carboxylic acid extractant (Versatic acid 10). It shows that P204 has an excellent extraction ability and that it can be applied to the scandium recovery. P507 and Versatic acid 10 are much poorer in performance for selective extraction of scandium. In the leachate of sulfation-roasted red mud, approximately 97% scandium can be recovered using a P204/sulfonated kerosene (1% v/v) extraction system under the condition of an organic-to-aqueous phase ratio of 10:1 and with an extraction temperature of 15°C.
SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION
Kuhlman, C.W. Jr.; Lang, G.P.
1961-12-19
A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)
Size Effects on Deformation and Fracture of Scandium Deuteride Films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teresi, C. S.; Hintsala, E.; Adams, David P.
Metal hydride films have been observed to crack during production and use, prompting mechanical property studies of scandium deuteride films. The following focuses on elastic modulus, fracture, and size effects observed in the system for future film mechanical behavior modeling efforts. Scandium deuteride films were produced through the deuterium charging of electron beam evaporated scandium films using X-ray diffraction, scanning Auger microscopy, and electron backscatter diffraction to monitor changes in the films before and after charging. Scanning electron microscopy, nanoindentation, and focused ion beam machined micropillar compression tests were used for mechanical characterization of the scandium deuteride films. The micropillarsmore » showed a size effect for flow stress, indicating that film thickness is a relevant tuning parameter for film performance, and that fracture was controlled by the presence of grain boundaries. Elastic modulus was determined by both micropillar compression and nanoindentation to be approximately 150 GPa, Fracture studies of bulk film channel cracking as well as compression induced cracks in some of the pillars yielded a fracture toughness around 1.0 MPa-m1/2. Preliminary Weibull distributions of fracture in the micropillars are provided. Despite this relatively low value of fracture toughness, scandium deuteride micropillars can undergo a large degree of plasticity in small volumes and can harden to some degree, demonstrating the ductile and brittle nature of this material« less
Stabilization of scandium rich spinel ferrite CoFe{sub 2−x}Sc{sub x}O{sub 4} (x≤1) in thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefevre, Christophe, E-mail: christophe.lefevre@ipcms.unistra.fr; Roulland, François; Thomasson, Alexandre
2015-12-15
Scandium rich cobalt ferrites Co{sub y}Fe{sub 3−x−y}Sc{sub x}O{sub 4} with y~1 never obtained in bulk could be stabilized in pulsed laser deposited thin films. Scandium contents of up to x=1 are reached. The cell parameter increases versus x as awaited when considering the size of scandium. It is equal to 0.8620 nm for x=1, significantly higher than that of CoFe{sub 2}O{sub 4} (0.8396 nm). The lattice mismatch between the MgO (100) substrate and the scandium-containing spinel leads to an increased roughness. Cobalt is displaced from the octahedral site by Sc and mainly occupies the tetrahedral sites for high x values.more » - Graphical abstract: Magnification of the XRD patterns recorded on thin films of CoFe{sub 2-x}Sc{sub x}O{sub 4} for x=0, 0.45, 1 and 1.2, the arrows denote the (004) and (008) diffraction lines of the spinel phase.« less
Thermomechanical treatment of welded joints of aluminum-lithium alloys modified by scandium
NASA Astrophysics Data System (ADS)
Malikov, A. G.
2017-12-01
At present, the aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from the lithium admixture. Various technologies of fusible welding of these alloys are being developed. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint after thermomechanical treatment. The effect of scandium on the micro- and macrostructure is studied along with strength characteristics of the welded joint. It is found that thermomechanical treatment allows us to obtain the strength of the welded joint 0.89 for the Al-Mg-Li system and 0.99 for the Al-Cu-Li system with the welded joint modified by scandium in comparison with the base alloy after treatment.
NASA Astrophysics Data System (ADS)
Denisov, A. L.; Zharikov, E. V.; Zavartsev, Iu. D.; Zagumennyi, A. I.; Lutts, G. B.
1991-02-01
The development of passively Q-switched and self-Q-switched lasers based on chromium-containing scandium garnets with phototropic centers is reported. The lasers operate over a wide frequency repetition rate with a mean output up to 100 W. The characteristics of phototropic absorption in the 1-micron region are examined, and the possibility of lasing at the weak transition of the Nd(3+) ion in chromium-containing scandium garnets with phototropic centers is discussed.
Gadolinium Scandium Gallium Garnet (GSGG) as a Solid-State Laser Host
1987-07-01
o*SATI CODSi1.SBEC EM (otne nrvrs fnceayad dniy nb)k ubr ~~~~~~~~ Gadolinium Scandium Gallium Garnet (GSGG)asaSldtteLerHt 17. ABSTRACT 6.SUJCTTEM...certain other garnet materials for replacement. It also addresses the solid-state laser host material Gadolinium Scandium Gal- lium Garnet (GSGG) and its...by neodymium-doped yttrium aluminum garnet (Nd:YAG) or other mate- rials for most applications. In the years after the invention of the ruby laser, in
The calculated rovibronic spectrum of scandium hydride, ScH
NASA Astrophysics Data System (ADS)
Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan
2015-07-01
The electronic structure of six low-lying electronic states of scandium hydride, X 1Σ+, a 3Δ, b 3Π, A 1Δ, c 3Σ+ and B 1Π, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular rovibronic transitions for 45ScH.
NASA Astrophysics Data System (ADS)
Malikov, A. G.; Golyshev, A. A.; Ivanova, M. Yu.
2017-10-01
Today, aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from lithium admixture. Various technologies of fusible welding of these alloys are being developed. Serious demands are imposed to the welded joints of aluminum alloys in respect to their strength characteristics. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint. The effect of scandium on the micro-and macro-structure has been studied as well as the strength characteristics of the welded joint. It has been found that scandium under in the laser welding process increases the welded joint elasticity for the system Al-Mg-Li, aluminum alloy 1420 by 20 %, and almost doubles the same for the system Al-Cu-Li, aluminum alloy 1441.
Zhu, Xiaobo; Li, Wang; Tang, Sen; Zeng, Majian; Bai, Pengyuan; Chen, Lunjian
2017-05-01
D201 resin and P507 extractant diluted with sulfonated kerosene were used to respectively separate vanadium and scandium, and impurity ions from hydrochloric acid leaching solution of red mud. More than 99% of vanadium was selectively adsorbed from the hydrochloric acid leaching solution under the conditions of pH value of 1.8, volume ratio of leaching solution to resin of 10, and flow rate of 3.33 mL/min. Maximum extraction and separation of scandium was observed from the acid leaching solution at an aqueous pH value of 0.2. More than 99% of scandium can be selectively extracted using 15% P507, 5% TBP at the aqueous solution/organic phase (A/O) ratio of 10:1 for 6 min. The loaded organic phase was washed with 0.3 mol/L sulfuric acid, wherein most impurities were removed. After the process of desorption or stripping, precipitation, and roasting, high-purity V 2 O 5 and Sc 2 O 3 were obtained. Finally, a conceptual flow sheet was established to separate and recover vanadium and scandium from red mud hydrochloric acid leaching solution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of scandium on the phase composition and mechanical properties of ABM alloys
NASA Astrophysics Data System (ADS)
Molchanova, L. V.
2010-09-01
The effect of scandium on the composition and mechanical properties of ABM-1 alloys (Al-30% Be-5% Mg) is studied. The scandium content is varied from 0.1 to 0.5 wt %. It is established that, in the studied part of the Al-Be-Mg-Sc system, an aluminum solid solution (Al) and the ScBe13 compound are in equilibrium with a beryllium solid solution (Be). Magnesium dissolves in both the aluminum component and the ScBe13 compound. The strengthening effect related to the decomposition of the solid solution and the precipitation of Al3Sc cannot be extended to the strengthening of ABM-type alloys. Additions of 0.1-0.15 wt % Sc only weakly improve the mechanical properties of the alloys due to the refinement of beryllium-component grains. At high scandium contents, the strength increases insignificantly due to primary precipitation of ScBe13 and the plasticity decreases simultaneously.
Scandium places aluminium welding on a new plateau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irving, B.
1997-07-01
An interesting new development in nonferrous metallurgy seems to be taking the world by storm. The topic is scandium, a rare metal that is now being mined in the Ukraine. Known for its toughness, it was formerly a top secret material used in fighter planes, including the MIG 29, during the existence of the Soviet Union. This metal is now being introduced into a variety of aluminum alloys in this country, both in base metal and filler metal forms. The results are increases in strength, fatigue life and weldability. US interest in scandium-containing products is burgeoning, examples include aircraft, componentsmore » for automobiles and trucks, high-speed trains, and boats. The technology is being developed and implemented at two laboratories, one in Baltimore, MD, and the other in Kiev, Ukraine. Both laboratories belong to Ashurst Technology Ltd., Hamilton, Bermuda. The author recently visited the Baltimore laboratory where he learned more about scandium and its current and potential effects on industry. This report documents what he learned.« less
Hydrogen-rich scandium compounds at high pressures
NASA Astrophysics Data System (ADS)
Abe, Kazutaka
2017-10-01
Scandium hydrides at high pressures have been investigated by using ab initio density functional calculations. Although the stable scandium hydride so far known to have the highest content rate of hydrogen is ScH3, other more hydrogen-rich compounds are found to be possible at high pressures. These are ScH4 in the I 4 /m m m structure above 160 GPa, ScH6 in the P 63/m m c structure from 135 to 265 GPa, and ScH6 in the I m 3 ¯m structure above 265 GPa. The three phases are all metallic, and the superconducting transition temperatures estimated from the extended McMillan equation are 67 K in the I 4 /m m m ScH4 at 195 GPa, 63 K in the P 63/m m c ScH6 at 145 GPa, and 130 K in the I m 3 ¯m ScH6 at 285 GPa. While the I 4 /m m m tetrahydride and the I m 3 ¯m hexahydride were similarly predicted for yttrium (another group-3 element), the P 63/m m c hexahydride is possible only for scandium. The smaller atomic size of scandium stabilizes the P 63/m m c structure, and other nearby d -block elements, whose atomic sizes are smaller or comparable, might be likewise capable of forming such polyhydrides.
Scandium oxide antireflection coatings for superluminescent LEDs
NASA Technical Reports Server (NTRS)
Ladany, I.; Zanzucchi, P. J.; Andrews, J. T.; Kane, J.; Depiano, E.
1986-01-01
For an employment of laser diodes as superluminescent LEDs (SLDs) or amplifiers, the facets of the diodes must be coated with antireflection films. In the work reported, scandium oxide was evaporated from an e-beam source onto Supersil II fused silica substrates. The obtained samples were used for measurements of absorption and reflectivity. Results of index measurements on e-beam evaporated films are presented. It is shown that excellent coatings with reflectivities of 0.00025 can be obtained using these films. Attention is given to the refractive indices for scandium oxide films as a function of wavelength, the power output vs current for laser before coating and after coating with Sc2O3.
NASA Astrophysics Data System (ADS)
Baranov, Vladimir; Sidelnikov, Sergey; Zenkin, Evgeny; Frolov, Viktor; Voroshilov, Denis; Yakivyuk, Olga; Konstantinov, Igor; Sokolov, Ruslan; Belokonova, Irina
2018-04-01
The results of a study on the strength of rolled products from aluminium alloys doped with scandium under various processing conditions of hot and cold rolling are presented. The regularities of metal flow and the level of strength of deformed semi-finished products from aluminum-scandium alloys are established, depending on the total degree of deformation and the various modes of single reduction during rolling. It is shown that when using one heating of a cast billet to obtain high-quality semi-finished products, the temperature during the rolling process should not be lower than 350-370°, and the total degree of deformation does not exceed 50-60%. It was found that the semi-finished products from alloys with a content of scandium in the range 0.11-0.12% in the deformed state had elevated values of ultimate tensile strength and yield strength of the metal, which allows them to be recommended for industrial production of sheet metal products.
Structural properties of scandium inorganic salts
Sears, Jeremiah M.; Boyle, Timothy J.
2016-12-16
Here, the structural properties of reported inorganic scandium (Sc) salts were reviewed, including the halide (Cl, Br, and I), nitrate, sulfate, and phosphate salts. Additional analytical techniques used for characterization of these complexes (metrical data, FTIR and 45Sc NMR spectroscopy) were tabulated. A structural comparison of Sc to select lanthanide (La, Gd, Lu) salt complexes was briefly evaluated.
Highly Reactive Scandium Phosphinoalkylidene Complex: C-H and H-H Bonds Activation.
Mao, Weiqing; Xiang, Li; Alvarez Lamsfus, Carlos; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng
2017-01-25
The first scandium phosphinoalkylidene complex was synthesized and structurally characterized. The complex has the shortest Sc-C bond lengths reported to date (2.089(3) Å). DFT calculations reveal the presence of a three center π interaction in the complex. This scandium phosphinoalkylidene complex undergoes intermolecular C-H bond activation of pyridine, 4-dimethylamino pyridine and 1,3-dimethylpyrazole at room temperature. Furthermore, the complex rapidly activates H 2 under mild conditions. DFT calculations also demonstrate that the C-H activation of 1,3-dimethylpyrazole is selective for thermodynamic reasons and the relatively slow reaction is due to the need of fully breaking the chelating effect of the phosphino group to undergo the reaction whereas this is not the case for H 2 .
NASA Astrophysics Data System (ADS)
Pehlivan Rhodin, A.; Belmonte, M. T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J. C.; Clear, C.; Quinet, P.; Fivet, V.; Palmeri, P.
2017-12-01
The lifetimes of 17 even-parity levels (3d5s, 3d4d, 3d6s and 4p2) in the region 57 743-77 837 cm-1 of singly ionized scandium (Sc II) were measured by two-step time-resolved laser induced fluorescence spectroscopy. Oscillator strengths of 57 lines from these highly excited upper levels were derived using a hollow cathode discharge lamp and a Fourier transform spectrometer. In addition, Hartree-Fock calculations where both the main relativistic and core-polarization effects were taken into account were carried out for both low- and high-excitation levels. There is a good agreement for most of the lines between our calculated branching fractions and the measurements of Lawler & Dakin in the region 9000-45 000 cm-1 for low excitation levels and with our measurements for high excitation levels in the region 23 500-63 100 cm-1. This, in turn, allowed us to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical oscillator strengths for a set of 380 E1 transitions in Sc II. These oscillator strengths include the weak lines that were used previously to derive the solar abundance of scandium. The solar abundance of scandium is now estimated to logε⊙ = 3.04 ± 0.13 using these semi-empirical oscillator strengths to shift the values determined by Scott et al. The new estimated abundance value is in agreement with the meteoritic value (logεmet = 3.05 ± 0.02) of Lodders, Palme & Gail.
Tunable and mode-locked laser action of Cr4+ in codoped forsterite Cr, Sc:Mg2SiO4
NASA Astrophysics Data System (ADS)
Sanina, V. V.; Mitrokhin, V. P.; Subbotin, K. A.; Lis, D. A.; Lis, O. N.; Ivanov, A. A.; Zharikov, E. V.
2018-01-01
The laser oscillation of tetravalent chromium and scandium codoped forsterite Cr4+,Sc:Mg2SiO4 single crystal has been demonstrated for the first time for continuous wave, tunable and mode-locked regimes. For comparison, the laser experiments have also been performed in the same configuration with the reference forsterite single crystal solely doped by chromium. The aim of scandium codoping is to inhibit the formation of parasitic trivalent chromium in the crystal. The crystal with scandium demonstrates a wider tuning range, lower lasing threshold and wider mode-locked lasing spectrum than those of the reference crystal, although the total lasing efficiency achieved by both crystals is nearly the same. The obtained results are discussed.
Briggs, R.; Gorman, M. G.; Coleman, A. L.; ...
2017-01-09
Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Furthermore, shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearancemore » of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.« less
Briggs, R; Gorman, M G; Coleman, A L; McWilliams, R S; McBride, E E; McGonegle, D; Wark, J S; Peacock, L; Rothman, S; Macleod, S G; Bolme, C A; Gleason, A E; Collins, G W; Eggert, J H; Fratanduono, D E; Smith, R F; Galtier, E; Granados, E; Lee, H J; Nagler, B; Nam, I; Xing, Z; McMahon, M I
2017-01-13
Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.
NASA Astrophysics Data System (ADS)
Platt, Andrew W. G.; Singh, Kuldip
2016-05-01
The reactions between lanthanide nitrates, Ln(NO3)3 and scandium and lanthanide trifluoromethane sulfonates, Ln(Tf)3 with trimesitylphosphine oxide, Mes3PO show that coordination to the metal ions does not lead to crystalline complexes. Investigation of the reactions by 31-P NMR spectroscopy shows that weak complexes are formed in solution. The crystal structures of Mes3PO·0.5CH3CN (1) and [Mes3PO]3H3O·2CH3CN·Tf (2), formed in the reaction between ScTf3 and Mes3PO, are reported. Trimesitylphosphine, Mes3P, is protonated by scandium and lanthanide trifluoromethane sulfonates and lanthanide nitrates in CD3CN and the structure of [Mes3PH]Cl·HCl·2H2O (3) is reported.
Miniature High Density Scandate Cathodes for Linear Beam Devices
2008-07-14
oxalic acid is added and nanoparticles of scandia precipitate out. We were successful with this process. 2.3 Experimental Method Measurement...process. The scandium oxide doped porous matrix is subsequently impregnated in the molten phase with 4:1:1 barium calcium aluminates to form the...scandium nitrate dissolved in pure alcohol using oxalic acid dehydrate as the precipitant. E-beam has successfully used this process to produce a
Rare earths, the lanthanides, yttrium and scandium
Bedinger, G.; Bleiwas, D.
2012-01-01
In 2011, rare earths were recovered from bastnasite concentrates at the Mountain Pass Mine in California. Consumption of refined rare-earth products decreased in 2011 from 2010. U.S. rare-earth imports originated primarily from China, with lesser amounts from Austria, Estonia, France and Japan. The United States imported all of its demand for yttrium metal and yttrium compounds, with most of it originating from China. Scandium was imported in various forms and processed domestically.
Katkova, Marina A; Balashova, Tatyana V; Ilichev, Vasilii A; Konev, Alexey N; Isachenkov, Nikolai A; Fukin, Georgy K; Ketkov, Sergey Yu; Bochkarev, Mikhail N
2010-06-07
Three members of a new class of electroluminescent, neutral, and monomeric scandium N,O-chelate complexes, namely, Sc(III)-tris-2-(2-benzoimidazol-2-yl)phenolate (1), Sc(III)-tris-2-(2-benzoxyazol-2-yl)phenolate (2), and Sc(III)-tris-2-(2-benzothiazol-2-yl)phenolate (3), have been prepared and X-ray characterized. DFT calculations have been performed. In contrast to the most frequently applied dual or multiple dopants in multilayer white OLED devices, all our simpler devices with the configuration of indium tin oxide/N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine/neat scandium complex/Yb exhibit close to near-white emission with a blue hue (CIE(x,y) = 0.2147, 0.2379) in the case of 1, a cyan hue (0.2702, 0.3524) in the case of 2, and a yellowish hue (0.3468; 0.4284) in the case of 3.
Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.
Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi
2012-11-02
To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.
Surface studies on scandate cathodes and synthesized scandates
NASA Technical Reports Server (NTRS)
Lesny, Gary; Forman, Ralph
1990-01-01
Auger, ESCA, electron emission, evaporation, and desorption measurements were made on three different types of scandate surfaces. They are: (1) an impregnated top layer scandate cathode, (2) an unimpregnated top layer scandate cathode with a deposited barium or barium oxide adsorbate surface layer, and (3) a synthesized scandate surface, which replicates a scandate cathode surface. The purpose of these experiments was to determine the role that Sc2O3 plays in making the scandate cathode a more copious electron emitter than the conventional impregnated-type cathode. The synthesized scandate surface experiments consisted of depositing multilayer scandium on a tungsten surface, oxidizing the scandium, and then depositing either Ba or BaO on the scandium oxide surface. The results of these measurements showed that the low work function portions of the thin-film scandate cathode are where the Sc2O3 is the substrate and BaO is the adsorbate.
1986-04-23
Physics, Munster In the area of generating useable University) studied an interesting de- coherent high-frequency radiation, I vice, a silicon Fabry ...has a substantial crys- tingen) described studies with Cr- plus tal growing capability. One paper from Nd-doped gadolinium -scandium-gallium the Hamburg...institute, read by J. Drube, garnets (GSGG), and also with Cr-doped reported on Xe-flashlamp-pumped Cr:CSA(; % gadolinium -scandium-aluminum garnets
Crystallography, Spectroscopic Analysis, and Lasing Properties of Nd(3+) :Y3Sc2Al3O12
1989-12-01
aluminum garnet (GSAG), are formed from more stable constitu- ent oxides than gallium-containing materials, 2. Experimental Results and such as gadolinium ...the which an assessment can be made regarding aluminum -based systems, such as YAG, YSAG, Nd:YSAG as a laser material. or gadolinium scandium...Structure oxidation state variation or oxygen vacancies, and this problem is greatly reduced in alumi- Yttrium scandium aluminum garnet be- nate systems
Mudryk, Yaroslav; Paudyal, Durga; Liu, Jing; ...
2017-04-11
Replacement of strongly magnetic gadolinium with weakly magnetic scandium unexpectedly enhances ferromagnetic interactions in (Gd 1–xSc x) 5Ge 4. Based upon this counterintuitive experimental finding we demonstrate the unique role 3d 1 electrons of scandium atoms play in mediating magnetic interactions between the gadolinium atoms from the neighboring layers in the Sm 5Ge 4-type crystal lattice. Scandium substitutions at and below 20% rapidly increase the Curie temperature, TC, of the Gd 5Ge 4 parent, eliminate both the kinetic arrest and hysteresis, and drastically improve reversibility of the first-order magnetostructural transformation at T C. In agreement with first-principles predictions, higher thanmore » 20% Sc leads to the formation of a closely related Pu 5Rh 4-type structure where the first-order magnetostructural transformation is replaced by a conventional second-order ferromagnetic ordering that remains accompanied by a continuous rearrangement of the crystal lattice. In conclusion, comparison of two materials with similar structures and compositions shows that significantly stronger magnetocaloric effect occurs in the first-order material, which also shows very small hysteresis. Furthermore, we demonstrate that a behavior of a specific interatomic distance can predict anomalous physical properties in a series of alloys where compositional dependence of lattice parameters suggests a rather trivial solid solubility and uninteresting magnetism.« less
Konarev, Dmitri V.; Zorina, Leokadiya V.; Khasanov, Salavat S.; Popov, Alexey A.; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N.
2017-01-01
Reduction of scandium nitride clusterfullerene, Sc3N@Ih-C80, by sodium fluorenone ketyl in the presence of cryptand[2,2,2] allows the crystallization of the {cryptand[2,2,2](Na+)}2(Sc3N@Ih-C80−)2·2.5C6H4Cl2 (1) salt. The Sc3N@Ih-C80•− radical anions are dimerized to form single-bonded (Sc3N@Ih-C80−)2 dimers. PMID:27511304
Rare-Earth Ion-Host Lattice Interactions: 15. Analysis of the Spectra of Nd3+ in Gd3Sc2Ga3O12.
1984-05-01
Luminescence of Cr3+ Ions in Gadolinium Gallium and Gadolinium Scandium Gallium Garnet CT’stals, Soy. J. Quant. Electron. 12 (1982), 1124. 6M. Dutoit, J. C...Shcherbakov, Absolute Quantum Efficiency of the Luminescence of Cr3+ Ions in Gadolinium Gallium and Gadolinium Scandium Gallium Garnet Crystals, Soy. J...HDL Project: 324332 19. KEY WORDS (Continue on reverse side it necessary end Identify by block number) Rare earth Mixed garnet Spectra Laser Judd-Ofelt
NASA Astrophysics Data System (ADS)
Sitalo, V.; Lytvyshko, T.
2002-01-01
Yuzhnoye SDO developed several generations of launch vehicles and spacecraft that are characterized by weight perfection, optimal cost, accuracy of output geometrical characteristics, stable strength characteristics, high tightness. The main structural material of launch vehicles are thermally welded non-strengthened aluminium- magnesium alloys. The aluminium-magnesium alloys in the annealed state have insufficiently high strength characteristics. Considerable increase of yield strength of sheets and plates can be reached by cold working but in this case, plasticity reduces. An effective way to improve strength of aluminium-magnesium alloys is their alloying with scandium. The alloying with scandium leads to modification of the structure of ingots (size reduction of cast grain) and formation of supersaturated solid solutions of scandium and aluminium during crystallization. During subsequent heatings (annealing of the ingots, heating for deformation) the solid solution disintegrates with the formation of disperse particles of Al3Sc type, that cause great strengthening of the alloy. High degree of dispersion and density of distribution in the matrix of secondary Al3Sc particles contribute to the considerable increase of the temperature of recrystallization of deformed intermediate products and to the formation of stable non-recrystallized structure. The alloying of alluminium-magnesium alloys with scandium increases their strength and operational characteristics, preserves their technological and corrosion properties, improves weldability. The alloys can be used within the temperature limits 196-/+150 0C. The experimental structures of propellant tanks made of alluminium-magnesium alloys with scandium have been manufactured and tested. It was ascertained that the propellant tanks have higher margin of safety during loading with internal pressure and higher stability factor of the shrouds during loading with axial compression force which is caused by higher value of yield strength. The analysis of the performed work showed good prospects of using the alluminium-magnesium alloys with increased mechanical characteristics for making body elements of propellant tanks of the Zenit -2S launch vehicles. The use of these alloys can give the increase of structural strength by 20-30% and considerable increase of payload weight.
NASA Astrophysics Data System (ADS)
Hein, James R.; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe J.; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah R.; Till, Claire P.
2017-11-01
Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, and HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits. The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ˜15 Myr ago.
Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.
2017-01-01
Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.
Radchenko, V; Meyer, C A L; Engle, J W; Naranjo, C M; Unc, G A; Mastren, T; Brugh, M; Birnbaum, E R; John, K D; Nortier, F M; Fassbender, M E
2016-12-16
Scandium-44g (half-life 3.97h [1]) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18 F, due to its favorable decay parameters. One source of 44g Sc is the long-lived parent nuclide 44 Ti (half-life 60.0 a). A 44 Ti/ 44g Sc generator would have the ability to provide radionuclidically pure 44g Sc on a daily basis. The production of 44 Ti via the 45 Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44 Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems based on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Results indicate that ZR resin in HCl media represents an effective 44 Ti/ 44g Sc separation system. Copyright © 2016 Elsevier B.V. All rights reserved.
Radchenko, Valery; Meyer, Catherine Anne Louise; Engle, Jonathan Ward; ...
2016-11-24
Scandium-44 g (half-life 3.97 h) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18F, due to its favorable decay parameters. One source of 44gSc is the long-lived parent nuclide 44Ti (half-life 60.0 a). A 44Ti/ 44gSc generator would have the ability to provide radionuclidically pure 44gSc on a daily basis. The production of 44Ti via the 45Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems basedmore » on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Lastly, results indicate that ZR resin in HCl media represents an effective 44Ti/ 44gSc separation system.« less
NASA Astrophysics Data System (ADS)
Alexejev, Alexander; Flesch, Peter; Mentel, Jürgen; Awakowicz, Peter
2016-10-01
In modern cars, the new generation Hg-free high intensity discharge (HID) lamps, the so called xenon lamps, take an important role. The long lifetime of these lamps is achieved by doping the tungsten electrodes with thorium. Thorium forms a dipole layer on the electrode surface, thus reducing the work function of tungsten. However, thoriating the electrodes is also an issue of trade and transport regulation, so a substitute is looked into. This work shows the influence of the arc attachment mode on the lifetime of the lamps. The mode of the arc attachment changes during the run-up phase of automotive HID lamps after a characteristic time period depending, i.e., on the filling of the lamps, which is dominated by scandium. It will be shown that this characteristic time period for the change of the attachment mode determines the long term performance of Hg-free xenon lamps. Measurements attributing the mode change to the scandium density in the filling are presented. The emitter effect of scandium will be suggested to be the reason of the mode change.
Betavoltaics using scandium tritide and contact potential difference
NASA Astrophysics Data System (ADS)
Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan; Antoniazzi, Armando B.
2008-02-01
Tritium-powered betavoltaic micropower sources using contact potential difference (CPD) are demonstrated. Thermally stable scandium tritide thin films with a surface activity of 15mCi/cm2 were used as the beta particle source. The electrical field created by the work function difference between the ScT film and a platinum or copper electrode was used to separate the beta-generated electrical charge carriers. Open circuit voltages of 0.5 and 0.16V and short circuit current densities of 2.7 and 5.3nA/cm2 were achieved for gaseous and solid dielectric media-based CPD cells, respectively.
Kerdjoudj, R; Pniok, M; Alliot, C; Kubíček, V; Havlíčková, J; Rösch, F; Hermann, P; Huclier-Markai, S
2016-01-28
The complexation ability of DOTA analogs bearing one methylenephosphonic (DO3AP) or methylenephosphinic (DO3AP(PrA) and DO3AP(ABn)) acid pendant arm toward scandium was evaluated. Stability constants of their scandium(iii) complexes were determined by potentiometry combined with (45)Sc NMR spectroscopy. The stability constants of the monophosphinate analogues are somewhat lower than that of the Sc-DOTA complex. The phosphorus acid moiety interacts with trivalent scandium even in very acidic solutions forming out-of-cage complexes; the strong affinity of the phosphonate group to Sc(iii) precludes stability constant determination of the Sc-DO3AP complex. These results were compared with those obtained by the free-ion selective radiotracer extraction (FISRE) method which is suitable for trace concentrations. FISRE underestimated the stability constants but their relative order was preserved. Nonetheless, as this method is experimentally simple, it is suitable for a quick relative comparison of stability constant values under trace concentrations. Radiolabelling of the ligands with (44)Sc was performed using the radioisotope from two sources, a (44)Ti/(44)Sc generator and (44m)Sc/(44)Sc from a cyclotron. The best radiolabelling conditions for the ligands were pH = 4, 70 °C and 20 min which were, however, not superior to those of the parent DOTA. Nonetheless, in vitro behaviour of the Sc(iii) complexes in the presence of hydroxyapatite and rat serum showed sufficient stability of (44)Sc complexes of these ligands for in vivo applications. PET images and ex vivo biodistribution of the (44)Sc-DO3AP complex performed on healthy Wistar male rats showed no specific bone uptake and rapid clearance through urine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnov, P. O., E-mail: kpo1980@gmail.com; Eliseeva, N. S.; Kuzubov, A. A., E-mail: alex_xx@rambler.ru
2012-01-15
The use of carbon nanotubes coated by atoms of transition metals to store molecular hydrogen is associated with the problem of the aggregation of these atoms, which leads to the formation of metal clusters. The quantum-chemical simulation of cluster models of the carbon surface of a graphene type with scandium and titanium atoms has been performed. It has been shown that the presence of five- and seven-membered rings, in addition to six-membered rings, in these structures makes it possible to strongly suppress the processes of the migration of metal atoms over the surface, preventing their clustering.
Rare earths, the lanthanides, yttrium and scandium
Hedrick, J.B.
2006-01-01
In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.
Static high pressure studies on Nd and Sc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akella, J.; Xu, J.; Smith, G.S.
1985-06-24
We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.
Energy levels, oscillator strengths, and transition probabilities for sulfur-like scandium, Sc VI
NASA Astrophysics Data System (ADS)
El-Maaref, A. A.; Abou Halaka, M. M.; Saddeek, Yasser B.
2017-09-01
Energy levels, Oscillator strengths, and transition probabilities for sulfur-like scandium are calculated using CIV3 code. The calculations have been executed in an intermediate coupling scheme using Breit-Pauli Hamiltonian. The present calculations have been compared with the experimental data and other theoretical calculations. LANL code has been used to confirm the accuracy of the present calculations, where the calculations using CIV3 code agree well with the corresponding values by LANL code. The calculated energy levels and oscillator strengths are in reasonable agreement with the published experimental data and theoretical values. We have calculated lifetimes of some excited levels, as well.
Jerez, Javier; Isaguirre, Andrea C; Bazán, Cristian; Martinez, Luis D; Cerutti, Soledad
2014-06-01
An on-line scandium preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry associated with flow injection was studied. Trace amounts of scandium were preconcentrated by sorption on a minicolumn packed with oxidized multiwalled carbon nanotubes, at pH 1.5. The retained analyte was removed from the minicolumn with 30% (v/v) nitric acid. A total enrichment factor of 225-fold was obtained within a preconcentration time of 300 s (for a 25 mL sample volume). The overall time required for preconcentration and elution of 25 mL of sample was about 6 min; the throughput was about 10 samples per hour. The value of the detection limit was 4 ng L(-1) and the precision for 10 replicate determinations at 100 ng L(-1) Sc level was 5% relative standard deviation, calculated from the peak heights obtained. The calibration graph using the preconcentration system was linear with a correlation coefficient of 0.9996 at levels near the detection limits up to at least 10 mg L(-1). After optimization, the method was successfully applied to the determination of Sc in an acid drainage from an abandoned mine located in the province of San Luis, Argentina. Copyright © 2014 Elsevier B.V. All rights reserved.
Nishida, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi
2014-06-04
A non-heme iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was formed by oxidation of an iron(II) complex ([(TMC)Fe(II)](2+)) with dioxygen (O2) and tetraphenylborate (BPh4(-)) in the presence of scandium triflate (Sc(OTf)3) in acetonitrile at 298 K via autocatalytic radical chain reactions rather than by a direct O2 activation pathway. The autocatalytic radical chain reaction is initiated by scandium ion-promoted electron transfer from BPh4(-) to [(TMC)Fe(IV)(O)](2+) to produce phenyl radical (Ph(•)). The chain propagation step is composed of the addition of O2 to Ph(•) and the reduction of the resulting phenylperoxyl radical (PhOO(•)) by scandium ion-promoted electron transfer from BPh4(-) to PhOO(•) to produce phenyl hydroperoxide (PhOOH), accompanied by regeneration of phenyl radical. PhOOH reacts with [(TMC)Fe(II)](2+) to yield phenol (PhOH) and [(TMC)Fe(IV)(O)](2+). Biphenyl (Ph-Ph) was formed via the radical chain autoxidation of BPh3 by O2. The induction period of the autocatalytic radical chain reactions was shortened by addition of a catalytic amount of [(TMC)Fe(IV)(O)](2+), whereas addition of a catalytic amount of ferrocene that can reduce [(TMC)Fe(IV)(O)](2+) resulted in elongation of the induction period. Radical chain autoxidation of BPh4(-) by O2 also occurred in the presence of Sc(OTf)3 without [(TMC)Fe(IV)(O)](2+), initiating the autocatalytic oxidation of [(TMC)Fe(II)](2+) with O2 and BPh4(-) to yield [(TMC)Fe(IV)(O)](2+). Thus, the general view for formation of non-heme iron(IV)-oxo complexes via O2-binding iron species (e.g., Fe(III)(O2(•-))) without contribution of autocatalytic radical chain reactions should be viewed with caution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yuntao, E-mail: caswyt@hotmail.com; Ren, Guohao, E-mail: rgh@mail.sic.ac.cn; Ding, Dongzhou
2012-10-15
The calcite phase of LuBO{sub 3} and ScBO{sub 3} polycrystalline powders were synthesized by solid state reaction method, and the Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce (x=0.2, 0.5, 0.7) single crystals were grown by the Czochralski method. A large composition deviation between the initial polycrystalline powders and final single crystal was confirmed by electron probe micro-analysis. Raman spectroscopy revealed that moderate lattice disorder was induced by scandium substitution. However, based on the single crystal X-ray study, we finally concluded that the crystal structure of lutetium scandium orthoborate still crystallized in the rhombohedral system belonging to R3{sup -}c. Furthermore, the relationship between themore » energies of the five 5d levels of Ce{sup 3+} and the crystalline environment was revealed. The total redshift, total crystal field splitting, and centroid shift of Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce{sup 3+} were calculated based on their VUV excitation spectra. The variations trend of these observed spectroscopic parameters was in accordance with the predicted ones. - Graphical abstract: The crystal structure of Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce is rhombohedral system with R3{sup -}c space group. The relationship between the energies of the five Ce{sup 3+} 5d levels and the crystalline environment is established. Highlights: Black-Right-Pointing-Pointer Moderate lattice disorder is induced by scandium doping. Black-Right-Pointing-Pointer The crystal structure of Lu{sub 1-x}Sc{sub x}BO{sub 3}:Ce is rhombohedral system with R3{sup -}c space group. Black-Right-Pointing-Pointer Relationship between energies of Ce{sup 3+} 5d levels and crystalline environment is established. Black-Right-Pointing-Pointer The spectroscopic parameters are experimentally and theoretically calculated.« less
Pniok, Miroslav; Kubíček, Vojtěch; Havlíčková, Jana; Kotek, Jan; Sabatie-Gogová, Andrea; Plutnar, Jan; Huclier-Markai, Sandrine; Hermann, Petr
2014-06-23
Diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) scandium(III) complexes were investigated in the solution and solid state. Three (45)Sc NMR spectroscopic references suitable for aqueous solutions were suggested: 0.1 M Sc(ClO4)3 in 1 M aq. HClO4 (δSc =0.0 ppm), 0.1 M ScCl3 in 1 M aq. HCl (δSc =1.75 ppm) and 0.01 M [Sc(ox)4](5-) (ox(2-) = oxalato) in 1 M aq. K2C2O4 (δSc =8.31 ppm). In solution, [Sc(dtpa)](2-) complex (δSc = 83 ppm, Δν = 770 Hz) has a rather symmetric ligand field unlike highly unsymmetrical donor atom arrangement in [Sc(dota)](-) anion (δSc = 100 ppm, Δν = 4300 Hz). The solid-state structure of K8[Sc2(ox)7]⋅13 H2O contains two [Sc(ox)3](3-) units bridged by twice "side-on" coordinated oxalate anion with Sc(3+) ion in a dodecahedral O8 arrangement. Structures of [Sc(dtpa)](2-) and [Sc(dota)](-) in [(Hguanidine)]2[Sc(dtpa)]⋅3 H2O and K[Sc(dota)][H6 dota]Cl2⋅4 H2O, respectively, are analogous to those of trivalent lanthanide complexes with the same ligands. The [Sc(dota)](-) unit exhibits twisted square-antiprismatic arrangement without an axial ligand (TSA' isomer) and [Sc(dota)](-) and (H6 dota)(2+) units are bridged by a K(+) cation. A surprisingly high value of the last DOTA dissociation constant (pKa =12.9) was determined by potentiometry and confirmed by using NMR spectroscopy. Stability constants of scandium(III) complexes (log KScL 27.43 and 30.79 for DTPA and DOTA, respectively) were determined from potentiometric and (45)Sc NMR spectroscopic data. Both complexes are fully formed even below pH 2. Complexation of DOTA with the Sc(3+) ion is much faster than with trivalent lanthanides. Proton-assisted decomplexation of the [Sc(dota)](-) complex (τ1/2 =45 h; 1 M aq. HCl, 25 °C) is much slower than that for [Ln(dota)](-) complexes. Therefore, DOTA and its derivatives seem to be very suitable ligands for scandium radioisotopes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chandran, C. Vinod; Cuny, Jérôme; Gautier, Régis; Pollès, Laurent Le; Pickard, Chris J.; Bräuniger, Thomas
2010-04-01
To efficiently obtain multiple-quantum magic-angle spinning (MQMAS) spectra of the nuclide 45Sc (I = 7/2), we have combined several previously suggested techniques to enhance the signal-to-noise ratio and to improve spectral resolution for the test sample, scandium sulphate pentahydrate (ScSPH). Whereas the 45Sc-3QMAS spectrum of ScSPH does not offer sufficient resolution to clearly distinguish between the 3 scandium sites present in the crystal structure, these sites are well-resolved in the 5QMAS spectrum. The loss of sensitivity incurred by using MQMAS with 5Q coherence order is partly compensated for by using fast-amplitude modulated (FAM) sequences to improve the efficiency of both 5Q coherence excitation and conversion. Also, heteronuclear decoupling is employed to minimise dephasing of the 45Sc signal during the 5Q evolution period due to dipolar couplings with the water protons in the ScSPH sample. Application of multi-pulse decoupling schemes such as TPPM and SPINAL results in improved sensitivity and resolution in the F1 (isotropic) dimension of the 5QMAS spectrum, the best results being achieved with the recently suggested SWf-TPPM sequence. By numerical fitting of the 45Sc-NMR spectra of ScSPH from 3QMAS, 5QMAS and single-quantum MAS at magnetic fields B0 = 9.4 T and 17.6 T, the isotropic chemical shift δiso, the quadrupolar coupling constant χ, and the asymmetry parameter η were obtained. Averaging over all experiments, the NMR parameters determined for the 3 scandium sites, designated (a), (b) and (c) are: δiso(a) = -15.5 ± 0.5 ppm, χ(a) = 5.60 ± 0.10 MHz, η(a) = 0.06 ± 0.05; δiso(b) = -12.9 ± 0.5 ppm, χ(b) = 4.50 ± 0.10 MHz, η(b) = 1.00 ± 0.00; and δiso(c) = -4.7 ± 0.2 ppm, χ(c) = 4.55 ± 0.05 MHz, η(c) = 0.50 ± 0.02. The NMR scandium species were assigned to the independent crystallographic sites by evaluating their experimental response to proton decoupling, and by density functional theory (DFT) calculations using the PAW and GIPAW approaches, in the following way: Sc(1) to (c), Sc(2) to (a), and Sc(3) to (b). The need to compute NMR parameters using an energy-optimised crystal structure is once again demonstrated.
Chandran, C Vinod; Cuny, Jérôme; Gautier, Régis; Le Pollès, Laurent; Pickard, Chris J; Bräuniger, Thomas
2010-04-01
To efficiently obtain multiple-quantum magic-angle spinning (MQMAS) spectra of the nuclide 45Sc (I=7/2), we have combined several previously suggested techniques to enhance the signal-to-noise ratio and to improve spectral resolution for the test sample, scandium sulphate pentahydrate (ScSPH). Whereas the 45Sc-3QMAS spectrum of ScSPH does not offer sufficient resolution to clearly distinguish between the 3 scandium sites present in the crystal structure, these sites are well-resolved in the 5QMAS spectrum. The loss of sensitivity incurred by using MQMAS with 5Q coherence order is partly compensated for by using fast-amplitude modulated (FAM) sequences to improve the efficiency of both 5Q coherence excitation and conversion. Also, heteronuclear decoupling is employed to minimise dephasing of the 45Sc signal during the 5Q evolution period due to dipolar couplings with the water protons in the ScSPH sample. Application of multi-pulse decoupling schemes such as TPPM and SPINAL results in improved sensitivity and resolution in the F(1) (isotropic) dimension of the 5QMAS spectrum, the best results being achieved with the recently suggested SW(f)-TPPM sequence. By numerical fitting of the 45Sc-NMR spectra of ScSPH from 3QMAS, 5QMAS and single-quantum MAS at magnetic fields B(0)=9.4 T and 17.6 T, the isotropic chemical shift delta(iso), the quadrupolar coupling constant chi, and the asymmetry parameter eta were obtained. Averaging over all experiments, the NMR parameters determined for the 3 scandium sites, designated (a), (b) and (c) are: delta(iso)(a)=-15.5+/-0.5 ppm, chi(a)=5.60+/-0.10 MHz, eta(a)=0.06+/-0.05; delta(iso)(b)=-12.9+/-0.5 ppm, chi(b)=4.50+/-0.10 MHz, eta(b)=1.00+/-0.00; and delta(iso)(c)=-4.7+/-0.2 ppm, chi(c)=4.55+/-0.05 MHz, eta(c)=0.50+/-0.02. The NMR scandium species were assigned to the independent crystallographic sites by evaluating their experimental response to proton decoupling, and by density functional theory (DFT) calculations using the PAW and GIPAW approaches, in the following way: Sc(1) to (c), Sc(2) to (a), and Sc(3) to (b). The need to compute NMR parameters using an energy-optimised crystal structure is once again demonstrated. 2009 Elsevier Inc. All rights reserved.
Burkatzki, M; Filippi, Claudia; Dolg, M
2008-10-28
We extend our recently published set of energy-consistent scalar-relativistic Hartree-Fock pseudopotentials by the 3d-transition metal elements, scandium through zinc. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The pseudopotentials and the accompanying basis sets (VnZ with n=T,Q) are given in standard Gaussian representation and their parameter sets are presented. Coupled cluster, configuration interaction, and QMC studies are carried out for the scandium and titanium atoms and their oxides, demonstrating the good performance of the pseudopotentials. Even though the choice of pseudopotential form is motivated by QMC, these pseudopotentials can also be employed in other quantum chemical approaches.
Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki
2010-09-15
We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate.
Synthesis of aluminum-based scandium-yttrium master alloys
NASA Astrophysics Data System (ADS)
Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.
2015-07-01
The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.
Radchenko, Valery; Engle, Jonathan W; Medvedev, Dmitri G; Maassen, Joel M; Naranjo, Cleo M; Unc, George A; Meyer, Catherine A L; Mastren, Tara; Brugh, Mark; Mausner, Leonard; Cutler, Cathy S; Birnbaum, Eva R; John, Kevin D; Nortier, F Meiring; Fassbender, Michael E
2017-07-01
Scandium-44g (half-life 3.97h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44g Sc is the 44 Ti/ 44g Sc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44 Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44 Ti isolation and purification. This study describes the production of a combined 175MBq (4.7mCi) batch yield of 44 Ti in week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44 Ti via anion exchange sorption in concentrated HCl results in a 44 Tc/Sc separation factor of 10 2 -10 3 . A second, cation exchange based step in HCl media is then applied for 44 Ti fine purification from residual Sc mass. In summary, this method yields a 90-97% 44 Ti recovery with an overall Ti/Sc separation factor of ≥10 6 . Copyright © 2017 Elsevier Inc. All rights reserved.
Radchenko, Valery; Engle, Jonathan Ward; Medvedev, Dmitri G.; ...
2017-04-07
Scandium-44 g (half-life 3.97 h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/ 44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175 MBq (4.7 mCi) batch yield of 44Ti inmore » week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 10 2–10 3. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In conclusion, this method yields a 90–97% 44Ti recovery with an overall Ti/Sc separation factor of ≥10 6.« less
Phase stable rare earth garnets
Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.
2013-06-11
A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.
Meyn, J P; Huber, G
1994-09-15
Neodymium-doped lanthanum scandium borate [Nd:LaSc(3)(BO(3))(4)] is a new material for efficient and compact diode-pumped solid-state lasers. A simple plane-plane 3-mm-long resonator is formed by a coated Nd(10%):LaSc(3)(BO(3))(4) crystal and a coated potassium titanyl phosphate (KTP) crystal. The second-harmonic output power at 531 nm is 522 mW at 2.05-W incident pump power of the diode laser. The corresponding optical efficiency is 25%, and the conversion efficiency from the fundamental to the second harmonic is 55%. The wellknown chaotic power fluctuations of intracavity frequency-doubled lasers (green problem) are avoided by use of a short KTP crystal, between 0.5 and 2 mm in length.
Rotsch, David A; Brown, M Alex; Nolen, Jerry A; Brossard, Thomas; Henning, Walter F; Chemerisov, Sergey D; Gromov, Roman G; Greene, John
2018-01-01
The photonuclear production of no-carrier-added (NCA) 47 Sc from solid Nat TiO 2 and the subsequent chemical processing and purification have been developed. Scandium-47 was produced by the 48 Ti(γ,p) 47 Sc reaction with Bremsstrahlung photons produced from the braking of electrons in a high-Z (W or Ta) convertor. Production yields were simulated with the PHITS code (Particle and Heavy Ion Transport-code System) and compared to experimental results. Irradiated TiO 2 targets were dissolved in fuming H 2 SO 4 in the presence of Na 2 SO 4 and 47 Sc was purified using the commercially available Eichrom DGA resin. Typical 47 Sc recovery yields were >90% with excellent specific activity for small batches (<185 MBq batches). Copyright © 2017 Elsevier Ltd. All rights reserved.
Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets
Rotsch, David A.; Brown, M. Alex; Nolen, Jerry A.; ...
2017-11-06
Here, the photonuclear production of no-carrier-added (NCA) 47Sc from solid NatTiO 2 and the subsequent chemical processing and purification have been developed. Scandium-47 was produced by the 48Ti(γ,p) 47Sc reaction with Bremsstrahlung photons produced from the braking of electrons in a high-Z (W or Ta) convertor. Production yields were simulated with the PHITS code (Particle and Heavy Ion Transport-code System) and compared to experimental results. Irradiated TiO 2 targets were dissolved in fuming H 2SO 4 in the presence of Na 2SO 4 and 47Sc was purified using the commercially available Eichrom DGA resin. Typical 47Sc recovery yields were >90%more » with excellent specific activity for small batches (<185 MBq batches).« less
Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotsch, David A.; Brown, M. Alex; Nolen, Jerry A.
Here, the photonuclear production of no-carrier-added (NCA) 47Sc from solid NatTiO 2 and the subsequent chemical processing and purification have been developed. Scandium-47 was produced by the 48Ti(γ,p) 47Sc reaction with Bremsstrahlung photons produced from the braking of electrons in a high-Z (W or Ta) convertor. Production yields were simulated with the PHITS code (Particle and Heavy Ion Transport-code System) and compared to experimental results. Irradiated TiO 2 targets were dissolved in fuming H 2SO 4 in the presence of Na 2SO 4 and 47Sc was purified using the commercially available Eichrom DGA resin. Typical 47Sc recovery yields were >90%more » with excellent specific activity for small batches (<185 MBq batches).« less
Scandium Terminal Imido Chemistry.
Lu, Erli; Chu, Jiaxiang; Chen, Yaofeng
2018-02-20
Research into transition metal complexes bearing multiply bonded main-group ligands has developed into a thriving and fruitful field over the past half century. These complexes, featuring terminal M═E/M≡E (M = transition metal; E = main-group element) multiple bonds, exhibit unique structural properties as well as rich reactivity, which render them attractive targets for inorganic/organometallic chemists as well as indispensable tools for organic/catalytic chemists. This fact has been highlighted by their widespread applications in organic synthesis, for example, as olefin metathesis catalysts. In the ongoing renaissance of transition metal-ligand multiple-bonding chemistry, there have been reports of M═E/M≡E interactions for the majority of the metallic elements of the periodic table, even some actinide metals. In stark contrast, the largest subgroup of the periodic table, rare-earth metals (Ln = Sc, Y, and lanthanides), have been excluded from this upsurge. Indeed, the synthesis of terminal Ln═E/Ln≡E multiple-bonding species lagged behind that of the transition metal and actinide congeners for decades. Although these species had been pursued since the discovery of a rare-earth metal bridging imide in 1991, such a terminal (nonpincer/bridging hapticities) Ln═E/Ln≡E bond species was not obtained until 2010. The scarcity is mainly attributed to the energy mismatch between the frontier orbitals of the metal and the ligand atoms. This renders the putative terminal Ln═E/Ln≡E bonds extremely reactive, thus resulting in the formation of aggregates and/or reaction with the ligand/environment, quenching the multiple-bond character. In 2010, the stalemate was broken by the isolation and structural characterization of the first rare-earth metal terminal imide-a scandium terminal imide-by our group. The double-bond character of the Sc═N bond was unequivocally confirmed by single-crystal X-ray diffraction. Theoretical investigations revealed the presence of two p-d π bonds between the scandium ion and the nitrogen atom of the imido ligand and showed that the dianionic [NR] 2- imido ligand acts as a 2σ,4π electron donor. Subsequent studies of the scandium terminal imides revealed highly versatile and intriguing reactivity of the Sc═N bond. This included cycloaddition toward various unsaturated bonds, C-H/Si-H/B-H bond activations and catalytic hydrosilylation, dehydrofluorination of fluoro-substituted benzenes/alkanes, CO 2 and H 2 activations, activation of elemental selenium, coordination with other transition metal halides, etc. Since our initial success in 2010, and with contributions from us and across the community, this young, vibrant research field has rapidly flourished into one of the most active frontiers of rare-earth metal chemistry. The prospect of extending Ln═N chemistry to other rare-earth metals and/or different metal oxidation states, as well as exploiting their stoichiometric and catalytic reactivities, continues to attract research effort. Herein we present an account of our investigations into scandium terminal imido chemistry as a timely summary, in the hope that our studies will be of interest to this readership.
Formal Synthesis of (±)-Roseophilin
Bitar, Abdallah Y.; Frontier, Alison J.
2009-01-01
A formal synthesis of (±)-roseophilin is described. Scandium(III)-catalyzed Nazarov cyclization of 2,5-disubstituted N-tosylpyrrole 19 gives a 5,5’-fused ketopyrrole, and ansa-bridge formation via π-allyl palladium macrocyclization gives 21. PMID:19053717
NASA Astrophysics Data System (ADS)
Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo
2016-09-01
Thermodynamic properties of rare earth metals in LiCl-KCl molten salt electrolyte are crucial to the development of electrochemical separation for the treatment of used nuclear fuels. In the present study, activity coefficient, apparent potential, and diffusion coefficient of lanthanum, yttrium, scandium, and terbium in the molten salt (58 at% LiCl and 42 at% KCl) were calculated by the method of molecular dynamics simulation up to a concentration around 3 at% at temperatures of 723 K and 773 K. It was found that the activity coefficient and the apparent potential increase with the species concentration while diffusion coefficient shows a trend of increase followed by decrease. The calculated results were validated by available measurement data of dilution cases. This research extends the range of data to a wide component and would provide further insight to the pyroprocessing design and safeguards.
NASA Technical Reports Server (NTRS)
Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.
2010-01-01
A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, Valery; Meyer, Catherine Anne Louise; Engle, Jonathan Ward
Scandium-44 g (half-life 3.97 h) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18F, due to its favorable decay parameters. One source of 44gSc is the long-lived parent nuclide 44Ti (half-life 60.0 a). A 44Ti/ 44gSc generator would have the ability to provide radionuclidically pure 44gSc on a daily basis. The production of 44Ti via the 45Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems basedmore » on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Lastly, results indicate that ZR resin in HCl media represents an effective 44Ti/ 44gSc separation system.« less
Investigation of ionic transport in sodium scandium phosphate (NSP) and related compounds
NASA Astrophysics Data System (ADS)
Bhat, Kaustubh; Blügel, Stefan; Lustfeld, Hans
Sodium ionic conductors offer significant advantages for application in large scale energy storage systems. In this study, we investigate the different pathways available for sodium ion conduction in NSP and calculate energy barriers for ionic transport using Density Functional Theory (DFT) and the Nudged Elastic Band Method. We identify the structural parameters that reduce the energy barrier, by calculating the influence of positive and negative external pressure on the energy barrier. Lattice strain can be introduced by cation or anion substitution within the NASICON structure. We substitute the scandium atom with other trivalent atoms such as aluminium and yttrium, and calculate the resulting energy barriers. Sodium thiophosphate (Na3PS4) has previously shown about two orders of magnitude higher ionic conductivity than sodium phosphate (Na3PO4). We investigate the effect of substituting oxygen with sulphur in NSP. We acknowledge discussions with our experimental colleagues F. Tietz and M. Guin toward this work
Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing
NASA Astrophysics Data System (ADS)
Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan
2017-12-01
Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge2Sb2Te5). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc0.2Sb2Te3) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.
Unusual Metals in Galactic Center Stars
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-03-01
Far from the galactic suburbs where the Sun resides, a cluster of stars in the nucleus of the Milky Way orbits a supermassive black hole. Can chemical abundance measurements help us understand the formation history of the galactic center nuclear star cluster?Studying Stellar PopulationsMetallicity distributions for stars in the inner two degrees of the Milky Way (blue) and the central parsec (orange). [Do et al. 2018]While many galaxies host nuclear star clusters, most are too distant for us to study in detail; only in the Milky Way can we resolve individual stars within one parsec of a supermassive black hole. The nucleus of our galaxy is an exotic and dangerous place, and its not yet clear how these stars came to be where they are were they siphoned off from other parts of the galaxy, or did they form in place, in an environment rocked by tidal forces?Studying the chemical abundances of stars provides a way to separate distinct stellar populations and discern when and where these stars formed. Previous studies using medium-resolution spectroscopy have revealed that many stars within the central parsec of our galaxy have very high metallicities possibly higher than any other region of the Milky Way. Can high-resolution spectroscopy tell us more about this unusual population of stars?Spectral Lines on DisplayTuan Do (University of California, Los Angeles, Galactic Center Group) and collaborators performed high-resolution spectroscopic observations of two late-type giant starslocated half a parsec from the Milky Ways supermassive black hole.Comparison of the observed spectra of the two galactic center stars (black) with synthetic spectra with low (blue) and high (orange) [Sc/Fe] values. Click to enlarge. [Do et al. 2018]In order to constrain the metallicities of these stars, Do and collaborators compared the observed spectra to a grid of synthetic spectra and used a spectral synthesis technique to determine the abundances of individual elements. They found that while one star is only slightly above solar metallicity, the other is likely more than four times as metal-rich as the Sun.The features in the observed and synthetic spectra generally matched well, but the absorption lines of scandium, vanadium, and yttrium were consistently stronger in the observed spectra than in the synthetic spectra. This led the authors to conclude that these galactic center stars are unusually rich in these metals trace elements that could reveal the formation history of the galactic nucleus.Old Stars, New Trends?Scandium to iron ratio versusiron abundance for stars in the disk of the Milky Way (blue) and the stars in this sample (orange). The value reported for this sample is a 95% lower limit. [Do et al. 2018]For stars in the disk of the Milky Way, the abundance of scandium relative to iron tends to decrease as the overall metallicity increases, but the stars investigated in this study are both iron-rich and anomalously high in scandium. This hints that the nuclear star cluster might represent a distinct stellar population with different metallicity trends.However, its not yet clear what could cause the elevated abundances of scandium, vanadium, and yttrium relative to other metals. Each of these elements is linked to a different source; scandium and vanadium are mainly produced in Type II and Type Ia supernovae, respectively, while yttrium is likely synthesized in asymptotic giant branch stars. Future observations of stars near the center of the Milky Way may help answer this question and further constrain the origin of our galaxys nuclear star cluster.CitationTuan Do et al 2018 ApJL 855 L5. doi:10.3847/2041-8213/aaaec3
LEWIS ACID CATALYZED FORMATION OF TETRAHYDROPYRANS IN IONIC LIQUID
Tetrahydropyrans are integral moieties in innumerable natural products and have inspired the development of a variety of different methodologies. A Prins-type cyclization involving the coupling of a homoallylic alcohol and an aldehyde in the presence of catalytic scandium triflat...
Molecular Line Lists for Scandium and Titanium Hydride Using the DUO Program
NASA Astrophysics Data System (ADS)
Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan
2015-06-01
Transition-metal-containing (TMC) molecules often have very complex electronic spectra because of their large number of low-lying, interacting electronic states, of the large multi-reference character of the electronic states and of the large magnitude of spin-orbit and relativistic effects. As a result, fully ab initio calculations of line positions and intensities of TMC molecules have an accuracy which is considerably worse than the one usually achievable for molecules made up by main-group atoms only. In this presentation we report on new theoretical line lists for scandium hydride ScH and titanium hydride TiH. Scandium and titanium are the lightest transition metal atoms and by virtue of their small number of valence electrons are amenable to high-level electronic-structure treatments and serve as ideal benchmark systems. We report for both systems energy curves, dipole curves and various coupling curves (including spin-orbit) characterising their electronic spectra up to about 20 000 cm-1. Curves were obtained using Internally-Contracted Multi Reference Configuration Interaction (IC-MRCI) as implemented in the quantum chemistry package MOLPRO. The curves where used for the solution of the coupled-surface ro-vibronic problem using the in-house program DUO. DUO is a newly-developed, general program for the spectroscopy of diatomic molecules and its main functionality will be described. The resulting line lists for ScH and TiH are made available as part of the Exomol project. L. Lodi, S. N. Yurchenko and J. Tennyson, Mol. Phys. (Handy special issue) in press. S. N. Yurchenko, L. Lodi, J. Tennyson and A. V. Stolyarov, Computer Phys. Comms., to be submitted.
Insights into the mantle geochemistry of scandium from a meta-analysis of garnet data
NASA Astrophysics Data System (ADS)
Chassé, Mathieu; Griffin, William L.; Alard, Olivier; O'Reilly, Suzanne Y.; Calas, Georges
2018-06-01
The meta-analysis of about 13,000 analyses of scandium content in garnet grains shows that, below the spinel-garnet transition, this phase carries about three-quarters of the Sc budget of the mantle, indicating its control on Sc mobility. The Sc content of garnets in mafic rocks is low, due to a dilution effect resulting from their high modal content in garnet. Garnets from ultramafic rocks exhibit a wider range of Sc concentrations. We assess the relative influence of thermobarometry, crystal chemistry and fluid-related events on the distribution of Sc in garnet from such rocks to improve the tracking of geochemical processes in the mantle. Pressure and temperature of equilibration in the mantle are second-order factors influencing the Sc content of garnet, while crystal chemistry, in particular Cr/Cr+Al and Ca/Ca+Mg, is the main parameter controlling the compatibility of Sc. Scandium is incorporated in both X and Y sites of Cr-Ca-rich garnets, resulting in a behaviour intermediate between rare-earth elements, incorporated in the X site, and trivalent transition elements, occupying the Y site. This affinity for both sites results in a mild compatibility of Sc in the garnet stability field of the mantle; hence Sc concentration in garnet increases with melt extraction and can be reduced by silicate-melt metasomatism. In contrast, metasomatism by volatile-rich fluids increases the Sc concentration in garnet. The control of garnet on the compatibility of Sc in deep lithospheric rocks demonstrates the potential of using Sc to track the conditions of formation of magmas and their residual rocks, as well as the origin and nature of metasomatic fluids.
NASA Astrophysics Data System (ADS)
Dixon, Sebastian C.; Jiamprasertboon, Arreerat; Carmalt, Claire J.; Parkin, Ivan P.
2018-05-01
Scandium(III) oxide thin film deposition has been historically difficult to achieve without the use of vacuum-based or wet chemical systems due to precursor limitations of low vapour pressure or ambient instability. In this letter, the adoption of aerosol-assisted delivery of scandium(III) acetylacetonate has enabled the chemical vapour deposition of polycrystalline and amorphous Sc2O3 thin films at ambient pressure with high growth rates (ca. 500 nm h-1). The scandia films were intrinsically highly photoluminescent, exhibiting broad emission bands centred at 3.6 and 3.0 eV, which increased significantly in intensity upon aerobic annealing, accompanying a transition from amorphous to crystalline, while bands appearing at 2.1 and 2.3 eV seemed to occur only in the crystalline films. In addition, both amorphous and crystalline scandia films exhibited blue-green vibronic fine structure between 2.3 and 3.2 eV attributed to the electronic transition B→κ Σ+ 2 Σ+ in surface ⋯ O - ⋯ O - S c = O groups and split by a vibrational mode observed at 920 ± 60 cm - 1 by infrared spectroscopy. Band gaps of amorphous and crystalline Sc2O3 were determined to be 5.3 and 5.7 eV, respectively via diffuse reflectance. All films had high refractive indices, varying between 1.8 and 2.0 at 400 nm depending on film thickness and carrier gas used in the deposition; film thicknesses less than ca. 300 nm were observed to have a strong influence on the refractive index measured, while there was little variation for films thicker than this. The synthesis process itself is exceedingly low-cost and facile thus promising streamlined industrial scalability.
40 CFR 421.271 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals.... (b) The term rare earth metals refers to the elements scandium, yttrium, and lanthanum to lutetium, inclusive. (c) The term mischmetal refers to a rare earth metal alloy comprised of the natural mixture of...
40 CFR 421.271 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals.... (b) The term rare earth metals refers to the elements scandium, yttrium, and lanthanum to lutetium, inclusive. (c) The term mischmetal refers to a rare earth metal alloy comprised of the natural mixture of...
40 CFR 421.271 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals.... (b) The term rare earth metals refers to the elements scandium, yttrium, and lanthanum to lutetium, inclusive. (c) The term mischmetal refers to a rare earth metal alloy comprised of the natural mixture of...
40 CFR 421.271 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals.... (b) The term rare earth metals refers to the elements scandium, yttrium, and lanthanum to lutetium, inclusive. (c) The term mischmetal refers to a rare earth metal alloy comprised of the natural mixture of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenbo; He, Xingli; Ye, Zhi, E-mail: yezhi@zju.edu.cn, E-mail: jl2@bolton.ac.uk
AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are muchmore » higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.« less
Benetti, Carolina; Ana, Patricia Aparecida; Bachmann, Luciano; Zezell, Denise Maria
2015-12-01
The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures.
Yb-doped mixed-sesquioxide films grown by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Prentice, Jake J.; Grant-Jacob, James A.; Shepherd, David P.; Eason, Robert W.; Mackenzie, Jacob I.
2018-06-01
Growth and characterization of compositionally tuned, ytterbium-doped mixed lutetium-scandium oxide, and pure lutetia and scandia crystalline films are presented. Pulsed laser deposition was employed to grow these sesquioxide films, of thicknesses up to 20 μm, on (0 0 0 1)-sapphire substrates. By varying the atomic ratio of lutetium to scandium in the target, the lattice parameter of the resulting films could be tuned to match that of the single-crystal c-cut sapphire substrate and thereby achieve a lattice mismatch of <0.1%. Optimization of growth parameters led to a reduction of undesirable particulates and scattering points within the film. X-ray diffraction measurements show (2 2 2)-orientated epitaxial growth with crystallinity comparable to bulk crystals. Through pole figure and electron-backscatter imaging measurements, it was found that two inverted cubic lattice orientations grow with micron-scaled domains. Growth of these lattice-matched mixed sesquioxides paves the way for fabrication of high-quality waveguides suitable for generation of ultrashort laser pulses.
Eppard, Elisabeth; de la Fuente, Ana; Mohr, Nicole; Allmeroth, Mareli; Zentel, Rudolf; Miederer, Matthias; Pektor, Stefanie; Rösch, Frank
2018-02-27
In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h. This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.
Evaluation of the Benjamin type proportional counter for absolute neutron spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taeb, M.
1985-01-01
This evaluation has shown that the major sources of uncertainty in experimental measurements with a Benjamin detector are: (1) detector pressure, (2) hydrogen gas purity, (3) detector calibration, and (4) operating voltage. To test these operational parameters, neutron spectra were measured at the University of Missouri Research Reactor (MURR) for silicon, scandium, iron, and bismuth filtered beams and angular penetration data through an 20.3 cm water slab. Results were then critically compared with theoretical calculations and with data from other spectrometer systems in regions of energy overlap. Neutron spectra having relatively small contributions from neutrons with energies higher than themore » energy range of the Benjamin spectrometer (at a specific pressure) generally exhibit excellent results. This is particularly true for the silicon filter (which produces two quasi-monoenergetic peaks at 55 keV and 144 keV) and the scandium filter (which creates a spectrum which decreases with increasing energy). For those spectra exhibiting relatively larger high energy neutron components, the results are less satisfying.« less
Rizoiu, I M; Eversole, L R; Kimmel, A I
1996-10-01
Lasers are effective tools for soft tissue surgery. The erbium, chromium: yttrium, scandium, gallium, garnet laser is a new system that incorporates an air-water spray. This study evaluates the cutting margins of this laser and compares healing with laser and conventional scalpel and punch biopsy-induced wounds. New Zealand white rabbits were divided into serial sacrifice groups; the tissues were grossly and microscopically analyzed after laser and convential steel surgical wounding. Wound margins were found to show minimal edge coagulation artifact and were 20 to 40 mm in width. Laser wounds showed minimal to no hemorrhage and re-epithelialization and collagenization were found to occur by day 7 in both laser and conventional groups. The new laser system is an effective soft tissue surgical device; wound healing is comparable to that associated with surgical steel wounds. The minimal edge artifact observed with this laser system should allow for the procurement of diagnostic biopsy specimens.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Rapaport, Alexandra; Zhao, Shengzhi; Xiao, Guohua; Howard, Andrew; Bass, Michael
2002-11-20
A linear temperature dependence between -70 degrees C and +70 degrees C is reported for the peak stimulated emission cross section of Nd3+ ions in both yttrium aluminum garnet (YAG) and gadolinium scandium gallium garnet (GSGG).
Rare earth elements (REEs) are a group of 15 chemical elements in the periodic table, specifically the lanthanides. Two other elements, scandium and yttrium, have a similar physiochemistry to the lanthanides, are commonly found in the same mineral assemblages, and are often refe...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Scandium 48 (Sc 48) Selenium 75 (Se 75) Silicon 31 (Si 31) Silver 105 (Ag 105) Silver 110m (Ag 110m) Silver 111 (Ag 111) Sodium 22 (Na 22) Sodium 24 (Na 24) Strontium 85 (Sr 85) Strontium 89 (Sr 89) Strontium...
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Scandium 48 (Sc 48) Selenium 75 (Se 75) Silicon 31 (Si 31) Silver 105 (Ag 105) Silver 110m (Ag 110m) Silver 111 (Ag 111) Sodium 22 (Na 22) Sodium 24 (Na 24) Strontium 85 (Sr 85) Strontium 89 (Sr 89) Strontium...
NASA Astrophysics Data System (ADS)
Titus, S.; Balakumar, S.; Sakar, M.; Das, J.; Srinivasu, V. V.
2017-12-01
Bi1-xScxFeO3 (x = 0.0, 0.1, 0.15, 0.25) nano particles were synthesized by sol gel method. We then probed the spin system in these nano particles using electron spin resonance technique. Our ESR results strongly suggest the scenario of modified spin canted structures. Spin canting parameter Δg/g as a function of temperature for Scandium doped BFO is qualitatively different from undoped BFO. A broad peak is observed for all the Scandium doped BFO samples and an enhanced spin canting over a large temperature range (75-210 K) in the case of x = 0.15 doping. We also showed that the asymmetry parameter and thereby the magneto-crystalline anisotropy in these BSFO nanoparticles show peaks around 230 K for (x = 0.10 and 0.15) and beyond 300 K for x = 0.25 system. Thus, we established that the Sc doping significantly modifies the spin canting and magneto crystalline anisotropy in the BFO system.
NASA Technical Reports Server (NTRS)
Lee, J. A.; Chen, P. S.
2004-01-01
This Technical Memorandum describes the development of several high-strength aluminum (Al) alloys that are compatible with hydrogen peroxide (H2O2) propellant for NASA Hypersonic-X (Hyper-X) vehicles fuel tanks and structures. The yield strengths for some of these Al-magnesium-based alloys are more than 3 times stronger than the conventional 5254-H112 Al alloy, while maintaining excellent H2O2 compatibility similar to class 1 5254 alloy. The alloy development strategy is to add scandium, zirconium, and other transitional metals with unique electrochemical properties, which will not act as catalysts, to decompose the highly concentrated 90 percent H2O2. Test coupons are machined from sheet metals for H2O2 long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloys using friction stir welding has also been explored. The new high-strength alloys could represent an enabling material technology for Hyper-X vehicles, where flight weight reduction is a critical requirement.
Nelson, Jack L.; Haushild, W.L.
1970-01-01
Amounts of radionuclides from the Hanford reactors contained in bed sediments of the Columbia River were estimated by two methods: (1) from data on radionuclide concentration for the bed sediments between the reactors and McNary Dam, and (2) from data on radionuclide discharge for river stations at Pasco, Washington, and Umatilla, Oregon. Umatilla is 3.2 kilometers below McNary Dam. Accumulations of radionuclides in the Pasco to Umatilla reach estimated by the two methods agree within about 8%. In October 1965 approximately 16,000 curies of gamma emitting radionuclides were resident in bed sediments of the river between the Hanford reactors and McNary Dam. Concentrations and accumulations of chromium-51, zinc-65, cobalt-60, manganese-54, and scandium-46 generally are much higher near McNary Dam than they are in the vicinity of the reactors. These changes are caused by an increase downstream from the reactors in the proportion of the bed sediment that is fine grained and the proportions of the transported zinc, cobalt, manganese, and scandium radionuclides associated with sediment particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fichtner, Simon, E-mail: sif@tf.uni-kiel.de; Reimer, Tim; Chemnitz, Steffen
2015-11-01
Scandium alloyed aluminum nitride (Al{sub 1−x}Sc{sub x}N) thin films were fabricated by reactive pulsed direct current co-sputtering of separate scandium and aluminum targets with x ≤ 0.37. A significant improvement of the clamped transversal piezoelectric response to strain e{sub 31,f} from −1.28 C/m{sup 2} to −3.01 C/m{sup 2} was recorded, while dielectric constant and loss angle remain low. Further, the built-in stress level of Al{sub 1−x}Sc{sub x}N was found to be tuneable by varying pressure, Ar/N{sub 2} ratio, and Sc content. The thus resulting enhancement of the expectable signal to noise ratio by a factor of 2.1 and the abilitymore » to control built-in stress make the integration of Al{sub 1−x}Sc{sub x}N as the piezoelectric phase of micro-electro-mechanical system sensor applications highly attractive.« less
Kang, Youngjea; Kampf, Jeff W; Meyerhoff, Mark E
2007-08-29
A fluoride-selective optical sensor based on scandium(III)-octaethylporphyrin (Sc(III)OEP) as an ionophore within a plasticized PVC film is described. The presence of fluoride ion in the aqueous sample phase increases the formation of a difluoro-bridged Sc(III)OEP dimer species in the polymer film. The ability of the Sc(III) porphyrin to form the dimeric structure in the presence of fluoride is confirmed by UV-vis spectroscopy and X-ray crystallography. For more practical sensing applications, a pH chromoionophore (ETH 7075) is added to the plasticized PVC film along with Sc(III)OEP and the observed optical response is based on coextraction of protons with sample phase fluoride to create the dimeric porphyrin and a protonated chromoionophore species. The selectivity pattern observed is F- > ClO4(-), SCN-, NO3(-) > Br-, Cl-. Only organic salicylate is a significant interferent. Fast and reversible fluoride response is observed over the range of 10(-4) to 10(-2) M fluoride, allowing use of the sensing film in a waveguide configuration for flow-injection measurements.
Kang, Youngjea; Kampf, Jeff W.; Meyerhoff, Mark E.
2007-01-01
A fluoride-selective optical sensor based on scandium(III) octaethylporphyrin (Sc(III)OEP) as an ionophore within a plasticized PVC film is described. The presence of fluoride ion in the aqueous sample phase increases the formation of a difluoro-bridged Sc(III)OEP dimer species in the polymer film. The ability of the Sc(III) porphyrin to form the dimeric structure in the presence of fluoride is confirmed by UV-Vis spectroscopy and X-ray crystallography. For more practical sensing applications, a pH chromoionophore (ETH 7075) is added to the plasticized PVC film along with Sc(III)OEP and the observed optical response is based on co-extraction of protons with sample phase fluoride to create the dimeric porphyrin and a protonated chromoionophore species. The selectivity pattern observed is F-≫ClO4-, SCN-, NO3->Br-, Cl-. Only organic salicylate is a significant interferent. Fast and reversible fluoride response is observed over the range of 10-4 ~10-2 M fluoride, allowing use of the sensing film in a waveguide configuration for flow-injection measurements. PMID:17719905
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.
2016-06-06
This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotatingmore » the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.« less
Ratcheting rotation or speedy spinning: EPR and dynamics of Sc3C2@C80.
Roukala, Juho; Straka, Michal; Taubert, Stefan; Vaara, Juha; Lantto, Perttu
2017-08-08
Besides their technological applications, endohedral fullerenes provide ideal conditions for investigating molecular dynamics in restricted geometries. A representative of this class of systems, Sc 3 C 2 @C 80 displays complex intramolecular dynamics. The motion of the 45 Sc trimer has a remarkable effect on its electron paramagnetic resonance (EPR) spectrum, which changes from a symmetric 22-peak pattern at high temperature to a single broad lineshape at low temperature. The scandium trimer consists of two equivalent and one inequivalent metal atom, due to the carbon dimer rocking through the Sc 3 triangle. We demonstrate through first-principles molecular dynamics (MD), EPR parameter tensor averaging, and spectral modelling that, at high temperatures, three-dimensional movement of the enclosed Sc 3 C 2 moiety takes place, which renders the metal centers equivalent and their magnetic parameters effectively isotropic. In contrast, at low temperatures the dynamics becomes restricted to two dimensions within the equatorial belt of the I h symmetric C 80 host fullerene. This restores the inequivalence of the scandium centers and causes their anisotropic hyperfine couplings to broaden the experimental spectrum.
Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing.
Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan
2017-12-15
Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge 2 Sb 2 Te 5 ). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc 0.2 Sb 2 Te 3 ) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Frenolicins C-G, pyranonaphthoquinones from Streptomyces sp. RM-4-15.
Wang, Xiachang; Shaaban, Khaled A; Elshahawi, Sherif I; Ponomareva, Larissa V; Sunkara, Manjula; Zhang, Yinan; Copley, Gregory C; Hower, James C; Morris, Andrew J; Kharel, Madan K; Thorson, Jon S
2013-08-23
Appalachian active coal fire sites were selected for the isolation of bacterial strains belonging to the class actinobacteria. A comparison of high-resolution electrospray ionization mass spectrometry (HRESIMS) and ultraviolet (UV) absorption profiles from isolate extracts to natural product databases suggested Streptomyces sp. RM-4-15 to produce unique metabolites. Four new pyranonaphthoquinones, frenolicins C-F (1-4), along with three known analogues, frenolicin (6), frenolicin B (7), and UCF76-A (8), were isolated from the fermentation of this strain. An additional new analogue, frenolicin G (5), along with two known compounds, deoxyfrenolicin (9) and UCF 13 (10), were isolated from the fermentation supplied with 18 mg/L of scandium chloride, the first example, to the best of our knowledge, wherein scandium chloride supplementation led to the confirmed production of new bacterial secondary metabolites. Structures 1-5 were elucidated on the basis of spectral analysis and chemical modification. While frenolicins are best known for their anticoccidial activity, the current study revealed compounds 6-9 to exhibit moderate cytotoxicity against the human lung carcinoma cell line (A549) and thereby extends the anticancer SAR for this privileged scaffold.
Proceedings 43rd Stanford Geothermal Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Stuart; Kirby, Stefan; Verplanck, Philip
Herein we summarize the results of an investigation dealing with the concentrations and inventories of strategic, critical and valuable materials (SCVM) in produced fluids from geothermal and hydrocarbon reservoirs (50-250° C) in Nevada and Utah. Water samples were collected from thirty-four production wells across eight geothermal fields, the Uinta Basin oil/gas province in northeast Utah, and the Covenant oil field in southwestern Utah; additional water samples were collected from six hot springs in the Sevier Thermal Belt in southwestern Utah. Most SCVM concentrations in produced waters range from <0.1 to 100 µg/kg; the main exception is lithium, which has concentrationsmore » that range from <1000 to 25,000 ug/kg. Relatively high concentrations of gallium, germanium, scandium, selenium, and tellurium are measured too. Geothermal waters contain very low concentrations of REEs, below analytical detections limits (0.01 µg/kg), but the concentrations of lanthanum, cerium, and europium range from 0.05 to 5 µg/kg in Uinta basin waters. Among the geothermal fields, the Roosevelt Hot Spring reservoir appears to have the largest inventories of germanium and lithium, and Patua appears to have the largest inventories of gallium, scandium, selenium, and tellurium. By comparison, the Uinta basin has larger inventories of gallium. The concentrations of gallium, germanium, lithium, scandium, selenium, and tellurium in produced waters appear to be partly related to reservoir temperature and concentrations of total dissolved salts. The relatively high concentration and large inventory of lithium occurring at Roosevelt Hot Springs may be related to granitic-gneissic crystalline rocks, which host the reservoir. Analyses of calcite scales from Dixie Valley indicate enrichments in cobalt, gallium, gold, palladium, selenium and tellurium, and these metals appear to be depositing at deep levels in production wells due to boiling. Comparisons with SCVM mineral deposits suggest that brines in sedimentary basins, or derived from lacustrine evaporites, enable aqueous transport of gallium, germanium, and lithium.« less
Kakuda, Saya; Rolle, Clarence; Ohkubo, Kei; Siegler, Maxime A.; Karlin, Kenneth D.; Fukuzumi, Shunichi
2015-01-01
Mononuclear copper complexes, [(tmpa)CuII(CH3CN)](ClO4)2 (1, tmpa = tris(2-pyridylmethyl)amine) and [(BzQ)CuII(H2O)2](ClO4)2 (2, BzQ = bis(2-quinolinylmethyl)benzylamine)], act as efficient catalysts for the selective two-electron reduction of O2 by ferrocene derivatives in the presence of scandium triflate (Sc(OTf)3), in acetone, whereas 1 catalyzes the four-electron reduction of O2 by the same reductant in the presence of Brønsted acids such as triflic acid. Following formation of the peroxo-bridged dicopper(II) complex [(tmpa)CuII(O2)CuII(tmpa)]2+, the two-electron reduced product of O2 with Sc3+ is observed to be scandium peroxide ([Sc3+(O22−)]+). In the presence of three equiv of hexamethylphosphoric triamide (HMPA), [Sc3+(O22−)]+ was oxidized by [Fe(bpy)3]3+ (bpy = 2,2′-bipyridine) to the known superoxide species [(HMPA)3Sc3+(O2•−)]2+ as detected by EPR spectroscopy. A kinetic study revealed that the rate-determining step of the catalytic cycle for the two-electron reduction of O2 with 1 is electron transfer from Fc* to 1 to give a cuprous complex which is highly reactive toward O2, whereas the rate-determining step with 2 is changed to the reaction of the cuprous complex with O2 following electron transfer from ferrocene derivatives to 2. The explanation for the change in catalytic O2-reaction stoichiometry from four-electron with Brønsted acids to two-electron reduction in the presence of Sc3+ and also for the change in the rate-determining step is clarified based on a kinetics interrogation of the overall catalytic cycle as well as each step of the catalytic cycle with study of the observed effects of Sc3+ on copper-oxygen intermediates. PMID:25659416
Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V
2015-09-07
HIGHLIGHTS • Production of Sc-44 m, Sc-44 g and contaminants. • Experimental values determined using the stacked-foil technique. • Thick-Target production Yield (TTY) calculations. • Comparison with the TALYS code version 1.6.Among the large number of radionuclides of medical interest, Sc-44 is promising for PET imaging. Either the ground-state Sc-44 g or the metastable-state Sc-44 m can be used for such applications, depending on the molecule used as vector. This study compares the production rates of both Sc-44 states, when protons or deuterons are used as projectiles on an enriched Calcium-44 target. This work presents the first set of data for the deuteron route. The results are compared with the TALYS code. The Thick-Target production Yields of Sc-44 m and Sc-44 g are calculated and compared with those for the proton route for three different scenarios: the production of Sc-44 g for conventional PET imaging, its production for the new 3 γ imaging technique developed at the SUBATECH laboratory and the production of a Sc-44 m/Sc-44 g in vivo generator for antibody labelling.
NASA Astrophysics Data System (ADS)
Kaurova, I. A.; Domoroshchina, E. N.; Kuz'micheva, G. M.; Rybakov, V. B.
2017-06-01
Single crystals of scandium-containing rare-earth garnets in system R-Sc-C-O (R3+=Y, Gd; C3+=Al, Ga) have been grown by the Czochralski technique. X-ray diffraction analysis has been used to refine crystal compositions. The fundamental difference between the melt compositions and compositions of grown crystals has been found (except for compositions of congruent-melting compounds, CMC). The specific features of garnet solid solution formation have been established and the ternary diagrams with real or hypothetical phases have been built. The dinamics of coordination polyhedra changes with the formation of substitutional solid solutions have been proposed based on the mathematical modeling and experimental data. Possible existence of CMC with garnet structure in different systems as well as limit content of Sc ions in dodecahedral and octahedral sites prior to their partial substitution of ions, located in other sites, have been evaluated. It was established that the redistribution of cations over crystallographic sites (antistructural point defects) due to system self-organization to maintain its stability may be accompanied by cation ordering and the symmetry change of individual polyhedrons and/or the whole crystal.
Near Infrared Laser Spectroscopy of Scandium Monobromide
NASA Astrophysics Data System (ADS)
Xia, Ye; Cheung, A. S.-C.; Liao, Zhenwu; Yang, Mei; Chan, Man-Chor
2012-06-01
High resolution laser spectrum of scandium monobromide (ScBr) between 787 and 845 nm has been investigated using the technique of laser vaporization/reaction with free jet expansion and laser induced fluorescence spectroscopy. ScBr was produced by reacting laser vaporized Sc atoms with ethyl bromide (C2H5Br). Spectra of six vibrational bands of both Sc79Br and Sc81Br isotopomers of the C1 Σ+ - X1 Σ+ transition and seven vibrational bands of the e3 Δ - a3 Δ transition were obtained and analyzed. Least-squares fit of the measured line positions for the singlet transitions yielded accurate molecular constants for the v = 0 - 3 levels of the C1 Σ+ state and the v = 0 - 2 levels of the X1 Σ+ state. Similar least-squares fit for the triplet transitions yielded molecular constants for the v = 0 - 2 levels of both e3 Δ and a3 Δ states. The equilibrium bond length, r_0, of the a3 Δ state has been determined to be 2.4789 Å. Financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 701008P) is gratefully acknowledged
NASA Astrophysics Data System (ADS)
Allwes, Mark; Mekaoui, Mehdi; Sorescu, Monica
2017-08-01
xSc2O3-(1-x)α-Fe2O3 (x = 0.1, 0.3 and 0.5) nanocomposite systems were successfully synthesized by mechanochemical activation of Sc2O3 and α-Fe2O3 mixtures for 0-12 h of ball milling time. Mössbauer investigations were performed to study the structural and magnetic properties of xSc2O3-(1-x)α-Fe2O3 nanoparticle systems during the mechanochemical activation treatment. The Mössbauer studies showed that the spectrum of the mechanochemically activated composites evolved from a sextet for hematite to sextets and a doublet upon duration of the milling process with scandium oxide. Mutual solubility was achieved at the nanoscopic level only. A comprehensive Mössbauer study was performed by recording the recoilless fraction f as function of the ball milling time using our dual absorber method. The results obtained indicate that prolonged ball milling times favor formation of the Fe:Sc2O3 non-magnetic phase and decrease of the grain sizes for both magnetic and non-magnetic components, leading to a maximum in the recoilless fraction followed by its decay.
Gustini, Liliana; Lavilla, Cristina; Janssen, William W T J; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián; Koning, Cor E
2016-08-23
Renewable polyesters derived from a sugar alcohol (i.e., sorbitol) were synthesized by solvent-free polycondensation. The aim was to prepare linear polyesters with pendant hydroxyl groups along the polymer backbone. The performance of the sustainable biocatalyst SPRIN liposorb CALB [an immobilized form of Candida antarctica lipase B (CALB); SPRIN technologies] and the organo-base catalyst 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) were compared with two metal-based catalysts: dibutyl tin oxide (DBTO) and scandium trifluoromethanesulfonate [also known as scandium triflate, Sc(OTf)3 ]. For the four catalytic systems, the efficiency and selectivity for the incorporation of sorbitol were studied, mainly using (13) C and (31) P NMR spectroscopies, whereas side reactions, such as ether formation and dehydration of sorbitol, were evaluated using MALDI-TOF-MS. Especially the biocatalyst SPRIN liposorb CALB succeeded in incorporating sorbitol in a selective way without side reactions, leading to close-to-linear polyesters. By using a renewable hydroxyl-reactive curing agent based on l-lysine, transparent and glossy poly(ester urethane) networks were successfully synthesized offering a tangible example of bio-based coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Precipitation hardening austenitic superalloys
Korenko, Michael K.
1985-01-01
Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallesham, B.; Ranjith, R., E-mail: ranjith@iith.ac.in; Manivelraja, M.
2014-07-21
The current study explores non-magnetic Sc{sup 3+} induced structural transformation, evolution of local B-site cation ordering and associated effect on ferroelectric phase transition temperature T{sub max} (temperature corresponding to dielectric maxima) on increasing the atom percent of Sc substitution in [Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} (PFN)] ceramics. In this regard, the phase pure Pb[(Fe{sub 0.5−x}Sc{sub x})Nb{sub 0.5}]O{sub 3} ceramics with x varying from 0 to 0.5 were synthesized through solid state reaction route. The detailed structural analysis through Rietveld refinement confirms the room temperature transformation from a monoclinic Cm to rhombohedral R3m structure at x = 0.3 mol. % of Sc. Absorption spectra studies showmore » that there is a considerable increment in the bandgap at higher scandium content. Most interestingly, the T{sub max} exhibited an increment for lower scandium contents (x = 0.1 to 0.25) followed by a drop in T{sub max} (x = 0.3 to 0.5). Such anomalous behavior in T{sub max} is expected to arise due to the onset of B′, B″ local cation ordering beyond Sc content x = 0.25. The B-site cation ordering at and beyond x = 0.3 was also confirmed by the evolution of cation order induced Pb-O coupled vibrational mode in Raman scattering studies. In addition, the Mössbauer spectra of PFN (x = 0) and Pb(Fe{sub 0.4}Sc{sub 0.1}Nb{sub 0.5})O{sub 3} (x = 0.1) are reported to verify the spin state and oxidation state of iron. The lattice distortion due to the radius ratio difference between a Sc{sup 3+} cation and Fe{sup 3+} cation in low spin state is responsible for the structural transformation, which in turn facilitates a B′:B″ cation ordering.« less
Phosphors containing boron and metals of Group IIIA and IIIB
Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan
2006-10-31
A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.
Quantum Electronics in the UK. A National-Survey Conference.
1985-10-30
flashlamp pumped chromium action, including transitions in dopants doped gadolinium /scandium/gallium garnet which have not previously shown laser lasers...frac- factors that limit performance. They ture. The Southampton scientists fabri - concluded that excited state absorption, cated the fibers by a...topics such as transverse power on the long wavelength side of a switching waves and cross-talk of bista- Fabry -Perot resonance peak at 844 nm, ble
NASA Astrophysics Data System (ADS)
Wang, Jing; Ma, Hong-Man; Liu, Ying
2016-06-01
An exceptionally stable hollow cage containing 20 scandium atoms and 60 carbon atoms has been identified. This Sc20C60 molecular cluster has a Th point group symmetry and a volleyball-like shape that we refer to below as ``Volleyballene''. Electronic structure analysis shows that the formation of delocalized π bonds between Sc atoms and the neighboring pentagonal rings made of carbon atoms is crucial for stabilizing the cage structure. A relatively large HOMO-LUMO gap (~1.4 eV) was found. The results of vibrational frequency analysis and molecular dynamics simulations both demonstrate that this Volleyballene molecule is exceptionally stable.An exceptionally stable hollow cage containing 20 scandium atoms and 60 carbon atoms has been identified. This Sc20C60 molecular cluster has a Th point group symmetry and a volleyball-like shape that we refer to below as ``Volleyballene''. Electronic structure analysis shows that the formation of delocalized π bonds between Sc atoms and the neighboring pentagonal rings made of carbon atoms is crucial for stabilizing the cage structure. A relatively large HOMO-LUMO gap (~1.4 eV) was found. The results of vibrational frequency analysis and molecular dynamics simulations both demonstrate that this Volleyballene molecule is exceptionally stable. Electronic supplementary information (ESI) available: Sc20C60: a Volleyballene_SI. See DOI: 10.1039/c5nr07784b
Aluminum-Scandium: A Material for Semiconductor Packaging
NASA Astrophysics Data System (ADS)
Geissler, Ute; Thomas, Sven; Schneider-Ramelow, Martin; Mukhopadhyay, Biswajit; Lang, Klaus-Dieter
2016-10-01
A well-known aluminum-scandium (Al-Sc) alloy, already used in lightweight sports equipment, is about to be established for use in electronic packaging. One application for Al-Sc alloy is manufacture of bonding wires. The special feature of the alloy is its ability to harden by precipitation. The new bonding wires with electrical conductivity similar to pure Al wires can be processed on common wire bonders for aluminum wedge/wedge (w/w) bonding. The wires exhibit very fine-grained microstructure. Small Al3Sc particles are the main reason for its high strength and prevent recrystallization and grain growth at higher temperatures (>150°C). After the wire-bonding process, the interface is well closed. Reliability investigations by active power cycling demonstrated considerably improved lifetime compared with pure Al heavy wires. Furthermore, the Al-Sc alloy was sputter-deposited onto silicon wafer to test it as chip metallization in copper (Cu) ball/wedge bonding technology. After deposition, the layers exhibited fine-grained columnar structure and small coherent Al3Sc particles with dimensions of a few nanometers. These particles inhibit softening processes such as Al splashing in fine wire bonding processes and increase the thickness of remnant Al under the copper balls to 85% of the initial thickness.
He, Penghui; Jiang, Congbiao; Lan, Linfeng; Sun, Sheng; Li, Yizhi; Gao, Peixiong; Zhang, Peng; Dai, Xingqiang; Wang, Jian; Peng, Junbiao; Cao, Yong
2018-05-22
Light-emitting field-effect transistors (LEFETs) have attained great attention due to their special characteristics of both the switching capacity and the electroluminescence capacity. However, high-performance LEFETs with high mobility, high brightness, and high efficiency have not been realized due to the difficulty in developing high electron and hole mobility materials with suitable band structures. In this paper, quantum dot hybrid LEFETs (QD-HLEFETs) combining high-luminous-efficiency quantum dots (QDs) and a solution-processed scandium-incorporated indium oxide (Sc:In 2 O 3 ) semiconductor were demonstrated. The red QD-HLEFET showed high electrical and optical performance with an electron mobility of 0.8 cm 2 V -1 s -1 , a maximum brightness of 13 400 cd/m 2 , and a maximum external quantum efficiency of 8.7%. The high performance of the QD-HLEFET is attributed to the good energy band matching between Sc:In 2 O 3 and QDs and the balanced hole and electron injection (less exciton nonradiative recombination). In addition, incorporation of Sc into In 2 O 3 can suppress the oxygen vacancy and free carrier generation and brings about excellent current and optical modulation (the on/off current ratio is 10 5 and the on/off brightness ratio is 10 6 ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, Valery; Engle, Jonathan Ward; Medvedev, Dmitri G.
Scandium-44 g (half-life 3.97 h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/ 44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175 MBq (4.7 mCi) batch yield of 44Ti inmore » week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 10 2–10 3. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In conclusion, this method yields a 90–97% 44Ti recovery with an overall Ti/Sc separation factor of ≥10 6.« less
NASA Astrophysics Data System (ADS)
Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui
2013-12-01
A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.
Nanocomposites for Electronic Applications. Volume 1
1993-06-14
for a PZT thin film micro- motor using a rotating flexure wave generated in a PZT film on a silicon oxynitride diaphragm. The rotating wave has been...Solid State Science, The Pennsylvania State University (May 1992). 6. Jayne R. Giniewicz. "An Investigation of the Lead Scandium Tantalate-Lead...Materials and Structures, SPIE, Albuquerque, NM (February 1-4, 1993). 24. G. Harshe, J. P. Dougherty, and R. E. Newnham. "Theoretical Modelling of 3-0/0-3
Obsidian sources characterized by neutron-activation analysis.
Gordus, A A; Wright, G A; Griffin, J B
1968-07-26
Concentrations of elements such as manganese, scandium, lanthanum, rubidium, samarium, barium, and zirconium in obsidian samples from different flows show ranges of 1000 percent or more, whereas the variation in element content in obsidian samples from a single flow appears to be less than 40 percent. Neutron-activation analysis of these elements, as well as of sodium and iron, provides a means of identifying the geologic source of an archeological artifact of obsidian.
Mineral resource of the month: rare earth elements
,
2011-01-01
The article provides information on rare earth elements, which are group of 17 natural metallic elements. The rare earth elements are scandium, yttrium and lanthanides and classified into light rare earth elements (LREE) and heavy rate earth elements (HREE). The principal ores of the rare earth elements are identified. An overview of China's production of 97 percent of the rare earths in the world is provided. Commercial applications of rare earths are described.
Origin of howardites, diogenites and eucrites - A mass balance constraint
NASA Technical Reports Server (NTRS)
Warren, P. H.
1985-01-01
Two petrogenetic models for the noncumulate-basaltic parts of howardite meteorites are discussed. A mass balance constraint is developed which indicates that more than half of the basaltic components in howardites formed as residual liquids from fractional crystallization of melts that had earlier produced diogentelike pyroxene cumulate components. Other model constriants involving scandium trends, clustering near olivine-pyroxene-plagioclase peritectic, and MgO/(MgO + FeO) ratios are discussed.
Cobalt and scandium partitioning versus iron content for crystalline phases in ultramafic nodules
Glassley, W.E.; Piper, D.Z.
1978-01-01
Fractionation of Co and Sc between garnets, olivines, and clino- and orthopyroxenes, separated from a suite of Salt Lake Crater ultramafic nodules that equilibrated at the same T and P, is strongly dependent on Fe contents. This observation suggests that petrogenetic equilibrium models of partial melting and crystal fractionation must take into account effects of magma composition, if they are to describe quantitatively geochemical evolutionary trends. ?? 1978.
Cr-doped scandium borate laser
Chai, Bruce H.; Lai, Shui T.; Long, Margaret N.
1989-01-01
A broadly wavelength-tunable laser is provided which comprises as the laser medium a single crystal of MBO.sub.3 :Cr.sup.3+, where M is selected from the group of Sc, In and Lu. The laser may be operated over a broad temperature range from cryogenic temperatures to elevated temperatures. Emission is in a spectral range from red to infrared, and the laser is useful in the fields of defense, communications, isotope separation, photochemistry, etc.
The Reactivity of Transition Metal-Silicon Compounds
1988-08-08
light, and appear to follow both thermal and photochemical pathways. Compounds 9 and 10 are efficient acetylene polymerization catalysts . The scandium...containing both silicon and an early-transition- metal, Previously this field was quite undeveloped, therefore we surveyed a number ( approaches to...15- C5Me5)Ta(SiMe 3)C13 ," J Arnold and T D Tilley, J Am Chem Soc, 107, 6409 (1985) "Tetrahedral Lewis Base Adducts of an Acyl. Preparation and X-ray
2004-03-01
32 Silicon Dioxide as a Mask ......................................................... 34 Silicon Nitride as a Mask...phosphorous (P), and arsenic (As) for n-type material and aluminum (Al), boron (B), beryllium (Be), gallium (Ga), oxygen (O), and scandium (Sc) for...O2 in carbon tetrafluoride (CF4), nitrogen trifluoride (NF3), and sulfur hexafluoride (SF6) were observed because these gases produce high fluorine
A general method for the catalytic nazarov cyclization of heteroaromatic compounds.
Malona, John A; Colbourne, Jessica M; Frontier, Alison J
2006-11-23
A general, catalytic method for efficient Nazarov cyclization of systems containing heteroaromatic components has been developed. Scandium triflate was identified as the most reactive promoter, and it was found that addition of lithium perchlorate was necessary for synthetically useful catalytic cyclizations. The method was used to synthesize a range of cyclopentanone-fused heteroaromatic systems in 36-97% yield, and the reactivity trends observed demonstrate the impact of polarization on cyclization efficiency. [reaction: see text].
Crémazy, Anne; Campbell, Peter G C; Fortin, Claude
2014-08-19
We investigated the effect of fluoride complexation on scandium accumulation by two unicellular algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. This trivalent metal was selected for its chemical similarities with aluminum and for its convenient radioisotope (Sc-46), which can be used as a tracer in short-term bioaccumulation studies. Scandium surface-bound concentrations (Sc(ads)) and uptake fluxes (J(int)) were estimated in the two algae over short-term (<1 h) exposures at pH 5 and in the presence of 0 to 40 μM F(-). Although the computed proportion of dissolved Sc(3+) dropped from 20% to 0.01% over this [F(-)] range, Sc(ads) and J(int) values for both algae decreased only slightly, suggesting a participation of Sc fluoro-complexes in both processes. Surface adsorption and uptake of fluoride complexes with aluminum have been reported in the literature. These observations are not taken into account by current models for trace metal bioaccumulation (e.g., the biotic ligand model). Results from a previous study, where the effects of pH on Sc uptake were investigated, suggested that Sc hydroxo-complexes were internalized by C. reinhardtii. There is thus growing evidence that the free ion concentration may not be adequate to predict the accumulation of Sc (and potentially of other trivalent metals) in aquatic organisms.
Korkmaz, Fatih Mehmet; Baygin, Ozgul; Tuzuner, Tamer; Bagis, Bora; Arslan, Ipek
2013-01-01
Objective: The aim of this in vitro study was to compare the microleakage and bond strength of Class V silorane-based and universal micro-hybrid composite restorations prepared either with diamond bur or with an erbium, chromium: yttrium-scandium-gallium-garnet (Er, Cr:YSGG) laser. Materials and Methods: A total of 160 molar teeth were used for microleakage assessment and shear bond strength (SBS) test. The specimens were prepared using either diamond bur or 3 W-, 4 W- and 5 W-20 Hz Er, Cr:YSGG laser irradiation. All specimens were subjected to thermocycling (500 times at 5 ± 2°C to 55 ± 2°C, dwell time 15 s and transfer time 10 s). Microleakage was assessed using a 0.5% basic-fuchsin solution. The bond strengths were determined using a microtensile tester at a crosshead speed of 0.5 mm/min. The Kruskal Wallis test was used for the analysis of microleakage and a one-way analysis of variance test was used to analyze the SBS (P < 0.05). Results: No statistically significant differences were found (P > 0.05) between Er, Cr:YSGG laser and bur preparation methods regarding microleakage and bond strength values. Conclusion: Irradiation with Er, Cr:YSGG laser was confirmed to be as effective as conventional methods for preparing cavities before adhesive restorations. PMID:24966726
Huclier-Markai, S; Kerdjoudj, R; Alliot, C; Bonraisin, A C; Michel, N; Haddad, F; Barbet, J
2014-05-01
Among the number of generator systems providing radionuclides with decay parameters promising for imaging and treatment applications, there is the (44)Ti (T1/2=60 years)/(44)Sc (T1/2=3.97 h) generator. This generator provides a longer-lived daughter for extended PET/CT measurements compared to the chemically similar system (68)Ge/(68)Ga. Scandium also exists as (47)Sc, a potential therapeutic radionuclide. It is possible to produce (44)Sc in a cyclotron using, for example, the (44)Ca (d, n) (44)Sc nuclear reaction. In that case, the isomeric state (44 m)Sc (T1/2=58.6h) is co-produced and may be used as an in vivo(44 m)Sc/(44)Sc generator. The aim of this study is to evaluate the feasibility of this in vivo(44 m)Sc/(44)Sc generator and to demonstrate that the daughter radionuclide stays inside the chelator after decay of the parent radionuclide. Indeed, the physico-chemical process occurring after the primary radioactive decay (EC, IT, Auger electron …) has prevented in many cases the use of in-vivo generator, because of the post-effect as described in the literature. The DOTA macrocyclic ligand forms stable complexes with many cations and has been shown to be the most suitable chelating moiety for scandium. Initially, the radiolabeling of DOTA and a DOTA-peptide (DOTATATE) with Sc was performed and optimized as a function of time, pH, metal-to-ligand ratio and temperature. Next, the physico-chemical processes that could occur after the decay (post-effect) were studied. (44 m)Sc(III)-labeled DOTA-peptide was quantitatively adsorbed on a solid phase matrix through a hydrophobic interaction. Elutions were then performed at regular time intervals using a DTPA solution at various concentrations. Finally, the radiolabelled complex stability was studied in serum. Radiolabeling yields ranged from 90% to 99% for metal-to-ligand ratio ranging from 1:10 to 1:500 for DOTA or DOTATATE respectively. The optimum physico-chemical parameters were pH=4-6, t=20 min, T=70°C. Then, the (44 m)Sc-DOTATATE complex, radiolabeled at 98%, was adsorbed through a hydrophobic interaction to a solid phase. Unlabeled scandium was completely eluted from the column whereas the Sc-DOTATATE complex was 100% retained. The release of (44)Sc from the complex due to decay was less than 1% over 2 periods of (44 m)Sc, independent of the DTPA concentration used for elution. (44 m)Sc/(44)Sc-DOTATATE was stable in serum over 72 h. The results indicate that the decay of (44 m)Sc to (44)Sc does not affect the integrity of the radiolabeled compound. Thus the (44 m)Sc/(44)Sc generator is chemically valid and stable in serum. It could be used for PET imaging as an in-vivo generator increasing the life time of the scandium and allowing the use of antibody as labelled compound. Further in-vivo biological evaluations should complete this work. Copyright © 2014 Elsevier Inc. All rights reserved.
1983-08-02
laser, a Cr3+-Nd 3 + gadolinium-scandium- gallium- garnet (GSGG) crystal, reputedly having three 15 times the slope efficiency of an equivalent... garnet , lithium gallium garnet , and lanthium-lutetium gallium garnet . Dr. Cooper asked for an indication of what it might take to put a program together in...Langmuir-Blodgett films , a subject mostly pursued in the U. K. Two groups, one at the University of California, San Diego (UCSD) (contact: Professor W
Muravyov, M I; Bulaev, A G; Melamud, V S; Kondrat'eva, T F
2015-01-01
A method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1. After ten days of leaching, 52.0, 52.6, and 59.5% of scandium, yttrium, and lanthanum, respectively, were recovered.
1971-01-01
alloys— sodium — sodium alloya— solder—carbon ateels—chromium steels—silicon steels—tantalum—tantalum alloys—terbium—thallium—thallium alloys—thorium...Praseodymium 45 Rhenium 46 Rhodium 47 Rubidium 48 Ruthenium 4» Samarium 50 Scandium 51 Selenium 52 Silicon 5:i Silver 54 Sodium 55 Strontium 56...Potassium ♦ Sodium 111 Sodium * Potassium 112 Tantalum ♦ Tungsten 113 Thallium + Lead, PbTl| 114 Tin ♦ Bismuth 115 Tin ♦ Indium 116 Tin+ Lead 117
Titanium(IV)-Catalyzed Stereoselective Synthesis of Spirooxindole-1-pyrrolines
2015-01-01
A stereoselective cyclization between alkylidene oxindoles and 5-methoxyoxazoles has been developed using catalytic titanium(IV) chloride (as low as 5 mol %) to afford spiro[3,3′-oxindole-1-pyrrolines] in excellent yield (up to 99%) and diastereoselectivity (up to 99:1). Using a chiral scandium(III)–indapybox/BArF complex affords enantioenriched spirooxindole-1-pyrrolines where a ligand-induced reversal of diastereoselectivity is observed. This methodology is further demonstrated for the synthesis of pyrrolines from malonate alkylidene and coumarin derivatives. PMID:25474118
High rate buffer layer for IBAD MgO coated conductors
Foltyn, Stephen R [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM
2007-08-21
Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.
Radiationless Transitions and Excited-State Absorption of Low-Field Chromium Complexes in Solids
1989-07-20
host-lattice modes and, in the case of the scandium compound with 5 % chromium concentration, of the a and tIg 2g localized modes. The local-mode...Radiationless transitions and excited-state Final report I/I/86-5/31/89 absorption of low-field chromium complexes 6. PERFORMING ORG. REPORT NUMBER ( 1 in...complexes, chromium ; tunable lasers, high pressure,-photoluminescence 4. 26, AMTVrAC? (Cbm e @CAP N Igemem’ a IdoMit’ by block nambew) The continuation of a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Cong, E-mail: xucong55555@gmail.com; Xiao, Wenlong, E-mail: wlxiao@buaa.edu.cn; Hanada, Shuji
2015-12-15
Effect of scandium (Sc) additions on the microstructure, mechanical properties and fracture behavior of Al–Si–Mg casting alloy (F357) were systematically investigated. It was found that Sc addition caused a multi-refining efficiency on the microstructure of as-cast F357 alloy, including refinement of grains and secondary dendrite arm spacing (SDAS), modification of eutectic Si and harmless disposal of β-Al{sub 5}FeSi phase. Subsequent T6 heat treatment had further induced the complete spheroidization of eutectic Si and precipitation of fine secondary Al{sub 3}Sc dispersoids in the Sc modified alloys. Thus the mechanical properties, especially the ductility, were significantly enhanced by the addition of Scmore » combined with the heat treatment. The highest ultimate tensile strength, yield strength and elongation were achieved in 0.8 wt.% Sc modified F357 alloy combined with T6 heat treatment. Furthermore, fractographic examinations indicated that the ductile fracture mechanism served as a dominate role in the modified alloys due to the formation of fine, deep and uniformly distributed dimples. - Highlights: • Detailed characterization of the multi-refining microstructure of Sc modified F357 alloy was performed. • The multi-refinement was proposed to refine grain and SDAS, modify eutectic Si and β-phase. • Sc modifier combined with T6 treatment is effective in improving tensile properties. • Modification of eutectic Si in F357 alloy with Sc is consistent with the IIT mechanism.« less
Responses of trace elements to aerobic maximal exercise in elite sportsmen.
Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas
2014-02-21
Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P < 0.05 and P < 0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically.
Yildirim, T; Ayar, M K; Yesilyurt, C; Kilic, S
2016-01-01
The aim of the present study was to compare two different bond strength test methods (tensile and microtensile) in investing the influence of erbium, chromium: yttrium-scandium-gallium-garnet (Er, Cr: YSGG) laser pulse frequency on resin-enamel bonding. One-hundred and twenty-five bovine incisors were used in the present study. Two test methods were used: Tensile bond strength (TBS; n = 20) and micro-TBS (μTBS; n = 5). Those two groups were further split into three subgroups according to Er, Cr: YSGG laser frequency (20, 35, and 50 Hz). Following adhesive procedures, microhybrid composite was placed in a custom-made bonding jig for TBS testing and incrementally for μTBS testing. TBS and μTBS tests were carried out using a universal testing machine and a microtensile tester, respectively. Analysis of TBS results showed that means were not significantly different. For μTBS, the Laser-50 Hz group showed the highest bond strength (P < 0.05), and increasing frequency significantly increased bond strength (P < 0.05). Comparing the two tests, the μTBS results showed higher means and lower standard deviations. It was demonstrated that increasing μTBS pulse frequency significantly improved immediate bond strength while TBS showed no significant effect. It can, therefore, be concluded that test method may play a significant role in determining optimum laser parameters for resin bonding.
Yue, Xueping; Wang, Hongwei; Li, Qing; Li, Linfeng
2017-02-01
The objective of this study was to observe the characteristics of the skin after irradiation with a 2790-nm yttrium-scandium-gallium-garnet (YSGG) laser using reflectance confocal microscopy (RCM). A 2790-nm YSGG laser was used to irradiate fresh foreskin (four doses, at spot density 3) in vitro. The characteristics of microscopic ablative columns (MAC), thermal coagulation zone (TCZ), and microscopic treatment zones (MTZ) were observed immediately after irradiation using digital microscope and RCM. The characteristics of MAC, TCZ, and MTZ with variations in pulse energy were comparatively analyzed. After irradiation, MAC, TCZ, and MTZ characteristics and undamaged skin between MTZs can be observed by RCM. The depth and width of MTZ obviously increased with the increase in pulse energy. At 80, 120, and 160 mJ/microbeam (MB), the MTZ actual area and proportion were about two times that of the theoretical value and three times at 200 mJ/MB. With increases in depth, the single MAC gradually decreased in a fingertip-shaped model, with TCZ slowly increasing, and MTZ slightly decreasing in a columnar shape. RCM was able to determine the characteristics of thermal injury on the skin after the 2790-nm YSGG laser irradiation with different pulse energies. Pulse energy higher than 200 mJ/MB may have much larger thermal injury and side effect. RCM could be used in the clinic in future.
Pulpal thermal responses to an erbium,chromium: YSGG pulsed laser hydrokinetic system.
Rizoiu, I; Kohanghadosh, F; Kimmel, A I; Eversole, L R
1998-08-01
Laser systems are known to raise pulpal temperatures when applied to tooth surfaces. Dental biocalcified tissues can be cut with an erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system. This device is effective for caries removal and cavity preparation in vitro. Pulpal monitoring of temperature changes during hard tissue cutting by a hydrokinetic system have not been reported. This study compared the effects of hydrokinetic system, dry bur, and wet bur tooth cutting on pulpal temperature. In vivo thermocouple intrapulpal measurements were made on cuspid teeth in anesthetized beagle dogs. In vitro measurements were made on extracted human molar teeth preserved in high-salt solution and later rinsed in phosphate-buffered saline (pH 7.4) to simulate in vivo conditions. The hydrokinetic system was compared with conventional air-turbine-powered bur cutting. The hydrokinetic system cuts and bur preparations were randomly made on the buccal surfaces at the cervical one third of the crown and extended until exposure of the pulp was confirmed clinically. Pulpal temperatures associated with the hydrokinetic system either showed no change or decreased by up to 2 degrees C. Wet bur preparations resulted in a 3 degrees to 4 degrees C rise. With dry bur preparations, a 14 degrees C rise in temperature was recorded. Under the conditions of this study, the erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system, when used for cavity preparation, had no apparent adverse thermal effect as measured in the pulp space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jing, E-mail: zlj007@126.com; Miao, Ju-hong; Xu, Lin-hua
2012-07-15
Graphical abstract: The graph shows the emission spectra (λ{sub ex} = 808 nm) of 1 at.% Nd:GSAG powders sintered at different temperatures for 3 h. Compared with the powder sintered at 900 °C, the PL intensity of the powder sintered at 1000 °C decreased significantly. The changes in the PL intensity should mainly due to the crystallinity and dispersion of the powders. Highlights: ► We synthesized Nd:GSAG nano-powders by gel-combustion method successfully. ► We analyzed the structure and the morphology of the heat-treated products. ► We studied the optical characteristics of Nd:GSAG nano-powders. -- Abstract: Nd{sup 3+}-doped gadolinium scandium aluminummore » garnet (Nd:GSAG) precursor was synthesized by a gel combustion method using metal nitrates and citric acid as raw materials. The structure and morphology of the precursor and the sintered powders were studied by means of X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscopy (TEM). The results showed that the precursor transformed into pure GSAG polycrystalline phase at about 800 °C, and the powders sintered at 800–1000 °C were well-dispersed with average particle sizes in the range of 30–80 nm. Optical properties of Nd:GSAG nano-powders were characterized by using photoluminescence spectroscopy. The highest photoluminescence intensity was achieved for the powder sintered at 900 °C.« less
Emmanuel, E S Challaraj; Ananthi, T; Anandkumar, B; Maruthamuthu, S
2012-03-01
In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.
Very high efficacy electrodeless high intensity discharge lamps
Johnson, Peter D.
1987-01-01
An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.
Very high efficacy electrodeless high intensity discharge lamps
Johnson, P.D.
1985-10-03
An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.
Hajji, Mohammad; Franzen, Rene; Grümer, Stefan; Modabber, Ali; Nasher, Riman; Prescher, Andreas; Gutknecht, Norbert
2016-02-01
The purpose of this study was to compare the conventional trephine bur and the Erbium,chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser in removing implants in terms of the volume of removed bone, duration of the procedure, and morphological changes on the bone surface. Three human mandibles were utilized, and four implants were inserted in each mandible using a drilling handpiece and burs. The implants were divided into two groups (n = 6) in which two implants from each mandible were removed using a trephine bur running at 1200 rounds per minute (rpm) with water irrigation. The remaining implants (n = 6) were removed with Er,Cr:YSGG laser (power 6 W, frequency 20 Hz, pulse duration 50 μs, water 60, air 30). The volume of bone loss was calculated by filling the holes with mercury and measuring its volume. The preparation time was measured with a digital stopwatch and the postoperative bone surfaces were examined under a scanning electron microscope (SEM). The laser group exhibited a smaller amount of bone loss than the trephine bur group, whereas the latter required a shorter time of preparation. SEM revealed empty trabecular spaces with no signs of carbonization and well-defined edges in the laser group, whereas the trephine group displayed a surface covered with a smear layer and microcracks. The Er,Cr:YSGG laser provides superior results over the trephine bur in terms of bone preservation, thermal damage, and cutting efficiency.
Verma, Mahesh; Kumari, Pooja; Gupta, Rekha; Gill, Shubhra; Gupta, Ankur
2015-01-01
Erbium, chromium: Yttrium, scandium, gallium, garnet (Er, Cr: YSGG) laser has been successfully used in the ablation of dental hard and soft tissues. It has been reported that this system is also useful for preparing tooth surfaces and etching, but no consensus exist in the literature regarding the advantage of lasers over conventional tooth preparation technique. Labial surfaces of 25 extracted human maxillary central incisors were divided into two halves. Right half was prepared with diamond bur and left half with Er, Cr; YSGG laser and a reduction of 0.3-0.5 mm was carried out. Topography of prepared surfaces of five teeth were examined under scanning electron microscope (SEM). The remaining samples were divided into 4 groups of 10 specimens each based on the surface treatment received: One group was acid etched and other was nonetched. Composite resin cylinders were bonded on prepared surfaces and shear bond strength was assessed using a universal testing machine. The SEM observation revealed that the laser prepared surfaces were clean, highly irregular and devoid of a smear layer. Bur prepared surfaces were relatively smooth but covered with smear layer. Highest bond strength was shown by laser prepared acid etched group, followed by bur prepared the acid etched group. The bur prepared nonacid etched group showed least bond strength. Er, Cr: YSGG laser can be used for preparing tooth and bond strength value achieved by laser preparation alone without surface treatment procedure lies in the range of clinical acceptability.
Olivi, Giovanni; Angiero, Francesca; Benedicenti, Stefano; Iaria, Giuseppe; Signore, Antonio; Kaitsas, Vassilios
2010-11-01
The study investigated the influence of varying amounts of air/water spray and the energy used by an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) 2,780 nm laser when treating dental tissues. The morphological effects produced by the laser interaction on healthy human enamel were evaluated by scanning electron microscopy (SEM). The vestibular and lingual surfaces of ten molars were treated with laser at different power settings; each surface was subdivided into cervical, median, and occlusal parts and treated with different proportions of water spray; the series contained 60 tooth portions. Treatment differed in terms of power setting and air/water percentage. All specimens were then subjected to dehydration and metallisation. At SEM evaluation, the classic aspect of laser-treated enamel was visible: grooves, flakes, shelves and sharp edges, indicative of micro-explosion rather than melting. Vaporisation of the tissue created a clear delimitation from surrounding healthy tissue, with partial respect to the prismatic structure of the treated enamel. The aspect of the enamel was rarely type 1 Silverstone but more frequently type 2 or 3, with prismatic structure not respected and/or completely disordered. These morphological differences appeared to be correlated with the inclination of the laser beam aimed at the enamel prisms and with the percentage of air/water used. The laser system analysed showed itself to be effective at removing human dental enamel. The results appeared to be closely correlated with the variation of the percentage of the laser's water-air spray.
George, Roy; Walsh, Laurence J
2010-04-01
To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.
NASA Astrophysics Data System (ADS)
Deane, Kyle
Diffuse Al-Sc and Al-Zr alloys have been demonstrated in literature to be relatively coarsening resistant at higher temperatures when compared with commonly used precipitation strengthening alloys (e.g. 2000 series, 6000 series). However, because of a limited strengthening due to the low solubility of scandium and zirconium in aluminum, and owing to the scarcity and therefore sizeable price tag attached to scandium, little research has been done in the way of optimizing these alloys for commercial applications. With this in mind, this dissertation describes research which aims to tackle several important areas of Al-Sc-Zr research that have been yet unresolved. In Chapter 4, rapid solidification was utilized to enhance the achievable supersaturation of the alloy in an effort to increase the achievable precipitate strengthening. In Chapter 5, Additive Friction Stir processing (AFS), a novel method of mechanically combining materials without melting, was employed in an attempt to pass the benefits of supersaturation from melt spun ribbon into a more structurally useful bulk material. In Chapter 6, a Matlab program written to predict precipitate nucleation, growth, and coarsening with a modified Kampmann and Wagner Numerical (KWN) model, was used to predict heat treatment regimens for more efficient strengthening. Those predictions were then tested experimentally to test the validity of the results. And lastly, in Chapter 7, the effect of zirconium on Al-Cu secondary precipitates was studied in an attempt to increase their thermal stability, as much higher phase fractions of Al-Cu precipitates are achievable than Al-Zr precipitates.
Photoelectrochemical cells including chalcogenophosphate photoelectrodes
NASA Technical Reports Server (NTRS)
Reichman, B.; Byvik, C. E. (Inventor)
1984-01-01
Photoelectrochemical cells employing chalcogenophosphate (MPX3) photoelectrodes are described where M is selected from the group of transition metal series of elements beginning with scandium (atomic number 21) through germanium (atomic number 32) yttrium (atomic number 39) through antimony (atomic number 51) and lanthanum (atomic number 57) through polonium (atomic number 84); P is phosphorus; and X is selected from the chalogenide series consisting of sulfur, selenium, and tellurium. These compounds have bandgaps in the desirable range from 2.0 eV to 2.2 eV for the photoelectrolysis of water and are stable when used as photoelectrodes for the same.
Semimicrodetermination of tantalum with selenous acid
Grimaldi, F.S.; Schnepfe, M.M.
1958-01-01
Tantalum is separated and determined gravimetrically by precipitation with selenous acid from a highly acidic solution containing oxalic and tartaric acids. The method is selective for the determination of up to 30 mg. of tantalum pentoxide, and tolerates relatively large amounts of scandium, yttrium, cerium, titanium, zirconium, thorium, vanadium, niobium, molybdenum, tungsten, uranium, iron, aluminum, gallium, tin, lead, antimony, and bismuth. The separation of tantalum from niobium and titanium is not strictly quantitative, and correction is made colorimetrically for the small amounts of niobium and titanium co-precipitating with the tantalum. The method was applied to the determination of tantalum in tantaloniobate ores.
2014-03-27
Kowash, PhD (Chairman) Date //signed// 14 March 2014 LTC Stephen McHale, PhD (Member) Date //signed// 10 March 2014 Dr. Jonathan Engle, PhD (Member) Date ...signed// 14 March 2014 Dr. Justin Clinton, PhD (Member) Date AFIT-ENP-14-M-02 Abstract Scandium-47 (T1/2 = 3.41d) forms stable complexes with...0.2 µCi g−1 µAh−1 in the 47Ti and 50Ti-oxide samples, respectively. Radioisotopic purities of 47Sc in excess of 90% are achieved by activation of 47Ti
Handbook of Isotopes in the Cosmos
NASA Astrophysics Data System (ADS)
Clayton, Donald
2007-08-01
List of illustrations; Preface; Introduction; 1. Hydrogen (H); 2. Helium (He); 3. Lithium (Li); 4. Beryllium (Be); 5. Boron (B); 6. Carbon (C); 7. Nitrogen (N); 8. Oxygen (O); 9. Fluorine (F); 10. Neon (Ne); 11. Sodium (Na); 12. Magnesium (Mg); 13. Aluminium (Al); 14. Silicon (Si); 15. Phosphorous (P); 16. Sulphur (S); 17. Chlorine (Cl); 18. Argon (Ar); 19. Potassium (K); 20. Calcium (Ca); 21. Scandium (Sc); 22. Titanium (Ti); 23. Vanadium (V); 24. Chromium (Cr); 25. Manganese (Mn); 26. Iron (Fe); 27. Cobalt (Co); 28. Nickel (Ni); 29. Copper (Cu); 30. Zinc (Zn); 31. Gallium (Ga); Glossary.
Handbook of Isotopes in the Cosmos
NASA Astrophysics Data System (ADS)
Clayton, Donald
2003-09-01
List of illustrations; Preface; Introduction; 1. Hydrogen (H); 2. Helium (He); 3. Lithium (Li); 4. Beryllium (Be); 5. Boron (B); 6. Carbon (C); 7. Nitrogen (N); 8. Oxygen (O); 9. Fluorine (F); 10. Neon (Ne); 11. Sodium (Na); 12. Magnesium (Mg); 13. Aluminium (Al); 14. Silicon (Si); 15. Phosphorous (P); 16. Sulphur (S); 17. Chlorine (Cl); 18. Argon (Ar); 19. Potassium (K); 20. Calcium (Ca); 21. Scandium (Sc); 22. Titanium (Ti); 23. Vanadium (V); 24. Chromium (Cr); 25. Manganese (Mn); 26. Iron (Fe); 27. Cobalt (Co); 28. Nickel (Ni); 29. Copper (Cu); 30. Zinc (Zn); 31. Gallium (Ga); Glossary.
Graham, Alexander J; Banu, Ana-Maria; Düren, Tina; Greenaway, Alex; McKellar, Scott C; Mowat, John P S; Ward, Kenneth; Wright, Paul A; Moggach, Stephen A
2014-06-18
Previous high-pressure experiments have shown that pressure-transmitting fluids composed of small molecules can be forced inside the pores of metal organic framework materials, where they can cause phase transitions and amorphization and can even induce porosity in conventionally nonporous materials. Here we report a combined high-pressure diffraction and computational study of the structural response to methanol uptake at high pressure on a scandium terephthalate MOF (Sc2BDC3, BDC = 1,4-benzenedicarboxylate) and its nitro-functionalized derivative (Sc2(NO2-BDC)3) and compare it to direct compression behavior in a nonpenetrative hydrostatic fluid, Fluorinert-77. In Fluorinert-77, Sc2BDC3 displays amorphization above 0.1 GPa, reversible upon pressure release, whereas Sc2(NO2-BDC)3 undergoes a phase transition (C2/c to Fdd2) to a denser but topologically identical polymorph. In the presence of methanol, the reversible amorphization of Sc2BDC3 and the displacive phase transition of the nitro-form are completely inhibited (at least up to 3 GPa). Upon uptake of methanol on Sc2BDC3, the methanol molecules are found by diffraction to occupy two sites, with preferential relative filling of one site compared to the other: grand canonical Monte Carlo simulations support these experimental observations, and molecular dynamics simulations reveal the likely orientations of the methanol molecules, which are controlled at least in part by H-bonding interactions between guests. As well as revealing the atomistic origin of the stabilization of these MOFs against nonpenetrative hydrostatic fluids at high pressure, this study demonstrates a novel high-pressure approach to study adsorption within a porous framework as a function of increasing guest content, and so to determine the most energetically favorable adsorption sites.
NASA Astrophysics Data System (ADS)
Lupei, A.; Lupei, V.; Hau, S.; Gheorghe, C.; Voicu, F.
2015-09-01
New spectroscopic data obtained from high resolution low temperature absorption and emission spectra of Nd3+ in mixed scandium aluminum garnets Y3ScxAl5-xO12 - (x = 0-2) translucent ceramics revealed transition dependent composition effects: modification of the shapes (Lorentz at x = 0 and 2, quasi-Gauss at x = 1, x-dependent asymmetric for other x values, with obvious multicenter structure for low x), widths and shifts of the lines. Nd3+ electronic structure dependence on structural changes with composition is analyzed in terms of nephelauxetic effect and maximum splitting of manifolds: Sc3+ co-doping reduces the nephelauxetic effect, and the increase of 4F3/2 splitting from 85 cm-1 (x = 0) to 98 cm-1 (x = 2) denotes the lowering of local symmetry. The multicenter structure and inhomogeneous broadening of Nd3+ lines is attributed to crystal field distributions determined by the random occupancy of the octahedral sites by Sc3+ and Al3+. For low x (0.2) the resolved two satellites S1, S2 that accompany Nd:YAG lines are correlated to anisotropic crystal field perturbations produced by the n.n. Sc3+ by analogy to those determined by Y3+-antisites (excess of Y3+ ions that enter in octahedral sites of the melt-grown YAG crystals). The temperature evolution of the Nd3+ spectral characteristics (line intensity, shift, broadening) in the 10-300 K range is analyzed in terms of thermal population of the Stark levels, of the effect on electron-phonon interaction and on lattice expansion. The relevance of the spectroscopic properties on the laser emission characteristics in these systems is discussed.
Tse, Pui-Kwan
2011-01-01
Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.
NASA Astrophysics Data System (ADS)
Khodja, Khadidja; Bouhadda, Youcef; Seddik, Larbi; Benyelloul, Kamel
2016-05-01
First-principles calculation has been performed on the rare earth hydride ScH2 for hydrogen storage and switchable mirror applications, using the pseudo-potentials and plane waves based on the density-functional theory (DFT). The electronic and structural properties are studied within both local-density and generalized gradient approximations for exchange energy. The formation energy and the optical properties have been investigated and discussed. Our calculated results are generally in good agreement with theoretical and experimental data. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Jet-cooled laser-induced fluorescence spectroscopy of ScH: Observation of an Ω‧=2-Ω″=1 transition
NASA Astrophysics Data System (ADS)
Mukund, Sheo; Bhattacharyya, Soumen; Nakhate, S. G.
2014-11-01
New bands of scandium monohydride at origins 17,914.5 and 17,942.3 cm-1 have been observed in a jet-cooled beam with laser-induced fluorescence spectroscopy. Mass-selected resonant photoionization spectroscopy also confirmed the carrier of the band as ScH. The rotational analysis indicated that both transitions at 17,914.5 and 17,942.3 cm-1 are of Ω‧=2-Ω″=1 type with vibrational assignments (0,0) and (1,1) respectively. The assigned g3Φ2-a3Δ1 excitation is the first observed triplet-triplet transition in ScH.
Power-scaling performance of a three-dimensional tritium betavoltaic diode
NASA Astrophysics Data System (ADS)
Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan
2009-12-01
Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production.
Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13
Breit, George N.
2016-01-01
Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.
High-strength laser welding of aluminum-lithium scandium-doped alloys
NASA Astrophysics Data System (ADS)
Malikov, A. G.; Ivanova, M. Yu.
2016-11-01
The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.
Eppard, Elisabeth; de la Fuente, Ana; Benešová, Martina; Khawar, Ambreen; Bundschuh, Ralph A; Gärtner, Florian C; Kreppel, Barbara; Kopka, Klaus; Essler, Markus; Rösch, Frank
2017-01-01
Various trivalent radiometals are well suited for labeling of DOTA-conjugated variants of Glu-ureido-based prostate-specific membrane antigen (PSMA) inhibitors. The DOTA-conjugate PSMA-617 has proven high potential in PSMA radioligand therapy (PSMA-RLT) of prostate cancer as well as PET imaging when labeled with lutetium-177 and gallium-68 respectively. Considering the relatively short physical half-life of gallium-68 this positron emitter precludes prolonged acquisition periods, as required for pre-therapeutic dosimetry or intraoperative applications. In this context, the positron emitter scandium-44 is an attractive alternative for PET imaging. We report the synthesis of [ 44 Sc]Sc-PSMA-617 as radiopharmaceutical with generator produced scandium-44, its in vitro characterization and clinical translation as part of a first in-human study. Scandium-44 was obtained from a 44 Ti/ 44 Sc radionuclide generator. PSMA-617 was labeled with 142.4±12.7 MBq of scandium-44 in analogy to [ 68 Ga]Ga-PSMA-617 and evaluated in vitro and in cell studies using PSMA+ LNCaP cells. A first-in-human investigation was subsequently carried out in a cohort of 4 patients (mean age 70±1.8 a) registered for [ 177 Lu]Lu-PSMA-617 therapy. 50.5±9.3 MBq (40 µg, 38.4 nmol) [ 44 Sc]Sc-PSMA-617 were applied via intravenous injection (i.v.), respectively. A Siemens Biograph 2 PET/CT system was used to acquire initial dynamic PET data (30 min) of abdomen in list mode followed by static PET/CT data (skull to mid-thigh) at 45 min, 2 and 18 h post-injection (p.i.). For quantitative analysis, dynamic images were reconstructed as 6 data sets of 300 s each. The noise ratio was measured in liver, lung and an additional region outside the body. SUV values in different organs and lesions were measured and compared to [ 68 Ga]Ga-PSMA-11 data of the same patients. Residence times and organ absorbed doses were calculated using OLINDA/EXM software. Quantitative radiochemical yields of ≥98 % were achieved using 18 nmol of PSMA-617 after 20 min at 95 °C with apparent molar activity of 6.69±0.78 MBq/nmol. Following purification, >99 % radiochemical purity was obtained. [ 44 Sc]Sc-PSMA-617 showed high stability (>95 %) in serum for 24 h. The binding affinity and internalization fraction were determined in PSMA+ LNCaP cells (IC 50 = 4.72±0.7 nM and internalization fraction: 15.78±2.14 % IA/10 6 LNCaP cells) and compared to [ 68 Ga]Ga-PSMA-11 (12.0±2.8 nM and 9.47±2.56 % IA/10 6 LNCaP cells). Physiological tracer uptake was observed in kidneys, liver, spleen, small intestine, urinary bladder, and salivary glands and pathological uptake in both soft and skeletal metastases. SUV values were significantly lower in the kidneys (14.0) compared to [ 68 Ga]Ga-PSMA-11 OET (30.5). All other measured SUV values did not show a statistically significant difference. Tumor to liver ratios were found to lie between 1.9 and 8.3 for [ 68 Ga]Ga-PSMA-11 and between 2.5 and 8.8 for [ 44 Sc]Sc-PSMA-617 after 120 min. For [ 44 Sc]Sc-PSMA-617 the ratios were higher and no statistically significant differences were observed. Total and % activity were highest in liver followed by kidneys, spleen, small intestine and salivary glands. Rapid wash out was seen in liver and spleen and gradually over time in kidneys. Kidneys received the highest radiation absorbed dose of 0.354 (0.180-0.488) mSv/MBq. No adverse pharmacological effects were observed. In conclusion [ 44 Sc]Sc-PSMA-617 PET is suitable for PET imaging of prostate cancer tissue. [ 44 Sc]Sc-PSMA-617 shows promise to enable pre-therapeutic dosimetry in clinical settings. However, the clinical advantages for individual dosimetry or other applications like intraoperative applications have to be investigated in further studies.
Eppard, Elisabeth; de la Fuente, Ana; Benešová, Martina; Khawar, Ambreen; Bundschuh, Ralph A.; Gärtner, Florian C.; Kreppel, Barbara; Kopka, Klaus; Essler, Markus; Rösch, Frank
2017-01-01
Background: Various trivalent radiometals are well suited for labeling of DOTA-conjugated variants of Glu-ureido-based prostate-specific membrane antigen (PSMA) inhibitors. The DOTA-conjugate PSMA-617 has proven high potential in PSMA radioligand therapy (PSMA-RLT) of prostate cancer as well as PET imaging when labeled with lutetium-177 and gallium-68 respectively. Considering the relatively short physical half-life of gallium-68 this positron emitter precludes prolonged acquisition periods, as required for pre-therapeutic dosimetry or intraoperative applications. In this context, the positron emitter scandium-44 is an attractive alternative for PET imaging. We report the synthesis of [44Sc]Sc-PSMA-617 as radiopharmaceutical with generator produced scandium-44, its in vitro characterization and clinical translation as part of a first in-human study. Methods: Scandium-44 was obtained from a 44Ti/44Sc radionuclide generator. PSMA-617 was labeled with 142.4±12.7 MBq of scandium-44 in analogy to [68Ga]Ga-PSMA-617 and evaluated in vitro and in cell studies using PSMA+ LNCaP cells. A first-in-human investigation was subsequently carried out in a cohort of 4 patients (mean age 70±1.8 a) registered for [177Lu]Lu-PSMA-617 therapy. 50.5±9.3 MBq (40 µg, 38.4 nmol) [44Sc]Sc-PSMA-617 were applied via intravenous injection (i.v.), respectively. A Siemens Biograph 2 PET/CT system was used to acquire initial dynamic PET data (30 min) of abdomen in list mode followed by static PET/CT data (skull to mid-thigh) at 45 min, 2 and 18 h post-injection (p.i.). For quantitative analysis, dynamic images were reconstructed as 6 data sets of 300 s each. The noise ratio was measured in liver, lung and an additional region outside the body. SUV values in different organs and lesions were measured and compared to [68Ga]Ga-PSMA-11 data of the same patients. Residence times and organ absorbed doses were calculated using OLINDA/EXM software. Results: Quantitative radiochemical yields of ≥98 % were achieved using 18 nmol of PSMA-617 after 20 min at 95 °C with apparent molar activity of 6.69±0.78 MBq/nmol. Following purification, >99 % radiochemical purity was obtained. [44Sc]Sc-PSMA-617 showed high stability (>95 %) in serum for 24 h. The binding affinity and internalization fraction were determined in PSMA+ LNCaP cells (IC50 = 4.72±0.7 nM and internalization fraction: 15.78±2.14 % IA/106 LNCaP cells) and compared to [68Ga]Ga-PSMA-11 (12.0±2.8 nM and 9.47±2.56 % IA/106 LNCaP cells). Physiological tracer uptake was observed in kidneys, liver, spleen, small intestine, urinary bladder, and salivary glands and pathological uptake in both soft and skeletal metastases. SUV values were significantly lower in the kidneys (14.0) compared to [68Ga]Ga-PSMA-11 OET (30.5). All other measured SUV values did not show a statistically significant difference. Tumor to liver ratios were found to lie between 1.9 and 8.3 for [68Ga]Ga-PSMA-11 and between 2.5 and 8.8 for [44Sc]Sc-PSMA-617 after 120 min. For [44Sc]Sc-PSMA-617 the ratios were higher and no statistically significant differences were observed. Total and % activity were highest in liver followed by kidneys, spleen, small intestine and salivary glands. Rapid wash out was seen in liver and spleen and gradually over time in kidneys. Kidneys received the highest radiation absorbed dose of 0.354 (0.180-0.488) mSv/MBq. No adverse pharmacological effects were observed. Conclusion: In conclusion [44Sc]Sc-PSMA-617 PET is suitable for PET imaging of prostate cancer tissue. [44Sc]Sc-PSMA-617 shows promise to enable pre-therapeutic dosimetry in clinical settings. However, the clinical advantages for individual dosimetry or other applications like intraoperative applications have to be investigated in further studies. PMID:29158832
Stokowski, S.E.
1987-10-20
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
Stokowski, Stanley E.
1989-01-01
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Bivas; Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; Lawrence, Samantha K.
High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.
Seymen, Gülin; Turgut, Zeynep; Berk, Gizem; Bodur, Ayşen
2013-01-01
Background: Implant bed preparation with laser is taken into consideration owing to the increased interest in use of lasers in hard tissue surgery. The purpose of this study is to determine the deviations in the position and inclination between the planned and prepared implant beds with Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser using stereolithographic (SLA) surgical guides. Methods: After 3-dimensional (3D) imaging of six sheep lower jaws, computed tomography (CT) images were transformed into 3D models. Locations of implant beds were determined on these models. Two implant beds in each half jaw were prepared with an Er,Cr:YSGG laser system and a conventional drilling method using a total of 12 SLA surgical guides. A new CT was taken to analyze the deviation values between planned and prepared implant beds. Finally, a software program was used to superimpose the images on 3D models, then the laser and conventional drilling groups were compared. Results: Differences of mean angular deviations between the planned and prepared implant beds were 5.17±4.91° in the laser group and 2.02±1.94° in the conventional drilling group.The mean coronal deviation values were found to be 0.48±0.25 mm and 0.23±0.14 mm in the laser group and conventional drilling group, respectively. While the mean deviation at the apex between the planned and prepared implant beds were 0.70±0.26 mm and 0.26±0.08 ,the mean vertical deviations were 0.06±0.15 mm and 0.02±0.05 mm for the laser group and the conventional drilling group, respectively. Conclusion: It is possible to prepare an implant bed properly with the aid of Er,Cr:YSGGlaser by using SLA surgical guide. PMID:25606303
Cengiz, Esra; Yilmaz, Hasan Guney
2016-03-01
The purpose of this randomized clinical study was to evaluate the efficiency of erbium, chromium-doped:yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser irradiation combined with a resin-based tricalcium silicate material and calcium hydroxide in direct pulp capping for a 6-month follow-up period. A total of 60 teeth of 60 patients between the ages of 18 and 41 years were recruited for this study. Sixty permanent vital teeth without symptoms and radiographic changes were randomly assigned to the following 4 groups (n = 15): Gr CH, the exposed area was sealed with calcium hydroxide (CH) paste; Gr laser CH, the treated area was sealed with CH paste after Er,Cr:YSGG laser irradiation at an energy level of 0.5 W without water and with 45% air; Gr TheraCal, TheraCal LC (Bisco, Schaumburg, IL) was applied directly to the exposed pulp; and Gr Laser TheraCal, TheraCal LC was applied after irradiation with an Er,Cr:YSGG laser. At the 1-week and 1-, 3-, and 6-month recall examinations, the loss of vitality, spontaneous pain, reactions to thermal stimuli and percussion, and radiographic changes were considered as failure. The success rates in the CH and TheraCal groups were 73.3% and 66.6%, respectively. These rates did not reveal any significant difference. In both laser groups, success rates were 100%. The Er,Cr:YSGG laser-irradiated TheraCal and Er,Cr:YSGG laser-irradiated CH groups showed statistically higher success rates than the TheraCal and CH groups, respectively. Er,Cr:YSGG laser irradiation at 0.5 W without water combined with pulp capping agents can be recommended for direct pulp therapy. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Studies of soil and ecohydrological processes in oil-gas production regions.
NASA Astrophysics Data System (ADS)
Khodyreva, E. Ya.; Khodyrev, Yu. P.
2009-04-01
For a better understanding and describing of the functional interactions between processes in soil and drinking, underground and stratum waters in oil-gas production regions we used laboratory and field monitoring methods of studies. The control of ecological situation dynamics in oil-gas production regions proposes a presence of primary data about parameter-indicators, which characterize a state of the object under investigation. One of these parameters is the concentration of heavy metal salts in drinking and stratum waters. Isolation of some compounds, which are extracted as impurities of oil and water during recovery of hydrocarbons from productive horizons, would enhance profitableness of recovery. Because accompanying impurities are a mixture of different salts and complexes, the methods of multielement analysis give the most objective evaluation of total content of some elements by search and prospecting. The developed method of laser mass-spectrometric analysis of oil and drinking, underground and industrial waters allows to investigate the samples on all elements of the periodical system simultaneously with limit sensitivity 0.1 mkg/l. The preparation of the oil and water probes was carried out by sublimation of highly volatile fractions in vacuum at 100 0C. The samples of drinking and underground waters, oils and industrial waters from wells of oil field Romashkin (Tatarstan) were chosen as the object for the research. In respect to possible metal extraction scandium is of most interest in inspected area because it's very high cost and availability of water-soluble pattern, most probably chloride. Its concentration in one well was 1 mg/l in water and 0.01 mg/l in oil. According to the received data of laser mass-spectrometric analysis, industrial waters on the activity investigated territory joint-stock company "Tatneft" contain 220-330 kg / ton of salts of metals that does by their potential source of alternative raw material for the chemical industry. Soil is an important component of the earth's biosphere because of its crucial role in the hydrological cycle. For revealing possible correlation between spatial distributions of the valuable elements contained both in industrial waters and in tests of soils, 79 samples are prepared and investigated. These tests are selected at superficial geochemical shooting (field monitoring methods of studies) Aznakaevskoi, Karamalinskoi and Sabanchinskoi areas of joint-stock company " Tatneft ". Circuits of distribution of valuable elements on the investigated territory are constructed also a quantitative estimation of the maintenance makro- and microcomponents is given. From the found out elements the greatest interest Na, Mg, K, Ca, Cl, Br and their connections represent because of very high concentration and scandium owing to the cost. Now cost of scandium in the world market approximately in 25 times exceeds cost of gold and is not observed yet tendencies to its decrease. Presence of impurity of salts of heavy metals and their connections in soils, drinking, underground and stratum waters, definition of their concentration and comparison from maximum concentration limit allows to establish the control over dynamics of ecohydrological conditions and in due time to take measures on reduction of negative influence of processes of development of hydrocarbon raw material by an environment.
Scandium complexes with the tetraphenylethylene and anthracene dianions.
Ellis, John E; Minyaev, Mikhail E; Nifant'ev, Ilya E; Churakov, Andrei V
2018-06-01
The structural study of Sc complexes containing dianions of anthracene and tetraphenylethylene should shed some light on the nature of rare-earth metal-carbon bonding. The crystal structures of (18-crown-6)bis(tetrahydrofuran-κO)sodium bis(η 6 -1,1,2,2-tetraphenylethenediyl)scandium(III) tetrahydrofuran disolvate, [Na(C 4 H 8 O) 2 (C 12 H 24 O 6 )][Sc(C 26 H 20 ) 2 ]·2C 4 H 8 O or [Na(18-crown-6)(THF) 2 ][Sc(η 6 -C 2 Ph 4 ) 2 ]·2(THF), (1b), (η 5 -1,3-diphenylcyclopentadienyl)(tetrahydrofuran-κO)(η 6 -1,1,2,2-tetraphenylethenediyl)scandium(III) toluene hemisolvate, [Sc(C 17 H 13 )(C 26 H 20 )(C 4 H 8 O)]·0.5C 7 H 8 or [(η 5 -1,3-Ph 2 C 5 H 3 )Sc(η 6 -C 2 Ph 4 )(THF)]·0.5(toluene), (5b), poly[[(μ 2 -η 3 :η 3 -anthracenediyl)bis(η 6 -anthracenediyl)bis(η 5 -1,3-diphenylcyclopentadienyl)tetrakis(tetrahydrofuran)dipotassiumdiscandium(III)] tetrahydrofuran monosolvate], {[K 2 Sc 2 (C 14 H 10 ) 3 (C 17 H 13 ) 2 (C 4 H 8 O) 4 ]·C 4 H 8 O} n or [K(THF) 2 ] 2 [(1,3-Ph 2 C 5 H 3 ) 2 Sc 2 (C 14 H 10 ) 3 ]·THF, (6), and 1,4-diphenylcyclopenta-1,3-diene, C 17 H 14 , (3a), have been established. The [Sc(η 6 -C 2 Ph 4 ) 2 ] - complex anion in (1b) contains the tetraphenylethylene dianion in a symmetrical bis-η 3 -allyl coordination mode. The complex homoleptic [Sc(η 6 -C 2 Ph 4 ) 2 ] - anion retains its structure in THF solution, displaying hindered rotation of the coordinated phenyl rings. The 1D 1 H and 13 C{ 1 H}, and 2D COSY 1 H- 1 H and 13 C- 1 H NMR data are presented for M[Sc(Ph 4 C 2 ) 2 ]·xTHF [M = Na and x = 4 for (1a); M = K and x = 3.5 for (2a)] in THF-d 8 media. Complex (5b) exhibits an unsymmetrical bis-η 3 -allyl coordination mode of the dianion, but this changes to a η 4 coordination mode for (1,3-Ph 2 C 5 H 3 )Sc(Ph 4 C 2 )(THF) 2 , (5a), in THF-d 8 solution. A 45 Sc NMR study of (2a) and UV-Vis studies of (1a), (2a) and (5a) indicate a significant covalent contribution to the Sc-Ph 4 C 2 bond character. The unique Sc ate complex, (6), contains three anthracenide dianions demonstrating both a η 6 -coordination mode for two bent ligands and a μ 2 -η 3 :η 3 -bridging mode of a flat ligand. Each [(1,3-Ph 2 C 5 H 3 ) 2 Sc 2 (C 14 H 10 ) 3 ] 2- dianionic unit is connected to four neighbouring units via short contacts with [K(THF) 2 ] + cations, forming a two-dimensional coordination polymer framework parallel to (001).
NASA Astrophysics Data System (ADS)
Permin, D. A.; Novikova, A. V.; Balabanov, S. S.; Gavrishchuk, E. M.; Kurashkin, S. V.; Savikin, A. P.
2018-04-01
This paper describes a comparative study of structural and luminescent properties of 5%Yb-doped yttrium, scandium, and lutetium oxides (Yb:RE2O3) powders and ceramics fabricated by self-propagating high-temperature synthesis. According to X-ray diffractometry and electron microscopy the chosen method ensures preparation of low-agglomerated cubic Ctype crystal structured powders at one step. No crucial differences in luminescence spectra were found the Yb:RE2O3 powders and ceramics. It was shown that the emission lifetimes of the Yb:RE2O3 powders are lowered by crystal structure defects, while its values for ceramics samples are compared to that of monocrystals and more influenced by rare earth impurities.
Grimaldi, F.S.
1957-01-01
This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.
Releasing effects in flame photometry: Determination of calcium
Dinnin, J.I.
1960-01-01
Strontium, lanthanum, neodymium, samarium, and yttrium completely release the flame emission of calcium from the depressive effects of sulfate, phosphate, and aluminate. Magnesium, beryllium, barium, and scandium release most of the calcium emission. These cations, when present in high concentration, preferentially form compounds with the depressing anions when the solution is evaporated rapidly in the flame. The mechanism of the interference and releasing effects is explained on the basis of the chemical equilibria in the evaporating droplets of solution and is shown to depend upon the nature of the compounds present in the aqueous phase of the solution. The need for background correction techniques is stressed. The releasing effect is used in the determination of calcium in silicate rocks without the need for separations.
Yunos, Mohd Amirul Syafiq Mohd; Hussain, Siti Aslina; Yusoff, Hamdan Mohamed; Abdullah, Jaafar
2014-09-01
Radioactive particle tracking (RPT) has emerged as a promising and versatile technique that can provide rich information about a variety of multiphase flow systems. However, RPT is not an off-the-shelf technique, and thus, users must customize RPT for their applications. This paper presents a simple procedure for preparing radioactive tracer particles created via irradiation with neutrons from the TRIGA Mark II research reactor. The present study focuses on the performance evaluation of encapsulated gold and scandium particles for applications as individual radioactive tracer particles using qualitative and quantitative neutron activation analysis (NAA) and an X-ray microcomputed tomography (X-ray Micro-CT) scanner installed at the Malaysian Nuclear Agency. Copyright © 2014 Elsevier Ltd. All rights reserved.
The measurement of radiation exposure of astronauts by radiochemical techniques
NASA Technical Reports Server (NTRS)
Brodzinski, R. L.
1971-01-01
The concentrations of 23 major, minor, and trace elements in the fecal samples from the Apollo 12 and 13 astronauts are reported. Most elemental excretion rates are comparable to rates reported for earlier missions. Exceptions are noted for calcium, iron, and tin. Body calcium and iron losses appear to be reduced during the Apollo 12 and 13 missions such that losses now seem to be insignificant. Refined measurements of tin excretion rates agree with normal dietary intakes. Earlier reported tin values are in error. A new passive dosimetry canister was designed which contains foils of tantalum, copper, titanium, iron, cobalt, aluminum, and scandium. By measuring the concentrations of the various products of nuclear reactions in these metals after space exposure, the characteristics of the incident cosmic particles can be determined.
High magnesium mobility in ternary spinel chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan
Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. Furthermore, the development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. We demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm -1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door formore » the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.« less
Developing targets for radiation transport experiments at the Omega laser facility
Capelli, Deanna; Charsley-Groffman, C. A.; Randolph, Randall Blaine; ...
2017-07-13
Targets have been developed to measure supersonic radiation transport in aerogel foams using absorption spectroscopy. The target consists of an aerogel foam uniformly doped with either titanium or scandium inserted into an undoped aerogel foam package. This creates a localized doped foam region to provide spatial resolution for the measurement. Development and characterization of the foams is a key challenge in addition to machining and assembling the two foams so they mate without gaps. The foam package is inserted into a beryllium sleeve and mounted on a gold hohlraum. The target is mounted to a holder created using additive manufacturingmore » and mounted on a stalk. As a result, the manufacturing of the components, along with assembly and metrology of the target are described here.« less
Developing targets for radiation transport experiments at the Omega laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capelli, Deanna; Charsley-Groffman, C. A.; Randolph, Randall Blaine
Targets have been developed to measure supersonic radiation transport in aerogel foams using absorption spectroscopy. The target consists of an aerogel foam uniformly doped with either titanium or scandium inserted into an undoped aerogel foam package. This creates a localized doped foam region to provide spatial resolution for the measurement. Development and characterization of the foams is a key challenge in addition to machining and assembling the two foams so they mate without gaps. The foam package is inserted into a beryllium sleeve and mounted on a gold hohlraum. The target is mounted to a holder created using additive manufacturingmore » and mounted on a stalk. As a result, the manufacturing of the components, along with assembly and metrology of the target are described here.« less
High magnesium mobility in ternary spinel chalcogenides
Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan; ...
2017-11-24
Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. Furthermore, the development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. We demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm -1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door formore » the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.« less
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios
Cesium iodide coated graphitic fibers and scandate cathodes are two important electron emission technologies. The coated fibers are utilized as field emitters for high power microwave sources. The scandate cathodes are promising thermionic cathode materials for pulsed power vacuum electron devices. This work attempts to understand the fundamental physical and chemical relationships between the atomic structure of the emitting cathode surfaces and the superior emission characteristics of these cathodes. Ab initio computational modeling in conjunction with experimental investigations was performed on coated fiber cathodes to understand the origin of their very low turn on electric field, which can be reduced by as much as ten-fold compared to uncoated fibers. Copious amounts of cesium and oxygen were found co-localized on the fiber, but no iodine was detected on the surface. Additional ab initio studies confirmed that cesium oxide dimers could lower the work function significantly. Surface cesium oxide dipoles are therefore proposed as the source of the observed reduction in the turn on electric field. It is also proposed that emission may be further enhanced by secondary electrons from cesium oxide during operation. Thermal conditioning of the coated cathode may be a mechanism by which surface cesium iodide is converted into cesium oxide, promoting the depletion of iodine by formation of volatile gas. Ab initio modeling was also utilized to investigate the stability and work functions of scandate structures. The work demonstrated that monolayer barium-scandium-oxygen surface structures on tungsten can dramatically lower the work function of the underlying tungsten substrate from 4.6 eV down to 1.16 eV, by the formation of multiple surface dipoles. On the basis of this work, we conclude that high temperature kinetics force conventional dispenser cathodes (barium-oxygen monolayers on tungsten) to operate in a non-equilibrium compositional steady state with higher than optimal work functions of ˜2 eV. We hypothesize that scandium enables the barium-oxygen surface monolayer kinetics to access a more thermodynamically stable phase with reported work functions as low as ˜1.3 eV.
Hatipoglu, M; Barutcigil, C
2015-01-01
The aim of this study is to evaluate the potential effects of laser irradiation, which is commonly performed in periodontal surgery, on the surfaces of restorative materials. Five different restorative dental materials were used in this study, as follows: (1) Resin composite, (2) poly acid-modified resin composite (compomer), (3) conventional glass ionomer cement (GIC), (4) resin-modified glass ionomer cement (RMGIC), and (5) amalgam. Four cylindrical samples (8 mm diameter, 2 mm height) were prepared for each restorative material. In addition, four freshly extracted, sound human incisors teeth were selected. Two different laser systems commonly used in periodontal surgery were examined in this study: A 810 nm diode laser at a setting of 1 W with continuous-phase laser irradiation for 10 s, and an erbium-and chromium-doped yttrium scandium gallium garnet (Er, Cr: YSGG) laser at settings of 2.5 W, 3.25 W, and 4 W with 25 Hz laser irradiation for 10 s. Scanning electron microscopy (SEM) analysis was performed to evaluate the morphology and surface deformation of the restorative materials and tooth surfaces. According to the SEM images, the Er, Cr: YSGG laser causes irradiation markings that appear as demineralized surfaces on tooth samples. The Er, Cr: YSGG laser also caused deep defects on composite, compomer, and RMGIC surfaces because of its high power, and the ablation was deeper for these samples. High-magnification SEM images of GIC samples showed the melting and combustion effects of the Er, Cr: YSGG laser, which increased as the laser power was increased. In amalgam samples, neither laser left significant harmful effects at the lowest power setting. The diode laser did cause irradiation markings, but they were insignificant compared with those left by the Er, Cr: YSGG laser on the surfaces of the different materials and teeth. Within the limitations of this study, it can be concluded that Er, Cr: YSGG laser irradiation could cause distortions of the surfaces of restorative materials. Diode lasers can be preferred for periodontal surgery.
Hu, Jia; Feng, Hao; Xie, Yaoming; King, R Bruce; Schaefer, Henry F
2018-03-29
Stepwise interaction of first row transition metal atoms with 1,5-cyclooctadiene to give (C 8 H 12 ) 2 M complexes is studied using the M06-L/DZP density functional method. The experimentally known (C 8 H 12 ) 2 Ni is the thermodynamically most favorable complex, with a predicted geometry consistent with its experimental structure as determined by X-ray crystallography. The other transition metal atoms from scandium to zinc also interact exothermically with 1,5-cyclooctadiene to give (C 8 H 12 ) 2 M derivatives, but these exhibit lower symmetry than the S 4 symmetry exhibited by (C 8 H 12 ) 2 Ni. Carbon-hydrogen activation of CH 2 groups in a C 8 H 12 ligand is predicted for most systems. Thus, conversion of (η 2,2 -C 8 H 12 ) 2 M to (η 3,2 -C 8 H 11 )(η 2,1 -C 8 H 13 )M, through a hydride intermediate (η 3,2 -C 8 H 11 )(η 2,2 -C 8 H 12 )MH, is predicted for scandium, vanadium, chromium, manganese, and cobalt. For titanium with a low-lying empty orbital, further C-H activation through a hydride intermediate (η 6 -C 8 H 10 )(η 2,1 -C 8 H 13 )TiH is predicted, leading ultimately to (η 6 -C 8 H 10 )(η 1,1 -C 8 H 14 )Ti, in which the hexahapto η 6 -C 8 H 10 ligand is shown by NICS to be aromatic. These two C-H activation processes on a titanium center represent the dehydrogenation of 1,5-cyclooctadiene to 1,3,5-cyclooctatriene with the second 1,5-cyclooctadiene ligand as the hydrogen acceptor. For zinc C-H activation terminates at (η 1 -C 8 H 11 )(C 8 H 12 )ZnH, which has a C-Zn-H three-center bond. No energetically favorable C-H activation processes are predicted for the iron, nickel, and copper (η 2,2 -C 8 H 12 ) 2 M derivatives.
Sc2O@Cs(126339)-C92: Di-scandium oxide cluster encapsulated into a large fullerene cage
NASA Astrophysics Data System (ADS)
Gu, Yong-Xin; Li, Qiao-Zhi; Li, De-Huai; Zhao, Rui-Sheng; Zhao, Xiang
2018-04-01
The geometric, electronic structure and thermodynamic stability of Sc2O@C92 has been characterized by using hybrid density functional theory calculations combined with statistical thermodynamic analyses. Results indicate that the isolated pentagon rule (IPR) isomers Sc2O@Cs(126339)-C92, Sc2O@C1(126367)-C92 and Sc2O@C1(126390)-C92 are favorable. Noteworthy, it is the first time to declare that fullerene isomer Cs(126339)-C92 could be considered as the suitable cage to encapsulate metallic cluster. The electronic properties of these three isomers were performed with frontier molecular orbital (HOMO and LUMO) analyses and bond order calculations. Finally, 13C NMR and UV-vis-NIR spectra were simulated to provide valuable information for future experiments.
NASA Astrophysics Data System (ADS)
Haciyakupoglu, Sevilay; Nur Esen, Ayse; Erenturk, Sema
2014-08-01
The purpose of this study is optimization of the experimental parameters for analysis of soil matrix by instrumental neutron activation analysis and quantitative determination of barium, cerium, lanthanum, rubidium, scandium and thorium in soil samples collected from industrialized urban areas near Istanbul. Samples were irradiated in TRIGA MARK II Research Reactor of Istanbul Technical University. Two types of reference materials were used to check the accuracy of the applied method. The achieved results were found to be in compliance with certified values of the reference materials. The calculated En numbers for mentioned elements were found to be less than 1. The presented data of element concentrations in soil samples will help to trace the pollution as an impact of urbanization and industrialization, as well as providing database for future studies.
Ahamad, Syed Rizwan; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Qamar, Wajhul; Aljarboa, Suliman
2017-07-01
The aim of the present investigation was to explore the constituents of the Arabian myrrh resin obtained from Commiphora myrrha. The organic and inorganic composition of the myrrh gum resin has been investigated using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS). Analysis executed by ICP-MS reveals the presence of various inorganic elements in significant amount in the myrrh resin. The elements that were found to be present in large amounts include calcium, magnesium, aluminum, phosphorus, chlorine, chromium, bromine and scandium. The important organic constituents identified in the myrrh ethanolic extract include limonene, curzerene, germacrene B, isocericenine, myrcenol, beta selinene, and spathulenol,. The present work complements other myrrh associated investigations done in the past and provides additional data for the future researches.
Pressure-Stabilized Cubic Perovskite Oxyhydride BaScO2H.
Goto, Yoshihiro; Tassel, Cédric; Noda, Yasuto; Hernandez, Olivier; Pickard, Chris J; Green, Mark A; Sakaebe, Hikari; Taguchi, Noboru; Uchimoto, Yoshiharu; Kobayashi, Yoji; Kageyama, Hiroshi
2017-05-01
We report a scandium oxyhydride BaScO 2 H prepared by solid state reaction under high pressure. Rietveld refinements against powder synchrotron X-ray and neutron diffraction data revealed that BaScO 2 H adopts the ideal cubic perovskite structure (Pm3̅m), where oxide (O 2- ) and hydride (H - ) anions are disordered. 1 H nuclear magnetic resonance (NMR) spectroscopy provides a positive chemical shift of about +4.4 ppm, which can be understood by the distance to the nearest (and possibly the next nearest) cation from the H nucleus. A further analysis of the NMR data and calculations based on ab initio random structure searches suggest a partial cis preference in ScO 4 H 2 octahedra. The present oxyhydride, if compositionally or structurally tuned, may become a candidate for H - conductors.
Liu, Zhaohong; Sivaguru, Paramasivam; Zanoni, Giuseppe; Anderson, Edward A; Bi, Xihe
2018-05-08
A catalyst-dependent chemoselective one-carbon insertion of diazo compounds into the C-C or C-H bonds of 1,3-dicarbonyl species is reported. In the presence of silver(I) triflate, diazo insertion into the C(=O)-C bond of the 1,3-dicarbonyl substrate leads to a 1,4-dicarbonyl product containing an all-carbon α-quaternary center. This reaction constitutes the first example of an insertion of diazo-derived carbenoids into acyclic C-C bonds. When instead scandium(III) triflate was applied as the catalyst, the reaction pathway switched to formal C-H insertion, affording 2-alkylated 1,3-dicarbonyl products. Different reaction pathways are proposed to account for this powerful catalyst-dependent chemoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mioduski, Tomasz; Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl; Zeng, Dewen, E-mail: dewen-zeng@hotmail.com
2014-03-15
This work presents an assessment of solubility data for rare earth metal fluorides (generally of trivalent metals and of CeF{sub 4}) in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal fluoride with a corresponding critical evaluation. Every such evaluation contains a collection of all solubility results in water, a selection of suggested solubility data, and a brief discussion of the multicomponent systems. Because the ternary systems were seldom studied more than once, no critical evaluations of such data were possible. Only simple fluorides (no complexes or binary salts) aremore » treated as the input substances in this report. The literature has been covered through the end of 2013.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
According to the results from a Livermore computer model, some of the small change jingling in your pocket contains zinc and copper created in massive gamma-ray bursts (GRBs) that rank as the most impressive light shows in the universe. Livermore astrophysicist Jason Pruet and his colleagues Rebecca Surman and Gail McLaughlin from North Carolina State University (NCSU) reported on their calculations in the February 20, 2004, issue of ''Astrophysical Journal Letters''. They found that GRBs from black holes surrounded by a disk of dense, hot plasma may have contributed heavily to the galactic inventory of elements such as calcium, scandium,more » titanium, zinc, and copper. ''A typical GRB of this kind briefly outshines all the stars in millions of galaxies combined'', says Pruet. ''Plus it makes about 100 times as much of some common elements as an ordinary supernova''.« less
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Kim, K. H.; Stock, L. V.
1987-01-01
The improvement on the collection system of the Tarmarack Solar Simulator beam was attemped. The basic study of evaluating the solid state laser materials for the solar pumping and also the work to construct a kinetic model algorithm for the flashlamp pumped iodine lasers were carried out. It was observed that the collector cone worked better than the lens assembly in order to collect the solar simulator beam and to focus it down to a strong power density. The study on the various laser materials and their lasing characteristics shows that the neodymium and chromium co-doped gadolinium scandium gallium garnet (Nr:Cr:GSGG) may be a strong candidate for the high power solar pumped solid state laser crystal. On the other hand the improved kinetic modeling for the flashlamp pumped iodine laser provides a good agreement between the theoretical model and the experimental data on the laser power output, and predicts the output parameters of a solar pumped iodine laser.
Development of a fluorescent chelating ligand for scandium ion having a Schiff base moiety
NASA Astrophysics Data System (ADS)
Yamada, Hiroshi; Kojo, Masahito; Nakahara, Tomomi; Murakami, Kumi; Kakima, Takashi; Ichiba, Hideaki; Yajima, Takehiko; Fukushima, Takeshi
2012-05-01
A fluorescent ligand, 1-(2-hydroxy-3-methoxybenzaldehyde)-4-aminosalicylhydrazone (HMB-ASH), was newly designed and synthesized, and its fluorescence characteristics for metal ions were investigated in the pH range 3.0-10.5 (at a difference of 0.5 for each metal). After testing 31 different metal ions, it was found that HMB-ASH was able to emit fluorescence intensely at 512 nm with an excitation wavelength of 353 nm in the presence of Sc3+, one of the rare earth metals, at pH values around 3.5 and 8.0. The other metal ions hardly showed fluorescence with HMB-ASH. The fluorescence was more intense at pH 8.0, and the detection limit of Sc3+ in a buffer solution (pH 8.0) was approximately 18.8 nmol L-1 (0.85 ppb).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaltry, Michael R.; Yoo, Tae-Sic; Fredrickson, Guy L.
2017-09-12
Cyclic voltammetry and chronopotentiometry tests were applied to molten LiCl-KCl eutectic at 500 °C including amounts of ScCl 3 and YCl 3. The purpose of the testing was to observe the effect of applied electrical current on the codeposition of scandium and yttrium, which were chosen as surrogate elements for uranium and plutonium, respectively. Features of the work were to vary the concentration of ScCl 3 (at relatively low concentrations) as well as varying the applied current, all with a fixed concentration of YCl 3. Results of the experiments could provide insight of uranium electrorefining and may provide evidence, whichmore » suggests the electrorefiner could be operated at lower UCl 3 concentration whereby codeposition (U and Pu) could be more effectively controlled.« less
Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED
NASA Astrophysics Data System (ADS)
Cavaier, R. Formento; Haddad, F.; Sounalet, T.; Stora, T.; Zahi, I.
A new facility, named CERN-MEDICIS, is under construction at CERN to produce radionuclides for medical applications. In parallel, the MEDICIS-PROMED, a Marie Sklodowska-Curie innovative training network of the Horizon 2020 European Commission's program, is being coordinated by CERN to train young scientists on the production and use of innovative radionuclides and develop a network of experts within Europe. One program within MEDICIS-PROMED is to determine the feasibility of producing innovative radioisotopes for theranostics using a commercial middle-sized high-current cyclotron and the mass separation technology developed at CERN-MEDICIS. This will allow the production of high specific activity radioisotopes not achievable with the common post-processing by chemical separation. Radioisotopes of scandium, copper, arsenic and terbium have been identified. Preliminary studies of activation yield and irradiation parameters optimization for the production of Tb-149 will be described.
NASA Technical Reports Server (NTRS)
Irving, A. J.; Merrill, R. B.; Singleton, D. E.
1978-01-01
An experimental study was carried out to measure partition coefficients for two rare-earth elements (Sm and Tm) and Sc among armalcolite, ilmenite, olivine and liquid coexisting in a system modeled on high-Ti mare basalt 74275. This 'primitive' sample was chosen for study because its major and trace element chemistry as well as its equilibrium phase relations at atmospheric pressure are known from previous studies. Beta-track analytical techniques were used so that partition coefficients could be measured in an environment whose bulk trace element composition is similar to that of the natural basalt. Partition coefficients for Cr and Mn were determined in the same experiments by microprobe analysis. The only equilibrium partial melting model appears to be one in which ilmenite is initially present in the source region but is consumed by melting before segregation of the high-Ti mare basalt liquid from the residue.
Sustainability of rare earth elements chain: from production to food - a review.
Turra, Christian
2018-02-01
Rare earth elements (REE) are a group of chemical elements that include lanthanoids (lanthanum to lutetium), scandium and yttrium. In the last decades, the REE demand in the industry and other areas has increased significantly. In general, REE have shown low concentrations in soils, plants, water and atmosphere, but they may accumulate in such environments due to anthropogenic inputs. In areas where there is REE contamination, the slow accumulation of these elements in the environment could become problematic. Many studies have shown environmental areas contaminated with REE and their toxic effects. Thus, it is important to review, in order to improve the current understanding of these elements in the environment, showing the effects of REE exposure in mining, soil, water, plants and food. Besides, there are few suppliers and a limited quantity of these elements in the world. This paper suggests options to improve the sustainability management of REE chain.
Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.
Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V
2010-10-01
The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.
Low work function materials for microminiature energy conversion and recovery applications
Zavadil, Kevin R.; Ruffner, Judith A.; King, Donald B.
2003-05-13
Low work function materials are disclosed together with methods for their manufacture and integration with electrodes used in thermionic conversion applications (specifically microminiature thermionic conversion applications). The materials include a mixed oxide system and metal in a compositionally modulated structure comprised of localized discontinuous structures of material that are deposited using techniques suited to IC manufacture, such as rf sputtering or CVD. The structures, which can include layers are then heated to coalescence yielding a thin film that is both durable and capable of electron emission under thermionic conversion conditions used for microminiature thermionic converters. Using the principles of the invention, thin film electrodes (emitters and collectors) required for microconverter technology are manufactured using a single process deposition so as to allow for full fabrication integration consistent with batch processing, and tailoring of emission/collection properties. In the preferred embodiment, the individual layers include mixed BaSrCaO, scandium oxide and tungsten.
Tritium target manufacturing for use in accelerators
NASA Astrophysics Data System (ADS)
Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.
2001-07-01
As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.
High-temperature deformation and microstructural analysis for silicon nitride-scandium(III) oxide
NASA Technical Reports Server (NTRS)
Cheong, Deock-Soo; Sanders, William A.
1992-01-01
It was indicated that Si3N4 doped with Sc2O3 may exhibit high temperature mechanical properties superior to Si3N4 systems with various other oxide sintered additives. High temperature deformation of samples was studied by characterizing the microstructures before and after deformation. It was found that elements of the additive, such as Sc and O, exist in small amounts at very thin grain boundary layers and most of them stay in secondary phases at tripple and multiple grain boundary junctions. These secondary phases are devitrified as crystalline Sc2Si2O7. Deformation of the samples was dominated by cavitational processes rather than movements of dislocations. Thus the excellent deformation resistance of the samples at high temperature can be attributed to the very small thickness of the grain boundary layers and the crystalline secondary phase.
Zhang, Fang; Liang, Chao; Wu, Xiaotao; Li, Hexing
2014-08-04
The design of robust solid catalysts which can selectively synthesize highly functionalized carbohydrate derivatives from unprotected and unactivated simple sugars in water is an outstanding challenge. Herein we describe the preparation of a novel nanospherical ordered mesoporous Lewis acid polymer (Sc(OTf)2-NSMP) by functionalizing the mesoporous phenol-formaldehyde polymer framework with scandium triflate groups. In the C-glycosylation reaction between D-glucose and dimedone with the Sc(OTf)2-NSMP catalyst, the conversion was 99% and the yield of xanthone-C-glucoside reached 92% after 2 days, which exceeded the previous best results. It was shown that other xanthone glycosides can be obtained from various sugars with moderate to good yields. Furthermore, the catalyst can be easily recovered and reused at least seven times without loss of catalytic activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Point Defects and p -Type Doping in ScN from First Principles
NASA Astrophysics Data System (ADS)
Kumagai, Yu; Tsunoda, Naoki; Oba, Fumiyasu
2018-03-01
Scandium nitride (ScN) has been intensively researched as a prototype of rocksalt nitrides and a potential counterpart of the wurtzite group IIIa nitrides. It also holds great promise for applications in various fields, including optoelectronics, thermoelectrics, spintronics, and piezoelectrics. We theoretically investigate the bulk properties, band-edge positions, chemical stability, and point defects, i.e., native defects, unintentionally doped impurities, and p -type dopants of ScN using the Heyd-Scuseria-Ernzerhof hybrid functional. We find several fascinating behaviors: (i) a high level for the valence-band maximum, (ii) the lowest formation energy among binary nitrides, (iii) high formation energies of native point defects, (iv) low formation energies of donor-type impurities, and (v) a p -type conversion by Mg doping. Furthermore, we uncover the origins of the Burstein-Moss shift commonly observed in ScN. Our work sheds light on a fundamental understanding of ScN in regard to its technological applications.
Sahlberg, Martin; Andersson, Yvonne
2009-03-01
Scandium magnesium gallide, Sc(2)MgGa(2), and yttrium magnesium gallide, Y(2)MgGa(2), were synthesized from the corresponding elements by heating under an argon atmosphere in an induction furnace. These intermetallic compounds crystallize in the tetragonal Mo(2)FeB(2)-type structure. All three crystallographically unique atoms occupy special positions and the site symmetries of (Sc/Y, Ga) and Mg are m2m and 4/m, respectively. The coordinations around Sc/Y, Mg and Ga are pentagonal (Sc/Y), tetragonal (Mg) and triangular (Ga) prisms, with four (Mg) or three (Ga) additional capping atoms leading to the coordination numbers [10], [8+4] and [6+3], respectively. The crystal structure of Sc(2)MgGa(2 )was determined from single-crystal diffraction intensities and the isostructural Y(2)MgGa(2) was identified from powder diffraction data.
Metal halide arc discharge lamp having short arc length
NASA Technical Reports Server (NTRS)
Muzeroll, Martin E. (Inventor)
1994-01-01
A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.
Giuseppone, Nicolas; Schmitt, Jean-Louis; Schwartz, Evan; Lehn, Jean-Marie
2005-04-20
Sc(OTf)(3) efficiently catalyzes the self-sufficient transimination reaction between various types of C=N bonds in organic solvents, with turnover frequencies up to 3600 h(-)(1) and rate accelerations up to 6 x 10(5). The mechanism of the crossover reaction in mixtures of amines and imines is studied, comparing parallel individual reactions with coupled equilibria. The intrinsic kinetic parameters for isolated reactions cannot simply be added up when several components are mixed, and the behavior of the system agrees with the presence of a unique mediator that constitutes the core of a network of competing reactions. In mixed systems, every single amine or imine competes for the same central hub, in accordance with their binding affinity for the catalyst metal ion center. More generally, the study extends the basic principles of constitutional dynamic chemistry to interconnected chemical transformations and provides a step toward dynamic systems of increasing complexity.
Construction of monoenergetic neutron calibration fields using 45Sc(p, n)45Ti reaction at JAEA.
Tanimura, Y; Saegusa, J; Shikaze, Y; Tsutsumi, M; Shimizu, S; Yoshizawa, M
2007-01-01
The 8 and 27 keV monoenergetic neutron calibration fields have been developed by using (45)Sc(p, n)(45)Ti reaction. Protons from a 4-MV Pelletron accelerator are used to bombard a thin scandium target evaporated onto a platinum disc. The proton energies are finely adjusted to the resonance to generate the 8 and 27 keV neutrons by applying a high voltage to the target assemblies. The neutron energies were measured using the time-of-flight method with a lithium glass scintillation detector. The neutron fluences at a calibration point located at 50 cm from the target were evaluated using Bonner spheres. A long counter was placed at 2.2 m from the target and at 60 degrees to the direction of the proton beam in order to monitor the fluence at the calibration point. Fluence and dose equivalent rates at the calibration point are sufficient to calibrate many types of the neutron survey metres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagoner, J.L.
Wet and dry sediments were collected throughout the 18,500-km/sup 2/arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40more » ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data.« less
Fluorescent lighting with aluminum nitride phosphors
Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.
2016-05-10
A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.
Hydrogeochemical and stream sediment reconnaissance basic data for Waco NTMS quadrangle, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-07-31
Results of a reconnaissance geochemical survey of the Waco Quadrangle are reported. Field and laboratory data are presented for 218 groundwater and 614 stream sediment samples. Statistical and areal distribution of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in the Upper cretaceous units (Navarro, Taylor, and Woodbine Groups) and Lower Cretaceous carbonate units (Fredricksburg and Wilcox Groups). Saline watermore » trends are also prominent in these units. Stream sediment data indicate high uranium concentrations occur in the western portion of the quadrangle. Most of the samples with high uranium values are collected from the Upper and Lower Cretaceous and Tertiary units. Associated with the high uranium values are high concentrations of aluminum, chromium, iron, scandium, yttrium, zinc, and zirconium.« less
Masuda, Yoshiko Murakami; Hossain, Mozammal; Wang, Xiaogu; Matsuoka, Emi; Okano, Tomohiro; Matsumoto, Koukichi
2006-09-01
To investigate the efficacy of Er,Cr:YSGG (erbium,chromium:yttrium scandium gallium garnet) laser irradiation in root canal preparation and to evaluate its effect on eruption of rat incisors after disturbance of the enamel organ in the pulp, 20 canals of lower left incisor teeth were prepared by K-files followed by Er,Cr:YSGG laser irradiation, and 20 canals of right incisors were subjected to K-files only (control). At 1 week after irradiation, both sides of incisors erupted at the same level from the gingival margin. Histological findings showed that laser irradiation produced a slightly larger damage in the pulp than that of control. Scanning electron microscope observation revealed that laser-treated surface revealed a rough, irregular, and very clean surface; there was almost no evidence of debris or smear layer, and dentinal tubules were opened. Adequate power of Er,Cr:YSGG laser irradiation is effective in root canal preparation without disturbance of the eruption.
Chemoselective Polymerization of Polar Divinyl Monomers with Rare-Earth/Phosphine Lewis Pairs.
Xu, Pengfei; Wu, Lei; Dong, Liqiu; Xu, Xin
2018-02-08
This work reports the chemoselective polymerization of polar divinyl monomers, including allyl methacrylate (AMA), vinyl methacrylate (VMA), and 4-vinylbenzyl methacrylate (VBMA), by using simple Lewis pairs comprised of homoleptic rare-earth (RE) aryloxide complexes RE(OAr)₃ (RE = Sc ( 1 ), Y ( 2 ), Sm ( 3 ), La ( 4 ), Ar = 2,6- t Bu₂C₆H₃) and phosphines PR₃ (R = Ph, Cy, Et, Me). Catalytic activities of polymerizations relied heavily upon the cooperation of Lewis acid and Lewis base components. The produced polymers were soluble in common organic solvents and often had a narrow molecular weight distribution. A highly syndiotactic poly(allyl methacrylate) (PAMA) with rr ~88% could be obtained by the scandium complex 1 /PEt₃ pair at -30 °C. In the case of poly(4-vinylbenzyl methacrylate) (PVBMA), it could be post-functionalized with PhCH₂SH. Mechanistic study, including the isolation of the zwitterionic active species and the end-group analysis, revealed that the frustrated Lewis pair (FLP)-type addition was the initiating step in the polymerization.
Scandium and Chromium in the Strontium Filament in the Homunculus of eta Carinae
NASA Technical Reports Server (NTRS)
Gull, T.R.; Melendez, M.; Baustista, M.A.; Ballance, C.; Hartman, H.; Lodders, K.; Martinez, M.
2008-01-01
We continue a systematic study of chemical abundances of the Strontium Filament found in the ejecta of eta Carinae. To this end we interpret the emission spectrum of Sc II and Cr II using multilevel non-LTE models of these systems. Since the atomic data for these ions was previously unavailable, we carry out ab initio calculations of radiative transition rates and electron impact excitation rate coefficients. The observed spectrum is emitted from a mostly neutral region with electron density of the order of 10(exp 7) cm (exp -3) and a temperature between 6000 and 7000 K. These conditions are consistent with our previous diagnostics from [Ni II], [Ti II], amd [Sr II]. The observed spectrum indicates an abundance of Sc relative Ni that more than 40 times the solar values, while the Cr/Ni abundance ratio is roughly solar. Various scenarios of depletion and dust destruction are suggested to explain such abnormal abundances.
León-Luis, S F; Muñoz-Santiuste, J E; Lavín, V; Rodríguez-Mendoza, U R
2012-04-23
Hypersensitivity to pressure and temperature is observed in the near-infrared emission lines of the Nd(3+) ion in a Cr(3+),Nd(3+):Gd(3)Sc(2)Ga(3)O(12) crystal, associated to the R(1,2)((4)F(3/2))→Z(5)((4)I(9/2)) and R(1,2)((4)F(3/2))→Z(1)((4)I(9/2)) transitions. The former emissions show large linear pressure coefficients of -11.3 cm(-1)/GPa and -8.8 cm(-1)/GPa, while the latter show high thermal sensitivity in the low temperature range. Thus this garnet crystal can be considered a potential optical pressure and/or temperature sensor in high pressure and temperature experiments up to 12 GPa and below room temperature, used in diamond anvil cells and excited with different UV and visible commercial laser due to the multiple Cr(3+) and Nd(3+) absorption bands. © 2012 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan
The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less
Semimicrodetermination of combined tantalum and niobium with selenous acid
Grimaldi, F.S.; Schnepfe, M.
1959-01-01
Tantalum and niobium are separated and determined gravimetrically by precipitation with selenous acid from highly acidic solutions in the absence of complexing agents. Hydrogen peroxide is used in the preparation of the solution and later catalytically destroyed during digestion of the precipitate. From 0.2 to 30 mg., separately or in mixtures, of niobium or tantalum pentoxide can be separated from mixtures containing 100 mg. each of the oxides of scandium, yttrium, cerium, vanadium, molybdenum, iron, aluminum, tin, lead, and bismuth with a single precipitation; and from 30 mg. of titanium dioxide, and 50 mg. each of the oxides of antimony and thorium, when present separately, with three precipitations. At least 50 mg. of uranium(VI) oxide can be separated with a single precipitation when present alone; otherwise, three precipitations may be needed. Zirconium does not interfere when the tantalum and niobium contents of the sample are small, but in general, zirconium as well as tungsten interfere. The method is applied to the determination of the earth acids in tantaloniobate ores.
Work Functions for Models of Scandate Surfaces
NASA Technical Reports Server (NTRS)
Mueller, Wolfgang
1997-01-01
The electronic structure, surface dipole properties, and work functions of scandate surfaces have been investigated using the fully relativistic scattered-wave cluster approach. Three different types of model surfaces are considered: (1) a monolayer of Ba-Sc-O on W(100), (2) Ba or BaO adsorbed on Sc2O3 + W, and (3) BaO on SC2O3 + WO3. Changes in the work function due to Ba or BaO adsorption on the different surfaces are calculated by employing the depolarization model of interacting surface dipoles. The largest work function change and the lowest work function of 1.54 eV are obtained for Ba adsorbed on the Sc-O monolayer on W(100). The adsorption of Ba on Sc2O3 + W does not lead to a low work function, but the adsorption of BaO results in a work function of about 1.6-1.9 eV. BaO adsorbed on Sc2O3 + WO3, or scandium tungstates, may also lead to low work functions.
Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei
2005-12-29
The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.
Photogrammetric and photometric investigation of a smoke plume viewed from space.
NASA Technical Reports Server (NTRS)
Randerson, D.; Garcia, J. G.; Whitehead, V. S.
1971-01-01
Use of detailed analyses of an Apollo 6 stereographic photograph of a smoke plume which originated in southern Arizona and crossed over into Mexico to illustrate how high-resolution photography can aid meteorologists in evaluating specific air pollution events. Photogrammetric analysis of the visible smoke plume revealed that the plume was 8.06 miles long and attained a maximum width of 4000 ft, 3.0 miles from the 570-ft chimney emitting the effluent. Stereometric analysis showed that the visible top of the plume rose nearly 2400 ft above stack top, attaining 90% of this total rise 1.75 miles downwind from the source. Photometric analysis of the plume revealed a field of plume optical density that portrayed leptokurtic and bimodal distributions rather than a true Gaussian distribution. A horizontal eddy diffusivity of about 650,000 sq cm/sec and a vertical eddy diffusivity of 230,000 sq cm/sec were determined from the plume dimensions. Neutron activation analysis of plume samples revealed the elemental composition of the smoke to be copper, arsenic, selenium, indium and antimony, with trace amounts of vanadium and scandium.
NASA Astrophysics Data System (ADS)
Noack, C.; Jain, J.; Hakala, A.; Schroeder, K.; Dzombak, D. A.; Karamalidis, A.
2013-12-01
Rare earth elements (REE) - encompassing the naturally occurring lanthanides, yttrium, and scandium - are potential tracers for subsurface groundwater-brine flows and geochemical processes. Application of these elements as naturally occurring tracers during shale gas development is reliant on accurate quantitation of trace metals in hypersaline brines. We have modified and validated a liquid-liquid technique for extraction and pre-concentration of REE from saline produced waters from shale gas extraction wells with quantitative analysis by ICP-MS. This method was used to analyze time-series samples of Marcellus shale flowback and produced waters. Additionally, the total REE content of core samples of various strata throughout the Appalachian Basin were determined using HF/HNO3 digestion and ICP-MS analysis. A primary goal of the study is to elucidate systematic geochemical variations as a function of location or shale characteristics. Statistical testing will be performed to study temporal variability of inter-element relationships and explore associations between REE abundance and major solution chemistry. The results of these analyses and discussion of their significance will be presented.
NASA Astrophysics Data System (ADS)
Chen, Jie; Luo, Min; Ye, Ning
2014-10-01
A novel nonlinear optical (NLO) material Na5Sc(CO3)4·2H2O has been synthesized under a subcritical hydrothermal condition. The structure is determined by single-crystal X-ray diffraction and further characterized by TG analyses and UV-vis-NIR diffuse reflectance spectrum. It crystallizes in the tetragonal space group P-421c, with a = b = 7.4622(6) Å, C = 11.5928(15) Å. The Second-harmonic generation (SHG) on polycrystalline samples was measured using the Kurtz and Perry technique, which indicated that Na5Sc(CO3)4·2H2O was a phase-matchable material, and its measured SHG coefficient was about 1.8 times as large as that of d36 (KDP). The results from the UV-vis diffuse reflectance spectroscopy study of the powder samples indicated that the short-wavelength absorption edges of Na5Sc(CO3)4·2H2O is about 220 nm, suggesting that this crystal is a promising UV nonlinear optical (NLO) materials.
NASA Technical Reports Server (NTRS)
Kim, Kyong H.; Venable, Demetrius D.; Brown, Lamarr A.; Lee, Ja H.
1991-01-01
Results are presented on testing a Cr- and Nd-codoped Gd-Sc-Ga-garnet (Cr:Nd:GSGG) crystal and a Nd:YAG crystal (both of 3.2 mm diam and 76-mm long) for pulsed and CW laser operations using a flashlamp and solar simulator as pumping sources. Results from experiments with the flashlamp show that, at pulse lengths of 0.11, 0.28, and 0.90 ms, the slope efficiency of the Cd:Nd:GSGG crystal was higher than that of the Nd:YAG crystal and increased with pulse width. With the solar simulator, however, the CW laser operation of the Cr:Nd:GSGG crystal was limited to intensities not greater than 1500 solar constants, while the Nd:YAG laser successfully performed for all pump beam intensities available. It was found that the exposure for several minutes of the Cr:Nd:GSGG crystal to pump beam intensity of 3000 solar constants led to its damage by thermal cracking, indicating that a better solar-pumped CW laser performance may be difficult to realize with rod geometry.
Theoretical study of stability and superconductivity of ScHn (n =4 -8 ) at high pressure
NASA Astrophysics Data System (ADS)
Qian, Shifeng; Sheng, Xiaowei; Yan, Xiaozhen; Chen, Yangmei; Song, Bo
2017-09-01
The synthesis of hydrogen sulfides, with the potential of high-temperature superconductivity, was recently proposed at high Tc = 203 K. It motivated us to employ an ab initio approach for the predictions of crystal structures to find the stable scandium hydrides. In addition to the earlier predicted three stoichiometries of ScH, ScH2, and ScH3, we identify three other metallic stoichiometries of ScH4, ScH6, and ScH8, which show superconductivity at significantly higher temperatures. The phases of ScH4 and ScH6, whose stability does not require extremely high pressures (<150 GPa with ZPE), are primarily ionic compounds containing exotic quasimolecular H2 arrangements. The present electron-phonon calculations revealed the superconductive potential of ScH4 and ScH6 with estimated Tc of 98 K and 129 K at 200 GPa and 130 GPa, respectively. The superconductivity of ScHn stems from the large electron-phonon coupling associated with the wagging, bending, and intermediate-frequency modes attributed mainly to the hydrogen atoms.
Luminescent and scintillation properties of Lu3Al5O12:Sc single crystal and single crystalline films
NASA Astrophysics Data System (ADS)
Zorenko, Y.; Gorbenko, V.; Voznyak, T.; Savchyn, V.; Nizhankovskiy, S.; Dan'ko, A.; Puzikov, V.; Laguta, V.; Mares, J. A.; Nikl, M.; Nejezchleb, K.; Batentschuk, M.; Winnacker, A.
2012-10-01
The work is dedicated to growth by the liquid phase epitaxy method and study of the luminescence and scintillation properties of Sc3+ doped single crystalline films (SCF) of Lu3Al5O12 (LuAG) garnet. The scintillation properties of SCF are compared with single crystal (SC) analogues grown by the Horizontal Direct Crystallization and Czochralski methods. We consider the dependence of intensity of the Sc3+ emission in LuAG host on the activator concentration and influence of flux contamination on the light yield (LY) of the Sc3+ luminescence in LuAG:Sc SCF with respect to their SC counterparts and the reference YAP:Ce scintillator. From the NMR investigations of LuAG:Sc SCF we confirm the substitution by Sc3+ ions both the octahedral and dodecahedral positions of LuAG host and formation of the ScAl and ScLu related emission centers, respectively. We also show that the luminescence spectrum in the UV range and decay kinetics of LuAG:Sc SCF can be effectively tuned by changing the scandium content.
Metal-metal bonds in f-element chemistry.
Liddle, Stephen T; Mills, David P
2009-08-07
The molecular chemistry of the f-elements is traditionally dominated by the use of carbon-, nitrogen-, oxygen-, or halide-ligands. However, the use of metal-based fragments as ligands is underdeveloped, which contrasts to the fields of d- and p-block metal-metal complexes that have developed extensively over the last fifty years. This perspective outlines the development of compounds, which possess polarised covalent or donor-acceptor f-element-metal bonds. For this review, the f-element is defined as (i) a group 3 or lanthanide metal: scandium, yttrium, lanthanum to lutetium, or (ii) an actinide metal: thorium, or uranium, and the metal is defined as a d-block transition metal, or a group 13 (aluminium or gallium), a group 14 (silicon, germanium, or tin), or a group 15 (antimony, or bismuth) metal. Silicon, germanium, and antimony are traditionally classified as metalloids but they are included for completeness. This review focuses mainly on complexes that have been structurally authenticated by single-crystal X-ray diffraction studies and we highlight novel aspects of their syntheses, properties, and reactivities.
Advances in the Diagnosis of Neuroendocrine Neoplasms.
Kulkarni, Harshad R; Singh, Aviral; Baum, Richard P
2016-09-01
Somatostatin receptor PET/CT using (68)Ga-labeled somatostatin analogs, is a mainstay for the evaluation of the somatostatin receptor status in neuroendocrine neoplasms. In addition, the assessment of glucose metabolism by (18)F-FDG PET/CT at diagnosis can overcome probable shortcomings of histopathologic grading. This offers a systematic theranostic approach for the management of neuroendocrine neoplasms, that is, patient selection for the appropriate treatment-surgery, somatostatin analogs, peptide receptor radionuclide therapy, targeted therapies like everolimus and sunitinib, or chemotherapy-and also for therapy response monitoring. Novel targets, for example, the chemokine receptor CXCR4 in higher-grade tumors and glucagon like peptide-1 receptor in insulinomas, appear promising for imaging. Scandium-44 and Copper-64, especially on account of their longer half-life (for pretherapeutic dosimetry) and cyclotron production (which favors mass production), might be the potential alternatives to (68)Ga for PET/CT imaging. The future of molecular imaging lies in Radiomics, that is, qualitative and quantitative characterization of tumor phenotypes in correlation with tumor genomics and proteomics, for a personalized cancer management. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Romeu, João Gabriel Farias; Belinassi, Antonio Ricardo; Ornellas, Fernando R.
2018-05-01
A manifold of electronic states of ScS was investigated with special emphasis on the low-lying states X 2Σ+, A´ 2Δ, A 2Π, and B 2Σ+. For all states, potential energy curves were constructed covering internuclear distances from the equilibrium region through the dissociation limit. For the above states, besides providing the most accurate set of theoretical spectroscopic parameters to date, we have also computed dipole moment functions, transitions dipole moment functions, the associated radiative transition probabilities, and radiative lifetimes. For the states known experimentally, X 2Σ+, A 2Π, and B 2Σ+, our results significantly expand our present knowledge of the energetic profile of these states thus providing a new perspective for understanding the limited spectral data for this species known so far. For the new state, A´ 2Δ, yet unobserved experimentally, our results are sufficiently reliable and accurate to guide spectroscopists on further studies of this species.
Size effects on negative thermal expansion in cubic ScF{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Guo, X. G.; Zhang, K.
2016-07-11
Scandium trifluoride (ScF{sub 3}), adopting a cubic ReO{sub 3}-type structure at ambient pressure, undergoes a pronounced negative thermal expansion (NTE) over a wide range of temperatures (10 K–1100 K). Here, we report the size effects on the NTE properties of ScF{sub 3}. The magnitude of NTE is reduced with diminishing the crystal size. As revealed by the specific heat measurement, the low-energy phonon vibrations which account for the NTE behavior are stiffened as the crystal size decreases. With decreasing the crystal size, the peaks in high-energy X-ray pair distribution function (PDF) become broad, which cannot be illuminated by local symmetry breaking. Instead,more » the broadened PDF peaks are strongly indicative of enhanced atomic displacements which are suggested to be responsible for the stiffening of NTE-related lattice vibrations. The present study suggests that the NTE properties of ReO{sub 3}-type and other open-framework materials can be effectively adjusted by controlling the crystal size.« less
NASA Astrophysics Data System (ADS)
Ceron Hernandez, Maira Raquel
Since the discovery of fullerenes in 1985, their exohedral functionalization has been necessary to increase their solubility and explore their properties and potential applications in materials science and medicinal chemistry. This thesis provides a short overview of the importance of electronic, size and shape complementarity in determining the structures of specific endohedral fullerene compounds. This is followed by a description of a new method for the separation of scandium nitride endohedral fullerenes Sc3N C2n (n = 34, 39 and 40), and their monofunctionalization. We also present the regioselective synthesis of easily isolable bis-derivatives of C60, C70, and M3N Ih-C80 (M = Sc, Lu) using 1,3-dipolar, addition/elimination (Bingel reaction) and diazo cycloadditions. The following sections are composed of a brief introduction and a pre-peer reviewed version of the published article, each section follows its own nomenclature and numerical order. The experimental section in each section includes methods, synthesis and characterization of the most relevant compounds.
Fortier, Steven M.; Nassar, Nedal T.; Lederer, Graham W.; Brainard, Jamie; Gambogi, Joseph; McCullough, Erin A.
2018-02-16
Pursuant to the Presidential Executive Order (EO) No. 13817, “A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals,” the Secretary of the Interior, in coordination with the Secretary of Defense, and in consultation with the heads of other relevant executive departments and agencies, was tasked with developing and submitting a draft list of minerals defined as “critical minerals” to the Federal Register within 60 days of the issue of the EO (December 20, 2017).Based on an analysis by the U.S. Geological Survey and other U.S. Government agencies, using multiple criteria, 35 minerals or mineral material groups have been identified that are currently (February 2018) considered critical. These include the following: aluminum (bauxite), antimony, arsenic, barite, beryllium, bismuth, cesium, chromium, cobalt, fluorspar, gallium, germanium, graphite (natural), hafnium, helium, indium, lithium, magnesium, manganese, niobium, platinum group metals, potash, rare earth elements group, rhenium, rubidium, scandium, strontium, tantalum, tellurium, tin, titanium, tungsten, uranium, vanadium, and zirconium. The categorization of minerals as critical may change during the course of the review process and is thus provisional.
NASA Astrophysics Data System (ADS)
Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.
1991-12-01
Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.
NASA Astrophysics Data System (ADS)
Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric
2013-04-01
In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.
Seed dispersal and seed fate in Joshua tree (Yucca brevifolia)
Waitman, B.A.; Vander Wall, S.B.; Esque, Todd
2012-01-01
Joshua tree (Yucca brevifolia) is a charismatic symbol of the Mojave Desert. Despite its familiarity, we know little about the reproduction of this species, including mechanisms of seed dispersal. Here we examine mechanisms of seed dispersal and resulting seed fate. We experimentally tracked fruit and seed removal and followed the fates of Joshua tree seeds using radioactive tracers. The majority of Joshua tree fruits monitored were taken directly from the tree canopy by white-tailed antelope squirrels, and seeds and fruits on the soil surface were quickly removed by animals. Rodents given seeds labeled with scandium-46 cached them between 0.1 cm and 4.1 cm deep. Seedling emergence was most common for seeds planted 1 cm deep, whereas seeds placed on the soil surface seldom germinated. Wind dispersal is unlikely because fruits and seeds lack adaptations for wind dispersal; wind speeds required to move Joshua tree seeds and fruits across the soil surface were higher than those typically found in the Mojave Desert. Further, rodents removed most seeds before abiotic burial was possible. We conclude that most Joshua tree seeds are dispersed by scatter hoarding by rodents, and that caches made by rodents are suitable sites for seedling emergence.
New chemical determinations of zinc in basalts, and rocks of similar composition
Rader, L.F.; Swadley, W.C.; Huffman, C.; Lipp, H.H.
1963-01-01
New determinations of zinc in 124 basalts by the chemical method described (Huff-Man et al. 1963) are reported. Average zinc values, in per cent, for basalts from diverse regions are as follows: Idaho, 28 samples, 0.013; Hawaii, 33 samples, 0.010; Connecticut, 27 samples, 0.0090; Oregon, 17 samples, 0.0081; California, 8 samples, 0.0071; and New Mexico, 11 samples, 0.0086; average, all samples, 0.0099 per cent zinc. A plot of differentiation indicator ratios calculated from the conventional rock analyses, CaO/(Na2O + K2O) as the ordinate and SiO2/MgO as the abscissa, was used to select, from different localities, samples essentially the same in chemical composition that were to be used for comparisons of zinc and other minor elements. Zinc correlates with MnO and with total iron as FeO. An inverse relationship found for zinc and manganese is related to the total iron content of the basalts. Thus for a given iron concentration as zinc increases, manganese decreases and vice versa. Ratios of zinc, the common denominator, to 11 other minor elements determined spectro-graphically show correlations with cobalt, gallium, scandium, yttrium, and zirconium. ?? 1963.
Zhu, L; Tolba, M; Arola, D; Salloum, M; Meza, F
2009-07-01
Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) lasers are currently being investigated for disinfecting the root canal system. Prior to using laser therapy, it is important to understand the temperature distribution and to assess thermal damage to the surrounding tissue. In this study, a theoretical simulation using the Pennes bioheat equation is conducted to evaluate how heat spreads from the canal surface using an Er,Cr:YSGG laser. Results of the investigation show that some of the proposed treatment protocols for killing bacteria in the deep dentin are ineffective, even for long heating durations. Based on the simulation, an alternative treatment protocol is identified that has improved effectiveness and is less likely to introduce collateral damage to the surrounding tissue. The alternative protocol uses 350 mW laser power with repeating laser tip movement to achieve bacterial disinfection in the deep dentin (800 microm lateral from the canal surface), while avoiding thermal damage to the surrounding tissue (T<47 degrees C). The alternative treatment protocol has the potential to not only achieve bacterial disinfection of deep dentin but also shorten the treatment time, thereby minimizing potential patient discomfort during laser procedures.
NASA Astrophysics Data System (ADS)
Tu, Yiyou; Qian, Huan; Zhou, Xuefeng; Jiang, Jianqing
2014-04-01
In the current study, the effect of Sc addition on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. In case of AA3003 alloy, which was cold rolled to a true strain of 2.20 and heated at a heating rate of 150 K/s, the onset of precipitation and ending of recrystallization are signified by the critical temperature, T C ~740 K (467 °C). There is a change in the shape of the recrystallized grains from pancake-like to equiaxed shape, as the annealing temperature increases greater than T C. In case of AA3003 alloy microalloyed with 0.4 wt pct of Sc, the high no. density precipitation of coherent Al3Sc precipitates always occurs before recrystallization because of the small nucleation barrier and high rate of decomposition. This leads to extremely coarse pancake-like recrystallization grains with high fraction of low-angle grain boundaries in the entire annealing temperature range, even at a high brazing temperature of 883 K (610 °C).
Kimura, Y; Yu, D G; Kinoshita, J; Hossain, M; Yokoyama, K; Murakami, Y; Nomura, K; Takamura, R; Matsumoto, K
2001-04-01
The purpose of this study was to investigate the morphological and atomic changes on the root surface by stereoscopy, field emission-scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (SEM-EDX) after erbium, chromium:yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation in vitro. There have been few reports on morphological and atomic analytical study on root surface by Er,Cr:YSGG laser irradiation. Eighteen extracted human premolar and molar teeth were irradiated on root surfaces at a vertical position with water-air spray by an Er,Cr:YSGG laser at the parameter of 5.0 W and 20 Hz for 5 sec while moving. The samples were then morphologically observed by stereoscopy and FE-SEM and examined atomic-analytically by SEM-EDX. Craters having rough but clean surfaces and no melting or carbonization were observed in the samples. An atomic analytical examination showed that the calcium ratio to phosphorus showed no significant changes between the control and irradiated areas (p > 0.01). These results showed that the Er,Cr:YSGG laser has a good cutting effect on root surface and causes no burning or melting after laser irradiation.
NASA Astrophysics Data System (ADS)
Song, Wei; Lan, Linfeng; Li, Meiling; Wang, Lei; Lin, Zhenguo; Sun, Sheng; Li, Yuzhi; Song, Erlong; Gao, Peixiong; Li, Yan; Peng, Junbiao
2017-09-01
Thin-film transistors (TFTs) with solution-processed scandium (Sc) substituted indium oxide (Sc x In1-x O3, ScInO) thin films based on environmental friendly water-induced precursor were fabricated. As the Sc concentration increases from 0% to 10%, the mobility decreases from 23.7 cm2 V-1 s-1 to 6.4 cm2 V-1 s-1, which is attributed to the non-overlapping of the Sc3+ electron orbit. However, the off current decreases and the turn-ON voltage (V ON) shifts towards the positive direction as the Sc content increases, which indicates lower carrier density after incorporation of Sc into In2O3. More interestingly, the incorporation of Sc into In2O3 can effectively improve the electrical stability of the TFT devices under gate bias stress, which is attributed to the reduction of the number of oxygen vacancies due to the relatively low standard electrode potential (-2.36) of Sc and strong bonding strength of Sc-O (680 kJ mol-1). The reduction of oxygen vacancies is confirmed by the x-ray photoelectron spectroscopy (XPS) experiments.
NASA Astrophysics Data System (ADS)
Wang, Yu; Liu, Yingli; Zhang, Huaiwu; Li, Jie; Gao, Liwen; Chen, Daming; Chen, Yong
2018-02-01
In this paper, a wet magnetizing orientation process was applied to synthesize c-axis-textured, M-type barium ferrite (BaFe12O19 or BaM), which is widely used to produce hard magnetic materials. To modify the magnetic properties of the BaM ferrite and make it suitable for certain operating frequencies, Sc3+ was substituted into Fe3+ sites of the BaM crystal structure. A BaSc x Fe12- x O19 ferrite with a typical relative density of ˜ 75% was successfully obtained. We used x-ray diffraction, scanning electronic microscopy, and a vibrating sample magnetometer to obtain phase information, detail of the microstructure, and magnetic properties of the BaSc x Fe12- x O19, respectively. The composition BaSc x Fe12- x O19 ( x = 0.1) featured a superior squareness ratio of ˜ 67% and a saturation magnetization ( M S) of ˜ 5300 Gauss in magnetic hysteresis loop measurements. These features match well with requirements for self-biased passive devices. Moreover, the site preference of Sc3+ in the hexagonal crystal structure was investigated.
Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine
2018-02-05
The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.
Critical Metals In Western Arctic Ocean Ferromanganese Mineral Deposits
NASA Astrophysics Data System (ADS)
Hein, J. R.; Spinardi, F.; Conrad, T. A.; Conrad, J. E.; Genetti, J.
2013-12-01
Little exploration for minerals has occurred in the Arctic Ocean due to ice cover and the remote location. Small deposits of seafloor massive sulfides that are rich in copper and zinc occur on Gakkel Ridge, which extends from Greenland to the Laptev Sea, and on Kolbeinsey and Mohns ridges, both located between Greenland and mainland Europe. However, rocks were recently collected by dredge along the western margin of the Canada Basin as part of the U.S. Extended Continental Shelf (ECS) program north of Alaska. Sample sites include steep escarpments on the Chukchi Borderland, a newly discovered seamount informally named Healy seamount, the southern part of Alpha-Mendeleev Ridge, and several basement outcrops in Nautilus Basin. These dredge hauls yielded three types of metal-rich mineralized deposits: ferromanganese crusts, ferromanganese nodules, and hydrothermal iron and manganese deposits. Chemical analyses of 43 crust and nodule samples show high contents of many critical metals needed for high-technology, green-technology, and energy and military applications, including cobalt (to 0.3 wt.%), vanadium (to 0.12 wt.%), zirconium (to 459 grams/tonne=ppm), molybdenum (to 453 g/t), the rare-earth elements (including scandium and yttrium; yttrium to 229 g/t), lithium (to 205 g/t), tungsten (to 64 g/t), and gallium (to 26 g/t). The metal contents of these Arctic Ocean crusts and nodules are comparable to those found throughout the global ocean, however, these Arctic Ocean samples are the first that have been found to be enriched in rare metal scandium. The metal contents of these samples indicate a diagenetic component. Crusts typically form by precipitation of metal oxides solely from seawater (hydrogenetic) onto rock surfaces producing a pavement, whereas nodules form by accretion of metal oxides, from both seawater and pore waters (diagenetic), around a nucleus on the surface of soft sediment. The best evidence for this diagenetic input to the crusts is that crusts typically have low lithium contents, 1-10 g/t while diagenetic nodules can have contents up to 600 g/t; the Arctic Ocean crusts have relatively high lithium contents of up to 205 g/t, indicating that these crusts may be only the second yet discovered to acquire some elements from sediment pore waters. A potential avenue for acquisition of diagenetic metals would be via release from pore waters into the bottom waters that bathe the crusts, or alternatively by partial burial of the crusts in mud. However, the overall composition of the crusts indicates predominantly a hydrogenetic origin. Hydrothermal iron hydroxide samples from the Arctic Ocean were dated using argon isotopes, which produced a Paleozoic age. This indicates that the Chukchi Platform in the SW Arctic Ocean is a piece of continental crust. This age also indicates that hydrothermal iron and manganese deposits are not temporally related to the Neogene ferromanganese crusts and nodules. Our preliminary results suggest that additional exploration in the Arctic Ocean for mineral deposits is warranted.
Surface exciton emission of MgO crystals
NASA Astrophysics Data System (ADS)
Kuang, Wen-Jian; Li, Qing; Chen, Yu-Xiang; Hu, Kai; Wang, Ning-Hui; Xing, Fang-Li; Yan, Qun; Sun, Shuai-Shuai; Huang, Yan; Tao, Ye; Tolner, Harm
2013-09-01
MgO crystals have been exposed to vacuum ultraviolet (VUV) radiation from a synchrotron, with energies up to 9 eV, and the emitted light, at wavelengths above 200 nm, was observed. It is concluded that bulk excitons, play an important role in the diffusion of energy inside MgO crystals, resulting in 5.85 eV (212 nm) emission from the MgO terraces of large (0.2-2 µm) MgO : F crystals. In the case of aliovalent impurity doping, then the bulk exciton energy is also transferred to the Vk centres and 5.3 eV (235 nm) light is emitted. Both fluorine and silicon doping appear to promote UV surface emission, acting similarly to an ns2 ion inside MgO, while strong scandium doping is killing the surface emission completely. The 212 nm surface UV emission and the 235 nm bulk UV emission can be excited only at the bandgap edge. Broadband visible light, centred around 400 nm, is also emitted. Contrary to the UV emission, this is not generated when excited at the bandgap edge; instead, we find that it is only excited at sub-bandgap energies, with a maximum at the 5C surface excitation energy of 5.71 eV (217 nm) for the MgO terraces.
Scandium doped Ge2Sb2Te5 for high-speed and low-power-consumption phase change memory
NASA Astrophysics Data System (ADS)
Wang, Yong; Zheng, Yonghui; Liu, Guangyu; Li, Tao; Guo, Tianqi; Cheng, Yan; Lv, Shilong; Song, Sannian; Ren, Kun; Song, Zhitang
2018-03-01
To bridge the gap of access time between memories and storage systems, the concept of storage class memory has been put forward based on emerging nonvolatile memory technologies. For all the nonvolatile memory candidates, the unpleasant tradeoff between operation speed and retention seems to be inevitable. To promote both the write speed and the retention of phase change memory (PCM), Sc doped Ge2Sb2Te5 (SGST) has been proposed as the storage medium. Octahedral Sc-Te motifs, acting as crystallization precursors to shorten the nucleation incubation period, are the possible reason for the high write speed of 6 ns in PCM cells, five-times faster than that of Ge2Sb2Te5 (GST) cells. Meanwhile, an enhanced 10-year data retention of 119 °C has been achieved. Benefiting from both the increased crystalline resistance and the inhibited formation of the hexagonal phase, the SGST cell has a 77% reduction in power consumption compared to the GST cell. Adhesion of the SGST/SiO2 interface has been strengthened, attributed to the reduced stress by forming smaller grains during crystallization, guaranteeing the reliability of the device. These improvements have made the SGST material a promising candidate for PCM application.
Peeters, Harry Huiz; Gutknecht, Norbert
2014-08-01
The purpose of the study was to test the hypothesis that air entrapment occurs in the apical third of a root canal during irrigation. A second objective was to test the null hypothesis that there is no difference between laser-driven irrigation (an erbium, chromium:yttrium-scandium-gallium-garnet laser) and passive ultrasonic irrigation in removing an airlock from the apical third. One hundred twenty extracted human teeth with single narrow root canals were randomised into two experimental groups (n = 40) and two control groups (n = 20). The specimens were shaped using hand instruments up to a size 30/0.02 file. The teeth were irrigated with a mixture of saline, radiopaque contrast and ink in solution. In the passive ultrasonic irrigation group, the irrigant was activated with an ultrasonic device for 60 s. In the laser group, the irrigant was activated with a laser for 60 s. It was concluded that if the insertion of irrigation needle is shorter than the working length, air entrapment may develop in the apical third, but the use of laser-driven irrigation is completely effective in removing it. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.
Hard tissue ablation with a spray-assisted mid-IR laser
NASA Astrophysics Data System (ADS)
Kang, H. W.; Rizoiu, I.; Welch, A. J.
2007-12-01
The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.
Abundances in 54 Chemical Elements in Przybylski's Star: HD 101065
NASA Astrophysics Data System (ADS)
Cowley, Charles R.; et al.
We report abundances from carbon through uranium, based on ESO observations: SN >= 200, resolution 80,000. Light elements, through the iron group scatter with respect to the standard abundance distribution (SAD). Carbon and oxygen are mildly depleted, as are iron and nickel, while titanium and cobalt are enhanced. Calcium is depleted, but silicon, sulfur, and scandium are solar. The heavier elements including some 4d and REE's are generally enhanced by 3 to 4 dex. This is not extreme for an Ap star. The truly bizarre appearance of the spectrum is an an ionization phenomena. Some hotter Ap stars have comparable lanthanide abundances, but their second spectra are weaker due to double ionization. Our adopted model has a Te of 6600K, and log(g) = 4.2. Because of the high line opacity, the photospheric pressure is low, and convection is ineffective. Chemical separation has distorted the third r-process peak only slightly. The overall coherence of the heavier elements is remarkable. Additional information is available from http://www.astro.lsa.umich.edu/users/cowley/przyb.html. This abstract is based on a paper submitted to MNRAS, by CRC, and coauthors: T. A. Ryabchikova (Moscow & Vienna), F. Kupka (Vienna), D. Bord (Michigan), G. Mathys (ESO), and W. P. Bidelman (Case-Western Reserve).
Fractional laser skin resurfacing.
Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A
2012-11-01
Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.
Trace elements and heavy metals in hair of stage III breast cancer patients.
Benderli Cihan, Yasemin; Sözen, Selim; Oztürk Yıldırım, Sema
2011-12-01
This prospective study was designed to compare the hair levels of 36 elements in 52 patients with stage III breast cancer to those of an equal number of healthy individuals. Principal component and cluster analysis were used for source of identification and apportionment of heavy metals and trace elements in these two groups. A higher average level of iron was found in samples from patients while controls had higher levels of calcium. Both patients and controls had elevated levels of tin, magnesium, zinc, and sodium. Almost all element values in cancer patients showed higher dispersion and asymmetry than in healthy controls. Between the two groups, there were statistically significant differences in the concentrations of silver, arsenic, gold, boron, barium, beryllium, calcium, cadmium, cerium, cobalt, cesium, gadolinium, manganese, nickel, lead, antimony, scandium, selenium, and zinc (p < 0.05). Strong positive correlations were found between lead and gold (r = 0.785) in the cancer group and between palladium and cobalt (r = 0.945) in the healthy individuals. Our results show that there are distinct patterns of heavy metals and trace elements in the hair of breast cancer patients in comparison to healthy controls. These results could be of significance in the diagnosis of breast cancer.
López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa
2015-01-01
Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770
Thermomechanical processing of aluminum micro-alloyed with Sc, Zr, Ti, B, and C
NASA Astrophysics Data System (ADS)
McNamara, Cameron T.
Critical exploration of the minimalistic high strength low alloy aluminum (HSLA-Al) paradigm is necessary for the continued development of advanced aluminum alloys. In this study, scandium (Sc) and zirconium (Zr) are examined as the main precipitation strengthening additions, while magnesium (Mg) is added to probe the synergistic effects of solution and precipitation hardening, as well as the grain refinement during solidification afforded by a moderate growth restriction factor. Further, pathways of recrystallization are explored in several potential HSLA-Al syste =ms sans Sc. Aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) grain refining master alloys are added to a series of Al-Zr alloys to examine both the reported Zr poisoning effect on grain size reduction and the impact on recrystallization resistance through the use of electron backscattered diffraction (EBSD) imaging. Results include an analysis of active strengthening mechanisms and advisement for both constitution and thermomechanical processing of HSLA-Al alloys for wrought or near-net shape cast components. The mechanisms of recrystallization are discussed for alloys which contain a bimodal distribution of particles, some of which act as nucleation sites for grain formation during annealing and others which restrict the growth of the newly formed grains.
Xu, Tiantian; Zhang, Manke; Hu, Jiani; Li, Zihan; Wu, Taipu; Bao, Jianing; Wu, Siyu; Lei, Lili; He, Defu
2017-08-01
Rare earth elements (REEs) are widely used in industry, agriculture, medicine and daily life in recent years. However, environmental and health risks of REEs are still poorly understood. In this study, neurotoxicity of trichloride neodymium, praseodymium and scandium were evaluated using nematode Caenorhabditis elegans as the assay system. Median lethal concentrations (48 h) were 99.9, 157.2 and 106.4 mg/L for NdCl 3 , PrCl 3 and ScCl 3 , respectively. Sublethal dose (10-30 mg/L) of these trichloride salts significantly inhibited body length of nematodes. Three REEs resulted in significant declines in locomotor frequency of body bending, head thrashing and pharyngeal pumping. In addition, mean speed and wavelength of crawling movement were significantly reduced after chronic exposure. Using transgenic nematodes, we found NdCl 3 , PrCl 3 and ScCl 3 resulted in loss of dendrite and soma of neurons, and induced down-expression of dat-1::GFP and unc-47::GFP. It indicates that REEs can lead to damage of dopaminergic and GABAergic neurons. Our data suggest that exposure to REEs may cause neurotoxicity of inducing behavioral deficits and neural damage. These findings provide useful information for understanding health risk of REE materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Magnetic stripes and skyrmions with helicity reversals.
Yu, Xiuzhen; Mostovoy, Maxim; Tokunaga, Yusuke; Zhang, Weizhu; Kimoto, Koji; Matsui, Yoshio; Kaneko, Yoshio; Nagaosa, Naoto; Tokura, Yoshinori
2012-06-05
It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion--a nano-sized bundle of noncoplanar spins--that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets. Topologically, skyrmions are equivalent to magnetic bubbles (cylindrical domains) in ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications. In this study we use Lorentz microscopy to image magnetic domain patterns in the prototypical magnetic oxide-M-type hexaferrite with a hint of scandium. Surprisingly, we find that the magnetic bubbles and stripes in the hexaferrite have a much more complex structure than the skyrmions and spirals in helimagnets, which we associate with the new degree of freedom--helicity (or vector spin chirality) describing the direction of spin rotation across the domain walls. We observe numerous random reversals of helicity in the stripe domain state. Random helicity of cylindrical domain walls coexists with the positional order of magnetic bubbles in a triangular lattice. Most unexpectedly, we observe regular helicity reversals inside skyrmions with an unusual multiple-ring structure.
A laser-powered hydrokinetic system for caries removal and cavity preparation.
Hadley, J; Young, D A; Eversole, L R; Gornbein, J A
2000-06-01
Laser systems have been developed for the cutting of dental hard tissues. The erbium, chromium:yttrium-scandium-gallium-garnet, or Er,Cr:YSGG, laser system used in conjunction with an air-water spray has been shown to be efficacious in vitro for cavity preparation. The authors randomly selected subjects for cavity preparation with conventional air turbine/bur dental surgery or an Er,Cr:YSGG laser-powered system using a split-mouth design. They prepared Class I, III and V cavities, placed resin restorations and evaluated subjects on the day of the procedure and 30 days and six months postoperatively for pulp vitality, recurrent caries, pain and discomfort, and restoration retention. Sixty-seven subjects completed the study. There were no statistical differences between the two treatment groups for the parameters measured with one exception; there was a statistically significant decrease in discomfort levels for the laser system at the time of cavity preparation for subjects who declined to receive local anesthetic. The Er,Cr:YSGG laser system is effective for preparation of Class I, III and V cavities and resin restorations are retained by lased tooth surfaces. Hard-tissue cutting lasers are being introduced for use in operative dentistry. In this study, an Er,Cr:YSGG laser has been shown to be effective for cavity preparation and restoration replacement.
A study on the electronic and interfacial structures of monolayer ReS2-metal contacts.
Wang, Jin; Yang, Guofeng; Sun, Rui; Yan, Pengfei; Lu, Yanan; Xue, Junjun; Chen, Guoqing
2017-10-11
In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the top-contact formed by the monolayer ReS 2 (mReS 2 ) and metals (gold, silver, platinum, nickel, titanium, and scandium) by means of first-principles density functional theory calculations. We investigate the potential barrier, charge transfer and atomic orbital overlap at the mReS 2 -metal interface in consideration of van der Waals forces to understand how efficiently carriers could be injected from the metal contact to the mReS 2 channel. ReS 2 is physisorbed on Au and Ag, which leads to little perturbation of its electronic structures and forms a larger Schottky contact and a higher tunnel barrier at the interface. ReS 2 is chemisorbed on Ti and Sc, where the bonding strongly perturbs the electronic structures and is found to be purely Ohmic. The bonding of ReS 2 on Pt and Ni lies between these two extreme cases, demonstrating an intermediate behavior. These findings not only provide an insight into the mReS 2 -metal interfaces but may also prove to be instrumental in the future design of ReS 2 -based devices with good performance.
Composite solid oxide fuel cell anode based on ceria and strontium titanate
Marina, Olga A.; Pederson, Larry R.
2008-12-23
An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.
NASA Astrophysics Data System (ADS)
Sinusía Lozano, M.; Chen, Z.; Williams, Oliver A.; Iriarte, G. F.
2018-07-01
Surface acoustic wave (SAW) resonators have been fabricated on a 2 μm scandium aluminium nitride (ScAlN) film deposited by means of pulsed-DC reactive magnetron sputtering on a 5.8 μm polycrystalline diamond substrate. Thin film characterization comprised of the assessment of the thin film texture by means of x-ray diffraction (XRD) measurements, reporting highly c-axis oriented ScAlN thin films with a full width at half maximum (FWHM) of the ω-θ scans below 2°. Compositional and piezoelectric analyses of the thin films synthesized with the sputtering parameters used in this work, namely a sputtering power of 700 W and a synthesis pressure of 0.53 Pa, have reported a thin film composition of Sc0.26Al0.74N together with a piezoelectric d33 constant of ‑11 pC/N. Finally, a SAW resonator has been characterized using a vector network analyser (VNA) under various substrate temperature conditions with two iterations. The resulting temperature coefficient of frequency (TCF) values show a highly linear behaviour within two temperature ranges, namely from 20 K to room temperature (300 K) (‑12.5 ppm/K) as well as from 300 K up to 450 K (‑34.6 ppm/K).
Phase formation in the (1-y)BiFeO{sub 3}-yBiScO{sub 3} system under ambient and high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salak, A.N., E-mail: salak@ua.pt; Khalyavin, D.D., E-mail: dmitry.khalyavin@stfc.ac.uk; Pushkarev, A.V.
Formation and thermal stability of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO{sub 3}) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO{sub 3}-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi{sub 2}O{sub 3}. Single-phase perovskite ceramics of themore » BiFe{sub 1-y}Sc{sub y}O{sub 3} composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2a{sub p}×√2a{sub p}×2√3a{sub p} superstructure (a{sub p} ~ 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2a{sub p}×4a{sub p}×2√2a{sub p}) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6a{sub p}×√2a{sub p}×√6a{sub p}) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe{sub 1-y}Sc{sub y}O{sub 3} phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively. - Graphical abstract: Formation of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system when y≥0.15 requires application of pressure of several GPa. The phases formed under high pressure: R3c (0.20≤y≤0.25), Pnma (0.30≤y≤0.60) and C2/c (y≥0.70) are metastable. - Highlights: • Maximal Fe-to-Sc substitution rate in BiFeO{sub 3} at ambient pressure is about 15 at%. • R3c → Pnma → C2/c phase sequence in high-pressure prepared BiFe{sub 1-y}Sc{sub y}O{sub 3} ceramics. • The perovskite BiFe{sub 1-y}Sc{sub y}O{sub 3} phases formed under high pressure are metastable.« less
NASA Astrophysics Data System (ADS)
Zeng, Pingying
In recent decades, ceramic membranes based on mixed ionic and electronic conducting (MIEC) perovskite-structured oxides have received many attentions for their applications for air separation, or as a membrane reactor for methane oxidation. While numerous perovskite oxide materials have been explored over the past two decades; there are hardly any materials with sufficient practical economic value and performance for large scale applications, which justifies continuing the search for new materials. The main purposes of this thesis study are: (1) develop several novel SrCoO3-delta based MIEC oxides, SrCoCo1-xMxO3-delta, based on which membranes exhibit excellent oxygen permeability; (2) investigate the significant effects of the species and concentration of the dopants M (metal ions with fixed valences) on the various properties of these membranes; (3) investigate the significant effects of sintering temperature on the microstructures and performance of oxygen permeation membranes; and (4) study the performance of oxygen permeation membranes as a membrane reactor for methane combustion. To stabilize the cubic phase structure of the SrCoO3-delta oxide, various amounts of scandium was doped into the B-site of SrCoO 3-delta to form a series of new perovskite oxides, SrScxCoCo 1-xO3-delta (SSCx, x = 0-0.7). The significant effects of scandium-doping concentration on the phase structure, electrical conductivity, sintering performance, thermal and structural stability, cathode performance, and oxygen permeation performance of the SSCx membranes, were systematically studied. Also for a more in-depth understanding, the rate determination steps for the oxygen transport process through the membranes were clarified by theoretical and experimental investigation. It was found that only a minor amount of scandium (5 mol%) doping into the B-site of SrCoO3-delta can effectively stabilize the cubic phase structure, and thus significantly improve the electrical conductivity and oxygen permeability of the SrCoO3-delta membrane. Among all the disk-shaped SSCx (x = 0-0.7) membranes with a thickness of 0.91 mm, both SSC0.05 and SSC0.1 exhibit the highest oxygen permeation rate of about 3.2 mL.cm-2.min-1 (STP) at 900 °C, SSC0.1 also shows excellent cathode performance for a solid oxide fuel cell. Therefore SSC0.1 is of special interest, and thus investigated regarding the performance as a membrane reactor for methane combustion. The performance was evaluated based on the results of methane conversion rates and CO 2 selectivity. Inspired by the above findings, a series of mixed-conducting perovskite oxides SrCo0.95M0.05O3-delta (SCM, M = Bi5+, Zr4+, Ce4+, Sc3+ , La3+, Y3+, Al3+, Zn 2+) were prepared to study the effects of different dopants M on the performance of SrCo0.95M0.05O3-delta. It was found that the M cations significantly affect the crystal phase structure, grain growth, membrane porosity, electrical conductivity, and the oxygen permeability of the SCM membranes. Specifically, it is postulated in this study that the formation of the cubic perovskite structure is dependent on the electron configuration in the outer orbits of M cations, which may provide theoretical guidance for future development of high oxygen permeation ceramic membranes based on the perovskite materials. To study the significant effects of grain sizes on the oxygen permeation behaviors of La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) and SrSc0.1Co0.9O 3-delta (SSC0.1) membranes, the LSCF and SSC0.1 membranes were sintered at various temperatures to form different microstructures. Properties of these membranes with varied grain sizes were compared. Results showed that the oxygen permeation rate of the LSCF membrane increases with increasing the grain size, however, it is interesting that the oxygen permeation rate of the SSC0.1 membrane decreases with increasing the grain size. This implies that oxygen transport occurs more, however, less rapidly along grain boundaries than through the bulks in the LSCF and SSC0.1 membranes, respectively. A LSCF hollow fiber membrane and a SSC0.1 planar membrane were applied as membrane reactors for methane combustion. To improve their performances, LSCF powder and SSC0.1 powder were dip-coated and spray-coated on the permeation sides of LSCF hollow fiber membranes and SSC0.1 planar membranes, respectively. The exhaust gas components were analyzed by Gas Chromatography (GC). The performance was evaluated based on the results of methane conversion rates and CO 2 selectivity. The highest CO2 selectivity of the LSCF hollow fiber membrane and the SSC0.1 planar membrane is about 88 and 85 %, respectively. This indicates that the application of an oxygen permeation membrane as methane combustion reactor is feasible.
Alkan, Gözde; Yagmurlu, Bengi; Cakmakoglu, Seckin; Hertel, Tobias; Kaya, Şerif; Gronen, Lars; Stopic, Srecko; Friedrich, Bernd
2018-04-04
The need of light weight alloys for future transportation industry puts Sc and Ti under a sudden demand. While these metals can bring unique and desired properties to alloys, lack of reliable sources brought forth a supply problem which can be solved by valorization of the secondary resources. Bauxite residue (red mud), with considerable Ti and Sc content, is a promising resource for secure supply of these metals. Due to drawbacks of the direct leaching route from bauxite residue, such as silica gel formation and low selectivity towards these valuable metals, a novel leaching process based on oxidative leaching conditions, aiming more efficient and selective leaching but also considering environmental aspects via lower acid consumption, was investigated in this study. Combination of hydrogen peroxide (H 2 O 2 ) and sulfuric acid (H 2 SO 4 ) was utilized as the leaching solution, where various acid concentrations, solid-to-liquid ratios, leaching temperatures and times were examined in a comparative manner. Leaching with 2.5 M H 2 O 2 : 2.5 M H 2 SO 4 mixture at 90 °C for 30 min was observed to be the best leaching conditions with suppressed silica gel formation and the highest reported leaching efficiency with high S/L ratio for Sc and Ti; 68% and 91%; respectively.
Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min
2013-10-07
Three new quaternary scandium vanadium selenium/tellurium oxides, α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8 have been synthesized through hydrothermal and standard solid-state reactions. Although all three reported materials are stoichiometrically similar, they exhibit different crystal structures: α-ScVSe2O8 has a three-dimensional framework structure consisting of ScO6, VO6, and SeO3 groups. β-ScVSe2O8 reveals another three-dimensional framework composed of ScO7, VO5, and SeO3 polyhedra. ScVTe2O8 shows a layered structure with ScO6, VO4, and TeO4 polyhedra. Interestingly, the constituent cations, that is, Sc(3+), V(5+), Se(4+), and Te(4+) are all in a distorted coordination environment attributable to second-order Jahn-Teller (SOJT) effects. Complete characterizations including infrared spectroscopy, elemental analyses, thermal analyses, dipole moment calculation, and the magnitudes of out-of-center distortions for the compounds are reported. Transformation reactions suggest that α-ScVSe2O8 may change to β-ScVSe2O8, and then to Sc2(SeO3)3·H2O under hydrothermal conditions.
Fitzpatrick, Faith A.; Arnold, Terri L.; Colman, John A.
1998-01-01
Geochemical data for the upper Illinois River Basin are presented for concentrations of 39 elements in streambed sediment collected by the U.S. Geological Survey in the fall of 1987. These data were collected as part of the pilot phase of the National Water-Quality Assessment Program. A total of 372 sites were sampled, with 238 sites located on first- and second-order streams, and 134 sites located on main stems. Spatial distribution maps and exceedance probability plots are presented for aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, calcium, carbon (total, inorganic, and organic), cerium, chromium, cobalt, copper, gallium, iron, lanthanum, lead, lithium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, niobium, phosphorus, potassium, scandium, selenium, silver, sodium, strontium, sulfur, thorium, titanium, uranium, vanadium, yttrium, and zinc. For spatial distribution maps, concentrations of the elements are grouped into four ranges bounded by the minimum concentration, the 10th, 50th, and 90th percentiles, and the maximum concentrations. These ranges were selected to highlight streambed sediment with very low or very high element concentrations relative to the rest of the streambed sediment in the upper Illinois River Basin. Exceedance probability plots for each element display the differences, if any, in distributions between high- and low-order streams and may be helpful in determining differences between background and elevated concentrations.
NASA Astrophysics Data System (ADS)
Quinet, Pascal; Fivet, Vanessa; Bautista, Manuel
2015-08-01
The knowledge of accurate and reliable atomic data for lowly ionized iron peak elements, from scandium to copper, is of paramount importance for the analysis of the high resolution spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly ionized species have been little investigated so far and radiative rates for those lines remain sparse or inexistent.In the present contribution, we report on the recent study we have performed concerning the determination of magnetic dipole (M1) and electric quadrupole (E2) transition probabilities in those ions. For the calculations, we have extensively used the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allowed us to check the consistency and to assess the accuracy of the results obtained.[1] Mesa-Delgado A. et al., MNRAS 395, 855 (2009)[2] Johansson S. et al., A&A 361, 977 (2000)[3] Cowan R.D., The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley (1981)[4] Badnell N.R., J. Phys. B: At. Mol. Opt. Phys. 30, 1 (1997)
Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; ...
2015-02-01
Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The Al xSc 1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity rangemore » for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt Al xSc 1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt Al xSc 1-xN alloys enable high quality epitaxial rocksalt metal/Al xSc 1-xN superlattices with a wide range of accessible metamaterials properties.« less
Electro-acoustic sensors based on AlN thin film: possibilities and limitations
NASA Astrophysics Data System (ADS)
Wingqvist, Gunilla
2011-06-01
The non-ferroelectric polar wurtzite aluminium nitride (AlN) material has been shown to have potential for various sensor applications both utilizing the piezoelectric effect directly for pressure sensors or indirectly for acoustic sensing of various physical, chemical and biochemical sensor applications. Especially, sputter deposited AlN thin films have played a central role for successful development of the thin film electro-acoustic technology. The development has been primarily driven by one device - the thin film bulk acoustic resonator (FBAR or TFBAR), with its primary use for high frequency filter applications for the telecom industry. AlN has been the dominating choice for commercial application due to compatibility with the integrated circuit technology, low acoustic and dielectric losses, high acoustic velocity in combination with comparably high (but still for some applications limited) electromechanical coupling. Recently, increased piezoelectric properties (and also electromechanical coupling) in the AlN through the alloying with scandium nitride (ScN) have been identified both experimentally and theoretically. Inhere, the utilization of piezoelectricity in electro-acoustic sensing will be discussed together with expectation on acoustic FBAR sensor performance with variation in piezoelectric material properties in the parameter space around AlN due to alloying, in view of the ScxAl1-xN (0
Applications of bauxite residue: A mini-review.
Verma, Ajay S; Suri, Narendra M; Kant, Suman
2017-10-01
Bauxite residue is the waste generated during alumina production by Bayer's process. The amount of bauxite residue (40-50 wt%) generated depends on the quality of bauxite ore used for the processing. High alkalinity and high caustic content in bauxite residue causes environmental risk for fertile soil and ground water contamination. The caustic (NaOH) content in bauxite residue leads to human health risks, like dermal problems and irritation to eyes. Moreover, disposal of bauxite residue requires a large area; such problems can only be minimised by utilising bauxite residue effectively. For two decades, bauxite residue has been used as a binder in cement industries and filler/reinforcement for composite materials in the automobile industry. Valuable metals and oxides, like alumina (Al 2 O 3 ), titanium oxide (TiO 2 ) and iron oxide Fe 2 O 3 , were extracted from bauxite residue to reduce waste. Bauxite residue was utilised in construction and structure industries to make geopolymers. It was also used in the making of glass-ceramics and a coating material. Recently bauxite residue has been utilised to extract rare earth elements like scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd) and dysprosium (Dy). In this review article, the mineralogical characteristics of bauxite residue are summarised and current progresses on utilisation of bauxite residue in different fields of science and engineering are presented in detail.
Woen, David H; Chen, Guo P; Ziller, Joseph W; Boyle, Timothy J; Furche, Filipp; Evans, William J
2017-02-13
The first crystallographically characterizable complex of Sc 2+ , [Sc(NR 2 ) 3 ] - (R=SiMe 3 ), has been obtained by LnA 3 /M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR 2 ) 3 with K in the presence of 2.2.2-cryptand (crypt) and 18-crown-6 (18-c-6) and with Cs in the presence of crypt. Dark maroon [K(crypt)] + , [K(18-c-6)] + , and [Cs(crypt)] + salts of the [Sc(NR 2 ) 3 ] - anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight-line EPR spectra arising from the I=7/2 45 Sc nucleus. The Sc(NR 2 ) 3 reduction differs from Ln(NR 2 ) 3 reactions (Ln=Y and lanthanides) in that it occurs under N 2 without formation of isolable reduced dinitrogen species. [K(18-c-6)][Sc(NR 2 ) 3 ] reacts with CO 2 to produce an oxalate complex, {K 2 (18-c-6) 3 }{[(R 2 N) 3 Sc] 2 (μ-C 2 O 4 -κ 1 O:κ 1 O'')}, and a CO 2 - radical anion complex, [(R 2 N) 3 Sc(μ-OCO-κ 1 O:κ 1 O')K(18-c-6)] n . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongkun; Tang, Kaibin, E-mail: kbtang@ustc.edu.cn; Zhu, Baichuan
2015-05-15
Highlights: • A new oxyfluoride compound Sr{sub 2}ScO{sub 3}F was prepared by a solid state route. • The structure of this compound was determined by GSAS program based on XRD data. • The photocatalytic property was investigated under UV irradiation. - Abstract: A new Ruddlesden–Popper type scandium oxyfluoride, Sr{sub 2}ScO{sub 3}F, was synthesized by a conventional solid state reaction route. The detailed structure of Sr{sub 2}ScO{sub 3}F was investigated using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The disorder distribution pattern of fluorine anions was determined by the {sup 19}F nuclear magnetic resonance (NMR) spectrum. The compound crystallizesmore » in a K{sub 2}NiF{sub 4}-type tetragonal structure (space group I4/mmm) with O/F anions disordered over the apical sites of the perovskite-type Sc(O,F){sub 6} octahedron layers interleaved with strontium cations. Ultraviolet–visible (UV–vis) diffuse reflection spectrum of the prepared Sr{sub 2}ScO{sub 3}F indicates that it has an absorption in the UV–vis region. The photocatalytic activity of Sr{sub 2}ScO{sub 3}F was further investigated, showing an effective photodegradation of Rhodamine-B (RB) within 2 h under UV light irradiation.« less
A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System.
Rhie, Jong Won; Shim, Jeong Su; Choi, Won Seok
2015-01-01
The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide (CO2) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color.
Movalli, P A
2000-08-01
This paper presents the levels of metals and other trace elements measured in feathers of laggar falcons, Falco biarmicus jugger, in Pakistan. The laggar falcon is resident or locally migrant throughout the Indian Subcontinent where it is a rare and declining species. Breast feathers from 57 live, recently trapped, adult and juvenile laggar falcons and from five dead birds were collected from Bahawalpur, Bahawalnagar, Mithi, Chachcro, Jacobabad and Karachi districts. Cadmium (Cd), lead (Pb) and mercury (Hg) were analysed by atomic absorption spectrophotometry (AAS), cobalt (Co), selenium (Se), zinc (Zn), scandium (Sc), chromium (Cr), cesium (Cs), lanthanum (La) and bromine (Br) by neutron activation analysis (NAA). Hg levels were below those found in other raptors with reduced reproductive success. No correlation was found between Hg and Se levels. For some metals and elements interpretation of results is difficult as no data exist in the literature. Concentrations did not differ significantly between males and females nor between juveniles and adults, but differed among districts for Pb, Hg, Co, Sc, Cr, La and Br. A significant correlation was found between Pb concentration and occurrence of louse eggs. As the laggar is resident or a partial local migrant, it is probable that the metal burden in adult and juvenile feathers reflects the level of contamination in these particular districts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovsyannikov, Sergey V., E-mail: sergey.ovsyannikov@uni-bayreuth.de, E-mail: sergey2503@gmail.com; Wenz, Michelle D.; Pakhomova, Anna S.
2015-10-28
We report the results of single-crystal X-ray diffraction and Raman spectroscopy studies of scandium oxide, Sc{sub 2}O{sub 3}, at ambient temperature under high pressure up to 55 and 28 GPa, respectively. Both X-ray diffraction and Raman studies indicated a phase transition from the cubic bixbyite phase (so-called C-Res phase) to a monoclinic C2/m phase (so-called B-Res phase) at pressures around 25–28 GPa. The transition was accompanied by a significant volumetric drop by ∼6.7%. In addition, the Raman spectroscopy detected a minor crossover around 10–12 GPa, which manifested in the appearance of new and disappearance of some Raman modes, as well as in softeningmore » of one Raman mode. We found the bulk modulus values of the both C-Res and B-Res phases as B{sub 0} = 198.2(3) and 171.2(1) GPa (for fixed B′ = 4), respectively. Thus, the denser high-pressure lattice of Sc{sub 2}O{sub 3} is much softer than the original lattice. We discuss possible mechanisms that might be responsible for the pronounced elastic softening in the monoclinic high-pressure phase in this “simple” oxide with an ultra-wide band gap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varga, Tamas
Despite the fact that all chemical bonds expand on heating, a small class of materials shrinks when heated. These, so called negative thermal expansion (NTE) materials, are a unique class of materials with some exotic properties. The present chapter offers insight into the structural aspects of pressure- (or temperature-) induced phase transformations, and the energetics of those changes in these fascinating materials, in particular NTE compound cubic ZrW2O8, orthorhombic Sc2W3O12 and Sc2Mo3O12, as well as other members of the 'scandium tungstate family'. In subsequent sections, (i) combined in situ high-pressure synchrotron XRD and XAS studies of NTE material ZrW2O8; (ii)more » an in situ high-pressure synchrotron XRD study of Sc2W3O12, Sc2Mo3O12, and Al2W3O12; and (iii) thermochemical studies of the above materials are presented and discussed. In all of these studies, chemical bonds change, sometimes break and new ones form. Correlations between structure, chemistry, and energetics are revealed. It is also shown that (iv) NTE materials are good candidates as precursors to make novel solid state materials, such as the conducting Sc0.67WO4, using high-pressure, high-temperature synthesis, through modification of bonding and electronic structure, and thus provide vast opportunities for scientific exploration.« less
NASA Astrophysics Data System (ADS)
Ding, Shoujun; Zhang, Haotian; Dou, Renqin; Liu, Wenpeng; Sun, Dunlu; Zhang, Qingli
2018-07-01
Terbium-aluminum (Tb3Al5O12: TAG) as well as Terbium-scandium-aluminum (Tb3Sc2Al3O12: TSAG) garnet materials have attracted tremendous attention around the world owing to their multifunctional applications. However, the electronic structure, optical and luminescent properties for TAG and TSAG are still requiring elucidation. To solve these intriguing problems, firstly, a systematic theoretical calculation based on the density functional theory methods were carried out on them and their electronic structure and optical properties were obtained. The calculated results indicating that both TAG and TSAG belongs to direct band gap materials category with band gap of 4.46 and 4.05 eV, respectively. Secondly, we compared the calculated results with the experimental results (including band gap, refractive index and reflectivity) and found that they were in good coincident. Lastly, we investigated the luminescence properties of TSAG and evaluated its probability for using as visible phosphor and laser matrix. In addition, a Judd-Ofelt theory calculation was performed on TSAG to reveal the radioactive transition of Tb-4f configuration and the three Judd-Ofelt intense parameters were obtained to be 4.47, 1.37 and 4.23 × 10-20 cm2, respectively. All of the obtained results can provide an essential understanding of TAG and TSAG garnet materials and also useful for the further exploration of them.
NASA Astrophysics Data System (ADS)
Wellenreuther, G.; Fittschen, U. E. A.; Achard, M. E. S.; Faust, A.; Kreplin, X.; Meyer-Klaucke, W.
2008-12-01
Total reflection X-ray fluorescence (TXRF) is a very promising method for the direct, quick and reliable multi-elemental quantification of trace elements in protein samples. With the introduction of an internal standard consisting of two reference elements, scandium and gallium, a wide range of proteins can be analyzed, regardless of their salt content, buffer composition, additives and amino acid composition. This strategy also enables quantification of matrix effects. Two potential issues associated with drying have been considered in this study: (1) Formation of heterogeneous residues of varying thickness and/or density; and (2) separation of the internal standard and protein during drying (which has to be prevented to allow accurate quantification). These issues were investigated by microbeam X-ray fluorescence (μXRF) with special emphasis on (I) the influence of sample support and (II) the protein / buffer system used. In the first part, a model protein was studied on well established sample supports used in TXRF, PIXE and XRF (Mylar, siliconized quartz, Plexiglas and silicon). In the second part we imaged proteins of different molecular weight, oligomerization state, bound metals and solubility. A partial separation of protein and internal standard was only observed with untreated silicon, suggesting it may not be an adequate support material. Siliconized quartz proved to be the least prone to heterogeneous drying of the sample and yielded the most reliable results.
Development of Ceramic Solid-State Laser Host Material
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra
2009-01-01
Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.
Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank
2017-12-23
The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy ® , has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al₃-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy ® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy ® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy ® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength.
Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank
2017-01-01
The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy®, has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al3-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength. PMID:29295528
Brooks, Robert A.; Campbell, John A.
1976-01-01
Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.
A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System
Rhie, Jong Won; Choi, Won Seok
2015-01-01
Background The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide (CO2) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Methods Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Results Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. Conclusions The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color. PMID:25606490
A Binary Nature of the Marginal CP Star Sigma Sculptoris
NASA Astrophysics Data System (ADS)
Janík, Jan; Krtička, Jiří; Mikulášek, Zdeněk; Zverko, Juraj; Pintado, Olga; Paunzen, Ernst; Prvák, Milan; Skalický, Jan; Zejda, Miloslav; Adam, Christian
2018-05-01
The A2 V star σ Scl was suspected of being a low-amplitude rotating variable of the Ap-type star by several authors. Aiming to decide whether the star is a variable chemically peculiar (CP) star, we searched for the photometric and spectroscopic variability, and determined chemical abundances of σ Scl. The possible variability was tested using several types of periodograms applied to the photometry from Long-Term Photometry of Variables project (LTPV) and Hipparcos. Sixty spectrograms of high signal-to-noise (S/N) were obtained and used for chemical analysis of the stellar atmosphere and for looking for spectral variability that is symptomatic for the CP stars. We did not find any signs of the light variability or prominent chemical peculiarity, that is specific for the CP stars. The only exception is the abundance of scandium, which is significantly lower than the solar one and yttrium and barium, which are strongly overabundant. As a by-product of the analysis, and with the addition of 29 further spectra, we found that σ Scl is a single-lined spectroscopic binary with orbital period of 46.877(8) d. We argue that σ Scl is not an Ap star, but rather a marginal Am star in SB1 system. The spectral energy distribution of the binary reveals infrared excess due to circumstellar material.
Energy Levels, wavelengths and hyperfine structure measurements of Sc II
NASA Astrophysics Data System (ADS)
Hala, Fnu; Nave, Gillian
2018-01-01
Lines of singly ionized Scandium (Sc II) along with other Iron group elements have been observed [1] in the region surrounding the massive star Eta Carinae [2,3] called the strontium filament (SrF). The last extensive analysis of Sc II was the four-decade old work of Johansson & Litzen [4], using low-resolution grating spectroscopy. To update and extend the Sc II spectra, we have made observation of Sc/Ar, Sc/Ne and Sc/Ge/Ar hollow cathode emission spectrum on the NIST high resolution FT700 UV/Vis and 2 m UV/Vis/IR Fourier transform spectrometers (FTS). More than 850 Sc II lines have been measured in the wavelength range of 187 nm to 3.2 μm. connecting a total of 152 energy levels. The present work also focuses to resolve hyperfine structure (HFS) in Sc II lines. We aim to obtain accurate transition wavelengths, improved energy levels and HFS constants of Sc II. The latest results from work in progress will be presented.Reference[1] Hartman H, Gull T, Johansson S and Smith N 2004 Astron. Astrophys. 419 215[2] Smith N, Morse J A and Gull T R 2004 Astrophys. J. 605 405[3] Davidson K and Humphreys R M 1997 Annu. Rev. Astron. Astrophys. 35[4] Johansson S and Litzén U 1980 Phys. Scr. 22 49
Electronic structure of scandium-doped MgB2
NASA Astrophysics Data System (ADS)
de La Peña, Omar; Agrestini, Stefano
2005-03-01
Recently has been reported the synthesis of a new superconducting alloy based on MgB2, where Mg is partially substituted with Sc. In order to analyze the effect of Sc doping on the structural and superconducting properties of Mg1-xScxB2, we have performed a detailed study of the electronic structure for this new diboride. The calculations have been done using the first-principles LAPW method, within the supercell approach for modeling the doping. In this work we report results for the electronic band structure, Fermi surface, and density of states. The effect of the Sc-d orbitals on the structural and electronic properties of Mg1-xScxB2 is analyzed. Increasing the Sc concentration (x) the σ-band is gradually filled, because Sc have one valence electron more than Mg. Interestingly, the analysis of the band structure shows that even for ScB2 the top of the σ-band remain above the Fermi level, nevertheless the σ-band presents high dispersion and has an important contribution of d states. In this way, in addition to the band filling effect, Sc doping gradually reduces the two-dimensional character of the σ- band in Mg1-xScxB2 as a result of increasing the sp(B)-d(Sc) hybridization. This research was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant. No. 43830-F
Greve, Adrienne I.; Spahr, Norman E.; Van Metre, Peter C.; Wilson, Jennifer T.
2001-01-01
Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements. Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam. The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines. Concentrations of arsenic, cadmium, chromium, copper, lead, and zinc in sediment samples from Dillon Reservoir exceeded the Canadian interim freshwater sediment-quality guidelines. Copper, iron, lithium, nickel, scandium, titanium, and vanadium concentrations in sediment samples decreased over time. Other elements, while no trend was evident, displayed concentration spikes in the down-core profiles, indicating loads entering the reservoir may have been larger than they were in 1997. The highest concentrations of copper, lead, manganese, mercury, and zinc were detected during the late 1970's and early 1980's. Elevated concentrations of trace elements in sediment in Dillon Reservoir likely resulted from historical mining in the drainage area. The downward trend identified for copper, iron, lithium, nickel, scandium, titanium, and vanadium may be due in part to restoration efforts in mining-affected areas and a decrease in active mining in the Dillon Reservoir watershed. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission.
Norberg, Stefan T.; Knee, Christopher S.; Ahmed, Istaq; Hull, Stephen; Buannic, Lucienne; Hung, Ivan; Gan, Zhehong; Blanc, Frédéric; Grey, Clare P.; Eriksson, Sten G.
2016-01-01
The solid-state synthesis and structural characterisation of perovskite BaSn1–xScxO3–δ (x = 0.0, 0.1, 0.2, 0.3, 0.4) and its corresponding hydrated ceramics are reported. Powder and neutron X-ray diffractions reveal the presence of cubic perovskites (space group Pm3m) with an increasing cell parameter as a function of scandium concentration along with some indication of phase segregation. 119Sn and 45Sc solid-state NMR spectroscopy data highlight the existence of oxygen vacancies in the dry materials, and their filling upon hydrothermal treatment with D2O. It also indicates that the Sn4+ and Sc3+ local distribution at the B-site of the perovskite is inhomogeneous and suggests that the oxygen vacancies are located in the scandium dopant coordination shell at low concentrations (x ≤ 0.2) and in the tin coordination shell at high concentrations (x ≥ 0.3). 17O NMR spectra on 17O enriched BaSn1–xScxO3–δ materials show the existence of Sn–O–Sn, Sn–O–Sc and Sc–O–Sc bridging oxygen environments. A further room temperature neutron powder diffraction study on deuterated BaSn0.6Sc0.4O3–δ refines the deuteron position at the 24k crystallographic site (x, y, 0) with x = 0.579(3) and y = 0.217(3) which leads to an O–D bond distance of 0.96(1) Å and suggests tilting of the proton towards the next nearest oxygen. Proton conduction was found to dominate in wet argon below 700 °C with total conductivity values in the range 1.8 × 10–4 to 1.1 × 10–3 S cm–1 between 300 and 600 °C. Electron holes govern the conduction process in dry oxidizing conditions, whilst in wet oxygen they compete with protonic defects leading to a wide mixed conduction region in the 200 to 600 °C temperature region, and a suppression of the conductivity at higher temperature. PMID:27358734
NASA Astrophysics Data System (ADS)
Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias
2017-11-01
Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.
Effects of erbium,chromium:YSGG laser irradiation on canine mandibular bone.
Kimura, Y; Yu, D G; Fujita, A; Yamashita, A; Murakami, Y; Matsumoto, K
2001-09-01
Only relatively few reports have described the morphological effects on bone produced by erbium,chromium: yttrium,scandium,gallium,garnet (Er,Cr:YSGG) laser irradiation, and none has investigated the atomic changes or estimated the temperature increases involved. The objectives of this study were to investigate the morphological, atomic, and temperature changes in irradiated areas during and after laser irradiation, and to evaluate the cutting effect on canine mandibular bone in vitro. Two canine mandibular bones were cut into 3 to 5 cm pieces and irradiated by an Er,Cr:YSGG laser utilizing a water-air spray at 5 W and 8 Hz for 10 or 30 seconds. During and after laser irradiation, temperature increases in the irradiated areas were measured by thermography. The samples were then observed by stereoscopy and scanning electron microscopy to determine morphological changes and by energy dispersive x-ray spectroscopy to evaluate atomic alterations. Regular holes or grooves having sharp edges and smooth walls were produced, but no melting or carbonization was observed. The maximum temperature increase was an average 12.6 degrees C for 30-second irradiation. The continuous time of a temperature increase of more than 10 degrees C was consistently less than 10 seconds. An atomic analytical examination revealed that the calcium:phosphorus ratio was not significantly changed between the lased and unlased areas (P>0.0 1). These results showed that the Er,Cr:YSGG laser cuts canine mandibular bone effectively without burning, melting, or altering the calcium:phosphorus ratio of the irradiated bone.
The evolution and disintegration of matter
Clarke, Frank Wigglesworth
1925-01-01
In any attempt to study the evolution of matter it is necessary to begin with its simplest known forms, the so-called chemical elements. During a great part of the nineteenth century many philosophical chemists held a vague belief that these elements were not distinct entities but manifestations of one primal substance-the protyle, as it is sometimes called. Other chemists, more conservative, looked askance at all such speculations and held fast to what they regarded as established facts. To them an element was something distinct from other kinds of matter, a substance which could neither be decomposed nor transmuted into anything else. This belief, however, was based entirely upon negative evidence-the inadequacy of our existing resources to produce such sweeping changes. Many important facts were ignored, and especially the fact that the elements are connected by very intimate relations, such as are best shown in the periodic law of Mendeleef, who, from gaps in his table of atomic weights, predicted the existence of three unknown metals, which have since been discovered. For these metals, scandium, gallium, and germanium, he foretold not only their atomic weights but also their most characteristic physical properties and the sort of compounds that each one would form. His prophecies have been verified in every essential particular. One obvious conclusion was soon drawn from Mendeleef's "law," although he was too cautious to admit it, namely, that the chemical elements must have had some community of origin. The philosophical speculations as to their nature were fully justified.
{sup 45}Sc Solid State NMR studies of the silicides ScTSi (T=Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmening, Thomas; Eckert, Hellmut, E-mail: eckerth@uni-muenster.de; Fehse, Constanze M.
The silicides ScTSi (T=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) were synthesized by arc-melting and characterized by X-ray powder diffraction. The structures of ScCoSi, ScRuSi, ScPdSi, and ScIrSi were refined from single crystal diffractometer data. These silicides crystallize with the TiNiSi type, space group Pnma. No systematic influences of the {sup 45}Sc isotropic magnetic shift and nuclear electric quadrupolar coupling parameters on various structural distortion parameters calculated from the crystal structure data can be detected. {sup 45}Sc MAS-NMR data suggest systematic trends in the local electronic structure probed by the scandium atoms: both the electric field gradients andmore » the isotropic magnetic shifts relative to a 0.2 M aqueous Sc(NO{sub 3}){sub 3} solution decrease with increasing valence electron concentration and within each T group the isotropic magnetic shift decreases monotonically with increasing atomic number. The {sup 45}Sc nuclear electric quadrupolar coupling constants are generally well reproduced by quantum mechanical electric field gradient calculations using the WIEN2k code. Highlights: Black-Right-Pointing-Pointer Arc-melting synthesis of silicides ScTSi. Black-Right-Pointing-Pointer Single crystal X-ray data of ScCoSi, ScRuSi, ScPdSi, and ScIrSi. Black-Right-Pointing-Pointer {sup 45}Sc solid state NMR of silicides ScTSi.« less
Peeters, Harry Huiz; De Moor, Roeland J G; Suharto, Djoko
2015-08-01
The aim of this visualization study was to obtain a better understanding of the mechanism by which trapped air is removed from the apical region of simulated root canals by activation of an irrigant using an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser during endodontic procedures. A high-speed imaging system with high temporal and spatial resolution was used to visualize laser-induced shock waves in a resin block model with a curved root canal (inner diameter at the apex 0.08 mm, taper 4 %, crown height 10 mm, overall length 40 mm) and a glass cylinder model with a straight root canal (inner diameter 1 mm, crown height 10 mm, overall length 40 mm). The study utilized MZ3 and RFT3 tips in each model, without water or air spray, and with an average power of 1 W at 35 Hz. Laser-activated irrigation overcame the airlock effect by releasing air trapped in the air column. The mechanism underlying the removal of trapped air from the apical region using an Er,Cr:YSGG laser in a dry root canal is via the disruption of the surface tension at the solution-air interface. This disruption, caused by bubble implosion (cavitation), displaces air in the form of bubbles from the apical region toward the solution, which allows the solution to travel apically.
Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek
2014-09-01
A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Efficient Materials Manufacturing from Secondary Resources
NASA Astrophysics Data System (ADS)
Apelian, Diran; Mishra, Brajendra
Rare earths metals, including yttrium and scandium, are being increasingly used in clean energy technologies, colored phosphors, lasers and high intensity magnets. There are important defense applications such as fighter jet engines, missile guidance systems and space based satellite and communication systems, based on these metals. The commitment to clean energy technologies by various governments, as well as the projected growth in power and transportation sectors across the globe will certainly escalate the demand for rare earth metals and compounds. This demand implies that to ensure unhindered technological innovation, it is essential to possess secure supply chains for rare earth elements. The United States continues to be one of the largest consumers and importer of rare earths and the trend is expected to continue as the demand increases. In order to ensure secure rare earth supply and attenuate supply-demand imbalances post 2014, it is not only necessary to encourage and support exploration of newer reserves, build a rare earth stockpile, but it is also of utmost importance to look at opportunities to recycle and reuse Rare Earth Elements (REE) from secondary sources, such as post-consumer and manufacturing process wastes. This research describes the technological developments made to convert these valuable resources into functional manufactured materials for lighting industry, automotive and petroleum refining catalysts, and high density permanent magnets. In addition, production of rhenium from advanced aerospace alloys is also discussed from the perspective that it can be recovered for introduction in turbine alloys.
Spectroscopic imaging of metal halide high-intensity discharge lamps
NASA Astrophysics Data System (ADS)
Bonvallet, Geoffrey A.
The body of this work consists of three main research projects. An optical- and near-ultraviolet-wavelength absorption study sought to determine absolute densities of ground and excited level Sc atoms, ground level Sc + ions, and ground level Na atoms in a commercial 250 W metal halide high intensity discharge lamp during operation. These measurements also allowed the determination of the arc temperature and absolute electron density as functions of radius. Through infrared emission spectroscopy, relative densities of sodium and scandium were determined as functions of radius. Using the absolute densities gained from the optical experiment, these relative densities were calibrated. In addition, direct observation of the infrared emission allowed us to characterize the infrared power losses of the lamp. When considered as a fraction of the overall power consumption, the near-infrared spectral power losses were not substantial enough to warrant thorough investigation of their reduction in these lamps. The third project was an attempt to develop a portable x-ray diagnostic experiment. Two-dimensional spatial maps of the lamps were analyzed to determine absolute elemental mercury densities and the arc temperature as a function of radius. Two methods were used to improve the calibration of the density measurements and to correct for the spread in x-ray energy: known solutions of mercury in nitric acid, and an arc lamp which was uniformly heated to evaporate the mercury content. Although many complexities arose in this experiment, its goal was successfully completed.
NASA Astrophysics Data System (ADS)
Dan, Liu; Hagelberg, Frank
2007-03-01
Pronounced stability has been reported for metallofullerenes of the form NSc3@CN (N = 68, 78) /1/. In response of these and related findings, Density Functional Theory studies have been performed on the relation between cage-core interactions and the geometry as well as stability of endofullerenes with metal impurities containing Sc and Y. Substantial electron transfer from the metal core to the fullerene cage combines with electron backdonation, involving the interaction between the occupied orbitals of the negatively charged cage and the unoccupied d orbitals of the positively charged core. The Hueckel 4n+2 rule, well established in organic chemistry, is shown to provide a valuable heuristic tool for understanding the intramolecular electron transfer and the related stability gain /1/. The usefulness of the aromaticity concept for explaining and predicting the architecture of metallofullerenes is further exemplified by the units Sc2@C84 and Y2@C84 which were analyzed in spin triplet and singlet conditions. The Sc2 core turns out to be realized by two separated ions, while Y2 forms a bound subunit. These findings are in agreement with conclusions based on the 4n + 2 rule, assisted by Nucleus Independent Chemical Shift (NICS) calculations. /1/ Stevenson, S.; Fowler, P.W.; Heine, T.; Duchamp, J.C.; Rice, G.; Glass, T.; Harich, K.; Hadju, F.; Bible, R.; Dorn, H.C. Nature, 2000, 408, 427, /2/ S. S. Park, D. Liu, F. Hagelberg, J. Phys. Chem. A 109, 8865 (2005).
Natto, Zuhair S; Aladmawy, Majdi; Levi, Paul A; Wang, Hom-Lay
2015-01-01
To evaluate the efficacy of various types of lasers (neodymium-doped yttrium-aluminum-garnet [Nd:YAG], carbon dioxide [CO2], diode, erbium/chromium-doped yttrium-scandium-gallium-garnet [Er,Cr:YSGG], and erbium-doped yttrium-aluminum-garnet [Er:YAG]) in the treatment of peri-implantitis and their use in surgical and nonsurgical procedures. Human studies for the treatment of peri-implantitis with laser therapy, published between 2002 and January 2014, were collected utilizing the electronic databases PubMed, Ovid, MEDLINE, Cochrane, and Google Scholar. Two reviewers conducted the study selection, data collection, and validity assessment. Eight hundred twelve studies were selected in the initial title search; 13 studies were then chosen for this review. No human studies evaluated the effect of the Nd:YAG laser on peri-implantitis. The CO2 laser is reported to be safe and able to enhance bone regeneration. The diode laser (980 nm) seems to be effective in its bactericidal effect without changing the implant surface pattern. The Er,Cr:YSGG laser was reported to obtain bone regeneration around a failing implant in one case, while the Er:YAG laser exhibits a strong bactericidal effect against periodontopathic bacteria at a low energy level. Although lasers have shown promising results in reducing clinical signs of peri-implantitis, because of the limited sample sizes and short follow-up periods, no firm conclusion can be drawn at this moment. Hence, there is a need for more well-designed, longitudinal, randomized controlled clinical trials.
Kilburn, James E.; Smith, David B.; Closs, L. Graham; Smith, Steven M.
2007-01-01
Introduction This report contains major- and trace-element concentration data for soil samples collected in 1972 and 2005 from the Denver, Colorado, metropolitan area. A total of 405 sites were sampled in the 1972 study from an area approximately bounded by the suburbs of Golden, Thornton, Aurora, and Littleton to the west, north, east, and south, respectively. This data set included 34 duplicate samples collected in the immediate vicinity of the primary sample. In 2005, a total of 464 sites together with 34 duplicates were sampled from the same approximate localities sampled in 1972 as well as additional sites in east Aurora and the area surrounding the Rocky Mountain Arsenal. Sample density for both surveys was on the order of 1 site per square mile. At each site, sample material was collected from a depth of 0-5 inches. Each sample collected was analyzed for near-total major- and trace-element composition by the following methods: (1) inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chromium, cobalt, copper, gallium, indium, iron, lanthanum, lead, lithium, magnesium, manganese, molybdenum, nickel, niobium, phosphorus, potassium, rubidium, scandium, silver, sodium, strontium, sulfur, tellurium, thallium, thorium, tin, titanium, tungsten, uranium, vanadium, yttrium, and zinc; and (2) hydride generation-atomic absorption spectrometry for selenium. The samples collected in 2005 were also analyzed by a cold vapor-atomic absorption method for mercury. This report makes available the analytical results of these studies.
Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN
NASA Astrophysics Data System (ADS)
Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.
2017-06-01
Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.
Piezoelectric characterization of Sc0.26Al0.74N layers on Si (001) substrates
NASA Astrophysics Data System (ADS)
Sinusía Lozano, M.; Pérez-Campos, A.; Reusch, M.; Kirste, L.; Fuchs, Th; Žukauskaitė, A.; Chen, Z.; Iriarte, G. F.
2018-03-01
Scandium aluminum nitride (ScAlN) films have been synthesized by pulsed-DC reactive magnetron sputtering. The degree of c-axis orientation as well as piezoelectric characteristics of the Sc0.26Al0.74N thin films grown on Si (001) at various discharge powers and processing pressures values have been investigated. According to x-ray diffraction (XRD) measurements, the texture of the as-grown Sc0.26Al0.74N thin films becomes more prominent in the [0001]-direction at the highest target power (700 W) and at the lowest processing pressure (4 mTorr). The piezoelectric response, as determined by measuring the d33 piezoelectric constant, shows a maximum value of -12 pC/N also at 4 mTorr and 700 W, confirming a direct correlation between the d33 piezoelectric constant and the degree of orientation in the [0001]-direction. The atomic concentration of Sc and Al in the synthesized ScAlN thin film, determined by secondary ion mass spectroscopy (SIMS), reveals a Sc concentration lower than in the ScAl alloy target. The piezoresponse force microscopy (PFM) shows homogeneous polarity distribution with no inversion domains. The piezoelectric layers have been used to fabricate and measure surface acoustic wave (SAW) resonators on a Sc0.26Al0.74N/Si (001) bilayer system with resonance frequency of 1.4 GHz and coupling coefficient of 0.567. Such characteristic in the frequency response reveals the potential of these materials for advanced SAW devices in applications such as next generation (5 G) wireless communication systems.
Ghaffari, Hassanali; Mirhashemi, Amirhossein; Baherimoghadam, Tahereh; Azmi, Amir
2017-01-01
Objectives: This study sought to compare enamel cracks after orthodontic bracket debonding in the surfaces prepared with erbium, chromium: yttrium-scandium-galliumgarnet (Er,Cr:YSGG) laser and the conventional acid-etching technique. Materials and Methods: This in-vitro experimental study was conducted on 60 sound human premolars extracted for orthodontic purposes. The teeth were randomly divided into two groups (n=30). The teeth in group A were etched with 37% phosphoric acid gel, while the teeth in group B were subjected to Er,Cr:YSGG laser irradiation (gold handpiece, MZ8 tip, 50Hz, 4.5W, 60μs, 80% water and 60% air). Orthodontic brackets were bonded to the enamel surfaces and were then debonded in both groups. The samples were inspected under a stereomicroscope at ×38 magnification to assess the number and length of enamel cracks before bonding and after debonding. Independent-samples t-test was used to compare the frequency of enamel cracks in the two groups. Levene’s test was applied to assess the equality of variances. Results: No significant difference was noted in the frequency or length of enamel cracks between the two groups after debonding (P>0.05). Conclusions: Despite the same results of the frequency and length of enamel cracks in the two groups and by considering the side effects of acid-etching (demineralization and formation of white spot lesions), Er,Cr:YSGG laser may be used as an alternative to acid-etching for enamel surface preparation prior to bracket bonding. PMID:29296111
Chakravarty, Rubel; Goel, Shreya; Valdovinos, Hector F.; ...
2014-11-11
Scandium-44 (t 1/2 = 3.9 h) is a relatively new radioisotope of potential interest for use in clinical positron emission tomography (PET). Herein, we report, for the first time, the room-temperature radiolabeling of proteins with 44Sc for in vivo PET imaging. For this purpose, the Fab fragment of Cetuximab, a monoclonal antibody that binds with high affinity to epidermal growth factor receptor (EGFR), was generated and conjugated with N-[(R)-2-amino-3-( para-isothiocyanato-phenyl)propyl]- trans-(S,S)-cyclohexane-1,2-diamine- N,N,N',N'',N''-pentaacetic acid (CHX-A"-DTPA). The high purity of Cetuximab-Fab was confirmed by SDS-PAGE and mass spectrometry. The potential of the bioconjugate for PET imaging of EGFR expression in human glioblastomamore » (U87MG) tumor-bearing mice was investigated after 44Sc labeling. PET imaging revealed rapid tumor uptake (maximum uptake of ~12% ID/g at 4 h postinjection) of 44Sc–CHX-A"-DTPA–Cetuximab-Fab with excellent tumor-to-background ratio, which might allow for same day PET imaging in future clinical studies. Immunofluorescence staining was conducted to correlate tracer uptake in the tumor and normal tissues with EGFR expression. As a result, this successful strategy for immunoPET imaging of EGFR expression using 44Sc–CHX-''-DTPA–Cetuximab-Fab can make clinically translatable advances to select the right population of patients for EGFR-targeted therapy and also to monitor the therapeutic efficacy of anti-EGFR treatments.« less
Mir, Maziar; Gutknecht, Norbert; Poprawe, Reinhart; Vanweersch, Leon; Lampert, Friedrich
2009-05-01
The exact mechanism of the ablation of tooth hard tissue with most common wavelengths, which are 2,940 nm and 2,780 nm, is not yet clear. There are several different theories, but none of them has yet been established. Concepts and methods of looking at these mechanisms have been based on heat formation and transformation, and mathematical calculations evaluating the outcome of ablation, such as looking at the shape of cuts. This study provides a new concept, which is the monitoring of the direct interactions between laser light, water and enamel, with a high-speed camera. For this purpose, both the above-mentioned wavelengths were examined. Bovine anterior teeth were prepared as thin slices. Each imaged slice had a thickness close to that of the beam diameter so that the ablation effect could be shown in two dimensional pictures. The single images were extracted from the video-clips and then were animated. The following steps, explaining the ablation procedures during each pulse, were seen and reported: (1) low-output energy intensity in the first pulses that did not lead to an ablative effect; (2) bubble formation with higher output energy density; (3) the tooth surface during the pulse was covered with the plume of vapour (comparable with a cloud), and the margins of ablation on the tooth were not clear; (4) when the vapour bubble (cloud) was collapsing, an additional ablative process at the surface could be seen.
Azzeh, Manal M
2008-10-01
Peri-implantitis may occur because of biologic or mechanical factors. It can be treated by a variety of methods. In the present case report, treatment was attempted by regenerative osseous surgery associated with an erbium, chromium-doped:yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser. A 28-year-old, non-smoking male complained of gum recession around an implant in the area of upper left central incisor. After clinical examination and radiographs, it was found that there was 2 mm recession, a probing depth of 7 mm, mobility grade one, and bone mesially and distally. Regenerative osseous surgery was performed using an Er,Cr:YSGG laser (2,780 nm) at different settings to open the flap, remove the granulation tissues, perforate the bone, and clean the implant surface. A bone graft and a bioabsorbable membrane were used for bone regeneration. The patient was reevaluated at 3, 6, 12 (with reentry), and 18 months postoperatively. At 3, 6, and 12 months postoperatively, there were no reported complications, with probing depths of 3 to 5 mm, <1 mm recession, no bleeding or implant mobility, and good bone formation. Slight pus discharge was present at 12 months. At 18 months postoperatively, probing depth was 2 mm, recession was <1 mm, there was no bleeding, implant mobility, or discharge, and there was better bone formation. The results were satisfactory to the patient and the clinician. The Er,Cr:YSGG laser enabled regenerative osseous surgery around an implant with no complications and with high patient and clinician satisfaction and confidence.
Tadayon, Saeid; Smith, C.F.
1994-01-01
Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.
NASA Astrophysics Data System (ADS)
Thevenon, Florian; Guédron, Stéphane; Chiaradia, Massimo; Loizeau, Jean-Luc; Poté, John
2011-01-01
Continuous high-resolution sedimentary record of heavy metals (chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), manganese (Mn), and mercury (Hg)), from lakes Lucerne and Meidsee (Switzerland), provides pollutant deposition history from two contrasting Alpine environments over the last millennia. The distribution of conservative elements (thorium (Th), scandium (Sc) and titanium (Ti)) shows that in absence of human disturbances, the trace element input is primarily controlled by weathering processes (i.e., runoff and erosion). Nonetheless, the enrichment factor (EF) of Pb and Hg (that are measured by independent methods), and the Pb isotopic composition of sediments from the remote lake Meidsee (which are proportionally more enriched in anthropogenic heavy metals), likely detect early mining activities during the Bronze Age. Meanwhile, the deposition of trace elements remains close to the range of natural variations until the strong impact of Roman activities on atmospheric metal emissions. Both sites display simultaneous increases in anthropogenic trace metal deposition during the Greek and Roman Empires (ca 300 BC to AD 400), the Late Middle Ages (ca AD 1400), and the Early Modern Europe (after ca AD 1600). However, the greatest increases in anthropogenic metal pollution are evidenced after the industrial revolution of ca AD 1850, at low and high altitudes. During the twentieth century, industrial releases multiplied by ca 10 times heavy metal fluxes to hydrological systems located on both sides of the Alps. During the last decades, the recent growing contribution of low radiogenic Pb further highlights the contribution of industrial sources with respect to wood and coal burning emissions.
Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys
NASA Astrophysics Data System (ADS)
Deane, Kyle; Kampe, S. L.; Swenson, Douglas; Sanders, P. G.
2017-04-01
Because of the low diffusivities of scandium and zirconium in aluminum, trialuminide precipitates containing these elements have been reported to possess excellent thermal stability at temperatures of 573 K (300 °C) and higher. However, the relatively low equilibrium solubilities of these elements in aluminum limit the achievable phase fraction and, in turn, strengthening contributions from these precipitates. One method of circumventing this limitation involves the use of rapid solidification techniques to suppress the initial formation of precipitates in alloys containing higher solute compositions. This work specifically discusses the fabrication of supersaturated Al-Sc, Al-Zr, and Al-Sc-Zr alloys via melt spinning, in which supersaturations of at least 0.55 at. pct Zr and 0.8 at. pct Sc are shown to be attainable through XRD analysis. The resulting ribbons were subjected to a multistep aging heat treatment in order to encourage a core-shell precipitate morphology, the precipitate evolution behavior was monitored with XRD and TEM, and the aging behavior was observed. While aging in these alloys is shown to follow similar trends to conventionally processed materials reported in literature, with phase fraction increasing until higher aging temperatures causing a competing dissolution effect, the onset of precipitation begins at lower temperatures than previously observed and the peak hardnesses occurred at higher temperature steps due to an increased aging time associated with increased solute concentration. Peaking in strength at a higher temperature doesn't necessarily mean an increase in thermal stability, but rather emphasizes the need for intelligently designed heat treatments to take full advantage of the potential strengthening of supersaturated Al-Sc-Zr alloys.
2015-01-01
Scandium-44 (t1/2 = 3.9 h) is a relatively new radioisotope of potential interest for use in clinical positron emission tomography (PET). Herein, we report, for the first time, the room-temperature radiolabeling of proteins with 44Sc for in vivo PET imaging. For this purpose, the Fab fragment of Cetuximab, a monoclonal antibody that binds with high affinity to epidermal growth factor receptor (EGFR), was generated and conjugated with N-[(R)-2-amino-3-(para-isothiocyanato-phenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-N,N,N′,N″,N″-pentaacetic acid (CHX-A″-DTPA). The high purity of Cetuximab-Fab was confirmed by SDS-PAGE and mass spectrometry. The potential of the bioconjugate for PET imaging of EGFR expression in human glioblastoma (U87MG) tumor-bearing mice was investigated after 44Sc labeling. PET imaging revealed rapid tumor uptake (maximum uptake of ∼12% ID/g at 4 h postinjection) of 44Sc–CHX-A″-DTPA–Cetuximab-Fab with excellent tumor-to-background ratio, which might allow for same day PET imaging in future clinical studies. Immunofluorescence staining was conducted to correlate tracer uptake in the tumor and normal tissues with EGFR expression. This successful strategy for immunoPET imaging of EGFR expression using 44Sc–CHX-A″-DTPA–Cetuximab-Fab can make clinically translatable advances to select the right population of patients for EGFR-targeted therapy and also to monitor the therapeutic efficacy of anti-EGFR treatments. PMID:25389697
Element concentrations in soils and other surficial materials of the conterminous United States
Shacklette, Hansford T.; Boerngen, Josephine G.
1984-01-01
Samples of soils or other regoliths, taken at a depth of approximately 20 cm form locations about 80 km apart, throughout the conterminous United States, were analyzed for their content of elements. In this manner, 1,318 sampling sites were chosen, and the results of the sample analyses for 50 elements were plotted on maps. The arithmetic and geometric mean, the geometric deviation, and a histogram showing frequencies of analytical values are given for 47 elements. The lower concentrations of some elements (notable, aluminum, barium, calcium, magnesium, potassium, sodium, and strontium) in most samples of surficial materials from the Eastern United States, and the greater abundance of heavy metals in the same materials of the Western United States, indicates a regional geochemical pattern of the largest scale. The low concentrations of many elements in soils characterize the Atlantic Coastal Plain. Souls of the Pacific Northwest generally have high concentrations of aluminum, cobalt, iron, scandium, and vanadium, but are low in boron. Soils of the Rocky Mountain region tend to have high concentrations of copper, lead, and zinc. High mercury concentrations in surficial materials are characteristic of Gulf Coast sampling sites and the Atlantic coast sites of Connecticut, Massachusetts, and Maine. At the State level, Florida has the most striking geochemical pattern by having soils that are low in concentrations of most elements considered in this study. Some smaller patterns of element abundance can be noted, but the degree of confidence in the validity of these patterns decreases as the patterns become less extensive.
Laboratory oscillator strengths of Sc i in the near-infrared region for astrophysical applications
NASA Astrophysics Data System (ADS)
Pehlivan, A.; Nilsson, H.; Hartman, H.
2015-10-01
Context. Atomic data is crucial for astrophysical investigations. To understand the formation and evolution of stars, we need to analyse their observed spectra. Analysing a spectrum of a star requires information about the properties of atomic lines, such as wavelengths and oscillator strengths. However, atomic data of some elements are scarce, particularly in the infrared region, and this paper is part of an effort to improve the situation on near-IR atomic data. Aims: This paper investigates the spectrum of neutral scandium, Sc I, from laboratory measurements and improves the atomic data of Sc I lines in the infrared region covering lines in R, I, J, and K bands. Especially, we focus on measuring oscillator strengths for Sc I lines connecting the levels with 4p and 4s configurations. Methods: We combined experimental branching fractions with radiative lifetimes from the literature to derive oscillator strengths (f-values). Intensity-calibrated spectra with high spectral resolution were recorded with Fourier transform spectrometer from a hollow cathode discharge lamp. The spectra were used to derive accurate oscillator strengths and wavelengths for Sc I lines, with emphasis on the infrared region. Results: This project provides the first set of experimental Sc I lines in the near-infrared region for accurate spectral analysis of astronomical objects. We derived 63 log(gf) values for the lines between 5300 Å and 24 300 Å. The uncertainties in the f-values vary from 5% to 20%. The small uncertainties in our values allow for an increased accuracy in astrophysical abundance determinations.
Thermal neutron capture and resonance integral cross sections of 45Sc
NASA Astrophysics Data System (ADS)
Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim; Thi Hien, Nguyen; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Cho, Moo-Hyun; Lee, Manwoo
2015-11-01
The thermal neutron cross section (σ0) and resonance integral (I0) of the 45Sc(n,γ)46Sc reaction have been measured relative to that of the 197Au(n,γ)198Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (Gth) and resonance (Gepi) neutron self-shielding, the γ-ray attenuation (Fg) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the 45Sc(n,γ)46Sc reaction have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σo,Au = 98.65 ± 0.09 barn and Io,Au = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σo,Sc = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be Io,Sc = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.
Evaluation of Mechanical Properties of Glass Fiber Posts Subjected to Laser Surface Treatments.
Barbosa Siqueira, Carolina; Spadini de Faria, Natália; Raucci-Neto, Walter; Colucci, Vivian; Alves Gomes, Erica
2016-10-01
The aim of this study was to evaluate the influence of laser irradiation on flexural strength, elastic modulus, and surface roughness and morphology of glass fiber posts (GFPs). Laser treatment of GFPs has been introduced to improve its adhesion properties. A total of 40 GFPs were divided into 4 groups according to the irradiation protocol: GC-no irradiation, GYAG-irradiation with erbium:yttrium-aluminum-garnet [Er:YAG], GCR-irradiation with erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG), and GDI-irradiation with diode laser. The GFP roughness and morphology were evaluated through laser confocal microscopy before and after surface treatment. Three-point bending flexural test measured flexural strength and elastic modulus. Data about elastic modulus and flexural strength were subjected to one-way ANOVA and Bonferroni test (p < 0.05). The effect of roughness was evaluated using the linear mixed effects model and Bonferroni test (p < 0.05). Laser treatment changed surface roughness in the groups GCR (p = 0.000) and GDI (p = 0.007). The mean flexural strength in GYAG (995.22 MPa) was similar to that in GC (980.48 MPa) (p = 1.000) but different from that in GCR (746.83 MPa) and that in GDI (691.34 MPa) (p = 0.000). No difference was found between the groups GCR and GDI (p = 0.86). For elastic modulus: GYAG (24.47 GPa) was similar to GC (25.92 GPa) (p = 1.000) but different from GCR (19.88 GPa) (p = 0.002) and GDI (17.20 GPa) (p = 0.000). The different types of lasers, especially Er,Cr:YSGG and 980 ηm diode, influenced the mechanical properties of GFPs.
Gutiérrez-Gutiérrez, Silvia C; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart
2015-08-01
Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58±6mgkg(-1) for REEs comprising 44±8mgkg(-1) for light REEs, 11±2mgkg(-1) for heavy REEs and 3±1mgkg(-1) for Scandium (Sc) and 3±1.0mgkg(-1) of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea.
Song, Hyeongseok; Shin, Woo-Jin; Ryu, Jong-Sik; Shin, Hyung Seon; Chung, Heesun; Lee, Kwang-Sik
2017-04-01
Rare earth elements (REE) consist of lanthanides (from La to Lu), together with yttrium and scandium, in which anthropogenic REE, such as gadolinium (Gd), lanthanum (La), and samarium (Sm), has emerged as micro-contaminants in natural waters in highly developed countries. Here, we collected water samples in the Han River (HR) and its tributaries flowing through Seoul Capital Area, the world's second largest metropolitan area in order to examine how and to what extent anthropogenic REE anomalies may occur. Water samples show higher light REE concentrations than heavy REE concentrations, while wastewater treatment plant (WWTP) samples display much higher heavy REE concentrations due to high Gd concentration. The PAAS-normalized REE patterns indicate that WWTP samples display the pronounced positive Gd anomalies, in which anthropogenic Gd from magnetic resonance imaging (MRI) diagnostic system occurs as a form of Gd complexation with either Cl - or SO 4 2- . Due to the WWTP, both the HR and tributaries show also positive Gd anomalies and the anthropogenic Gd concentrations increase as a function of the distance from the Paldang dam. This result indicates a positive correlation between populaton, number of MRI instruments, and positive Gd anomaly. Similarly, positive La and Sm anomalies exist in the HR, indicating that the HR is also affected by their point sources. Based on the discharge rate and anthropogenic REE concentrations, their fluxes are estimated to be 952 ± 319 kg/yr, suggesting that this amount of fluxes could disturb REE distribution in the Yellow Sea, and pose harmful effects on aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mixed garnet laser for a water vapour DIAL
NASA Astrophysics Data System (ADS)
Treichel, Rainer; Strohmaier, Stephan; Nikolov, Susanne; Eichler, Hans-Joachim; Murphy, Eamonn
2017-11-01
For the water vapour DIAL "WALES" the wavelength regions around 935 nm, 942 nm and 944 nm have been identified as the most suitable wavelength ranges. These wavelengths can be obtained using opticalparametric-oscillators (OPOs), stimulated Raman shifters and the Ti-Sapphire laser but none of these systems could deliver all the needed parameters like beam quality, efficiency, pulse length and energy yet. Also these systems are comparably big and heavy making them less suitable for a satellite based application. A fourth possibility to achieve these wavelength ranges is to shift the quasi-3-level laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing aluminium and yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals or special pump lasers are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. In a first phase such mixed garnet crystals had been grown and characterised. The outcome was the selection of the gadolinium-scandium garnet for the most suitable laser crystal. During a second phase the complete laser system with output energy about 18 mJ in single 20 ns pulses and up to 8 mJ in free running mode with a combined pulse width of 250 μs at 942 nm have been demonstrated. The results of the first laser operation and the achieved performance parameter are reported.
Eshel, Gil; Lin, Chunye; Banin, Amos
2015-01-01
We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.
Efficacy of Er,Cr:YSGG Laser in Removing Smear Layer and Debris with Two Different Output Powers
Bolhari, Behnam; Ehsani, Sara; Etemadi, Ardavan; Shafaq, Mohammad
2014-01-01
Abstract Objective: The purpose of this study was to evaluate the effectiveness of the erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser in removing debris and the smear layer using two different output powers on the apical, middle, and coronal segments of root canal walls. Background data: Previous literature has failed to evaluate the exclusive effect of Er,Cr:YSGG laser on the quality of smear layer and debris removal in all three segments of the root canal space. Methods: Sixty extracted teeth were included in the study. After instrumentation, samples were divided into three experimental groups and one positive control group with no further treatment. In group 1, a final irrigation was performed using ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl), sequentially. In group 2, the samples were treated with a 2.78 μm Er,Cr:YSGG laser with an output power of 1.5 W. The same laser was used in group 3, but with an output power of 2.5 W. Scanning electron microscope (SEM) images from the coronal, middle, and apical thirds of the roots were prepared and evaluated for both smear layer and debris removal by three blinded observers. Results: The results showed no differences between groups 1 and 2 regarding the quality of smear layer removal in all areas. However, the 2.5 W laser failed to remove the smear layer effectively. Regarding debris removal, the EDTA and NaOCl irrigation showed significantly better outcomes (adjusted p<0.05) in all areas. Conclusions: This study raises questions about the overall cleaning abilities of Er,Cr:YSGG lasers. PMID:25198390
Efficacy of Er,Cr:YSGG laser in removing smear layer and debris with two different output powers.
Bolhari, Behnam; Ehsani, Sara; Etemadi, Ardavan; Shafaq, Mohammad; Nosrat, Ali
2014-10-01
The purpose of this study was to evaluate the effectiveness of the erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser in removing debris and the smear layer using two different output powers on the apical, middle, and coronal segments of root canal walls. Previous literature has failed to evaluate the exclusive effect of Er,Cr:YSGG laser on the quality of smear layer and debris removal in all three segments of the root canal space. Sixty extracted teeth were included in the study. After instrumentation, samples were divided into three experimental groups and one positive control group with no further treatment. In group 1, a final irrigation was performed using ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl), sequentially. In group 2, the samples were treated with a 2.78 μm Er,Cr:YSGG laser with an output power of 1.5 W. The same laser was used in group 3, but with an output power of 2.5 W. Scanning electron microscope (SEM) images from the coronal, middle, and apical thirds of the roots were prepared and evaluated for both smear layer and debris removal by three blinded observers. The results showed no differences between groups 1 and 2 regarding the quality of smear layer removal in all areas. However, the 2.5 W laser failed to remove the smear layer effectively. Regarding debris removal, the EDTA and NaOCl irrigation showed significantly better outcomes (adjusted p<0.05) in all areas. This study raises questions about the overall cleaning abilities of Er,Cr:YSGG lasers.
Tritium contamination at EG&G/EM in North Las Vegas, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, C.V.; Arent, L.J.
1996-06-01
The tritium contamination discovered at the EG&G Energy Measurements (EG&G/EM) facility in North Las Vegas, Nevada, on 20 April 1995, could have been averted by good health physics practices and/or adequate management oversight. Scandium tritide (ScT{sub 3}) targets were installed for use in sealed tube neutron generators at EG&G/EM. In addition, EG&G/EM was also storing zirconium tritide (ZrT{sub 3}) and titanium tritide (TiT{sub 3}) foils. Since the targets were classified as sealed sources, the appropriate administrative and engineering control measures such as relocating targets/sources, air monitoring, bioassay, waste stream management, labeling/posting and training were not implemented. In all there weremore » six unreported incidents of tritium contamination from March 1994 to July 1995. Swipe surveys revealed areas exceeding the action level of 10,000 dpm/100 cm{sup 2} by up to three orders of magnitude. After reclassifying the targets as unsealed sources, a bioassay program was instituted, and the results were higher than expected for three employees. The doses assigned to the three individuals working in the contaminated area were 35, 58, and 61 mrem committed effective dose equivalent. Though the doses were low, the decontamination costs were in excess of $350,000.00. An investigation, was initiated by the U.S. Department of Energy Nevada Operations Office to analyze the events that led to the tritium contamination and recommend actions to prevent recurrence. Event and causal factor charting, Project Evaluation Tree (PET) analysis techniques, and root cause analysis, were used to evaluate management systems, causal sequences, and systems factors contributing to the tritium release.« less
Li, Hongxia; Ji, Hongbing; Shi, Chunjing; Gao, Yang; Zhang, Yan; Xu, Xiangyu; Ding, Huaijian; Tang, Lei; Xing, Yuxin
2017-04-01
Heavy metals (HMs) and metalloids migrate into their surroundings, thus increasing environmental risks and threatening human health. Current studies on coal-mine brownfields, however, have not thoroughly investigated soil-associated HMs and metalloids produced by coal mining. Therefore, this study explored the spatial and particle fraction distribution and human health implications of HMs and metalloids. The soil-associated HMs and metalloids are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Manganese (Mn), Nickel (Ni), Lead (Pb), Scandium (Sc), Titanium (Ti) and Zinc (Zn). Results showed that Cd, Cu, Pb, and Ni were enriched in bulk soils. Cadmium, Cu and Pb from anthropogenic source were mainly found at entrance roadsides and in sites closest to coal mines. HMs and metalloids primarily accumulated in fine fractions (<1, 1-5, and 5-10 μm). Moreover, HM and metalloid loadings substantially accumulated in the 75-250 μm and 250-1000 μm fractions. Most fine soil fractions showed moderate to strong potential ecological risks, whereas all the coarse particle fractions (50-75, 75-250, and 250-1000 μm) presented slight potential ecological risk. Exposure to soil-associated HMs and metalloids mainly occurred via ingestion. The total non-carcinogenic risks to children and adults fell below the safe level of 1, whereas the total carcinogenic risks to these individuals were higher than that of the maximum acceptable level set by the United States Environmental Protection Agency (USEPA, 1 × 10 -4 ). The total carcinogenic risk was mainly contributed by Cd and Ni through ingestion and dermal access. Therefore, hygiene and food security in areas should be emphasized. Copyright © 2017 Elsevier Ltd. All rights reserved.
Figueiredo, Cátia; Grilo, Tiago F; Lopes, Clara; Brito, Pedro; Diniz, Mário; Caetano, Miguel; Rosa, Rui; Raimundo, Joana
2018-05-07
Rare earth elements (REEs) comprise elements from lanthanum to lutetium that together with yttrium and scandium are emergent contaminants of critical importance for numerous groundbreaking environmental technologies. Transfer to aquatic ecosystems is expected to increase, however, little information is known about their potential impacts in marine biota. Considering the endangered conservation status of the European eel (Anguilla anguilla) and the vulnerability of early fish life stages to contaminants, we exposed glass eels, through water, to an environmentally relevant concentration (120 ng.L - 1 ) of lanthanum (La) for 7 days (plus 7 days of depuration). The aim was to study the accumulation and elimination of La in eel's body and subsequent quantification of acetylcholinesterase (AchE), lipid peroxidation and antioxidant enzymatic machinery. Accumulation peaked after 72 h-exposure to La, decreasing afterwards, even in continuous exposure. Accumulation was higher in the viscera, followed by the skinless body and ultimately in the head, possibly as a protective mechanism to cope with La neurotoxicity. A significant increase in AChE activity was observed in La-exposed glass eels, suggesting that La 3+ may inhibit the binding of acetylcholine. A depression in lipid peroxidation was registered under La exposure, possibly indicating that La 3+ may play physiological activities and functions as a free radical scavenger. Catalase activity was significantly inhibited in La-exposed glass eels after 72 h, indicating that the availability of La may induce physiological impairment. The quantification of Glutathione S-Transferase activity revealed no differences between control and La-exposed organisms. Further investigation is needed towards understanding the biological effects of REEs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Garrett, Robert G.; Klassen, Rodney; Kilburn, James E.; Horton, John D.; King, Harley D.; Goldhaber, Martin B.; Morrison, Jean M.
2005-01-01
This report contains major- and trace-element concentration data for soil samples collected from 265 sites along two continental-scale transects in North America. One of the transects extends from northern Manitoba to the United States-Mexico border near El Paso, Tex. and consists of 105 sites. The other transect approximately follows the 38th parallel from the Pacific coast of the United States near San Francisco, Calif., to the Atlantic coast along the Maryland shore and consists of 160 sites. Sampling sites were defined by first dividing each transect into approximately 40-km segments. For each segment, a 1-km-wide latitudinal strip was randomly selected; within each strip, a potential sample site was selected from the most representative landscape within the most common soil type. At one in four sites, duplicate samples were collected 10 meters apart to estimate local spatial variability. At each site, up to four separate soil samples were collected as follows: (1) material from 0-5 cm depth; (2) O horizon, if present; (3) a composite of the A horizon; and (4) C horizon. Each sample collected was analyzed for total major- and trace-element composition by the following methods: (1) inductively coupled plasmamass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICPAES) for aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chromium, cobalt, copper, gallium, indium, iron, lanthanum, lead, lithium, magnesium, manganese, molybdenum, nickel, niobium, phosphorus, potassium, rubidium, scandium, silver, sodium, strontium, sulfur, tellurium, thallium, thorium, tin, titanium, tungsten, uranium, vanadium, yttrium, and zinc; (2) cold vapor- atomic absorption spectrometry for mercury; (3) hydride generation-atomic absorption spectrometry for antimony and selenium; (4) coulometric titration for carbonate carbon; and (5) combustion for total carbon and total sulfur.
Fractional resurfacing in the Asian patient: Current state of the art.
Wat, Heidi; Wu, Douglas C; Chan, Henry Hin Lee
2017-01-01
Fractionated photothermolysis (FP) has revolutionized modern laser technology. By creating selective columns of microthermal damage, fractionated devices allows for greater treatment depths to be achieved without the prolonged downtime and risk of complications seen in traditional fully ablative laser resurfacing. Fractional resurfacing is a proven method to treat a variety of cutaneous conditions. In the Caucasian patient, a wide range of devices and treatment settings can be utilized safely and effectively. However, ethnic skin requires special consideration due to its unique pigmentary characteristics and clinical presentations. In this review article, we detail the current indications and strategies to optimize results and mitigate complications when utilizing fractional resurfacing for the Asian patient. A review of the MEDLINE English literature was conducted on fractionated laser devices studied in the Asian population. Articles included describe non-ablative devices including fractionated erbium glass, thulium fiber, diode, and radiofrequency devices; and ablative devices including fractionated carbon dioxide (CO 2 ) laser, erbium yttrium aluminum garnet and yttrium scandium gallium garnet (YSGG) laser. These data were integrated with the expert opinion of the authors. Taking into account the unique characteristics and cosmetic concerns of the Asian population, fractional resurfacing can be considered a safe and effective option for the treatment of atrophic and hypertrophic scarring, and photorejuvenation in ethnic skin types. Select cases of melasma may be treated with fractionated non-ablative devices, but utilized with caution. The predominant complication associated with fractional resurfacing for these conditions is post-inflammatory hyperpigmentation (PIH) and rebound worsening of melasma. A greater number of treatments at lower density settings and wider treatment intervals typically produce the lowest risks of PIH without compromising treatment efficacy. Lasers Surg. Med. 49:45-59, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Peeters, Harry Huiz; De Moor, Roeland J G
2015-07-01
The use of Er,Cr:YSGG laser to activate irrigants results in the creation of vapour bubbles and shockwaves. The present study evaluated the magnitude of pressure changes in the root canal during laser-activated irrigation. The root canal of a single extracted maxillary canine was enlarged to a size 40/0.06 file. A pressure sensor was inserted apically into the root canal. The tooth was processed as follows. In the EDTA condition, the tooth was irrigated with 17 % EDTA; in the NaOCl condition, the tooth was irrigated with 3 % NaOCl. In all conditions, the irrigants were activated at 0.75 and 1.75 W for 60 s using RFT2 and MZ2 tips; to analyse the effect of tip placement, the tip was activated at the orifice and after inserting the tip 5 mm deeper than the orifice. Data showed no significant difference between irrigation regimens (p > 0.05). There were no significant differences of the pressure between RFT2 and MZ2 tips (p > 0.05). The placement of tips closer to the apex resulted in significantly higher pressure than at the orifice (p < 0.001). The use of 1.75 W power resulted in a significantly higher increase of pressure compared to 0.75 W (p < 0.001), regardless either the type of solutions or tips used. The magnitude of the pressure changes in the root canal at 0.75 W was significantly lower than 1.75 W regardless of either type of tips or solutions used. The closer the insertion of the tip to the apex, the higher the pressure.
Cánovas, Carlos Ruiz; Macías, Francisco; Pérez López, Rafael; Nieto, José Miguel
2018-03-15
This paper investigates the mobility and fluxes of REE, Y and Sc under weathering conditions from an anomalously metal-rich phosphogypsum stack in SW Spain. The interactions of the phosphogypsum stack with rainfall and organic matter-rich solutions, simulating the weathering processes observed due to its location on salt-marshes, were simulated by leaching tests (e.g. EN 12457-2 and TCLP). Despite the high concentration of REE, Y and Sc contained in the phosphogypsum stack, their mobility during the leaching tests was very low; <0.66% and 1.8% of the total content of these elements were released during both tests. Chemical and mineralogical evidences suggest that phosphate minerals may act as sources of REE and Y in the phosphogypsum stack while fluoride minerals may act as sinks, controlling their mobility. REE fractionation processes were identified in the phosphogypsum stack; a depletion of LREE in the saturated zone was identified due probably to the dissolution of secondary LREE phosphates previously formed during apatite dissolution in the industrial process. Thus, the vadose zone of the stack would preserve the original REE signature of phosphate rocks. On the other hand, an enrichment of MREE in relation to HREE of edge outflows is observed due to the higher influence of estuarine waters on the leaching process of the phosphogypsum stack. Despite the low mobility of REE, Y and Sc in the phosphogypsum, around 104kg/yr of REE and 40kg/yr of Y and Sc are released from the stack to the estuary, which may imply an environmental concern. The information obtained in this study could be used to optimize extraction methods aimed to recover REE, Y and Sc from phosphogypsum, mitigating the pollution to the environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanical properties of metal dihydrides
Schultz, Peter A.; Snow, Clark S.
2016-02-04
First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less
Veneer Ceramic to Y-TZP Bonding: Comparison of Different Surface Treatments.
Kirmali, Omer; Kapdan, Alper; Kustarci, Alper; Er, Kursat
2016-06-01
The purpose of this study was to evaluate the effects of various surface-treatment techniques for enhancing the bond strength between veneering ceramic and yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). Pre-sintered Y-TZP specimens were divided into eight groups (n = 10) according to the surface-treatment technique used: (a) untreated (control); (b) air abrasion with aluminum oxide particles; (c) erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation at different energy intensities (1 to 6 W). All specimens were then sintered and veneered with veneering ceramic according to the manufacturer's instructions. The obtained zirconia-ceramic specimens were immersed in 37°C distilled water for 24 hours before a shear bond strength test using a universal testing device at a 1 mm/min crosshead speed. The average values were calculated. After debonding, the Y-TZP surfaces were examined under a stereomicroscope to determine their fracture pattern, and the surface topography was evaluated with scanning electron microscopy after surface treatments. The bond strength ranged from 13.24 to 20.54 MPa. All surface treatments increased the bond strength between the veneering ceramic and Y-TZP; however, the value for the 6 W irradiation group was significantly different from the values for other groups (p ˂ 0.05). The present study's findings showed that higher energy densities were needed for the laser irradiation to improve the bond strength between the veneering ceramic and zirconia. Y-TZP is commonly used as a core material in fixed restorations. The bond strength between zirconia and the veneering ceramic can be affected by various surface treatments. © 2015 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.
2002-12-01
This paper discusses the potential thermal imaging performance achievable from thermal detector arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based detector arrays are limited by the detector materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance detector materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon detector arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based pyroelectric thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal detectors.
New possibilities for Cr/sup 3 +/ ions as activators of the active media of solid-state lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zharikov, E.V.; Lavrishchev, S.V.; Laptev, V.V.
An analysis is made of the relationship between the excited-state lifetime of chromium and the ratio of the luminescence intensities in the /sup 4/T/sub 2/--/sup 4/A/sub 2/ and /sup 2/E--/sup 4/A/sub 2/ channels, on one hand, and the Cr/sup 3 +/..-->..acceptor energy transfer efficiency, on the other. A method is proposed for determination of the energy gap ..delta..E between the /sup 2/E and /sup 4/T/sub 2/ levels of Cr/sup 3 +/ from the temperature dependence of the Cr/sup 3 +/..-->..acceptor nonradiative transfer efficiency. Two independent methods were used to determine ..delta..E for gadolinium gallium garnet (GGG) crystals doped with chromiummore » and with chromium and neodymium. The probabilities of Cr/sup 3 +/ intracenter relaxation and typical parameters of the Cr/sup 3 +/--Nd/sup 3 +/ energy transfer process were also determined. It was found that the values of ..delta..E in gadolinium scandium gallium (GdScGaG) and lanthanum lutetium gallium garnet crystals are comparable with the values of kT at liquid helium temperature. It is shown that the high efficiency of the Cr/sup 3 +/..-->..Nd/sup 3 +/ nonradiative transfer in GGG and GdScGaG crystals doped with chromium and neodymium at room temperature is due to the relatively low value of ..delta..E. It is noted that there are many crystals having the garnet structure and low values of ..delta..E that are potentially suitable for developing lasers utilizing the /sup 4/T/sub 2/--/sup 4/A/sub 2/ electronic--vibrational transition in Cr/sup 3 +/ and having an emission frequency continuously tunable over a wide spectral range.« less
Influence of laser etching on enamel and dentin bond strength of Silorane System Adhesive.
Ustunkol, Ildem; Yazici, A Ruya; Gorucu, Jale; Dayangac, Berrin
2015-02-01
The aim of this in vitro study was to evaluate the shear bond strength (SBS) of Silorane System Adhesive to enamel and dentin surfaces that had been etched with different procedures. Ninety freshly extracted human third molars were used for the study. After the teeth were embedded with buccal surfaces facing up, they were randomly divided into two groups. In group I, specimens were polished with a 600-grit silicon carbide (SiC) paper to obtain flat exposed enamel. In group II, the overlying enamel layer was removed and exposed dentin surfaces were polished with a 600-grit SiC paper. Then, the teeth in each group were randomly divided into three subgroups according to etching procedures: etched with erbium, chromium:yttrium-scandium-gallium-garnet laser (a), etched with 35% phosphoric acid (b), and non-etched (c, control). Silorane System Adhesive was used to bond silorane restorative to both enamel and dentin. After 24-h storage in distilled water at room temperature, a SBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed using two-way ANOVA and Bonferroni tests (p < 0.05). The highest SBS was found after additional phosphoric acid treatment in dentin groups (p < 0.05). There were no statistically significant differences between the laser-etched and non-etched groups in enamel and dentin (p > 0.05). The SBS of self-etch adhesive to dentin was not statistically different from enamel (p > 0.05). Phosphoric acid treatment seems the most promising surface treatment for increasing the enamel and dentin bond strength of Silorane System Adhesive.
Does Each Atom Count in the Reactivity of Vanadia Nanoclusters?
Zhang, Mei-Qi; Zhao, Yan-Xia; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui
2017-01-11
Vanadium oxide cluster anions (V 2 O 5 ) n V x O y - (n = 1-31; x = 0, 1; and x + y ≤ 5) with different oxygen deficiencies (Δ = 2y-1-5x = 0, ± 1, and ±2) have been prepared by laser ablation and reacted to abstract hydrogen atoms from alkane molecules (n-butane) in a fast flow reactor. When the cluster size n is less than 25, the Δ = 1 series [(V 2 O 5 ) n O - clusters] that can contain atomic oxygen radical anions (O •- ) generally have much higher reactivity than the other four cluster series (Δ = -2, -1, 0, and 2), indicating that each atom counts in the hydrogen-atom abstraction (HAA) reactivity. Unexpectedly, all of the five cluster series have similar HAA reactivity when the cluster size is greater than 25. The critical dimension of vanadia particles separating the cluster behavior (each atom counts) from the bulk behavior (each atom contributes a little part) is thus about 1.6 nm (∼V 50 O 125 ). The strong electron-phonon coupling of the vanadia particles has been proposed to create the O •- radicals (V 5+ = O 2- + heat → V 4+ -O •- ) for the n > 25 clusters with Δ = -2, -1, 0, and 2. Such a mechanism is supported by a comparative study with the scandium system [(Sc 2 O 3 ) n Sc x O y - (n = 1-29; x = 0, 1; and x + y ≤ 4)] for which the Δ = 1 series [(Sc 2 O 3 ) n O - clusters] always have much higher HAA reactivity than the other cluster series.
Atomic weights of the elements 2013 (IUPAC Technical Report)
Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas
2016-01-01
The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of 19 elements. The standard atomic weights of four elements have been revised based on recent determinations of isotopic abundances in natural terrestrial materials:cadmium to 112.414(4) from 112.411(8),molybdenum to 95.95(1) from 95.96(2),selenium to 78.971(8) from 78.96(3), andthorium to 232.0377(4) from 232.038 06(2). The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) also revised the standard atomic weights of fifteen elements based on the 2012 Atomic Mass Evaluation:aluminium (aluminum) to 26.981 5385(7) from 26.981 5386(8),arsenic to 74.921 595(6) from 74.921 60(2),beryllium to 9.012 1831(5) from 9.012 182(3),caesium (cesium) to 132.905 451 96(6) from 132.905 4519(2),cobalt to 58.933 194(4) from 58.933 195(5),fluorine to 18.998 403 163(6) from 18.998 4032(5),gold to 196.966 569(5) from 196.966 569(4),holmium to 164.930 33(2) from 164.930 32(2),manganese to 54.938 044(3) from 54.938 045(5),niobium to 92.906 37(2) from 92.906 38(2),phosphorus to 30.973 761 998(5) from 30.973 762(2),praseodymium to 140.907 66(2) from 140.907 65(2),scandium to 44.955 908(5) from 44.955 912(6),thulium to 168.934 22(2) from 168.934 21(2), andyttrium to 88.905 84(2) from 88.905 85(2). The Commission also recommends the standard value for the natural terrestrial uranium isotope ratio, N(238U)/N(235U)=137.8(1).
Enrichment of Sc2O3 and TiO2 from bauxite ore residues.
Deng, Bona; Li, Guanghui; Luo, Jun; Ye, Qing; Liu, Mingxia; Peng, Zhiwei; Jiang, Tao
2017-06-05
As a major byproduct generated in the alumina industry, bauxite ore residue is an important reserve of scandium and titanium. In this study, the feasibility and mechanism of enriching Sc 2 O 3 and TiO 2 from a non-magnetic material, which was obtained from carbothermal reductive roasting and magnetic separation of bauxite ore residue, were investigated based on a two-step (acidic and alkali) leaching process. It was revealed that approximately 78% SiO 2 and 30-40% of CaO, FeO and Al 2 O 3 were removed from a non-magnetic material with 0.0134wt.% Sc 2 O 3 and 7.64wt.% TiO 2 by phosphoric acidic leaching, while about 95% Al 2 O 3 and P 2 O 5 were further leached by subsequent sodium hydroxide leaching of the upper-stream leach residue. A Sc 2 O 3 -, TiO 2 - rich material containing 0.044wt.% Sc 2 O 3 and 25.5wt.% TiO 2 was obtained, the recovery and the enrichment factor of Sc 2 O 3 and TiO 2 were about 85% and 5, respectively. The enrichment of Sc 2 O 3 was attributed to higher pH (>3.3) of phosphoric acid solution than its dissolution pH 0 , and the enrichment of TiO 2 was mainly associated with the insoluble perovskite (CaTiO 3 ) in the acidic solution at ambient temperature. As Sc 2 O 3 and TiO 2 cannot be dissolved in the alkali solution, they were further enriched in the leach residue. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Sehirlioglu, Alp; Sayir, Ali
2008-01-01
Aeronautic and aerospace applications require piezoelectric materials that can operate at high temperatures. The air-breathing aeronautic engines can use piezoelectric actuators for active combustion control for fuel modulation to mitigate thermo-acoustic instabilities and/or gas flow control to improve efficiency. The principal challenge for the insertion of piezoelectric materials is their limitation for upper use temperature and this limitation is due low Curie temperature and increasing conductivity. We investigated processing, microstructure and property relationship of (1-x)BiScO3-(x)PbTiO3 (BS-PT) composition as a promising high temperature piezoelectric. The effect of excess Pb and Bi and their partitioning in grain boundaries were studied using impedance spectroscopy, ferroelectric, and piezoelectric measurement techniques. Excess Pb addition increased the grain boundary conduction and the grain boundary area (average grain size was 24.8 m, and 1.3 m for compositions with 0at.% and 5at.% excess Pb, respectively) resulting in ceramics with higher AC conductivity (tan d= 0.9 and 1.7 for 0at.% and 5at.% excess Pb at 350 C and at 10kHz) that were not resistive enough to pole. Excess Bi addition increased the resistivity (rho= 4.1x10(exp 10) Omega cm and 19.6 x10(exp 10) Omega.cm for compositions with 0at.% and 5at.% excess Bi, respectively), improved poling, and increased the piezoelectric coefficient from 137 to 197 pC/N for 5at.% excess Bi addition. In addition, loss tangent decreased more than one order of magnitude at elevated temperatures (greater than 300 C). For all compositions the activation energy of the conducting species was similar (approximately equal to 0.35-0.40 eV) and indicated electronic conduction.
Shape-Independent Model of Monitor Neutron Activation Analysis
NASA Astrophysics Data System (ADS)
Yusuf, Siaka Ojo
The technique of monitor neutron activation analysis has been improved by developing a shape-independent model to solve the problem of the treatment of the epithermal reaction contribution to the reaction rate in reactor neutron activation analysis. It is a form of facility characterization in which differential approximations to neither the neutron flux distribution as a function of energy nor the reaction cross section as a function of energy are necessary. The model predicts a linear relationship when the k-factors (ratios of reaction rates of two nuclides at a given irradiation position) for element x, k _{c} (x), is plotted against the k-factor for the monitor, k_{c} (m). The slope of this line, B(x,c,m) is measured for each element x to provide the calibration of the irradiation facility for monitor activation analysis. In this thesis, scandium was chosen as the comparator and antimony as the epithermal monitor. B(x, Sc, Sb) has been accurately measured for a number of nuclides in three different reactors. The measurement was done by irradiating filter papers containing binary mixture of the elements x and the flux monitor Sc at the various irradiation positions in these three reactors. The experiment was designed in such a way that systematic errors due to mass ratios and efficiency ratios cancel out. Also, rate related errors and backgrounds were kept at negligible values. The results show that B(x,c,m) depends not only on x, c, and m, but also on the type of moderator used for the reactor. We want this new approach to be adopted at all laboratories where routine analysis of multi-element samples are done with the monitor method since the choices of c and m are flexible.
NASA Astrophysics Data System (ADS)
Wang, Fanglin; Xu, Haitao; Huang, Huixin; Ma, Ze; Wang, Sheng; Peng, Lian-Mao
2017-11-01
Film-based semiconducting carbon nanotube (CNT) photodetectors are promising candidates for industrial applications. However, unintentional doping from the environment such as water/oxygen (H2O/O2) redox, polymers, etc. changes the doping level of the CNT film. Here, we evaluate the performance of film-based barrier-free bipolar diodes (BFBDs), which are basically semiconducting CNT films asymmetrically contacted by perfect n-type ohmic contact (scandium, Sc) and p-type ohmic contact (palladium, Pd) at the two ends of the diode. We show that normal BFBD devices have large variances of forward current, reverse current, and photocurrent for different doping levels of the channel. We propose an asymmetric Y2O3-coated BFBD device in which the channel is covered by a layer of an Y2O3 film and an overlap between the Sc electrode and the Y2O3 film is designed. The Y2O3 film provides p-type doping to the channel. The overlap section increases the length of the base of the pn junction, and the diffusion current of holes is suppressed. In this way, the rectifier factors (current ratio when voltages are at +0.5 V and -0.5 V) of the asymmetric Y2O3-coated BFBD devices are around two orders of magnitude larger and the photocurrent generation is more stable compared to that of normal devices. Our results provide a way to conquer the influence of unintentional doping from the environment and suppress reverse current in pn diodes. This is beneficial to applications of CNT-based photodetectors and of importance for inspiring methods to improve the performances of devices based on other low dimensional materials.
Synthesis and Characterization of A2Mo3O 12 Materials
NASA Astrophysics Data System (ADS)
Young, Lindsay Kay
Negative thermal expansion (NTE) materials have attracted considerable research interest in recent decades. These unique materials shrink when heated, offering a potential means to control the overall thermal expansion of composites. Several families of materials display this behavior, the largest of which is the A2Mo3O12 family (also called the scandium tungstate family), in which A is a trivalent cation and M is molybdenum or tungsten. These materials show NTE in an orthorhombic structure, but many members transform to a monoclinic structure with positive expansion at low temperatures. Many properties of these materials are dependent on their elemental composition, especially the identity of the A3+ cation. This includes the magnitude of NTE, as well as the phase transition behavior as a function of temperature and pressure. It is also possible to create "mixed site" cation A2Mo3O12 materials, in which the A site is occupied by two different cations. These are described as AxA'2-xM3O12 materials, as the composition A:A' can vary. Creating these new compositions may result in different phase transition properties or the ability to tune the NTE properties of these materials. In this work, the focus was on synthesis and characterization of indium gallium molybdate (InxGa2-xM3O12). The non-hydrolytic sol-gel (NHSG) method was used to synthesize indium gallium molybdate while exploring a variety of reaction parameters. While the goal was to create stoichiometric, homogenous materials, it was found that this could not be accomplished using easily accessible parameters during NHSG reactions. However, it was discovered that certain conditions allowed unusually low temperature (230 °C) crystallization of these materials. Similar conditions were explored for single cation A2Mo3O12 materials, and it was determined that crystallization of indium molybdate, iron molybdate, and scandium molybdate was possible at temperatures of 230 or 300 °C. This extremely low temperature crystallization may provide the opportunity for exploring the in situ synthesis of polymer composites containing these materials, as the crystallization temperatures are compatible with many polymer systems. In the second part of this thesis, the high pressure behavior of a number of A2Mo3O12 and AA'Mo3O12 materials was studied. The open frameworks of NTE compounds are generally prone to pressure induced phase transitions. NTE materials may have to withstand high pressures during production or regular use of composites, thus understanding the high pressure behavior of these materials is necessary for effective application. Irreversible transitions to new phases or amorphization at high pressures could lead to failure of composites, as these phases are not expected to exhibit any NTE properties. Studies were carried out at the Advanced Photon Source at Argonne National Laboratory at pressures up to 5-7 GPa using a diamond anvil cell. The materials investigated could be divided into three groups based on distinct types of high pressure behavior. The room temperature monoclinic Group1 compounds (A2 = Al2, Fe2, FeAl, AlGa) underwent a similar sequence of reversible subtle phase transitions before undergoing a major structural transition to a common high pressure structure. The unit cell of this high pressure phase was successfully indexed, and the transition was found to be reversible upon decompression. Phase transition pressures increased with decreasing A-site cation radius. In contrast, Group2 materials (A = Cr, Y) retained their low temperature monoclinic structures up to the highest pressures investigated. The remaining materials (A2 = In2, InGa) underwent a different sequence of subtle transitions followed by an irreversible transition at higher pressures. The patterns belonging to these high pressure phases are unlike those of the first group. No patterns similar to InGaMo3O12 were found in the literature, while In2Mo3O12 may transform to the same high pressure polymorph as In2W3O12. The classification of A2Mo3O12 materials into several groups with distinct high pressure behavior adds pertinent knowledge to the field that may help elucidate the structures of previously studied materials, and ultimately may help predict the behavior of compositions that have not yet been explored.
Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.
Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen
2016-06-07
Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.
Overstreet, William C.; Whitlow, Jesse William
1972-01-01
Three sequences of volcanic and sedimentary rocks are identified in the Precambrian rocks of the Bi'r Ghamrah quadrangle at the eastern edge of the Precambrian Shield in central Saudi Arabia. The oldest sequence is called the Bi'r Khountina Group. It consists of conglomerate marble, andesite, and graywacke. Unconformably overlying this group is a sequence of graywacke with minor lava called the Murdama Group. In a small area in the southern part of the quadrangle, these rocks are unconformably overlain by rhyolitic tuff and rhyolite tentatively correlated with the Shammar Rhyolite. The older of these sedimentary and volcanic rocks were intruded by diorite and gabbro and by a large pluton of alkalic granite. A contact metamorphic aureole was formed in the Bi'r Khountina and Murdama Groups adjacent to the granite, and feeder dikes of the Sbmmmar Rhyolite(?) intrude the granite. The Bi'r Khountina Group is folded into a south-plunging asymmetrical anticlinorium, the west limb of which is repeated across northwest-trending faults. The Murdama Group appears to have been folded along the same axes, but the contact aureole against the alkalic granite and the imprint of the west-northwest striking Najd fault zone cause the rocks of the Murdama Group to appear to trend westward. Results of spectrographic and chemical analyses of wadi sand, heavy-mineral concentrates, and detrital magnetite show small anomalies. The ultramafic rocks intruded prior to the deposition of the Murdama Group are the source of anomalous chromium and lanthanum and of threshold nickel, scandium, and vanadium. The intrusive rocks younger than the Murdama Group are sources for anomalous lead and threshold silver, boron, barium, beryllium, zirconium, lanthanum, and tin. One small ancient working, probably opened for gold, is present, and at least four places in the Precambrian part of the quadrangle ere potentially favorable for gold, silver, and lead. Chromite is a potential resource in the northeastern part of the quadrangle.
Innovative forming and fabrication technologies : new opportunities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.; Hryn, J.; Energy Systems
2008-01-31
The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metalmore » alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.« less
Licata, M E; Albanese, A; Campisi, G; Geraci, D M; Russo, R; Gallina, G
2015-02-01
Some lasers have demonstrated to provide effective disinfection when used as adjunctive device to the conventional treatment. The aim of this in vitro study was to determine the effectiveness of the erbium, chromium:yttrium scandium gallium garnet (Er, Cr:YSGG) laser by measuring its bactericidal effect inside the root canal experimentally colonized with Enterococcus faecalis. The laser was tested at different irradiation times (30 and 60 s) and energy of impulses (75 and 25 mJ). A total of 52 single-rooted extracted human teeth were endodontically prepared with rotary instrumentation. All were sterilized and inoculated with a suspension of E. faecalis (105 bacteria/ml). The teeth were randomized into three treatment (group 1, group 2, and group 3) and one control groups. In all groups, teeth were chemically irrigated with 5.25% sodium hypochlorite and 17% ethylenediaminetetraacetic acid. Groups 1 and 2 were also irradiated at 30 and 60 s, respectively, with an Er, Cr:YSGG laser at 75 mJ. Teeth of group 3 were treated with laser for 60 s at 25 mJ. Samples were processed to detect the presence of E. faecalis. For all groups, a bactericidal effect was observed. The use of laser at 75 mJ with an irradiation time of 30 and 60 s eliminated a percentage of 92.3 and 100% of E. faecalis, respectively. In the control group, a reduction of 92.3% was observed. Lower percentage of reduction (46.1%) was obtained in teeth treated with laser at 25 mJ for 60 s. No statistical differences were observed between the groups (P = 0.543, Fisher's exact test). The results indicated a bactericidal effect of Er, Cr:YSGG laser irradiation at the settings used in this study. The highest bactericidal effect of this laser was observed at 60 s of irradiation time, using an energy pulse of 75 mJ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xizhu; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Liu, Wei
2013-12-15
Graphical abstract: - Highlights: • W–Sc{sub 2}O{sub 3} film containing 5% Sc{sub 2}O{sub 3} and 95% W were prepared by pulsed laser deposition. • W–Sc{sub 2}O{sub 3} film on scandate cathode surface improves emission property. • The film improves Sc distribution uniformity and is favorable for forming Ba–Sc–O layer. - Abstract: Sub-micrometer Sc{sub 2}O{sub 3}–W powder with a narrow particle size distribution has been obtained by a sol–gel method combined with two-step hydrogen reduction process. Based on the obtained powder, the W–Sc{sub 2}O{sub 3} targets have been sintered via spark plasma sintering (SPS) at 1300 °C. The W–Sc{sub 2}O{sub 3}more » targets have the average grain size of about 1 μm. Both the sintering temperature and holding time are much lower than those of the targets prepared with micrometer sized powders. The obtained W–Sc{sub 2}O{sub 3} targets have a high comparative density of 96.4% and rockwell hardness of 86.4 HRC. Using the target, the scandate cathode deposited with a film containing 5% Sc{sub 2}O{sub 3} and 95% W has been obtained by pulsed laser deposition (PLD) method. This cathode has good emission property, i.e., the highest thermionic emission current density reaches 43.09 A/cm{sup 2} of J{sub div} at 900 °C{sub b} after being activated for 8 h, which is much higher than that of scandate cathode without film. Scandium (Sc) supplied by the film on the surface during the activation forms a Ba–Sc–O active layer, which helps to the emission.« less
Cho, S D; Rajitrangson, P; Matis, B A; Platt, J A
2013-01-01
Aged resin composites have a limited number of carbon-carbon double bonds to adhere to a new layer of resin. Study objectives were to 1) evaluate various surface treatments on repaired shear bond strength between aged and new resin composites and 2) to assess the influence of a silane coupling agent after surface treatments. Eighty disk-shape resin composite specimens were fabricated and thermocycled 5000 times prior to surface treatment. Specimens were randomly assigned to one of the three surface treatment groups (n=20): 1) air abrasion with 50-μm aluminum oxide, 2) tribochemical silica coating (CoJet), or 3) Er,Cr:YSGG (erbium, chromium: yttrium-scandium-gallium-garnet) laser or to a no-treatment control group (n=20). Specimens were etched with 35% phosphoric acid, rinsed, and dried. Each group was divided into two subgroups (n=10): A) no silanization and B) with silanization. The adhesive agent was applied and new resin composite was bonded to each conditioned surface. Shear bond strength was evaluated and data analyzed using two-way analysis of variance (ANOVA). Air abrasion with 50-μm aluminum oxide showed significantly higher repair bond strength than the Er,Cr:YSGG laser and control groups. Air abrasion with 50-μm aluminum oxide was not significantly different from tribochemical silica coating. Tribochemical silica coating had significantly higher repair bond strength than Er,Cr:YSGG laser and the control. Er,Cr:YSGG laser and the control did not have significantly different repair bond strengths. Silanization had no influence on repair bond strength for any of the surface treatment methods. Air abrasion with 50-μm aluminum oxide and tribochemical silica followed by the application of bonding agent provided the highest repair shear bond strength values, suggesting that they might be adequate methods to improve the quality of repairs of resin composites.
NASA Astrophysics Data System (ADS)
Golovin, I. S.; Bychkov, A. S.; Mikhailovskaya, A. V.; Dobatkin, S. V.
2014-02-01
The effects of the processes of severe plastic deformation (SPD), recrystallization, and precipitation of the β phase in multicomponent alloys of the Al-5Mg-Mn-Cr and Al-(4-5%)Mg-Mn-Zn-Sc systems on the mechanisms of grain-boundary relaxation and dislocation-induced microplasticity have been studied in some detail. To stabilize the ultrafine-grained structure and prevent grain growth, dispersed Al-transition-metal particles, such as Al3Zr, Al6Mn, Al7Cr, Al6(Mn,Cr), Al18Cr2Mg3 have been used. We have special interest in alloys with additions of scandium, which forms compounds of the Al3Sc type and favors the precipitation of finer particles compared to the aluminides of other transition metals. After SPD, Al-(4-5%)Mg-Mn-Zr-Sc alloys exhibit an enhanced recrystallization temperature. The general features of the dislocation and grain-boundary anelasticity that have been established for the binary Al-Mg alloys are retained; i.e., (1) the decrease in the dislocation density in the process of recrystallization of cold-worked alloys leads to the formation of a pseudo-peak in the curves of the temperature dependences of internal friction (TDIF) and to a decrease in the critical amplitude of deformation corresponding to the onset of dislocation motion in a stress field; (2) the precipitation of the β phase suppresses the grain-boundary relaxation; (3) the dissolution of the β phase, the passage of the magnesium atoms into the solid solution, and the precipitation of the β' phase upon heating hinder the motion of dislocations; (4) the coarsening of the highly dispersed particles containing Zr and Sc increases the dislocation mobility. The grain-boundary relaxation and dislocation-impurity interaction and their temperature dependences, as well as processes of the additional alloying of the binary alloys by Mn, Cr, Zr, and Sc, have been estimated quantitatively.
Periodontal and peri-implant wound healing following laser therapy.
Aoki, Akira; Mizutani, Koji; Schwarz, Frank; Sculean, Anton; Yukna, Raymond A; Takasaki, Aristeo A; Romanos, Georgios E; Taniguchi, Yoichi; Sasaki, Katia M; Zeredo, Jorge L; Koshy, Geena; Coluzzi, Donald J; White, Joel M; Abiko, Yoshimitsu; Ishikawa, Isao; Izumi, Yuichi
2015-06-01
Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Leaching behavior of rare earth elements in fort union lignite coals of North America
Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane; ...
2018-03-30
Fort Union lignite coal samples were subjected to a series of aqueous leaching experiments to understand the extraction behavior of the rare earth elements (REE). This testing was aimed at understanding the modes of occurrence of the REE in the lignite coals, as well as to provide foundational data for development of rare earth extraction processes. In a first series of tests, a sequential leaching process was used to investigate modes of occurrence of the REE of select lignite coals. The tests involved sequential exposure to solvents consisting of water, ammonium acetate and dilute hydrochloric acid (HCl). The results indicatedmore » that water and ammonium acetate extracted very little of the REE, indicating the REE are not present as water soluble or ion-exchangeable forms. However, the data shows that a large percentage of the REE were extracted with the hydrochloric acid (80–95 wt%), suggesting presence in HCl-soluble mineral forms such as carbonates, and/or presence as organic complexes. A second series of tests was performed involving single-step leaching with dilute acids and various operating parameters, including acid type, acid concentration, acid/coal contact time and coal particle size. For select samples, additional tests were performed to understand the results of leaching, including float-sink density separations and humic acid extraction. The results have shown that the majority of REE in Fort Union lignites appear to be associated weakly with the organic matrix of the coals, most likely as coordination complexes of carboxylic acid groups. The light REE and heavy REE exhibit different behaviors, however. The extractable light REE appear to have association both in acid-soluble mineral forms and as organic complexes, whereas the extractable heavy REE appear to be almost solely associated with the organics. In conclusion, scandium behavior was notably different than yttrium and the lanthanides, and the data suggests the extractable content is primarily associated as acid-soluble mineral forms.« less
A candidate reference method using ICP-MS for sweat chloride quantification.
Collie, Jake T; Massie, R John; Jones, Oliver A H; Morrison, Paul D; Greaves, Ronda F
2016-04-01
The aim of the study was to develop a method for sweat chloride (Cl) quantification using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to present to the Joint Committee for Traceability in Laboratory Medicine (JCTLM) as a candidate reference method for the diagnosis of cystic fibrosis (CF). Calibration standards were prepared from sodium chloride (NaCl) to cover the expected range of sweat Cl values. Germanium (Ge) and scandium (Sc) were selected as on-line (instrument based) internal standards (IS) and gallium (Ga) as the off-line (sample based) IS. The method was validated through linearity, accuracy and imprecision studies as well as enrolment into the Royal College of Pathologists of Australasia Quality Assurance Program (RCPAQAP) for sweat electrolyte testing. Two variations of the ICP-MS method were developed, an on-line and off-line IS, and compared. Linearity was determined up to 225 mmol/L with a limit of quantitation of 7.4 mmol/L. The off-line IS demonstrated increased accuracy through the RCPAQAP performance assessment (CV of 1.9%, bias of 1.5 mmol/L) in comparison to the on-line IS (CV of 8.0%, bias of 3.8 mmol/L). Paired t-tests confirmed no significant differences between sample means of the two IS methods (p=0.53) or from each method against the RCPAQAP target values (p=0.08 and p=0.29). Both on and off-line IS methods generated highly reproducible results and excellent linear comparison to the RCPAQAP target results. ICP-MS is a highly accurate method with a low limit of quantitation for sweat Cl analysis and should be recognised as a candidate reference method for the monitoring and diagnosis of CF. Laboratories that currently practice sweat Cl analysis using ICP-MS should include an off-line IS to help negate any pre-analytical errors.
Evaluation of the bond strength of resin cements used to lute ceramics on laser-etched dentin.
Giray, Figen Eren; Duzdar, Lale; Oksuz, Mustafa; Tanboga, Ilknur
2014-07-01
The purpose of this study was to investigate the shear bond strength (SBS) of two different adhesive resin cements used to lute ceramics on laser-etched dentin. Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation has been claimed to improve the adhesive properties of dentin, but results to date have been controversial, and its compatibility with existing adhesive resin cements has not been conclusively determined. Two adhesive cements, one "etch-and-rinse" [Variolink II (V)] and one "self-etch" [Clearfil Esthetic Cement (C)] luting cement, were used to lute ceramic blocks (Vita Celay Blanks, Vita) onto dentin surfaces. In total, 80 dentin specimens were distributed randomly into eight experimental groups according to the dentin surface-etching technique used Er,Cr:YSGG laser and Er:YAG laser: (1) 37% orthophosphoric acid+V (control group), (2) Er,Cr:YSGG laser+V, (3) Er,Cr:YSGG laser+acid+V, (4) Er:YAG laser+V, (5) Er:YAG laser+acid+V, (6) C, (7) Er,Cr:YSGG laser+C, and (8) Er:YAG laser+C. Following these applications, the ceramic discs were bonded to prepared surfaces and were shear loaded in a universal testing machine until fracture. SBS was recorded for each group in MPa. Shear test values were evaluated statistically using the Mann-Whitney U test. No statistically significant differences were evident between the control group and the other groups (p>0.05). The Er,Cr:YSGG laser+A+V group demonstrated significantly higher SBS than did the Er,Cr:YSGG laser+V group (p=0.034). The Er,Cr:YSGG laser+C and Er:YAG laser+C groups demonstrated significantly lower SBS than did the C group (p<0.05). Dentin surfaces prepared with lasers may provide comparable ceramic bond strengths, depending upon the adhesive cement used.
Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Angadi, V. Jagdeesha; Choudhury, Leema; Sadhana, K.; Liu, Hsiang-Lin; Sandhya, R.; Matteppanavar, Shidaling; Rudraswamy, B.; Pattar, Vinayak; Anavekar, R. V.; Praveena, K.
2017-02-01
Sc3+ doped Mn0.5Zn0.5ScyFe2-yO4 (y=0.00, 0.01, 0.03 and 0.05) nanoparticles were synthesized by solution combustion method using mixture of fuels were reported for the first time. The mixture of fuels plays an important role in obtaining nano crystalline, single phase present without any heat treatment. X-ray diffraction (XRD) results confirm the formation of the single-phase ferrites which crystallize in cubic spinel structure. The Fourier transform infrared spectra (FTIR) exhibit two prominent bands around 360 cm-1 and 540 cm-1 which are characteristic feature of spinel ferrite. The transmission electron microscope (TEM) micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The room temperature impedance spectra (IS) and vibrating sample magnetometry (VSM) measurements were carried out in order to study the effect of doping (Sc3+) on the characteristic properties of Mn-Zn ferrites. Further, the frequency dependent dielectric constant and dielectric loss were found to decrease with increasing multiple Sc3+ concentration. Nyquist plot in the complex impedance spectra suggest the existence of multiple electrical responses. Magnetic measurements reveals that saturation magnetization (Ms), remnant magnetization (Mr), magnetic moment (ηB) and magnetic particle size (Dm) increase with Sc3+ ion concentration up to x=0.03 and then decrease. The values of spin canting angle (αY-K) and the magnetic particle size (Dm) are found to be in the range of 68-75° and 10-19 nm respectively with Sc3+ concentration. The room temperature Mössbauer spectra were fitted with two sextets corresponding to ions at tetrahedral (A-) and octahedral (B-) sites confirms the spinel lattice. The ferromagnetic resonance (FMR) spectra's has shown that high concentration of scandium doping leads to an increase in dipolar interaction and decrease in super exchange interaction.
NASA Astrophysics Data System (ADS)
Evans, Thomas M.; O'Neill, Hugh St. C.; Tuff, James
2008-12-01
Partition coefficients for a range of Rare Earth Elements (REEs), Y, Sc, Al and Zr were determined between forsteritic olivine (nearly end-member Mg 2SiO 4) and ten melt compositions in the system CaO-MgO-Al 2O 3-SiO 2 (CMAS) at 1 bar and 1400 °C, with concentrations of the trace elements in the olivine and the melt measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The REEs and Sc were added at levels sufficient to ensure that concentrations in the olivine were well above the detection limits. The REE partition coefficients (DREEol/melt) decrease with increasing silica in the melt, indicating strong bonding between REEO 1.5 and SiO 2 in the melt. The variation of DREEol/melt as a function of ionic radius is well described by the Brice equation for each composition, although a small proportion of this variation is due to the increase in the strength of the REEO 1.5-SiO 2 interactions in the melt with ionic radius. Scandium behaves very similarly to the REEs, but a global fit of the data from all ten melt compositions suggests that DScol/melt deviates somewhat from the parabolas established by the REE and Y, implying that Sc may substitute into olivine differently to that of the REEs. In contrast to the behaviour of the large trivalent cations, the concentration of Al in olivine is proportional to the square root of its concentration in the melt, indicating a coupled substitution in olivine with a high degree of short-range order. The lack of any correlation of REE partition coefficients with Al in olivine or melt suggests that the REE substitution in olivine is charge-balanced by cation vacancies. The partition coefficient of the tetravalent trace element Zr, which is highly incompatible in olivine, depends on the CaO content of the melt.
Leaching behavior of rare earth elements in fort union lignite coals of North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane
Fort Union lignite coal samples were subjected to a series of aqueous leaching experiments to understand the extraction behavior of the rare earth elements (REE). This testing was aimed at understanding the modes of occurrence of the REE in the lignite coals, as well as to provide foundational data for development of rare earth extraction processes. In a first series of tests, a sequential leaching process was used to investigate modes of occurrence of the REE of select lignite coals. The tests involved sequential exposure to solvents consisting of water, ammonium acetate and dilute hydrochloric acid (HCl). The results indicatedmore » that water and ammonium acetate extracted very little of the REE, indicating the REE are not present as water soluble or ion-exchangeable forms. However, the data shows that a large percentage of the REE were extracted with the hydrochloric acid (80–95 wt%), suggesting presence in HCl-soluble mineral forms such as carbonates, and/or presence as organic complexes. A second series of tests was performed involving single-step leaching with dilute acids and various operating parameters, including acid type, acid concentration, acid/coal contact time and coal particle size. For select samples, additional tests were performed to understand the results of leaching, including float-sink density separations and humic acid extraction. The results have shown that the majority of REE in Fort Union lignites appear to be associated weakly with the organic matrix of the coals, most likely as coordination complexes of carboxylic acid groups. The light REE and heavy REE exhibit different behaviors, however. The extractable light REE appear to have association both in acid-soluble mineral forms and as organic complexes, whereas the extractable heavy REE appear to be almost solely associated with the organics. In conclusion, scandium behavior was notably different than yttrium and the lanthanides, and the data suggests the extractable content is primarily associated as acid-soluble mineral forms.« less
Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge
NASA Astrophysics Data System (ADS)
Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben
2015-04-01
Rare earth elements (REE) are considered to be highly "critical" by the European Commission [1], owing to the concentration of global supply [2] and their use in a wide range of emerging technologies (e.g. smart phones, electric cars and wind turbines). The main source of REE is the mineral bastnäsite, which is primarily extracted from carbonatites. Alternative resources of REE have been identified in a variety of other environments such as alluvial placers, bauxites and ore tailings. The EURARE project (www.eurare.eu), funded by the European Commission, aims to improve understanding of potential REE resources in Europe with the overall objective of establishing the basis for a European REE industry. As a part of this project, alternative sources of rare earth elements in Europe are being considered. REE have been identified as being particularly enriched in karst-bauxites and hence in the red muds generated as a waste product from the processing of these bauxites to alumina through the Bayer process [3]. Karst-bauxites are widely distributed with deposits known across the Mediterranean and with intermittent exploitation occurring over many decades. REE become concentrated in the bauxite deposits by the bauxitisation process and are retained due to the geochemical barrier created by the limestone bedrock below. This can result in several processes, including the crystallisation of authigenic REE-bearing minerals, the accumulation of residual phases and the adsorption of ions onto clays and other mineral surfaces [4]. Red muds produced from alumina processing represent a potentially important concentration of REE as it has been demonstrated that the REE pass through the alumina extraction process into the waste, and the total REE concentrations are typically enriched by a factor of two compared with the original bauxite ore [5]. Bauxites and red muds from the Parnassus Ghiona region of Greece [6] and the Seydişehir-Akseki region of Turkey have been assessed as part of this study. Red muds from these deposits contain on average 900 ppm REE compared with typical values of <100 ppm to ~500 ppm REE in the bauxites. Extraction of REE from red muds has been shown to be feasible [5,7] although it is challenging due to the heterogeneous spatial distribution of REE in the primary bauxite deposits [8], an unclear understanding of the mobility of REE in red mud tailings ponds, and the need for development of appropriate processing methods. However, the resource potential of red muds in Europe is significant with approximately 3.5 Mt of bauxite ore extracted in 2012 [2], resulting in approximately 1.4 Mt of red mud from the production of alumina. In addition a large volume of stockpiled red muds exists from historical processing of bauxites, the total of which is not well constrained. Understanding the REE potential of both bauxites and red muds is integral to an assessment of European REE resources. References [1] European Commission, "Report on critical raw materials for the EU. Report of the Ad hoc Working Group on defining critical raw materials". May 2014. [2] T. Brown, N. Idoine, E. Raycraft, R. Shaw, E. Deady, J. Rippingale, T. Bide, C. Wrighton, J. Rodley, "World Mineral Production 2008-12" British Geological Survey, Keyworth, Nottingham, 2014. [3] Z. Maksimović and G. Pantó, "Authigenic rare earth minerals in karst-bauxites and karstic nickel deposits". In: A.P. Jones, F. Wall and C.T. Williams, Rare earth minerals, chemistry, origin and ore deposits, Chapter 10, pp. 257-279, 1996. [4] G. Bárdossy, "Karst Bauxites, Bauxite Deposits on Carbonate Rocks". Elsevier, 444pp, 1982. [5] M. Ochsenkühn-Petropoulou, T. Lyberopoulou, and G. Parissakis, "Direct determination of lanthanides, yttium and scandium in bauxites and red mud from alumina production", Analytica Chimica Acta, vol. 296, no. 3, pp. 305-313, October 1994. [6] É. Deady, E. Mouchos, K. Goodenough, B. Williamson and F. Wall. "Rare Earth Elements in Karst-Bauxites: a Novel Untapped European Resource?" ERES 1st European Rare Earth Resources conference, Milos, Greece, (5-6/09/2014). [7] A. Wagh and W. Pinnock, "Occurrence of scandium and rare earth elements in Jamaican bauxite waste", Economic Geology, vol. 82, no. 3, pp. 757-761, May 1987. [8] G. Mongelli, "Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy)", Chemical Geology, vol. 140, no. 1, pp. 69-79, June 1997. Additional resources: www.eurare.eu; www.redmud.org.
Temperature-dependent thermal and thermoelectric properties of n -type and p -type S c1 -xM gxN
NASA Astrophysics Data System (ADS)
Saha, Bivas; Perez-Taborda, Jaime Andres; Bahk, Je-Hyeong; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Sands, Timothy D.
2018-02-01
Scandium Nitride (ScN) is an emerging rocksalt semiconductor with octahedral coordination and an indirect bandgap. ScN has attracted significant attention in recent years for its potential thermoelectric applications, as a component material in epitaxial metal/semiconductor superlattices, and as a substrate for defect-free GaN growth. Sputter-deposited ScN thin films are highly degenerate n -type semiconductors and exhibit a large thermoelectric power factor of ˜3.5 ×10-3W /m -K2 at 600-800 K. Since practical thermoelectric devices require both n- and p-type materials with high thermoelectric figures-of-merit, development and demonstration of highly efficient p-type ScN is extremely important. Recently, the authors have demonstrated p-type S c1 -xM gxN thin film alloys with low M gxNy mole-fractions within the ScN matrix. In this article, we demonstrate temperature dependent thermal and thermoelectric transport properties, including large thermoelectric power factors in both n- and p-type S c1 -xM gxN thin film alloys at high temperatures (up to 850 K). Employing a combination of temperature-dependent Seebeck coefficient, electrical conductivity, and thermal conductivity measurements, as well as detailed Boltzmann transport-based modeling analyses of the transport properties, we demonstrate that p-type S c1 -xM gxN thin film alloys exhibit a maximum thermoelectric power factor of ˜0.8 ×10-3W /m -K2 at 850 K. The thermoelectric properties are tunable by adjusting the M gxNy mole-fraction inside the ScN matrix, thereby shifting the Fermi energy in the alloy films from inside the conduction band in case of undoped n -type ScN to inside the valence band in highly hole-doped p -type S c1 -xM gxN thin film alloys. The thermal conductivities of both the n- and p-type films were found to be undesirably large for thermoelectric applications. Thus, future work should address strategies to reduce the thermal conductivity of S c1 -xM gxN thin-film alloys, without affecting the power factor for improved thermoelectric performance.
Ramos, Thaysa Monteiro; Ramos-Oliveira, Thayanne Monteiro; Moretto, Simone Gonçalves; de Freitas, Patricia Moreira; Esteves-Oliveira, Marcella; de Paula Eduardo, Carlos
2014-03-01
The aim of this in vitro study was to evaluate the effect of different surface treatments (control, diamond bur, erbium-doped yttrium aluminum garnet (Er:YAG) laser, and erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser) on sound dentin surface morphology and on microtensile bond strength (μTBS). Sixteen dentin fragments were randomly divided into four groups (n = 4), and different surface treatments were analyzed by scanning electron microscopy. Ninety-six third molars were randomly divided into eight groups (n = 12) according to type of surface treatment and adhesive system: G1 = Control + Clearfil SE Bond (SE); G2 = Control + Single Bond (SB); G3 = diamond bur (DB) + SE; G4 = DB + SB, G5 = Er:YAG laser (2.94 μm, 60 mJ, 2 Hz, 0.12 W, 19.3 J/cm(2)) + SE; G6 = Er:YAG + SB, G7 = Er,Cr:YSGG laser (2.78 μm, 50 mJ, 30 Hz, 1.5 W, 4.5 J/cm(2)) + SE; and G8 = Er,Cr:YSGG + SB. Composite blocks were bonded to the samples, and after 24-h storage in distilled/deionized water (37 °C), stick-shaped samples were obtained and submitted to μTBS test. Bond strength values (in megapascal) were analyzed by two-way ANOVA and Tukey tests (α = 0.05). G1 (54.69 ± 7.8 MPa) showed the highest mean, which was statistically significantly higher than all the other groups (p < 0.05). For all treatments, SE showed higher bond strength than SB, except only for Er,Cr:YSGG treatment, in which the systems did not differ statistically from each other. Based on the irradiation parameters considered in this study, it can be concluded that Er:YAG and Er,Cr:YSGG irradiation presented lower values than the control group; however, their association with self-etching adhesive does not have a significantly negative effect on sound dentin (μTBS values of >20 MPa).
NASA Astrophysics Data System (ADS)
Krachler, Michael; Zheng, Jiancheng; Fisher, David; Shotyk, William
2008-03-01
Applying strict clean room procedures and sector field inductively coupled plasma mass spectrometry (ICP-MS) methods, concentrations of Sb and Sc were determined in 57 sections of a 170.6-m-long ice core drilled on Devon Island, Arctic Canada, in 1999, providing a record of atmospheric Sb extending back 15,800 years. Natural background concentrations of Sb and Sc established during the period between 1300 years BP and 10,590 years BP averaged 0.08 ± 0.03 pg/g (N = 18) and 0.44 ± 0.20 pg/g (N = 17), respectively. Scandium, a conservative reference element, was used as a surrogate for mineral dust inputs. The Sb/Sc ratio of 0.13 ± 0.07 in these ancient ice samples is comparable to the corresponding ratio of 0.09 ± 0.03 in peat samples from Switzerland from circa 6000 to 9000 years BP, indicating that this natural background ratio might have a much broader validity. The natural background flux of Sb (0.7 ± 0.5 ng/m2/a) in the Arctic was approximately 500 times lower than that established in central Europe using peat cores. For comparison with background values, modern Sb fluxes calculated using 45 samples from a 5-m snow pit dug on Devon Island in 2004, reflecting 10 years of snow accumulation, yielded an average deposition rate of 340 ± 270 ng/m2/a (range: 20-1240 ng/m2/a) with pronounced accumulation of Sb during winter periods when air masses reaching the Arctic predominantly come from Eurasia. These data reveal that approximately 99.8% of the Sb deposited in the Arctic today originates from anthropogenic activities. Modern Sb enrichment factors averaged 25 (range: 8-121). The ice core provides evidence of Sb contamination dating from Phoenician/Greek, Roman, and medieval lead mining and smelting in Europe. Moreover, the ice core data indicate that anthropogenic sources of Sb have continuously dominated the atmospheric inputs to the Arctic for at least 700 years.
NASA Astrophysics Data System (ADS)
Sanderman, J.; Baisden, W. T.; Creamer, C.; Farrell, M.; Fallon, S.
2016-12-01
Carbonatites and alkaline intrusions are important sources of REEs. Environmental risks related to these deposit types have been assessed through literature review and evaluation of the geochemical properties of representative samples of mill tailings and their leachates. The main ore mineral in carbonatite deposits is bastnasite [(Ce,La)(CO3)F], which is found with dolomite and calcite ( 65 %), barite (20 - 25 %), plus a number of minor accessory minerals including sulfides such as galena and pyrite. Generally, alkaline intrusion-related REE deposits either occur in layered complexes or with dikes and veins cutting alkaline intrusions. Such intrusions have a more diverse group of REE ore minerals that include fluorcarbonates, oxides, silicates, and phosphates. Ore also can include minor calcite and iron (Fe), lead (Pb), and zinc (Zn) sulfides. The acid-generating potential of both deposit types is low because of a predominance of carbonate minerals in the carbonatite deposits, the presence of feldspars and minor calcite in alkaline intrusion-related deposits, and to only minor to trace occurrence of potentially acid-generating sulfide minerals. Both deposit types, however, are produced by igneous and hydrothermal processes that enrich high-field strength, incompatible elements, which typically are excluded from common rock-forming minerals. Elements such as yttrium (Y), niobium Nb), zirconium (Zr), hafnium (Hf), tungsten (W), titanium (Ti), tantalum (Ta), scandium (Sc), thorium (Th), and uranium (U) can be characteristic of these deposits and may be of environmental concern. Most of these elements, including the REEs, but with the exception of U, have low solubilities in water at the near-neutral pH values expected around these deposits. Mill tailings from carbonatite deposits can exceed residential soil and sediment criteria for Pb, and leachates from mill tailings can exceed drinking water guidelines for Pb. The greatest environmental challenges, however, are linked to the presence of Th and U, although mineral hosts for these elements are moderately unreactive in the environment. Both deposit types can have mill tailings that exceed residential soil criteria for U. Uranium can be recovered as a byproduct to mitigate its environmental effects, but Th remains a waste product that requires management.
de Los Angeles Moyaho-Bernal, María; Contreras-Bulnes, Rosalía; Rodríguez-Vilchis, Laura Emma; Rubio-Rosas, Efraín
2018-05-08
Innovators conditioning protocols are emerged in permanent dentin, however for deciduous dentin the information is limited; the aim of this study was to evaluate in vitro diameter of deciduous and permanent dentinal tubules after several conditioning protocols. Eighty dentin samples were distributed in sixteen groups (n = 5 p/g) and dentin surface was conditioned as follow: G1D/G1P acid etching; G2D/G2P, self-etch adhesive; G3D/G3P, G4D/G4P, Er: YAG laser irradiation at 200 mJ-25.5 J/cm 2 and 300 mJ-38.2 J/cm 2 , at 10 Hz under water spray respectively; G5D/G5P, G6D/G6P, G7D/G7P, and G8D/G8P were irradiated under the same energy densities followed phosphoric acid or self-etch adhesive conditioning. The sample dentin of deciduous and permanent teeth was analyzed with scanning electron microscopy and tubule diameter was evaluated by Image Tools Scandium program. Data were subjected to one-way analysis ANOVA to compare among groups with a level of significance at p ≤ .05. For deciduous dentin, diameters were from 1.52 ± 0.32 µm in G3D to 3.88 ± 0.37 µm in G1D; narrowest and widest diameter, respectively (p < .000). While permanent dentin tubules exhibited diameters from 1.16 ± 0.16/1.19 ± 0.12 µm in G7P/G8P to 2.76 ± 0.28 µm in G6P; narrowest and widest diameter, respectively (p < .000). All dentin conditioning protocols produced more open dentin tubules (diameter size) in deciduous dentin than permanent, specific conditioning protocols are required for each tissue (deciduous or permanent dentin), since same protocol produced stronger effects on primary dentin, which is important for dental clinical success in children and adolescents. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying
Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of aroundmore » $$400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $$400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing.« less
African Dust Transport Captured by Rare Earth Elemental Concentrations in Coral Microatolls
NASA Astrophysics Data System (ADS)
Ouellette, G., Jr.; DeLong, K.; Herrmann, A.; Huang, C. Y.; Shen, C. C.
2017-12-01
Winds are integral components of the climate system; unfortunately, windsare also among the climate variables that are most difficult to study prior to the instrumentalrecord. Paleoclimatologists use sedimentary dust records (e.g., lake and ocean cores) tounderstand past wind circulation conditions; however, these types of records typically are notamenable to sub-annual interpretation due to their limited temporal resolution. Here wedeveloped a coral-based dust-wind proxy to overcome these temporal limitations by usingtrace (nmol/mol) rare earth elemental concentrations recorded in the skeletons of coralmicroatolls. The rare earth elements (REE; the lanthanides as well as scandium and yttrium)behave similarly in geologic and geochemical systems, and have served as useful proxies ofgeological processes in both deep and shallow time. Corals incorporate REE as they deposittheir exoskeletons that extend incrementally with time forming annual density band couplets.Coral microatolls grow at or near the sea surface, where coral REE concentrations are mostsensitive to dust deposition. Our study site off the west coast of Haiti is down stream of light-REE depleted bedrock whereas REE in African dust, transported by the easterly trade winds,reflect average crustal abundances. This unique "upstream" source signature allows forterrestrial contamination of the dust-wind signal to be ruled out. Light REE concentrations (esp.Nd and Pr) demonstrate an order of magnitude increase within coral aragonite coincident withmajor African dust plume events throughout the past decade, with Nd/Ca and Pr/Ca increasingfrom an average of 27 nmol/mol to an average 144 nmol/mol and an average of 5 nmol/mol toan average of 37 nmol/mol, respectively, during major African dust plume events. Monthly-resolved REE analysis shows these REE peaks coincide with the summer dust season rather thanHaiti's two wet seasons in spring and autumn. Regression of our coral REE dust proxy tosatellite records of African dust aerosol optical depth (AOD) provides a significant transferfunction [(REE)=3.00(AOD)-3.11, R 2 = 0.72, p ≤ 0.0005, df= 24]. Our results suggest coral REErecords have the potential to robustly reconstruct past African dust plume transport, thusproviding insight into the regional easterly trade wind patterns driving them.
NASA Astrophysics Data System (ADS)
Seal, R. R., II; Piatak, N. M.
2017-12-01
Carbonatites and alkaline intrusions are important sources of REEs. Environmental risks related to these deposit types have been assessed through literature review and evaluation of the geochemical properties of representative samples of mill tailings and their leachates. The main ore mineral in carbonatite deposits is bastnasite [(Ce,La)(CO3)F], which is found with dolomite and calcite ( 65 %), barite (20 - 25 %), plus a number of minor accessory minerals including sulfides such as galena and pyrite. Generally, alkaline intrusion-related REE deposits either occur in layered complexes or with dikes and veins cutting alkaline intrusions. Such intrusions have a more diverse group of REE ore minerals that include fluorcarbonates, oxides, silicates, and phosphates. Ore also can include minor calcite and iron (Fe), lead (Pb), and zinc (Zn) sulfides. The acid-generating potential of both deposit types is low because of a predominance of carbonate minerals in the carbonatite deposits, the presence of feldspars and minor calcite in alkaline intrusion-related deposits, and to only minor to trace occurrence of potentially acid-generating sulfide minerals. Both deposit types, however, are produced by igneous and hydrothermal processes that enrich high-field strength, incompatible elements, which typically are excluded from common rock-forming minerals. Elements such as yttrium (Y), niobium Nb), zirconium (Zr), hafnium (Hf), tungsten (W), titanium (Ti), tantalum (Ta), scandium (Sc), thorium (Th), and uranium (U) can be characteristic of these deposits and may be of environmental concern. Most of these elements, including the REEs, but with the exception of U, have low solubilities in water at the near-neutral pH values expected around these deposits. Mill tailings from carbonatite deposits can exceed residential soil and sediment criteria for Pb, and leachates from mill tailings can exceed drinking water guidelines for Pb. The greatest environmental challenges, however, are linked to the presence of Th and U, although mineral hosts for these elements are moderately unreactive in the environment. Both deposit types can have mill tailings that exceed residential soil criteria for U. Uranium can be recovered as a byproduct to mitigate its environmental effects, but Th remains a waste product that requires management.
Subramaniam, Priya; Pandey, Annu
2016-01-01
Introduction: Marginal seal integrity is important for a successful adhesive dental restoration. Alterations caused by laser irradiation in the enamel and dentin surface can affect the marginal integrity of adhesive restorations. The aim of this study was to evaluate the microleakage of a composite resin restoration in primary teeth following laser irradiation of enamel and dentin. Methods: Forty freshly extracted sound human primary maxillary and mandibular anterior teeth were used in this study. The teeth were randomly divided into two groups (I and II), with 20 teeth in each. In group I, proximal cavities (Class III) were prepared using an airotor hand –piece and diamond bur. The cavities were etched for 15 seconds with 35% phosphoric acid gel, rinsed with water for 15 seconds, air dried and a bonding agent was applied onto the cavity surfaces and light cured for 20 seconds. The cavities were restored with composite resin and light cured for 40 seconds. In group II, proximal (Class III) cavities were prepared using Erbium, Chromium: Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) (Er,Cr:YSGG) (Biolaseiplus, wave length 2.78 μm). The cavity was then rinsed, air dried and without etching, a bonding agent was applied and light cured for 20 seconds. The cavities were restored in the same manner as that of group I. The treated teeth were mounted on acrylic resin blocks and were subjected to a thermocycling regimen. Following, the teeth were immersed in 2% methylene blue for 24 hours. The teeth were sectioned longitudinally in a bucco-lingual direction using a diamond disc at slow speed. The sections of all the groups were examined under a stereomicroscope for micro-leakage. Results: The mean scores for microleakage in group I was 1.95 ± 1.31 and in group II it was 1.4 ± 1.27. There was no significant difference between the two groups (P = 0.882). Conclusion: No significant difference in microleakage was noticed between the composite resin bonded to lased enamel and dentin and the teeth preparedwith conventional method. PMID:28144438
Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki
2016-10-12
The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically engineered microbial powders revealed unique adsorption behaviors of the rare earth metal ions.
Combustion and leaching behavior of elements in the argonne premium coal samples
Finkelman, R.B.; Palmer, C.A.; Krasnow, M.R.; Aruscavage, P. J.; Sellers, G.A.; Dulong, F.T.
1990-01-01
Eight Argonne Premium Coal samples and two other coal samples were used to observe the effects of combustion and leaching on 30 elements. The results were used to infer the modes of occurrence of these elements. Instrumental neutron activation analysis indicates that the effects of combustion and leaching on many elements varied markedly among the samples. As much as 90% of the selenium and bromine is volatilized from the bituminous coal samples, but substantially less is volatilized from the low-rank coals. We interpret the combustion and leaching behavior of these elements to indicate that they are associated with the organic fraction. Sodium, although nonvolatile, is ion-exchangeable in most samples, particularly in the low-rank coal samples where it is likely to be associated with the organic constituents. Potassium is primarily in an ion-exchangeable form in the Wypdak coal but is in HF-soluble phases (probably silicates) in most other samples. Cesium is in an unidentified HNO3-soluble phase in most samples. Virtually all the strontium and barium in the low-rank coal samples is removed by NH4OAc followed by HCl, indicating that these elements probably occur in both organic and inorganic phases. Most tungsten and tantalum are in insoluble phases, perhaps as oxides or in organic association. Hafnium is generally insoluble, but as much as 65% is HF soluble, perhaps due to the presence of very fine grained or metamict zircon. We interpret the leaching behavior of uranium to indicate its occurrence in chelates and its association with silicates and with zircon. Most of the rare-earth elements (REE) and thorium appear to be associated with phosphates. Differences in textural relationships may account for some of the differences in leaching behavior of the REE among samples. Zinc occurs predominantly in sphalerite. Either the remaining elements occur in several different modes of occurrence (scandium, iron), or the leaching data are equivocal (arsenic, antimony, chromium, cobalt, and nickel). The results of these combustion and leaching experiments indicate that some previously held assumptions concerning modes of occurrence of elements in coal should be reconsidered.
NASA Astrophysics Data System (ADS)
Fleetwood, James D.
Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak power densities as high as 520 mW/cm2 at 800 °C for YSZ and 350 mW/cm 2 at 800 °C for YSZ/GDC bilayer electrolytes.
NASA Astrophysics Data System (ADS)
Carroll, Mark Christopher
Aluminum alloys of the 5000 series (AI-Mg-Mn) are extremely popular in a wide range of applications that call for a balance of moderately high strength, good corrosion resistance, and light weight, all at a moderate cost. One of the most popular 5000 series alloys is designated A1-5083, containing, in addition to aluminum, approximately 4 wt% magnesium and 0.7 wt% manganese. In order to increase the range of versatility of this particular alloy, a number of modifications have been examined that will potentially improve the strength and corrosion resistance characteristics while maintaining a chemical composition that is very close to the proven 5083 alloy. The strength of the 5083-based alloys under study are investigated with two goals in mind---to maximize the potential strength characteristics in a "standard" 5083 form through changes in minor processing parameters or through minor alloying additions. Increasing the standard alloy's potential is possible through improved efficiency of "preprocessing" heat treatments that maximize the homogeneous dispersion of secondary manganese-based particles. For the modified alloy study, additions of scandium and zirconium are shown to improve strength not only by forming secondary particles in the alloy, but also through substitutional solid solution strengthening, even when added at very small levels. Corrosion resistance of these 5083-based alloys is investigated once again through minor alloying additions; specifically zinc, copper, and silver. Zinc is particularly effective in that it changes the corrosion-susceptible binary aluminum-magnesium phase that would otherwise form on grain boundaries following exposure to moderately elevated temperatures for extended periods of time to a ternary aluminum-magnesium-zinc phase. This chemical composition of this ternary phase that forms following zinc additions can be further altered through minor additions of copper and silver. By determining threshold levels for these modifications while maintaining a chemical composition that is very near that of standard Al-5083, it can be shown that even minor modifications to processing and alloying parameters can have a favorable effect on the final bulk properties of the alloy. The increased range of strength and corrosion resistance of these lightly modified alloys make them more attractive in a broadened range of potential applications.
Mineral Resources of the Wabayuma Peak Wilderness Study Area, Mohave County, Arizona
Conway, Clay M.; Hassemer, Jerry R.; Knepper, Daniel H.; Pitkin, James A.; Jachens, Robert C.; Chatman, Mark L.
1990-01-01
The Wabayuma Peak Wilderness Study Area (AZ-020-037/043), for which a mineral survey was requested by the U.S. Bureau of land Management, encompasses 40,118 acres in northwestern Arizona. Fieldwork was carried out in 1986-88 by the U.S. Bureau of Mines and the U.S. Geological Survey to appraise the identified (known) resources and assess the mineral resource potential (undiscovered) of the wilderness study area. Within the Wabayuma Peak Wilderness Study Area are 14 private parcels of land totaling 1,315 acres. The Wabayuma Peak Wilderness Study Area, including the 14 private parcels of land, is herein referred to as the 'wilderness study area' or the 'study area'. The Boriana, Antler, and Copper World mines lie near the east boundary of the study area. The Boriana mine was a major tungsten-producing mine of the United States during World War II. The Antler and Copper World mines produced relatively small amounts of copper and zinc prior to 1970. Copper and zinc were mined within 100 ft of the study area at the Antler mine. The Antler mine contains subeconomic resources of 350,000 to 400,000 short tons of copper-zinc ore; a minimum of 2,000 short tons, at grades of 1 to 4 percent copper and 1 to 2 percent zinc, lie within the study area. No other mineral resources were identified within the study area. Four small tracts in the eastern part and one in the central part of the study area have high resource potential for copper, zinc, and minor lead, silver, and gold in massive sulfide deposits. A large central tract and two eastern tracts have moderate resource potential for the same metals. An eastern and a western tract within the wilderness study area have high resource potential for tungsten, copper, and combinations of beryllium, gold, silver, arsenic, bismuth, molybdenum, tin, indium, thorium, niobium, yttrium, lanthanum, scandium, tantalum, rhenium, lead, zinc, and iron in granite-related tungsten-polymetallic vein deposits. Most of the rest of the study area has moderate resource potential for these metals. A northern tract in the study area has moderate resource potential for gold, copper, and combinations of silver, zinc, lead, tungsten, and molybdenum in polymetallic vein deposits of several types.
Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P.; Pearton, Stephen J.
2010-01-01
Background Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. Methods HEMT structures, consisting of a 3-μm-thick undoped GaN buffer, 30-Å-thick Al0.3Ga0.7N spacer, and 220-Å-thick silicon-doped Al0.3Ga0.7N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc2O3), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. Results The Sc2O3-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of ∼0.1 pH. A chloride ion detection limit of 10-8 M was achievedt with a HEMT sensor immobilized with the AgCl thin film. The drain–source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 μM. Conclusion There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensingt different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the glucose concentration for diabetic applications. PMID:20167182
Arora, Shipra; Lamba, Arundeep Kaur; Faraz, Farrukh; Tandon, Shruti; Ahad, Abdul
2016-01-01
Introduction: The periodontal therapy is primarily targeted at removal of dental plaque and plaque retentive factors. Although the thorough removal of adherent plaque, calculus and infected root cementum is desirable, it is not always achieved by conventional modalities. To accomplish more efficient results several alternative devices have been used. Lasers are one of the most promising modalities for nonsurgical periodontal treatment as they can achieve excellent tissue ablation with strong bactericidal and detoxification effects. Methods: Thirty freshly extracted premolars were selected and decoronated. The mesial surface of each root was divided vertically into four approximately equal parts. These were distributed into four group based on the root surface treatment. Part A (n = 30) was taken as control and no instrumentation was performed. Part B (n = 30) was irradiated by Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser. Part C (n = 30) was treated by piezoelectric ultrasonic scaler. Part D (n = 30) was treated by Gracey curette. The surface roughness was quantitatively analyzed by profilometer using roughness average (Ra) value, while presence of smear layer, cracks, craters and melting of surface were analyzed using scanning electron microscope (SEM). The means across the groups were statistically compared with control using Dunnett test. Results: Among the test groups, Er,Cr:YSGG laser group showed maximum surface roughness (mean Ra value of 4.14 μm) as compared to ultrasonic scaler (1.727 μm) and curette group (1.22 μm). However, surface with smear layer were found to be maximum (50%) in curette treated samples and minimum (20%) in laser treated ones. Maximum cracks (83.34%) were produced by ultrasonic scaler, and minimum (43.33%) by curettes. Crater formation was maximum (50%) in laser treated samples and minimum (3.33%) in curette treated ones. 63.33% samples treated by laser demonstrated melting of root surface, followed by ultrasonic scaler and curettes. Conclusion: Er,Cr:YSGG laser produced maximum microstructural changes on root surface that can influence the attachment of soft periodontal tissues as well as plaque and calculus deposition. In vivo studies are needed to validate these results and to evaluate their clinical effects.
Fusion boundary microstructure evolution in aluminum alloys
NASA Astrophysics Data System (ADS)
Kostrivas, Anastasios Dimitrios
2000-10-01
A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu composition within the interior of the non-dendritic grains and the corresponding value the Scheil equation predicts for the first solid to form upon solidification for a binary Al-Cu alloy with identical Cu composition. In the context of the alloys, compositions and substrate conditions examined a mechanistic model for EQZ zone formation is proposed, helpful in adjusting base metal compositions and/or substrate conditions to control fusion boundary microstructure.
Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J
2010-01-01
Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the glucose concentration for diabetic applications. 2010 Diabetes Technology Society.
Structural characterisation of advanced optical materials
NASA Astrophysics Data System (ADS)
Krsmanovic, Radenka
The rare earth systems discussed in this thesis belong to a class of new, advanced optical materials. Two different nanostuctured materials are studied: nanocrystalline oxide phosphors and glass ceramics containing luminescent nanocrystals. In both cases, the optical activity is based on the luminescence properties of rare earth dopants incorporated into the crystal structure of the insulator nanocrystals themselves. The structure, morphology and composition of these luminescent composite materials are investigated and used to demonstrate the benefits as well as the drawbacks of the synthesis and the processing techniques used, aiming to their improvement for possible industrial production. An investigation of the microstructure was done by XRD, TEM and HREM, while EDX, EELS and EFTEM spectroscopy techniques were used for the chemical identification. Our research clearly demonstrated that these techniques can be successfully applied, and in combination with optical spectroscopy can provide the complete characterization of nanostructured luminescent materials. Three different oxide phosphors in the form of nanocrystalline powders are obtained with the solution combustion technique: yttrium aluminum garnet (YAG), gadolinium gallium garnet (GGG) and scandium oxide, Sc2O 3. We found out that GGG and Sc2O3 samples have "perfect" nanocrystals, without defects or amorphous surface layer, and with uniform distribution of rare earth activators. Good crystal quality results in a long-lived phosphor and much stronger emission, which makes them promising candidate for display industry. Moreover, these luminescent nanocrystals are biocompatible and when functionalized with some molecules or biocompatible polymers can be used for bio-applications like "in vivo" markers in cell biology. For luminescence glass ceramics samples the ternary glass system Li 2O-Al2O3-SiO2 (LAS) is used as host matrix, and ZrO2 as nucleating agent for luminescent ions introduced as Eu2O3 or Er2O3. We wanted to obtain a composite with crystal-like optical properties, keeping the transparency and the processibility of the glass host. The spatial distribution of the precipitates throughout the material, their morphology, structure and composition are investigated with various TEM modes to check if we succeed in draining all rare earth dopant ions from the matrix into ZrO2 crystals. The best results are obtained for the samples containing Er as dopant.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Booske, John H.; Morgan, Dane
2010-02-01
Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of a stable and low work function Ba0.25Sc0.25O structure suggests that addition of Sc to the B-type cathode surface could form this alloy structure under operating conditions, leading to improved cathode performance and stability. Detailed comparison to previous experimental results of BaxScyOz on W surface coatings are made to both validate the modeling and aid in interpretation of experimental data. The studies presented here demonstrate that ab initio methods are powerful for understanding the fundamental physics of electron emitting materials systems and can potentially aid in the development of improved cathodes.
NASA Astrophysics Data System (ADS)
Tuan, Nguyen Quoc
Al(Sc) alloys represent a new class of potential alloys for high performance structural applications. The excellent properties obtained from the combination of solid-solution hardening and precipitation hardening in Al-Mg-Sc alloys make these alloys very attractive to automotive, aerospace, and structural applications. However, the Sc high cost limits the applications and the addition of cheaper alloying elements that substitutes partially Sc are not only desirable but crucial. In order to reduce the cost of Sc-containing Al alloys and maintain their mechanical properties, the microstructure and mechanical properties of Al-Sc-Yb and Al-Mg-Sc-Yb alloys in comparison with Al-Sc and Al-Mg-Sc alloys were studied. The results showed the similarity of microstructure, hardness and aging behaviour of Al-0.24Sc-0.07Yb alloy in comparison with Al-0.28Sc alloy and Al-4 wt% Mg-0.3 wt% Sc alloy with Al-4 wt% Mg-0.24 wt% Sc-0.06 wt% Yb alloy. The approximately spheroidal Al3Sc and Al3(Sc,Yb) precipitates were uniformly distributed throughout the alpha-Al matrix. The precipitates remain fully coherent with alpha-Al matrix even after aging at high temperature for long time. In another aspect, the grain refinement in Al-Mg-Sc alloys with and without ultrasonic treatment at various pouring temperatures was investigated. The average grain size of Al-Mg-Sc alloy remarkably decreases by increasing the content of Mg or by adding 0.3 wt% of Sc. The pouring temperature has a strong effect on the microstructure of Al-1Mg-0.3Sc alloy. Lower pouring temperature leads to smaller grain size and more homogeneous microstructure. Ultrasonic vibration proved to be a potential grain refinement technique of Al-1Mg-0.3Sc. Significant grain refinement was obtained by applying ultrasonic treatment within the temperature range from 700 to 740 °C. The corrosion behaviour of Al-Sc, Al-Sc-Yb, Al-Mg, Al-Mg-Sc and Al-Mg-Sc-Yb alloys in 3.5 wt% NaCl solution was investigated by immersion and potentiodynamic polarisation analysis in order to understand the effect of Sc, Yb, and heat treatment on the localized corrosion and electrochemical behaviour. The addition of Yb decreases the corrosion tendency and improves the pitting corrosion resistance of Al-Sc alloy. The addition of Sc and Yb to Al-4Mg alloy decrease the susceptibility to corrosion of the heat treated alloys.
V/Sc in olivine as a proxy for magma redox conditions
NASA Astrophysics Data System (ADS)
Locmelis, M.; Arevalo, R. D., Jr.; Puchtel, I. S.; Fiorentini, M. L.
2017-12-01
Although olivine is the most abundant mineral in the upper mantle and a major constituent of most mantle-derived rocks, studies on its trace element chemistry are underrepresented. This is especially the case for komatiites, an ultramafic, olivine-dominated rock type that formed via high degrees of partial melting (up to 50%) of the mantle. Komatiites were mostly emplaced in the Archean and therefore provide a unique perspective on the composition and evolution of the early Earth's mantle. Here, we present the V/Sc compositions of olivines from a global set of Paleo- (3.5-3.3 Ga) and Neo-Archean (2.7 Ga) komatiites analyzed via laser ablation ICP-MS. Vanadium and Sc behave similar during partial melting, but V is redox-sensitive (V2+-V5+) and most compatible in olivine as V2+. Scandium is monovalent (Sc3+) and its compatibility in olivine is not affected by the oxygen fugacity (fO2) of the komatiite lava. Therefore, V/Sc ratios in olivines are potentially indicative of the fO2 of the magma they crystallized from. Our data show that V/Sc ratios measured in Neo-Archean olivines (V/Scmean = 1.0 ± 0.1; 2σm) are significantly lower than in their Paleo-Archean counterparts (V/Scmean = 2.1 ± 0.1; 2σm). Geochemical models show that the elevated V/Sc ratios captured by the Paleo-Archean olivines reflect crystallization from magmas that were 1.6 log units (relative to QFM) more reduced than their Neo-Archean counterparts, and thus contained a higher proportion of V2+. Because assimilation of sedimentary bedrocks can alter the composition of komatiites upon emplacement, it may be argued that the redox states recorded by the olivines do not reflect mantle fO2, but the assimilation of crustal material. However, such an effect is not visible in our data as V/Sc ratios in olivines from localities that show evidence of crustal assimilation do not differ from komatiites that did not assimilate significant amounts of crustal rocks. Rather than a crustal signature, the V/Sc ratios suggest a secular increase of fO2 in the Archean mantle of potentially as much as 1.6 log units (relative to QFM) between 3.5-3.3 Ga and 2.7 Ga. These results are intriguing because an increase of only 0.5 log units in mantle fO2 has previously been identified as a sufficient kick-starter for the 2.4 Ga Great Oxidation Event.
Growth Patterns of the Neurocentral Synchondrosis (NCS) in Immature Cadaveric Vertebra.
Blakemore, Laurel; Schwend, Richard; Akbarnia, Behrooz A; Dumas, Megan; Schmidt, John
2018-03-01
Gross anatomic study of osteological specimens. To evaluate the age of closure for the neurocentral synchondrosis (NCS) in all 3 regions of the spine in children aged 1 to 18 years old. The ossification of the human vertebra begins from a vertebral body ossification center and a pair of neural ossification centers located within the centrum called the NCS. These bipolar cartilaginous centers of growth contribute to the growth of the vertebral body, spinal canal, and posterior elements of the spine. The closure of the synchondroses is dependent upon location of the vertebra and previous studies range from 2 to 16 years of age. Although animal and cadaveric studies have been performed regarding NCS growth and early instrumentation's effect on its development, the effects of NCS growth disturbances are still not completely understood. The vertebrae of 32 children (1 to 18 y old) from the Hamann-Todd Osteological collection were analyzed (no 2 or 9 y old specimens available). Vertebrae studied ranged from C1 to L5. A total of 768 vertebral specimens were photographed on a background grid to allow for measurement calibration. Measurements of the right and left NCS, pedicle width at the NCS, and spinal canal area were taken using Scandium image-analysis software (Olympus Soft Imaging Solutions, Germany). The percentage of the growth plate still open was found by dividing the NCS by the pedicle width and multiplying by 100. Data were analyzed with JMP 11 software (SAS Institute Inc., Cary, NC). The NCS was 100% open in all 3 regions of the spine in the 1- to 3-year age group. The cervical NCS closed first with completion around 5 years of age. The lumbar NCS was nearly fully closed by age 11. Only the thoracic region remained open through age 17 years. The left and right NCS closed simultaneously as there was no statistical difference between them. In all regions of the spine, the NCS appeared to close sooner in males than in females. Spinal canal area increased with age up to 12 years old in the cervical and thoracic spine but did not significantly change after age 3 in the lumbar spine. In conclusion, closure of the NCS differed among the cervical, thoracic, and lumbar spine regions. The NCS reached closure in males before females even though females mature faster and reach skeletal maturity sooner than males. However, it is not determined whether the continued open NCS in females to a later age may be a factor in their increased rate of scoliosis.
Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank
2018-05-21
Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O values increase from Ce III to Lu III . However, the log K M(HL) H protonation constants, analogous to the log K H 2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.
Property enchancement of polyimide films by way of the incorporation of lanthanide metal ions
NASA Technical Reports Server (NTRS)
Thompson, David W.
1993-01-01
Lanthanide metal ions were incorporated into the polyimide derived from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 1,3-bis(aminophenoxy) benzene (APB) in an attempt to produce molecular level metal-polymer composites. The lanthanide series of metal ions (including aluminum, scandium, and yttrium) provide discrete and stable metal ions in the 3+ oxidation state. Throughout the series there is a uniform variation in ionic size ranging from 50 pm for aluminum to a maximum of 103.4 pm for cerium and gradually decreasing again to 84.8 pm for lutetium. The high charge-to-size ratio for these ions as well as the ability to obtain large coordination numbers makes them excellent candidates for interacting with the polymer substructure. The distinct lack of solubility of simple lanthanide salts such as the acetates and halides has made it difficult to obtain metal ions distributed in the polymer framework as discrete ions or metal complexes rather than microcomposites of metal clusters. (Lanthanum nitrates are quite soluble, but the presence of the strongly oxidizing nitrate ion leads to serious degradation of the polymer upon thermal curing. This work was successful at extending the range of soluble metals salts by using chelating agents derived from the beta-diketones dipivaloylmethane, dibenzoylmethane, trifluoroacetylacetone, and hexafluoroacetylacetone. Metal acetates which are insoluble in dimethylacetamide dissolve readily in the presence of the diketones. Addition of the polyimide yields a homogeneous resin which is then cast into a clear film. Upon curing clear films were obtained with the dibenzoylmethane and trifluoroacetylacetone ligands. The dipavaloylmethane precipitates the metal during the film casting process, and hexafluoroacetylacetone gives cured films which are deformed and brittle. These clear films are being evaluated for the effect of the metal ions on the coefficient of thermal expansion, resistance to atomic oxygen, and on selective gas permeability. Much more commonly than above, polyimide films are prepared by casting the film as the poly(amic acid) precursor which is then converted to the imidized form during the thermal cure cycle. Very limited success was achieved in the past in adding lanthanide metal ions to the amide precursors because of gellation and lack of solubility. With the use of the diketone ligands cited above, the solubility and gellation problems were overcome. However, the films after curing were clear but unacceptably brittle. Attempts to overcome this cure embrittlement problem are in progress.
NASA Astrophysics Data System (ADS)
Ram, R. S.; Bernath, P. F.
1996-08-01
The emission spectra of ScH and ScD have been observed in the 380 nm-2.5 μm spectral region using a Fourier transform spectrometer. The molecules were excited in a scandium hollow cathode lamp operated with neon gas and a trace of hydrogen or deuterium. Three transitions with a common lower state, assigned as the ground X 1Σ+ state, have been observed in the near infrared and visible regions. The ScH bands with 0-0 band origins at 5404, 13 574, and 20 547 cm-1 have been assigned as the B 1Π-X 1Σ+, C 1Σ+-X 1Σ+, and G 1Π-X 1Σ+ transitions, respectively. A rotational analysis of the 0-0, 1-1, 1-0, and 2-1 bands of the B 1Π-X 1Σ+ system, the 0-0 and 1-1 bands of the C 1Σ+-X 1Σ+ system and the 0-0 band of the G 1Π-X 1Σ+ system has been obtained. The principal molecular constants for the X 1Σ+ state of ScH are ΔG(1/2)=1546.9730(14) cm-1, Be=5.425 432(48) cm-1, αe=0.124 802(84) cm-1 and re=1.775 427(8) Å. The corresponding band systems of ScD have also been analyzed. A rotational analysis of the 0-0, 1-1, and 1-0 bands of the B 1Π-X 1Σ+ system, the 0-0, 1-1, 0-1, and 1-2 bands of the C 1Σ+-X 1Σ+ system and the 0-0 band of the G 1Π-X 1Σ+ system has been obtained. The equilibrium molecular constants determined for the ground state of ScD are ωe=1141.2650(31) cm-1, ωexe=12.3799(15) cm-1, Be=2.787 432(41) cm-1, αe=0.045 321(73) cm-1, and re=1.771 219(13) Å. The ScH assignments are supported by recent theoretical predictions made by Anglada et al. [Mol. Phys. 66, 541 (1989)] as well as the experimental results available for ScF and the isovalent YH and LaH molecules. Although some unassigned bands have been attributed to ScH and ScD by previous workers, there have been no previous analyses of ScH or ScD spectra.
Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.
Lin, Taichen; Aoki, Akira; Saito, Norihito; Yumoto, Masaki; Nakajima, Sadahiro; Nagasaka, Keigo; Ichinose, Shizuko; Mizutani, Koji; Wada, Satoshi; Izumi, Yuichi
2016-12-01
Mid-infrared erbium: yttrium-aluminum-garnet (Er:YAG) and erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers (2.94- and 2.78-μm, respectively) are utilized for effective dental hard tissue treatment because of their high absorption in water, hydroxide ion, or both. Recently, a mid-infrared tunable, nanosecond pulsed, all-solid-state chromium-doped: cadmium-selenide (Cr:CdSe) laser system was developed, which enables laser oscillation in the broad spectral range around 2.9 μm. The purpose of this study was to evaluate the ablation of dental hard tissue by the nanosecond pulsed Cr:CdSe laser at a wavelength range of 2.76-3.00 μm. Enamel, dentin, and cementum tissue were irradiated at a spot or line at a fluence of 0-11.20 J/cm 2 /pulse (energy output: 0-2.00 mJ/pulse) with a repetition rate of 10 Hz and beam diameter of ∼150 μm on the target (pulse width ∼250 ns). After irradiation, morphological changes, ablation threshold, depth, and efficiency, and thickness of the structurally and thermally affected layer of irradiated surfaces were analyzed using stereomicroscopy, scanning electron microscopy (SEM), and light microscopy of non-decalcified histological sections. The nanosecond pulsed irradiation without water spray effectively ablated dental hard tissue with no visible thermal damage such as carbonization. The SEM analysis revealed characteristic micro-irregularities without major melting and cracks in the lased tissue. The ablation threshold of dentin was the lowest at 2.76 μm and the highest at 3.00 μm. The histological analysis revealed minimal thermal and structural changes ∼20 μm wide on the irradiated dentin surfaces with no significant differences between wavelengths. The efficiency of dentin ablation gradually increased from 3.00 to 2.76 μm, at which point the highest ablation efficiency was observed. The nanosecond pulsed Cr:CdSe laser demonstrated an effective ablation ability of hard dental tissues, which was remarkably wavelength-dependent on dentin at the spectral range of 2.76-3.00 μm. These results demonstrate the potential feasibility of the use of pulsed Cr:CdSe laser as a novel laser system for dental treatment. Lasers Surg. Med. 48:965-977, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ryabov, I. D.
2012-10-01
Electron paramagnetic resonance (EPR) study of single crystals of forsterite co-doped with chromium and scandium has revealed, apart from the known paramagnetic centers Cr3+( M1) and Cr3+( M1)- V_{{{{Mg}}^{2 + } }} ( M2) (Ryabov in Phys Chem Miner 38:177-184, 2011), a new center Cr3+( M1)- V_{{{{Mg}}^{2 + } }} ( M2)-Sc3+ formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position and a Sc3+ ion presumably at the nearest-neighbor M1 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values have been determined as follows: D = 33,172(29) MHz, E = 8,482(13) MHz, g = [1.9808(2), 1.9778(2), 1.9739(2)]. The center has been compared with the known ion pair Cr3+( M1)-Al3+ (Bershov et al. in Phys Chem Miner 9:95-101, 1983), for which the refined EPR data have been obtained. Based on these data, the known sharp M1″ line at 13,967 cm-1 (with the splitting of 1.8 cm-1), observed in low-temperature luminescence spectra of chromium-doped forsterite crystals (Glynn et al. in J Lumin 48, 49:541-544, 1991), has been ascribed to the Cr3+( M1)-Al3+ center. It has been found that the concentration of the new center increases from 0 up to 4.4 × 1015 mg-1, whereas that of the Cr3+( M1) and Cr3+( M1)- V_{{{{Mg}}^{2 + } }} ( M2) centers quickly decreases from 7.4 × 1015 mg-1 down to 3 × 1015 mg-1 and from 2.7 × 1015 mg-1 down to 0.5 × 1015 mg-1, i.e., by a factor of 2.5 and 5.4, respectively, with an increase of the Sc content from 0 up to 0.22 wt % (at the same Cr content 0.25 wt %) in the melt. When the Sc content exceeds that of Cr, the concentration of the new center decreases most likely due to the formation of the Sc3+( M1)- V_{{{{Mg}}^{2 + } }} ( M2)-Sc3+ complex instead of the Cr3+( M1)- V_{{{{Mg}}^{2 + } }} ( M2)-Sc3+ center. The formation of such ordered neutral complex is in agreement with the experimental results, concerning the incorporation of Sc into olivine, recently obtained by Grant and Wood (Geochim Cosmochim Acta 74:2412-2428, 2010).
Champion, Martin J D; Farina, Paolo; Levason, William; Reid, Gillian
2013-09-28
Complexes of the oxa-thia macrocycles [18]aneO4S2, [15]aneO3S2 and the oxa-selena macrocycle [18]aneO4Se2 (L) of types [MCl2(L)]FeCl4 (M = Sc or Y) were prepared from [ScCl3(thf)3] or [YCl2(THF)5][YCl4(THF)2] and the ligand in anhydrous MeCN, using FeCl3 as a chloride abstractor. The [MI2(L)]I, [LaI3(L)] and [LuI2(L)]I have been prepared from the ligands and the appropriate anhydrous metal triiodide in MeCN. Complexes of type [LaI3(crown)] and [LuI2(crown)]I (crown = 18-crown-6, 15-crown-5) were made for comparison. Use of the metal iodide results in complexes with high solubility compared to the corresponding chlorides, although also with increased sensitivity to moisture. All complexes were characterised by microanalysis, IR, (1)H, (45)Sc and (77)Se NMR spectroscopy as appropriate. X-ray crystal structures are reported for [ScCl2([18]aneO4S2)][FeCl4], [ScI2([18]aneO4S2)]I, [YCl2(18-crown-6)]3[Y2Cl9], [YCl2([18]aneO4S2)][FeCl4], [LaI3(15-crown-5)], [LaI2(18-crown-6)(MeCN)]I, [LuI(18-crown-6)(MeCN)2]I2, [Lu(15-crown-5)(MeCN)2(OH2)]I3, [LaI3([18]aneO4S2)], [LaI([18]aneO4S2)(OH2)]I2, [LaI3([18]aneO4Se2)] and [LuI2([18]aneO4Se2)]I. In each complex all the neutral donor atoms of the macrocycles are coordinated to the metal centre, showing very rare examples of these oxophilic metal centres coordinated to thioether groups, and the first examples of coordinated selenoether donors. In some cases MeCN or adventitious water displaces halide ligands, but not the S/Se donors from La or Lu complexes. A complex of the oxa-tellura macrocycle [18]aneO4Te2, [ScCl2([18]aneO4Te2)][FeCl4] was isolated, but is unstable in MeCN solution, depositing elemental Te. YCl3 and 18-crown-6 produced [YCl2(18-crown-6)]3[Y2Cl9], the asymmetric unit of which contains two cations with a trans-YCl2 arrangement and a third with a cis-YCl2 group.
Doe, B.R.
1997-01-01
A database on a number of elements in oceanic volcanic rocks is presented, including the principal major-element oxides - SiO2, TiO2, Al2O3, Fe2O3(T), MnO, MgO, CaO, Na2O, K2O, and P2O5 (where T refers to total iron) - and the trace elements - Ba, Ce, Cr, Cu, Ni, Sc, Sr, V, Pb (mainly by isotope dilution), Yb, Zn, and Zr. Interpretations are given for transition metals, with emphasis on Mn, Sc, and V, in order to determine the concentration of the elements in primitive melts and assess their trends in magmatic differentiation. Transition metals are not enriched in plagioclase, so all are incompatible with pure plagioclase removal - that is, they become enriched in the melt. Both Cr and Ni are known to be highly compatible with olivine separation - i.e., they are depleted in the melt early in differentiation. Also, Sc is compatible with clinopyroxene (Cpx) removal from the melt and is depleted by separation of Cpx. Copper does not fit well in any of the principal silicates, but Cu, like Ni, is greatly enriched in sulfides that may remain in the source or separate from the magma. Decreasing Ni abundances and increasing Cu contents during differentiation are a sign of olivine separation. In the analysis presented herein, V - in the absence of Cpx separation - is found to behave remarkably like the moderately incompatible element Zn, and these two elements add to the list of element pairs of similar incompatibility whose ratios are insensitive to differentiation and to submarine weathering as well. Both are enhanced in titanomagnetite, so both would he compatible during titanomagnetite separation. When Cpx separates, however, V becomes compatible like Sc, but Zn remains incompatible. Thus, decreasing V (and Sc) contents and increasing Zn contents during differentiation are a sign of Cpx separation. Manganese often behaves much like Zn and therefore is moderately incompatible, but Mn is less compatible than Zn and V in titanomagnetite. Thus, decreasing Zn and V with increasing Mn is an indication of titanomagnetite removal. Dual compatible and incompatible trends with differentiation are found chiefly for Cu, Sc, and Sr. Distinguishing mid-ocean ridge basalts (MORB), oceanic-island volcanic rocks (OIV), and island-arc volcanic rocks (IAV) may be accomplished by plots of Ce/Yb versus Ba/Ce, where OIV plot to higher values of Ce/Yb than do MORB, and IAV data plot to higher values of Ba/Ce than do those of MORB. These ratios do not seem to be significantly affected by submarine weathering.
Tuttle, M.L.; Severson, R.C.; Dean, W.E.; Klusman, R.W.
1986-01-01
Geochemical baselines for native soils and biogeochemical baselines for plants in the Piceance basin provide data that can be used to assess geochemical and biogeochemical effects of oil-shale development, monitor changes in the geochemical and biogeochemical environment during development, and assess the degree of success of rehabilitation of native materials after development. Baseline values for 52 properties in native soils, 15 properties in big sagebrush, and 13 properties in western wheatgrass were established. Our Study revealed statistically significant regional variations of the following properties across the basin: in soil&-aluminum, cobalt, copper, iron, manganese, sodium, nickel, phosphorus, lead, scandium, titanium, vanadium, zinc, organic and total carbon, pH, clay, dolomite, sodium feldspar, and DTPA-extractable calcium, cadmium, iron, potassium, manganese, nickel, phosphorus, yttrium, and zinc; in big sagebrush-barium, calcium, copper, magnesium, molybdenum, sodium, strontium, zinc, and ash; and in western wheatgrass-boron, barium, calcium, magnesium, manganese, molybdenum, strontium, zinc, and ash. These variations show up as north-south trends across the basin, or they reflect differences in elevation, hydrology, and soil parent material. Baseline values for properties that do not have statistically significant regional variations can be represented by geometric means and deviations calculated from all values within the basin. Chemical and mineralogical analyses of soil and chemical analyses of western wheatgrass samples from Colorado State University's experimental revegetation plot at Anvil Points provide data useful in assessing potential effects on soil and plant properties when largescale revegetation operations begin. The concentrations of certain properties are related to the presence of topsoil over spent shale in the lysimeters. In soils, calcium, fluorine, lithium, magnesium, sodium, phosphorus, strontium, carbonate and total carbon, and DTPA-extractable boron, copper, iron, magnesium, and nickel have lower concentrations in topsoil than in the spent oil shale; whereas, silicon, titanium, ytterbium, clay, quartz, and DTPA-extractable potassium have greater concentrations in the topsoil than in the spent oil shale. In western wheatgrass, molybdenum has a lower concentration in grasses growing on the topsoil than in grasses on the spent oil shale; whereas, barium, calcium, manganese, strontium, zinc, and ash have greater concentrations in grasses growing on the topsoil than on the spent oil shale. When compared to baseline values, soils in the revegetation plot are significantly higher in concentrations of lead, zinc, organic and total carbon, and DTP A-extractable cadmium, iron, manganese, nickel, phosphorus, and zinc. Whereas, western wheatgrass grown within the revegetation plot has concentrations which fall within the baseline values established in the regional study. The equations used in predicting concentrations of elements in plants from native and altered sites are cumbersome because of the large number of variables required to adequately predict expected concentrations and are of limited use because many explained only a small proportion of the total variation.
NASA Astrophysics Data System (ADS)
Paudel, Tula R.
This thesis presents a study of the phonons and related properties in two sets of nitride compounds, whose properties are until now relatively poorly known. The Zn-IV-N2 group of compounds with the group IV elements Si, Ge and Sn, form a series analogous to the well known III-N nitride series with group III element Al, Ga, In. Structurally, they can be derived by doubling the period of III-V compounds in the plane in two directions and replacing the group-III elements with Zn and a group-IV element in a particular ordered pattern. Even though they are similar to the well-known III-V nitride compounds, the study of the properties of these materials is in its early stages. The phonons in these materials and their relation to the phonons in the corresponding group-III nitrides are of fundamental interest. They are also of practical interest because the phonon related spectra such as infrared absorption and Raman spectroscopy are sensitive to the structural quality of the material and can thus be used to quantify the degree of crystalline perfection of real samples. First-principles calculations of the phonons and related ground state properties of these compounds were carried out using Density Functional Perturbation Theory (DFPT) with the Local Density Approximation (LDA) for exchange and correlation and using a pseudopotential plane wave implementation which was developed by several authors over the last decades. The main focus of our study is on the phonons at the center of the Brillouin zone because the latter are most directly related to commonly used spectroscopies to probe the vibrations in a solid: infrared reflectivity and Raman spectroscopy. For a semiconducting or insulating compound, a splitting occurs between transverse and longitudinal phonons at the Gamma-point because of the long-range nature of electrostatic forces. The concepts required to handle this problem are reviewed. Our discussion emphasizes how the various quantities required are related to various types of derivatives of the total energy versus perturbation parameters. Essentially, the long-range forces have to be treated explicitly in terms of the Born effective charge tensors which are the mixed second derivatives of the total energy of the system with respect to static electric fields and atomic displacements whereas the short-range part of the force constants is obtained from second derivatives versus atomic displacements. The second derivatives versus electrostatic field give the high-frequency dielectric function. The longitudinal and transverse response of the solid is then obtained from the calculation of the frequency dependent dielectric response function in the frequency range of the phonons. We thus present as results: first the equilibrium structure, i.e. the optimized lattice constants and internal coordinates which form the starting point for any study of the vibrational modes; second the vibrational modes at Gamma including their LO-TO splittings, third, the Born effective charges and the dielectric functions which are directly related to the experimental infrared spectra. In order to obtain the Raman intensities, one needs the derivatives of the electric susceptibility versus atomic displacements. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Berg, Linda Sue
A systematic study of the superconducting and normal state properties of some ternary rare earth transition metal silicides and germanides of the Sc(,5)Co(,4)Si(,10) -type is reported in this work. Low temperature heat capacity measurements indicate the presence of a complicated phonon density of states in these structurally complex compounds. A better description of the phonon spectrum of the high T(,c) materials, Sc(,5)Rh(,4)Si(,10), Sc(,5)Ir(,4)Si(,10), and Y(,5)Os(,4)Ge(,10), given by a model proposed by Junod et al.('1), is presented and discussed. The large values of (DELTA)C/(gamma)(,n)T(,c) and the electron-phonon coupling constant for these high T(,c) compounds indicate that they are strong-coupled superconductors. Relative to other ternary superconductors, many of these materials have large Debye temperatures. The BSC theory does not seem to afford an adequate description of the supercon- ducting state in these compounds. DC electrical resistivity measurements on these compounds show resistivity behaviors deviating from those exhibited by simple metals. The (rho)(T) data for Y(,5)Ir(,4)Si(,10), Lu(,5)Rh(,4)Si(,10), Lu(,5)Ir(,4)Si(,10), and Y(,5)Os(,4)Ge(,10), indicate the presence of anomalies. Static molar magnetic susceptibility measurements performed on these compounds indicate (1) a small effective magnetic moment of 0.26(mu)(,B) on the Co atom and (2) anomalous behaviors in the Lu(,5)Rh(,4)Si(,10), Lu(,5)Ir(,4)Si(,10), Y(,5)Ir(,4)Si(,10), Lu(,5)Ir(,4)Ge(,10), and Y(,5)Rh(,4)Ge(,10) data. It is suggested that the same mechanism, namely, the forma- tion of a charge- or spin-density wave, is causing the anomalous behaviors in both the resistivity and susceptibility data. Lastly, upper critical magnetic field measurements were performed on Sc(,5)Co(,4)Si(,10), Sc(,5)Rh(,4)Si(,10), Sc(,5)Ir(,4)Si(,10), Lu(,5)Rh(,4)Si(,10), Lu(,5)Ir(,4)Si(,10), and Y(,5)Os(,4)Ge(,10). Relative to the other five samples, Y(,5)Os(,4)Ge(,10) exhibits very high values for (-dH(,c2)/dT)(,Tc) = 10.2 kOe/ K and H(,c2)(0) = 60.4 kOe. Comparing the value of (-dH(,c2)/dT)(,Tc) gained from the fit of the data to the WHH theory to the calculated (-dH(,c2)/dT)(,Tc) yields various degrees of agreement for these com- pounds. Indications are also that (1) there seems to be little or no. Pauli limiting and (2) the spin-orbit effect appears to be negligible in these compounds. *DOE Report IS-T-1215. This work was performed under contract No. W-7405-Eng-82 with the U. S. Department of Energy. ('1)A. Junod, D. Bichsel, and J. Muller, Helv. Phys. Acta 52, 580 (1979).
Mazumdar, Dibyendu; Ranjan, Shashi; Krishna, Naveen Kumar; Kole, Ravindra; Singh, Priyankar; Lakiang, Deirimika; Jayam, Chiranjeevi
2016-01-01
Introduction Etching of enamel and dentin surfaces increases the surface area of the substrate for better bonding of the tooth colored restorative materials. Acid etching is the most commonly used method. Recently, hard tissue lasers have been used for this purpose. Aim The aim of the present study was to evaluate and compare the etching pattern of Er,Cr:YSGG and conventional etching on extracted human enamel and dentin specimens. Materials and Methods Total 40 extracted non-diseased teeth were selected, 20 anterior and 20 posterior teeth each for enamel and dentin specimens respectively. The sectioned samples were polished by 400 grit Silicon Carbide (SiC) paper to a thickness of 1.0 ± 0.5 mm. The enamel and dentin specimens were grouped as: GrE1 & GrD1 as control specimens, GrE2 & GrD2 were acid etched and GrE3 & GrD3 were lased. Acid etching was done using Conditioner 36 (37 % phosphoric acid) according to manufacturer instructions. Laser etching was done using Er,Cr:YSGG (Erbium, Chromium : Ytrium Scandium Gallium Garnet) at power settings of 3W, air 70% and water 20%. After surface treatment with assigned agents the specimens were analyzed under ESEM (Environmental Scanning Electron Microscope) at X1000 and X5000 magnification. Results Chi Square and Student “t” statistical analysis was used to compare smear layer removal and etching patterns between GrE2-GrE3. GrD2 and GrD3 were compared for smear layer removal and diameter of dentinal tubule opening using the same statistical analysis. Chi-square test for removal of smear layer in any of the treated surfaces i.e., GrE2-E3 and GrD2-D3 did not differ significantly (p>0.05). While GrE2 showed predominantly type I etching pattern (Chi-square=2.78, 0.05
0.10) and GrE3 showed type III etching (Chi-square=4.50, p<0.05). The tubule diameters were measured using GSA (Gesellschaft fur Softwareentwicklung und Analytik, Germany) image analyzer and the ‘t’ value of student ‘t’ test was 18.10 which was a highly significant result (p<.001). GrD2 had a mean dentinal tubule diameter of 2.78μm and GrD3 of 1.09μm. Conclusion The present study revealed type I etching pattern after acid etching, while type III etching pattern in enamel after laser etching. The lased dentin showed preferential removal of intertubular dentin while acid etching had more effect on the peritubular dentin. No significant differences was observed in removal of smear layer between the acid etched and lased groups. Although diameter of the exposed dentinal tubules was lesser after lased treatment in comparison to acid etching, further long term in vivo studies are needed with different parameters to establish the usage of Er,Cr:YSGG as a sole etching agent. PMID:27437337
Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.
Nishiura, Masayoshi; Guo, Fang; Hou, Zhaomin
2015-08-18
The search for new catalysts for more efficient, selective chemical transformations and for the synthesis of new functional materials has been a long-standing research subject in both academia and industry. To develop new generations of catalysts that are superior or complementary to the existing ones, exploring the potential of untapped elements is an important strategy. Rare-earth elements, including scandium, yttrium, and the lanthanides (La-Lu), constitute one important frontier in the periodic table. Rare-earth elements possess unique chemical and physical properties that are different from those of main-group and late-transition metals. The development of rare-earth-based catalysts by taking the advantage of these unique properties is of great interest and importance. The most stable oxidation state of rare-earth metals is 3+, which is difficult to change under many reaction conditions. The oxidative addition and reductive elimination processes often observed in catalytic cycles involving late transition metals are generally difficult in the case of rare-earth complexes. The 18-electron rule that is applicable to late-transition-metal complexes does not fit rare-earth complexes, whose structures are mainly governed by the sterics (rather than the electron numbers) of the ligands. In the lanthanide series (La-Lu), the ionic radius gradually decreases with increasing atomic number because of the influence of the 4f electrons, which show poor shielding of nuclear charge. Rare-earth metal ions generally show strong Lewis acidity and oxophilicity. Rare-earth metal alkyl and hydride species are highly reactive, showing both nucleophilicity and basicity. The combination of these features, such as the strong nucleophilicity and moderate basicity of the alkyl and hydride species and the high stability, strong Lewis acidity, and unsaturated C-C bond affinity of the 3+ metal ions, can make rare-earth metals unique candidates for the formation of excellent single-site catalysts. This Account is intended to give an overview of our recent studies on organo rare-earth catalysis, in particular the synthesis and application of half-sandwich rare-earth alkyl complexes bearing monocyclopentadienyl ligands for olefin polymerization, carbometalation, and hydroarylation. Treatment of half-sandwich rare-earth dialkyl complexes having the general formula CpMR2 with an equimolar amount of an appropriate borate compound such as [Ph3C][B(C6F5)4] can generate the corresponding cationic monoalkyl species, which serve as excellent single-site catalysts for the polymerization and copolymerization of a wide range of olefin monomers such as ethylene, 1-hexene, styrene, conjugated and nonconjugated dienes, and cyclic olefins. The cationic half-sandwich rare-earth alkyl complexes can also catalyze the regio- and stereoselective alkylative alumination of alkenes and alkynes through insertion of the unsaturated C-C bond into the metal-alkyl bond followed by transmetalation between the resulting new alkyl or alkenyl species and an alkylaluminum compound. Moreover, a combination of deprotonative C-H bond activation of appropriate organic compounds such as anisoles and pyridines by the rare-earth alkyl species and insertion of alkenes into the resulting new metal-carbon bond can lead to catalytic C-H bond alkylation of the organic substrates. Most of these transformations are unique to the rare-earth catalysts with selectivity and functional group tolerance different from those of late-transition-metal catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provo, James L., E-mail: jlprovo@verizon.net
2015-07-15
A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymiummore » (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80 Å could be obtained with a bulk film oxygen level of ∼0.54 oxygen as determined by microprobe analysis when an evaporation rate of ∼0.313 mg/cm{sup 2} min was used in an atmosphere of D{sub 2} or T{sub 2} gas at a system deposition pressure of 1 × 10{sup −3 }Torr (1.33 × 10{sup −1 }Pa) in an evaporation time of ∼2 min. Platelet type (i.e., a film microstructure showing an overlay of flat plates with large grain sizes) film structures were observed for most films with some film mechanical properties determined (i.e., grain size and Vickers μ-hardness), and reduced stress levels were seen with initial normalized differential (tensile) stress levels being (1.0–4.0) × 10{sup 8 }dyne/cm{sup 2} for tritium loaded samples and (1.5 ± 0.5) × 10{sup 9 }dyne/cm{sup 2} for deuterium loaded samples. Also, stress aging characteristics were determined for some hydride films prepared in a radioactive tritium gas atmosphere. Tritium loading, however, had the undesirable characteristic of having to dispose of the internal processing system fixtures, which can be minimized, but the reactive evaporation technique produced desirable thin films.« less
Novel nano materials for high performance logic and memory devices
NASA Astrophysics Data System (ADS)
Das, Saptarshi
After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect mobility with the layer thickness. The non-monotonic trend suggests that in order to harvest the maximum potential of MoS2 for high performance device applications, a layer thickness in the range of 6-12 nm would be ideal. Finally using scandium contacts on 10nm thick exfoliated MoS2 flakes that are covered by a 15nm ALD grown Al2O3 film, record high mobility of 700cm2/Vs is achieved at room-temperature which is extremely encouraging for the design of high performance logic devices. The destructive nature of the readout process in Ferroelectric Random Access Memories (FeRAMs) is one of the major limiting factors for their wide scale commercialization. Utilizing Ferroelectric Field-Effect Transistor RAM (FeTRAM) instead solves the destructive read out problem, but at the expense of introducing crystalline ferroelectrics that are hard to integrate into CMOS. In order to address these challenges a novel, fully functional, CMOS compatible, One-Transistor-One-Transistor (1T1T) memory cell architecture using an organic ferroelectric -- PVDF-TrFE -- as the memory storage unit (gate oxide) and a silicon nanowire as the memory read out unit (channel material) is proposed and experimentally demonstrated. While evaluating the scaling potential of the above mentioned organic FeTRAM, it is found that the switching time and switching voltage of this organic copolymer PVDF-TrFE exhibits an unexpected scaling behavior as a function of the lateral device dimensions. The phenomenological theory, that explains this abnormal scaling trend, involves in-plane interchain and intrachain interaction of the copolymer - resulting in a power-law dependence of the switching field on the device area (ESW alpha ACH0.1) that is ultimately responsible for the decrease in the switching time and switching voltage. These findings are encouraging since they indicate that scaling the switching voltage and switching time without aggressively scaling the copolymer thickness occurs naturally while scaling the device area -- in this way ultimately improving the packing density and leading towards high performance memory devices.
Preliminary examination of lunar samples from apollo 14.
1971-08-20
The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.
NASA Astrophysics Data System (ADS)
Ghosh, S.; Parker, W.; Odom, L.
2003-04-01
The detrimental influence which airborne contaminants has on vegetation in many parts of the world has become of increasing interest and concern in recent years. The use of suitable plants such as epiphytes (vegetation which grows on another plant) for measuring concentrations of airborne materials provides the advantages of (a) an integration of the periodic fluctuations in amounts of these materials that occur over relatively long periods of time and (b) economy in sampling. This class of plants, which are mosses and lichens, are somewhat less dependent on their substrates and may act more purely as air indicators. The epiphytes do not derive nutrients from soil, but depend on airborne moisture and particulates for elemental sources. The way with which they absorb nutrients from these external sources gives rise to an uncommon sensitivity to the harmful effects of air pollution. Also in addition, plants of this class absorb constituents of airborne particulates which may not be directly toxic to the plant but of environmental concern to humans. In particular, trace element accumulation in epiphytic Tillandsia usneoides L. (Spanish Moss) common in Atlantic and Gulf Coastal plains has been used in air pollution studies. Recent studies have also evaluated Spanish moss as an indicator of contamination of pesticides and other organic aromatic compounds. Two hundred and six samples of Spanish moss (Tillandsia usneoides L.) were collected from over its geographic range in Florida for this study. The samples were analyzed for a variety of major and minor elements, and the resulting data were statistically analyzed for pertinent geochemical associations. Three statistical methods have been used on the geochemical data of Spanish moss to evaluate the nature of probable sources for each of the elements. This kind of work is being done because the exact nature and location of each specimen is unknown. So, the three different statistical methods have been used to classify or determine where the elements came in from based on the following study done by HT Shacklette and JJ Connor in 1973. The first method used, R mode Cluster Analysis (CA) in this report has resulted in some specific group of elements that tend to be coming from the same kind of sources. The Rare Earth Elements (REEs) show an excellent grouping. Their probable source maybe from samples, which had lots of intake of soil dust and rock dust. The grouping of elements Co-Pb-V-Ni-W-Ba probably is because they are all from samples collected near highway where there is a lot of automotive exhaust. Again, clustering of Zn-Sn-Mo-In-Sb probably show that they are from samples, which came from some industrial sites. Samples probably collected from and around sea beaches will have the following elements clustering together: Na-Mg-Li-B. The second method, Principal Component Analysis (PCA) in this project has resulted in a specific descriptive model of chemical variation in Spanish moss. The model appears to be mathematically adequate, in that 4 components describe nearly 64% of the total observed variation and also informative in identifying some major probable sources for the different elements analyzed. Two kinds of sources have been identified: one is natural particulates from soil and rock dust and agricultural sources &the other being technological metals from automotive exhaust and industrial output. The first two components have been labeled as "natural particulates" and the remaining as "technological metals" after Connor and Shacklette. The elements with highest loadings on first and second component are lithium, boron, sodium, magnesium, aluminum, calcium, scandium, titanium, iron, selenium, strontium, yttrium, molybdenum, indium, antimony, lanthanum, uranium and bismuth and Rare earth elements (REE) which in general have mainly agricultural and natural sources. The elements with highest loadings on third and fourth component are potassium, copper, arsenic, barium, vanadium, manganese, cobalt, nickel, copper, zinc, arsenic, rubidium, cadmium, tin, cesium, tungsten, barium, mercury and lead, mostly having industrial and automotive sources. Discriminant Function Analysis (DFA) has been used as verification to the results obtained from CA and PCA. There is some factor, which has a strong effect on some of the elements, and this factor is unidentified yet in the project. Overall, most of the elements are behaving as expected based on the earlier work of Shacklette and Connor (1973) and results from CA and PCA.
NASA Astrophysics Data System (ADS)
Denoyer, Aurelie
La decouverte et l'elaboration de nouveaux materiaux laser solides suscitent beaucoup d'interet parmi la communaute scientifique. En particulier les lasers dans la gamme de frequence du micron debouchent sur beaucoup d'applications, en telecommunication, en medecine, dans le domaine militaire, pour la, decoupe des metaux (lasers de puissance), en optique non lineaire (doublage de frequence, bistabilite optique). Le plus couramment utilise actuellement est le Nd:YAG dans cette famille de laser, mais des remplacants plus performants sont toujours recherches. Les lasers a base d'Yb3+ possedent beaucoup d'avantages compares aux lasers Nd3+ du fait de leur structure electronique simple et de leur deterioration moins rapide. Parmi les matrices cristallines pouvant accueillir l'ytterbium, les orthosilicates Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5 se positionnent tres bien, du fait de leur bonne conductivite thermique et du fort eclatement de leur champ cristallin necessaire a l'elaboration de lasers quasi-3 niveaux. De plus l'etude fine et systematique des proprietes microscopiques de nouveaux materiaux s'avere toujours tres interessante du point de vue de la recherche fondamentale, c'est ainsi que de nouveaux modeles sont concus (par exemple pour le champ cristallin) ou que de nouvelles proprietes inhabituelles sont decouvertes, menant a de nouvelles applications. Ainsi d'autres materiaux dopes a l'ytterbium sont connus pour leurs proprietes de couplage electron-phonon, de couplage magnetique, d'emission cooperative ou encore de bistabilite optique, mais ces proprietes n'ont encore jamais ete mises en evidence dans Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5. Ainsi, cette these a pour but l'etude des proprietes optiques et des interactions microscopiques dans Yb:Y2SiO 5, Yb:Lu2SiO5 et Yb:Sc2SiO5. Nous utilisons principalement les techniques d'absorption IR et de spectroscopie Raman pour determiner les excitations du champ cristallin et les modes de vibration dans le materiau. Des mesures optiques sous champ magnetique ont egalement ete effectuees dans le but de caracteriser le comportement de ces excitations lorsqu'elles sont soumises a l'effet Zeeman. La resonance paramagnetique electronique a permis de completer cette etude de l'eclatement Zeeman suivant toutes les orientations du cristal. Enfin la fluorescence par excitation selective et la fluorescence induite par Raman FT, completent la description des niveaux d'energie et revelent l'existence d'emission cooperative de deux ions Yb3+ et de transferts d'energie. Les resultats de cette these apportent une contribution originale dans le domaine des nouveaux materiaux lasers par l'etude et la comprehension des interactions fines et des proprietes microscopiques d'un materiau en particulier. Ils debouchent a la fois sur des applications possibles dans le domaine de l'optique et des lasers, et sur la comprehension d'aspects fondamentaux. Cette these a prouve l'interet de ces matrices pour leur utilisation comme lasers solides: un fort eclatement du champ cristallin favorable a l'elaboration de laser quasi-3 niveaux, et de larges bandes d'absorption (dues a un fort couplage electron-phonon et a des raies satellites causees par une interaction d'echange entre deux ions Yb3+) qui permettent la generation d'impulsions laser ultra-courtes, l'accordabilite du laser, etc. De plus la miniaturisation des lasers est possible pour l'optique integree grace a des couches minces synthetisees par epitaxie en phase liquide dont nous avons demontre la tres bonne qualite structurale et l'ajustement possible de certains parametres. Nous avons reconstruit le tenseur g du niveau fondamental (qui donne des informations precieuses sur les fonctions d'onde), ceci dans le but d'aider les theoriciens a concevoir un modele de champ cristallin valide. Plusieurs mecanismes de transferts d'energie ont ete mis en evidence: un mecanisme de relaxation d'un site vers l'autre, un mecanisme d'emission cooperative, et un mecanisme d'excitation de l'Yb3+ par le Tm3+ (impurete presente dans le materiau). Ces transferts sont plutot nefastes pour la fabrication d'un laser mais sont interessants pour l'optique non lineaire (doublage de frequence, memoires optiques). Enfin, plusieurs elements (le couplage magnetique de paire, le couplage electron-phonon et l'emission cooperative) nous ont permis de conclure sur le caractere covalent de la matrice. Nous avons d'ailleurs demontre ici le role de la covalence dans l'emission cooperative, transition habituellement attribuee aux interactions multipolaires electriques.
NASA Astrophysics Data System (ADS)
Greve, Benjamin K.
This thesis explores the thermal expansion and high pressure behavior of some materials with the ReO3 structure type. This structure is simple and has, in principle, all of the features necessary for negative thermal expansion (NTE) arising from the transverse thermal motion of the bridging anions and the coupled rotation of rigid units; however, ReO 3 itself only exhibits mild NTE across a narrow temperature range at low temperatures. ReO3 is metallic because of a delocalized d-electron, and this may contribute to the lack of NTE in this material. The materials examined in this thesis are all based on d 0 metal ions so that the observed thermal expansion behavior should arise from vibrational, rather than electronic, effects. In Chapter 2, the thermal expansion of scandium fluoride, ScF3 , is examined using a combination of in situ synchrotron X-ray and neutron variable temperature diffraction. ScF3 retains the cubic ReO3 structure across the entire temperature range examined (10 - 1600 K) and exhibits pronounced negative thermal expansion at low temperatures. The magnitude of NTE in this material is comparable to that of cubic ZrW2O8, which is perhaps the most widely studied NTE material, at room temperature and below. This is the first report of NTE in an ReO3 type structure across a wide temperature range. Chapter 3 presents a comparison between titanium oxyfluoride, TiOF 2, and a vacancy-containing titanium hydroxyoxyfluoride, Ti x(O/OH/F)3. TiOF2 was originally reported to adopt the cubic ReO3 structure type under ambient conditions, therefore the initial goal for this study was to examine the thermal expansion of this material and determine if it displayed interesting behavior such as NTE. During the course of the study, it was discovered that the original synthetic method resulted in Tix(O/OH/F)3, which does adopt the cubic ReO3 structure type. The chemical composition of the hydroxyoxyfluoride is highly dependent upon synthesis conditions and subsequent heat treatments. This material readily pyrohydrolyizes at low temperatures (≈350 K). It was also observed that TiOF does not adopt the cubic ReO 3 structure; at room temperature it adopts a rhombohedrally distorted variant of the ReO3 structure. Positive thermal expansion was observed for TiOF2 from 120 K through decomposition into TiO2. At ≈400 K, TiOF2 undergoes a structural phase transition from rhombohedral to cubic symmetry. High pressure diffraction studies revealed a cubic to rhombohedral phase transition for Tix(O/OH/F) 3 between 0.5-1 GPa. No phase transitions were observed for TiOF 2 on compression. In Chapter 4, an in situ variable pressure-temperature diffraction experiment examining the effects of pressure on the coefficients of thermal expansion (CTE) for ScF3 and TaO2F is presented. In the manufacture and use of composites, which is a possible application for low and NTE materials, stresses may be experienced. Pressure was observed to have a negligible effect on cubic ScF3's CTE; however, for TaO 2F the application of modest pressures, such as those that might be experienced in the manufacture or use of composites, has a major effect on its CTE. This effect is associated with a pressure-induced phase transition from cubic to rhombohedral symmetry upon compression. TaO2F was prepared from the direct reaction of Ta2O5 with TaF 5 and from the digestion of Ta2O5 in hot hydrofluoric acid. The effects of pressure on the two samples of TaO2F were qualitatively similar. The slightly different properties for the samples are likely due to differences in their thermal history leading to differing arrangements of oxide and fluoride in these disordered materials. In Chapter 5, the local structures of TiOF2 and TaO2 F are examined using pair distribution functions (PDFs) obtained from X-ray total scattering experiments. In these materials, the anions (O/F) are disordered over the available anion positions. While traditional X-ray diffraction provides detailed information about the average structures of these materials, it is not sufficient to fully understand their thermal expansion. Fits of simple structural models to the low r portions of PDFs for these materials indicate the presence of geometrically distinct M -X-M (M = Ti, Ta; X = O, F) linkages, and a simple analysis of the TaO2F variable temperature PDFs indicates that these distinct links respond differently to temperature.
United States mineral resources
Brobst, Donald A.; Pratt, Walden P.
1973-01-01
The work on this volume began in January 1972, but in a broader sense its production began many years ago. The chapters were written by geologists most of whom have had many years of experience studying the geology of mineral deposits, and more particularly the commodities about which they have written here. A total of nearly 2,300 man-years of professional experience in the geology of mineral resources is represented by the authors of the volume, and about 30 man-years went directly into its preparation. Each chapter contains not only a synthesis of the state of knowledge of the geology of the commodity, but also an appraisal of the known resources, and an examination of the geologic possibilities for finding additional deposits. In January 1972, responsibility for the preparation of the volume was assigned to us as co-editors, and we were given a tentative list of commodities and authors. We provided each author with a suggested outline of general topics to be covered, and some guidelines as to scope and philosophy of approach, but beyond that we avoided any attempt to fit each chapter into a stereotype. Moreover, the types of commodities range from the major metals and industrial minerals such as copper, silver, and fluorspar, which have been the subject of geologic research for years, to other commodities that are of such varied geologic nature (such as pigments or gemstones) or of such minor present importance (such as scandium or thallium) that they cannot be treated from the same viewpoint as the major minerals. The chapters range, therefore, from comprehensive summary reports to general essays that reflect the individuality of the authors as well as the variation among commodities. Throughout the book the emphasis is on geology, but each chapter contains some summary information on uses, technology, and economics. These summaries are not meant to be exhaustive, however, and additional details are in the 1970 edition of "Mineral Facts and Problems" (Bulletin 650 of the U.S. Bureau of Mines) ; indeed, we regard that book and the present volume as being complementary. In the examination of the geologic possibilities for finding new deposits-in many respects the principal innovative contributions of this volume-we asked the authors to frankly apply the limits of their ingenuity and not only to summarize current theories but also to express their own intuitive ideas, however speculative and unconventional they may seem, that have come from years of study devoted to the origin of mineral deposits. Readers will see that some authors have speculated more courageously than others. In any case, we believe readers will find all the chapters interesting, and many stimulating; and a few we believe can be frankly characterized as intellectually exciting. Most chapters include a section on prospecting techniques, and a summary of geologic or related problems on which the authors believe research might be most fruitful in the continuing efforts to find new resources. An integral part of the book is the bibliographic material cited at the conclusion of each chapter, in lieu of repetition of detailed descriptions already in print. Index and "spot" maps are not included in most chapters because they are available elsewhere, and in many cases with more detail than could possibly be included here. Maps showing the distribution of known deposits of many commodities in the United States are available in the Mineral Resource (MR) map series of the U.S. Geological Survey and in the National Atlas of the United States. The first three chapters deal not with resources of specific commodities but with general information that is pertinent to the study of mineral resources. In the introductory chapter we discuss the purposes of the book, the distinctions between reserves and various categories of resources, and some general conclusions drawn from our view of the book in its entirety. In the second chapter V. E. McKelvey discusses the problems of mineral-resource estimates and public policy. In the third chapter, R. L. Erickson discusses some new points of view on the relation of reserves and resources to the crustal abundance of elements. We acknowledge with thanks the cooperation of our colleagues in all phases of the preparation of this volume. Whatever success the book may attain is due entirely to a total effort. A paragraph of acknowledgment originally submitted as a part of the chapter on "Nuclear fuels" is given here instead because we feel it applied to all chapters: "The writers have drawn freely from published information, not all of which is cited, and from their colleagues, none of whom are given specific credit. The reader should be aware that the paper could not have been written without these sources." We extend specific thanks to Michael Fleischer for preparation of summaries of geochemical information that are included in many chapters.
Evaluation of Rare Earth Element Extraction from North Dakota Coal-Related Feed Stocks
NASA Astrophysics Data System (ADS)
Laudal, Daniel A.
The rare earth elements consist of the lanthanide series of elements with atomic numbers from 57-71 and also include yttrium and scandium. Due to their unique properties, rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including previously mined deposits in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from a single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This dissertation details a study on evaluation of the technical and economic feasibility of rare earth element recovery from North Dakota lignite coal and lignite-related feedstocks. There were four major goals of this study: i) identify lignite or lignite-related feedstocks with total rare earth element content above 300 parts per million, a threshold dictated by the agency who funded this research as the minimum for economic viability, ii) determine the geochemistry of the feedstocks and understand the forms and modes of occurrence of the rare earth elements, information necessary to inform the development of extraction and concentration methods, iii) identify processing methods to concentrate the rare earth elements from the feedstocks to a target of two weight percent, a value that would be sufficient to leverage existing separation and refining methods developed for the traditional mineral ore industry, and iv) develop a process that is economically viable and environmentally benign. To achieve these overall goals, and to prove or disprove the research hypotheses, the research scope was broken down into three main efforts: i) sampling and characterization of potential feedstocks, ii) laboratory-scale development and testing of rare earth element extraction and concentration methods, and iii) process design and technical and economic feasibility evaluation. In total, 174 unique samples were collected, and several locations were identified that exceeded the 300 ppm total rare earth elements target. The results showed that on a whole sample basis, the rare earths are most concentrated in the clay-rich sediments associated with the coal seams, but on an ash basis in certain locations within certain coal seams the content is significantly higher, an unexpected finding given prior research. At Falkirk Mine near Underwood, North Dakota three coal seams were found to have elevated levels of rare earths, ranging from about 300 to 600 ppm on an ash basis. Additionally, exceptionally high rare earths content was found in samples collected from an outcropping of the Harmon-Hansen coal zone in southwestern North Dakota that contained 2300 ppm on an ash basis. The results dictated that extraction and concentration methods be developed for these rare earth element-rich coals, instead of the mineral-rich sediments. This effort also found that at a commercial-scale, due to non-uniformity of the rare earths content stratigraphically in the coal seams, selective mining practices will be needed to target specific locations within the seams. The bulk mining and blending practices as Falkirk Mine result in a relatively low total rare earths content in the feed coal entering the Coal Creek Power Station adjacent to the mine. Characterization of the coal samples identified that the predominant modes of rare earths occurrence in the lignite coals are associations with the organic matter, primarily as coordination complexes and a lesser amount as ion-exchangeable cations on oxygen functional groups. Overall it appears that about 80-95% of rare earths content in North Dakota lignite is organically associated, and not present in mineral forms, which due to the weak organic bonding, presented a unique opportunity for extraction. The process developed for extraction of rare earths was applied to the raw lignite coals instead of fly ash or other byproducts being investigated extensively in the literature. Rather, the process uses a dilute acid leaching process to strip the organically associated rare earths from the lignite with very high efficiency of about 70-90% at equilibrium contact times. Although the extraction kinetics are quite fast given commercial leaching operations, there is some tradeoff between extraction efficiency and contact time. (Abstract shortened by ProQuest.).