Sample records for scanner phase ii

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandapaka, A; Ghebremedhin, A; Farley, D

    Purpose: To develop the methodology to evaluate the clinical performance of a Phase II Proton CT scanner Methods: Range errors on the order of 3%-5% constitute a major uncertainty in current charged particle treatment planning based on Hounsfield Unit (HU)-relative stopping power (RSP) calibration curves. Within our proton CT collaboration, we previously developed and built a Phase I proton CT scanner that provided a sensitive area of 9 cm (axial) × 18 cm (in-plane). This scanner served to get initial experience with this new treatment planning tool and to incorporate lessons learned into the next generation design. A Phase IImore » scanner was recently completed and is now undergoing initial performance testing. It will increase the proton acquisition rate and provide a larger detection area of 9 cm x 36 cm. We are now designing a comprehensive evaluation program to test the image quality, imaging dose, and range uncertainty associated with this scanner. The testing will be performed along the lines of AAPM TG 66. Results: In our discussion of the evaluation protocol we identified the following priorities. The image quality of proton CT images, in particular spatial resolution and low-density contrast discrimination, will be evaluated with the Catphan600 phantom. Initial testing showed that the Catphan uniformity phantom did not provide sufficient uniformity; it was thus replaced by a cylindrical water phantom. The imaging dose will be tested with a Catphan dose module, and compared to a typical cone beam CT dose for comparable image quality. Lastly, we developed a dedicated dosimetry range phantom based on the CIRS pediatric head phantom HN715. Conclusion: A formal evaluation of proton CT as a new tool for proton treatment planning is an important task. The availability of the new Phase II proton CT scanner will allow us to perform this task. This research is supported by the National Institute of Biomedical Imaging and Bioengineering of the NIH under award number R01EB013118. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.« less

  2. Automatic extraction of forward stroke volume using dynamic PET/CT: a dual-tracer and dual-scanner validation in patients with heart valve disease.

    PubMed

    Harms, Hendrik Johannes; Tolbod, Lars Poulsen; Hansson, Nils Henrik Stubkjær; Kero, Tanja; Orndahl, Lovisa Holm; Kim, Won Yong; Bjerner, Tomas; Bouchelouche, Kirsten; Wiggers, Henrik; Frøkiær, Jørgen; Sörensen, Jens

    2015-12-01

    The aim of this study was to develop and validate an automated method for extracting forward stroke volume (FSV) using indicator dilution theory directly from dynamic positron emission tomography (PET) studies for two different tracers and scanners. 35 subjects underwent a dynamic (11)C-acetate PET scan on a Siemens Biograph TruePoint-64 PET/CT (scanner I). In addition, 10 subjects underwent both dynamic (15)O-water PET and (11)C-acetate PET scans on a GE Discovery-ST PET/CT (scanner II). The left ventricular (LV)-aortic time-activity curve (TAC) was extracted automatically from PET data using cluster analysis. The first-pass peak was isolated by automatic extrapolation of the downslope of the TAC. FSV was calculated as the injected dose divided by the product of heart rate and the area under the curve of the first-pass peak. Gold standard FSV was measured using phase-contrast cardiovascular magnetic resonance (CMR). FSVPET correlated highly with FSVCMR (r = 0.87, slope = 0.90 for scanner I, r = 0.87, slope = 1.65, and r = 0.85, slope = 1.69 for scanner II for (15)O-water and (11)C-acetate, respectively) although a systematic bias was observed for both scanners (p < 0.001 for all). FSV based on (11)C-acetate and (15)O-water correlated highly (r = 0.99, slope = 1.03) with no significant difference between FSV estimates (p = 0.14). FSV can be obtained automatically using dynamic PET/CT and cluster analysis. Results are almost identical for (11)C-acetate and (15)O-water. A scanner-dependent bias was observed, and a scanner calibration factor is required for multi-scanner studies. Generalization of the method to other tracers and scanners requires further validation.

  3. Calibration and GEANT4 Simulations of the Phase II Proton Compute Tomography (pCT) Range Stack Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzunyan, S. A.; Blazey, G.; Boi, S.

    Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input formore » image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulation.« less

  4. A fully automated and scalable timing probe-based method for time alignment of the LabPET II scanners

    NASA Astrophysics Data System (ADS)

    Samson, Arnaud; Thibaudeau, Christian; Bouchard, Jonathan; Gaudin, Émilie; Paulin, Caroline; Lecomte, Roger; Fontaine, Réjean

    2018-05-01

    A fully automated time alignment method based on a positron timing probe was developed to correct the channel-to-channel coincidence time dispersion of the LabPET II avalanche photodiode-based positron emission tomography (PET) scanners. The timing probe was designed to directly detect positrons and generate an absolute time reference. The probe-to-channel coincidences are recorded and processed using firmware embedded in the scanner hardware to compute the time differences between detector channels. The time corrections are then applied in real-time to each event in every channel during PET data acquisition to align all coincidence time spectra, thus enhancing the scanner time resolution. When applied to the mouse version of the LabPET II scanner, the calibration of 6 144 channels was performed in less than 15 min and showed a 47% improvement on the overall time resolution of the scanner, decreasing from 7 ns to 3.7 ns full width at half maximum (FWHM).

  5. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. 52. View from ground level showing lower radar scanner switch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View from ground level showing lower radar scanner switch with open port door in radar scanner building 105 showing emanating waveguides from lower switch in vertical run; photograph also shows catwalk to upper scanner switch in upper left side of photograph and structural supports. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. Superwide-angle coverage code-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Arain, Muzammil A

    2004-05-01

    A superwide-angle coverage code-multiplexed optical scanner is presented that has the potential to provide 4 pi-sr coverage. As a proof-of-concept experiment, an angular scan range of 288 degrees for six randomly distributed beams is demonstrated. The proposed scanner achieves its superwide coverage by exploiting a combination of phase-encoded transmission and reflection holography within an in-line hologram recording-retrieval geometry. The basic scanner unit consists of one phase-only digital mode spatial light modulator for code entry (i.e., beam scan control) and a holographic material from which we obtained what we believe is the first-of-a-kind extremely wide coverage, low component count, high speed (e.g., microsecond domain), and large aperture (e.g., > 1-cm diameter) scanner.

  8. Flux variability in the K CA II and H-gamma lines of the AP stars 53 Cam, 41 Tau, Beta CrB, and Alpha(2) CVn

    NASA Astrophysics Data System (ADS)

    Kuvshinov, V. M.; Plachinda, S. I.

    The rapid variability of the relative fluxes in the nuclei of the K Ca II and H-gamma lines of four typical Ap stars, 53 Cam, 41 Tau, Beta CrB, and Alpha(2) CVn, was studied during the period December 1979 - June 1980. Observations were carried out using the scanner-magnetograph of the 2.6-m reflector of the Crimean Astrophysical Observatory. In addition to relative flux variations with the phase of the axial rotation period of the stars, fluctuations of relative fluxes with characteristic times of several minutes to several hours were detected. The upper probability limit for such fluctuations, which are mostly irregular, is estimated at 35 percent for 53 Cam (K Ca II) and 56 percent for Alpha(2) CVn (H-gamma).

  9. 47. View of "dry air inlets" to waveguides entering scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention

    PubMed Central

    Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor

    2012-01-01

    This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867

  11. The Function Biomedical Informatics Research Network Data Repository

    PubMed Central

    Keator, David B.; van Erp, Theo G.M.; Turner, Jessica A.; Glover, Gary H.; Mueller, Bryon A.; Liu, Thomas T.; Voyvodic, James T.; Rasmussen, Jerod; Calhoun, Vince D.; Lee, Hyo Jong; Toga, Arthur W.; McEwen, Sarah; Ford, Judith M.; Mathalon, Daniel H.; Diaz, Michele; O’Leary, Daniel S.; Bockholt, H. Jeremy; Gadde, Syam; Preda, Adrian; Wible, Cynthia G.; Stern, Hal S.; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G.

    2015-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical datasets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 dataset consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 Tesla scanners. The FBIRN Phase 2 and Phase 3 datasets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN’s multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. PMID:26364863

  12. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION AND MAINTENANCE OF DATA SCANNERS (UA-D-32.1)

    EPA Science Inventory

    The purpose of this SOP is to define the steps needed to operate the data scanners that were used during the Arizona NHEXAS project and the "Border" study. Keywords: data; equipment; scanner.

    The National Human Exposure Assessment Survey (NHEXAS) is a federal interagency resear...

  13. Near Field Imaging for the Characterization of Diffusion Length and Waveguiding in Zinc Oxide Nanowires

    DTIC Science & Technology

    2012-06-01

    From RADAR and SONAR , rocket propulsion, and the atomic bomb in World War II to the high tech drones, satellite imagery, surgically precise weapons...control from the four connectors shown in Figure scanner, preamplifier , step motor, and the bottom scanner. The connectors also electrically ground

  14. The Function Biomedical Informatics Research Network Data Repository.

    PubMed

    Keator, David B; van Erp, Theo G M; Turner, Jessica A; Glover, Gary H; Mueller, Bryon A; Liu, Thomas T; Voyvodic, James T; Rasmussen, Jerod; Calhoun, Vince D; Lee, Hyo Jong; Toga, Arthur W; McEwen, Sarah; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Jeremy Bockholt, H; Gadde, Syam; Preda, Adrian; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G

    2016-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner.

    PubMed

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Tapfer, Arne; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-12-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.

  16. 9. View of back side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View of back side of radar scanner building no. 106 showing passageway links to other buildings east and west, and DR 3 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  17. 10. View of back side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of back side of radar scanner building no. 104 showing passageway links to other building to east and DR 1 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. 50. View of waveguides beginning to move toward two radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. View of waveguides beginning to move toward two radar scanner switches (two per radar scanner building) by vertical bends; also tuning devices are located here. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. 21. View from south to southerly face of scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View from south to southerly face of scanner building 104 showing building radius. Radius of building face matches radius of DR antenna systems. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. 20. View from northeast to southwest side of scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View from northeast to southwest side of scanner building 104 showing two waveguide termination faces (fiberglass light bands on left of photograph). - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. Rapid Measurement and Correction of Phase Errors from B0 Eddy Currents: Impact on Image Quality for Non-Cartesian Imaging

    PubMed Central

    Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.

    2014-01-01

    Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532

  2. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  3. Recent micro-CT scanner developments at UGCT

    NASA Astrophysics Data System (ADS)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  4. A new ultrasonic real-time scanner featuring a servo-controlled transducer displaying a sector image.

    PubMed

    Skolnick, M L; Matzuk, T

    1978-08-01

    This paper describes a new real-time servo-controlled sector scanner that produces high-resolution images similar to phased-array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. Its unique feature is the transducer head which contains a single moving part--the transducer. Frame rates vary from 0 to 30 degrees and the sector angle from 0 to 60 degrees. Abdominal applications include: differentiation of vascular structures, detection of small masses, imaging of diagonally oriented organs. Survey scanning, and demonstration of regions difficult to image with contact scanners. Cardiac uses are also described.

  5. 11. View of south side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View of south side of radar scanner building no. 104 showing personnel exit door at side building, showing DR 1 antenna from oblique angle on foundation berm with DR 2 and DR 3 antennae in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation.

    PubMed

    Seibert, J Anthony; Boone, John M

    2005-03-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. In part 1, the production and characteristics of x-rays were reviewed. In this article, the principles of x-ray interactions and image formation are discussed, in preparation for a general review of CT (part 3) and a more detailed investigation of PET/CT scanners in part 4.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plautz, Tia E.; Johnson, R. P.; Sadrozinski, H. F.-W.

    Purpose: To characterize the modulation transfer function (MTF) of the pre-clinical (phase II) head scanner developed for proton computed tomography (pCT) by the pCT collaboration. To evaluate the spatial resolution achievable by this system. Methods: Our phase II proton CT scanner prototype consists of two silicon telescopes that track individual protons upstream and downstream from a phantom, and a 5-stage scintillation detector that measures a combination of the residual energy and range of the proton. Residual energy is converted to water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and associated pathsmore » of protons passing through the object over a 360° angular scan is processed by an iterative parallelizable reconstruction algorithm that runs on GP-GPU hardware. A custom edge phantom composed of water-equivalent polymer and tissue-equivalent material inserts was constructed. The phantom was first simulated in Geant4 and then built to perform experimental beam tests with 200 MeV protons at the Northwestern Medicine Chicago Proton Center. The oversampling method was used to construct radial and azimuthal edge spread functions and modulation transfer functions. The spatial resolution was defined by the 10% point of the modulation transfer function in units of lp/cm. Results: The spatial resolution of the image was found to be strongly correlated with the radial position of the insert but independent of the relative stopping power of the insert. The spatial resolution varies between roughly 4 and 6 lp/cm in both the the radial and azimuthal directions depending on the radial displacement of the edge. Conclusion: The amount of image degradation due to our detector system is small compared with the effects of multiple Coulomb scattering, pixelation of the image and the reconstruction algorithm. Improvements in reconstruction will be made in order to achieve the theoretical limits of spatial resolution.« less

  8. High throughput optical scanner

    DOEpatents

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  9. A variable resolution x-ray detector for computed tomography: II. Imaging theory and performance.

    PubMed

    DiBianca, F A; Zou, P; Jordan, L M; Laughter, J S; Zeman, H D; Sebes, J

    2000-08-01

    A computed tomography (CT) imaging technique called variable resolution x-ray (VRX) detection provides variable image resolution ranging from that of clinical body scanning (1 cy/mm) to that of microscopy (100 cy/mm). In this paper, an experimental VRX CT scanner based on a rotating subject table and an angulated storage phosphor screen detector is described and tested. The measured projection resolution of the scanner is > or = 20 lp/mm. Using this scanner, 4.8-s CT scans are made of specimens of human extremities and of in vivo hamsters. In addition, the system's projected spatial resolution is calculated to exceed 100 cy/mm for a future on-line CT scanner incorporating smaller focal spots (0.1 mm) than those currently used and a 1008-channel VRX detector with 0.6-mm cell spacing.

  10. Characterizing the Performance of the Princeton Advanced Test Stand Ion Source

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.

    2012-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a multicusp RF ion source mounted on a 2 m-long vacuum chamber with numerous ports for diagnostic access. Ar+ beams are extracted from the source plasma with three-electrode (accel-decel) extraction optics. The RF power and extraction voltage (30 - 100 kV) are pulsed to produce 100 μsec duration beams at 0.5 Hz with excellent shot-to-shot repeatability. Diagnostics include Faraday cups, a double-slit emittance scanner, and scintillator imaging. This work reports measurements of beam parameters for a range of beam energies (30 - 50 keV) and currents to characterize the behavior of the ion source and extraction optics. Emittance scanner data is used to calculate the beam trace-space distribution and corresponding transverse emittance. If the plasma density is changing during a beam pulse, time-resolved emittance scanner data has been taken to study the corresponding evolution of the beam trace-space distribution.

  11. 90. View of scanner building no. 104 showing emplacement process ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. View of scanner building no. 104 showing emplacement process for one-half of upper radar switch housing body. RCA Services Company 6 September, 1960, official photograph BMEWS Project by unknown photograph, Photographic Services, Riverton, NJ, BMEWS, clear as negative no. a-1163. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  12. 54. View from ground level in building no. 105 showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. View from ground level in building no. 105 showing lower radar scanner switch at open port door. Note incoming waveguide and control switch at lower left of photograph and note several waveguides leaving top of scanner switch around the circumference of switch. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  13. A Test Strategy for High Resolution Image Scanners.

    DTIC Science & Technology

    1983-10-01

    for multivariate analysis. Holt, Richart and Winston, Inc., New York. Graybill , F.A., 1961: An introduction to linear statistical models . SVolume I...i , j i -(7) 02 1 )2 y 4n .i ij 13 The linear estimation model for the polynomial coefficients can be set up as - =; =(8) with T = ( x’ . . X-nn "X...Resolution Image Scanner MTF Geometrical and radiometric performance Dynamic range, linearity , noise - Dynamic scanning errors Response uniformity Skewness of

  14. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    PubMed

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  15. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUSscanner readout and ECLIPSE calculations by {approx}10% along steep dose gradients and by {approx}5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.« less

  16. Analysis of the Performance of a Laser Scanner for Predictive Automotive Applications

    NASA Astrophysics Data System (ADS)

    Zeisler, J.; Maas, H.-G.

    2015-08-01

    In this paper we evaluate the use of a laser scanner for future advanced driver assistance systems. We focus on the important task of predicting the target vehicle for longitudinal ego vehicle control. Our motivation is to decrease the reaction time of existing systems during cut-in maneuvers of other traffic participants. A state-of-the-art laser scanner, the Ibeo Scala B2 R , is presented, providing its sensing characteristics and the subsequent high level object data output. We evaluate the performance of the scanner towards object tracking with the help of a GPS real time kinematics system on a test track. Two designed scenarios show phases with constant distance and velocity as well as dynamic motion of the vehicles. We provide the results for the error in position and velocity of the scanner and furthermore, review our algorithm for target vehicle prediction. Finally we show the potential of the laser scanner with the estimated error, that leads to a decrease of up to 40% in reaction time with best conditions.

  17. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck

    2014-12-01

    Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.

  18. Investigation of hyper-NA scanner emulation for photomask CDU performance

    NASA Astrophysics Data System (ADS)

    Poortinga, Eric; Scheruebl, Thomas; Conley, Will; Sundermann, Frank

    2007-02-01

    As the semiconductor industry moves toward immersion lithography using numerical apertures above 1.0 the quality of the photomask becomes even more crucial. Photomask specifications are driven by the critical dimension (CD) metrology within the wafer fab. Knowledge of the CD values at resist level provides a reliable mechanism for the prediction of device performance. Ultimately, tolerances of device electrical properties drive the wafer linewidth specifications of the lithography group. Staying within this budget is influenced mainly by the scanner settings, resist process, and photomask quality. Tightening of photomask specifications is one mechanism for meeting the wafer CD targets. The challenge lies in determining how photomask level metrology results influence wafer level imaging performance. Can it be inferred that photomask level CD performance is the direct contributor to wafer level CD performance? With respect to phase shift masks, criteria such as phase and transmission control are generally tightened with each technology node. Are there other photomask relevant influences that effect wafer CD performance? A comprehensive study is presented supporting the use of scanner emulation based photomask CD metrology to predict wafer level within chip CD uniformity (CDU). Using scanner emulation with the photomask can provide more accurate wafer level prediction because it inherently includes all contributors to image formation related to the 3D topography such as the physical CD, phase, transmission, sidewall angle, surface roughness, and other material properties. Emulated images from different photomask types were captured to provide CD values across chip. Emulated scanner image measurements were completed using an AIMS TM45-193i with its hyper-NA, through-pellicle data acquisition capability including the Global CDU Map TM software option for AIMS TM tools. The through-pellicle data acquisition capability is an essential prerequisite for capturing final CDU data (after final clean and pellicle mounting) before the photomask ships or for re-qualification at the wafer fab. Data was also collected on these photomasks using a conventional CD-SEM metrology system with the pellicles removed. A comparison was then made to wafer prints demonstrating the benefit of using scanner emulation based photomask CD metrology.

  19. A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting

    NASA Astrophysics Data System (ADS)

    Jan, Chia-Ming; Lin, Ying-Chieh

    2016-03-01

    This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.

  20. Dataset variability leverages white-matter lesion segmentation performance with convolutional neural network

    NASA Astrophysics Data System (ADS)

    Ravnik, Domen; Jerman, Tim; Pernuš, Franjo; Likar, Boštjan; Å piclin, Žiga

    2018-03-01

    Performance of a convolutional neural network (CNN) based white-matter lesion segmentation in magnetic resonance (MR) brain images was evaluated under various conditions involving different levels of image preprocessing and augmentation applied and different compositions of the training dataset. On images of sixty multiple sclerosis patients, half acquired on one and half on another scanner of different vendor, we first created a highly accurate multi-rater consensus based lesion segmentations, which were used in several experiments to evaluate the CNN segmentation result. First, the CNN was trained and tested without preprocessing the images and by using various combinations of preprocessing techniques, namely histogram-based intensity standardization, normalization by whitening, and train dataset augmentation by flipping the images across the midsagittal plane. Then, the CNN was trained and tested on images of the same, different or interleaved scanner datasets using a cross-validation approach. The results indicate that image preprocessing has little impact on performance in a same-scanner situation, while between-scanner performance benefits most from intensity standardization and normalization, but also further by incorporating heterogeneous multi-scanner datasets in the training phase. Under such conditions the between-scanner performance of the CNN approaches that of the ideal situation, when the CNN is trained and tested on the same scanner dataset.

  1. Quest Trial Q348: Evaluation of WaMoS II Data

    DTIC Science & Technology

    2013-04-01

    and slam warning.” Quest Sea Trial Q348 page 7 “In July of 2011, as part of the 11gi project, DRDC acquired and installed a new WaMoS...Fourier series expansion was originally implemented to compare WaMoS II data to reference data of an airborne LIDAR scanner, which yielded very good

  2. Enabling vendor independent photoacoustic imaging systems with asynchronous laser source

    NASA Astrophysics Data System (ADS)

    Wu, Yixuan; Zhang, Haichong K.; Boctor, Emad M.

    2018-02-01

    Channel data acquisition, and synchronization between laser excitation and PA signal acquisition, are two fundamental hardware requirements for photoacoustic (PA) imaging. Unfortunately, however, neither is equipped by most clinical ultrasound scanners. Therefore, less economical specialized research platforms are used in general, which hinders a smooth clinical transition of PA imaging. In previous studies, we have proposed an algorithm to achieve PA imaging using ultrasound post-beamformed (USPB) RF data instead of channel data. This work focuses on enabling clinical ultrasound scanners to implement PA imaging, without requiring synchronization between the laser excitation and PA signal acquisition. Laser synchronization is inherently consisted of two aspects: frequency and phase information. We synchronize without communicating the laser and the ultrasound scanner by investigating USPB images of a point-target phantom in two steps. First, frequency information is estimated by solving a nonlinear optimization problem, under the assumption that the segmented wave-front can only be beamformed into a single spot when synchronization is achieved. Second, after making frequencies of two systems identical, phase delay is estimated by optimizing the image quality while varying phase value. The proposed method is validated through simulation, by manually adding both frequency and phase errors, then applying the proposed algorithm to correct errors and reconstruct PA images. Compared with the ground truth, simulation results indicate that the remaining errors in frequency correction and phase correction are 0.28% and 2.34%, respectively, which affirm the potential of overcoming hardware barriers on PA imaging through software solution.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Mark, E-mail: mark-mueller@ph.tum.de; Yaroshenko, Andre; Velroyen, Astrid

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal andmore » noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.« less

  4. Development of 3-D Ice Accretion Measurement Method

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    A research plan is currently being implemented by NASA to develop and validate the use of a commercial laser scanner to record and archive fully three-dimensional (3-D) ice shapes from an icing wind tunnel. The plan focused specifically upon measuring ice accreted in the NASA Icing Research Tunnel (IRT). The plan was divided into two phases. The first phase was the identification and selection of the laser scanning system and the post-processing software to purchase and develop further. The second phase was the implementation and validation of the selected system through a series of icing and aerodynamic tests. Phase I of the research plan has been completed. It consisted of evaluating several scanning hardware and software systems against an established selection criteria through demonstrations in the IRT. The results of Phase I showed that all of the scanning systems that were evaluated were equally capable of scanning ice shapes. The factors that differentiated the scanners were ease of use and the ability to operate in a wide range of IRT environmental conditions.

  5. Beam-Plasma Interaction Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I. D.; Davidson, R. C.

    2011-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the fundamental physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a 100 keV ion beam source mounted on a six-foot-long vacuum chamber with numerous ports for diagnostic access. A 100 keV Ar+ beam is launched into a volumetric plasma, which is produced by a ferroelectric plasma source (FEPS). Beam diagnostics upstream and downstream of the FEPS allow for detailed studies of the effects that the plasma has on the beam. This setup is designed for studying the dependence of charge and current neutralization and beam emittance growth on the beam and plasma parameters. This work reports initial measurements of beam quality produced by the extraction electrodes that were recently installed on the PATS device. The transverse beam phase space is measured with double-slit emittance scanners, and the experimental results are compared to WARP simulations of the extraction system. This research is supported by the U.S. Department of Energy.

  6. SKYLAB II - EARTH VIEW (EREP)

    NASA Image and Video Library

    1973-09-20

    S73-34295 (June 1973) --- A vertical view of a portion of northern California reproduced from data taken from the Skylab Multispectral Scanner, experiment S192, in the Skylab space station in Earth orbit. This view is the most westerly one-third of Frame No. 001, Roll No. 518, S192, Skylab 2. Frame No. 001 extends from the Pacific coast at the Eureka area southeasterly 175 nautical miles to the Feather River drainage basin. Included in this view are Eureka, Trinidad, Klamath & Trinity Rivers and the Coastal Range mountains. This non-photographic image is a color composite of channels 2 (visible), 7, and 12 (infrared) from the Earth Resources Experiments Package (EREP) S192 scanner. The scanner techniques assist with spectral signature identification and mapping of ground truth targets in agriculture, forestry, geology, hydrology and oceanography. Photo credit: NASA

  7. 47 CFR 54.639 - Ineligible expenses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., including the following: i. Computers, including servers, and related hardware (e.g., printers, scanners, laptops), unless used exclusively for network management, maintenance, or other network operations; ii... installation/construction; marketing studies, marketing activities, or outreach to potential network members...

  8. 47 CFR 54.639 - Ineligible expenses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., including the following: i. Computers, including servers, and related hardware (e.g., printers, scanners, laptops), unless used exclusively for network management, maintenance, or other network operations; ii... installation/construction; marketing studies, marketing activities, or outreach to potential network members...

  9. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners.

    PubMed

    Reuzé, Sylvain; Orlhac, Fanny; Chargari, Cyrus; Nioche, Christophe; Limkin, Elaine; Riet, François; Escande, Alexandre; Haie-Meder, Christine; Dercle, Laurent; Gouy, Sébastien; Buvat, Irène; Deutsch, Eric; Robert, Charlotte

    2017-06-27

    To identify an imaging signature predicting local recurrence for locally advanced cervical cancer (LACC) treated by chemoradiation and brachytherapy from baseline 18F-FDG PET images, and to evaluate the possibility of gathering images from two different PET scanners in a radiomic study. 118 patients were included retrospectively. Two groups (G1, G2) were defined according to the PET scanner used for image acquisition. Eleven radiomic features were extracted from delineated cervical tumors to evaluate: (i) the predictive value of features for local recurrence of LACC, (ii) their reproducibility as a function of the scanner within a hepatic reference volume, (iii) the impact of voxel size on feature values. Eight features were statistically significant predictors of local recurrence in G1 (p < 0.05). The multivariate signature trained in G2 was validated in G1 (AUC=0.76, p<0.001) and identified local recurrence more accurately than SUVmax (p=0.022). Four features were significantly different between G1 and G2 in the liver. Spatial resampling was not sufficient to explain the stratification effect. This study showed that radiomic features could predict local recurrence of LACC better than SUVmax. Further investigation is needed before applying a model designed using data from one PET scanner to another.

  10. Non-invasive MR-guided HIFU Therapy of TSC-Associated Renal Angiomyolipomas

    DTIC Science & Technology

    2013-07-01

    developed in the second year. The physical mechanisms underlying HIFU is that a HIFU transducer constructed with a concave shape and/or multiple...Philips 3T scanner. (c) A mechanic stage was constructed for holding/stabilizing the mouse and the coil within the MRI scanner. Inside the stage...using the mechanic stage in (c). 5 cm ~2 cm 6 imaging, T2 weighted imaging, stiffness weighted imaging, and phase imaging. It will be

  11. Comparing Time-Of and Phase-Shift the Survey of the Royal Pantheon in the Basilica of San Isidoro (LEÓN)

    NASA Astrophysics Data System (ADS)

    San José Alonso, J. I.; Martínez Rubio, J.; Fernández Martín, J. J.; García Fernández, J.

    2011-09-01

    The appearance of the Terrestrial Laser Scanners or 3D Scanners in Heritage recording has been relatively recent and it is submitted to a constant evolution determined mainly by the big technological advance in fields like Optics, Signal Processing, Electronics and Computer Science. As they have become popular so suddenly, it is essential to study the behavior of these evolving devices in a variety of scenarios to support an accurate assessment of their capabilities. Until two years ago, TOF (time-of-flight) and PS (phase-shift) technologies could hardly be considered side by side comparable, at least under equal terms and requirements. The first enables much longer ranges, while the latter dominated the short distances producing more accurate data with very high acquisition rates. Today, in a sort of convergent career, the scope of phase-shift technology has grown to near 200 meters and the time-of-flight team have been increasing their speed to figures as 100,000 points per second. In this article we expose the results of the comparison between the data delivered by two scanners based on the two related technologies that categorize today's both long and medium-range scanners. The two have been opposed face to face in the survey of the so called "the Sistine Chapel of the Spanish Romanesque" during the same day, and under the same environmental conditions, using equivalent capture settings. But now that as we noted these technologies can fight in the same arena, can we claim to be able to produce similar results whatever which one we choose? The answer is "no" or a "conditioned yes" at least. Let's leave numbers and nominal specifications behind and see what else makes them behave so differently.

  12. Deriving stable multi-parametric MRI radiomic signatures in the presence of inter-scanner variations: survival prediction of glioblastoma via imaging pattern analysis and machine learning techniques

    NASA Astrophysics Data System (ADS)

    Rathore, Saima; Bakas, Spyridon; Akbari, Hamed; Shukla, Gaurav; Rozycki, Martin; Davatzikos, Christos

    2018-02-01

    There is mounting evidence that assessment of multi-parametric magnetic resonance imaging (mpMRI) profiles can noninvasively predict survival in many cancers, including glioblastoma. The clinical adoption of mpMRI as a prognostic biomarker, however, depends on its applicability in a multicenter setting, which is hampered by inter-scanner variations. This concept has not been addressed in existing studies. We developed a comprehensive set of within-patient normalized tumor features such as intensity profile, shape, volume, and tumor location, extracted from multicenter mpMRI of two large (npatients=353) cohorts, comprising the Hospital of the University of Pennsylvania (HUP, npatients=252, nscanners=3) and The Cancer Imaging Archive (TCIA, npatients=101, nscanners=8). Inter-scanner harmonization was conducted by normalizing the tumor intensity profile, with that of the contralateral healthy tissue. The extracted features were integrated by support vector machines to derive survival predictors. The predictors' generalizability was evaluated within each cohort, by two cross-validation configurations: i) pooled/scanner-agnostic, and ii) across scanners (training in multiple scanners and testing in one). The median survival in each configuration was used as a cut-off to divide patients in long- and short-survivors. Accuracy (ACC) for predicting long- versus short-survivors, for these configurations was ACCpooled=79.06% and ACCpooled=84.7%, ACCacross=73.55% and ACCacross=74.76%, in HUP and TCIA datasets, respectively. The hazard ratio at 95% confidence interval was 3.87 (2.87-5.20, P<0.001) and 6.65 (3.57-12.36, P<0.001) for HUP and TCIA datasets, respectively. Our findings suggest that adequate data normalization coupled with machine learning classification allows robust prediction of survival estimates on mpMRI acquired by multiple scanners.

  13. Can a barcode scanner for blood collection improve patient identification integrity in the emergency department? A prospective before-and-after study.

    PubMed

    Spain, David; Crilly, Julia; Pierce, John; Steele, Michael; Scuffham, Paul; Keijzers, Gerben

    2015-02-01

    To describe the effect of interventions designed to improve patient identification (PI) during pathology collection in the ED. A prospective before-and-after intervention study was conducted between June 2009 and June 2010 in a regional ED in Queensland, Australia. Interventions aimed to improve PI and specimen labelling, and consisted of: (i) education alone; and (ii) education plus an armband scanner that voice-prompted collector behaviour. Main outcomes measured included: frequency of correct key behaviours (KBs) during specimen collection, pathology integrity errors and cost of interventions. Data from 282 ED pathology collections were analysed (before: n = 115, after with education: n = 95, after with education plus armband scanner: n = 72). KBs for PI and labelling improved significantly following education plus armband scanner use. Application of armbands before sample collection increased (36% vs 90%, P < 0.001), as did asking the patient to state their name (25% vs 93%, P < 0.001) and date of birth (22% vs 93%, P < 0.001). These results were similar, albeit less pronounced, when the effect of education only was assessed. No primary patient misidentification was detected in this small study. The annual costs for a hospital to adopt the education programme with and without the armband scanner were $104,045 and $5330 respectively. ED staff had poor behaviours for identifying patients and labelling pathology specimens before intervention. These safety behaviours were considered an assumed skill. Education alone improved critical KBs markedly that was further augmented by the armband scanner. The cost to adopt education alone is relatively low compared to the addition of armband scanner technology. © 2015 The Authors. Emergency Medicine Australasia published by Wiley Publishing Asia Pty Ltd on behalf of Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  14. Comparison of the occlusal contact area of virtual models and actual models: a comparative in vitro study on Class I and Class II malocclusion models.

    PubMed

    Lee, Hyemin; Cha, Jooly; Chun, Youn-Sic; Kim, Minji

    2018-06-19

    The occlusal registration of virtual models taken by intraoral scanners sometimes shows patterns which seem much different from the patients' occlusion. Therefore, this study aims to evaluate the accuracy of virtual occlusion by comparing virtual occlusal contact area with actual occlusal contact area using a plaster model in vitro. Plaster dental models, 24 sets of Class I models and 20 sets of Class II models, were divided into a Molar, Premolar, and Anterior group. The occlusal contact areas calculated by the Prescale method and the virtual occlusion by scanning method were compared, and the ratio of the molar and incisor area were compared in order to find any particular tendencies. There was no significant difference between the Prescale results and the scanner results in both the molar and premolar groups (p = 0.083 and 0.053, respectively). On the other hand, there was a significant difference between the Prescale and the scanner results in the anterior group with the scanner results presenting overestimation of the occlusal contact points (p < 0.05). In Molars group, the regression analysis shows that the two variables express linear correlation and has a linear equation with a slope of 0.917. R 2 is 0.930. Groups of Premolars and Anteriors had a week linear relationship and greater dispersion. Difference between the actual and virtual occlusion revealed in the anterior portion, where overestimation was observed in the virtual model obtained from the scanning method. Nevertheless, molar and premolar areas showed relatively accurate occlusal contact area in the virtual model.

  15. Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Yongfeng; Tai, Yuan-Chuan; Siegel, Stefan; Newport, Danny F.; Bai, Bing; Li, Quanzheng; Leahy, Richard M.; Cherry, Simon R.

    2004-06-01

    MicroPET II is a newly developed PET (positron emission tomography) scanner designed for high-resolution imaging of small animals. It consists of 17 640 LSO crystals each measuring 0.975 × 0.975 × 12.5 mm3, which are arranged in 42 contiguous rings, with 420 crystals per ring. The scanner has an axial field of view (FOV) of 4.9 cm and a transaxial FOV of 8.5 cm. The purpose of this study was to carefully evaluate the performance of the system and to optimize settings for in vivo mouse and rat imaging studies. The volumetric image resolution was found to depend strongly on the reconstruction algorithm employed and averaged 1.1 mm (1.4 µl) across the central 3 cm of the transaxial FOV when using a statistical reconstruction algorithm with accurate system modelling. The sensitivity, scatter fraction and noise-equivalent count (NEC) rate for mouse- and rat-sized phantoms were measured for different energy and timing windows. Mouse imaging was optimized with a wide open energy window (150-750 keV) and a 10 ns timing window, leading to a sensitivity of 3.3% at the centre of the FOV and a peak NEC rate of 235 000 cps for a total activity of 80 MBq (2.2 mCi) in the phantom. Rat imaging, due to the higher scatter fraction, and the activity that lies outside of the field of view, achieved a maximum NEC rate of 24 600 cps for a total activity of 80 MBq (2.2 mCi) in the phantom, with an energy window of 250-750 keV and a 6 ns timing window. The sensitivity at the centre of the FOV for these settings is 2.1%. This work demonstrates that different scanner settings are necessary to optimize the NEC count rate for different-sized animals and different injected doses. Finally, phantom and in vivo animal studies are presented to demonstrate the capabilities of microPET II for small-animal imaging studies.

  16. Scanner qualification with IntenCD based reticle error correction

    NASA Astrophysics Data System (ADS)

    Elblinger, Yair; Finders, Jo; Demarteau, Marcel; Wismans, Onno; Minnaert Janssen, Ingrid; Duray, Frank; Ben Yishai, Michael; Mangan, Shmoolik; Cohen, Yaron; Parizat, Ziv; Attal, Shay; Polonsky, Netanel; Englard, Ilan

    2010-03-01

    Scanner introduction into the fab production environment is a challenging task. An efficient evaluation of scanner performance matrices during factory acceptance test (FAT) and later on during site acceptance test (SAT) is crucial for minimizing the cycle time for pre and post production-start activities. If done effectively, the matrices of base line performance established during the SAT are used as a reference for scanner performance and fleet matching monitoring and maintenance in the fab environment. Key elements which can influence the cycle time of the SAT, FAT and maintenance cycles are the imaging, process and mask characterizations involved with those cycles. Discrete mask measurement techniques are currently in use to create across-mask CDU maps. By subtracting these maps from their final wafer measurement CDU map counterparts, it is possible to assess the real scanner induced printed errors within certain limitations. The current discrete measurement methods are time consuming and some techniques also overlook mask based effects other than line width variations, such as transmission and phase variations, all of which influence the final printed CD variability. Applied Materials Aera2TM mask inspection tool with IntenCDTM technology can scan the mask at high speed, offer full mask coverage and accurate assessment of all masks induced source of errors simultaneously, making it beneficial for scanner qualifications and performance monitoring. In this paper we report on a study that was done to improve a scanner introduction and qualification process using the IntenCD application to map the mask induced CD non uniformity. We will present the results of six scanners in production and discuss the benefits of the new method.

  17. Phase-shift focus monitoring techniques

    NASA Astrophysics Data System (ADS)

    McQuillan, Matthew; Roberts, Bill

    2006-03-01

    Depth of focus (DOF) has become a victim of its mathematical relationship with Numerical Aperture (NA). While NA is being increased towards one to maximize scanner resolution capabilities, DOF is being minimized because of its inverse relationship with NA. Moore's law continues to drive the semiconductor industry towards smaller and smaller devices the need for high NA to resolve these shrinking devices will continue to consume the usable depth of focus (UDOF). Due to the shrinking UDOF a demand has been created for a feature or technology that will give engineers the capability to monitor scanner focus. Developing and implementation of various focus monitoring techniques have been used to prevent undetected tool focus excursions. Two overlay techniques to monitor ArF Scanner focus have been evaluated; our evaluation results will be presented here.

  18. Radiofrequency artefacts in echoplanar imaging induced by two 1.5 T MR scanners in close proximity.

    PubMed

    Li, X; Cui, J; Christopasak, S P; Kumar, A; Peng, Z-G

    2014-06-01

    The purpose of this study was to assess radio frequency (RF) artefacts in echoplanar imaging (EPI) induced by two 1.5 T MR scanners in close proximity and to find an effective method to correct them. Based on the intact shielding of rooms, experiments were performed by two MR scanners with similar centre frequencies. Phantom A (PA) was scanned in one scanner by EPI at different bandwidths (BWs). Simultaneously, phantom B was scanned in a fixed sequence for scanning with the other scanner. RF artefact gaps of PA, scanning time and the image signal-noise ratio (SNR) were measured and recorded. Statistical analysis was performed with the repeated-measures analysis of variance test. Based on findings obtained from PA, three healthy volunteers were studied at a conventional BW and a lower BW to observe the artefact variance. EPI RF artefacts were symmetrically situated in both sides of the image following the phase-encoding direction. The gap size of the artefact became larger and the SNR was significantly improved with a narrower BW. RF artefacts with a lower BW in volunteers presented the same characteristic as PA. For EPI RF artefacts produced by two 1.5 T MR scanners with approximately similar centre frequencies, we can reduce BWs in a suitable range to minimize the effect on MRI. MR scanners with the same field strength installed in the same vicinity might produce RF artefacts in the sequence at larger BWs. Reducing BWs properly is effective to control the position of artefacts and improve the image quality.

  19. Liver metastases: imaging considerations for protocol development with Multislice CT (MSCT)

    PubMed Central

    Silverman, Paul M

    2006-01-01

    Conventional, single-slice helical computed tomography (SSCT) allowed for scanning the majority of the liver during the critical portal venous phase. This was often referred to as the ‘optimal temporal window’. The introduction of current day multislice CT (MSCT) now allows us to acquire images in a much shorter time and more precisely than ever before. This yields increased conspicuity between low attenuation lesions and the enhanced normal liver parenchyma and optimal imaging for the vast majority of hepatic hypovascular metastases. Most importantly, these scanners, when compared to conventional non-helical scanners, avoid impinging upon the ‘equilibrium’ phase when tumors can become isodense/invisible. MSCT also allows for true multiphase scanning during the arterial and late arterial phases for detection of hypervascular metastases. The MSCT imaging speed has increased significantly over the past years with the introduction of 32- and 64-detector systems and will continue to increase in the future volumetric CT. This provides a number of important gains that are discussed in detail. PMID:17098650

  20. Characterization of cardiac quiescence from retrospective cardiac computed tomography using a correlation-based phase-to-phase deviation measure

    PubMed Central

    Wick, Carson A.; McClellan, James H.; Arepalli, Chesnal D.; Auffermann, William F.; Henry, Travis S.; Khosa, Faisal; Coy, Adam M.; Tridandapani, Srini

    2015-01-01

    Purpose: Accurate knowledge of cardiac quiescence is crucial to the performance of many cardiac imaging modalities, including computed tomography coronary angiography (CTCA). To accurately quantify quiescence, a method for detecting the quiescent periods of the heart from retrospective cardiac computed tomography (CT) using a correlation-based, phase-to-phase deviation measure was developed. Methods: Retrospective cardiac CT data were obtained from 20 patients (11 male, 9 female, 33–74 yr) and the left main, left anterior descending, left circumflex, right coronary artery (RCA), and interventricular septum (IVS) were segmented for each phase using a semiautomated technique. Cardiac motion of individual coronary vessels as well as the IVS was calculated using phase-to-phase deviation. As an easily identifiable feature, the IVS was analyzed to assess how well it predicts vessel quiescence. Finally, the diagnostic quality of the reconstructed volumes from the quiescent phases determined using the deviation measure from the vessels in aggregate and the IVS was compared to that from quiescent phases calculated by the CT scanner. Three board-certified radiologists, fellowship-trained in cardiothoracic imaging, graded the diagnostic quality of the reconstructions using a Likert response format: 1 = excellent, 2 = good, 3 = adequate, 4 = nondiagnostic. Results: Systolic and diastolic quiescent periods were identified for each subject from the vessel motion calculated using the phase-to-phase deviation measure. The motion of the IVS was found to be similar to the aggregate vessel (AGG) motion. The diagnostic quality of the coronary vessels for the quiescent phases calculated from the aggregate vessel (PAGG) and IVS (PIV S) deviation signal using the proposed methods was comparable to the quiescent phases calculated by the CT scanner (PCT). The one exception was the RCA, which improved for PAGG for 18 of the 20 subjects when compared to PCT (PCT = 2.48; PAGG = 2.07, p = 0.001). Conclusions: A method for quantifying the motion of specific coronary vessels using a correlation-based, phase-to-phase deviation measure was developed and tested on 20 patients receiving cardiac CT exams. The IVS was found to be a suitable predictor of vessel quiescence. The diagnostic quality of the quiescent phases detected by the proposed methods was comparable to those calculated by the CT scanner. The ability to quantify coronary vessel quiescence from the motion of the IVS can be used to develop new CTCA gating techniques and quantify the resulting potential improvement in CTCA image quality. PMID:25652511

  1. Characterization of cardiac quiescence from retrospective cardiac computed tomography using a correlation-based phase-to-phase deviation measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wick, Carson A.; McClellan, James H.; Arepalli, Chesnal D.

    2015-02-15

    Purpose: Accurate knowledge of cardiac quiescence is crucial to the performance of many cardiac imaging modalities, including computed tomography coronary angiography (CTCA). To accurately quantify quiescence, a method for detecting the quiescent periods of the heart from retrospective cardiac computed tomography (CT) using a correlation-based, phase-to-phase deviation measure was developed. Methods: Retrospective cardiac CT data were obtained from 20 patients (11 male, 9 female, 33–74 yr) and the left main, left anterior descending, left circumflex, right coronary artery (RCA), and interventricular septum (IVS) were segmented for each phase using a semiautomated technique. Cardiac motion of individual coronary vessels as wellmore » as the IVS was calculated using phase-to-phase deviation. As an easily identifiable feature, the IVS was analyzed to assess how well it predicts vessel quiescence. Finally, the diagnostic quality of the reconstructed volumes from the quiescent phases determined using the deviation measure from the vessels in aggregate and the IVS was compared to that from quiescent phases calculated by the CT scanner. Three board-certified radiologists, fellowship-trained in cardiothoracic imaging, graded the diagnostic quality of the reconstructions using a Likert response format: 1 = excellent, 2 = good, 3 = adequate, 4 = nondiagnostic. Results: Systolic and diastolic quiescent periods were identified for each subject from the vessel motion calculated using the phase-to-phase deviation measure. The motion of the IVS was found to be similar to the aggregate vessel (AGG) motion. The diagnostic quality of the coronary vessels for the quiescent phases calculated from the aggregate vessel (P{sub AGG}) and IVS (P{sub IV} {sub S}) deviation signal using the proposed methods was comparable to the quiescent phases calculated by the CT scanner (P{sub CT}). The one exception was the RCA, which improved for P{sub AGG} for 18 of the 20 subjects when compared to P{sub CT} (P{sub CT} = 2.48; P{sub AGG} = 2.07, p = 0.001). Conclusions: A method for quantifying the motion of specific coronary vessels using a correlation-based, phase-to-phase deviation measure was developed and tested on 20 patients receiving cardiac CT exams. The IVS was found to be a suitable predictor of vessel quiescence. The diagnostic quality of the quiescent phases detected by the proposed methods was comparable to those calculated by the CT scanner. The ability to quantify coronary vessel quiescence from the motion of the IVS can be used to develop new CTCA gating techniques and quantify the resulting potential improvement in CTCA image quality.« less

  2. Effect of different CT scanners and settings on femoral failure loads calculated by finite element models.

    PubMed

    Eggermont, Florieke; Derikx, Loes C; Free, Jeffrey; van Leeuwen, Ruud; van der Linden, Yvette M; Verdonschot, Nico; Tanck, Esther

    2018-03-06

    In a multi-center patient study, using different CT scanners, CT-based finite element (FE) models are utilized to calculate failure loads of femora with metastases. Previous studies showed that using different CT scanners can result in different outcomes. This study aims to quantify the effects of (i) different CT scanners; (ii) different CT protocols with variations in slice thickness, field of view (FOV), and reconstruction kernel; and (iii) air between calibration phantom and patient, on Hounsfield Units (HU), bone mineral density (BMD), and FE failure load. Six cadaveric femora were scanned on four CT scanners. Scans were made with multiple CT protocols and with or without an air gap between the body model and calibration phantom. HU and calibrated BMD were determined in cortical and trabecular regions of interest. Non-linear isotropic FE models were constructed to calculate failure load. Mean differences between CT scanners varied up to 7% in cortical HU, 6% in trabecular HU, 6% in cortical BMD, 12% in trabecular BMD, and 17% in failure load. Changes in slice thickness and FOV had little effect (≤4%), while reconstruction kernels had a larger effect on HU (16%), BMD (17%), and failure load (9%). Air between the body model and calibration phantom slightly decreased the HU, BMD, and failure loads (≤8%). In conclusion, this study showed that quantitative analysis of CT images acquired with different CT scanners, and particularly reconstruction kernels, can induce relatively large differences in HU, BMD, and failure loads. Additionally, if possible, air artifacts should be avoided. © 2018 Orthopaedic Research Society. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.

  3. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  4. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils

    PubMed Central

    Boyes, Richard G.; Gunter, Jeff L.; Frost, Chris; Janke, Andrew L.; Yeatman, Thomas; Hill, Derek L.G.; Bernstein, Matt A.; Thompson, Paul M.; Weiner, Michael W.; Schuff, Norbert; Alexander, Gene E.; Killiany, Ronald J.; DeCarli, Charles; Jack, Clifford R.; Fox, Nick C.

    2008-01-01

    Measures of structural brain change based on longitudinal MR imaging are increasingly important but can be degraded by intensity non-uniformity. This non-uniformity can be more pronounced at higher field strengths, or when using multichannel receiver coils. We assessed the ability of the non-parametric non-uniform intensity normalization (N3) technique to correct non-uniformity in 72 volumetric brain MR scans from the preparatory phase of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Normal elderly subjects (n = 18) were scanned on different 3-T scanners with a multichannel phased array receiver coil at baseline, using magnetization prepared rapid gradient echo (MP-RAGE) and spoiled gradient echo (SPGR) pulse sequences, and again 2 weeks later. When applying N3, we used five brain masks of varying accuracy and four spline smoothing distances (d = 50, 100, 150 and 200 mm) to ascertain which combination of parameters optimally reduces the non-uniformity. We used the normalized white matter intensity variance (standard deviation/mean) to ascertain quantitatively the correction for a single scan; we used the variance of the normalized difference image to assess quantitatively the consistency of the correction over time from registered scan pairs. Our results showed statistically significant (p < 0.01) improvement in uniformity for individual scans and reduction in the normalized difference image variance when using masks that identified distinct brain tissue classes, and when using smaller spline smoothing distances (e.g., 50-100 mm) for both MP-RAGE and SPGR pulse sequences. These optimized settings may assist future large-scale studies where 3-T scanners and phased array receiver coils are used, such as ADNI, so that intensity non-uniformity does not influence the power of MR imaging to detect disease progression and the factors that influence it. PMID:18063391

  5. Image quality phantom and parameters for high spatial resolution small-animal SPECT

    NASA Astrophysics Data System (ADS)

    Visser, Eric P.; Harteveld, Anita A.; Meeuwis, Antoi P. W.; Disselhorst, Jonathan A.; Beekman, Freek J.; Oyen, Wim J. G.; Boerman, Otto C.

    2011-10-01

    At present, generally accepted standards to characterize small-animal single photon emission tomographs (SPECT) do not exist. Whereas for small-animal positron emission tomography (PET), the NEMA NU 4-2008 guidelines are available, such standards are still lacking for small-animal SPECT. More specifically, a dedicated image quality (IQ) phantom and corresponding IQ parameters are absent. The structures of the existing PET IQ phantom are too large to fully characterize the sub-millimeter spatial resolution of modern multi-pinhole SPECT scanners, and its diameter will not fit into all scanners when operating in high spatial resolution mode. We therefore designed and constructed an adapted IQ phantom with smaller internal structures and external diameter, and a facility to guarantee complete filling of the smallest rods. The associated IQ parameters were adapted from NEMA NU 4. An additional parameter, effective whole-body sensitivity, was defined since this was considered relevant in view of the variable size of the field of view and the use of multiple bed positions as encountered in modern small-animal SPECT scanners. The usefulness of the phantom was demonstrated for 99mTc in a USPECT-II scanner operated in whole-body scanning mode using a multi-pinhole mouse collimator with 0.6 mm pinhole diameter.

  6. Performance evaluation and optimization of the MiniPET-II scanner

    NASA Astrophysics Data System (ADS)

    Lajtos, Imre; Emri, Miklos; Kis, Sandor A.; Opposits, Gabor; Potari, Norbert; Kiraly, Beata; Nagy, Ferenc; Tron, Lajos; Balkay, Laszlo

    2013-04-01

    This paper presents results of the performance of a small animal PET system (MiniPET-II) installed at our Institute. MiniPET-II is a full ring camera that includes 12 detector modules in a single ring comprised of 1.27×1.27×12 mm3 LYSO scintillator crystals. The axial field of view and the inner ring diameter are 48 mm and 211 mm, respectively. The goal of this study was to determine the NEMA-NU4 performance parameters of the scanner. In addition, we also investigated how the calculated parameters depend on the coincidence time window (τ=2, 3 and 4 ns) and the low threshold settings of the energy window (Elt=250, 350 and 450 keV). Independent measurements supported optimization of the effective system radius and the coincidence time window of the system. We found that the optimal coincidence time window and low threshold energy window are 3 ns and 350 keV, respectively. The spatial resolution was close to 1.2 mm in the center of the FOV with an increase of 17% at the radial edge. The maximum value of the absolute sensitivity was 1.37% for a point source. Count rate tests resulted in peak values for the noise equivalent count rate (NEC) curve and scatter fraction of 14.2 kcps (at 36 MBq) and 27.7%, respectively, using the rat phantom. Numerical values of the same parameters obtained for the mouse phantom were 55.1 kcps (at 38.8 MBq) and 12.3%, respectively. The recovery coefficients of the image quality phantom ranged from 0.1 to 0.87. Altering the τ and Elt resulted in substantial changes in the NEC peak and the sensitivity while the effect on the image quality was negligible. The spatial resolution proved to be, as expected, independent of the τ and Elt. The calculated optimal effective system radius (resulting in the best image quality) was 109 mm. Although the NEC peak parameters do not compare favorably with those of other small animal scanners, it can be concluded that under normal counting situations the MiniPET-II imaging capability assures remarkably good image quality, sensitivity and spatial resolution.

  7. Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications

    NASA Astrophysics Data System (ADS)

    Mohammed, Hani Mahmoud

    This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an occlusion removal algorithm to efficiently retain parts of the buildings occluded by surrounding objects such as trees, vehicles, or street poles.

  8. 49. View of waveguide system entering building no. 105 (typical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. View of waveguide system entering building no. 105 (typical of all radar scanner buildings), showing testing connection points and monitoring equipment. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. 53. View from ground level in building no. 105 showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. View from ground level in building no. 105 showing lower radar scanner switch with incoming waveguide and control switch. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners

    PubMed Central

    Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen

    2016-01-01

    Exterior orientation parameters’ (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang’E-1, compared to the existing space resection model. PMID:27077855

  11. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners.

    PubMed

    Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen

    2016-04-11

    Exterior orientation parameters' (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang'E-1, compared to the existing space resection model.

  12. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    NASA Astrophysics Data System (ADS)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  13. A prescan method improving the reproducibility of force-distance curves obtained with a piezoelectric tube scanner

    NASA Astrophysics Data System (ADS)

    Wigren, Roger; Erlandsson, Ragnar

    1996-01-01

    We present a method based on pre- and postscanning a piezoelectric tube scanner used in a force probe that improves the reproducibility of the scan lengths. Instead of prescanning in the same direction as when acquiring data (the z direction), which could destroy a sensitive surface, we perform lateral (x/y direction) prescans. As lateral motions of the tube scanner involve out of phase elongations and compressions of the tube in the z direction, these kinds of prescans will have a stabilizing effect on the z motion as well. By adding an additional postscan in the ±z directions, we reduce the piezoelectric creep following the data acquisition scan. When comparing the lengths of z scans with and without the pre/postscan procedure, preceded by a z voltage step 60 s before data acquisition, the deviation between four consecutive scans improved from 12% to 1.4%.

  14. Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS)

    NASA Technical Reports Server (NTRS)

    Guerra, David V.; Schwemmer, Geary K.; Wooten, Albert D., Jr.; Chaudhuri, Sandipan S.; Wilkerson, Thomas D.

    1995-01-01

    A ground-based atmospheric lidar system that utilizes a Holographic Optical Telescope and Scanner has been developed and successfully operated to obtain atmospheric backscatter profiles. The Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing is built around a volume phase reflection Holographic Optical Element. This single optical element both directs and collimates the outgoing laser beam as well as collects, focuses, and filters the atmospheric laser backscatter, while offering significant weight savings over existing telescope mirror technology. Conical scanning is accomplished as the HOE rotates on a turntable sweeping the 1.2 mrad field of view around a 42deg cone. During this technology demonstration, atmospheric aerosol and cloud return signals have been received in both stationary and scanning modes. The success of this program has led to the further development of this technology for integration into airborne and eventually satellite earth observing scanning lidar telescopes.

  15. Noninterceptive transverse emittance measurements using BPM for Chinese ADS R&D project

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; Feng, Chi; He, Yuan; Dou, Weiping; Tao, Yue; Chen, Wei-long; Jia, Huan; Liu, Shu-hui; Wang, Wang-sheng; Zhang, Yong; Wu, Jian-qiang; Zhang, Sheng-hu; Zhang, X. L.

    2016-04-01

    The noninterceptive four-dimensional transverse emittance measurements are essential for commissioning the high power continue-wave (CW) proton linacs as well as their operations. The conventional emittance measuring devices such as slits and wire scanners are not well suited under these conditions due to sure beam damages. Therefore, the method of using noninterceptive Beam Position Monitor (BPM) is developed and demonstrated on Injector Scheme II at the Chinese Accelerator Driven Sub-critical System (China-ADS) proofing facility inside Institute of Modern Physics (IMP) [1]. The results of measurements are in good agreements with wire scanners and slits at low duty-factor pulsed (LDFP) beam. In this paper, the detailed experiment designs, data analysis and result benchmarking are presented.

  16. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    NASA Technical Reports Server (NTRS)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  17. Terrestrial Laser Scanning-Based Bridge Structural Condition Assessment : Tech Transfer Summaries

    DOT National Transportation Integrated Search

    2016-05-01

    Problem Statement : While several state departments of transportation (DOTs) have used : terrestrial laser scanning (TLS) in the project planning phase, limited : research has been conducted on employing laser scanners to detect : cracks for bridge c...

  18. Design and Fabrication of 1D and 2D Micro Scanners Actuated by Double Layered Lead Zirconate Titanate (PZT) Bimorph Beams

    NASA Astrophysics Data System (ADS)

    Tsaur, Jiunnjye; Zhang, Lulu; Maeda, Ryutaro; Matsumoto, Sohei; Khumpuang, Sommawan

    2002-06-01

    Micro scanners including 1D scanner beams and 2D scanning micromirrors are designed and fabricated. In order to yield large bending force, the sol-gel derived double layered lead zirconate titanate (PZT) structures are developed to be the actuator components. In our developed fabrication process, the use of thermal treatment and the addition of one platinium/titanium film played an important role to yield the well-crystallized perovskite phase and decrease the residual strss of total cantilever structures successfully. In the case of 1D scanner beams with the size of 750× 230 μm2, the optical scanning angle was 41.2 deg with respect to actuation with AC 5 V at 2706 Hz. Under the applied bias of 10 V, the bimorph beam bended upward and the deflection angle of 34.3 deg was measured. A 2D scanning micromirror supported by four suspended double layered PZT actuators was designed to rotate around two orthogonal axes by the operation at different resonant frequencies. While resonating with AC 7.5 V at 3750 Hz and 5350 Hz, the maximum scanning area of 24\\circ× 26\\circ was obtained.

  19. 2. View of southerly DR 1 antenna looking north 25 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of southerly DR 1 antenna looking north 25 degrees west and and showing radar scanner building no. 105 east face through antenna. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. 3. View of middle DR 2 antenna looking north 30 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of middle DR 2 antenna looking north 30 degrees west and showing radar scanner building no. 105 east face through antenna. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. IUE observations of pre-main-sequence stars. I - Mg II and Ca II resonance line fluxes for T Tauri stars

    NASA Technical Reports Server (NTRS)

    Giampapa n, M. S.

    1981-01-01

    IUE satellite and Lick 3 m reflector image tube scanner measurements of the Mg II and Ca II resonance lines in a sample of T Tauri stars are the basis of a discussion of the Mg II h and k line emission and the Ca II H and K line emission, within the context of stellar chromospheres. Corroborative evidence is presented for the chromospheric origin of these resonance lines, and chromospheric radiative loss rates in the Mg II and Ca II resonance lines are derived. It is found that the degree of nonradiative heating present in the outer atmospheres of T Tauri stars generally exceeds that of the RS CVn systems, as well as the dMe stars and other active chromospheric dwarfs, and it is inferred that the surfaces of such pre-main sequence stars are covered by regions similar to solar plages. The mean chromospheric electron density of T Tauri stars is determined as 10 to the 11th/cu cm.

  2. Observations Regarding Scatter Fraction and NEC Measurements for Small Animal PET

    NASA Astrophysics Data System (ADS)

    Yang, Yongfeng; Cherry, S. R.

    2006-02-01

    The goal of this study was to evaluate the magnitude and origin of scattered radiation in a small-animal PET scanner and to assess the impact of these findings on noise equivalent count rate (NECR) measurements, a metric often used to optimize scanner acquisition parameters and to compare one scanner with another. The scatter fraction (SF) was measured for line sources in air and line sources placed within a mouse-sized phantom (25 mm /spl phi//spl times/70 mm) and a rat-sized phantom (60 mm /spl phi//spl times/150 mm) on the microPET II small-animal PET scanner. Measurements were performed for lower energy thresholds ranging from 150-450 keV and a fixed upper energy threshold of 750 keV. Four different methods were compared for estimating the SF. Significant scatter fractions were measured with just the line source in the field of view, with the spatial distribution of these events consistent with scatter from the gantry and room environment. For mouse imaging, this component dominates over object scatter, and the measured SF is strongly method dependent. The environmental SF rapidly increases as the lower energy threshold decreases and can be more than 30% for an open energy window of 150-750 keV. The object SF originating from the mouse phantom is about 3-4% and does not change significantly as the lower energy threshold increases. The object SF for the rat phantom ranges from 10 to 35% for different energy windows and increases as the lower energy threshold decreases. Because the measured SF is highly dependent on the method, and there is as yet no agreed upon standard for animal PET, care must be exercised when comparing NECR for small objects between different scanners. Differences may be methodological rather than reflecting any relevant difference in the performance of the scanner. Furthermore, these results have implications for scatter correction methods when the majority of the detected scatter does not arise from the object itself.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical systemmore » and signal processing design are performed using 3D measurements.« less

  4. Phase-aberration correction with a 3-D ultrasound scanner: feasibility study.

    PubMed

    Ivancevich, Nikolas M; Dahl, Jeremy J; Trahey, Gregg E; Smith, Stephen W

    2006-08-01

    We tested the feasibility of using adaptive imaging, namely phase-aberration correction, with two-dimensional (2-D) arrays and real-time, 3-D ultrasound. Because of the high spatial frequency content of aberrators, 2-D arrays, which generally have smaller pitch and thus higher spatial sampling frequency, and 3-D imaging show potential to improve the performance of adaptive imaging. Phase-correction algorithms improve image quality by compensating for tissue-induced errors in beamforming. Using the illustrative example of transcranial ultrasound, we have evaluated our ability to perform adaptive imaging with a real-time, 3-D scanner. We have used a polymer casting of a human temporal bone, root-mean-square (RMS) phase variation of 45.0 ns, full-width-half-maximum (FWHM) correlation length of 3.35 mm, and an electronic aberrator, 100 ns RMS, 3.76 mm correlation, with tissue phantoms as illustrative examples of near-field, phase-screen aberrators. Using the multilag, least-squares, cross-correlation method, we have shown the ability of 3-D adaptive imaging to increase anechoic cyst identification, image brightness, contrast-to-speckle ratio (CSR), and, in 3-D color Doppler experiments, the ability to visualize flow. For a physical aberrator skull casting we saw CSR increase by 13% from 1.01 to 1.14, while the number of detectable cysts increased from 4.3 to 7.7.

  5. An evaluation of simulated Thematic Mapper data and Landsat MSS data for discriminating suburban and regional land use and land cover

    NASA Technical Reports Server (NTRS)

    Toll, D. L.

    1984-01-01

    An airborne multispectral scanner, operating in the same spectral channels as the Landsat Thematic Mapper (TM), was used in a region east of Denver, CO, for a simulation test performed in the framework of using TM to discriminate the level I and level II classes. It is noted that at the 30-m spatial resolution of the Thematic Mapper Simulator (TMS) the overall discrimination for such classes as commercial/industrial land, rangeland, irrigated sod, irrigated alfalfa, and irrigated pasture was superior to that of the Landsat Multispectral Scanner, primarily due to four added spectral bands. For residential and other spectrally heterogeneous classes, however, the higher resolution of TMS resulted in increased variability within the class and a larger spectral overlap.

  6. The vascularized groin lymph node flap (VGLN): Anatomical study and flap planning using multi-detector CT scanner. The golden triangle for flap harvesting.

    PubMed

    Zeltzer, Assaf A; Anzarut, Alexander; Braeckmans, Delphine; Seidenstuecker, Katrin; Hendrickx, Benoit; Van Hedent, Eddy; Hamdi, Moustapha

    2017-09-01

    A growing number of surgeons perform lymph node transfers for the treatment of lymphedema. When harvesting a vascularized lymph node groin flap (VGLNF) one of the major concerns is the potential risk of iatrogenic lymphedema of the donor-site. This article helps understanding of the lymph node distribution of the groin in order to minimize this risk. Fifty consecutive patients undergoing abdominal mapping by multi-detector CT scanner were included and 100 groins analyzed. The groin was divided in three zones (of which zone II is the safe zone) and lymph nodes were counted and mapped with their distances to anatomic landmarks. Further node units were plotted and counted. The average age was 48 years. A mean number of nodes of 6.5/groin was found. In zone II, which is our zone of interest a mean of 3.1 nodes were counted with a mean size of 7.8 mm. In three patients no nodes were found in zone II. In five patients nodes were seen in zone II but were not sufficient in size or number to be considered a lymph node unit. On average the lymph node unit in zone II was found to be 48.3 mm from the pubic tubercle when projected on a line from the pubic tubercle to the anterior superior iliac spine, 16.0 mm caudal to this line, and 20.4 mm above the groin crease. On average the lymph node unit was a mean of 41.7 mm lateral to the SCIV-SIEV confluence. This study provides increased understanding of the lymphatic anatomy in zone II of the groin flap and suggests a refined technique for designing the VGLNF. As with any flap there is a degree of individual patient variability. However, having information on the most common anatomy and flap design is of great value. © 2017 Wiley Periodicals, Inc.

  7. A broadband phased-array system for direct phosphorus and sodium metabolic MRI on a clinical scanner.

    PubMed

    Lee, R F; Giaquinto, R; Constantinides, C; Souza, S; Weiss, R G; Bottomley, P A

    2000-02-01

    Despite their proven gains in signal-to-noise ratio and field-of-view for routine clinical MRI, phased-array detection systems are currently unavailable for nuclei other than protons (1H). A broadband phased-array system was designed and built to convert the 1H transmitter signal to the non-1H frequency for excitation and to convert non-1H phased-array MRI signals to the 1H frequency for presentation to the narrowband 1H receivers of a clinical whole-body 1.5 T MRI system. With this system, the scanner operates at the 1H frequency, whereas phased-array MRI occurs at the frequency of the other nucleus. Pulse sequences were developed for direct phased-array sodium (23Na) and phosphorus (31P) MRI of high-energy phosphates using chemical selective imaging, thereby avoiding the complex processing and reconstruction required for phased-array magnetic resonance spectroscopy data. Flexible 4-channel 31P and 23Na phased-arrays were built and the entire system tested in phantom and human studies. The array produced a signal-to-noise ratio improvement of 20% relative to the best-positioned single coil, but gains of 300-400% were realized in many voxels located outside the effective field-of-view of the single coil. Cardiac phosphorus and sodium MRI were obtained in 6-13 min with 16 and 0.5 mL resolution, respectively. Lower resolution human cardiac 23Na MRI were obtained in as little as 4 sec. The system provides a practical approach to realizing the advantages of phased-arrays for nuclei other than 1H, and imaging metabolites directly.

  8. Pulse-Echo Phased Array Ultrasonic Inspection of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS)

    NASA Technical Reports Server (NTRS)

    Johnston, Pat H.

    2010-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading. Keywords: Phased Array, Ultrasonics, Composites, Out-of-Autoclave

  9. 55. View from ground level in building no. 105 showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. View from ground level in building no. 105 showing lower radar scanner switch with eighty-eight 1-1/2" diameter copper ion return RF balance tube systems. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. 48. View of typical 90 degree elbow located at horizontal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. View of typical 90 degree elbow located at horizontal corner with output (to scanner radar system control switch) waveguide on top and return wave on bottom of photograph. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. A Novel Approach to Determine the Prevalence of Type of Soft Palate Using Digital Intraoral Impression.

    PubMed

    Chaturvedi, Saurabh; Khaled Addas, Mohamed; Al Humaidi, Abdullah Saad Ali; Al Qahtani, Abdulrazaq Mohammed; Al Qahtani, Mubarak Daghash

    2017-01-01

    To determine the prevalence of type of soft palate in targeted population. Using computer technology in dentistry, intraoral digital scanner, and 3D analysis software tool, study was conducted. 100 patients selected from the outpatient clinics were divided into two groups based on the ages of 20-40 years and 41-60 years with equal ratio of males and females. Each selected patient's maxillary arch was scanned with intraoral scanner; images so obtained were sectioned in anteroposterior cross section and with the 3D analysis software; the angulation between hard and soft palate was determined. The prevalence of type II soft palate (angulation between hard and soft palate is between 10 and 45 degrees) was highest, 60% in group 1 and 44% in group 2. The difference between genders was statistically significant with p value <0.05 in both the groups, although females had higher angulation compared to the males in all classes of both groups. In targeted population of Aseer Province, Saudi Arabia, the prevalence of type II soft palate was more common, with higher soft palate angulation among females. The advanced age had no effect in the type of soft palate in the region.

  12. Cone-beam micro computed tomography dedicated to the breast.

    PubMed

    Sarno, Antonio; Mettivier, Giovanni; Di Lillo, Francesca; Cesarelli, Mario; Bifulco, Paolo; Russo, Paolo

    2016-12-01

    We developed a scanner for micro computed tomography dedicated to the breast (BµCT) with a high resolution flat-panel detector and a microfocus X-ray tube. We evaluated the system spatial resolution via the 3D modulation transfer function (MTF). In addition to conventional absorption-based X-ray imaging, such a prototype showed capabilities for propagation-based phase-contrast and related edge enhancement effects in 3D imaging. The system limiting spatial resolution is 6.2mm -1 (MTF at 10%) in the vertical direction and 3.8mm -1 in the radial direction, values which compare favorably with the spatial resolution reached by mini focus breast CT scanners of other groups. The BµCT scanner was able to detect both microcalcification clusters and masses in an anthropomorphic breast phantom at a dose comparable to that of two-view mammography. The use of a breast holder is proposed in order to have 1-2min long scan times without breast motion artifacts. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalska, Karolina; Tan, Kemin; Chang, Changsoo

    A prototype of a 96-well plate scanner forin situdata collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection atT= 100 K, crystals in a crystallization buffer show remarkably low mosaicity (<0.1°) until deterioration by radiation damage occurs. Data presented here show that cryo-coolingmore » can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software,in situdata collection will become available for the SBC user program including remote access.« less

  14. MRI-guided Therapeutic Ultrasound : In vitro Validation of a New MR Compatible, Phased Array, Contact Endorectal Ultrasound Transducer with Active Feedback Control of Temperature Evolution

    NASA Astrophysics Data System (ADS)

    Salomir, Rares; Rata, Mihaela; Lafon, Cyril; Melodelima, David; Chapelon, Jean-Yves; Mathias, Adrien; Cotton, François; Bonmartin, Alain; Cathignol, Dominique

    2006-05-01

    Contact application of high intensity ultrasound was demonstrated to be suitable for thermal ablation of sectorial tumours of the digestive duct. Experimental validation of a new MR compatible ultrasonic device is described here, dedicated to the minimal invasive therapy of localized colorectal cancer. This is a cylindrical 1D 64-element phased array transducer of 14 mm diameter and 25 mm height (Imasonic, France) allowing electronic rotation of the acoustic beam. Operating frequency ranges from 3.5 to 4.0 MHz and up to 5 effective electrical watts per element are available. A plane wave is reconstructed by simultaneous excitation of eigth adjacent elements with an appropriate phase law. Driving electronics operates outside the Faraday cage of the scanner and provides fast switching capabilities. Excellent passive and active compatibility with the MRI data acquisition has been demonstrated. In addition, feasibility of active temperature control has been demonstrated based on real-time data export out of the MR scanner and a PID feedback algorithm. Further studies will address the in-vivo validation and the integration of a miniature NMR coil for increased SNR in the near field.

  15. Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.

    PubMed

    Forder, James A

    2014-08-01

    This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. Assessment of early attrition using an ordinary flatbed scanner.

    PubMed

    Van't Spijker, Arie; Kreulen, Cees M; Bronkhorst, Ewald M; Creugers, Nico H J

    2012-07-01

    The aim of this study was to assess a two-dimensional method to monitor occlusal tooth wear quantitatively using a commercially available ordinary flatbed scanner. A flatbed scanner, measuring software and gypsum casts were used. In Part I, two observers (A and B) independently traced scans of marked wear facets of ten sets of casts in two sessions (test and retest). In Part II, three other sets of casts were duplicated and two observers (C and D) marked wear facets and traced the scanned images independently. Intra- and inter-observer agreement was determined comparing measured values (mm(2)) in paired T-tests. Duplicate measurement errors (DME) were calculated. In Part I the test and retest values (10 casts, 218 teeth) of observer A and B did not differ significantly (A: p = 0.289; B: p = 0.666); correlation coefficients were 0.998 (A) and 0.999 (B). "Tracing wear facets" showed a DME of 0.30 mm(2) for observer A and 0.15 mm(2) for observer B. In Part II, assessment of 70 teeth resulted in correlation coefficients of 0.994 for observer C and 0.997 for observer D; no differences between test and retest values were found for C (p = 0.061), although D differed significantly (p = 0.000). The DME for "marking and tracing wear facets" was 0.39 mm(2) (C) and 0.27 mm(2) (D). DME for inter-observer agreement were 0.45 mm(2) (test) and 0.42 mm(2) (re-test). We conclude that marking and tracing of occlusal wear facets to assess occlusal tooth wear quantitatively can be done accurately and reproducibly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Small Business Innovation Research GRC Phase I, Phase II, and Post-Phase II Opportunity Assessment for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report outlines the 2015 Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) Phase I, Phase II, and Post-Phase II opportunity contract award results associated with NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD) for NASA Glenn Research Center. The report also highlights the number of Phase I, Phase II, and Post-Phase II contracts awarded by mission directorate. The 2015 Phase I contract awards to companies in Ohio and their corresponding technologies are also discussed.

  18. Analysis of phase II studies on targeted agents and subsequent phase III trials: what are the predictors for success?

    PubMed

    Chan, John K; Ueda, Stefanie M; Sugiyama, Valerie E; Stave, Christopher D; Shin, Jacob Y; Monk, Bradley J; Sikic, Branimir I; Osann, Kathryn; Kapp, Daniel S

    2008-03-20

    To identify the characteristics of phase II studies that predict for subsequent "positive" phase III trials (those that reached the proposed primary end points of study or those wherein the study drug was superior to the standard regimen investigating targeted agents in advanced tumors. We identified all phase III clinical trials of targeted therapies against advanced cancers published from 1985 to 2005. Characteristics of the preceding phase II studies were reviewed to identify predictive factors for success of the subsequent phase III trial. Data were analyzed using the chi(2) test and logistic regression models. Of 351 phase II studies, 167 (47.6%) subsequent phase III trials were positive and 184 (52.4%) negative. Phase II studies from multiple rather than single institutions were more likely to precede a successful trial (60.4% v 39.4%; P < .001). Positive phase II results were more likely to lead to a successful phase III trial (50.8% v 22.5%; P = .003). The percentage of successful trials from pharmaceutical companies was significantly higher compared with academic, cooperative groups, and research institutes (89.5% v 44.2%, 45.2%, and 46.3%, respectively; P = .002). On multivariate analysis, these factors and shorter time interval between publication of phase II results and III study publication were independent predictive factors for a positive phase III trial. In phase II studies of targeted agents, multiple- versus single-institution participation, positive phase II trial, pharmaceutical company-based trials, and shorter time period between publication of phase II to phase III trial were independent predictive factors of success in a phase III trial. Investigators should be cognizant of these factors in phase II studies before designing phase III trials.

  19. Label-free tissue scanner for colorectal cancer screening

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail E.; Sridharan, Shamira; Liang, Jon; Luo, Zelun; Han, Kevin; Macias, Virgilia; Shah, Anish; Patel, Roshan; Tangella, Krishnarao; Kajdacsy-Balla, Andre; Guzman, Grace; Popescu, Gabriel

    2017-06-01

    The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of "unstained" biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on "quantitative phase imaging," which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the "nanoscale" tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an "intrinsic marker" for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.

  20. Report of improved performance in Talbot–Lau phase-contrast computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas, E-mail: thomas.weber@fau.de; Pelzer, Georg; Rieger, Jens

    Purpose: Many expectations have been raised since the use of conventional x-ray tubes on grating-based x-ray phase-contrast imaging. Despite a reported increase in contrast-to-noise ratio (CNR) in many publications, there is doubt on whether phase-contrast computed tomography (CT) is advantageous in clinical CT scanners in vivo. The aim of this paper is to contribute to this discussion by analyzing the performance of a phase-contrast CT laboratory setup. Methods: A phase-contrast CT performance analysis was done. Projection images of a phantom were recorded, and image slices were reconstructed using standard filtered back projection methods. The resulting image slices were analyzed bymore » determining the CNRs in the attenuation and phase image. These results were compared to analytically calculated expectations according to the already published phase-contrast CT performance analysis by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. There, a severe mistake was found leading to wrong predictions of the performance of phase-contrast CT. The error was corrected and with the new formulae, the experimentally obtained results matched the analytical calculations. Results: The squared ratios of the phase-contrast CNR and the attenuation CNR obtained in the authors’ experiment are five- to ten-fold higher than predicted by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. The effective lateral spatial coherence length deduced outnumbers the already optimistic assumption of Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)] by a factor of 3. Conclusions: The authors’ results indicate that the assumptions made in former performance analyses are pessimistic. The break-even point, when phase-contrast CT outperforms attenuation CT, is within reach even with realistic, nonperfect gratings. Further improvements to state-of-the-art clinical CT scanners, like increasing the spatial resolution, could change the balance in favor of phase-contrast computed tomography even more. This could be done by, e.g., quantum-counting pixel detectors with four-fold smaller pixel pitches.« less

  1. Object recognition and pose estimation of planar objects from range data

    NASA Technical Reports Server (NTRS)

    Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael

    1994-01-01

    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise.

  2. Remote sensing techniques applied to multispectral recognition of the Aranjuez pilot zone

    NASA Technical Reports Server (NTRS)

    Lemos, G. L.; Salinas, J.; Rebollo, M.

    1977-01-01

    A rectangular (7 x 14 km) area 40 km S of Madrid was remote-sensed with a three-stage recognition process. Ground truth was established in the first phase, airborne sensing with a multispectral scanner and photographic cameras were used in the second phase, and Landsat satellite data were obtained in the third phase. Agronomic and hydrological photointerpretation problems are discussed. Color, black/white, and labeled areas are displayed for crop recognition in the land-use survey; turbidity, concentrations of pollutants and natural chemicals, and densitometry of the water are considered in the evaluation of water resources.

  3. D Reconstruction-Reverse Engineering - Digital Fabrication of the Egyptian Palermo Stone Using by Smartphone and Light Structured Scanner

    NASA Astrophysics Data System (ADS)

    Di Paola, F.; Inzerillo, L.

    2018-05-01

    This paper presents a pipeline that has been developed to acquire a shape with particular features both under the geometric and radiometric aspects. In fact, the challenge was to build a 3D model of the black Stone of Palermo, where the oldest Egyptian history was printed with the use of hieroglyphs. The dark colour of the material and the superficiality of the hieroglyphs' groove have made the acquisition process very complex to the point of having to experiment with a pipeline that allows the structured light scanner not to lose the homologous points in the 3D alignment phase. For the texture reconstruction we used a last generation smartphone.

  4. Characterisation of the PXIE Allison-type emittance scanner

    DOE PAGES

    D'Arcy, R.; Alvarez, M.; Gaynier, J.; ...

    2016-01-26

    An Allison-type emittance scanner has been designed for PXIE at FNAL with the goal of providing fast and accurate phase space reconstruction. The device has been modified from previous LBNL/SNS designs to operate in both pulsed and DC modes with the addition of water-cooled front slits. Extensive calibration techniques and error analysis allowed confinement of uncertainty to the <5% level (with known caveats). With a 16-bit, 1 MHz electronics scheme the device is able to analyse a pulse with a resolution of 1 μs, allowing for analysis of neutralisation effects. As a result, this paper describes a detailed breakdown ofmore » the R&D, as well as post-run analysis techniques.« less

  5. 57. Building 105, another view of ion return RF balance ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Building 105, another view of ion return RF balance tube system, and beginning of waveguide return connections to right of photograph; note bottoms of waveguide systems around circumference of scanner switch in upper part of photograph. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. Novel ultrasonic real-time scanner featuring servo controlled transducers displaying a sector image.

    PubMed

    Matzuk, T; Skolnick, M L

    1978-07-01

    This paper describes a new real-time servo controlled sector scanner that produces high resolution images and has functionally programmable features similar to phased array systems, but possesses the simplicity of design and low cost best achievable in a mechanical sector scanner. The unique feature is the transducer head which contains a single moving part--the transducer--enclosed within a light-weight, hand held, and vibration free case. The frame rate, sector width, stop action angle, are all operator programmable. The frame rate can be varied from 12 to 30 frames s-1 and the sector width from 0 degrees to 60 degrees. Conversion from sector to time motion (T/M) modes are instant and two options are available, a freeze position high density T/M and a low density T/M obtainable simultaneously during sector visualization. Unusual electronic features are: automatic gain control, electronic recording of images on video tape in rf format, and ability to post-process images during video playback to extract T/M display and to change time gain control (tgc) and image size.

  7. Femtosecond laser pulse shaping at megahertz rate via a digital micromirror device.

    PubMed

    Gu, Chenglin; Chang, Yina; Zhang, Dapeng; Cheng, Jiyi; Chen, Shih-Chi

    2015-09-01

    In this Letter, we present a scanner and digital micromirror device (DMD)-based ultrafast pulse shaper, i.e., S-DUPS, for programmable ultrafast pulse modulation, achieving a shaping rate of 2 MHz. To our knowledge, the S-DUPS is the fastest programmable pulse shaper reported to date. In the S-DUPS, the frequency spectrum of the input pulsed laser is first spread horizontally, and then mapped to a thin stripe on the DMD programmed with phase modulation patterns. A galvanometric scanner, synchronized with the DMD, subsequently scans the spectrum vertically on the DMD to achieve a shaping rate up to 10 s MHz. A grating pair and a cylindrical lens in front of the DMD compensate for the temporal and spatial dispersion of the system. To verify the concept, experiments were conducted with the DMD and the galvanometric scanner operated at 2 kHz and 1 kHz, respectively, achieving a 2 MHz speed for continuous group velocity dispersion tuning, as well as 2% efficiency. Up to 5% efficiency of S-DUPS can be expected with high efficiency gratings and optical components of proper coatings.

  8. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  9. A Novel Approach to Determine the Prevalence of Type of Soft Palate Using Digital Intraoral Impression

    PubMed Central

    Khaled Addas, Mohamed; Al Humaidi, Abdullah Saad Ali; Al Qahtani, Abdulrazaq Mohammed; Al Qahtani, Mubarak Daghash

    2017-01-01

    Aim To determine the prevalence of type of soft palate in targeted population. Materials and Methods Using computer technology in dentistry, intraoral digital scanner, and 3D analysis software tool, study was conducted. 100 patients selected from the outpatient clinics were divided into two groups based on the ages of 20–40 years and 41–60 years with equal ratio of males and females. Each selected patient's maxillary arch was scanned with intraoral scanner; images so obtained were sectioned in anteroposterior cross section and with the 3D analysis software; the angulation between hard and soft palate was determined. Results The prevalence of type II soft palate (angulation between hard and soft palate is between 10 and 45 degrees) was highest, 60% in group 1 and 44% in group 2. The difference between genders was statistically significant with p value <0.05 in both the groups, although females had higher angulation compared to the males in all classes of both groups. Conclusions In targeted population of Aseer Province, Saudi Arabia, the prevalence of type II soft palate was more common, with higher soft palate angulation among females. The advanced age had no effect in the type of soft palate in the region. PMID:28951740

  10. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging

    NASA Astrophysics Data System (ADS)

    Tai, Yuan-Chuan; Chatziioannou, Arion F.; Yang, Yongfeng; Silverman, Robert W.; Meadors, Ken; Siegel, Stefan; Newport, Danny F.; Stickel, Jennifer R.; Cherry, Simon R.

    2003-06-01

    MicroPET II is a second-generation animal PET scanner designed for high-resolution imaging of small laboratory rodents. The system consists of 90 scintillation detector modules arranged in three contiguous axial rings with a ring diameter of 16.0 cm and an axial length of 4.9 cm. Each detector module consists of a 14 × 14 array of lutetium oxyorthosilicate (LSO) crystals coupled to a multi-channel photomultiplier tube (MC-PMT) through a coherent optical fibre bundle. Each LSO crystal element measures 0.975 mm × 0.975 mm in cross section by 12.5 mm in length. A barium sulphate reflector material was used between LSO elements leading to a detector pitch of 1.15 mm in both axial and transverse directions. Fused optical fibre bundles were made from 90 µm diameter glass fibres with a numerical aperture of 0.56. Interstitial extramural absorber was added between the fibres to reduce optical cross talk. A charge-division readout circuit was implemented on printed circuit boards to decode the 196 crystals in each array from the outputs of the 64 anode signals of the MC-PMT. Electronics from Concorde Microsystems Inc. (Knoxville, TN) were used for signal amplification, digitization, event qualification, coincidence processing and data capture. Coincidence data were passed to a host PC that recorded events in list mode. Following acquisition, data were sorted into sinograms and reconstructed using Fourier rebinning and filtered backprojection algorithms. Basic evaluation of the system has been completed. The absolute sensitivity of the microPET II scanner was 2.26% at the centre of the field of view (CFOV) for an energy window of 250-750 keV and a timing window of 10 ns. The intrinsic spatial resolution of the detectors in the system averaged 1.21 mm full width at half maximum (FWHM) when measured with a 22Na point source 0.5 mm in diameter. Reconstructed image resolution ranged from 0.83 mm FWHM at the CFOV to 1.47 mm FWHM in the radial direction, 1.17 mm FWHM in the tangential direction and 1.42 mm FWHM in the axial direction at 1 cm offset from the CFOV. These values represent highly significant improvements over our earlier microPET scanner (approximately fourfold sensitivity increase and 25-35% improvement in linear spatial resolution under equivalent operating conditions) and are expected to be further improved when the system is fully optimized. This work was originally conducted at UCLA, Crump Institute for Molecular Imaging, and was continued and completed at UC Davis, Department of Biomedical Engineering.

  11. Design and Development of an Engineering Prototype Compact X-Ray Scanner (FMS 5000)

    DTIC Science & Technology

    1989-03-31

    machined by "wire-EDM" (electro discharge machining ). Three different slice thicknesses can be selected from the scan menu. The set of slice thicknesses...circuit. This type of circuit is used whenever more than ten kilowatts of power are needed by a machine . For example, lathes and milling machines in a... machine shop usually use this type of input power. A three- phase circuit delivers power more efficiently than a single-phase circuit because three

  12. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  13. Determining Electrical Properties Based on B1 Fields Measured in an MR Scanner Using a Multi-channel Transmit/Receive Coil: a General Approach

    PubMed Central

    Liu, Jiaen; Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Schmitter, Sebastian

    2013-01-01

    Electrical Property Tomography (EPT) is a recently developed noninvasive technology to image the electrical conductivity and permittivity of biological tissues at Larmor frequency in Magnetic Resonance (MR) scanners. The absolute phase of the complex radio-frequency (RF) magnetic field (B1) is necessary for electrical property calculation. However, due to the lack of practical methods to directly measure the absolute B1 phases, current EPT techniques have been achieved with B1 phase estimation based on certain assumptions on object anatomy, coil structure and/or electromagnetic wave behavior associated with the main magnetic field, limiting EPT from a larger variety of applications. In this study, using a multi-channel transmit/receive coil, the framework of a new general approach for EPT has been introduced, which is independent on the assumptions utilized in previous studies. Using a human head model with realistic geometry, a series of computer simulations at 7T were conducted to evaluate the proposed method under different noise levels. Results showed that the proposed method can be used to reconstruct the conductivity and permittivity images with noticeable accuracy and stability. The feasibility of this approach was further evaluated in a phantom experiment at 7T. PMID:23743673

  14. Analysis of image sharpness reproducibility on a novel engineered micro-CT scanner with variable geometry and embedded recalibration software.

    PubMed

    Panetta, D; Belcari, N; Del Guerra, A; Bartolomei, A; Salvadori, P A

    2012-04-01

    This study investigates the reproducibility of the reconstructed image sharpness, after modifications of the geometry setup, for a variable magnification micro-CT (μCT) scanner. All the measurements were performed on a novel engineered μCT scanner for in vivo imaging of small animals (Xalt), which has been recently built at the Institute of Clinical Physiology of the National Research Council (IFC-CNR, Pisa, Italy), in partnership with the University of Pisa. The Xalt scanner is equipped with an integrated software for on-line geometric recalibration, which will be used throughout the experiments. In order to evaluate the losses of image quality due to modifications of the geometry setup, we have made 22 consecutive acquisitions by changing alternatively the system geometry between two different setups (Large FoV - LF, and High Resolution - HR). For each acquisition, the tomographic images have been reconstructed before and after the on-line geometric recalibration. For each reconstruction, the image sharpness was evaluated using two different figures of merit: (i) the percentage contrast on a small bar pattern of fixed frequency (f = 5.5 lp/mm for the LF setup and f = 10 lp/mm for the HR setup) and (ii) the image entropy. We have found that, due to the small-scale mechanical uncertainty (in the order of the voxel size), a recalibration is necessary for each geometric setup after repositioning of the system's components; the resolution losses due to the lack of recalibration are worse for the HR setup (voxel size = 18.4 μm). The integrated on-line recalibration algorithm of the Xalt scanner allowed to perform the recalibration quickly, by restoring the spatial resolution of the system to the reference resolution obtained after the initial (off-line) calibration. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries.

    PubMed

    Thali, Michael J; Braun, Marcel; Dirnhofer, Richard

    2003-11-26

    Photography process reduces a three-dimensional (3D) wound to a two-dimensional level. If there is a need for a high-resolution 3D dataset of an object, it needs to be three-dimensionally scanned. No-contact optical 3D digitizing surface scanners can be used as a powerful tool for wound and injury-causing instrument analysis in trauma cases. The 3D skin wound and a bone injury documentation using the optical scanner Advanced TOpometric Sensor (ATOS II, GOM International, Switzerland) will be demonstrated using two illustrative cases. Using this 3D optical digitizing method the wounds (the virtual 3D computer model of the skin and the bone injuries) and the virtual 3D model of the injury-causing tool are graphically documented in 3D in real-life size and shape and can be rotated in the CAD program on the computer screen. In addition, the virtual 3D models of the bone injuries and tool can now be compared in a 3D CAD program against one another in virtual space, to see if there are matching areas. Further steps in forensic medicine will be a full 3D surface documentation of the human body and all the forensic relevant injuries using optical 3D scanners.

  16. Using phase II data for the analysis of phase III studies: An application in rare diseases.

    PubMed

    Wandel, Simon; Neuenschwander, Beat; Röver, Christian; Friede, Tim

    2017-06-01

    Clinical research and drug development in orphan diseases are challenging, since large-scale randomized studies are difficult to conduct. Formally synthesizing the evidence is therefore of great value, yet this is rarely done in the drug-approval process. Phase III designs that make better use of phase II data can facilitate drug development in orphan diseases. A Bayesian meta-analytic approach is used to inform the phase III study with phase II data. It is particularly attractive, since uncertainty of between-trial heterogeneity can be dealt with probabilistically, which is critical if the number of studies is small. Furthermore, it allows quantifying and discounting the phase II data through the predictive distribution relevant for phase III. A phase III design is proposed which uses the phase II data and considers approval based on a phase III interim analysis. The design is illustrated with a non-inferiority case study from a Food and Drug Administration approval in herpetic keratitis (an orphan disease). Design operating characteristics are compared to those of a traditional design, which ignores the phase II data. An analysis of the phase II data reveals good but insufficient evidence for non-inferiority, highlighting the need for a phase III study. For the phase III study supported by phase II data, the interim analysis is based on half of the patients. For this design, the meta-analytic interim results are conclusive and would justify approval. In contrast, based on the phase III data only, interim results are inconclusive and require further evidence. To accelerate drug development for orphan diseases, innovative study designs and appropriate methodology are needed. Taking advantage of randomized phase II data when analyzing phase III studies looks promising because the evidence from phase II supports informed decision-making. The implementation of the Bayesian design is straightforward with public software such as R.

  17. 4. View of northerly DR 3 antenna looking north 35 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of northerly DR 3 antenna looking north 35 degrees west and showing radar scanner building no. 106 east face through antenna and partial view of satcom communication dome (attached to radar transmitter building 102) in left side of photograph. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. 14. View of southerly side of transmitter building no. 101 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of southerly side of transmitter building no. 101 from west looking easterly showing radar scanner building no. 104 to right with passageway link between, abandoned radome on top of transmitter building no. 101 and DR 1 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. Nimbus-7 data product summary

    NASA Technical Reports Server (NTRS)

    Oakes, Arnold G.; Han, Daesoo; Kyle, H. Lee; Feldman, Gene Carl; Fleig, Albert J.; Hurley, Edward J.; Kaufman, Barbara A.

    1989-01-01

    Data sets resulting from the first nine years of operations of the Nimbus-7 Satellite are briefly described. After a brief description of the Nimbus-7 Mission, each of the eight experiments on-board the satellite (Coastal Zone Color Scanner (CZCS), Earth Radiation Budget (ERB), Limb Infrared Monitor of the Stratosphere (MIMS), Stratospheric Aerosol Measurement II (SAM II), Stratospheric and Mesospheric Sounder (SAMS), Solar Backscatter Ultraviolet/Total Ozone Mapping Spectrometer (SBUV/TOMS), Scanning Multichannel Microwave Radiometer (SMMR) and the Temperature Humidity Infrared Radiometer (THIR) are introduced and their respective data products are described in terms of media, general format, and suggested applications. Extensive references are provided. Instructions for obtaining further information, and for ordering data products are given.

  20. Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.; Suttles, J. T.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shortwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The directional-reflectance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.

  1. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  2. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator.

    PubMed

    Shao, Yonghong; Qin, Wan; Liu, Honghai; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z

    2012-07-01

    We present an ultrafast, large-field multiphoton excitation fluorescence microscope with high lateral and axial resolutions based on a two-dimensional (2-D) acousto-optical deflector (AOD) scanner and spatial light modulator (SLM). When a phase-only SLM is used to shape the near-infrared light from a mode-locked titanium:sapphire laser into a multifocus array including the 0-order beam, a 136 μm × 136 μm field of view is achieved with a 60× objective using a 2-D AOD scanner without any mechanical scan element. The two-photon fluorescence image of a neuronal network that was obtained using this system demonstrates that our microscopy permits observation of dynamic biological events in a large field with high-temporal and -spatial resolution.

  3. 47 CFR 54.309 - Connect America Fund Phase II Public Interest Obligations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Connect America Fund Phase II Public Interest Obligations. 54.309 Section 54.309 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... Connect America Fund Phase II Public Interest Obligations. (a) A price cap carrier electing Phase II model...

  4. Isac Sc-Linac Phase-II Helium Refrigerator Commissioning and First Operational Experience at Triumf

    NASA Astrophysics Data System (ADS)

    Sekachev, I.; Kishi, D.; Laxdal, R. E.

    2010-04-01

    ISAC Phase-II is an upgrade of the radioactive isotope superconducting linear accelerator, SC-linac, at TRIUMF. The Phase-I section of the accelerator, medium-beta, is operational and is cooled with a 600 W helium refrigerator, commissioned in March 2005. An identical refrigerator is being used with the Phase-II segment of the accelerator; which is now under construction. The second refrigerator has been commissioned and tested with the Phase-I section of the linac and is used for Phase-II linac development, including new SC-cavity performance tests. The commissioning of the Phase-II refrigeration system and recent operational experience is presented.

  5. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    PubMed

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.

  6. Multiple-energy Techniques in Industrial Computerized Tomography

    DOE R&D Accomplishments Database

    Schneberk, D.; Martz, H.; Azevedo, S.

    1990-08-01

    Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.

  7. Design of Phase II Non-inferiority Trials.

    PubMed

    Jung, Sin-Ho

    2017-09-01

    With the development of inexpensive treatment regimens and less invasive surgical procedures, we are confronted with non-inferiority study objectives. A non-inferiority phase III trial requires a roughly four times larger sample size than that of a similar standard superiority trial. Because of the large required sample size, we often face feasibility issues to open a non-inferiority trial. Furthermore, due to lack of phase II non-inferiority trial design methods, we do not have an opportunity to investigate the efficacy of the experimental therapy through a phase II trial. As a result, we often fail to open a non-inferiority phase III trial and a large number of non-inferiority clinical questions still remain unanswered. In this paper, we want to develop some designs for non-inferiority randomized phase II trials with feasible sample sizes. At first, we review a design method for non-inferiority phase III trials. Subsequently, we propose three different designs for non-inferiority phase II trials that can be used under different settings. Each method is demonstrated with examples. Each of the proposed design methods is shown to require a reasonable sample size for non-inferiority phase II trials. The three different non-inferiority phase II trial designs are used under different settings, but require similar sample sizes that are typical for phase II trials.

  8. Digital vs. conventional full-arch implant impressions: a comparative study.

    PubMed

    Amin, Sarah; Weber, Hans Peter; Finkelman, Matthew; El Rafie, Khaled; Kudara, Yukio; Papaspyridakos, Panos

    2017-11-01

    To test whether or not digital full-arch implant impressions with two different intra-oral scanners (CEREC Omnicam and True Definition) have the same accuracy as conventional ones. The hypothesis was that the splinted open-tray impressions would be more accurate than digital full-arch impressions. A stone master cast representing an edentulous mandible using five internal connection implant analogs (Straumann Bone Level RC, Basel, Switzerland) was fabricated. The three median implants were parallel to each other, the far left implant had 10°, and the far right had 15° distal angulation. A splinted open-tray technique was used for the conventional polyether impressions (n = 10) for Group 1. Digital impressions (n = 10) were taken with two intra-oral optical scanners (CEREC Omnicam and 3M True Definition) after connecting polymer scan bodies to the master cast for groups 2 and 3. Master cast and conventional impression test casts were digitized with a high-resolution reference scanner (Activity 880 scanner; Smart Optics, Bochum, Germany) to obtain digital files. Standard tessellation language (STL) datasets from the three test groups of digital and conventional impressions were superimposed with the STL dataset from the master cast to assess the 3D deviations. Deviations were recorded as root-mean-square error. To compare the master cast with conventional and digital impressions at the implant level, Welch's F-test was used together with Games-Howell post hoc test. Group I had a mean value of 167.93 μm (SD 50.37); Group II (Omnicam) had a mean value of 46.41 μm (SD 7.34); Group III (True Definition) had a mean value of 19.32 μm (SD 2.77). Welch's F-test was used together with the Games-Howell test for post hoc comparisons. Welch's F-test showed a significant difference between the groups (P < 0.001). The Games-Howell test showed statistically significant 3D deviations for all three groups (P < 0.001). Full-arch digital implant impressions using True Definition scanner and Omnicam were significantly more accurate than the conventional impressions with the splinted open-tray technique. Additionally, the digital impressions with the True Definition scanner had significantly less 3D deviations when compared with the Omnicam. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. 78 FR 76789 - Additional Connect America Fund Phase II Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... inspection and copying during normal business hours in the FCC Reference Information Center, Portals II, 445... Phase I to Phase II. 2. Timing of Phase II Support Disbursements. In the USF/ICC Transformation Order... language in paragraph 180 of the USF/ICC Transformation Order. We now seek to more fully develop the record...

  10. 48 CFR 1852.219-81 - Limitation on subcontracting-SBIR Phase II program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subcontracting-SBIR Phase II program. 1852.219-81 Section 1852.219-81 Federal Acquisition Regulations System... CLAUSES Texts of Provisions and Clauses 1852.219-81 Limitation on subcontracting—SBIR Phase II program. As prescribed in 1819.7302(b), insert the following clause: Limitation on Subcontracting—SBIR Phase II Program...

  11. 48 CFR 1852.219-81 - Limitation on subcontracting-SBIR Phase II program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subcontracting-SBIR Phase II program. 1852.219-81 Section 1852.219-81 Federal Acquisition Regulations System... CLAUSES Texts of Provisions and Clauses 1852.219-81 Limitation on subcontracting—SBIR Phase II program. As prescribed in 1819.7302(b), insert the following clause: Limitation on Subcontracting—SBIR Phase II Program...

  12. 48 CFR 1852.219-81 - Limitation on subcontracting-SBIR Phase II program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subcontracting-SBIR Phase II program. 1852.219-81 Section 1852.219-81 Federal Acquisition Regulations System... CLAUSES Texts of Provisions and Clauses 1852.219-81 Limitation on subcontracting—SBIR Phase II program. As prescribed in 1819.7302(b), insert the following clause: Limitation on Subcontracting—SBIR Phase II Program...

  13. Fluorescence decay time imaging using an imaging photon detector with a radio frequency photon correlation system

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher G.; Mitchell, A. C.; Murray, J. G.

    1990-05-01

    An imaging photon detector has been modified to incorporate fast timing electronics coupled to a custom built photon correlator interfaced to a RISC computer. Using excitation with intensity- muodulated light, fluorescence images can be readily obtained where contrast is determined by the decay time of emission, rather than by intensity. This technology is readily extended to multifrequency phase/demodulation fluorescence imaging or to differential polarised phase fluorometry. The potential use of the correlator for confocal imaging with a laser scanner is also briefly discussed.

  14. Rational Clinical Experiment: Assessing Prior Probability and Its Impact on the Success of Phase II Clinical Trials

    PubMed Central

    Halperin, Daniel M.; Lee, J. Jack; Dagohoy, Cecile Gonzales; Yao, James C.

    2015-01-01

    Purpose Despite a robust clinical trial enterprise and encouraging phase II results, the vast minority of oncologic drugs in development receive regulatory approval. In addition, clinicians occasionally make therapeutic decisions based on phase II data. Therefore, clinicians, investigators, and regulatory agencies require improved understanding of the implications of positive phase II studies. We hypothesized that prior probability of eventual drug approval was significantly different across GI cancers, with substantial ramifications for the predictive value of phase II studies. Methods We conducted a systematic search of phase II studies conducted between 1999 and 2004 and compared studies against US Food and Drug Administration and National Cancer Institute databases of approved indications for drugs tested in those studies. Results In all, 317 phase II trials were identified and followed for a median of 12.5 years. Following completion of phase III studies, eventual new drug application approval rates varied from 0% (zero of 45) in pancreatic adenocarcinoma to 34.8% (24 of 69) for colon adenocarcinoma. The proportion of drugs eventually approved was correlated with the disease under study (P < .001). The median type I error for all published trials was 0.05, and the median type II error was 0.1, with minimal variation. By using the observed median type I error for each disease, phase II studies have positive predictive values ranging from less than 1% to 90%, depending on primary site of the cancer. Conclusion Phase II trials in different GI malignancies have distinct prior probabilities of drug approval, yielding quantitatively and qualitatively different predictive values with similar statistical designs. Incorporation of prior probability into trial design may allow for more effective design and interpretation of phase II studies. PMID:26261263

  15. Challenges Facing Early Phase Trials Sponsored by the National Cancer Institute: An Analysis of Corrective Action Plans to Improve Accrual.

    PubMed

    Massett, Holly A; Mishkin, Grace; Rubinstein, Larry; Ivy, S Percy; Denicoff, Andrea; Godwin, Elizabeth; DiPiazza, Kate; Bolognese, Jennifer; Zwiebel, James A; Abrams, Jeffrey S

    2016-11-15

    Accruing patients in a timely manner represents a significant challenge to early phase cancer clinical trials. The NCI Cancer Therapy Evaluation Program analyzed 19 months of corrective action plans (CAP) received for slow-accruing phase I and II trials to identify slow accrual reasons, evaluate whether proposed corrective actions matched these reasons, and assess the CAP impact on trial accrual, duration, and likelihood of meeting primary scientific objectives. Of the 135 CAPs analyzed, 69 were for phase I trials and 66 for phase II trials. Primary reasons cited for slow accrual were safety/toxicity (phase I: 48%), design/protocol concerns (phase I: 42%, phase II: 33%), and eligibility criteria (phase I: 41%, phase II: 35%). The most commonly proposed corrective actions were adding institutions (phase I: 43%, phase II: 85%) and amending the trial to change eligibility or design (phase I: 55%, phase II: 44%). Only 40% of CAPs provided proposed corrective actions that matched the reasons given for slow accrual. Seventy percent of trials were closed to accrual at time of analysis (phase I = 48; phase II = 46). Of these, 67% of phase I and 70% of phase II trials met their primary objectives, but they were active three times longer than projected. Among closed trials, 24% had an accrual rate increase associated with a greater likelihood of meeting their primary scientific objectives. Ultimately, trials receiving CAPs saw improved accrual rates. Future trials may benefit from implementing CAPs early in trial life cycles, but it may be more beneficial to invest in earlier accrual planning. Clin Cancer Res; 22(22); 5408-16. ©2016 AACRSee related commentary by Mileham and Kim, p. 5397. ©2016 American Association for Cancer Research.

  16. Diagnostics vehicle’s condition using obd-ii and raspberry pi technology: study literature

    NASA Astrophysics Data System (ADS)

    Moniaga, J. V.; Manalu, S. R.; Hadipurnawan, D. A.; Sahidi, F.

    2018-03-01

    Transportation accident rate are still being a major challenge in many countries. There are many factors that could be cause transportation accident, especially in vehicle’s internal system problem. To overcome this problem, OBD-II technology has been created to diagnostics vehicle’s condition. OBD-II scanner plugged to OBD-II port or usually called Data Link Connector (DLC), and after that it sends the diagnostics to Raspberry Pi. Compared from another microcontrollers, Arduino, Raspberry Pi are chosen because it sustains the application to receive real-time diagnostics, process the diagnostics and send command to automobiles at the same time, rather than Arduino that must wait for another process finished to run another process. Outcome from this application is to enable automobile’s user to diagnostics their own vehicles. If there is found something unusual or a problem, the application can told the problem to user, so they could know what to fix before they use their vehicle safely.

  17. Role of CT scanning in formation evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergosh, J.L.; Dibona, B.G.

    1988-01-01

    The use of the computerized tomographic (CT) scanner in formation evaluation of difficult to analyze core samples has moved from the research and development phase to daily, routine use in the core-analysis laboratory. The role of the CT scanner has become increasingly important as geologists try to obtain more representative core material for accurate formation evaluation. The most common problem facing the core analyst when preparing to measure petrophysical properties is the selection of representative and unaltered core samples for routine and special core testing. Recent data have shown that heterogeneous reservoir rock can be very difficult, if not impossible,more » to assess correctly when using standard core examination procedures, because many features, such as fractures, are not visible on the core surface. Another problem is the invasion of drilling mud into the core sample. Flushing formation oil and water from the core can greatly alter the saturation and distribution of fluids and lead to serious formation evaluation problems. Because the quality and usefulness of the core date are directly tied to proper sample selection, it has become imperative that the CT scanner be used whenever possible.« less

  18. Evaluation of optimized magnetic resonance perfusion imaging scanning time window after contrast agent injection for differentiating benign and malignant breast lesions

    PubMed Central

    Dong, Jie; Wang, Dawei; Ma, Zhenshen; Deng, Guodong; Wang, Lanhua; Zhang, Jiandong

    2017-01-01

    The aim of the study was evaluate the 3.0 T magnetic resonance (MR) perfusion imaging scanning time window following contrast injection for differentiating benign and malignant breast lesions and to determine the optimum scanning time window for increased scanner usage efficiency and reduced diagnostic adverse risk factors. A total of 52 women with breast abnormalities were selected for conventional MR imaging and T1 dynamic-enhanced imaging. Quantitative parameters [volume transfer constant (Ktrans), rate constant (Kep) and extravascular extracellular volume fraction (Ve)] were calculated at phases 10, 20, 30, 40 and 50, which represented time windows at 5, 10, 15, 20 and 25 min, respectively, following injection of contrast agent. The association of the parameters at different phases with benign and malignant tumor diagnosis was analyzed. MR perfusion imaging was verified as an effective modality in the diagnosis of breast malignancies and the best scanning time window was identified: i) Values of Ktrans and Kep at all phases were statistically significant in differentiating benign and malignant tumors (P<0.05), while the value of Ve had statistical significance only at stage 10, but not at any other stages (P>0.05); ii) values of Ve in benign tumors increased with phase number, but achieved no obvious changes at different phases in malignant tumors; iii) the optimum scanning time window of breast perfusion imaging with 3.0 T MR was between phases 10 and 30 (i.e., between 5 and 15 min after contrast agent injection). The variation trend of Ve values at different phases may serve as a diagnostic reference for differentiating benign and malignant breast abnormalities. The most efficient scanning time window was indicated to be 5 min after contrast injection, based on the observation that the Ve value only had statistical significance in diagnosis at stage 10. However, the optimal scanning time window is from 5 to 15 min following the injection of contrast agent, since that the variation trend of Ve is able to serve as a diagnostic reference. PMID:28450944

  19. Evaluation of optimized magnetic resonance perfusion imaging scanning time window after contrast agent injection for differentiating benign and malignant breast lesions.

    PubMed

    Dong, Jie; Wang, Dawei; Ma, Zhenshen; Deng, Guodong; Wang, Lanhua; Zhang, Jiandong

    2017-03-01

    The aim of the study was evaluate the 3.0 T magnetic resonance (MR) perfusion imaging scanning time window following contrast injection for differentiating benign and malignant breast lesions and to determine the optimum scanning time window for increased scanner usage efficiency and reduced diagnostic adverse risk factors. A total of 52 women with breast abnormalities were selected for conventional MR imaging and T1 dynamic-enhanced imaging. Quantitative parameters [volume transfer constant (K trans ), rate constant (K ep ) and extravascular extracellular volume fraction (V e )] were calculated at phases 10, 20, 30, 40 and 50, which represented time windows at 5, 10, 15, 20 and 25 min, respectively, following injection of contrast agent. The association of the parameters at different phases with benign and malignant tumor diagnosis was analyzed. MR perfusion imaging was verified as an effective modality in the diagnosis of breast malignancies and the best scanning time window was identified: i) Values of K trans and K ep at all phases were statistically significant in differentiating benign and malignant tumors (P<0.05), while the value of V e had statistical significance only at stage 10, but not at any other stages (P>0.05); ii) values of V e in benign tumors increased with phase number, but achieved no obvious changes at different phases in malignant tumors; iii) the optimum scanning time window of breast perfusion imaging with 3.0 T MR was between phases 10 and 30 (i.e., between 5 and 15 min after contrast agent injection). The variation trend of V e values at different phases may serve as a diagnostic reference for differentiating benign and malignant breast abnormalities. The most efficient scanning time window was indicated to be 5 min after contrast injection, based on the observation that the V e value only had statistical significance in diagnosis at stage 10. However, the optimal scanning time window is from 5 to 15 min following the injection of contrast agent, since that the variation trend of V e is able to serve as a diagnostic reference.

  20. Enhanced Night Visibility Series, Volume XII : Overview of Phase II and Development of Phase III Experimental Plan

    DOT National Transportation Integrated Search

    2005-12-01

    This volume provides an overview of the six studies that compose Phase II of the Enhanced Night Visibility project and the experimental plan for its third and final portion, Phase III. The Phase II studies evaluated up to 12 vision enhancement system...

  1. Evaluation of the transverse oscillation technique for cardiac phased-array imaging: A theoretical study

    PubMed Central

    Bottenus, Nick; D’hooge, Jan; Trahey, Gregg E.

    2017-01-01

    The transverse oscillation (TO) technique can improve the estimation of tissue motion perpendicular to the ultrasound beam direction. TOs can be introduced using plane wave (PW) insonification and bi-lobed Gaussian apodisation (BA) on receive (abbreviated as PWTO). Furthermore, the TO frequency can be doubled after a heterodyning demodulation process is performed (abbreviated as PWTO*). This study is concerned with identifying the limitations of the PWTO technique in the specific context of myocardial deformation imaging with phased arrays and investigating the conditions in which it remains advantageous over traditional focused (FOC) beamforming. For this purpose, several tissue phantoms were simulated using Field II, undergoing a wide range of displacement magnitudes and modes (lateral, axial and rotational motion). The Cramer-Rao lower bound (CRLB) was used to optimize TO beamforming parameters and theoretically predict the fundamental tracking performance limits associated with the FOC, PWTO and PWTO* beamforming scenarios. This framework was extended to also predict performance for BA functions which are windowed by the physical aperture of the transducer, leading to higher lateral oscillations. It was found that windowed BA functions resulted in lower jitter errors compared to tradional BA functions. PWTO* outperformed FOC at all investigated SNR levels but only up to a certain displacement, with the advantage rapidly decreasing when SNR increased. These results suggest that PWTO* improves lateral tracking performance, but only when inter-frame displacements remain relatively low. The study concludes by translating these findings to a clinical environment by suggesting optimal scanner settings. PMID:27810806

  2. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    PubMed

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  3. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    NASA Astrophysics Data System (ADS)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  4. Intelligent Agent Appropriation in the Tracking Phase of an Environmental Scanning Process: A Case Study of a French Trade Union

    ERIC Educational Resources Information Center

    Lafaye, Christophe

    2009-01-01

    Introduction: The rapid growth of the Internet has modified the boundaries of information acquisition (tracking) in environmental scanning. Despite the numerous advantages of this new medium, information overload is an enormous problem for Internet scanners. In order to help them, intelligent agents (i.e., autonomous, automated software agents…

  5. Advancements in NDE for utilities and the petrochemical industry through electromagnetic acoustic transducers (EMATs)

    NASA Astrophysics Data System (ADS)

    Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.

    1998-03-01

    The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.

  6. Optimisation of a propagation-based x-ray phase-contrast micro-CT system

    NASA Astrophysics Data System (ADS)

    Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.

    2018-03-01

    Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.

  7. Change of motion and localization of cholesterol molecule during L(alpha)-H(II) transition.

    PubMed Central

    Hayakawa, E; Naganuma, M; Mukasa, K; Shimozawa, T; Araiso, T

    1998-01-01

    Formation of the inverted hexagonal (H(II)) phase from the lamellar (L(alpha)) phase of bovine brain-extracted phosphatidylcholine (BBPC) and phosphatidylethanolamine (BBPE) was investigated using 31P-NMR with or without cholesterol. When the ratio of BBPC to BBPE was 1:1, the H(II) formation was observed in the presence of 33 mol% cholesterol (i.e., BBPC:BBPE:cholesterol = 1:1:1) at 47 degrees C. The fraction of the H(II) phase in the BBPC/BBPE/cholesterol system could be controlled by the addition of dioleoylglycerol. The change of molecular motion of cholesterol affected by the H(II) formation was measured at various ratios of the L(alpha) to H(II) phase with the time-resolved fluorescence depolarization method, using dehydroergosterol as a fluorescent probe. It is observed that the motion of cholesterol became vigorous in the mixture state of the L(alpha) and the H(II) phases compared to that in the L(alpha) or the H(II) phase only. These facts show that cholesterol has the strong ability to induce the H(II) phase, probably by special molecular motion, which includes change of its location from the headgroup area to the acyl-chain area. PMID:9533700

  8. Development of a pepper-pot device to determine the emittance of an ion beam generated by electron cyclotron resonance ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strohmeier, M.; University of Applied Sciences Karlsruhe, Moltkestr. 30, 76133 Karlsruhe; Benitez, J. Y.

    2010-02-15

    This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data usingmore » ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.« less

  9. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Voracek, David

    2007-01-01

    A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned

  10. Coupling of Coastal Zone Color Scanner data to a physical-biological model of the southeastern U.S. continental shelf ecosystem. I - CZCS data description and Lagrangian particle tracing experiments. II - An Eulerian model. III - Nutrient and phytoplankton fluxes and CZCS data assimilation

    NASA Technical Reports Server (NTRS)

    Ishizaka, Joji

    1990-01-01

    Surface phytoplankton biomass of the southeastern U.S. continental shelf area is discussed based on coastal zone color scanner (CZCS) images obtained in April 1980. Data of chlorophyll distributions are analyzed in conjunction with concurrent flow and temperature fields. Lagrangian particle tracing experiments show that the particles move consistently with the evolution of the chlorophyll patterns. A four-component physical-biological model for a horizontal plane at a nominal depth of 17 m is presented. Model simulations using various physical-biological dynamics and boundary conditions show that the variability of chlorophyll distributions is controlled by horizontal advection. Phytoplankton and nutrient fluxes, calculated using the model, show considerable variability with time. The chlorophyll distributions obtained from the CZCS images are assimilated into the model to improve the phytoplankton flux estimates.

  11. The Complex Point Cloud for the Knowledge of the Architectural Heritage. Some Experiences

    NASA Astrophysics Data System (ADS)

    Aveta, C.; Salvatori, M.; Vitelli, G. P.

    2017-05-01

    The present paper aims to present a series of experiences and experimentations that a group of PhD from the University of Naples Federico II conducted over the past decade. This work has concerned the survey and the graphic restitution of monuments and works of art, finalized to their conservation. The targeted query of complex point cloud acquired by 3D scanners, integrated with photo sensors and thermal imaging, has allowed to explore new possibilities of investigation. In particular, we will present the scientific results of the experiments carried out on some important historical artifacts with distinct morphological and typological characteristics. According to aims and needs that emerged during the connotative process, with the support of archival and iconographic historical research, the laser scanner technology has been used in many different ways. New forms of representation, obtained directly from the point cloud, have been tested for the elaboration of thematic studies for documenting the pathologies and the decay of materials, for correlating visible aspects with invisible aspects of the artifact.

  12. Installation Restoration Program. Phase II--Confirmation/Quantification. Stage 1.

    DTIC Science & Technology

    1985-03-01

    four phases. Phase I, Initial Assessment/ Records Search, is designed to identify possible hazardous waste contami- nated sites and potential...7 71 -. - - IL’ -, 1% 33 AihlIII Is 33 n~iL t iiC UII! ii CL C LU 1-3, Phase II, Confirmation and Quantification, is designed to confirm the...additional monitoring data upon which design of mitigative actions are based. In Phase III, Technology Base Development, appropriate technology is selected and

  13. Installation Restoration Program. Phase II: Stage 1 Problem Confirmation Study, Duluth International Airport, Duluth, Minnesota.

    DTIC Science & Technology

    1984-10-01

    8 iii "i t-. Table of Contents (cont.) Section Title Page -APPENDIX A Acronyms, Definitions, Nomenclature and Units of Measure B Scope of Work, Task...Identification/Records Search Phase II - Problem Confirmation and Quantification Phase III - Technology Base Development Phase IV - Corrective Action Only...Problem Identification/Records Search Phase II - Problem Confirmation and Quantification Phase III - Technology Base Development Phase IV - Corrective

  14. Active control of the spatial MRI phase distribution with optimal control theory

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin

    2017-08-01

    This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.

  15. [Tolerance of magnetic resonance imaging in children and adolescents performed in a 1.5 Tesla MR scanner with an open design].

    PubMed

    Adamietz, B; Cavallaro, A; Radkow, T; Alibek, S; Holter, W; Bautz, W A; Staatz, G

    2007-08-01

    To investigate the tolerance of MR examinations in children and adolescents performed in a 1.5 Tesla MR scanner with an expanded bore diameter. 163 patients, ages 4 to 25, underwent MR examinations in a 1.5 Tesla MR scanner with an open design (MAGNETOM Espree, Siemens, Erlangen, Germany), characterized by a compact length of 125 cm and an expanded 70 cm bore diameter. MR imaging of the brain was carried out in most cases (78.5 %), followed by examinations of the spinal canal (9.8 %), the extremities (9.2 %) and the neck (2.5 %). The patients were divided into four age groups and the success rate, motion artifacts and diagnostic quality of the MR examinations were assessed using a 3-grade scale. In 119 of 163 patients (73.0 %), MR examination was possible without any motion artifacts. With respect to the different age groups, 41.7 % of the 4 - 7-year-old children, 67.6 % of the 8 - 10-year-old children, 84.1 % of the 11 - 16-year-old children and 95.8 % of the patients older than 17 showed tolerance grade I without motion artifacts and excellent diagnostic image quality. In 39 of 163 children (23.9 %), the MR images showed moderate motion artifacts but had sufficient diagnostic quality. With regard to the different age groups, 52.8 % of the 4 - 7-year-old children, 26.5 % of the 8 - 10-year-old children, 15.9 % of the 11 - 16-year-old children and none of the patients older than 17 showed tolerance grade II with moderate motion artifacts and sufficient diagnostic image quality. In only 4 of 124 children < 10 years old and 1 child > 10 years old, the MR examination was not feasible and had to be repeated under sedation. Pediatric MR imaging using a 1.5 Tesla MR scanner with an open design can be conducted in children and adolescents with excellent acceptance. The failure rate of 3.0 % of cases for pediatric MR imaging is comparable to that of a conventional low-field open MR scanner.

  16. Oral Sulforaphane increases Phase II antioxidant enzymes in the human upper airway

    PubMed Central

    Riedl, Marc A.; Saxon, Andrew; Diaz-Sanchez, David

    2009-01-01

    Background Cellular oxidative stress is an important factor in asthma and is thought to be the principle mechanism by which oxidant pollutants such as ozone and particulates mediate their pro-inflammatory effects. Endogenous Phase II enzymes abrogate oxidative stress through the scavenging of reactive oxygen species and metabolism of reactive chemicals. Objective We conducted a placebo-controlled dose escalation trial to investigate the in vivo effects of sulforaphane, a naturally occurring potent inducer of Phase II enzymes, on the expression of glutathione-s-transferase M1 (GSTM1), glutathione-s-transferase P1 (GSTP1), NADPH quinone oxidoreductase (NQO1), and hemoxygenase-1 (HO-1) in the upper airway of human subjects. Methods Study subjects consumed oral sulforaphane doses contained in a standardized broccoli sprout homogenate (BSH). RNA expression for selected Phase II enzymes was measured in nasal lavage cells by RT-PCR before and after sulforaphane dosing. Results All subjects tolerated oral sulforaphane dosing without significant adverse events. Increased Phase II enzyme expression in nasal lavage cells occurred in a dose-dependent manner with maximal enzyme induction observed at the highest dose of 200 grams broccoli sprouts prepared as BSH. Significant increases were seen in all sentinel Phase II enzymes RNA expression compared to baseline. Phase II enzyme induction was not seen with ingestion of non-sulforaphane containing alfalfa sprouts. Conclusion Oral sulforaphane safely and effectively induces mucosal Phase II enzyme expression in the upper airway of human subjects. This study demonstrates the potential of antioxidant Phase II enzymes induction in the human airway as a strategy to reduce the inflammatory effects of oxidative stress. Clinical Implications This study demonstrates the potential of enhancement of Phase II enzyme expression as a novel therapeutic strategy for oxidant induced airway disease. Capsule Summary A placebo-controlled dose escalation trial demonstrated that naturally occurring sulforaphane from broccoli sprouts can induce a potent increase in antioxidant Phase II enzymes in airway cells. PMID:19028145

  17. Centrifuge workers study. Phase II, completion report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey tomore » evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.« less

  18. Methods for CT automatic exposure control protocol translation between scanner platforms.

    PubMed

    McKenney, Sarah E; Seibert, J Anthony; Lamba, Ramit; Boone, John M

    2014-03-01

    An imaging facility with a diverse fleet of CT scanners faces considerable challenges when propagating CT protocols with consistent image quality and patient dose across scanner makes and models. Although some protocol parameters can comfortably remain constant among scanners (eg, tube voltage, gantry rotation time), the automatic exposure control (AEC) parameter, which selects the overall mA level during tube current modulation, is difficult to match among scanners, especially from different CT manufacturers. Objective methods for converting tube current modulation protocols among CT scanners were developed. Three CT scanners were investigated, a GE LightSpeed 16 scanner, a GE VCT scanner, and a Siemens Definition AS+ scanner. Translation of the AEC parameters such as noise index and quality reference mAs across CT scanners was specifically investigated. A variable-diameter poly(methyl methacrylate) phantom was imaged on the 3 scanners using a range of AEC parameters for each scanner. The phantom consisted of 5 cylindrical sections with diameters of 13, 16, 20, 25, and 32 cm. The protocol translation scheme was based on matching either the volumetric CT dose index or image noise (in Hounsfield units) between two different CT scanners. A series of analytic fit functions, corresponding to different patient sizes (phantom diameters), were developed from the measured CT data. These functions relate the AEC metric of the reference scanner, the GE LightSpeed 16 in this case, to the AEC metric of a secondary scanner. When translating protocols between different models of CT scanners (from the GE LightSpeed 16 reference scanner to the GE VCT system), the translation functions were linear. However, a power-law function was necessary to convert the AEC functions of the GE LightSpeed 16 reference scanner to the Siemens Definition AS+ secondary scanner, because of differences in the AEC functionality designed by these two companies. Protocol translation on the basis of quantitative metrics (volumetric CT dose index or measured image noise) is feasible. Protocol translation has a dependency on patient size, especially between the GE and Siemens systems. Translation schemes that preserve dose levels may not produce identical image quality. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  19. SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, K; Kadoya, N; Chiba, M

    2016-06-15

    Purpose: The aim of this study is to develop radiation treatment planning using magnetic susceptibility obtained from quantitative susceptibility mapping (QSM) via MR imaging. This study demonstrates the feasibility of a method for generating a substitute for a CT image from an MRI. Methods: The head of a healthy volunteer was scanned using a CT scanner and a 3.0 T MRI scanner. The CT imaging was performed with a slice thickness of 2.5 mm at 80 and 120 kV (dual-energy scan). These CT images were converted to relative electron density (rED) using the CT-rED conversion table generated by a previousmore » dual-energy CT scan. The CT-rED conversion table was generated using the conversion of the energy-subtracted CT number to rED via a single linear relationship. One T2 star-weighted 3D gradient echo-based sequence with four different echo times images was acquired using the MRI scanner. These T2 star-weighted images were used to estimate the phase data. To estimate the local field map, a Laplacian unwrapping of the phase and background field removal algorithm were implemented to process phase data. To generate a magnetic susceptibility map from the local field map, we used morphology enabled dipole inversion method. The rED map was resampled to the same resolution as magnetic susceptibility, and the magnetic susceptibility-rED conversion table was obtained via voxel-by-voxel mapping between the magnetic susceptibility and rED maps. Results: A correlation between magnetic susceptibility and rED is not observed through our method. Conclusion: Our results show that the correlation between magnetic susceptibility and rED is not observed. As the next step, we assume that the voxel of the magnetic susceptibility map comprises two materials, such as water (0 ppm) and bone (-2.2 ppm) or water and marrow (0.81ppm). The elements of each voxel were estimated from the ratio of the two materials.« less

  20. The accuracy of the CAD system using intraoral and extraoral scanners for designing of fixed dental prostheses.

    PubMed

    Shimizu, Sakura; Shinya, Akikazu; Kuroda, Soichi; Gomi, Harunori

    2017-07-26

    The accuracy of prostheses affects clinical success and is, in turn, affected by the accuracy of the scanner and CAD programs. Thus, their accuracy is important. The first aim of this study was to evaluate the accuracy of an intraoral scanner with active triangulation (Cerec Omnicam), an intraoral scanner with a confocal laser (3Shape Trios), and an extraoral scanner with active triangulation (D810). The second aim of this study was to compare the accuracy of the digital crowns designed with two different scanner/CAD combinations. The accuracy of the intraoral scanners and extraoral scanner was clinically acceptable. Marginal and internal fit of the digital crowns fabricated using the intraoral scanner and CAD programs were inferior to those fabricated using the extraoral scanner and CAD programs.

  1. 47 CFR 69.727 - Regulatory relief.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... customer. (b) Phase II relief. Upon satisfaction of the Phase II triggers specified in §§ 69.709(c) or 69... Pricing Flexibility § 69.727 Regulatory relief. (a) Phase I relief. Upon satisfaction of the Phase I... similarly situated customers; and (ii) The price cap LEC excludes all contract tariff offerings from price...

  2. 47 CFR 90.769 - Construction and implementation of Phase II nationwide licenses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Use of Frequencies in the 220-222 MHz Band Policies Governing the Licensing and Use of Phase II Ea, Regional and Nationwide Systems § 90.769 Construction and implementation of Phase II nationwide licenses...

  3. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  4. The Human Connectome Project: A data acquisition perspective

    PubMed Central

    Van Essen, D.C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.E.J.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S.W.; Della Penna, S.; Feinberg, D.; Glasser, M.F.; Harel, N.; Heath, A.C.; Larson-Prior, L.; Marcus, D.; Michalareas, G.; Moeller, S.; Oostenveld, R.; Petersen, S.E.; Prior, F.; Schlaggar, B.L.; Smith, S.M.; Snyder, A.Z.; Xu, J.; Yacoub, E.

    2012-01-01

    The Human Connectome Project (HCP) is an ambitious 5-year effort to characterize brain connectivity and function and their variability in healthy adults. This review summarizes the data acquisition plans being implemented by a consortium of HCP investigators who will study a population of 1200 subjects (twins and their non-twin siblings) using multiple imaging modalities along with extensive behavioral and genetic data. The imaging modalities will include diffusion imaging (dMRI), resting-state fMRI (R-fMRI), task-evoked fMRI (T-fMRI), T1- and T2-weighted MRI for structural and myelin mapping, plus combined magnetoencephalography and electroencephalography (MEG/EEG). Given the importance of obtaining the best possible data quality, we discuss the efforts underway during the first two years of the grant (Phase I) to refine and optimize many aspects of HCP data acquisition, including a new 7T scanner, a customized 3T scanner, and improved MR pulse sequences. PMID:22366334

  5. Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document. Volume 3; Cloud Analyses and Determination of Improved Top of Atmosphere Fluxes (Subsystem 4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 3 details the advanced CERES methods for performing scene identification and inverting each CERES scanner radiance to a top-of-the-atmosphere (TOA) flux. CERES determines cloud fraction, height, phase, effective particle size, layering, and thickness from high-resolution, multispectral imager data. CERES derives cloud properties for each pixel of the Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and the Earth Observing System (EOS) moderate-resolution imaging spectroradiometer. Cloud properties for each imager pixel are convolved with the CERES footprint point spread function to produce average cloud properties for each CERES scanner radiance. The mean cloud properties are used to determine an angular distribution model (ADM) to convert each CERES radiance to a TOA flux. The TOA fluxes are used in simple parameterization to derive surface radiative fluxes. This state-of-the-art cloud-radiation product will be used to substantially improve our understanding of the complex relationship between clouds and the radiation budget of the Earth-atmosphere system.

  6. Barriers to participation in a phase II cardiac rehabilitation programme.

    PubMed

    Mak, Y M W; Chan, W K; Yue, C S S

    2005-12-01

    To identify barriers to participation in a phase II cardiac rehabilitation programme and measures that may enhance participation. Prospective study. Regional hospital, Hong Kong. Cardiac patients recruited for a phase I cardiac rehabilitation programme from July 2002 to January 2003. Reasons for not participating in a phase II cardiac rehabilitation programme. Of the 193 patients recruited for a phase I cardiac rehabilitation programme, 152 (79%) patients, with a mean age of 70.3 years (standard deviation, 11.9 years), did not proceed to phase II programme. Eleven (7%) deaths occurred before commencement of phase II and 74 (49%) patients were considered physically unfit. Reasons for the latter included fractures, pain, or degenerative changes in the lower limbs (24%), and co-morbidities such as cerebrovascular accident (19%), chronic renal failure (11%), congestive heart failure (9%), and unstable angina (8%). Phase II rehabilitation was postponed until after completion of scheduled cardiac interventions in 13% of patients. Failure of physicians to arrange the pre-phase II exercise stress test as per protocol was reported in 7% of patients. Other reasons were reported: work or time conflicts (16%), non-compliance with cardiac treatment (5%), financial constraints (4%), self-exercise (3%), fear after exercise stress testing (3%), and patients returning to their original cardiologists for treatment (3%). A significant (79%) proportion of patients did not proceed to a phase II cardiac rehabilitation programme for a variety of reasons. These included physical unfitness, work or time conflicts, and need to attend scheduled cardiac interventions. Further studies are required to determine how to overcome obstacles to cardiac rehabilitation.

  7. Evaluation of a commercial flatbed document scanner and radiographic film scanner for radiochromic EBT film dosimetry

    PubMed Central

    Parker, Brent C.; Neck, Daniel W.; Henkelmann, Greg; Rosen, Isaac I.

    2010-01-01

    The purpose of this study was to quantify the performance and assess the utility of two different types of scanners for radiochromic EBT film dosimetry: a commercial flatbed document scanner and a widely used radiographic film scanner. We evaluated the Epson Perfection V700 Photo flatbed scanner and the Vidar VXR Dosimetry Pro Advantage scanner as measurement devices for radiochromic EBT film. Measurements were made of scan orientation effects, response uniformity, and scanner noise. Scanners were tested using films irradiated with eight separate 3×3 cm2 fields to doses ranging from 0.115–5.119 Gy. ImageJ and RIT software was used for analyzing the Epson and Vidar scans, respectively. For repeated scans of a single film, the measurements in each dose region were reproducible to within ±0.3% standard deviation (SD) with both scanners. Film‐to‐film variations for corresponding doses were measured to be within ±0.4% SD for both Epson scanner and Vidar scanners. Overall, the Epson scanner showed a 10% smaller range of pixel value compared to the Vidar scanner. Scanner noise was small: ±0.3% SD for the Epson and ±0.2% for the Vidar. Overall measurement uniformity for blank film in both systems was better than ±0.2%, provided that the leading and trailing 2 cm film edges were neglected in the Vidar system. In this region artifacts are attributed to the film rollers. Neither system demonstrated a clear measurement advantage. The Epson scanner is a relatively inexpensive method for analyzing radiochromic film, but there is a lack of commercially available software. For a clinic already using a Vidar scanner, applying it to radiochromic film is attractive because commercial software is available. However, care must be taken to avoid using the leading and trailing film edges. PACS number: 87.55.Qr

  8. Sundstrand’s Precision Metal Forming Cell. Industrial Modernization Incentive Program (IMIP). Phase 2

    DTIC Science & Technology

    1991-03-01

    1-2 1.4 CONCLUSIONS AND RECOMMENDATIONS ....................... 1-2 20. PHASE II MANAGEMENT PLAN...2-1 2.1 PROGRAM MANAGEMENT ................................... 2-1 2.2 IM IP TEAM...Barbier, reference Section 2.0 (Phase II Management Plan), is complete and this report provides the results of the Phase II study. 1.2 OBJECTIVES The

  9. What Works in Oklahoma Schools: A Comprehensive Needs Assessment of Oklahoma Schools. Phase II State Report

    ERIC Educational Resources Information Center

    Marzano Research Laboratory, 2010

    2010-01-01

    Phase II provides a more detailed examination of classroom variables important to achievement in Oklahoma schools. Where Phase I addressed all nine of the Oklahoma essential elements using survey data, Phase II focuses on what occurs in Oklahoma classrooms primarily using data from principal interviews, classroom observations (on-site), and video…

  10. Demonstration of holographic smart card system using the optical memory technology

    NASA Astrophysics Data System (ADS)

    Kim, JungHoi; Choi, JaeKwang; An, JunWon; Kim, Nam; Lee, KwonYeon; Jeon, SeckHee

    2003-05-01

    In this paper, we demonstrate the holographic smart card system using digital holographic memory technique that uses reference beam encrypted by the random phase mask to prevent unauthorized users from accessing the stored digital page. The input data that include document data, a picture of face, and a fingerprint for identification is encoded digitally and then coupled with the reference beam modulated by a random phase mask. Therefore, this proposed system can execute recording in the order of MB~GB and readout all personal information from just one card without any additional database system. Also, recorded digital holograms can't be reconstructed without a phase key and can't be copied by using computers, scanners, or photography.

  11. Automatic exposure control at single- and dual-heartbeat CTCA on a 320-MDCT volume scanner: effect of heart rate, exposure phase window setting, and reconstruction algorithm.

    PubMed

    Funama, Yoshinori; Utsunomiya, Daisuke; Taguchi, Katsuyuki; Oda, Seitaro; Shimonobo, Toshiaki; Yamashita, Yasuyuki

    2014-05-01

    To investigate whether electrocardiogram (ECG)-gated single- and dual-heartbeat computed tomography coronary angiography (CTCA) with automatic exposure control (AEC) yields images with uniform image noise at reduced radiation doses. Using an anthropomorphic chest CT phantom we performed prospectively ECG-gated single- and dual-heartbeat CTCA on a second-generation 320-multidetector CT volume scanner. The exposure phase window was set at 75%, 70-80%, 40-80%, and 0-100% and the heart rate at 60 or 80 or corr80 bpm; images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR, adaptive iterative dose reduction 3D). We applied AEC and set the image noise level to 20 or 25 HU. For each technique we determined the image noise and the radiation dose to the phantom center. With half-scan reconstruction at 60 bpm, a 70-80% phase window- and a 20-HU standard deviation (SD) setting, the imagenoise level and -variation along the z axis manifested similar curves with FBP and IR. With half-scan reconstruction, the radiation dose to the phantom center with 70-80% phase window was 18.89 and 12.34 mGy for FBP and 4.61 and 3.10 mGy for IR at an SD setting SD of 20 and 25 HU, respectively. At 80 bpm with two-segment reconstruction the dose was approximately twice that of 60 bpm at both SD settings. However, increasing radiation dose at corr80 bpm was suppressed to 1.39 times compared to 60 bpm. AEC at ECG-gated single- and dual-heartbeat CTCA controls the image noise at different radiation dose. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Use of a 1.0 Tesla open scanner for evaluation of pediatric and congenital heart disease: a retrospective cohort study.

    PubMed

    Lu, Jimmy C; Nielsen, James C; Morowitz, Layne; Musani, Muzammil; Ghadimi Mahani, Maryam; Agarwal, Prachi P; Ibrahim, El-Sayed H; Dorfman, Adam L

    2015-05-25

    Open cardiovascular magnetic resonance (CMR) scanners offer the potential for imaging patients with claustrophobia or large body size, but at a lower 1.0 Tesla magnetic field. This study aimed to evaluate the efficacy of open CMR for evaluation of pediatric and congenital heart disease. This retrospective, cross-sectional study included all patients ≤18 years old or with congenital heart disease who underwent CMR on an open 1.0 Tesla scanner at two centers from 2012-2014. Indications for CMR and clinical questions were extracted from the medical record. Studies were qualitatively graded for image quality and diagnostic utility. In a subset of 25 patients, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were compared to size- and diagnosis-matched patients with CMR on a 1.5 Tesla scanner. A total of 65 patients (median 17.3 years old, 60% male) were included. Congenital heart disease was present in 32 (50%), with tetralogy of Fallot and bicuspid aortic valve the most common diagnoses. Open CMR was used due to scheduling/equipment issues in 51 (80%), claustrophobia in 7 (11%), and patient size in 3 (5%); 4 patients with claustrophobia had failed CMR on a different scanner, but completed the study on open CMR without sedation. All patients had good or excellent image quality on black blood, phase contrast, magnetic resonance angiography, and late gadolinium enhancement imaging. There was below average image quality in 3/63 (5%) patients with cine images, and 4/15 (27%) patients with coronary artery imaging. SNR and CNR were decreased in cine and magnetic resonance angiography images compared to 1.5 Tesla. The clinical question was answered adequately in all but 2 patients; 1 patient with a Fontan had artifact from an embolization coil limiting RV volume analysis, and in 1 patient the right coronary artery origin was not well seen. Open 1.0 Tesla scanners can effectively evaluate pediatric and congenital heart disease, including patients with claustrophobia and larger body size. Despite minor artifacts and differences in SNR and CNR, the majority of clinical questions can be answered adequately, with some limitations with coronary artery imaging. Further evaluation is necessary to optimize protocols and image quality.

  13. Next-Generation Terrestrial Laser Scanning to Measure Forest Canopy Structure

    NASA Astrophysics Data System (ADS)

    Danson, M.

    2015-12-01

    Terrestrial laser scanners (TLS) are now capable of semi-automatic reconstruction of the structure of complete trees or forest stands and have the potential to provide detailed information on tree architecture and foliage biophysical properties. The trends for the next generation of TLS are towards higher resolution, faster scanning and full-waveform data recording, with mobile, multispectral laser devices. The convergence of these technological advances in the next generation of TLS will allow the production of information for forest and woodland mapping and monitoring that is far more detailed, more accurate, and more comprehensive than any available today. This paper describes recent scientific advances in the application of TLS for characterising forest and woodland areas, drawing on the authors' development of the Salford Advanced Laser Canopy Analyser (SALCA), the activities of the Terrestrial Laser Scanner International Interest Group (TLSIIG), and recent advances in laser scanner technology around the world. The key findings illustrated in the paper are that (i) a complete understanding of system measurement characteristics is required for quantitative analysis of TLS data, (ii) full-waveform data recording is required for extraction of forest biophysical variables and, (iii) multi-wavelength systems provide additional spectral information that is essential for classifying different vegetation components. The paper uses a range of recent experimental TLS measurements to support these findings, and sets out a vision for new research to develop an information-rich future-forest information system, populated by mobile autonomous multispectral TLS devices.

  14. Evaluating causes of error in landmark-based data collection using scanners

    PubMed Central

    Shearer, Brian M.; Cooke, Siobhán B.; Halenar, Lauren B.; Reber, Samantha L.; Plummer, Jeannette E.; Delson, Eric

    2017-01-01

    In this study, we assess the precision, accuracy, and repeatability of craniodental landmarks (Types I, II, and III, plus curves of semilandmarks) on a single macaque cranium digitally reconstructed with three different surface scanners and a microCT scanner. Nine researchers with varying degrees of osteological and geometric morphometric knowledge landmarked ten iterations of each scan (40 total) to test the effects of scan quality, researcher experience, and landmark type on levels of intra- and interobserver error. Two researchers additionally landmarked ten specimens from seven different macaque species using the same landmark protocol to test the effects of the previously listed variables relative to species-level morphological differences (i.e., observer variance versus real biological variance). Error rates within and among researchers by scan type were calculated to determine whether or not data collected by different individuals or on different digitally rendered crania are consistent enough to be used in a single dataset. Results indicate that scan type does not impact rate of intra- or interobserver error. Interobserver error is far greater than intraobserver error among all individuals, and is similar in variance to that found among different macaque species. Additionally, experience with osteology and morphometrics both positively contribute to precision in multiple landmarking sessions, even where less experienced researchers have been trained in point acquisition. Individual training increases precision (although not necessarily accuracy), and is highly recommended in any situation where multiple researchers will be collecting data for a single project. PMID:29099867

  15. Broadly available imaging devices enable high-quality low-cost photometry.

    PubMed

    Christodouleas, Dionysios C; Nemiroski, Alex; Kumar, Ashok A; Whitesides, George M

    2015-09-15

    This paper demonstrates that, for applications in resource-limited environments, expensive microplate spectrophotometers that are used in many central laboratories for parallel measurement of absorbance of samples can be replaced by photometers based on inexpensive and ubiquitous, consumer electronic devices (e.g., scanners and cell-phone cameras). Two devices, (i) a flatbed scanner operating in transmittance mode and (ii) a camera-based photometer (constructed from a cell phone camera, a planar light source, and a cardboard box), demonstrate the concept. These devices illuminate samples in microtiter plates from one side and use the RGB-based imaging sensors of the scanner/camera to measure the light transmitted to the other side. The broadband absorbance of samples (RGB-resolved absorbance) can be calculated using the RGB color values of only three pixels per microwell. Rigorous theoretical analysis establishes a well-defined relationship between the absorbance spectrum of a sample and its corresponding RGB-resolved absorbance. The linearity and precision of measurements performed with these low-cost photometers on different dyes, which absorb across the range of the visible spectrum, and chromogenic products of assays (e.g., enzymatic, ELISA) demonstrate that these low-cost photometers can be used reliably in a broad range of chemical and biochemical analyses. The ability to perform accurate measurements of absorbance on liquid samples, in parallel and at low cost, would enable testing, typically reserved for well-equipped clinics and laboratories, to be performed in circumstances where resources and expertise are limited.

  16. Alabama Coronary Artery Bypass Grafting Project

    PubMed Central

    Holman, William L.; Sansom, Monique; Kiefe, Catarina I.; Peterson, Eric D.; Hubbard, Steve G.; Delong, James F.; Allman, Richard M.

    2004-01-01

    Objective/Background: This report describes the first round of results for Phase II of the Alabama CABG Project, a regional quality improvement initiative. Methods: Charts submitted by all hospitals in Alabama performing CABG (ICD-9 codes 36.10–36.20) were reviewed by a Clinical Data Abstraction Center (CDAC) (preintervention 1999–2000; postintervention 2000–2001). Variables that described quality in Phase I were abstracted for Phase II and data describing the new variables of β-blocker use and lipid management were collected. Data samples collected onsite by participating hospitals were used for rapid cycle improvement in Phase II. Results: CDAC data (n = 1927 cases in 1999; n = 2001 cases in 2000) showed that improvements from Phase I in aspirin prescription, internal mammary artery use, and duration of intubation persisted in Phase II. During Phase II, use of β-blockers before, during, or after CABG increased from 65% to 76% of patients (P < 0.05). Appropriate lipid management, an aggregate variable, occurred in 91% of patients before and 91% after the educational intervention. However, there were improvements in 3 of 5 subcategories for lipid management (documenting a lipid disorder [52%–57%], initiating drug therapy [45%–53%], and dietary counseling [74%–91%]; P < 0.05). Conclusions: In Phase II, this statewide process-oriented quality improvement program added two new measures of quality. Achievements of quality improvement from Phase I persisted in Phase II, and improvements were seen in the new variables of lipid management and perioperative use of β-blockers. PMID:14685107

  17. Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990

    EIA Publications

    1994-01-01

    The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

  18. Durability of lightweight concrete : Phase II : wetting and drying tests, Phase III : freezing and thawing tests.

    DOT National Transportation Integrated Search

    1966-12-01

    This report describes a laboratory research program on the durability of lightweight concrete. Two phases of a three phase study are covered by this report, while the remaining phase is still under study. The two phases being reported are Phase II - ...

  19. Ion Conduction Path and Low-Temperature Form:. Argyrodite-Type Superionic Conductors

    NASA Astrophysics Data System (ADS)

    Onoda, M.; Wada, H.; Sato, A.; Ishii, M.

    2007-01-01

    The structures of the orthorhombic room-temperature phase of Cu8GeS6 (phase II) and the monoclinic low-temperature phase of Ag7TaS6 (phase II) have been successfully refined based on X-ray diffraction data from 12-fold twinned (Cu8GeS6 II) and 24-fold twinned (Ag7TaS6 II) crystals. Respectively among 6 major and 6 minor twin domains of Cu8GeS6 II, or among 12 major and 12 minor twin domains of Ag7TaS6 II, the argyrodite-type frameworks, GeS6 or TaS6, can be superposed to each other in principle, and only Cu-Cu or Ag-Ag network directions differ. At higher temperature, the crystals were considered to be 2-fold twinned crystals of superionic-conductor phase I with a space group F 43m. On cooling, each domain transforms into 6 domains of orthorhombic Cu8GeS6 II or 12 domains of monoclinic Ag7TaS6 II. Superposed projections along 6 directions of the structure of Cu8GeS6 II and along 12 directions of the structure of Ag7TaS6 II seem to show approximate expressions for Cu-ion and Ag-ion conduction paths in superionic-conductor phases, Cu8GeS6 I and Ag7TaS6I.

  20. Estimates of general combining ability in Hevea breeding at the Rubber Research Institute of Malaysia : I. Phases II and III A.

    PubMed

    Tan, H

    1977-01-01

    Estimates of general combining ability of parents for yield and girth obtained separately from seedlings and their corresponding clonal families in Phases II and IIIA of the RRIM breeding programme are compared. A highly significant positive correlation (r = 0.71***) is found between GCA estimates from seedling and clonal families for yield in Phase IIIA, but not in Phase II (r = -0.03(NS)) nor for girth (r= -0.27(NS)) in Phase IIIA. The correlations for Phase II yield and Phase IIIA girth, however, improve when the GCA estimates based on small sample size or reversed rankings are excluded.When the best selections (based on present clonal and seedling information) are compared, all five of the parents top-ranking for yield are common in Phase IIIA but only two parents are common for yield and girth in Phases II and IIIA respectively. However, only one parent for yield in Phase II and two parents for girth in Phase IIIA would, if selected on clonal performance, have been omitted from the top ranking selections made by previous workers using seedling information.These findings, therefore, justify the choice of parents based on GCA estimates for yield obtained from seedling performance. Similar justification cannot be offered for girth, for which analysis is confounded by uninterpretable site and seasonal effects.

  1. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Zheng, Yunhui (Inventor); Degnan, III, John James (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  2. Benzocaine polymorphism: pressure-temperature phase diagram involving forms II and III.

    PubMed

    Gana, Inès; Barrio, Maria; Do, Bernard; Tamarit, Josep-Lluís; Céolin, René; Rietveld, Ivo B

    2013-11-18

    Understanding the phase behavior of an active pharmaceutical ingredient in a drug formulation is required to avoid the occurrence of sudden phase changes resulting in decrease of bioavailability in a marketed product. Benzocaine is known to possess three crystalline polymorphs, but their stability hierarchy has so far not been determined. A topological method and direct calorimetric measurements under pressure have been used to construct the topological pressure-temperature diagram of the phase relationships between the solid phases II and III, the liquid, and the vapor phase. In the process, the transition temperature between solid phases III and II and its enthalpy change have been determined. Solid phase II, which has the highest melting point, is the more stable phase under ambient conditions in this phase diagram. Surprisingly, solid phase I has not been observed during the study, even though the scarce literature data on its thermal behavior appear to indicate that it might be the most stable one of the three solid phases. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. ASR-9 processor augmentation card (9-PAC) phase II scan-scan correlator algorithms

    DOT National Transportation Integrated Search

    2001-04-26

    The report documents the scan-scan correlator (tracker) algorithm developed for Phase II of the ASR-9 Processor Augmentation Card (9-PAC) project. The improved correlation and tracking algorithms in 9-PAC Phase II decrease the incidence of false-alar...

  4. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography.

    PubMed

    Casper, Andrew; Liu, Dalong; Ebbini, Emad S

    2012-01-01

    A system for the realtime generation and control of multiple-focus ultrasound phased-array heating patterns is presented. The system employs a 1-MHz, 64-element array and driving electronics capable of fine spatial and temporal control of the heating pattern. The driver is integrated with a realtime 2-D temperature imaging system implemented on a commercial scanner. The coordinates of the temperature control points are defined on B-mode guidance images from the scanner, together with the temperature set points and controller parameters. The temperature at each point is controlled by an independent proportional, integral, and derivative controller that determines the focal intensity at that point. Optimal multiple-focus synthesis is applied to generate the desired heating pattern at the control points. The controller dynamically reallocates the power available among the foci from the shared power supply upon reaching the desired temperature at each control point. Furthermore, anti-windup compensation is implemented at each control point to improve the system dynamics. In vitro experiments in tissue-mimicking phantom demonstrate the robustness of the controllers for short (2-5 s) and longer multiple-focus high-intensity focused ultrasound exposures. Thermocouple measurements in the vicinity of the control points confirm the dynamics of the temperature variations obtained through noninvasive feedback. © 2011 IEEE

  5. Commissioning of a new wide-bore MRI scanner for radiotherapy planning of head and neck cancer

    PubMed Central

    Liney, G P; Owen, S C; Beaumont, A K E; Lazar, V R; Manton, D J

    2013-01-01

    Objective: A combination of CT and MRI is recommended for radiotherapy planning of head and neck cancers, and optimal spatial co-registration is achieved by imaging in the treatment position using the necessary immobilisation devices on both occasions, something which requires wide-bore scanners. Quality assurance experiments were carried out to commission a newly installed 1.5-T wide-bore MRI scanner and a dedicated, flexible six-channel phased array head and neck coil. Methods: Signal-to-noise ratio (SNR) and spatial signal uniformity were quantified using a homogeneous aqueous phantom, and geometric distortion was quantified using a phantom with water-filled fiducials in a grid pattern. Volunteer scans were also used to determine the in vivo image quality. Clinically relevant T1 weighted and T2 weighted fat-suppressed sequences were assessed in multiple scan planes (both sequences fast spin echo based). The performance of two online signal uniformity correction schemes, one utilising low-resolution reference scans and the other not utilising low-resolution reference scans, was compared. Results: Geometric distortions, for a ±35-kHz bandwidth, were <1 mm for locations within 10 cm of the isocentre rising to 1.8 mm at 18 cm away. SNR was above 50, and uniformity in the axial plane was 71% and 95% before and after uniformity correction, respectively. Conclusion: The combined performance of the wide-bore scanner and the dedicated coil was adjudged adequate, although superior–inferior spatial coverage was slightly limited in the lower neck. Advances in knowledge: These results will be of interest to the increasing number of oncology centres that are seeking to incorporate MRI into planning practice using dedicated equipment. PMID:23690434

  6. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, S; Wang, Y; Weng, H

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiationmore » dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle.« less

  7. Accuracy of complete-arch model using an intraoral video scanner: An in vitro study.

    PubMed

    Jeong, Il-Do; Lee, Jae-Jun; Jeon, Jin-Hun; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul

    2016-06-01

    Information on the accuracy of intraoral video scanners for long-span areas is limited. The purpose of this in vitro study was to evaluate and compare the trueness and precision of an intraoral video scanner, an intraoral still image scanner, and a blue-light scanner for the production of digital impressions. Reference scan data were obtained by scanning a complete-arch model. An identical model was scanned 8 times using an intraoral video scanner (CEREC Omnicam; Sirona) and an intraoral still image scanner (CEREC Bluecam; Sirona), and stone casts made from conventional impressions of the same model were scanned 8 times with a blue-light scanner as a control (Identica Blue; Medit). Accuracy consists of trueness (the extent to which the scan data differ from the reference scan) and precision (the similarity of the data from multiple scans). To evaluate precision, 8 scans were superimposed using 3-dimensional analysis software; the reference scan data were then superimposed to determine the trueness. Differences were analyzed using 1-way ANOVA and post hoc Tukey HSD tests (α=.05). Trueness in the video scanner group was not significantly different from that in the control group. However, the video scanner group showed significantly lower values than those of the still image scanner group for all variables (P<.05), except in tolerance range. The root mean square, standard deviations, and mean negative precision values for the video scanner group were significantly higher than those for the other groups (P<.05). Digital impressions obtained by the intraoral video scanner showed better accuracy for long-span areas than those captured by the still image scanner. However, the video scanner was less accurate than the laboratory scanner. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Impact of event positioning algorithm on performance of a whole-body PET scanner using one-to-one coupled detectors

    NASA Astrophysics Data System (ADS)

    Surti, S.; Karp, J. S.

    2018-03-01

    The advent of silicon photomultipliers (SiPMs) has introduced the possibility of increased detector performance in commercial whole-body PET scanners. The primary advantage of these photodetectors is the ability to couple a single SiPM channel directly to a single pixel of PET scintillator that is typically 4 mm wide (one-to-one coupled detector design). We performed simulation studies to evaluate the impact of three different event positioning algorithms in such detectors: (i) a weighted energy centroid positioning (Anger logic), (ii) identifying the crystal with maximum energy deposition (1st max crystal), and (iii) identifying the crystal with the second highest energy deposition (2nd max crystal). Detector simulations performed with LSO crystals indicate reduced positioning errors when using the 2nd max crystal positioning algorithm. These studies are performed over a range of crystal cross-sections varying from 1  ×  1 mm2 to 4  ×  4 mm2 as well as crystal thickness of 1 cm to 3 cm. System simulations were performed for a whole-body PET scanner (85 cm ring diameter) with a long axial FOV (70 cm long) and show an improvement in reconstructed spatial resolution for a point source when using the 2nd max crystal positioning algorithm. Finally, we observe a 30-40% gain in contrast recovery coefficient values for 1 and 0.5 cm diameter spheres when using the 2nd max crystal positioning algorithm compared to the 1st max crystal positioning algorithm. These results show that there is an advantage to implementing the 2nd max crystal positioning algorithm in a new generation of PET scanners using one-to-one coupled detector design with lutetium based crystals, including LSO, LYSO or scintillators that have similar density and effective atomic number as LSO.

  9. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Jeong, Ki-Hun

    2018-02-19

    We report a 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Lissajous scanning was implemented by the electrothermal MEMS fiber scanner. The Lissajous scanned MEMS fiber scanner was precisely fabricated to facilitate flip-chip connection, and bonded with a printed circuit board. The scanner was successfully combined with a fiber-based confocal imaging system. A two-dimensional reflectance image of the metal pattern 'OPTICS' was successfully obtained with the scanner. The flip-chip bonded scanner minimizes electrical packaging dimensions. The inner diameter of the flip-chip bonded MEMS fiber scanner is 1.3 mm. The flip-chip bonded MEMS fiber scanner is fully packaged with a 1.65 mm diameter housing tube, 1 mm diameter GRIN lens, and a single mode optical fiber. The packaged confocal endomicroscopic catheter can provide a new breakthrough for diverse in-vivo endomicroscopic applications.

  10. Mechanisms of blood pressure alterations in response to the Valsalva maneuver in postural tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Sandroni, P.; Novak, V.; Opfer-Gehrking, T. L.; Huck, C. A.; Low, P. A.

    2000-01-01

    The postural tachycardia syndrome (POTS) is characterized clinically by orthostatic lightheadedness and tachycardia. When these patients perform a Valsalva maneuver, there is an excessive blood pressure increment after cessation of the maneuver (phase IV) that is sometimes associated with headaches. It is not known whether excessive phase IV is due to excessive peripheral vascular tone (an alpha-adrenergic mechanism) or is a manifestation of increased beta-adrenergic tone (hyperadrenergic state). The authors undertook a pharmacologic study evaluating the effect of intravenous phentolamine (alpha-adrenergic antagonist) and propranolol (beta-adrenergic antagonist) on the different phases of the Valsalva maneuver in a group of patients with POTS and age-matched normal control subjects. Patients with POTS had mean phases, when compared with controls, that were characterized by more negative II_E (p = 0.07), smaller II_L (p = 0.04), and significantly larger phase IV (p = 0.001). The effect of phentolamine was qualitatively and quantitatively different in POTS when compared with controls. Ten mg phentolamine in controls resulted in a significant accentuation of phase II_E (p = 0.001), attenuation of phase II_L (p = 0.002), and increase of phase IV (57.6 vs 30.7 mm Hg; p = 0.025). These changes resembled those of patients with POTS at baseline. In patients with POTS, the phase II abnormalities, already present, were further accentuated (p <0.001), and phase IV became smaller (50.6 vs 73.8 mm Hg; p = 0.09). Propranolol had no significant effect on phases II_E and II_L, but significantly reduced phase IV in both controls (p <0.05) and in patients with POTS (p <0.001) and improved the headache symptoms, when present, during and after phase IV. The authors conclude that phase IV is mainly under beta-adrenergic regulation and that the exaggerated phase IV in POTS is a result of a hyperadrenergic state.

  11. Measurement of time delay for a prospectively gated CT simulator.

    PubMed

    Goharian, M; Khan, R F H

    2010-04-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery; otherwise the simulation and treatment may not be correlated with the patient's breathing.

  12. Evaluation of the Transverse Oscillation Technique for Cardiac Phased Array Imaging: A Theoretical Study.

    PubMed

    Heyde, Brecht; Bottenus, Nick; D'hooge, Jan; Trahey, Gregg E

    2017-02-01

    The transverse oscillation (TO) technique can improve the estimation of tissue motion perpendicular to the ultrasound beam direction. TOs can be introduced using plane wave (PW) insonification and bilobed Gaussian apodization (BA) on receive (abbreviated as PWTO). Furthermore, the TO frequency of PWTO can be doubled after a heterodyning demodulation process is performed (abbreviated as PWTO*). This paper is concerned with identifying the limitations of the PWTO technique in the specific context of myocardial deformation imaging with phased arrays and investigating the conditions in which it remains advantageous over traditional focused (FOC) beamforming. For this purpose, several tissue phantoms were simulated using Field II, undergoing a wide range of displacement magnitudes and modes (lateral, axial, and rotational motions). The Cramer-Rao lower bound was used to optimize TO beamforming parameters and theoretically predict the fundamental tracking performance limits associated with the FOC, PWTO, and PWTO* beamforming scenarios. This framework was extended to also predict the performance for BA functions that are windowed by the physical aperture of the transducer, leading to higher lateral oscillations. It was found that windowed BA functions resulted in lower jitter errors compared with traditional BA functions. PWTO* outperformed FOC at all investigated signal-to-noise ratio (SNR) levels but only up to a certain displacement, with the advantage rapidly decreasing when the SNR increased. These results suggest that PWTO* improves lateral tracking performance, but only when interframe displacements remain relatively low. This paper concludes by translating these findings into a clinical environment by suggesting optimal scanner settings.

  13. Lidar-based door and stair detection from a mobile robot

    NASA Astrophysics Data System (ADS)

    Bansal, Mayank; Southall, Ben; Matei, Bogdan; Eledath, Jayan; Sawhney, Harpreet

    2010-04-01

    We present an on-the-move LIDAR-based object detection system for autonomous and semi-autonomous unmanned vehicle systems. In this paper we make several contributions: (i) we describe an algorithm for real-time detection of objects such as doors and stairs in indoor environments; (ii) we describe efficient data structures and algorithms for processing 3D point clouds acquired by laser scanners in a streaming manner, which minimize the memory copying and access. We show qualitative results demonstrating the effectiveness of our approach on runs in an indoor office environment.

  14. 89. View of DR 2 antenna (structure no. 736) at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. View of DR 2 antenna (structure no. 736) at 65 percent completion showing erection process. Antenna system designed and factory construction by D.S. Kennedy & Company., Comasset, MA, 1958. Note scanner radar building in background. Official photograph BMEWS Project by unknown photographer, 11 July, 1960, Photographic Services, Riverton, NJ, BMEWS, clear as negative no. A-824. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. TNX GeoSiphon Cell (TGSC-1) Phase II Single Cell Deployment/Demonstration Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phifer, M.A.

    1999-04-15

    This Phase II final report documents the Phase II testing conducted from June 18, 1998 through November 13, 1998, and it focuses on the application of the siphon technology as a sub-component of the overall GeoSiphon Cell technology. [Q-TPL-T-00004

  16. 40 CFR 72.44 - Phase II repowering extensions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) PERMITS REGULATION Acid Rain Compliance Plan and Compliance Options § 72.44 Phase II repowering... the requirements of paragraph (a)(1)(i) of this section may include in the unit's Phase II Acid Rain... authority shall issue the Acid Rain portion of the operating permit including: (A) The approved repowering...

  17. 40 CFR 72.44 - Phase II repowering extensions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) PERMITS REGULATION Acid Rain Compliance Plan and Compliance Options § 72.44 Phase II repowering... the requirements of paragraph (a)(1)(i) of this section may include in the unit's Phase II Acid Rain... authority shall issue the Acid Rain portion of the operating permit including: (A) The approved repowering...

  18. 40 CFR 72.44 - Phase II repowering extensions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) PERMITS REGULATION Acid Rain Compliance Plan and Compliance Options § 72.44 Phase II repowering... the requirements of paragraph (a)(1)(i) of this section may include in the unit's Phase II Acid Rain... authority shall issue the Acid Rain portion of the operating permit including: (A) The approved repowering...

  19. 40 CFR 72.44 - Phase II repowering extensions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) PERMITS REGULATION Acid Rain Compliance Plan and Compliance Options § 72.44 Phase II repowering... the requirements of paragraph (a)(1)(i) of this section may include in the unit's Phase II Acid Rain... authority shall issue the Acid Rain portion of the operating permit including: (A) The approved repowering...

  20. 40 CFR 72.44 - Phase II repowering extensions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) PERMITS REGULATION Acid Rain Compliance Plan and Compliance Options § 72.44 Phase II repowering... the requirements of paragraph (a)(1)(i) of this section may include in the unit's Phase II Acid Rain... authority shall issue the Acid Rain portion of the operating permit including: (A) The approved repowering...

  1. First results of GERDA Phase II and consistency with background models

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode1, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-01-01

    The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). GERDA operates bare high purity germanium detectors submersed in liquid Argon (LAr). Phase II of data-taking started in Dec 2015 and is currently ongoing. In Phase II 35 kg of germanium detectors enriched in 76Ge including thirty newly produced Broad Energy Germanium (BEGe) detectors is operating to reach an exposure of 100 kg·yr within about 3 years data taking. The design goal of Phase II is to reduce the background by one order of magnitude to get the sensitivity for T1/20ν = O≤ft( {{{10}26}} \\right){{ yr}}. To achieve the necessary background reduction, the setup was complemented with LAr veto. Analysis of the background spectrum of Phase II demonstrates consistency with the background models. Furthermore 226Ra and 232Th contamination levels consistent with screening results. In the first Phase II data release we found no hint for a 0νββ decay signal and place a limit of this process T1/20ν > 5.3 \\cdot {1025} yr (90% C.L., sensitivity 4.0·1025 yr). First results of GERDA Phase II will be presented.

  2. Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: Procedure development using CaliBrain structural MRI data

    PubMed Central

    2009-01-01

    Background Structural Magnetic Resonance Imaging (sMRI) of the brain is employed in the assessment of a wide range of neuropsychiatric disorders. In order to improve statistical power in such studies it is desirable to pool scanning resources from multiple centres. The CaliBrain project was designed to provide for an assessment of scanner differences at three centres in Scotland, and to assess the practicality of pooling scans from multiple-centres. Methods We scanned healthy subjects twice on each of the 3 scanners in the CaliBrain project with T1-weighted sequences. The tissue classifier supplied within the Statistical Parametric Mapping (SPM5) application was used to map the grey and white tissue for each scan. We were thus able to assess within scanner variability and between scanner differences. We have sought to correct for between scanner differences by adjusting the probability mappings of tissue occupancy (tissue priors) used in SPM5 for tissue classification. The adjustment procedure resulted in separate sets of tissue priors being developed for each scanner and we refer to these as scanner specific priors. Results Voxel Based Morphometry (VBM) analyses and metric tests indicated that the use of scanner specific priors reduced tissue classification differences between scanners. However, the metric results also demonstrated that the between scanner differences were not reduced to the level of within scanner variability, the ideal for scanner harmonisation. Conclusion Our results indicate the development of scanner specific priors for SPM can assist in pooling of scan resources from different research centres. This can facilitate improvements in the statistical power of quantitative brain imaging studies. PMID:19445668

  3. Ophthalmological OCT measuring arm design

    NASA Astrophysics Data System (ADS)

    Xu, Xiaonan; Gao, Jiansong; Guo, Jihua; Xue, Ping

    2002-06-01

    This paper presents a novel ophthamological optical coherence tomography detecting instrument that we design and introduces measuring arm emphatically. For the glaucoma is very common in the orient, this system can achieve both the eyeground detection and the canthus detection. And it combines the cranny lamp's conventional detection with optical coherence tomography. In order to gain the best resolution and the largest scanning range in the OCT detection, we find the optical system should obey these principles in the measuring arm design: (i) the parallel light from the collimator goes through the lens and focuses on the slot of the cranny lamp. The movement of the scanning point produced by the scanner is carrying on along the slot. (Ii) In the whole light route, the scanner images on the laser object lens of the OCT. The center light of the infrared goes through the center of the object lens all the time. Considering all the system, this design has a longitudinal resolution of 15micrometers , and a transverse resolution of 20micrometers at imaging velocity of 4 frames per second.

  4. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    PubMed

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The Fate of Incoming Stimuli during NREM Sleep is Determined by Spindles and the Phase of the Slow Oscillation.

    PubMed

    Schabus, Manuel; Dang-Vu, Thien Thanh; Heib, Dominik Philip Johannes; Boly, Mélanie; Desseilles, Martin; Vandewalle, Gilles; Schmidt, Christina; Albouy, Geneviève; Darsaud, Annabelle; Gais, Steffen; Degueldre, Christian; Balteau, Evelyne; Phillips, Christophe; Luxen, André; Maquet, Pierre

    2012-01-01

    The present study aimed at identifying the neurophysiological responses associated with auditory stimulation during non-rapid eye movement (NREM) sleep using simultaneous electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) recordings. It was reported earlier that auditory stimuli produce bilateral activation in auditory cortex, thalamus, and caudate during both wakefulness and NREM sleep. However, due to the spontaneous membrane potential fluctuations cortical responses may be highly variable during NREM. Here we now examine the modulation of cerebral responses to tones depending on the presence or absence of sleep spindles and the phase of the slow oscillation. Thirteen healthy young subjects were scanned successfully during stage 2-4 NREM sleep in the first half of the night in a 3 T scanner. Subjects were not sleep-deprived and sounds were post hoc classified according to (i) the presence of sleep spindles or (ii) the phase of the slow oscillation during (±300 ms) tone delivery. These detected sounds were then entered as regressors of interest in fMRI analyses. Interestingly wake-like responses - although somewhat altered in size and location - persisted during NREM sleep, except during present spindles (as previously published in Dang-Vu et al., 2011) and the negative going phase of the slow oscillation during which responses became less consistent or even absent. While the phase of the slow oscillation did not alter brain responses in primary sensory cortex, it did modulate responses at higher cortical levels. In addition EEG analyses show a distinct N550 response to tones during the presence of light sleep spindles and suggest that in deep NREM sleep the brain is more responsive during the positive going slope of the slow oscillation. The presence of short temporal windows during which the brain is open to external stimuli is consistent with the fact that even during deep sleep meaningful events can be detected. Altogether, our results emphasize the notion that spontaneous fluctuations of brain activity profoundly modify brain responses to external information across all behavioral states, including deep NREM sleep.

  6. Efficacy and safety of rifaximin in Japanese patients with hepatic encephalopathy: A phase II/III, multicenter, randomized, evaluator-blinded, active-controlled trial and a phase III, multicenter, open trial.

    PubMed

    Suzuki, Kazuyuki; Endo, Ryujin; Takikawa, Yasuhiro; Moriyasu, Fuminori; Aoyagi, Yutaka; Moriwaki, Hisataka; Terai, Shuji; Sakaida, Isao; Sakai, Yoshiyuki; Nishiguchi, Shuhei; Ishikawa, Toru; Takagi, Hitoshi; Naganuma, Atsushi; Genda, Takuya; Ichida, Takafumi; Takaguchi, Koichi; Miyazawa, Katsuhiko; Okita, Kiwamu

    2018-05-01

    The efficacy and safety of rifaximin in the treatment of hepatic encephalopathy (HE) are widely known, but they have not been confirmed in Japanese patients with HE. Thus, two prospective, randomized studies (a phase II/III study and a phase III study) were carried out. Subjects with grade I or II HE and hyperammonemia were enrolled. The phase II/III study, which was a randomized, evaluator-blinded, active-comparator, parallel-group study, was undertaken at 37 institutions in Japan. Treatment periods were 14 days. Eligible patients were randomized to the rifaximin group (1200 mg/day) or the lactitol group (18-36 g/day). The phase III study was carried out in the same patients previously enrolled in the phase II/III study, and they were all treated with rifaximin (1200 mg/day) for 10 weeks. In the phase II/III study, 172 patients were enrolled. Blood ammonia (B-NH 3 ) concentration was significantly improved in the rifaximin group, but the difference between the two groups was not significant. The portal systemic encephalopathy index (PSE index), including HE grade, was significantly improved in both groups. In the phase III study, 87.3% of enrolled patients completed the treatment. The improved B-NH 3 concentration and PSE index were well maintained from the phase II/III study during the treatment period of the phase III study. Adverse drug reactions (ADRs) were seen in 13.4% of patients who received rifaximin, but there were no severe ADRs leading to death. The efficacy of rifaximin is sufficient and treatment is well tolerated in Japanese patients with HE and hyperammonemia. © 2017 The Japan Society of Hepatology.

  7. Phenomenology of Polymorphism, III: p, TDiagram and Stability of Piracetam Polymorphs

    NASA Astrophysics Data System (ADS)

    Céolin, R.; Agafonov, V.; Louër, D.; Dzyabchenko, V. A.; Toscani, S.; Cense, J. M.

    1996-02-01

    The nootropic drug Piracetam is known to crystallize in three phases. In order to obtain their stability hierarchy from sublimation pressure inequalities, the drawing of a topologicalp,Tdiagram was attempted. For such a purpose and also for quality control, crystallographic and thermodynamic data were required. Powder X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) were used. Molecular energy calculations were performed. Phase I melts at 426 K (ΔfusH(I) = +180 J·g-1). Phase II transforms into Phase I at 399 K (Δ(II→I)H= +24 J·g-1). Phase III transforms into phase I at 392 K (Δ(III→I)H= +28 J·g-1) or melts at 412 K (ΔfusH(III) = +210 J·g-1). Thep,Tdiagram shows that phase I is stable at higher temperature and phase II at lower temperature, like phase III, which is stable under high pressure. At room temperature, phase II is the more stable form, and phase I the less stable one. This agrees with the spontaneous I → II transformation observed at 298 K within a few hours, and with lattice energies, calculated previously. Molecular energy calculations and crystal structure comparison show how intermolecular hydrogen bonds and H-bonded dimers, in phases II and III, may stabilize conformations higher in energy than those of the isolated molecule and of phase I.

  8. Benefits and Sustainability of a Learning Collaborative for Implementation of Treat to Target in Rheumatoid Arthritis: Results of the TRACTION Trial Phase II.

    PubMed

    Solomon, Daniel H; Lu, Bing; Yu, Zhi; Corrigan, Cassandra; Harrold, Leslie R; Smolen, Josef S; Fraenkel, Liana; Katz, Jeffrey N; Losina, Elena

    2018-01-05

    We conducted a two-phase randomized controlled trial of a Learning Collaborative (LC) to facilitate implementation of treat to target (TTT) to manage rheumatoid arthritis (RA). We found substantial improvement in implementation of TTT in Phase I. Herein, we report on a second 9 months (Phase II) where we examined maintenance of response in Phase I and predictors of greater improvement in TTT adherence. We recruited 11 rheumatology sites and randomized them to either receive the LC during Phase I or to a wait-list control group that received the LC intervention during Phase II. The outcome was change in TTT implementation score (0 to 100, 100 is best) from pre- to post-intervention. TTT implementation score is defined as a percent of components documented in visit notes. Analyses examined: 1) the extent that the Phase I intervention teams sustained improvement in TTT; and, 2) predictors of TTT improvement. The analysis included 636 RA patients. At baseline, mean TTT implementation score was 11% in Phase I intervention sites and 13% in Phase II sites. After the intervention, TTT implementation score improved to 57% in the Phase I intervention sites and to 58% in the Phase II sites. Intervention sites from Phase I sustained the improvement during the Phase II (52%). Predictors of greater TTT improvement included only having rheumatologist providers at the site, academic affiliation of the site, fewer providers per site, and the rheumatologist provider being a trainee. Improvement in TTT remained relatively stable over a post-intervention period. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Cellulose-lanthanum hydroxide nanocomposite as a selective marker for detection of toxic copper

    PubMed Central

    2014-01-01

    In this current report, a simple, reliable, and rapid method based on modifying the cellulose surface by doping it with different percentages of lanthanum hydroxide (i.e., 1% La(OH)3-cellulose (LC), 5% La(OH)3-cellulose (LC2), and 10% La(OH)3-cellulose (LC3)) was proposed as a selective marker for detection of copper (Cu(II)) in aqueous medium. Surface properties of the newly modified cellulose phases were confirmed by Fourier transform infrared spectroscopy, field emission scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopic analysis. The effect of pH on the adsorption of modified cellulose phases for Cu(II) was evaluated, and LC3 was found to be the most selective for Cu(II) at pH 6.0. Other parameters, influencing the maximum uptake of Cu(II) on LC3, were also investigated for a deeper mechanistic understanding of the adsorption phenomena. Results showed that the adsorption capacity for Cu(II) was improved by 211% on the LC3 phase as compared to diethylaminoethyl cellulose phase after only 2 h contact time. Adsorption isotherm data established that the adsorption process nature was monolayer with a homogeneous adsorbent surface. Results displayed that the adsorption of Cu(II) onto the LC3 phase obeyed a pseudo-second-order kinetic model. Selectivity studies toward eight metal ions, i.e., Cd(II), Co(II), Cr(III), Cr(VI), Cu(II), Fe(III), Ni(II), and Zn(II), were further performed at the optimized pH value. Based on the selectivity study, it was found that Cu(II) is highly selective toward the LC3 phase. Moreover, the efficiency of the proposed method was supported by implementing it to real environmental water samples with adequate results. PMID:25258599

  10. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: Using CTDI{sub vol} to account for differences between scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Adam C.; Zankl, Maria; DeMarco, John J.

    2010-04-15

    Purpose: Monte Carlo radiation transport techniques have made it possible to accurately estimate the radiation dose to radiosensitive organs in patient models from scans performed with modern multidetector row computed tomography (MDCT) scanners. However, there is considerable variation in organ doses across scanners, even when similar acquisition conditions are used. The purpose of this study was to investigate the feasibility of a technique to estimate organ doses that would be scanner independent. This was accomplished by assessing the ability of CTDI{sub vol} measurements to account for differences in MDCT scanners that lead to organ dose differences. Methods: Monte Carlo simulationsmore » of 64-slice MDCT scanners from each of the four major manufacturers were performed. An adult female patient model from the GSF family of voxelized phantoms was used in which all ICRP Publication 103 radiosensitive organs were identified. A 120 kVp, full-body helical scan with a pitch of 1 was simulated for each scanner using similar scan protocols across scanners. From each simulated scan, the radiation dose to each organ was obtained on a per mA s basis (mGy/mA s). In addition, CTDI{sub vol} values were obtained from each scanner for the selected scan parameters. Then, to demonstrate the feasibility of generating organ dose estimates from scanner-independent coefficients, the simulated organ dose values resulting from each scanner were normalized by the CTDI{sub vol} value for those acquisition conditions. Results: CTDI{sub vol} values across scanners showed considerable variation as the coefficient of variation (CoV) across scanners was 34.1%. The simulated patient scans also demonstrated considerable differences in organ dose values, which varied by up to a factor of approximately 2 between some of the scanners. The CoV across scanners for the simulated organ doses ranged from 26.7% (for the adrenals) to 37.7% (for the thyroid), with a mean CoV of 31.5% across all organs. However, when organ doses are normalized by CTDI{sub vol} values, the differences across scanners become very small. For the CTDI{sub vol}, normalized dose values the CoVs across scanners for different organs ranged from a minimum of 2.4% (for skin tissue) to a maximum of 8.5% (for the adrenals) with a mean of 5.2%. Conclusions: This work has revealed that there is considerable variation among modern MDCT scanners in both CTDI{sub vol} and organ dose values. Because these variations are similar, CTDI{sub vol} can be used as a normalization factor with excellent results. This demonstrates the feasibility of establishing scanner-independent organ dose estimates by using CTDI{sub vol} to account for the differences between scanners.« less

  11. MECHANISM AND KINETICS OF THE FORMATION OF NOX AND OTHER COMBUSTION POLLUTANTS. PHASE II. MODIFIED COMBUSTION

    EPA Science Inventory

    The report gives Phase II results of a combined experimental/theoretical study to define the mechanisms and kinetics of the formation of NOx and other combustion pollutants. Two experimental devices were used in Phase II. A special flat-flame burner with a controlled-temperature ...

  12. 76 FR 3624 - Milford Wind Corridor Phase II, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2657-000] Milford Wind Corridor Phase II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding Milford Wind Corridor Phase II, LLC's application for market-based rate authority, with an...

  13. 40 CFR 72.73 - State issuance of Phase II permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.73 State issuance of Phase II permits... permit program under part 70 of this chapter and that has a State Acid Rain program accepted by the Administrator under § 72.71 shall be responsible for administering and enforcing Acid Rain permits effective in...

  14. 40 CFR 72.73 - State issuance of Phase II permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.73 State issuance of Phase II permits... permit program under part 70 of this chapter and that has a State Acid Rain program accepted by the Administrator under § 72.71 shall be responsible for administering and enforcing Acid Rain permits effective in...

  15. 40 CFR 72.73 - State issuance of Phase II permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.73 State issuance of Phase II permits... permit program under part 70 of this chapter and that has a State Acid Rain program accepted by the Administrator under § 72.71 shall be responsible for administering and enforcing Acid Rain permits effective in...

  16. 40 CFR 72.73 - State issuance of Phase II permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.73 State issuance of Phase II permits... permit program under part 70 of this chapter and that has a State Acid Rain program accepted by the Administrator under § 72.71 shall be responsible for administering and enforcing Acid Rain permits effective in...

  17. 40 CFR 72.74 - Federal issuance of Phase II permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.74 Federal issuance of Phase II permits. (a)(1) The Administrator will be responsible for administering and enforcing Acid Rain... and enforcing Acid Rain permits for such sources under § 72.73(a). (2) After and to the extent the...

  18. 40 CFR 72.74 - Federal issuance of Phase II permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.74 Federal issuance of Phase II permits. (a)(1) The Administrator will be responsible for administering and enforcing Acid Rain... and enforcing Acid Rain permits for such sources under § 72.73(a). (2) After and to the extent the...

  19. 40 CFR 72.74 - Federal issuance of Phase II permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.74 Federal issuance of Phase II permits. (a)(1) The Administrator will be responsible for administering and enforcing Acid Rain... and enforcing Acid Rain permits for such sources under § 72.73(a). (2) After and to the extent the...

  20. 40 CFR 72.74 - Federal issuance of Phase II permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.74 Federal issuance of Phase II permits. (a)(1) The Administrator will be responsible for administering and enforcing Acid Rain... and enforcing Acid Rain permits for such sources under § 72.73(a). (2) After and to the extent the...

  1. 40 CFR 72.73 - State issuance of Phase II permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.73 State issuance of Phase II permits... permit program under part 70 of this chapter and that has a State Acid Rain program accepted by the Administrator under § 72.71 shall be responsible for administering and enforcing Acid Rain permits effective in...

  2. 40 CFR 72.74 - Federal issuance of Phase II permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) PERMITS REGULATION Acid Rain Phase II Implementation § 72.74 Federal issuance of Phase II permits. (a)(1) The Administrator will be responsible for administering and enforcing Acid Rain... and enforcing Acid Rain permits for such sources under § 72.73(a). (2) After and to the extent the...

  3. WE-G-18C-05: Characterization of Cross-Vendor, Cross-Field Strength MR Image Intensity Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, E; Prah, D

    2014-06-15

    Purpose: Variations in MR image intensity and image intensity nonuniformity (IINU) can challenge the accuracy of intensity-based image segmentation and registration algorithms commonly applied in radiotherapy. The goal of this work was to characterize MR image intensity variations across scanner vendors and field strengths commonly used in radiotherapy. Methods: ACR-MRI phantom images were acquired at 1.5T and 3.0T on GE (450w and 750, 23.1), Siemens (Espree and Verio, VB17B), and Philips (Ingenia, 4.1.3) scanners using commercial spin-echo sequences with matched parameters (TE/TR: 20/500 ms, rBW: 62.5 kHz, TH/skip: 5/5mm). Two radiofrequency (RF) coil combinations were used for each scanner: bodymore » coil alone, and combined body and phased-array head coils. Vendorspecific B1- corrections (PURE/Pre-Scan Normalize/CLEAR) were applied in all head coil cases. Images were transferred offline, corrected for IINU using the MNI N3 algorithm, and normalized. Coefficients of variation (CV=σ/μ) and peak image uniformity (PIU = 1−(Smax−Smin)/(Smax+Smin)) estimates were calculated for one homogeneous phantom slice. Kruskal-Wallis and Wilcoxon matched-pairs tests compared mean MR signal intensities and differences between original and N3 image CV and PIU. Results: Wide variations in both MR image intensity and IINU were observed across scanner vendors, field strengths, and RF coil configurations. Applying the MNI N3 correction for IINU resulted in significant improvements in both CV and PIU (p=0.0115, p=0.0235). However, wide variations in overall image intensity persisted, requiring image normalization to improve consistency across vendors, field strengths, and RF coils. These results indicate that B1- correction routines alone may be insufficient in compensating for IINU and image scaling, warranting additional corrections prior to use of MR images in radiotherapy. Conclusions: MR image intensities and IINU vary as a function of scanner vendor, field strength, and RF coil configuration. A two-step strategy consisting of MNI N3 correction followed by normalization was required to improve MR image consistency. Funding provided by Advancing a Healthier Wisconsin.« less

  4. Doping-induced disappearance of ice II from water's phase diagram

    NASA Astrophysics Data System (ADS)

    Shephard, Jacob J.; Slater, Ben; Harvey, Peter; Hart, Martin; Bull, Craig L.; Bramwell, Steven T.; Salzmann, Christoph G.

    2018-06-01

    Water and the many phases of ice display a plethora of complex physical properties and phase relationships1-4 that are of paramount importance in a range of settings including processes in Earth's hydrosphere, the geology of icy moons, industry and even the evolution of life. Well-known examples include the unusual behaviour of supercooled water2, the emergent ferroelectric ordering in ice films4 and the fact that the `ordinary' ice Ih floats on water. We report the intriguing observation that ice II, one of the high-pressure phases of ice, disappears in a selective fashion from water's phase diagram following the addition of small amounts of ammonium fluoride. This finding exposes the strict topologically constrained nature of the ice II hydrogen-bond network, which is not found for the competing phases. In analogy to the behaviour of frustrated magnets5, the presence of the exceptional ice II is argued to have a wider impact on water's phase diagram, potentially explaining its general tendency to display anomalous behaviour. Furthermore, the impurity-induced disappearance of ice II raises the prospect that specific dopants may not only be able to suppress certain phases but also induce the formation of new phases of ice in future studies.

  5. Assessment of Operational Automated Guideway Systems - Airtrans (Phase II)

    DOT National Transportation Integrated Search

    1980-01-01

    This study, Phase II, completes the assessment of AIRTRANS, the automated guideway system located at the Dallas-Fort Worth Airport. The Phase I assessment report: "Assessment of Operational Automated Guideway Systems--AIRTRANS (Phase I)" (PB-261 339)...

  6. The influence of focal spot blooming on high-contrast spatial resolution in CT imaging.

    PubMed

    Grimes, Joshua; Duan, Xinhui; Yu, Lifeng; Halaweish, Ahmed F; Haag, Nicole; Leng, Shuai; McCollough, Cynthia

    2015-10-01

    The objective of this work was to investigate focal spot blooming effects on the spatial resolution of CT images and to evaluate an x-ray tube that uses dynamic focal spot control for minimizing focal spot blooming. The influence of increasing tube current at a fixed tube potential of 80 kV on high-contrast spatial resolution of seven different CT scanner models (scanners A-G), including one scanner that uses dynamic focal spot control to reduce focal spot blooming (scanner A), was evaluated. Spatial resolution was assessed using a wire phantom for the modulation transfer function (MTF) calculation and a copper disc phantom for measuring the slice sensitivity profile (SSP). The impact of varying the tube potential was investigated on two scanner models (scanners A and B) by measuring the MTF and SSP and also by using the resolution bar pattern module of the ACR CT phantom. The phantoms were scanned at 70-150 kV on scanner A and 80-140 kV on scanner B, with tube currents from 100 mA up to the maximum tube current available on each scanner. The images were reconstructed using a slice thickness of 0.6 mm with both smooth and sharp kernels. Additionally, focal spot size at varying tube potentials and currents was directly measured using pinhole and slit camera techniques. Evaluation of the MTF and SSP data from the 7 CT scanner models evaluated demonstrated decreased focal spot blooming for newer scanners, as evidenced by decreasing deviations in MTF and SSP as tube current varied. For scanners A and B, where focal spot blooming effects as a function of tube potential were assessed, the spatial resolution variation in the axial plane was much smaller on scanner A compared to scanner B as tube potential and current changed. On scanner A, the 50% MTF never decreased by more than 2% from the 50% MTF measured at 100 mA. On scanner B, the 50% MTF decreased by as much as 19% from the 50% MTF measured at 100 mA. Assessments of the SSP, the bar patterns in the ACR phantom and the pinhole and slit camera measurements were consistent with the MTF calculations. Focal spot blooming has a noticeable effect on spatial resolution in CT imaging. The focal spot shaping technology of scanner A greatly reduced blooming effects.

  7. Accuracy of single-abutment digital cast obtained using intraoral and cast scanners.

    PubMed

    Lee, Jae-Jun; Jeong, Ii-Do; Park, Jin-Young; Jeon, Jin-Hun; Kim, Ji-Hwan; Kim, Woong-Chul

    2017-02-01

    Scanners are frequently used in the fabrication of dental prostheses. However, the accuracy of these scanners is variable, and little information is available. The purpose of this in vitro study was to compare the accuracy of cast scanners with that of intraoral scanners by using different image impression techniques. A poly(methyl methacrylate) master model was fabricated to replicate a maxillary first molar single-abutment tooth model. The master model was scanned with an accurate engineering scanner to obtain a true value (n=1) and with 2 intraoral scanners (CEREC Bluecam and CEREC Omnicam; n=6 each). The cast scanner scanned the master model and duplicated the dental stone cast from the master model (n=6). The trueness and precision of the data were measured using a 3-dimensional analysis program. The Kruskal-Wallis test was used to compare the different sets of scanning data, followed by a post hoc Mann-Whitney U test with a significance level modified by Bonferroni correction (α/6=.0083). The type 1 error level (α) was set at .05. The trueness value (root mean square: mean ±standard deviation) was 17.5 ±1.8 μm for the Bluecam, 13.8 ±1.4 μm for the Omnicam, 17.4 ±1.7 μm for cast scanner 1, and 12.3 ±0.1 μm for cast scanner 2. The differences between the Bluecam and the cast scanner 1 and between the Omnicam and the cast scanner 2 were not statistically significant (P>.0083), but a statistically significant difference was found between all the other pairs (P<.0083). The precision of the scanners was 12.7 ±2.6 μm for the Bluecam, 12.5 ±3.7 μm for the Omnicam, 9.2 ±1.2 μm for cast scanner 1, and 6.9 ±2.6 μm for cast scanner 2. The differences between Bluecam and Omnicam and between Omnicam and cast scanner 1 were not statistically significant (P>.0083), but there was a statistically significant difference between all the other pairs (P<.0083). An Omnicam in video image impression had better trueness than a cast scanner but with a similar level of precision. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Astronomy, New Instrumentation, and the News Media

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    2001-01-01

    The early work of Bob Tull who invented a photoelectric spectral scanner comprised a crucial phase in the development of astronomical instrumentation. The relationship between the academic astronomy/astrophysics community and journalists has been in flux since the early 1960s. Scientists should recognize that they rely on the press to disseminate scientific information. Public citizens and policy makers are interested in the pursuits of scientific research for which taxes and other public monies are used.

  9. Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT).

    PubMed

    Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyeong; Kwon, Ohin; Seo, Jin Keun; Baek, Woon Sik

    2003-05-01

    In magnetic resonance electrical impedance tomography (MREIT) we inject currents through electrodes placed on the surface of a subject and try to reconstruct cross-sectional resistivity (or conductivity) images using internal magnetic flux density as well as boundary voltage measurements. In this paper we present a static resistivity image of a cubic saline phantom (50 x 50 x 50 mm3) containing a cylindrical sausage object with an average resistivity value of 123.7 ohms cm. Our current MREIT system is based on an experimental 0.3 T MRI scanner and a current injection apparatus. We captured MR phase images of the phantom while injecting currents of 28 mA through two pairs of surface electrodes. We computed current density images from magnetic flux density images that are proportional to the MR phase images. From the current density images and boundary voltage data we reconstructed a cross-sectional resistivity image within a central region of 38.5 x 38.5 mm2 at the middle of the phantom using the J-substitution algorithm. The spatial resolution of the reconstructed image was 64 x 64 and the reconstructed average resistivity of the sausage was 117.7 ohms cm. Even though the error in the reconstructed average resistivity value was small, the relative L2-error of the reconstructed image was 25.5% due to the noise in measured MR phase images. We expect improvements in the accuracy by utilizing an MRI scanner with higher SNR and increasing the size of voxels scarifying the spatial resolution.

  10. Evaluation of a LED-based flatbed document scanner for radiochromic film dosimetry in transmission mode.

    PubMed

    Lárraga-Gutiérrez, José Manuel; García-Garduño, Olivia Amanda; Treviño-Palacios, Carlos; Herrera-González, José Alfredo

    2018-03-01

    Flatbed scanners are the most frequently used reading instrument for radiochromic film dosimetry because its low cost, high spatial resolution, among other advantages. These scanners use a fluorescent lamp and a CCD array as light source and detector, respectively. Recently, manufacturers of flatbed scanners replaced the fluorescent lamp by light emission diodes (LED) as a light source. The goal of this work is to evaluate the performance of a commercial flatbed scanner with LED based source light for radiochromic film dosimetry. Film read out consistency, response uniformity, film-scanner sensitivity, long term stability and total dose uncertainty was evaluated. In overall, the performance of the LED flatbed scanner is comparable to that of a cold cathode fluorescent lamp (CCFL). There are important spectral differences between LED and CCFL lamps that results in a higher sensitivity of the LED scanner in the green channel. Total dose uncertainty, film response reproducibility and long-term stability of LED scanner are slightly better than those of the CCFL. However, the LED based scanner has a strong non-uniform response, up to 9%, that must be adequately corrected for radiotherapy dosimetry QA. The differences in light emission spectra between LED and CCFL lamps and its potential impact on film-scanner sensitivity suggest that the design of a dedicated flat-bed scanner with LEDs may improve sensitivity and dose uncertainty in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Comparison of Cyberware PX and PS 3D human head scanners

    NASA Astrophysics Data System (ADS)

    Carson, Jeremy; Corner, Brian D.; Crockett, Eric; Li, Peng; Paquette, Steven

    2008-02-01

    A common limitation of laser line three-Dimensional (3D) scanners is the inability to scan objects with surfaces that are either parallel to the laser line or that self-occlude. Filling in missing areas adds some unwanted inaccuracy to the 3D model. Capturing the human head with a Cyberware PS Head Scanner is an example of obtaining a model where the incomplete areas are difficult to fill accurately. The PS scanner uses a single vertical laser line to illuminate the head and is unable to capture data at top of the head, where the line of sight is tangent to the surface, and under the chin, an area occluded by the chin when the subject looks straight forward. The Cyberware PX Scanner was developed to obtain this missing 3D head data. The PX scanner uses two cameras offset at different angles to provide a more detailed head scan that captures surfaces missed by the PS scanner. The PX scanner cameras also use new technology to obtain color maps that are of higher resolution than the PS Scanner. The two scanners were compared in terms of amount of surface captured (surface area and volume) and the quality of head measurements when compared to direct measurements obtained through standard anthropometry methods. Relative to the PS scanner, the PX head scans were more complete and provided the full set of head measurements, but actual measurement values, when available from both scanners, were about the same.

  12. Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning.

    PubMed

    Jin, Bo; Krishnan, Balu; Adler, Sophie; Wagstyl, Konrad; Hu, Wenhan; Jones, Stephen; Najm, Imad; Alexopoulos, Andreas; Zhang, Kai; Zhang, Jianguo; Ding, Meiping; Wang, Shuang; Wang, Zhong Irene

    2018-05-01

    Focal cortical dysplasia (FCD) is a major pathology in patients undergoing surgical resection to treat pharmacoresistant epilepsy. Magnetic resonance imaging (MRI) postprocessing methods may provide essential help for detection of FCD. In this study, we utilized surface-based MRI morphometry and machine learning for automated lesion detection in a mixed cohort of patients with FCD type II from 3 different epilepsy centers. Sixty-one patients with pharmacoresistant epilepsy and histologically proven FCD type II were included in the study. The patients had been evaluated at 3 different epilepsy centers using 3 different MRI scanners. T1-volumetric sequence was used for postprocessing. A normal database was constructed with 120 healthy controls. We also included 35 healthy test controls and 15 disease test controls with histologically confirmed hippocampal sclerosis to assess specificity. Features were calculated and incorporated into a nonlinear neural network classifier, which was trained to identify lesional cluster. We optimized the threshold of the output probability map from the classifier by performing receiver operating characteristic (ROC) analyses. Success of detection was defined by overlap between the final cluster and the manual labeling. Performance was evaluated using k-fold cross-validation. The threshold of 0.9 showed optimal sensitivity of 73.7% and specificity of 90.0%. The area under the curve for the ROC analysis was 0.75, which suggests a discriminative classifier. Sensitivity and specificity were not significantly different for patients from different centers, suggesting robustness of performance. Correct detection rate was significantly lower in patients with initially normal MRI than patients with unequivocally positive MRI. Subgroup analysis showed the size of the training group and normal control database impacted classifier performance. Automated surface-based MRI morphometry equipped with machine learning showed robust performance across cohorts from different centers and scanners. The proposed method may be a valuable tool to improve FCD detection in presurgical evaluation for patients with pharmacoresistant epilepsy. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  13. Attendance at specialist hepatitis clinics and initiation of antiviral treatment among persons chronically infected with hepatitis C: examining the early impact of Scotland's Hepatitis C Action Plan.

    PubMed

    McDonald, S A; Hutchinson, S J; Innes, H A; Allen, S; Bramley, P; Bhattacharyya, D; Carman, W; Dillon, J F; Fox, R; Fraser, A; Goldberg, D J; Kennedy, N; Mills, P R; Morris, J; Stanley, A J; Wilks, D; Hayes, P C

    2014-05-01

    Primary goals of the Hepatitis C Action Plan for Scotland Phase II (May 2008-March 2011) were to increase, among persons chronically infected with the hepatitis C (HCV) virus, attendance at specialist outpatient clinics and initiation on antiviral therapy. We evaluated progress towards these goals by comparing the odds, across time, of (a) first clinic attendance within 12 months of HCV diagnosis (n = 9747) and (b) initiation on antiviral treatment within 12 months of first attendance (n = 5736). Record linkage between the national HCV diagnosis (1996-2009) and HCV clinical (1996-2010) databases and logistic regression analyses were conducted for both outcomes. For outcome (a), 32% and 45% in the respective pre-Phase II (before 1 May 2008) and Phase II periods attended a specialist clinic within 12 months of diagnosis; the odds of attendance within 12 months increased over time (OR = 1.05 per year, 95% CI: 1.04-1.07), but was not significantly greater for persons diagnosed with HCV in the Phase II era, compared with the pre-Phase II era (OR = 1.1, 95% CI: 0.9-1.3), after adjustment for temporal trend. For outcome (b), 13% and 28% were initiated on treatment within 12 months of their first clinic attendance in the pre-Phase II and Phase II periods, respectively. Higher odds of treatment initiation were associated with first clinic attendance in the Phase II (OR = 1.9, 95% CI: 1.5-2.4), compared with the pre-Phase II era. Results were consistent with a positive impact of the Hepatitis C Action Plan on the treatment of chronically infected individuals, but further monitoring is required to confirm a sustained effect. © 2013 John Wiley & Sons Ltd.

  14. Maximizing return on socioeconomic investment in phase II proof-of-concept trials.

    PubMed

    Chen, Cong; Beckman, Robert A

    2014-04-01

    Phase II proof-of-concept (POC) trials play a key role in oncology drug development, determining which therapeutic hypotheses will undergo definitive phase III testing according to predefined Go-No Go (GNG) criteria. The number of possible POC hypotheses likely far exceeds available public or private resources. We propose a design strategy for maximizing return on socioeconomic investment in phase II trials that obtains the greatest knowledge with the minimum patient exposure. We compare efficiency using the benefit-cost ratio, defined to be the risk-adjusted number of truly active drugs correctly identified for phase III development divided by the risk-adjusted total sample size in phase II and III development, for different POC trial sizes, powering schemes, and associated GNG criteria. It is most cost-effective to conduct small POC trials and set the corresponding GNG bars high, so that more POC trials can be conducted under socioeconomic constraints. If δ is the minimum treatment effect size of clinical interest in phase II, the study design with the highest benefit-cost ratio has approximately 5% type I error rate and approximately 20% type II error rate (80% power) for detecting an effect size of approximately 1.5δ. A Go decision to phase III is made when the observed effect size is close to δ. With the phenomenal expansion of our knowledge in molecular biology leading to an unprecedented number of new oncology drug targets, conducting more small POC trials and setting high GNG bars maximize the return on socioeconomic investment in phase II POC trials. ©2014 AACR.

  15. Development of advanced blanket performance under irradiation and system integration through JUPITER-II project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, Katsunori; Kohyama, Akira; Tanaka, Satoru

    This report describes an outline of the activities of the JUPITER-II collaboration (japan-USA program of Irradiation/Integration test for Fusion Research-II), Which has bee carried out through six years (2001-2006) under Phase 4 of the collabroation implemented by Amendment 4 of Annex 1 to the DOE (United States Department of Energy)-MEXT (Ministry of Education ,Culture,Sports,Science and Technology) Cooperation. This program followed the RTNS-II Program (Phase1:1982-4986), the FFTF/MOTA Program (Phase2:1987-1994) and the JUPITER Program (Phase 3: 1995-2000) [1].

  16. Upgrade for Phase II of the Gerda experiment

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kermaïdic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2018-05-01

    The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of ^{76}Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain "background-free" up to its design exposure (100 kg year). It will reach thereby a half-life sensitivity of more than 10^{26} year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.

  17. First installation of a dual-room IVR-CT system in the emergency room.

    PubMed

    Wada, Daiki; Nakamori, Yasushi; Kanayama, Shuji; Maruyama, Shuhei; Kawada, Masahiro; Iwamura, Hiromu; Hayakawa, Koichi; Saito, Fukuki; Kuwagata, Yasuyuki

    2018-03-05

    Computed tomography (CT) embedded in the emergency room has gained importance in the early diagnostic phase of trauma care. In 2011, we implemented a new trauma workflow concept with a sliding CT scanner system with interventional radiology features (IVR-CT) that allows CT examination and emergency therapeutic intervention without relocating the patient, which we call the Hybrid emergency room (Hybrid ER). In the Hybrid ER, all life-saving procedures, CT examination, damage control surgery, and transcatheter arterial embolisation can be performed on the same table. Although the trauma workflow realized in the Hybrid ER may improve mortality in severe trauma, the Hybrid ER can potentially affect the efficacy of other in/outpatient diagnostic workflow because one room is occupied by one severely injured patient undergoing both emergency trauma care and CT scanning for long periods. In July 2017, we implemented a new trauma workflow concept with a dual-room sliding CT scanner system with interventional radiology features (dual-room IVR-CT) to increase patient throughput. When we perform emergency surgery or interventional radiology for a severely injured or ill patient in the Hybrid ER, the sliding CT scanner moves to the adjacent CT suite, and we can perform CT scanning of another in/outpatient. We believe that dual-room IVR-CT can contribute to the improvement of both the survival of severely injured or ill patients and patient throughput.

  18. 40 CFR 80.45 - Complex emissions model.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) VOCW% = Percentage change in winter VOC emissions from baseline levels (8) Phase II total VOC emissions... its domain Phase I = The years 1995-1999 Phase II = Year 2000 and beyond (b) Weightings and baselines... appropriate pollutant and Phase: Table 1—Normal and Higher Emitter Weightings for Exhaust Emissions Phase I...

  19. Monte Carlo simulation of efficient data acquisition for an entire-body PET scanner

    NASA Astrophysics Data System (ADS)

    Isnaini, Ismet; Obi, Takashi; Yoshida, Eiji; Yamaya, Taiga

    2014-07-01

    Conventional PET scanners can image the whole body using many bed positions. On the other hand, an entire-body PET scanner with an extended axial FOV, which can trace whole-body uptake images at the same time and improve sensitivity dynamically, has been desired. The entire-body PET scanner would have to process a large amount of data effectively. As a result, the entire-body PET scanner has high dead time at a multiplex detector grouping process. Also, the entire-body PET scanner has many oblique line-of-responses. In this work, we study an efficient data acquisition for the entire-body PET scanner using the Monte Carlo simulation. The simulated entire-body PET scanner based on depth-of-interaction detectors has a 2016-mm axial field-of-view (FOV) and an 80-cm ring diameter. Since the entire-body PET scanner has higher single data loss than a conventional PET scanner at grouping circuits, the NECR of the entire-body PET scanner decreases. But, single data loss is mitigated by separating the axially arranged detector into multiple parts. Our choice of 3 groups of axially-arranged detectors has shown to increase the peak NECR by 41%. An appropriate choice of maximum ring difference (MRD) will also maintain the same high performance of sensitivity and high peak NECR while at the same time reduces the data size. The extremely-oblique line of response for large axial FOV does not contribute much to the performance of the scanner. The total sensitivity with full MRD increased only 15% than that with about half MRD. The peak NECR was saturated at about half MRD. The entire-body PET scanner promises to provide a large axial FOV and to have sufficient performance values without using the full data.

  20. An Ensemble Method for Classifying Regional Disease Patterns of Diffuse Interstitial Lung Disease Using HRCT Images from Different Vendors.

    PubMed

    Jun, Sanghoon; Kim, Namkug; Seo, Joon Beom; Lee, Young Kyung; Lynch, David A

    2017-12-01

    We propose the use of ensemble classifiers to overcome inter-scanner variations in the differentiation of regional disease patterns in high-resolution computed tomography (HRCT) images of diffuse interstitial lung disease patients obtained from different scanners. A total of 600 rectangular 20 × 20-pixel regions of interest (ROIs) on HRCT images obtained from two different scanners (GE and Siemens) and the whole lung area of 92 HRCT images were classified as one of six regional pulmonary disease patterns by two expert radiologists. Textual and shape features were extracted from each ROI and the whole lung parenchyma. For automatic classification, individual and ensemble classifiers were trained and tested with the ROI dataset. We designed the following three experimental sets: an intra-scanner study in which the training and test sets were from the same scanner, an integrated scanner study in which the data from the two scanners were merged, and an inter-scanner study in which the training and test sets were acquired from different scanners. In the ROI-based classification, the ensemble classifiers showed better (p < 0.001) accuracy (89.73%, SD = 0.43) than the individual classifiers (88.38%, SD = 0.31) in the integrated scanner test. The ensemble classifiers also showed partial improvements in the intra- and inter-scanner tests. In the whole lung classification experiment, the quantification accuracies of the ensemble classifiers with integrated training (49.57%) were higher (p < 0.001) than the individual classifiers (48.19%). Furthermore, the ensemble classifiers also showed better performance in both the intra- and inter-scanner experiments. We concluded that the ensemble classifiers provide better performance when using integrated scanner images.

  1. High throughput laser processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  2. Chesapeake Bay Low Freshwater Inflow Study. Phase II. MAP FOLIO. Biota Assessment.

    DTIC Science & Technology

    1982-05-01

    conditions. These were: 1) Base Average -- average freshwater inflow conditions. by increased water consumption projected for the year 2020. 3) Base Drought...RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS. 1963- A TAI m - ii J May 1982 Chesapeake Bay Low Freshwater Inflow Study Phase II Biota Assessment Map...A PERIOD ZOVERED change was found to CIESAPEAKE BAY LOW FRESHWATER INFLOW STUDY FINAL BIOTA ASSESSMENT PHASE II: FINAL REPORT MAP FOLIO s PERFORMING

  3. Effects of Combined Phase III and Phase II Cardiac Exercise Therapy for Middle-aged Male Patients with Acute Myocardial Infarction

    PubMed Central

    Lee, Chih-Wei; Wang, Ji-Hung; Hsieh, Jen-Che; Hsieh, Tsung-Cheng; Huang, Chien-Hui

    2013-01-01

    [Purpose] To investigate the effects of cardiac exercise therapy (CET) on exercise capacity and coronary risk factors (CRFs) of patients with acute myocardial infarction (AMI). [Methods] Patients who participated in an 8-week supervised, hospital-based phase II and 6-month home-based phase III CET with monthly telephone and/or home visits were defined as the exercise group (EG) (n=20), while those who did not receive phase II or phase III CET were defined as the no-exercise group (NEG) (n=10). CRFs were evaluated pre- and post-phase II and eight months after discharge. One and two-way repeated measures ANOVA were used to perform intra- and inter-group comparisons. [Results] Thirty men with AMI aged 49.3 ± 8.3 years were studied. EG increased their exercise capacity (METs) (6.8 ± 1.6 vs.10.0 ± 1.9) after phase II CET and was able to maintain it at 8-month follow-up. Both groups had significantly fewer persons who kept on smoking compared to the first examination. High density lipoprotein cholesterol (HDL-C) increased from 38.1 ± 11.0 to 43.7 ± 8.7 mg/dl at follow-up in EG while no significant difference was noted in NEG. [Conclusion] After phase III CET subjects had maintained the therapeutic effects of smoking cessation, and increasing exercise capacity obtained in phase II CET. HDL-C in EG continued to improve during phase III CET. PMID:24396201

  4. Complete-arch accuracy of intraoral scanners.

    PubMed

    Treesh, Joshua C; Liacouras, Peter C; Taft, Robert M; Brooks, Daniel I; Raiciulescu, Sorana; Ellert, Daniel O; Grant, Gerald T; Ye, Ling

    2018-04-30

    Intraoral scanners have shown varied results in complete-arch applications. The purpose of this in vitro study was to evaluate the complete-arch accuracy of 4 intraoral scanners based on trueness and precision measurements compared with a known reference (trueness) and with each other (precision). Four intraoral scanners were evaluated: CEREC Bluecam, CEREC Omnicam, TRIOS Color, and Carestream CS 3500. A complete-arch reference cast was created and printed using a 3-dimensional dental cast printer with photopolymer resin. The reference cast was digitized using a laboratory-based white light 3-dimensional scanner. The printed reference cast was scanned 10 times with each intraoral scanner. The digital standard tessellation language (STL) files from each scanner were then registered to the reference file and compared with differences in trueness and precision using a 3-dimensional modeling software. Additionally, scanning time was recorded for each scan performed. The Wilcoxon signed rank, Kruskal-Wallis, and Dunn tests were used to detect differences for trueness, precision, and scanning time (α=.05). Carestream CS 3500 had the lowest overall trueness and precision compared with Bluecam and TRIOS Color. The fourth scanner, Omnicam, had intermediate trueness and precision. All of the scanners tended to underestimate the size of the reference file, with exception of the Carestream CS 3500, which was more variable. Based on visual inspection of the color rendering of signed differences, the greatest amount of error tended to be in the posterior aspects of the arch, with local errors exceeding 100 μm for all scans. The single capture scanner Carestream CS 3500 had the overall longest scan times and was significantly slower than the continuous capture scanners TRIOS Color and Omnicam. Significant differences in both trueness and precision were found among the scanners. Scan times of the continuous capture scanners were faster than the single capture scanners. Published by Elsevier Inc.

  5. 47 CFR 54.310 - Connect America Fund for Price Cap Territories-Phase II

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Connect America Fund for Price Cap Territories... Connect America Fund for Price Cap Territories—Phase II (a) Geographic areas eligible for support. Connect America Phase II support may be made available for census blocks or other areas identified as eligible by...

  6. Spectral characterization of the LANDSAT-D multispectral scanner subsystems

    NASA Technical Reports Server (NTRS)

    Markham, B. L. (Principal Investigator); Barker, J. L.

    1982-01-01

    Relative spectral response data for the multispectral scanner subsystems (MSS) to be flown on LANDSAT-D and LANDSAT-D backup, the protoflight and flight models, respectively, are presented and compared to similar data for the Landsat 1,2, and 3 subsystems. Channel-bychannel (six channels per band) outputs for soil and soybean targets were simulated and compared within each band and between scanners. The two LANDSAT-D scanners proved to be nearly identical in mean spectral response, but they exhibited some differences from the previous MSS's. Principal differences between the spectral responses of the D-scanners and previous scanners were: (1) a mean upper-band edge in the green band of 606 nm compared to previous means of 593 to 598 nm; (2) an average upper-band edge of 697 nm in the red band compared to previous averages of 701 to 710 nm; and (3) an average bandpass for the first near-IR band of 702-814 nm compared to a range of 693-793 to 697-802 nm for previous scanners. These differences caused the simulated D-scanner outputs to be 3 to 10 percent lower in the red band and 3 to 11 percent higher in the first near-IR band than previous scanners for the soybeans target. Otherwise, outputs from soil and soybean targets were only slightly affected. The D-scanners were generally more uniform from channel to channel within bands than previous scanners.

  7. Performance of an improved first generation optical CT scanner for 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Adamovics, John; Wuu, Cheng-Shie

    2013-12-01

    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE™ dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.

  8. Phase I/II adaptive design for drug combination oncology trials

    PubMed Central

    Wages, Nolan A.; Conaway, Mark R.

    2014-01-01

    Existing statistical methodology on dose finding for combination chemotherapies has focused on toxicity considerations alone in finding a maximum tolerated dose combination to recommend for further testing of efficacy in a phase II setting. Recently, there has been increasing interest in integrating phase I and phase II trials in order to facilitate drug development. In this article, we propose a new adaptive phase I/II method for dual-agent combinations that takes into account both toxicity and efficacy after each cohort inclusion. The primary objective, both within and at the conclusion of the trial, becomes finding a single dose combination with an acceptable level of toxicity that maximizes efficacious response. We assume that there exist monotone dose–toxicity and dose–efficacy relationships among doses of one agent when the dose of other agent is fixed. We perform extensive simulation studies that demonstrate the operating characteristics of our proposed approach, and we compare simulated results to existing methodology in phase I/II design for combinations of agents. PMID:24470329

  9. Raman Frequencies Calculated from the Volume Data as a Function of Temperature at High Pressures for the Disordered Phase II of NH4I

    NASA Astrophysics Data System (ADS)

    Yurtseven, H.; Kavruk, D.

    In this study, we calculate the Raman frequencies as a function of temperature for the fixed pressures of 706, 1080 and 6355 bars using the volume data for phase II of ammonium iodide. The Raman frequencies calculated here are for the translational optic ν5 TOM (125 cm-1) lattice mode that is located at the zone boundary (M point) of the Brillouin zone of phase II for NH4I. For this calculation the volume data obtained at zero pressure, is used through the mode Grüneisen parameter for the disordered phase II (β phase) which has the CsCl structure of NH4I. Our predicted frequencies of the ν5 TOM (125 cm-1) mode can be compared when the Raman data for this lattice mode is available at various temperatures for fixed pressures of 706, 1080 and 6355 bars in the disordered phase II of ammonium iodide.

  10. The National Geographic Names Data Base: Phase II instructions

    USGS Publications Warehouse

    Orth, Donald J.; Payne, Roger L.

    1987-01-01

    not recorded on topographic maps be added. The systematic collection of names from other sources, including maps, charts, and texts, is termed Phase II. In addition, specific types of features not compiled during Phase I are encoded and added to the data base. Other names of importance to researchers and users, such as historical and variant names, are also included. The rules and procedures for Phase II research, compilation, and encoding are contained in this publication.

  11. Radiation dosimetry estimates of (18)F-alfatide II based on whole-body PET imaging of mice.

    PubMed

    Wang, Si-Yang; Bao, Xiao; Wang, Ming-Wei; Zhang, Yong-Ping; Zhang, Ying-Jian; Zhang, Jian-Ping

    2015-11-01

    We estimated the dosimetry of (18)F-alfatide II with the method established by MIRD based on biodistribution data of mice. Six mice (three females and three males) were scanned for 160min on an Inveon MicroPET/CT scanner after injection of (18)F-alfatide II via tail vein. Eight source organs were delineated on the CT images and their residence times calculated. The data was then converted to human using scaling factors based on organ and body weight. The absorbed doses for human and the resulting effective dose were computed by OLINDA 1.1 software. The highest absorbed doses was observed in urinary bladder wall (male 0.102mGy/MBq, female 0.147mGy/MBq); and the lowest one was detected in brain (male 0.0030mGy/MBq, female 0.0036). The total effective doses were 0.0127mSv/MBq for male and 0.0166 mSv/MBq for female, respectively. A 370-MBq injection of (18)F-alfatide II led to an estimated effective dose of 4.70mSv for male and 6.14mSv for female. The potential radiation burden associated with (18)F-alfatide II/PET imaging therefore is comparable to other PET examinations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A comparative evaluation of intraoral and extraoral digital impressions: An in vivo study.

    PubMed

    Sason, Gursharan Kaur; Mistry, Gaurang; Tabassum, Rubina; Shetty, Omkar

    2018-01-01

    The accuracy of a dental impression is determined by two factors: "trueness" and "precision." The scanners used in dentistry are relatively new in market, and very few studies have compared the "precision" and "trueness" of intraoral scanner with the extraoral scanner. The aim of this study was to evaluate and compare accuracy of intraoral and extraoral digital impressions. Ten dentulous participants (male/female) aged 18-45 years with an asymptomatic endodontically treated mandibular first molars with adjacent teeth present were selected for this study. The prepared test tooth was measured using a digital Vernier caliper to obtain reference datasets. The tooth was then scanned using the intraoral scanner, and the extraoral scans were obtained using the casts made from the impressions. The datasets were divided into four groups and then statistically analyzed. The test tooth preparation was done, and dimples were made using a round diamond point on the bucco-occlusal, mesio-occlusal, disto-occlusal, and linguo-occlusal lines angles, and these were used to obtain reference datasets intraorally using a digital Vernier caliper. The test tooth was then scanned with the IO scanner (CS 3500, Carestream dental) thrice and also impressions were made using addition silicone impression material (3M™ ESPE) and dental casts were poured in Type IV dental stone (Kalrock-Kalabhai Karson India Pvt. Ltd., India) which were later scanned with the EO scanner (LAVA™ Scan ST Design system [3M™ ESPE]) thrice. The Datasets obtained from Intraoral and Extraoral scanner were exported to Dental Wings software and readings were obtained. Repeated measures ANOVA test was used to compare differences between the groups and independent t -test for comparison between the readings of intraoral and extraoral scanner. Least significant difference test was used for comparison between reference datasets with intraoral and extraoral scanner, respectively. A level of statistical significance of P < 0.05 was set. The precision values ranged from 20.7 to 33.35 μm for intraoral scanner and 19.5 to 37 μm for extraoral scanner. The mean deviations for intraoral scanner were 19.6 μm mesiodistally (MD) and 16.4 μm buccolingually (BL) and 24.0 μm MD and 22.5 μm BL for extraoral scanner. The mean values of the intraoral scanner (413 μm) for trueness were closest to the actual measurements (459 μm) than the extraoral scanner (396 μm). The intraoral scanner showed higher "precision" and "trueness" values when compared with the extraoral scanner.

  13. Design and verification of the miniature optical system for small object surface profile fast scanning

    NASA Astrophysics Data System (ADS)

    Chi, Sheng; Lee, Shu-Sheng; Huang, Jen, Jen-Yu; Lai, Ti-Yu; Jan, Chia-Ming; Hu, Po-Chi

    2016-04-01

    As the progress of optical technologies, different commercial 3D surface contour scanners are on the market nowadays. Most of them are used for reconstructing the surface profile of mold or mechanical objects which are larger than 50 mm×50 mm× 50 mm, and the scanning system size is about 300 mm×300 mm×100 mm. There are seldom optical systems commercialized for surface profile fast scanning for small object size less than 10 mm×10 mm×10 mm. Therefore, a miniature optical system has been designed and developed in this research work for this purpose. Since the most used scanning method of such system is line scan technology, we have developed pseudo-phase shifting digital projection technology by adopting projecting fringes and phase reconstruction method. A projector was used to project a digital fringe patterns on the object, and the fringes intensity images of the reference plane and of the sample object were recorded by a CMOS camera. The phase difference between the plane and object can be calculated from the fringes images, and the surface profile of the object was reconstructed by using the phase differences. The traditional phase shifting method was accomplished by using PZT actuator or precisely controlled motor to adjust the light source or grating and this is one of the limitations for high speed scanning. Compared with the traditional optical setup, we utilized a micro projector to project the digital fringe patterns on the sample. This diminished the phase shifting processing time and the controlled phase differences between the shifted phases become more precise. Besides, the optical path design based on a portable device scanning system was used to minimize the size and reduce the number of the system components. A screwdriver section about 7mm×5mm×5mm has been scanned and its surface profile was successfully restored. The experimental results showed that the measurement area of our system can be smaller than 10mm×10mm, the precision reached to +/-10μm, and the scanning time for each surface of an object was less than 15 seconds. This has proved that our system own the potential to be a fast scanning scanner for small object surface profile scanning.

  14. Mixed response and time-to-event endpoints for multistage single-arm phase II design.

    PubMed

    Lai, Xin; Zee, Benny Chung-Ying

    2015-06-04

    The objective of phase II cancer clinical trials is to determine if a treatment has sufficient activity to warrant further study. The efficiency of a conventional phase II trial design has been the object of considerable debate, particularly when the study regimen is characteristically cytostatic. At the time of development of a phase II cancer trial, we accumulated clinical experience regarding the time to progression (TTP) for similar classes of drugs and for standard therapy. By considering the time to event (TTE) in addition to the tumor response endpoint, a mixed-endpoint phase II design may increase the efficiency and ability of selecting promising cytotoxic and cytostatic agents for further development. We proposed a single-arm phase II trial design by extending the Zee multinomial method to fully use mixed endpoints with tumor response and the TTE. In this design, the dependence between the probability of response and the TTE outcome is modeled through a Gaussian copula. Given the type I and type II errors and the hypothesis as defined by the response rate (RR) and median TTE, such as median TTP, the decision rules for a two-stage phase II trial design can be generated. We demonstrated through simulation that the proposed design has a smaller expected sample size and higher early stopping probability under the null hypothesis than designs based on a single-response endpoint or a single TTE endpoint. The proposed design is more efficient for screening new cytotoxic or cytostatic agents and less likely to miss an effective agent than the alternative single-arm design.

  15. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  16. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  17. Comparison of three coding strategies for a low cost structure light scanner

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    Coded structure light is widely used for 3D scanning, and different coding strategies are adopted to suit for different goals. In this paper, three coding strategies are compared, and one of them is selected to implement a low cost structure light scanner under the cost of €100. To reach this goal, the projector and the video camera must be the cheapest, which will lead to some problems related to light coding. For a cheapest projector, complex intensity pattern can't be generated; even if it can be generated, it can't be captured by a cheapest camera. Based on Gray code, three different strategies are implemented and compared, called phase-shift, line-shift, and bit-shift, respectively. The bit-shift Gray code is the contribution of this paper, in which a simple, stable light pattern is used to generate dense(mean points distance<0.4mm) and accurate(mean error<0.1mm) results. The whole algorithm details and some example are presented in the papers.

  18. Phase 2 development of Great Lakes algorithms for Nimbus-7 coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1984-01-01

    A series of experiments have been conducted in the Great Lakes designed to evaluate the application of the NIMBUS-7 Coastal Zone Color Scanner (CZCS). Atmospheric and water optical models were used to relate surface and subsurface measurements to satellite measured radiances. Absorption and scattering measurements were reduced to obtain a preliminary optical model for the Great Lakes. Algorithms were developed for geometric correction, correction for Rayleigh and aerosol path radiance, and prediction of chlorophyll-a pigment and suspended mineral concentrations. The atmospheric algorithm developed compared favorably with existing algorithms and was the only algorithm found to adequately predict the radiance variations in the 670 nm band. The atmospheric correction algorithm developed was designed to extract needed algorithm parameters from the CZCS radiance values. The Gordon/NOAA ocean algorithms could not be demonstrated to work for Great Lakes waters. Predicted values of chlorophyll-a concentration compared favorably with expected and measured data for several areas of the Great Lakes.

  19. Qualification of the RSRM field joint CF case-to-insulation bondline inspection using the Thiokol Corporation ultrasonic RSRM bondline inspection system

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Qualification testing of Combustion Engineering's AMDATA Intraspect/98 Data Acquisition and Imaging System that applies to the redesigned solid rocket motor field joint capture feature case-to-insulation bondline inspection was performed. Testing was performed at M-111, the Thiokol Corp. Inert Parts Preparation Building. The purpose of the inspection was to verify the integrity of the capture feature area case-to-insulation bondline. The capture feature scanner was calibrated over an intentional 1.0 to 1.0 in. case-to-insulation unbond. The capture feature scanner was then used to scan 60 deg of a capture feature field joint. Calibration of the capture feature scanner was then rechecked over the intentional unbond to ensure that the calibration settings did not change during the case scan. This procedure was successfully performed five times to qualify the unbond detection capability of the capture feature scanner. The capture feature scanner qualified in this test contains many points of mechanical instability that can affect the overall ultrasonic signal response. A new generation scanner, designated the sigma scanner, should be implemented to replace the current configuration scanner. The sigma scanner eliminates the unstable connection points of the current scanner and has additional inspection capabilities.

  20. Outcome assessment of patients undergoing maxillofacial procedures for the treatment of sleep apnea: comparison of subjective and objective results.

    PubMed

    Dattilo, David J; Drooger, Scott A

    2004-02-01

    The purpose of this study was to compare the subjective findings of the Epworth Sleepiness Scale (ESS) to the objective findings of the overnight sleep study (OSS) in 57 patients who underwent phase I and phase II surgery for the correction of obstructive sleep apnea (OSA). Forty-two patients in phase I category (hyoid suspension, palatal surgery, and/or genioglossus advancement) and 15 patients in phase II category (maxillomandibular advancement) were examined. All patients had an OSS and completion of an ESS preoperatively and at a minimum of 8 weeks postoperatively. The results of each test were evaluated to examine any relationship between the improvements of the findings of the OSS to the changes in the ESS. Using accepted criteria, phase I surgery produced an 80% success rate and phase II surgery produced a greater than 95% success rate in both the respiratory disturbance index and the ESS. 1) Both phase I and phase II procedures are effective in treating OSA. 2) Phase II appears to be more effective in treating OSA using both objective and subjective evaluations. 3) Improvement in ESS scores and excessive daytime sleepiness seems to parallel the improvement in OSS scores in patients undergoing surgical correction of OSA.

  1. A Fire Safety Certification System for Board and Care Operators and Staff. SBIR Phase II: Final Report.

    ERIC Educational Resources Information Center

    Walker, Bonnie L.

    This report describes Phase II of a project which developed a system for delivering fire safety training to board and care providers who serve adults with developmental disabilities. Phase II focused on developing and pilot testing a "train the trainers" workshop for instructors and field testing the provider's workshop. Evaluation of…

  2. Single-arm phase II trial design under parametric cure models.

    PubMed

    Wu, Jianrong

    2015-01-01

    The current practice of designing single-arm phase II survival trials is limited under the exponential model. Trial design under the exponential model may not be appropriate when a portion of patients are cured. There is no literature available for designing single-arm phase II trials under the parametric cure model. In this paper, a test statistic is proposed, and a sample size formula is derived for designing single-arm phase II trials under a class of parametric cure models. Extensive simulations showed that the proposed test and sample size formula perform very well under different scenarios. Copyright © 2015 John Wiley & Sons, Ltd.

  3. A Paper-Based Analytical Device Based on Combination of Thin Film Microextraction and Reflection Scanometry for Sensitive Colorimetric Determination of Ni(II) in Aqueous Matrix.

    PubMed

    Allafchian, Ali Reza; Farajmand, Bahman; Koupaei, Amin Javaheri

    2018-04-01

    In this research, the thin film microextraction method was applied for the extraction of Ni(II) ion from aqueous matrixes. Chemically modified cellulosic filter paper with phosphorus was used as a thin film extractor. After extraction, the thin film was treated with a solution of dimethylglyoxime. The colored film was captured by flatbed scanner and the absorbance of the images was extracted by some suitable software. Under the optimum conditions and at the pH 7.0, with the sample volume of 100 mL, the stirring rate of 800 rpm, and the extraction time of 50 min, the calibration curve was obtained in the range of 0.05-5 mg/L Ni(II) (R 2  = 0.989). Limit and relative standard deviation were achieved to be 18 µg/L and less than 6.7%, respectively. Relative recoveries were obtained in the range of 87%-105%. Finally, the proposed method was found to be simple and cost-effective, with adequate analytical performance for the rapid detection of Ni(II) in river and wastewater samples.

  4. Wellness-Promoting Practices Through Girl Scouts: A Pragmatic Superiority Randomized Controlled Trial With Additional Dissemination.

    PubMed

    Cull, Brooke J; Dzewaltowski, David A; Guagliano, Justin M; Rosenkranz, Sara K; Knutson, Cassandra K; Rosenkranz, Richard R

    2018-01-01

    To evaluate the effectiveness of in-person versus online Girl Scout leader wellness training for implementation of wellness-promoting practices during troop meetings (phase I) and to assess training adoption and current practices across the council (phase II). Pragmatic superiority trial (phase 1) followed by serial cross-sectional study (phase II). Girl Scout troop meetings in Northeast Kansas. Eighteen troop leaders from 3 counties (phase 1); 113 troop leaders from 7 counties (phase II). Phase I: Troop leaders attended 2 wellness training sessions (first in groups, second individually), wherein leaders set wellness-promoting practice implementation goals, self-monitored progress, and received guidance and resources for implementation. Leaders received the intervention in person or online. Phase I: At baseline and postintervention, leaders completed a wellness-promoting practice implementation questionnaire assessing practices during troop meetings (max score = 11). Phase II: Leaders completed a survey about typical troop practices and interest in further training. Phase I: Generalized linear mixed modeling. Phase I: In-person training increased wellness-promoting practice implementation more than online training (in person = 2.1 ± 1.8; online = 0.2 ± 1.2; P = .022). Phase II: Fifty-six percent of leaders adopted the training. For 8 of 11 wellness categories, greater than 50% of leaders employed wellness-promoting practices. In-person training was superior to online training for improvements in wellness-promoting practices. Wellness training was adopted by the majority of leaders across the council.

  5. A Simple X-Y Scanner.

    ERIC Educational Resources Information Center

    Halse, M. R.; Hudson, W. J.

    1986-01-01

    Describes an X-Y scanner used to create acoustic holograms. Scanner is computer controlled and can be adapted to digitize pictures. Scanner geometry is discussed. An appendix gives equipment details. The control program in ATOM BASIC and 6502 machine code is available from the authors. (JM)

  6. Effect of echo spacing and readout bandwidth on basic performances of EPI-fMRI acquisition sequences implemented on two 1.5 T MR scanner systems.

    PubMed

    Giannelli, Marco; Diciotti, Stefano; Tessa, Carlo; Mascalchi, Mario

    2010-01-01

    Although in EPI-fMRI analyses typical acquisition parameters (TR, TE, matrix, slice thickness, etc.) are generally employed, various readout bandwidth (BW) values are used as a function of gradients characteristics of the MR scanner. Echo spacing (ES) is another fundamental parameter of EPI-fMRI acquisition sequences but the employed ES value is not usually reported in fMRI studies. In the present work, the authors investigated the effect of ES and BW on basic performances of EPI-fMRI sequences in terms of temporal stability and overall image quality of time series acquisition. EPI-fMRI acquisitions of the same water phantom were performed using two clinical MR scanner systems (scanners A and B) with different gradient characteristics and functional designs of radiofrequency coils. For both scanners, the employed ES values ranged from 0.75 to 1.33 ms. The used BW values ranged from 125.0 to 250.0 kHz/64pixels and from 78.1 to 185.2 kHz/64pixels for scanners A and B, respectively. The temporal stability of EPI-fMRI sequence was assessed measuring the signal-to-fluctuation noise ratio (SFNR) and signal drift (DR), while the overall image quality was assessed evaluating the signal-to-noise ratio (SNR(ts)) and nonuniformity (NU(ts)) of the time series acquisition. For both scanners, no significant effect of ES and BW on signal drift was revealed. The SFNR, NU(ts) and SNR(ts) values of scanner A did not significantly vary with ES. On the other hand, the SFNR, NU(ts), and SNR(ts) values of scanner B significantly varied with ES. SFNR (5.8%) and SNR(ts) (5.9%) increased with increasing ES. SFNR (25% scanner A, 32% scanner B) and SNR(ts) (26.2% scanner A, 30.1% scanner B) values of both scanners significantly decreased with increasing BW. NU(ts) values of scanners A and B were less than 3% for all BW and ES values. Nonetheless, scanner A was characterized by a significant upward trend (3% percentage of variation) of time series nonuniformity with increasing BW while NU(ts) of scanner B significantly increased (19% percentage of variation) with increasing ES. Temporal stability (SFNR and DR) and overall image quality (NU(ts) and SNR(ts)) of EPI-fMRI time series can significantly vary with echo spacing and readout bandwidth. The specific pattern of variation may depend on the performance of each single MR scanner system in terms of gradients characteristics, EPI sequence calibrations (eddy currents, shimming, etc.), and functional design of radiofrequency coil. Our results indicate that the employment of low BW improves not only the signal-to-noise ratio of EPI-fMRI time series but also the temporal stability of functional acquisitions. The use of minimum ES values is not entirely advantageous when the MR scanner system is characterized by gradients with low performances and suboptimal EPI sequence calibration. Since differences in basic performances of MR scanner system are potential source of variability for fMRI activation, phantom measurements of SFNR, DR, NU(ts), and SNR(ts) can be executed before subjects acquisitions to monitor the stability of MR scanner performances in clinical group comparison and longitudinal studies.

  7. Development of Technology for Image-Guided Proton Therapy

    DTIC Science & Technology

    2012-10-01

    develop data analysis software  Install and test tablet PCs Year 2 ending 9/30/2009  Design PET scanner  Design mechanical gantry...of the PET instrument  Measure positron-emitting isotope production  Use dual-energy CT and MRI to determine the composition of materials Year...forms on tablet PCs Phase 5 Scope of Work Year 1 ending 9/30/2009  Identify a vendor consortium to develop a solution for CBCT on or near

  8. Scanning Cargo Containers with Tagged Neutrons

    NASA Astrophysics Data System (ADS)

    Viesti, G.; Botosso, C.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Zenoni, A.; Donzella, A.; Perot, B.; Carasco, C.; Bernard, S.; Mariani, A.; Szabo, J.-L.; Sannie, G.; Valkovic, V.; Sudac, D.; Nad, K.; Peerani, P.; Sequeira, V.; Salvato, M.; Moszynski, M.; Gierlik, M.; Klamra, W.; Le Tourneur, P.; Lhuissier, M.; Colonna, A.; Tintori, C.

    2007-10-01

    A new Tagged Neutron Inspection System (TNIS) able to detect illicit materials such as explosives and narcotics in cargo containers has been developed within the EURopean Illicit TRAfficing Countermeasures Kit (EURITRACK) project. After the R&D phase, the inspection portal has been installed and commissioned at the Rijeka seaport in Croatia, where it has been operated in connection with the existing X-ray scanner for a first two-month demonstration campaign. Results obtained are presented and discussed in this paper.

  9. Measurements agreement between low-cost and high-level handheld 3D scanners to scan the knee for designing a 3D printed knee brace

    PubMed Central

    2018-01-01

    Use of additive manufacturing is growing rapidly in the orthotics field. This technology allows orthotics to be designed directly on digital scans of limbs. However, little information is available about scanners and 3D scans. The aim of this study is to look at the agreement between manual measurements, high-level and low-cost handheld 3D scanners. We took two manual measurements and three 3D scans with each scanner from 14 lower limbs. The lower limbs were divided into 17 sections of 30mm each from 180mm above the mid-patella to 300mm below. Time to record and to process the three 3D scans for scanners methods were compared with Student t-test while Bland-Altman plots were used to study agreement between circumferences of each section from the three methods. The record time was 97s shorter with high-level scanner than with the low-cost (p = .02) while the process time was nine times quicker with the low-cost scanner (p < .01). An overestimation of 2.5mm was found in high-level scanner compared to manual measurement, but with a better repeatability between measurements. The low-cost scanner tended to overestimate the circumferences from 0.1% to 1.5%, overestimation being greater for smaller circumferences. In conclusion, 3D scanners provide more information about the shape of the lower limb, but the reliability depends on the 3D scanner and the size of the scanned segment. Low-cost scanners could be useful for clinicians because of the simple and fast process, but attention should be focused on accuracy, which depends on the scanned body segment. PMID:29320560

  10. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner.

    PubMed

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-Ichi; Sugihara, Naoki; Tsukagoshi, Shinsuke; Saito, Yasuo; Kazama, Masahiro; Ashizawa, Kazuto; Awai, Kazuo; Honda, Osamu; Ishikawa, Hiroyuki; Koizumi, Naoya; Komoto, Daisuke; Moriya, Hiroshi; Oda, Seitaro; Oshiro, Yasuji; Yanagawa, Masahiro; Tomiyama, Noriyuki; Asamura, Hisao

    2015-01-01

    The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners.

  11. Scanner OPC signatures: automatic vendor-to-vendor OPE matching

    NASA Astrophysics Data System (ADS)

    Renwick, Stephen P.

    2009-03-01

    As 193nm lithography continues to be stretched and the k1 factor decreases, optical proximity correction (OPC) has become a vital part of the lithographer's tool kit. Unfortunately, as is now well known, the design variations of lithographic scanners from different vendors cause them to have slightly different optical-proximity effect (OPE) behavior, meaning that they print features through pitch in distinct ways. This in turn means that their response to OPC is not the same, and that an OPC solution designed for a scanner from Company 1 may or may not work properly on a scanner from Company 2. Since OPC is not inexpensive, that causes trouble for chipmakers using more than one brand of scanner. Clearly a scanner-matching procedure is needed to meet this challenge. Previously, automatic matching has only been reported for scanners of different tool generations from the same manufacturer. In contrast, scanners from different companies have been matched using expert tuning and adjustment techniques, frequently requiring laborious test exposures. Automatic matching between scanners from Company 1 and Company 2 has remained an unsettled problem. We have recently solved this problem and introduce a novel method to perform the automatic matching. The success in meeting this challenge required three enabling factors. First, we recognized the strongest drivers of OPE mismatch and are thereby able to reduce the information needed about a tool from another supplier to that information readily available from all modern scanners. Second, we developed a means of reliably identifying the scanners' optical signatures, minimizing dependence on process parameters that can cloud the issue. Third, we carefully employed standard statistical techniques, checking for robustness of the algorithms used and maximizing efficiency. The result is an automatic software system that can predict an OPC matching solution for scanners from different suppliers without requiring expert intervention.

  12. Measurements agreement between low-cost and high-level handheld 3D scanners to scan the knee for designing a 3D printed knee brace.

    PubMed

    Dessery, Yoann; Pallari, Jari

    2018-01-01

    Use of additive manufacturing is growing rapidly in the orthotics field. This technology allows orthotics to be designed directly on digital scans of limbs. However, little information is available about scanners and 3D scans. The aim of this study is to look at the agreement between manual measurements, high-level and low-cost handheld 3D scanners. We took two manual measurements and three 3D scans with each scanner from 14 lower limbs. The lower limbs were divided into 17 sections of 30mm each from 180mm above the mid-patella to 300mm below. Time to record and to process the three 3D scans for scanners methods were compared with Student t-test while Bland-Altman plots were used to study agreement between circumferences of each section from the three methods. The record time was 97s shorter with high-level scanner than with the low-cost (p = .02) while the process time was nine times quicker with the low-cost scanner (p < .01). An overestimation of 2.5mm was found in high-level scanner compared to manual measurement, but with a better repeatability between measurements. The low-cost scanner tended to overestimate the circumferences from 0.1% to 1.5%, overestimation being greater for smaller circumferences. In conclusion, 3D scanners provide more information about the shape of the lower limb, but the reliability depends on the 3D scanner and the size of the scanned segment. Low-cost scanners could be useful for clinicians because of the simple and fast process, but attention should be focused on accuracy, which depends on the scanned body segment.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starcher, Autumn N.; Elzinga, Evert J.; Sparks, Donald L.

    Previous research demonstrated the formation of single divalent metal (Co, Ni, and ZnAl) and mixed divalent metal (NiZnAl) layered double hydroxide (LDH) phases from reactions of the divalent metal with Al-bearing substrates and soils in both laboratory experiments and in the natural environment. Recently Fe(II)-Al-LDH phases have been found in laboratory batch reaction studies, and although they have yet to be found in the natural environment. Potential locations of Fe(II)-Al-LDH phases in nature include areas with suboxic and anoxic conditions. Because these areas can be environments of significant contaminant accumulation, it is important to understand the possible interactions and impactsmore » of contaminant elements on LDH phase formation. One such contaminant, Zn, can also form as an LDH and has been found to form as a mixed divalent layered hydroxide phase. To understand how Zn impacts the formation of Fe(II)-Al-LDH phase formation and kinetics, 3 mM or 0.8 mM Fe(II) and 0.8 mM Zn were batch reacted with either 10 g/L pyrophyllite or 7.5 g/L γ-Al2O3 for up to three months under anoxic conditions. Aqueous samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) and solid samples were analyzed with X-ray absorption spectroscopy (XAS). Shell-by-shell fits of Fe(II) and co-sorption samples with pyrophyllite show the formation of a mixed divalent metal (Fe(II)-Zn-Al) layered hydroxide phase, while Fe(II) and Zn co-sorption samples with γ-Al2O3 produce Fe(II)-Al-LDH phases and Zn in inner-sphere complexation with the γ-Al2O3. This study demonstrates the formation of a mixed divalent metal layered hydroxide and further iterates the importance of sorbent reactivity on LDH phase formation.« less

  14. FormScanner: Open-Source Solution for Grading Multiple-Choice Exams

    NASA Astrophysics Data System (ADS)

    Young, Chadwick; Lo, Glenn; Young, Kaisa; Borsetta, Alberto

    2016-01-01

    The multiple-choice exam remains a staple for many introductory physics courses. In the past, people have graded these by hand or even flaming needles. Today, one usually grades the exams with a form scanner that utilizes optical mark recognition (OMR). Several companies provide these scanners and particular forms, such as the eponymous "Scantron." OMR scanners combine hardware and software—a scanner and OMR program—to read and grade student-filled forms.

  15. Applications of Optical Scanners in an Academic Center.

    ERIC Educational Resources Information Center

    Molinari, Carol; Tannenbaum, Robert S.

    1995-01-01

    Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…

  16. A multilevel multispectral data set analysis in the visible and infrared wavelength regions. [for land use remote sensing

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Silva, L. F.

    1975-01-01

    Skylab multispectral scanner data, digitized Skylab color infrared (IR) photography, digitized Skylab black and white multiband photography, and Earth Resources Technology Satellite (ERTS) multispectral scanner data collected within a 24-hr time period over an area in south-central Indiana near Bloomington on June 9 and 10, 1973, were compared in a machine-aided land use analysis of the area. The overall classification performance results, obtained with nine land use classes, were 87% correct classification using the 'best' 4 channels of the Skylab multispectral scanner, 80% for the channels on the Skylab multispectral scanner which are spectrally comparable to the ERTS multispectral scanner, 88% for the ERTS multispectral scanner, 83% for the digitized color IR photography, and 76% for the digitized black and white multiband photography. The results indicate that the Skylab multispectral scanner may yield even higher classification accuracies when a noise-filtered multispectral scanner data set becomes available in the near future.

  17. Efficient system modeling for a small animal PET scanner with tapered DOI detectors.

    PubMed

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi

    2016-01-21

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.

  18. Electronic monitoring and voice prompts improve hand hygiene and decrease nosocomial infections in an intermediate care unit.

    PubMed

    Swoboda, Sandra M; Earsing, Karen; Strauss, Kevin; Lane, Stephen; Lipsett, Pamela A

    2004-02-01

    To determine whether electronic monitoring of hand hygiene and voice prompts can improve hand hygiene and decrease nosocomial infection rates in a surgical intermediate care unit. Three-phase quasi-experimental design. Phase I was electronic monitoring and direct observation; phase II was electronic monitoring and computerized voice prompts for failure to perform hand hygiene on room exit; and phase III was electronic monitoring only. Nine-room, 14-bed intermediate care unit in a university, tertiary-care institution. All patient rooms, utility room, and staff lavatory were monitored electronically. All healthcare personnel including physicians, nurses, nursing support personnel, ancillary staff, all visitors and family members, and any other personnel interacting with patients on the intermediate care unit. All patients with an intermediate care unit length of stay >48 hrs were followed for nosocomial infection. Electronic monitoring during all phases, computerized voice prompts during phase II only. We evaluated a total of 283,488 electronically monitored entries into a patient room with 251,526 exits for 420 days (10,080 hrs and 3,549 patient days). Compared with phase I, hand hygiene compliance in patient rooms improved 37% during phase II (odds ratio, 1.38; 95% confidence interval, 1.04-1.83) and 41% in phase III (odds ratio, 1.41; 95% confidence interval, 1.07-1.84). When adjusting for patient admissions during each phase, point estimates of nosocomial infections decreased by 22% during phase II and 48% during phase III; when adjusting for patient days, the number of infections decreased by 10% during phase II and 40% during phase III. Although the overall rate of nosocomial infections significantly decreased when combining phases II and III, the association between nosocomial infection and individual phase was not significant. Electronic monitoring provided effective ongoing feedback about hand hygiene compliance. During both the voice prompt phase and post-intervention phase, hand hygiene compliance and nosocomial infection rates improved suggesting that ongoing monitoring and feedback had both a short-term and, perhaps, a longer-term effect.

  19. Scanners for analytic print measurement: the devil in the details

    NASA Astrophysics Data System (ADS)

    Zeise, Eric K.; Williams, Don; Burns, Peter D.; Kress, William C.

    2007-01-01

    Inexpensive and easy-to-use linear and area-array scanners have frequently substituted as colorimeters and densitometers for low-frequency (i.e., large area) hard copy image measurement. Increasingly, scanners are also being used for high spatial frequency, image microstructure measurements, which were previously reserved for high performance microdensitometers. In this paper we address characteristics of flatbed reflection scanners in the evaluation of print uniformity, geometric distortion, geometric repeatability and the influence of scanner MTF and noise on analytic measurements. Suggestions are made for the specification and evaluation of scanners to be used in print image quality standards that are being developed.

  20. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss.

  1. A Prospective, Matched Comparison Study of SUV Measurements From Time-of-Flight Versus Non-Time-of-Flight PET/CT Scanners.

    PubMed

    Thompson, Holly M; Minamimoto, Ryogo; Jamali, Mehran; Barkhodari, Amir; von Eyben, Rie; Iagaru, Andrei

    2016-07-01

    As quantitative F-FDG PET numbers and pooling of results from different PET/CT scanners become more influential in the management of patients, it becomes imperative that we fully interrogate differences between scanners to fully understand the degree of scanner bias on the statistical power of studies. Participants with body mass index (BMI) greater than 25, scheduled on a time-of-flight (TOF)-capable PET/CT scanner, had a consecutive scan on a non-TOF-capable PET/CT scanner and vice versa. SUVmean in various tissues and SUVmax of malignant lesions were measured from both scans, matched to each subject. Data were analyzed using a mixed-effects model, and statistical significance was determined using equivalence testing, with P < 0.05 being significant. Equivalence was established in all baseline organs, except the cerebellum, matched per patient between scanner types. Mixed-effects method analysis of lesions, repeated between scan types and matched per patient, demonstrated good concordance between scanner types. Patients could be scanned on either a TOF or non-TOF-capable PET/CT scanner without clinical compromise to quantitative SUV measurements.

  2. CMIF ECLS system test findings

    NASA Technical Reports Server (NTRS)

    Schunk, Richard G.; Carrasquillo, Robyn L.; Ogle, Kathyrn Y.; Wieland, Paul O.; Bagdigian, Robert M.

    1989-01-01

    During 1987 three Space Station integrated Environmental Control and Life Support System (ECLSS) tests were conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) as part of the MSFC ECLSS Phase II test program. The three tests ranged in duration from 50 to 150 hours and were conducted inside of the CMIF module simulator. The Phase II partial integrated system test configuration consisted of four regenerative air revitalization subsystems and one regenerative water reclamation subsystem. This paper contains a discussion of results and lessons learned from the Phase II test program. The design of the Phase II test configuration and improvements made throughout the program are detailed. Future plans for the MSFC CMIF test program are provided, including an overview of planned improvements for the Phase III program.

  3. Investing in Our Nation's Youth. National Youth Anti-Drug Media Campaign: Phase II (Final Report).

    ERIC Educational Resources Information Center

    Office of National Drug Control Policy, Washington, DC.

    This publication presents the findings from an evaluation of Phase II of the National Youth Anti-Drug Media Campaign. The number one goal of the campaign was to educate youth to reject illegal drugs. This report evaluates Phase II and focuses on the effect of paid television advertising on awareness of anti-drug messages among youth, teens, and…

  4. Labeled carbon dioxide (C18O2): an indicator gas for phase II in expirograms.

    PubMed

    Schulz, Holger; Schulz, Anne; Eder, Gunter; Heyder, Joachim

    2004-11-01

    Carbon dioxide labeled with 18O (C18O2) was used as a tracer gas for single-breath measurements in six anesthetized, mechanically ventilated beagle dogs. C18O2 is taken up quasi-instantaneously in the gas-exchanging region of the lungs but much less so in the conducting airways. Its use allows a clear separation of phase II in an expirogram even from diseased individuals and excludes the influence of alveolar concentration differences. Phase II of a C18O2 expirogram mathematically corresponds to the cumulative distribution of bronchial pathways to be traversed completely in the course of exhalation. The derivative of this cumulative distribution with respect to respired volume was submitted to a power moment analysis to characterize volumetric mean (position), standard deviation (broadness), and skewness (asymmetry) of phase II. Position is an estimate of dead space volume, whereas broadness and skewness are measures of the range and asymmetry of functional airway pathway lengths. The effects of changing ventilatory patterns and of changes in airway size (via carbachol-induced bronchoconstriction) were studied. Increasing inspiratory or expiratory flow rates or tidal volume had only minor influence on position and shape of phase II. With the introduction of a postinspiratory breath hold, phase II was continually shifted toward the airway opening (maximum 45% at 16 s) and became steeper by up to 16%, whereas skewness showed a biphasic response with a moderate decrease at short breath holding and a significant increase at longer breath holds. Stepwise bronchoconstriction decreased position up to 45 +/- 2% and broadness of phase II up to 43 +/- 4%, whereas skewness was increased up to twofold at high-carbachol concentrations. Under all circumstances, position of phase II by power moment analysis and dead space volume by the Fowler technique agreed closely in our healthy dogs. Overall, power moment analysis provides a more comprehensive view on phase II of single-breath expirograms than conventional dead space volume determinations and may be useful for respiratory physiology studies as well as for the study of diseased lungs.

  5. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in...

  6. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in...

  7. Generation of phase II in vitro metabolites using homogenized horse liver.

    PubMed

    Wong, Jenny K Y; Chan, George H M; Leung, David K K; Tang, Francis P W; Wan, Terence S M

    2016-02-01

    The successful use of homogenized horse liver for the generation of phase I in vitro metabolites has been previously reported by the authors' laboratory. Prior to the use of homogenized liver, the authors' laboratory had been using mainly horse liver microsomes for carrying out equine in vitro metabolism studies. Homogenized horse liver has shown significant advantages over liver microsomes for in vitro metabolism studies as the procedures are much quicker and have higher capability for generating more in vitro metabolites. In this study, the use of homogenized liver has been extended to the generation of phase II in vitro metabolites (glucuronide and/or sulfate conjugates) using 17β-estradiol, morphine, and boldenone undecylenate as model substrates. It was observed that phase II metabolites could also be generated even without the addition of cofactors. To the authors' knowledge, this is the first report of the successful use of homogenized horse liver for the generation of phase II metabolites. It also demonstrates the ease with which both phase I and phase II metabolites can now be generated in vitro simply by using homogenized liver without the need for ultracentrifuges or tedious preparation steps. Copyright © 2015 John Wiley & Sons, Ltd.

  8. A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yongjun; Lim, Jonghyuck; Kim, Namkug

    2013-05-15

    Purpose: To investigate the effect of using different computed tomography (CT) scanners on the accuracy of high-resolution CT (HRCT) images in classifying regional disease patterns in patients with diffuse lung disease, support vector machine (SVM) and Bayesian classifiers were applied to multicenter data. Methods: Two experienced radiologists marked sets of 600 rectangular 20 Multiplication-Sign 20 pixel regions of interest (ROIs) on HRCT images obtained from two scanners (GE and Siemens), including 100 ROIs for each of local patterns of lungs-normal lung and five of regional pulmonary disease patterns (ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). Each ROI was assessedmore » using 22 quantitative features belonging to one of the following descriptors: histogram, gradient, run-length, gray level co-occurrence matrix, low-attenuation area cluster, and top-hat transform. For automatic classification, a Bayesian classifier and a SVM classifier were compared under three different conditions. First, classification accuracies were estimated using data from each scanner. Next, data from the GE and Siemens scanners were used for training and testing, respectively, and vice versa. Finally, all ROI data were integrated regardless of the scanner type and were then trained and tested together. All experiments were performed based on forward feature selection and fivefold cross-validation with 20 repetitions. Results: For each scanner, better classification accuracies were achieved with the SVM classifier than the Bayesian classifier (92% and 82%, respectively, for the GE scanner; and 92% and 86%, respectively, for the Siemens scanner). The classification accuracies were 82%/72% for training with GE data and testing with Siemens data, and 79%/72% for the reverse. The use of training and test data obtained from the HRCT images of different scanners lowered the classification accuracy compared to the use of HRCT images from the same scanner. For integrated ROI data obtained from both scanners, the classification accuracies with the SVM and Bayesian classifiers were 92% and 77%, respectively. The selected features resulting from the classification process differed by scanner, with more features included for the classification of the integrated HRCT data than for the classification of the HRCT data from each scanner. For the integrated data, consisting of HRCT images of both scanners, the classification accuracy based on the SVM was statistically similar to the accuracy of the data obtained from each scanner. However, the classification accuracy of the integrated data using the Bayesian classifier was significantly lower than the classification accuracy of the ROI data of each scanner. Conclusions: The use of an integrated dataset along with a SVM classifier rather than a Bayesian classifier has benefits in terms of the classification accuracy of HRCT images acquired with more than one scanner. This finding is of relevance in studies involving large number of images, as is the case in a multicenter trial with different scanners.« less

  9. Quantitation of clinical feedback on image quality differences between two CT scanner models.

    PubMed

    Bache, Steven T; Stauduhar, Paul J; Liu, Xinming; Loyer, Evelyne M; John, Rong X

    2017-03-01

    The aim of this work was to quantitate differences in image quality between two GE CT scanner models - the LightSpeed VCT ("VCT") and Discovery HD750 ("HD") - based upon feedback from radiologists at our institution. First, 3 yrs of daily QC images of the manufacturer-provided QC phantom from 10 scanners - five of each model - were analyzed for both noise magnitude, measured as CT-number standard deviation, and noise power spectrum within the uniform water section. The same phantom was then scanned on four of each model and analyzed for low contrast detectability (LCD) using a built-in LCD tool at the scanner console. An anthropomorphic phantom was scanned using the same eight scanners. A slice within the abdomen section was chosen and three ROIs were placed in regions representing liver, stomach, and spleen. Both standard deviation of CT-number and LCD value was calculated for each image. Noise magnitude was 8.5% higher in HD scanners compared to VCT scanners. An associated increase in the magnitude of the noise power spectra were also found, but both peak and mean NPS frequency were not different between the two models. VCT scanners outperformed HD scanners with respect to LCD by an average of 13.1% across all scanners and phantoms. Our results agree with radiologist feedback, and necessitate a closer look at our body CT protocols among different scanner models at our institution. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy.

    PubMed

    Achouak, Wafa; Conrod, Sandrine; Cohen, Valérie; Heulin, Thierry

    2004-08-01

    Pseudomonas brassicacearum was isolated as a major root-colonizing population from Arabidopsis thaliana. The strain NFM421 of P. brassicacearum undergoes phenotypic variation during A. thaliana and Brassica napus root colonization in vitro as well as in soil, resulting in different colony appearance on agar surfaces. Bacteria forming translucent colonies (phase II cells) essentially were localized at the surface of young roots and root tips, whereas wild-type cells (phase I cells) were localized at the basal part of roots. The ability of phase II cells to spread and colonize new sites on root surface correlates with over-production of flagellin as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of surface proteins and microsequencing. Moreover, phase II cells showed a higher ability to swim and to swarm on semisolid agar medium. Phase I and phase II cells of P. brassicacearum NFM421 were tagged genetically with green fluorescent protein and red fluorescent protein. Confocal scanning laser microscopy was used to localize phase II cells on secondary roots and root tips of A. thaliana, whereas phase I cells essentially were localized at the basal part of roots. These experiments were conducted in vitro and in soil. Phenotypic variation on plant roots is likely to be a colonization strategy that may explain the high colonization power of P. brassicacearum.

  11. Probability of success for phase III after exploratory biomarker analysis in phase II.

    PubMed

    Götte, Heiko; Kirchner, Marietta; Sailer, Martin Oliver

    2017-05-01

    The probability of success or average power describes the potential of a future trial by weighting the power with a probability distribution of the treatment effect. The treatment effect estimate from a previous trial can be used to define such a distribution. During the development of targeted therapies, it is common practice to look for predictive biomarkers. The consequence is that the trial population for phase III is often selected on the basis of the most extreme result from phase II biomarker subgroup analyses. In such a case, there is a tendency to overestimate the treatment effect. We investigate whether the overestimation of the treatment effect estimate from phase II is transformed into a positive bias for the probability of success for phase III. We simulate a phase II/III development program for targeted therapies. This simulation allows to investigate selection probabilities and allows to compare the estimated with the true probability of success. We consider the estimated probability of success with and without subgroup selection. Depending on the true treatment effects, there is a negative bias without selection because of the weighting by the phase II distribution. In comparison, selection increases the estimated probability of success. Thus, selection does not lead to a bias in probability of success if underestimation due to the phase II distribution and overestimation due to selection cancel each other out. We recommend to perform similar simulations in practice to get the necessary information about the risk and chances associated with such subgroup selection designs. Copyright © 2017 John Wiley & Sons, Ltd.

  12. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  13. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of...

  14. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of...

  15. Spiral chain structure of high pressure selenium-II{sup '} and sulfur-II from powder x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami

    2004-10-01

    The structure of high pressure phases, selenium-II{sup '} (Se-II{sup '}) and sulfur-II (S-II), for {alpha}-Se{sub 8} (monoclinic Se-I) and {alpha}-S{sub 8} (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II{sup '} and S-II were found to be isostructural and to belong to the tetragonal space group I4{sub 1}/acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4{sub 1} and 4{sub 3} screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemicalmore » bonds of the phases are also discussed from the interatomic distances that were obtained.« less

  16. A television scanner for the ultracentrifuge. II. Multiple cell operation.

    PubMed

    Rockholt, D L; Royce, C R; Richards, E G

    1976-07-01

    The "Optical Multichannel Analyzer" (OMA) is a commercially available instrument that with the absorption optical system of the ultracentrifuge, provides an entire 500 channel intensity profile of a cell in real time. With its own analog-todigital converter, the OMA integrates a selectable number of 32.8 msec scans to provide a time-averaged image in digital form. This paper describes an interface-controller for operation of the OMA with single- and double-sector cells in multi-cell rotors, simulating double-beam measurement required for absorbance determinations. The desired sector is selected by "gating" the intensifier stage of a "Silicon Intensified Target" vidicon (SIT) used as the light detector. The cell location in the rotor and the position of the gate relative to the cell centerline is obtained from a phase-locked loop circuit which divides each rotation of the rotor into 3600 parts independent of rotor speed. (This circuit employed with photo-multiplier scanners would select the gate position for integration of photomultiplier pulses.) From examination of appropriate signals with an oscilloscope, it was verified that gate positions and widths are located with an accuracy of 0.1degree or better and with a precision of +/- 0.1 mus. The light intensity profile for any desired cell can be examined in "real time", even during acceleration of the rotor. Additional circuits employing a 10 MHz crystal clock 1) control the automatic collection of data for all sectors in multicell rotors at digitally selected time intervals, 2) display the rotor speed, and 3) indicate the elapsed time of the experiment. Constructed but not tested are additional circuits for pulsing a laser into the absorption or Rayleigh optical system. The accuracy of the pulsed SIT has been demonstrated by measurement of absorbances of solutions and also by sedimentation equilibrium experiments with myoglobin. The estimated error is 0.003 for absorbances ranging from 0 to 1. The interface-controller operates extremely well, but problems related to the pulsed SIT (optimum gate position relative to the sector opening shape of high-voltage pulse, slight pincushion distortion) require more work.

  17. Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes

    NASA Astrophysics Data System (ADS)

    Wu, Mingching; Fang, Weileun

    2005-03-01

    This work integrates multi-depth DRIE etching, trench-refilled molding, two poly-Si layers MUMPs and bulk releasing to improve the variety and performance of MEMS devices. In summary, the present fabrication process, named MOSBE II, has three merits. First, this process can monolithically fabricate and integrate poly-Si thin-film structures with different thicknesses and stiffnesses, such as the flexible spring and the stiff mirror plate. Second, multi-depth structures, such as vertical comb electrodes, are available from the DRIE processes. Third, a cavity under the micromachined device is provided by the bulk silicon etching process, so that a large out-of-plane motion is allowed. In application, an optical scanner driven by the self-aligned vertical comb actuator was demonstrated. The poly-Si micromachined components fabricated by MOSBE II can further integrate with the MUMPs devices to establish a more powerful MOEMS platform.

  18. The Origins of [C ii] Emission in Local Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croxall, K. V.; Smith, J. D.; Pellegrini, E.

    The [C ii] 158 μ m fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C{sup +} can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μ m fine-structuremore » line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μ m. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel ) and Beyond the Peak Herschel programs, we show that 60%–80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.« less

  19. Design and implementation of an inexpensive target scanner for the growth of thin films by the laser-ablation process

    NASA Astrophysics Data System (ADS)

    Rao, A. M.; Moodera, J. S.

    1991-04-01

    The design of a target scanner that is inexpensive and easy to construct is described. Our target scanner system does not require an expensive personal computer to raster the laser beam uniformily over the target material, unlike the computer driven target scanners that are currently being used in the thin-film industry. The main components of our target scanner comprise a bidirectional motor, a two-position switch, and a standard optical mirror mount.

  20. Beginning Teacher Evaluation Study: Phase II, 1973-74, Final Report: Volume III.2. Reading and Mathematics Observation System: Description and Analysis of Time Expenditures.

    ERIC Educational Resources Information Center

    Calfee, Robert; Calfee, Kathryn Hoover

    The Beginning Teacher Evaluation Study (BTES), Phase II, was a research project on effective teaching behavior--what teachers do that significantly affects what and how pupils learn. The purposes of Phase II were to (1) develop an assessment system for measuring teacher and pupil behaviors and other factors which could influence each of them and…

  1. Side scanner for supermarkets: a new scanner design standard

    NASA Astrophysics Data System (ADS)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  2. Dual mode scanner-tracker

    NASA Astrophysics Data System (ADS)

    Mongeon, R. J.

    1984-11-01

    The beam of a laser radar is moved over the field of view by means of a pair of scanner/trackers arranged in cascade along the laser beam. One of the scanner/trackers operates at high speed, with high resolution and a wide field and is located in the demagnified portion of the laser beam. The two scanner/trackers complement each other to achieve high speed, high resolution scanning as well as tracking of moving targets. A beam steering telescope for an airborne laser radar which incorporates the novel dual mode scanner/tracker is also shown. The other scanner/tracker operates at low speed with low resolution and a wide field and is located in the magnified portion of the laser beam.

  3. Model Transformation for a System of Systems Dependability Safety Case

    NASA Technical Reports Server (NTRS)

    Murphy, Judy; Driskell, Steve

    2011-01-01

    The presentation reviews the dependability and safety effort of NASA's Independent Verification and Validation Facility. Topics include: safety engineering process, applications to non-space environment, Phase I overview, process creation, sample SRM artifact, Phase I end result, Phase II model transformation, fault management, and applying Phase II to individual projects.

  4. Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    Early Restoration Plan. On April 20, 2011 we reached an agreement with BP to start restoration planning draft plan for the third phase of early restoration in December 2013. We are considering your comments : All Phase III information and documents Phase II Useful Links: Phase II Early Restoration Plan &

  5. Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design

    NASA Astrophysics Data System (ADS)

    Lai, Xiaochun; Meng, Ling-Jian

    2018-02-01

    In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.

  6. SU-F-R-40: Robustness Test of Computed Tomography Textures of Lung Tissues to Varying Scanning Protocols Using a Realistic Phantom Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Markel, D; Hegyi, G

    2016-06-15

    Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with amore » grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image acquisition parameters.« less

  7. Effectiveness of safety belt warning and interlock systems

    DOT National Transportation Integrated Search

    1973-04-01

    Rental cars in Fayetteville, N.C., were equipped with four seat belt and warning systems: (Phase I) detachable shoulder and lap belt, no warning system; (Phase II) detachable shoulder and lap belt, warning system (January 1, 1972 standard); (Phase II...

  8. Recent Advances in Understanding of Kinetic Interplay Between Phase II Metabolism and Efflux Transport.

    PubMed

    Wang, Shuai; Xing, Huijie; Zhao, Mengjing; Lu, Danyi; Li, Zhijie; Dong, Dong; Wu, Baojian

    2016-01-01

    Mechanistic understanding of the metabolism-transport interplay assumes great importance in pharmaceutical fields because the knowledge can help to interpret drug/xenobiotic metabolism and disposition studies as well as the drug-drug interactions in vivo. About 10 years ago, it started to recognize that cellular phase II metabolism is strongly influenced by the excretion (efflux transport) of generated metabolites, a kinetic phenomenon termed "phase II metabolism-transport interplay". This interplay is believed to have significant effects on the pharmacokinetics (bioavailability) of drugs/chemicals undergoing phase II metabolism. In this article, we review the studies investigating the phase II metabolism-transport interplay using cell models, perfused rat intestine, and intact rats. The potential confounding factors in exploring such interplay is also summarized. Moreover, the mechanism underlying the phase II metabolism-transport interplay is discussed. Various studies with engineered cells and rodents have demonstrated that there is an interaction (interplay) between phase II enzymes and efflux transporters. This type of interplay mainly refers to the dependence of phase II (conjugative) metabolism on the activities of efflux transporters. In general, inhibiting efflux transporters or decreasing their expression causes the reductions in metabolite excretion, apparent excretion clearance (CLapp) and total metabolism (fmet), as well as an increase in the intracellular level of metabolite (Ci). The deconjugation mediated by hydrolase (acting as a "bridge") is essential for the interplay to play out based on pharmacokinetic modeling/simulations, cell and animal studies. The hydrolases bridge the two processes (i.e., metabolite formation and excretion) and enable the interplay thereof (a bridging effect). Without the bridge, metabolite formation is independent on its downstream process excretion, thus impact of metabolite excretion on its formation is impossible. Deconjugation (mediated by hydrolases) plays an essential role in the conjugation-transport interplay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Evaluation of resolution and periodic errors of a flatbed scanner used for digitizing spectroscopic photographic plates

    PubMed Central

    Wyatt, Madison; Nave, Gillian

    2017-01-01

    We evaluated the use of a commercial flatbed scanner for digitizing photographic plates used for spectroscopy. The scanner has a bed size of 420 mm by 310 mm and a pixel size of about 0.0106 mm. Our tests show that the closest line pairs that can be resolved with the scanner are 0.024 mm apart, only slightly larger than the Nyquist resolution of 0.021 mm expected by the 0.0106 mm pixel size. We measured periodic errors in the scanner using both a calibrated length scale and a photographic plate. We find no noticeable periodic errors in the direction parallel to the linear detector in the scanner, but errors with an amplitude of 0.03 mm to 0.05 mm in the direction perpendicular to the detector. We conclude that large periodic errors in measurements of spectroscopic plates using flatbed scanners can be eliminated by scanning the plates with the dispersion direction parallel to the linear detector by placing the plate along the short side of the scanner. PMID:28463262

  10. Laser identification system based on acousto-optical barcode scanner principles

    NASA Astrophysics Data System (ADS)

    Khansuvarov, Ruslan A.; Korol, Georgy I.; Preslenev, Leonid N.; Bestugin, Aleksandr R.; Paraskun, Arthur S.

    2016-09-01

    The main purpose of the bar code in the modern world is the unique identification of the product, service, or any of their features, so personal and stationary barcode scanners so widely used. One of the important parameters of bar code scanners is their reliability, accuracy of the barcode recognition, response time and performance. Nowadays, the most popular personal barcode scanners contain a mechanical part, which extremely impairs the reliability indices. Group of SUAI engineers has proposed bar code scanner based on laser beam acoustic deflection effect in crystals [RU patent No 156009 issued 4/16/2015] Through the use of an acousto-optic deflector element in barcode scanner described by a group of engineers SUAI, it can be implemented in the manual form factor, and the stationary form factor of a barcode scanner. Being a wave electronic device, an acousto-optic element in the composition of the acousto-optic barcode scanner allows you to clearly establish a mathematical link between the encoded function of the bar code with the accepted input photodetector intensities function that allows you to speak about the great probability of a bar code clear definition. This paper provides a description of the issued patent, the description of the principles of operation based on the mathematical analysis, a description of the layout of the implemented scanner.

  11. Phase-II trials in osteosarcoma recurrences: A systematic review of past experience.

    PubMed

    Omer, Natacha; Le Deley, Marie-Cécile; Piperno-Neumann, Sophie; Marec-Berard, Perrine; Italiano, Antoine; Corradini, Nadège; Bellera, Carine; Brugières, Laurence; Gaspar, Nathalie

    2017-04-01

    The most appropriate design of Phase-II trials evaluating new therapies in osteosarcoma remains poorly defined. To study consistency in phase-II clinical trials evaluating new therapies for osteosarcoma recurrences with respect to eligibility criteria, response assessment, end-points, statistical design and reported results. Systematic review of clinical trials registered on clinicaltrials.gov, clinicaltrialsregister.eu and French National Cancer Institute website or referenced in PubMed and American Society of Clinical Oncology websites, between 2003 and 2016, using the following criteria: (osteosarcoma OR bone sarcoma) AND (Phase-II). Among the 99 trials identified, 80 were Phase-II, 17 I/II and 2 II/III, evaluating mostly targeted therapy (n = 40), and chemotherapy alone (n = 26). Results were fully (n = 28) or partially (abstract, n = 6) published. Twenty-four trials were dedicated to osteosarcoma, 22 had an osteosarcoma stratum. Twenty-eight out of 99 trials refer to the age range observed at recurrence (28%). Overall, 65 trials were run in multicentre settings, including 17 international trials. Only 9 trials were randomised. The primary end-point was tumour response in 71 trials (response rate, n = 40 or best response, n = 31), with various definitions (complete + partial ± minor response and stable disease), mainly evaluated with RECIST criteria (n = 69); it was progression-free survival in 24 trials and OS in 3. In single-arm trials evaluating response rate, the null hypothesis tested (when available, n = 12) varied from 5% to 25%. No robust historical data can currently be derived from past efficacy Phase-II trials. There is an urgent need to develop international randomised Phase-II trials across all age ranges with standardised primary end-point. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of portable CT scanners for otologic image-guided surgery

    PubMed Central

    Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F

    2011-01-01

    Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768

  13. Technical Report on the Modification of 3-Dimensional Non-contact Human Body Laser Scanner for the Measurement of Anthropometric Dimensions: Verification of its Accuracy and Precision.

    PubMed

    Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa

    2017-01-01

    Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image.

  14. Technical Report on the Modification of 3-Dimensional Non-contact Human Body Laser Scanner for the Measurement of Anthropometric Dimensions: Verification of its Accuracy and Precision

    PubMed Central

    Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa

    2017-01-01

    Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image. PMID:28912940

  15. Method to evaluate the noise of 3D intra-oral scanner.

    PubMed

    Desoutter, Alban; Yusuf Solieman, Osama; Subsol, Gérard; Tassery, Hervé; Cuisinier, Frédéric; Fages, Michel

    2017-01-01

    In dentistry, 3D intra-oral scanners are gaining increasing popularity essentially for the production of dental prostheses. However, there is no normalized procedure to evaluate their basic performance and enable comparisons among intra-oral scanners. The noise value highlights the trueness of a 3D intra-oral scanner and its capacity to plan prosthesis with efficient clinical precision. The aim of the present study is to develop a reproducible methodology for determining the noise of an intra-oral scanner. To this aim, and as a reference, an ultra-flat and ultra-smooth alumina wafer is used as a blank test. The roughness is calculated using an AFM (atomic force microscope) and interferometric microscope measurements to validate this ultra-flat characteristic. Then, two intra-oral scanners (Carestream CS3500 and Trios 3Shape) are used. The wafer is imaged by the two intra-oral scanners with three different angles and two different directions, 10 times for each parameter, given a total of 50 3D-meshes per intra-oral scanner. RMS (root mean square), representing the noise, is evaluated and compared for each angle/direction and each intra-oral scanner, for the whole mesh, and then in a central ROI (region of interest). In this study, we obtained RMS values ranging between 5.29 and 12.58 micrometers. No statistically significant differences were found between the mean RMS of the two intra-oral scanners, but significant differences in angulation and orientations were found between different 3D intra-oral scanners. This study shows that the evaluation of RMS can be an indicator of the value of the noise, which can be easily assessed by applying the present methodology.

  16. Technical Note: Rod phantom analysis for comparison of PET detector sampling and reconstruction methods.

    PubMed

    Wollenweber, Scott D; Kemp, Brad J

    2016-11-01

    This investigation aimed to develop a scanner quantification performance methodology and compare multiple metrics between two scanners under different imaging conditions. Most PET scanners are designed to work over a wide dynamic range of patient imaging conditions. Clinical constraints, however, often impact the realization of the entitlement performance for a particular scanner design. Using less injected dose and imaging for a shorter time are often key considerations, all while maintaining "acceptable" image quality and quantitative capability. A dual phantom measurement including resolution inserts was used to measure the effects of in-plane (x, y) and axial (z) system resolution between two PET/CT systems with different block detector crystal dimensions. One of the scanners had significantly thinner slices. Several quantitative measures, including feature contrast recovery, max/min value, and feature profile accuracy were derived from the resulting data and compared between the two scanners and multiple phantoms and alignments. At the clinically relevant count levels used, the scanner with thinner slices had improved performance of approximately 2%, averaged over phantom alignments, measures, and reconstruction methods, for the head-sized phantom, mainly demonstrated with the rods aligned perpendicular to the scanner axis. That same scanner had a slightly decreased performance of -1% for the larger body-size phantom, mostly due to an apparent noise increase in the images. Most of the differences in the metrics between the two scanners were less than 10%. Using the proposed scanner performance methodology, it was shown that smaller detector elements and a larger number of image voxels require higher count density in order to demonstrate improved image quality and quantitation. In a body imaging scenario under typical clinical conditions, the potential advantages of the design must overcome increases in noise due to lower count density.

  17. Quantitative image feature variability amongst CT scanners with a controlled scan protocol

    NASA Astrophysics Data System (ADS)

    Ger, Rachel B.; Zhou, Shouhao; Chi, Pai-Chun Melinda; Goff, David L.; Zhang, Lifei; Lee, Hannah J.; Fuller, Clifton D.; Howell, Rebecca M.; Li, Heng; Stafford, R. Jason; Court, Laurence E.; Mackin, Dennis S.

    2018-02-01

    Radiomics studies often analyze patient computed tomography (CT) images acquired from different CT scanners. This may result in differences in imaging parameters, e.g. different manufacturers, different acquisition protocols, etc. However, quantifiable differences in radiomics features can occur based on acquisition parameters. A controlled protocol may allow for minimization of these effects, thus allowing for larger patient cohorts from many different CT scanners. In order to test radiomics feature variability across different CT scanners a radiomics phantom was developed with six different cartridges encased in high density polystyrene. A harmonized protocol was developed to control for tube voltage, tube current, scan type, pitch, CTDIvol, convolution kernel, display field of view, and slice thickness across different manufacturers. The radiomics phantom was imaged on 18 scanners using the control protocol. A linear mixed effects model was created to assess the impact of inter-scanner variability with decomposition of feature variation between scanners and cartridge materials. The inter-scanner variability was compared to the residual variability (the unexplained variability) and to the inter-patient variability using two different patient cohorts. The patient cohorts consisted of 20 non-small cell lung cancer (NSCLC) and 30 head and neck squamous cell carcinoma (HNSCC) patients. The inter-scanner standard deviation was at least half of the residual standard deviation for 36 of 49 quantitative image features. The ratio of inter-scanner to patient coefficient of variation was above 0.2 for 22 and 28 of the 49 features for NSCLC and HNSCC patients, respectively. Inter-scanner variability was a significant factor compared to patient variation in this small study for many of the features. Further analysis with a larger cohort will allow more thorough analysis with additional variables in the model to truly isolate the interscanner difference.

  18. Color accuracy and reproducibility in whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Hulsken, Bas

    2014-01-01

    Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041

  19. In-vivo dark-field and phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Bech, M.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Pauwels, B.; Hostens, J.; Bruyndonckx, P.; Sasov, A.; Pfeiffer, F.

    2013-11-01

    Novel radiography approaches based on the wave nature of x-rays when propagating through matter have a great potential for improved future x-ray diagnostics in the clinics. Here, we present a significant milestone in this imaging method: in-vivo multi-contrast x-ray imaging of a mouse using a compact scanner. Of particular interest is the enhanced contrast in regions related to the respiratory system, indicating a possible application in diagnosis of lung diseases (e.g. emphysema).

  20. Magnetic field measurements of a clinical MR imager at 1.5 tesla

    NASA Astrophysics Data System (ADS)

    Muhech, A.; Tellez, I.; Esteva, M.; Marrufo, O.; Jimenez, L.; Vazquez, F.; Taboada, J.; Rodriguez, A. O.

    2012-10-01

    In the clinical environment is mandatory to run periodically measurements of uniformity of the magnetic field produced by the magnet to assure good image quality. The phase difference method was used to measure the magnetic field uniformity of the 1.5 T scanner of the Instituto Nacional de Neurologia y Neurocirugia MVS. The uniformity field values showed that the imager performance is reasonably good for clinical imaging. Some concern was raised since results may not be good enough for magnetic resonance spectroscopy runs.

  1. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    PubMed Central

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-ichi; Sugihara, Naoki; Tsukagoshi, Shinsuke; Saito, Yasuo; Kazama, Masahiro; Ashizawa, Kazuto; Awai, Kazuo; Honda, Osamu; Ishikawa, Hiroyuki; Koizumi, Naoya; Komoto, Daisuke; Moriya, Hiroshi; Oda, Seitaro; Oshiro, Yasuji; Yanagawa, Masahiro; Tomiyama, Noriyuki; Asamura, Hisao

    2015-01-01

    Purpose The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. Results The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Conclusion Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners. PMID:26352144

  2. A new PET scanner with semiconductor detectors enables better identification of intratumoral inhomogeneity.

    PubMed

    Shiga, Tohru; Morimoto, Yuichi; Kubo, Naoki; Katoh, Norio; Katoh, Chietsugu; Takeuchi, Wataru; Usui, Reiko; Hirata, Kenji; Kojima, Shinichi; Umegaki, Kikuo; Shirato, Hiroki; Tamaki, Nagara

    2009-01-01

    An autoradiography method revealed intratumoral inhomogeneity in various solid tumors. It is becoming increasingly important to estimate intratumoral inhomogeneity. However, with low spatial resolution and high scatter noise, it is difficult to detect intratumoral inhomogeneity in clinical settings. We developed a new PET system with CdTe semiconductor detectors to provide images with high spatial resolution and low scatter noise. Both phantom images and patients' images were analyzed to evaluate intratumoral inhomogeneity. This study was performed with a cold spot phantom that had 6-mm-diameter cold sphenoid defects, a dual-cylinder phantom with an adjusted concentration of 1:2, and an "H"-shaped hot phantom. These were surrounded with water. Phantom images and (18)F-FDG PET images of patients with nasopharyngeal cancer were compared with conventional bismuth germanate PET images. Profile curves for the phantoms were measured as peak-to-valley ratios to define contrast. Intratumoral inhomogeneity and tumor edge sharpness were evaluated on the images of the patients. The contrast obtained with the semiconductor PET scanner (1.53) was 28% higher than that obtained with the conventional scanner (1.20) for the 6-mm-diameter cold sphenoid phantom. The contrast obtained with the semiconductor PET scanner (1.43) was 27% higher than that obtained with the conventional scanner (1.13) for the dual-cylinder phantom. Similarly, the 2-mm cold region between 1-mm hot rods was identified only by the new PET scanner and not by the conventional scanner. The new PET scanner identified intratumoral inhomogeneity in more detail than the conventional scanner in 6 of 10 patients. The tumor edge was sharper on the images obtained with the new PET scanner than on those obtained with the conventional scanner. These phantom and clinical studies suggested that this new PET scanner has the potential for better identification of intratumoral inhomogeneity, probably because of its high spatial resolution and low scatter noise.

  3. Accuracy in contouring of small and low contrast lesions: Comparison between diagnostic quality computed tomography scanner and computed tomography simulation scanner-A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Yick Wing, E-mail: mpr@hksh.com; Wong, Wing Kei Rebecca; Yu, Siu Ki

    2012-01-01

    To evaluate the accuracy in detection of small and low-contrast regions using a high-definition diagnostic computed tomography (CT) scanner compared with a radiotherapy CT simulation scanner. A custom-made phantom with cylindrical holes of diameters ranging from 2-9 mm was filled with 9 different concentrations of contrast solution. The phantom was scanned using a 16-slice multidetector CT simulation scanner (LightSpeed RT16, General Electric Healthcare, Milwaukee, WI) and a 64-slice high-definition diagnostic CT scanner (Discovery CT750 HD, General Electric Healthcare). The low-contrast regions of interest (ROIs) were delineated automatically upon their full width at half maximum of the CT number profile inmore » Hounsfield units on a treatment planning workstation. Two conformal indexes, CI{sub in}, and CI{sub out}, were calculated to represent the percentage errors of underestimation and overestimation in the automated contours compared with their actual sizes. Summarizing the conformal indexes of different sizes and contrast concentration, the means of CI{sub in} and CI{sub out} for the CT simulation scanner were 33.7% and 60.9%, respectively, and 10.5% and 41.5% were found for the diagnostic CT scanner. The mean differences between the 2 scanners' CI{sub in} and CI{sub out} were shown to be significant with p < 0.001. A descending trend of the index values was observed as the ROI size increases for both scanners, which indicates an improved accuracy when the ROI size increases, whereas no observable trend was found in the contouring accuracy with respect to the contrast levels in this study. Images acquired by the diagnostic CT scanner allow higher accuracy on size estimation compared with the CT simulation scanner in this study. We recommend using a diagnostic CT scanner to scan patients with small lesions (<1 cm in diameter) for radiotherapy treatment planning, especially for those pending for stereotactic radiosurgery in which accurate delineation of small-sized, low-contrast regions is important for dose calculation.« less

  4. Out of lab calibration of a rotating 2D scanner for 3D mapping

    NASA Astrophysics Data System (ADS)

    Koch, Rainer; Böttcher, Lena; Jahrsdörfer, Maximilian; Maier, Johannes; Trommer, Malte; May, Stefan; Nüchter, Andreas

    2017-06-01

    Mapping is an essential task in mobile robotics. To fulfil advanced navigation and manipulation tasks a 3D representation of the environment is required. Applying stereo cameras or Time-of-flight cameras (TOF cameras) are one way to archive this requirement. Unfortunately, they suffer from drawbacks which makes it difficult to map properly. Therefore, costly 3D laser scanners are applied. An inexpensive way to build a 3D representation is to use a 2D laser scanner and rotate the scan plane around an additional axis. A 3D point cloud acquired with such a custom device consists of multiple 2D line scans. Therefore the scanner pose of each line scan need to be determined as well as parameters resulting from a calibration to generate a 3D point cloud. Using external sensor systems are a common method to determine these calibration parameters. This is costly and difficult when the robot needs to be calibrated outside the lab. Thus, this work presents a calibration method applied on a rotating 2D laser scanner. It uses a hardware setup to identify the required parameters for calibration. This hardware setup is light, small, and easy to transport. Hence, an out of lab calibration is possible. Additional a theoretical model was created to test the algorithm and analyse impact of the scanner accuracy. The hardware components of the 3D scanner system are an HOKUYO UTM-30LX-EW 2D laser scanner, a Dynamixel servo-motor, and a control unit. The calibration system consists of an hemisphere. In the inner of the hemisphere a circular plate is mounted. The algorithm needs to be provided with a dataset of a single rotation from the laser scanner. To achieve a proper calibration result the scanner needs to be located in the middle of the hemisphere. By means of geometric formulas the algorithms determine the individual deviations of the placed laser scanner. In order to minimize errors, the algorithm solves the formulas in an iterative process. First, the calibration algorithm was tested with an ideal hemisphere model created in Matlab. Second, laser scanner was mounted differently, the scanner position and the rotation axis was modified. In doing so, every deviation, was compared with the algorithm results. Several measurement settings were tested repeatedly with the 3D scanner system and the calibration system. The results show that the length accuracy of the laser scanner is most critical. It influences the required size of the hemisphere and the calibration accuracy.

  5. Reflective Cracking of Flexible Pavements Phase I and II Final Recommendations

    DOT National Transportation Integrated Search

    2008-02-02

    This report summarizes all the findings and recommendations from the Phase I and Phase II of the Nevada Department of Transportation (NDOT) study initiated in 2006 to mitigate reflective cracking in hot mix asphalt (HMA) overlays. Based on the analys...

  6. Prostate Cancer Clinical Trials Group: The University of Michigan Site

    DTIC Science & Technology

    2012-04-01

    and fusion-negative strata. UM will be the lead site for this trial with the Univ. of Chicago N01 Phase II consortium as the coordinating center. Ten...sensitive prostate cancer: a University of Chicago Phase II Consortium/Department of Defense Prostate Cancer Clinical Trials Consortium study. JE Ward, T...N01 contract with CTEP (University of Chicago – Early Therapeutics Development with Phase II emphasis group). The Program is committed to creating

  7. The effect of high-, moderate-, and low-fat diets on weight loss and cardiovascular disease risk factors.

    PubMed

    Fleming, Richard M

    2002-01-01

    Over 60% of Americans are overweight and a number of popular diets have been advocated, often without evidence, to alleviate this public health hazard. This study was designed to investigate the effects of several diets on weight loss, serum lipids, and other cardiovascular disease risk factors. One hundred men and women followed one of four dietary programs for 1 year: a moderate-fat (MF) program without calorie restriction (28 patients); a low-fat (LF) diet (phase I) (16) ; a MF, calorie-controlled (phase II) diet (38 patients); and a high-fat (HF) diet (18 subjects) [corrected]. Weight, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), homocysteine (Ho), and lipoprotein(a) [Lp(a)], were measured every 4th month. The TC/HDL-C ratio was calculated and fibrinogen levels were measured at baseline and after one year. The MF diet resulted in a 2.6% (NS) decrease in weight compared with 18.4% (p=0.045) decrease in patients on phase I, 12.6% (p=0.0085) decrease in patients on phase II, and 13.7% (p=0.025) decrease in those on the HF diet. TC was reduced by 5% (NS) in the MF group, 39.1% (p=0.0005) in the phase I group, and 30.4% (p=0.0001) in the phase II group. HF group had a 4.3% (NS) increase in TC. LDL-C was reduced by 6.1% (NS) on MF, 52.0% (p=0.0001) on phase I, and 38.8% (p=0.0001) on phase II. Patients on HF had a 6.0% (NS) increase in LDL-C. There were nonsignificant reductions in HDL-C in those on MF (-1.5%) and HF (-5.8%). Patients on phase I showed an increase in HDL-C of 9.0% (NS), while those on phase II diet had a 3.6% increase (NS) in HDL-C. TC/HDL-C increased (9.8%) only in patients following the high-fat diets (NS). Patients on MF had a 5.3% (NS) reduction in TC/HDL-C, while those on LF had significant reductions on the phase I ( -45.8%; p=0.0001) diet and phase II diet (-34.7%; p=0.0001). TG levels increased on both the MF (1.0%) and HF (5.5%) diets, although neither was statistically significant. People following the phase I and II diets showed reductions of 37.3% and 36.9%, respectively. Ho levels increased by 9.7% when people followed the MF diet and by 12.4% when they followed the HF diet. Patients following the phase I and phase II diets showed reductions of 13.6% and 14.6%, respectively. Only those following phase II diets showed a tendency toward significant improvement (p=0.061). Lp(a) levels increased by 4.7% following the MF (NS) diet and by 31.0% (NS) on the HF diet. Patients following phase I showed a 7.4% (NS) reduction and a 10.8% reduction (NS) following phase II. Fibrinogen levels increased only in individuals following HF diets (11.9%), while patients following MF (-0.6%), phase I (-11.0%), and phase II (-6.3%) diets showed nonsignificant reductions in fibrinogen. Patients on MF demonstrated nonsignificant reductions in weight, LDL-C, TC, HDL-C, TC/HDL-C ratios, and fibrinogen and nonsignificant increases in TGs, Lp(a), and homocysteine. There was significant weight loss in patients on phase I and II and HF diets after 1 year. Reductions in TC, LDL-C, TGs, and TC/HDL ratios were significant only in patients either following a LF diet or a MF, calorically reduced diet. Only patients following HF diets showed a worsening of each cardiovascular disease risk factor (LDL-C, TG, TC, HDL-C, TC/HDL ratio, Ho, Lp(a), and fibrinogen), despite achieving statistically significant weight loss. Copyright 2002 CHF, Inc.

  8. Research safety vehicle, Phase II. Volume I. Executive summary. Final report jul 75-dec 76

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struble, D.

    1976-12-01

    Volume I summarizes the results of the Minicars Research Safety Vehicle Phase II program, as detailed in Volumes II and III. Phase I identified trends leading to the desired national social goals of the mid-1980's in vehicle crashworthiness, crash avoidance, damageability, pedestrian safety, fuel economy, emissions and cost, and characterized an RSV to satisfy them. In Phase II an RSV prototype was designed, developed and tested to demonstrate the feasibility of meeting these goals simultaneously. Although further refinement is necessary to assure operational validity, in all categories the results meet or exceed the most advanced performance specified by The Presidentialmore » Task Force on Motor Vehicle Goals beyond 1980.« less

  9. The use of dihexyldithiocarbamate in reverse-phase HPLC of metal chelates

    NASA Astrophysics Data System (ADS)

    Fatimah, S. S.; Bahti, H. H.; Hastiawan, I.; Permanasari, A.

    2018-05-01

    Dialkyldithiocarbamates have long been used as chelating agents in reverse-phase HPLC of transition metals. In the previous study, an alkyl homolog of this type of ligand, namely dihexyldithiocarbamate (DHDTC), was synthesized and characterized. The use of this particular ligand in the revese-phase HPLC of some selected transition metal ions is now reported for the first time. The mobile phase comprising of the flow rate and of the detection, in the separation of the metal chelates of Cd (II), Fe (III), Cu (II), and Co (III), were investigated on a C-18 column. The results showed that dihexylditiocarbamate could be used for separating Cd (II), Fe(III), Cu(II), and Co(III). Therefore, it could be used in simultaneous analysis.

  10. Multi-ray-based system matrix generation for 3D PET reconstruction

    NASA Astrophysics Data System (ADS)

    Moehrs, Sascha; Defrise, Michel; Belcari, Nicola; DelGuerra, Alberto; Bartoli, Antonietta; Fabbri, Serena; Zanetti, Gianluigi

    2008-12-01

    Iterative image reconstruction algorithms for positron emission tomography (PET) require a sophisticated system matrix (model) of the scanner. Our aim is to set up such a model offline for the YAP-(S)PET II small animal imaging tomograph in order to use it subsequently with standard ML-EM (maximum-likelihood expectation maximization) and OSEM (ordered subset expectation maximization) for fully three-dimensional image reconstruction. In general, the system model can be obtained analytically, via measurements or via Monte Carlo simulations. In this paper, we present the multi-ray method, which can be considered as a hybrid method to set up the system model offline. It incorporates accurate analytical (geometric) considerations as well as crystal depth and crystal scatter effects. At the same time, it has the potential to model seamlessly other physical aspects such as the positron range. The proposed method is based on multiple rays which are traced from/to the detector crystals through the image volume. Such a ray-tracing approach itself is not new; however, we derive a novel mathematical formulation of the approach and investigate the positioning of the integration (ray-end) points. First, we study single system matrix entries and show that the positioning and weighting of the ray-end points according to Gaussian integration give better results compared to equally spaced integration points (trapezoidal integration), especially if only a small number of integration points (rays) are used. Additionally, we show that, for a given variance of the single matrix entries, the number of rays (events) required to calculate the whole matrix is a factor of 20 larger when using a pure Monte-Carlo-based method. Finally, we analyse the quality of the model by reconstructing phantom data from the YAP-(S)PET II scanner.

  11. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-08

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less

  12. Recent Activity at the Astronomical Photographic Data Archive

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.; Barker, T.

    2011-01-01

    The Astronomical Photographic Data Archive (APDA) located at the Pisgah Astronomical Research Institute (PARI) was established in November 2007. APDA is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data digitally available. APDA is housed in a newly renovated Research Building on the PARI campus. An award from the NSF allowed renovation of the heating and air conditioning. Plates in APDA are kept in a 20 C +/- 1 C area with humidity at 38% +/- 3%. Renovation of the electrical system with backup power allows for support of a data center with a networked storage system and software donated from EMC Corp. The storage system can hold more than 300 terabytes of research data which can be accessed through multiple gigabyte connectivity to the Internet. APDA has a collection of more than 100,000 photographic plates and film collections, as well as major instrumentation, from NASA, the STScI, the US Naval Observatory, the Harvard Smithsonian CfA and others. APDA possesses two high precision glass plate scanners, GAMMA I and GAMMA II, that were built for NASA and the Space Telescope Science Institute (STScI). The scanners were used to develop the HST Guide Star Catalog and Digitized Sky Survey. We will present the status of GAMMA II and the recent donations of astronomical plates and current research projects.

  13. Meeting Archival Standards in the Astronomical Photographic Data Archive at PARI

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.; Barker, T.; Rottler, L.

    2013-01-01

    The Astronomical Photographic Data Archive (APDA) located at the Pisgah Astronomical Research Institute (PARI) was established in November 2007. APDA is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data digitally available. APDA is housed in a newly renovated Research Building on the PARI campus. An award from the NSF allowed renovation of the heating and air conditioning. Plates in APDA are kept in a 20 C +/- 1 C area with humidity at 38% +/- 3%. Renovation of the electrical system with backup power allows for support of a data center with a networked storage system and software donated from EMC Corp. The storage system can hold more than 400 terabytes of research data which can be accessed through multiple gigabyte connectivity to the Internet. APDA has a collection of more than 200,000 photographic plates and films from more than 40 collections, as well as major instrumentation, from NASA, the STScI, the US Naval Observatory, the Harvard Smithsonian CfA and others. APDA possesses two high precision glass plate scanners, GAMMA I and GAMMA II, built for NASA and the Space Telescope Science Institute (STScI). The scanners were used to develop the HST Guide Star Catalog and Digitized Sky Survey. GAMMA II has been rebuilt and we will report on its status as an astrometric measuring instrument.

  14. Multispectral scanner system for ERTS: Four-band scanner system. Volume 1: System description and performance

    NASA Technical Reports Server (NTRS)

    Norwood, V. T.; Fermelia, L. R.; Tadler, G. A.

    1972-01-01

    The four-band Multispectral Scanner System (MSS) is discussed. Included is a description of the MSS with major emphasis on the flight subsystem (scanner and multiplexer), the theory for the MSS calibration system processing techniques, system calibration data, and a summary of the performance of the two four-band MSS systems.

  15. Scanner imaging systems, aircraft

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.

    1982-01-01

    The causes and effects of distortion in aircraft scanner data are reviewed and an approach to reduce distortions by modelling the effect of aircraft motion on the scanner scene is discussed. With the advent of advanced satellite borne scanner systems, the geometric and radiometric correction of aircraft scanner data has become increasingly important. Corrections are needed to reliably simulate observations obtained by such systems for purposes of evaluation. It is found that if sufficient navigational information is available, aircraft scanner coordinates may be related very precisely to planimetric ground coordinates. However, the potential for a multivalue remapping transformation (i.e., scan lines crossing each other), adds an inherent uncertainty, to any radiometric resampling scheme, which is dependent on the precise geometry of the scan and ground pattern.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecomte, Roger; Arpin, Louis; Beaudoin, Jean-Franç

    Purpose: LabPET II is a new generation APD-based PET scanner designed to achieve sub-mm spatial resolution using truly pixelated detectors and highly integrated parallel front-end processing electronics. Methods: The basic element uses a 4×8 array of 1.12×1.12 mm{sup 2} Lu{sub 1.9}Y{sub 0.1}SiO{sub 5}:Ce (LYSO) scintillator pixels with one-to-one coupling to a 4×8 pixelated monolithic APD array mounted on a ceramic carrier. Four detector arrays are mounted on a daughter board carrying two flip-chip, 64-channel, mixed-signal, application-specific integrated circuits (ASIC) on the backside interfacing to two detector arrays each. Fully parallel signal processing was implemented in silico by encoding time andmore » energy information using a dual-threshold Time-over-Threshold (ToT) scheme. The self-contained 128-channel detector module was designed as a generic component for ultra-high resolution PET imaging of small to medium-size animals. Results: Energy and timing performance were optimized by carefully setting ToT thresholds to minimize the noise/slope ratio. ToT spectra clearly show resolved 511 keV photopeak and Compton edge with ToT resolution well below 10%. After correction for nonlinear ToT response, energy resolution is typically 24±2% FWHM. Coincidence time resolution between opposing 128-channel modules is below 4 ns FWHM. Initial imaging results demonstrate that 0.8 mm hot spots of a Derenzo phantom can be resolved. Conclusion: A new generation PET scanner featuring truly pixelated detectors was developed and shown to achieve a spatial resolution approaching the physical limit of PET. Future plans are to integrate a small-bore dedicated mouse version of the scanner within a PET/CT platform.« less

  17. Neuroimaging paradigms for tonotopic mapping (II): the influence of acquisition protocol.

    PubMed

    Langers, Dave R M; Sanchez-Panchuelo, Rosa M; Francis, Susan T; Krumbholz, Katrin; Hall, Deborah A

    2014-10-15

    Numerous studies on the tonotopic organisation of auditory cortex in humans have employed a wide range of neuroimaging protocols to assess cortical frequency tuning. In the present functional magnetic resonance imaging (fMRI) study, we made a systematic comparison between acquisition protocols with variable levels of interference from acoustic scanner noise. Using sweep stimuli to evoke travelling waves of activation, we measured sound-evoked response signals using sparse, clustered, and continuous imaging protocols that were characterised by inter-scan intervals of 8.8, 2.2, or 0.0 s, respectively. With regard to sensitivity to sound-evoked activation, the sparse and clustered protocols performed similarly, and both detected more activation than the continuous method. Qualitatively, tonotopic maps in activated areas proved highly similar, in the sense that the overall pattern of tonotopic gradients was reproducible across all three protocols. However, quantitatively, we observed substantial reductions in response amplitudes to moderately low stimulus frequencies that coincided with regions of strong energy in the scanner noise spectrum for the clustered and continuous protocols compared to the sparse protocol. At the same time, extreme frequencies became over-represented for these two protocols, and high best frequencies became relatively more abundant. Our results indicate that although all three scanning protocols are suitable to determine the layout of tonotopic fields, an exact quantitative assessment of the representation of various sound frequencies is substantially confounded by the presence of scanner noise. In addition, we noticed anomalous signal dynamics in response to our travelling wave paradigm that suggest that the assessment of frequency-dependent tuning is non-trivially influenced by time-dependent (hemo)dynamics when using sweep stimuli. Copyright © 2014. Published by Elsevier Inc.

  18. Design and Development of a Megavoltage CT Scanner for Radiation Therapy.

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tai

    A Varian 4 MeV isocentric therapy accelerator has been modified to perform also as a CT scanner. The goal is to provide low cost computed tomography capability for use in radiotherapy. The system will have three principal uses. These are (i) to provide 2- and 3-dimensional maps of electron density distribution for CT assisted therapy planning, (ii) to aid in patient set up by providing sectional views of the treatment volume and high contrast scout-mode verification images and (iii) to provide a means for periodically checking the patients anatomical conformation against what was used to generate the original therapy plan. The treatment machine was modified by mounting an array of detectors on a frame bolted to the counter weight end of the gantry in such a manner as to define a 'third generation' CT Scanner geometry. The data gathering is controlled by a Z-80 based microcomputer system which transfers the x-ray transmission data to a general purpose PDP 11/34 for processing. There a series of calibration processes and a logarithmic conversion are performed to get projection data. After reordering the projection data to an equivalent parallel beam sinogram format a convolution algorithm is employed to construct the image from the equivalent parallel projection data. Results of phantom studies have shown a spatial resolution of 2.6 mm and an electron density discrimination of less than 1% which are sufficiently good for accurate therapy planning. Results also show that the system is linear to within the precision of our measurement ((DBLTURN).75%) over a wide range of electron densities corresponding to those found in body tissues. Animal and human images are also presented to demonstrate that the system's imaging capability is sufficient to allow the necessary visualization of anatomy.

  19. A new technique to characterize CT scanner bow-tie filter attenuation and applications in human cadaver dosimetry simulations

    PubMed Central

    Li, Xinhua; Shi, Jim Q.; Zhang, Da; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob

    2015-01-01

    Purpose: To present a noninvasive technique for directly measuring the CT bow-tie filter attenuation with a linear array x-ray detector. Methods: A scintillator based x-ray detector of 384 pixels, 307 mm active length, and fast data acquisition (model X-Scan 0.8c4-307, Detection Technology, FI-91100 Ii, Finland) was used to simultaneously detect radiation levels across a scan field-of-view. The sampling time was as short as 0.24 ms. To measure the body bow-tie attenuation on a GE Lightspeed Pro 16 CT scanner, the x-ray tube was parked at the 12 o’clock position, and the detector was centered in the scan field at the isocenter height. Two radiation exposures were made with and without the bow-tie in the beam path. Each readout signal was corrected for the detector background offset and signal-level related nonlinear gain, and the ratio of the two exposures gave the bow-tie attenuation. The results were used in the geant4 based simulations of the point doses measured using six thimble chambers placed in a human cadaver with abdomen/pelvis CT scans at 100 or 120 kV, helical pitch at 1.375, constant or variable tube current, and distinct x-ray tube starting angles. Results: Absolute attenuation was measured with the body bow-tie scanned at 80–140 kV. For 24 doses measured in six organs of the cadaver, the median or maximum difference between the simulation results and the measurements on the CT scanner was 8.9% or 25.9%, respectively. Conclusions: The described method allows fast and accurate bow-tie filter characterization. PMID:26520720

  20. A two-stage patient enrichment adaptive design in phase II oncology trials.

    PubMed

    Song, James X

    2014-01-01

    Illustrated is the use of a patient enrichment adaptive design in a randomized phase II trial which allows the evaluation of treatment benefits by the biomarker expression level and makes interim adjustment according to the pre-specified rules. The design was applied to an actual phase II metastatic hepatocellular carcinoma (HCC) trial in which progression-free survival (PFS) in two biomarker-defined populations is evaluated at both interim and final analyses. As an extension, a short-term biomarker is used to predict the long-term PFS in a Bayesian model in order to improve the precision of hazard ratio (HR) estimate at the interim analysis. The characteristics of the extended design are examined in a number of scenarios via simulations. The recommended adaptive design is shown to be useful in a phase II setting. When a short-term maker which correlates with the long-term PFS is available, the design can be applied in smaller early phase trials in which PFS requires longer follow-up. In summary, the adaptive design offers flexibility in randomized phase II patient enrichment trials and should be considered in an overall personalized healthcare (PHC) strategy. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. U10 : Trusted Truck(R) II (phase B).

    DOT National Transportation Integrated Search

    2009-01-01

    Phase B of the Trusted Truck II project built on the system developed in Phase A (or Year 1). For the implementation portion of the project, systems were added to the trailer to provide additional diagnostic trailer data that can be sent to the TTM...

  2. Movement Analysis Applied to the Basketball Jump Shot--Part II.

    ERIC Educational Resources Information Center

    Martin, Thomas P.

    1981-01-01

    The jump shot is one of the most important shots in the game of basketball. The movement analysis of the jump shot designates four phases: (1) preparatory position; (2) movement phase I (crouch); (3) movement phase II (jump); and (4) follow-through. (JN)

  3. High-tech breakthrough DNA scanner for reading sequence and detecting gene mutation: A powerful 1 lb, 20 {mu}m resolution, 16-bit personal scanner (PS) that scans 17inch x 14inch x-ray film in 48 s, with laser, uv and white light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeineh, J.A.; Zeineh, M.M.; Zeineh, R.A.

    1993-06-01

    The 17inch x 14inch X-ray film, gels, and blots are widely used in DNA research. However, DNA laser scanners are costly and unaffordable for the majority of surveyed biotech scientists who need it. The high-tech breakthrough analytical personal scanner (PS) presented in this report is an inexpensive 1 lb hand-held scanner priced at 2-4% of the bulky and costly 30-95 lb conventional laser scanners. This PS scanner is affordable from an operation budget and biotechnologists, who originate most science breakthroughs, can acquire it to enhance their speed, accuracy, and productivity. Compared to conventional laser scanners that are currently available onlymore » through hard-to-get capital-equipment budgets, the new PS scanner offers improved spatial resolution of 20 {mu}m, higher speed (scan up to 17inch x 14inch molecular X-ray film in 48 s), 1-32,768 gray levels (16-bits), student routines, versatility, and, most important, affordability. Its programs image the film, read DNA sequences automatically, and detect gene mutation. In parallel to the wide laboratory use of PC computers instead of mainframes, this PS scanner might become an integral part of a PC-PS powerful and cost-effective system where the PS performs the digital imaging and the PC acts on the data.« less

  4. A novel optical scanner for laser radar

    NASA Astrophysics Data System (ADS)

    Yao, Shunyu; Peng, Renjun; Gao, Jianshuang

    2013-09-01

    Laser radar are ideally suitable for recognizing objects, detection, target tracking or obstacle avoidance, because of the high angular and range resolution. In recent years, scannerless ladar has developed rapidly. In contrast with traditional scanner ladar, scannerless ladar has distinct characteristics such as small, compact, high frame rate, wide field of view and high reliability. However, the scannerless ladar is still in the stage of laboratory and the performance cannot meet the demands of practical applications. Hence, traditional scanner laser radar is still mainly applied. In scanner ladar system, optical scanner is the key component which can deflect the direction of laser beam to the target. We investigated a novel scanner based on the characteristic of fiber's light-conductive. The fiber bundles are arranged in a special structure which connected to a motor. When motor working properly, the laser passes through the fibers on incident plane and the location of laser spot on output plane will move along with a straight line in a constant speed. The direction of light will be deflected by taking advantage of transmitting optics, then the linear sweeping of the target can be achieved. A laser radar scheme with high speed and large field of view can be realized. Some researches on scanner are simply introduced on section1. The structure of the optical scanner will be described and the practical applications of the scanner in transmitting and receiving optical paths are discussed in section2. Some characteristic of scanner is calculated in section3. In section4, we report the simulation and experiment of our prototype.

  5. Modelling and restoration of ultrasonic phased-array B-scan images.

    PubMed

    Ardouin, J P; Venetsanopoulos, A N

    1985-10-01

    A model is presented for the radio-frequency image produced by a B-scan (pulse-echo) ultrasound imaging system using a phased-array transducer. This type of scanner is widely used for real-time heart imaging. The model allows for dynamic focusing as well as an acoustic lens focusing the beam in the elevation plane. A result of the model is an expression to compute the space-variant point spread function (PSF) of the system. This is made possible by the use of a combination of Fresnel and Fraunhoffer approximations which are valid in the range of interest for practical applications. The PSF is used to design restoration filters in order to improve image resolution. The filters are then applied to experimental images of wires.

  6. Application of a laser scanner to three dimensional visual sensing tasks

    NASA Technical Reports Server (NTRS)

    Ryan, Arthur M.

    1992-01-01

    The issues are described which are associated with using a laser scanner for visual sensing and the methods developed by the author to address them. A laser scanner is a device that controls the direction of a laser beam by deflecting it through a pair of orthogonal mirrors, the orientations of which are specified by a computer. If a calibrated laser scanner is combined with a calibrated camera, it is possible to perform three dimensional sensing by directing the laser at objects within the field of view of the camera. There are several issues associated with using a laser scanner for three dimensional visual sensing that must be addressed in order to use the laser scanner effectively. First, methods are needed to calibrate the laser scanner and estimate three dimensional points. Second, methods to estimate three dimensional points using a calibrated camera and laser scanner are required. Third, methods are required for locating the laser spot in a cluttered image. Fourth, mathematical models that predict the laser scanner's performance and provide structure for three dimensional data points are necessary. Several methods were developed to address each of these and has evaluated them to determine how and when they should be applied. The theoretical development, implementation, and results when used in a dual arm eighteen degree of freedom robotic system for space assembly is described.

  7. A Web-Based Intervention to Reduce Distress After Prostate Cancer Treatment: Development and Feasibility of the Getting Down to Coping Program in Two Different Clinical Settings.

    PubMed

    Cockle-Hearne, Jane; Barnett, Deborah; Hicks, James; Simpson, Mhairi; White, Isabel; Faithfull, Sara

    2018-04-30

    Distress after prostate cancer treatment is a substantial burden for up to one-third of men diagnosed. Physical and emotional symptoms and health service use can intensify, yet men are reticent to accept support. To provide accessible support that can be cost effectively integrated into care pathways, we developed a unique, Web-based, self-guided, cognitive-behavior program incorporating filmed and interactive peer support. To assess feasibility of the intervention among men experiencing distress after prostate cancer treatment. Demand, acceptability, change in distress and self-efficacy, and challenges for implementation in clinical practice were measured. A pre-post, within-participant comparison, mixed-methods research design was followed. Phase I and II were conducted in primary care psychological service and secondary care cancer service, respectively. Men received clinician-generated postal invitations: phase I, 432 men diagnosed <5 years; phase II, 606 men diagnosed <3.5 years. Consent was Web-based. Men with mild and moderate distress were enrolled. Web-based assessment included demographic, disease, treatment characteristics; distress (General Health Questionnaire-28); depression (Patient Health Questionnaire-9); anxiety (General Anxiety Disorder Scale-7); self-efficacy (Self-Efficacy for Symptom Control Inventory); satisfaction (author-generated, Likert-type questionnaire). Uptake and adherence were assessed with reference to the persuasive systems design model. Telephone interviews explored participant experience (phase II, n=10); interviews with health care professionals (n=3) explored implementation issues. A total of 135 men consented (phase I, 61/432, 14.1%; phase II, 74/606, 12.2%); from 96 eligible men screened for distress, 32% (30/96) entered the intervention (phase I, n=10; phase II, n=20). Twenty-four completed the Web-based program and assessments (phase I, n=8; phase II, n=16). Adherence for phase I and II was module completion rate 63% (mean 2.5, SD 1.9) versus 92% (mean 3.7, SD 1.0); rate of completing cognitive behavior therapy exercises 77% (mean 16.1, SD 6.2) versus 88% (mean 18.6, SD 3.9). Chat room activity occurred among 63% (5/8) and 75% (12/16) of men, respectively. In phase I, 75% (6/8) of men viewed all the films; in phase II, the total number of unique views weekly was 16, 11, 11, and 10, respectively. The phase II mood diary was completed by 100% (16/16) of men. Satisfaction was high for the program and films. Limited efficacy testing indicated improvement in distress baseline to post intervention: phase I, P=.03, r=-.55; phase II, P=.001, r=-.59. Self-efficacy improved for coping P=.02, r=-.41. Service assessment confirmed ease of assimilation into clinical practice and clarified health care practitioner roles. The Web-based program is acceptable and innovative in clinical practice. It was endorsed by patients and has potential to positively impact the experience of men with distress after prostate cancer treatment. It can potentially be delivered in a stepped model of psychological support in primary or secondary care. Feasibility evidence is compelling, supporting further evaluative research to determine clinical and cost effectiveness. ©Jane Cockle-Hearne, Deborah Barnett, James Hicks, Mhairi Simpson, Isabel White, Sara Faithfull. Originally published in JMIR Cancer (http://cancer.jmir.org), 30.04.2018.

  8. A Web-Based Intervention to Reduce Distress After Prostate Cancer Treatment: Development and Feasibility of the Getting Down to Coping Program in Two Different Clinical Settings

    PubMed Central

    Barnett, Deborah; Hicks, James; Simpson, Mhairi; White, Isabel; Faithfull, Sara

    2018-01-01

    Background Distress after prostate cancer treatment is a substantial burden for up to one-third of men diagnosed. Physical and emotional symptoms and health service use can intensify, yet men are reticent to accept support. To provide accessible support that can be cost effectively integrated into care pathways, we developed a unique, Web-based, self-guided, cognitive-behavior program incorporating filmed and interactive peer support. Objective To assess feasibility of the intervention among men experiencing distress after prostate cancer treatment. Demand, acceptability, change in distress and self-efficacy, and challenges for implementation in clinical practice were measured. Methods A pre-post, within-participant comparison, mixed-methods research design was followed. Phase I and II were conducted in primary care psychological service and secondary care cancer service, respectively. Men received clinician-generated postal invitations: phase I, 432 men diagnosed <5 years; phase II, 606 men diagnosed <3.5 years. Consent was Web-based. Men with mild and moderate distress were enrolled. Web-based assessment included demographic, disease, treatment characteristics; distress (General Health Questionnaire-28); depression (Patient Health Questionnaire-9); anxiety (General Anxiety Disorder Scale-7); self-efficacy (Self-Efficacy for Symptom Control Inventory); satisfaction (author-generated, Likert-type questionnaire). Uptake and adherence were assessed with reference to the persuasive systems design model. Telephone interviews explored participant experience (phase II, n=10); interviews with health care professionals (n=3) explored implementation issues. Results A total of 135 men consented (phase I, 61/432, 14.1%; phase II, 74/606, 12.2%); from 96 eligible men screened for distress, 32% (30/96) entered the intervention (phase I, n=10; phase II, n=20). Twenty-four completed the Web-based program and assessments (phase I, n=8; phase II, n=16). Adherence for phase I and II was module completion rate 63% (mean 2.5, SD 1.9) versus 92% (mean 3.7, SD 1.0); rate of completing cognitive behavior therapy exercises 77% (mean 16.1, SD 6.2) versus 88% (mean 18.6, SD 3.9). Chat room activity occurred among 63% (5/8) and 75% (12/16) of men, respectively. In phase I, 75% (6/8) of men viewed all the films; in phase II, the total number of unique views weekly was 16, 11, 11, and 10, respectively. The phase II mood diary was completed by 100% (16/16) of men. Satisfaction was high for the program and films. Limited efficacy testing indicated improvement in distress baseline to post intervention: phase I, P=.03, r=−.55; phase II, P=.001, r=−.59. Self-efficacy improved for coping P=.02, r=−.41. Service assessment confirmed ease of assimilation into clinical practice and clarified health care practitioner roles. Conclusions The Web-based program is acceptable and innovative in clinical practice. It was endorsed by patients and has potential to positively impact the experience of men with distress after prostate cancer treatment. It can potentially be delivered in a stepped model of psychological support in primary or secondary care. Feasibility evidence is compelling, supporting further evaluative research to determine clinical and cost effectiveness. PMID:29712628

  9. Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology, STTR Fast Track Project, Phase I Final Report-Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert

    This report covers the technical work in Phase I of this DOE-Nuclear Program STTR Fast Track project. All key tasks were successfully performed, new tasks were added to utilize DOD-AFRL’s 95 GigaHertz (GHz) gyrotron in Phase II, while other lesser tasks were left for Phase II efforts or were requested to be made optional. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future testing in Phase II. This work built upon a prior DOE project DE-EE0005504 that developed the basic waveguide setup, process and instruments. Inmore » this project we were investigating the use of MMW to form rock melt and steel plugs in deep wells to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This technology also has potential for deep well drilling for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled. This allows for higher levels of safety and protection of the environment during deep drilling operations. The larger purpose of this project was to find answers to key questions in progressing MMW technology for these applications. Phase I of this project continued bench testing using the MIT 10 kilo-Watt (kW), 28 GHz frequency laboratory gyrotron, literature searches, planning and design of equipment for Phase II efforts. Furnace melting and rock testing (Tasks 4 and 5) were deferred to Phase II due to lack of concurrent availability of the furnace and personnel at MIT. That delay and lower temperature furnace (limited to 1650oC) caused rethinking of Task 4 to utilize coordinated rock selection with the DOD testing in Phase II. The high pressure and high power window design work (moved to Phase I Task 3 from Phase II Task 20) and Additive materials and methods (Tasks 7 & 8) performed in Phase I may become patentable and thus little detail can be provided in this public report. A version of that new high pressure, high MMW power window may be built for possible Phase II testing at the DOD site. Most significantly, additional tasks were added for planning the use of the Department of Defense, Air Force Research Laboratory’s (DOD-AFRL’s) System 0 gyrotron in Phase II. Specifically added and accomplished were multiple discussions on DOD and DOE-MIT-Impact goals, timing between ongoing DOD testing, outlining the required equipment and instruments for rock testing, and terms for an agreement. That addition required a visit to Kirtland AFB in Albuquerque, New Mexico to talk to key DOD-AFRL personnel and management. A DOD-Impact-MIT charter (i.e., contract) is now being circulated for signatures. Also added task to Phase I, MIT designed the critical path reflected power isolator screen for Phase II testing. To ensure compatibility, that design was computer simulated for the expected heat load distribution and the resulting temperature increase. Advancing the MMW testing up to the optimum 95 GHz and 100kW (5X higher) power levels was stated in the original proposal to be a key required development step for this technology to achieve prototype drilling, lining, and rock melting/ vaporization for creating sealing plugs.« less

  10. Oceanographic scanner system design study, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design is reported of a dual mode multispectral scanner, capable of satisfying both overland and oceanographic requirements. A complete system description and performance summary of the scanner are given. In addition, subsystem and component descriptions and performance analyses are treated in individual sections. The design of the scanner, with minimum modifications, interfaces to the ERTS spacecraft and the ground data handling system.

  11. Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract.

    PubMed

    Ritz, Stacey A; Wan, Junxiang; Diaz-Sanchez, David

    2007-01-01

    Airborne particulate pollutants, such as diesel exhaust particles, are thought to exacerbate lung and cardiovascular diseases through induction of oxidative stress. Sulforaphane, derived from cruciferous vegetables, is the most potent known inducer of phase II enzymes involved in the detoxification of xenobiotics. We postulated that sulforaphane may be able to ameliorate the adverse effects of pollutants by upregulating expression of endogenous antioxidant enzymes. Stimulation of bronchial epithelial cells with the chemical constituents of diesel particles result in the production of proinflammatory cytokines. We first demonstrated a role for phase II enzymes in regulating diesel effects by transfecting the airway epithelial cell line (BEAS-2B) with the sentinel phase II enzyme NAD(P)H: quinine oxidoreductase 1 (NQO1). IL-8 production in response to diesel extract was significantly reduced in these compared with untransfected cells. We then examined whether sulforaphane would stimulate phase II induction and whether this would thereby ablate the effect of diesel extracts on cytokine production. We verified that sulforaphane significantly augmented expression of the phase II enzyme genes GSTM1 and NQO1 and confirmed that sulforaphane treatment increased glutathione S-transferase activity in epithelial cells without inducing cell death or apoptosis. Sulforaphane pretreatment inhibited IL-8 production by BEAS-2B cells upon stimulation with diesel extract. Similarly, whereas diesel extract stimulated production of IL-8, granulocyte-macrophage colony-stimulating factor, and IL-1beta from primary human bronchial epithelial cells, sulforaphane pretreatment inhibited diesel-induced production of all of these cytokines. Our studies show that sulforaphane can mitigate the effect of diesel in respiratory epithelial cells and demonstrate the chemopreventative potential of phase II enzyme enhancement.

  12. Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner.

    PubMed

    Melnyk, Roman; DiBianca, Frank A

    2007-03-01

    The detector presampling modulation transfer function (MTF) of a 576-channel variable resolution x-ray (VRX) computed tomography (CT) scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner's field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner's pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 to 43.38 cycles/mm as the FOV of the VRX CT scanner decreases from 32 to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1-8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner.

  13. Towards System Calibration of Panoramic Laser Scanners from a Single Station

    PubMed Central

    Medić, Tomislav; Holst, Christoph; Kuhlmann, Heiner

    2017-01-01

    Terrestrial laser scanner measurements suffer from systematic errors due to internal misalignments. The magnitude of the resulting errors in the point cloud in many cases exceeds the magnitude of random errors. Hence, the task of calibrating a laser scanner is important for applications with high accuracy demands. This paper primarily addresses the case of panoramic terrestrial laser scanners. Herein, it is proven that most of the calibration parameters can be estimated from a single scanner station without a need for any reference information. This hypothesis is confirmed through an empirical experiment, which was conducted in a large machine hall using a Leica Scan Station P20 panoramic laser scanner. The calibration approach is based on the widely used target-based self-calibration approach, with small modifications. A new angular parameterization is used in order to implicitly introduce measurements in two faces of the instrument and for the implementation of calibration parameters describing genuine mechanical misalignments. Additionally, a computationally preferable calibration algorithm based on the two-face measurements is introduced. In the end, the calibration results are discussed, highlighting all necessary prerequisites for the scanner calibration from a single scanner station. PMID:28513548

  14. On the Influence of Confounding Factors in Multisite Brain Morphometry Studies of Developmental Pathologies: Application to Autism Spectrum Disorder.

    PubMed

    Auzias, G; Takerkart, S; Deruelle, C

    2016-05-01

    Pooling data acquired on different MR scanners is a commonly used practice to increase the statistical power of studies based on MRI-derived measurements. Such studies are very appealing since they should make it possible to detect more subtle effects related to pathologies. However, the influence of confounds introduced by scanner-related variations remains unclear. When studying brain morphometry descriptors, it is crucial to investigate whether scanner-induced errors can exceed the effect of the disease itself. More specifically, in the context of developmental pathologies such as autism spectrum disorders (ASD), it is essential to evaluate the influence of the scanner on age-related effects. In this paper, we studied a dataset composed of 159 anatomical MR images pooled from three different scanners, including 75 ASD patients and 84 healthy controls. We quantitatively assessed the effects of the age, pathology, and scanner factors on cortical thickness measurements. Our results indicate that scan pooling from different sites would be less fruitful in some cortical regions than in others. Although the effect of age is consistent across scanners, the interaction between the age and scanner factors is important and significant in some specific cortical areas.

  15. A digital receiver module with direct data acquisition for magnetic resonance imaging systems.

    PubMed

    Tang, Weinan; Sun, Hongyu; Wang, Weimin

    2012-10-01

    A digital receiver module for magnetic resonance imaging (MRI) with detailed hardware implementations is presented. The module is based on a direct sampling scheme using the latest mixed-signal circuit design techniques. A single field-programmable gate array chip is employed to perform software-based digital down conversion for radio frequency signals. The modular architecture of the receiver allows multiple acquisition channels to be implemented on a highly integrated printed circuit board. To maintain the phase coherence of the receiver and the exciter in the context of direct sampling, an effective phase synchronization method was proposed to achieve a phase deviation as small as 0.09°. The performance of the described receiver module was verified in the experiments for both low- and high-field (0.5 T and 1.5 T) MRI scanners and was compared to a modern commercial MRI receiver system.

  16. Two-dimensional scanner apparatus. [flaw detector in small flat plates

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.; Bankston, B. F. (Inventor)

    1984-01-01

    An X-Y scanner utilizes an eddy current or ultrasonic current test probe to detect surface defects in small flat plates and the like. The apparatus includes a scanner which travels on a pair of slide tubes in the X-direction. The scanner, carried on a carriage which slides in the Y-direction, is driven by a helix shaft with a closed-loop helix groove in which a follower pin carried by scanner rides. The carriage is moved incrementally in the Y-direction upon the completion of travel of the scanner back and forth in the X-direction by means of an indexing actuator and an indexing gear. The actuator is in the form of a ratchet which engages ratchet gear upon return of the scanner to the indexing position. The indexing gear is rotated a predetermined increment along a crack gear to move carriage incrementally in the Y-direction. Thus, simplified highly responsive mechanical motion may be had in a small lightweight portable unit for accurate scanning of small area.

  17. Forensics for flatbed scanners

    NASA Astrophysics Data System (ADS)

    Gloe, Thomas; Franz, Elke; Winkler, Antje

    2007-02-01

    Within this article, we investigate possibilities for identifying the origin of images acquired with flatbed scanners. A current method for the identification of digital cameras takes advantage of image sensor noise, strictly speaking, the spatial noise. Since flatbed scanners and digital cameras use similar technologies, the utilization of image sensor noise for identifying the origin of scanned images seems to be possible. As characterization of flatbed scanner noise, we considered array reference patterns and sensor line reference patterns. However, there are particularities of flatbed scanners which we expect to influence the identification. This was confirmed by extensive tests: Identification was possible to a certain degree, but less reliable than digital camera identification. In additional tests, we simulated the influence of flatfielding and down scaling as examples for such particularities of flatbed scanners on digital camera identification. One can conclude from the results achieved so far that identifying flatbed scanners is possible. However, since the analyzed methods are not able to determine the image origin in all cases, further investigations are necessary.

  18. Spacecraft attitude sensor

    NASA Technical Reports Server (NTRS)

    Davidson, A. C.; Grant, M. M. (Inventor)

    1973-01-01

    A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners.

  19. Installation Restoration Program. Remedial Investigation Report. Minnesota Air National Guard Base Duluth International Airport, Duluth, Minnesota. Volume 5

    DTIC Science & Technology

    1990-01-01

    1-20 1-6 Sites Defined and Ranked During IRP Phase I Study. 1-29 1-7 Aerial Photograph of Site 2, April 1988. 1-32 1-8 Site 2 Sampling Locations...Utilized During Phase II Investigations. 1-35 1-9 Aerial Photograph of Site 3, April 1988. 1-38 1-10 Site 3 Sampling Locations Utilized During Phase II...Investigations. 1-47 1-11 Aerial Photograph of Site 4, April 1988. 1-54 1-12 Site 4 Sampling Locations Utilized During Phase II Investigations. 1-57 1-13

  20. Biomedical applications of a real-time terahertz color scanner

    PubMed Central

    Schirmer, Markus; Fujio, Makoto; Minami, Masaaki; Miura, Jiro; Araki, Tsutomu; Yasui, Takeshi

    2010-01-01

    A real-time THz color scanner has the potential to further expand the application scope of THz spectral imaging based on its rapid image acquisition rate. We demonstrated three possible applications of a THz color scanner in the biomedical field: imaging of pharmaceutical tablets, human teeth, and human hair. The first application showed the scanner’s potential in total inspection for rapid quality control of pharmaceutical tablets moving on a conveyor belt. The second application demonstrated that the scanner can be used to identify a potential indicator for crystallinity of dental tissue. In the third application, the scanner was successfully used to visualize the drying process of wet hairs. These demonstrations indicated the high potential of the THz color scanner for practical applications in the biomedical field. PMID:21258472

  1. A COST EFFECTIVE MULTI-SPECTRAL SCANNER FOR NATURAL GAS DETECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first six months of the project, the design for a laboratory version of the multispectral scanner was completed. The optical, mechanical, and electronic design for the scanner was completed. The optical design was analyzed using Zeemax Optical Design software and found to provide sufficiently resolved performance for the scanner. The electronic design was evaluated using a bread board and very high signal to noise ratios were obtained. Fabrication of a laboratorymore » version of the multi-spectral scanner is currently in progress. A technology status report and a research management plan was also completed during the same period.« less

  2. Piper betle Induced Cytoprotective Genes and Proteins via the Nrf2/ARE Pathway in Aging Mice.

    PubMed

    Aliahmat, Nor Syahida; Abdul Sani, Nur Fathiah; Wan Hasan, Wan Nuraini; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2016-01-01

    The objective of this study was to elucidate the underlying antioxidant mechanism of aqueous extract of Piper betle (PB) in aging rats. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE pathway involving phase II detoxifying and antioxidant enzymes plays an important role in the antioxidant system by reducing electrophiles and reactive oxygen species through induction of phase II enzymes and proteins. Genes and proteins of phase II detoxifying antioxidant enzymes were analyzed by QuantiGenePlex 2.0 Assay and Western blot analysis. PB significantly induced genes and proteins of phase II and antioxidant enzymes, NAD(P)H quinone oxidoreductase 1, and catalase in aging mice (p < 0.05). The expression of these enzymes were stimulated via translocation of Nrf2 into the nucleus, indicating the involvement of ARE, a cis-acting motif located in the promoter region of nearly all phase II genes. PB was testified for the first time to induce cytoprotective genes through the Nrf2/ARE signaling pathway, thus unraveling the antioxidant mechanism of PB during the aging process. © 2016 S. Karger AG, Basel.

  3. Summary - National Dissemination and the Five Target States, Part 3, Final Report for Phase II--Dissemination, Rural Shared Services.

    ERIC Educational Resources Information Center

    Northern Montana Coll., Havre.

    The dissemination phase (Phase II) of the Rural Shared Services Project is reported in this document. Efforts of the dissemination phase were concentrated in 5 target states: Vermont, Georgia, Wyoming, Montana, and New Mexico; national dissemination was limited to attendance at national conferences, the U. S. Office of Education PREP materials for…

  4. Site preference of alloying elements in DO22-Ni3V phase: Phase-field and first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Ding-Ni; Shangguan, Qian-Qian; Liu, Fu; Zhang, Ming-Yi

    2015-07-01

    Site preference of alloying elements in DO22-Ni3V phase was investigated using phase-field and first-principles method. The concentrations of alloying elements on sublattices of DO22-Ni3V phase were quantitatively studied using phase-field model based on microscopic diffusion equations. The phase-field computation results demonstrate that the concentration differences of alloying elements on the NiI and NiII site are attributed to the coordination environment difference. Host atoms Ni and substitutional ternary additions Al prefer to occupy NiI site. Antisite atoms V show site preference on the NiII site. Further reason of site preference of alloying elements on the two different Ni sites were studied using first-principles method to calculate the electronic structure of DO22-Ni3V phase. Calculation of density of states, orbitals population and charge population of the optimized Ni3V structure found that the electronic structures of NiI and NiII sites are different. Electronic structure difference, which is caused by coordination environment difference, is the essential reason for site selectivity behaviors of alloying elements on NiI and NiII sites.

  5. Input Scanners: A Growing Impact In A Diverse Marketplace

    NASA Astrophysics Data System (ADS)

    Marks, Kevin E.

    1989-08-01

    Just as newly invented photographic processes revolutionized the printing industry at the turn of the century, electronic imaging has affected almost every computer application today. To completely emulate traditionally mechanical means of information handling, computer based systems must be able to capture graphic images. Thus, there is a widespread need for the electronic camera, the digitizer, the input scanner. This paper will review how various types of input scanners are being used in many diverse applications. The following topics will be covered: - Historical overview of input scanners - New applications for scanners - Impact of scanning technology on select markets - Scanning systems issues

  6. Survey Methods for Earthquake Damages in the "CAMERA degli SPOSI" of Mantegna (mantova)

    NASA Astrophysics Data System (ADS)

    Fratus de Balestrini, E.; Ballarin, M.; Balletti, C.; Buttolo, V.; Gottardi, C.; Guerra, F.; Mander, S.; Pilot, L.; Vernier, P.

    2013-07-01

    Cultural Heritage constitutes a fundamental resource for all Countries, even in economic terms, as it can be considered an extraordinary tourist attraction. This is particularly true for Italy, which is one of the Countries with the richest artistic heritage in the world. For this reason, restoration becomes an essential step towards the conservation and therefore valorisation of architecture. In this context, this paper focuses on one of the first stages that allow us to reach a complete knowledge of a building. Because of the earthquake of May 2012, the Castle of San Giorgio in Mantova (Italy) presented a series of structural damages. On the occasion of its upcoming re-opening to the public, the Soprintendenza per i Beni Architettonici e Paesaggistici per le province di Brescia, Cremona e Mantova has requested an analysis and evaluation of the damages for the development of an intervention project. In particular, a special attention was given to the "Camera degli Sposi" ("Bridal Chamber"), also known as the Camera picta ("painted chamber"). It is a frescoed room, with illusionistic paintings by Andrea Mantegna, located in the northeast tower of the Castle. It was painted between 1465 and 1474 and commissioned by Ludovico Gonzaga, and it is well-known for the use of trompe l'oeil details and for the decoration of its ceiling. The seismic shakes damaged the wall decorated with the "Scena della Corte" ("Court Scene"), above the chimney, re-opening an old crack that had to be analysed, in order to understand whether the damage was structural or just superficial. The diagnostic analyses constitute a fundamental prerequisite for the elaboration of any kind of intervention or restoration in any architectural, artistic or archaeological framework. To obtain a description of the conservation state of the Camera, non-invasive integrated survey techniques were applied. The purpose of the study presented here is the definition of a methodology able to support the necessity of a rapid restoration. In order to acquire the useful data for the damage evaluation, we used three different kinds of laser scanners. These were chosen according to the dimension of the object that had to be surveyed. The first is Riegl LMS-Z390i, a time of flight laser scanner that was used to survey the external surface of one of the fronts of the Castle. The second one is Faro Focus 3D, a phase-based scanner, used for the indoor survey of the "Camera degli Sposi" and the touristic path from the "Scalone di Enea" to the Camera itself. Finally, a triangulation laser scanner, Konika Minolta Vivid VI-9i, was used to measure the dimension of the crack, for its whole length. All the data acquired by these scanners were georeferenced in the same reference system, defined through a topographic network. The data collected were processed in order to obtain a number of representations, both in two and three dimensions, useful for a complete knowledge of the state of condition of the building. This paper analyses the surveying process in all its different phases: from the planning, to the data collection, and the postelaborations.

  7. 11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. Comparison of Epson scanner quality for radiochromic film evaluation

    PubMed Central

    Alnawaf, Hani; Yu, Peter K.N.

    2012-01-01

    Epson Desktop scanners have been quoted as devices which match the characteristics required for the evaluation of radiation dose exposure by radiochromic films. Specifically, models such as the 10000XL have been used successfully for image analysis and are recommended by ISP for dosimetry purposes. This note investigates and compares the scanner characteristics of three Epson desktop scanner models including the Epson 10000XL, V700, and V330. Both of the latter are substantially cheaper models capable of A4 scanning. As the price variation between the V330 and the 10000XL is 20‐fold (based on Australian recommended retail price), cost savings by using the cheaper scanners may be warranted based on results. By a direct comparison of scanner uniformity and reproducibility we can evaluate the accuracy of these scanners for radiochromic film dosimetry. Results have shown that all three scanners can produce adequate scanner uniformity and reproducibility, with the inexpensive V330 producing a standard deviation variation across its landscape direction of 0.7% and 1.2% in the portrait direction (reflection mode). This is compared to the V700 in reflection mode of 0.25% and 0.5% for landscape and portrait directions, respectively, and 0.5% and 0.8% for the 10000XL. In transmission mode, the V700 is comparable in reproducibility to the 10000XL for portrait and landscape mode, whilst the V330 is only capable of scanning in the landscape direction and produces a standard deviation in this direction of 1.0% compared to 0.6% (V700) and 0.25% (10000XL). Results have shown that the V700 and 10000XL are comparable scanners in quality and accuracy with the 10000XL obviously capable of imaging over an A3 area as opposed to an A4 area for the V700. The V330 scanner produced slightly lower accuracy and quality with uncertainties approximately twice as much as the other scanners. However, the results show that the V330 is still an adequate scanner and could be used for radiation dosimetry purposes. As such, if budgetary requirements are limited, the V700 scanner would be the recommended option at a price eight times cheaper than the 10000XL; however, the V330 produces adequate results at a price which is 2.5 times cheaper again. This may be a consideration for smaller institutions or individuals working with radiochromic film dosimetry. PACS number: 87.55.Qr; 87.56.Fc PMID:22955661

  9. Comparison of Epson scanner quality for radiochromic film evaluation.

    PubMed

    Alnawaf, Hani; Yu, Peter K N; Butson, Martin

    2012-09-06

    Epson Desktop scanners have been quoted as devices which match the characteristics required for the evaluation of radiation dose exposure by radiochromic films. Specifically, models such as the 10000XL have been used successfully for image analysis and are recommended by ISP for dosimetry purposes. This note investigates and compares the scanner characteristics of three Epson desktop scanner models including the Epson 10000XL, V700, and V330. Both of the latter are substantially cheaper models capable of A4 scanning. As the price variation between the V330 and the 10000XL is 20-fold (based on Australian recommended retail price), cost savings by using the cheaper scanners may be warranted based on results. By a direct comparison of scanner uniformity and reproducibility we can evaluate the accuracy of these scanners for radiochromic film dosimetry. Results have shown that all three scanners can produce adequate scanner uniformity and reproducibility, with the inexpensive V330 producing a standard deviation variation across its landscape direction of 0.7% and 1.2% in the portrait direction (reflection mode). This is compared to the V700 in reflection mode of 0.25% and 0.5% for landscape and portrait directions, respectively, and 0.5% and 0.8% for the 10000XL. In transmission mode, the V700 is comparable in reproducibility to the 10000XL for portrait and landscape mode, whilst the V330 is only capable of scanning in the landscape direction and produces a standard deviation in this direction of 1.0% compared to 0.6% (V700) and 0.25% (10000XL). Results have shown that the V700 and 10000XL are comparable scanners in quality and accuracy with the 10000XL obviously capable of imaging over an A3 area as opposed to an A4 area for the V700. The V330 scanner produced slightly lower accuracy and quality with uncertainties approximately twice as much as the other scanners. However, the results show that the V330 is still an adequate scanner and could be used for radiation dosimetry purposes. As such, if budgetary requirements are limited, the V700 scanner would be the recommended option at a price eight times cheaper than the 10000XL; however, the V330 produces adequate results at a price which is 2.5 times cheaper again. This may be a consideration for smaller institutions or individuals working with radiochromic film dosimetry.

  10. TH-CD-207B-12: Quantification of Clinical Feedback On Image Quality Differences Between Two CT Scanner Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bache, S; Liu, X; Loyer, E

    Purpose: This work sought to quantify a radiology team’s assessment of image quality differences between two CT scanner models currently in clinical use, with emphasis on noise and low-contrast detectability (LCD). Methods: A water phantom and a Kagaku anthropomorphic body phantom were scanned on GE Discovery CT750 HD and LightSpeed VCT scanners (4 each) with identical scan parameters and reconstructed to 2.5mm/5.0mm thicknesses. Images of water phantom were analyzed at the scanner console with a built-in LCD tool that uses statistical methods to compute requisite CT-number contrast for 95% confidence in detection of a user-defined object size. LCD value wasmore » computed for 5mm, 3mm, and 1mm objects. Analysis of standard deviation and LCD values were performed on Kagaku phantom images within liver, stomach, and spleen. LCD value was computed for 4mm, 3mm, and 1mm objects using a benchmarked MATLAB implementation of the GE scanner-console tool. Results: Water LCD values were larger (poorer performance) for all HD scanners compared to VCT scanners. Mean scanner model difference in requisite CT-number contrast for 5mm, 3mm, and 1mm objects for 5.0mm/2.5mm images was 3.0%/3.4% (p=0.02/p=0.10), 5.3%/5.7% (0.00002/0.02), and 8.5%/8.2% (0.0004/0.002), respectively. Mean standard deviations within Kagaku phantom ROIs were greater in HD compared to VCT images, with mean differences for the liver, stomach, and spleen for 5.0mm/2.5mm of 16%/12% (p=0.04/0.10), 8%/12% (0.15/0.11), and 16%/15% (0.05/0.11), respectively. Mean LCD value difference between HD and VCT scanners over all ROIs for 4mm, 3m, and 1mm objects and 5.0mm/2.5mm was 34%/9%, 16%/8%, and 18%/10%, respectively. HD scanners outperformed VCT scanners only for the 4mm stomach object. Conclusion: Using both water and anthropomorphic phantoms, it was shown that HD scanners are outperformed by VCT scanners with respect to noise and LCD in a consistent and in most cases statistically significant manner. The relationship between statistical and clinical significance demands further work.« less

  11. Computer Simulations of Polytetrafluoroethylene in the Solid State

    NASA Astrophysics Data System (ADS)

    Holt, D. B.; Farmer, B. L.; Eby, R. K.; Macturk, K. S.

    1996-03-01

    Force field parameters (Set I) for fluoropolymers were previously derived from MOPAC AM1 semiempirical data on model molecules. A second set (Set II) was derived from the AM1 results augmented by ab initio calculations. Both sets yield reasonable helical and phase II packing structures for polytetrafluoroethylene (PTFE) chains. However, Set I and Set II differ in the strength of van der Waals interactions, with Set II having deeper potential wells (order of magnitude). To differentiate which parameter set provides a better description of PTFE behavior, molecular dynamics simulations have been performed with Biosym Discover on clusters of PTFE chains which begin in a phase II packing environment. Added to the model are artificial constraints which allow the simulation of thermal expansion without having to define periodic boundary conditions for each specific temperature of interest. The preliminary dynamics simulations indicate that the intra- and intermolecular interactions provided by Set I are too weak. The degree of helical disorder and chain motion are high even at temperatures well below the phase II-phase IV transition temperature (19 C). Set II appears to yield a better description of PTFE in the solid state.

  12. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Minning, C.

    1982-01-01

    Design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. The program consists of three phases. In Phase I, analytical models were developed to perform optical, thermal, electrical, and structural analyses on candidate encapsulation systems. From these analyses several candidate systems will be selected for qualification testing during Phase II. Additionally, during Phase II, test specimens of various types will be constructed and tested to determine the validity of the analysis methodology developed in Phase I. In Phse III, a finalized optimum design based on knowledge gained in Phase I and II will be developed. All verification testing was completed during this period. Preliminary results and observations are discussed. Descriptions of the thermal, thermal structural, and structural deflection test setups are included.

  13. Technology Demonstration of the Zero Emissions Chromium Electroplating System

    DTIC Science & Technology

    2008-02-01

    Phase I trivalent chromium results ................................................................... 23 18 Phase II total chromium in PRD fluid results...0 xa B D F H J L Sam pies Figure 16. Phase II iron results. ERDC/CERL TR-05-35, Vol. 1 23 Trivalent Chromium Phase I Analysis for Phase I was...with the samples. Each sample was analyzed twice, and an average was computed. Figure 17 shows the results. ANAD has specified that Trivalent Chromium

  14. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  15. In vivo differentiation of complementary contrast media at dual-energy CT.

    PubMed

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F; Gao, Dong-Wei; Yeh, Benjamin M

    2012-10-01

    To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase-enhanced CT scan simultaneously in a single examination. Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012.

  16. Laboratory modeling of energy dissipation in broken-back culverts - phase II.

    DOT National Transportation Integrated Search

    2011-05-01

    This report represents Phase II of broken-back culverts with a drop of 6 feet. The first phase of this research was performed for a drop of 24 feet. This research investigates the reduction in scour downstream of a broken-back culvert by forming a hy...

  17. DEVELOPMENT OF A SCALABLE, LOW-COST, ULTRANANOCRYSTALLINE DIAMOND ELECTROCHEMICAL PROCESS FOR THE DESTRUCTION OF CONTAMINANTS OF EMERGING CONCERN (CECS) - PHASE II

    EPA Science Inventory

    This Small Business Innovation Research (SBIR) Phase II project will employ the large scale; highly reliable boron-doped ultrananocrystalline diamond (BD-UNCD®) electrodes developed during Phase I project to build and test Electrochemical Anodic Oxidation process (EAOP)...

  18. 78 FR 18305 - Notice of Request for Extension of a Currently Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Identity Verification (PIV) Request for Credential, the USDA Homeland Security Presidential Directive 12... consists of two phases of implementation: Personal Identity Verification phase I (PIV I) and Personal Identity Verification phase II (PIV II). The information requested must be provided by Federal employees...

  19. A two-step spin crossover mononuclear iron(II) complex with a [HS-LS-LS] intermediate phase.

    PubMed

    Bonnet, Sylvestre; Siegler, Maxime A; Costa, José Sánchez; Molnár, Gábor; Bousseksou, Azzedine; Spek, Anthony L; Gamez, Patrick; Reedijk, Jan

    2008-11-21

    The two-step spin crossover of a new mononuclear iron(ii) complex is studied by magnetic, crystallographic and calorimetric methods revealing two successive first-order phase transitions and an ordered intermediate phase built by the repetition of the unprecedented [HS-LS-LS] motif.

  20. The effectiveness and safety of traffic and non-traffic related messages presented on changeable message signs : phase II.

    DOT National Transportation Integrated Search

    2008-08-01

    In Phase II of this investigation, we used a fully interactive PC-based STISIM driving simulator, to conduct two : experiments which were similar to experiments in Phase I. The participants were 120 licensed drivers from three : age groups18-24, 3...

  1. Tipster Text Phase 2 Architecture Design

    DTIC Science & Technology

    1996-06-19

    TIPSTER Text Phase II Architecture Design Version 2.1p 19 June 1996 Ralph Grishman New York University grishman @cs.nyu.edu and the TIPSTER...1996 2. REPORT TYPE 3. DATES COVERED 00-00-1996 to 00-00-1996 4. TITLE AND SUBTITLE TIPSTER Text Phase II Architecture Design 5a. CONTRACT

  2. Development of a 3D Brain PET Scanner Using CdTe Semiconductor Detectors and Its First Clinical Application

    NASA Astrophysics Data System (ADS)

    Morimoto, Y.; Ueno, Y.; Takeuchi, W.; Kojima, S.; Matsuzaki, K.; Ishitsu, T.; Umegaki, K.; Kiyanagi, Y.; Kubo, N.; Katoh, C.; Shiga, T.; Shirato, H.; Tamaki, N.

    2011-10-01

    Targeting improved spatial resolution, a three-dimensional positron-emission-tomography (PET) scanner employing CdTe semiconductor detectors and using depth-of-interaction (DOI) information was developed, and its physical performance was evaluated. This PET scanner is the first to use semiconductor detectors dedicated to the human brain and head-and-neck region. Imaging performance of the scanner used for 18F -fluorodeoxy glucose (FDG) scans of phantoms and human brains was evaluated. The gantry of the scanner has a 35.0-cm-diameter patient port, the trans-axial field of view (FOV) is 31.0 cm, and the axial FOV is 24.6 cm. The energy resolution averaged over all detector channels and timing resolution were 4.1% and 6.8 ns (each in FWHM), respectively. Spatial resolution measured at the center of FOV was 2.3-mm FWHM-which is one of the best resolutions achieved by human PET scanners. Noise-equivalent count ratio (NEC2R) has a maximum in the energy window of 390 to 540 keV and is 36 kcps/Bq/cm3 at 3.7 kBq/cm3 . The sensitivity of the system according to NEMA 1994 was 25.9 cps/Bq/cm3. Scatter fraction of the scanner is 37% for the energy window of 390 to 540 keV and 23% for 450 to 540 keV. Images of a hot-rod phantom and images of brain glucose metabolism show that the structural accuracy of the images obtained with the semiconductor PET scanner is higher than that possible with a conventional Bismuth Germanium Oxide (BGO) PET scanner. In addition, the developed scanner permits better delineation of the head-and-neck cancer. These results show that the semiconductor PET scanner will play a major role in the upcoming era of personalized medicine.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Bart D.; Kozelka, Jakub; Ranade, Manisha K.

    In this study, we present three significant artifacts that have the potential to negatively impact the accuracy and precision of film dosimetry measurements made using GAFCHROMIC[reg] EBT radiochromic film when read out with CCD flatbed scanners. Films were scanned using three commonly employed instruments: a Macbeth TD932 spot densitometer, an Epson Expression 1680 CCD array scanner, and a Microtek ScanMaker i900 CCD array scanner. For the two scanners we assessed the variation in optical density (OD) of GAFCHROMIC EBT film with scanning bed position, angular rotation of the film with respect to the scan line direction, and temperature inside themore » scanner due to repeated scanning. Scanning uniform radiochromic films demonstrated a distinct bowing effect in profiles in the direction of the CCD array with a nonuniformity of up to 17%. Profiles along a direction orthogonal to the CCD array demonstrated a 7% variation. A strong angular dependence was found in measurements made with the flatbed scanners; the effect could not be reproduced with the spot densitometer. An IMRT quality assurance film was scanned twice rotating the film 90 deg. between the scans. For films scanned on the Epson scanner, up to 12% variation was observed in unirradiated EBT films rotated between 0 deg. and 90 deg. , which decreased to approximately 8% for EBT films irradiated to 300 cGy. Variations of up to 80% were observed for films scanned with the Microtek scanner. The scanners were found to significantly increase the film temperature with repeated scanning. Film temperature between 18 and 33 deg. C caused OD changes of approximately 7%. Considering these effects, we recommend adherence to a strict scanning protocol that includes: maintaining the orientation of films scanned on flatbed scanners, limiting scanning to the central portion of the scanner bed, and limiting the number of consecutive scans to minimize changes in OD caused by film heating.« less

  4. Phase I/II trial of 2-weekly docetaxel combined with cisplatin plus fluorouracil in metastatic esophageal cancer (JCOG0807)

    PubMed Central

    Hironaka, Shuichi; Tsubosa, Yasuhiro; Mizusawa, Junki; Kii, Takayuki; Kato, Ken; Tsushima, Takahiro; Chin, Keisho; Tomori, Akihisa; Okuno, Tatsuya; Taniki, Toshikatsu; Ura, Takashi; Matsushita, Hisayuki; Kojima, Takashi; Doki, Yuichiro; Kusaba, Hitoshi; Fujitani, Kazumasa; Taira, Koichi; Seki, Shiko; Nakamura, Tsutomu; Kitagawa, Yuko

    2014-01-01

    We carried out a phase I/II trial of adding 2-weekly docetaxel to cisplatin plus fluorouracil (CF) therapy (2-weekly DCF regimen) in esophageal cancer patients to investigate its safety and antimetastatic activity. Patients received 2-weekly docetaxel (30 mg/m2 [dose level (DL)1] or 40 mg/m2 [DL2] with a 3 + 3 design in phase I, on days 1 and 15) in combination with fixed-dose CF (80 mg/m2 cisplatin, day 1; 800 mg/m2 fluorouracil, days 1–5) repeated every 4 weeks. The primary endpoint was dose-limiting toxicity (DLT) in phase I and central peer review-based response rate in phase II. At least 22 responders among 50 patients were required to satisfy the primary endpoint with a threshold of 35%. Sixty-two patients were enrolled in phase I and II. In phase I, 10 patients were enrolled with DLT of 0/3 at DL1 and 2/7 in DL2. Considering DLT and treatment compliance, the recommended phase II dose was determined as DL1. In phase II, the response rate was 62% (P < 0.0001; 95% confidence interval, 48–75%); median overall survival and progression-free survival were 11.1 and 5.8 months, respectively. Common grade 3/4 adverse events were neutropenia (25%), anemia (36%), hyponatremia (29%), anorexia (24%), and nausea (11%). No febrile neutropenia was observed. Pneumonitis caused treatment-related death in one patient. The 2-weekly DCF regimen showed promising antimetastatic activity and tolerability. A phase III study comparing this regimen with CF therapy is planned by the Japan Clinical Oncology Group. This study was registered at the UMIN Clinical Trials Registry as UMIN 000001737. PMID:25041052

  5. Unusual Enhancement of Magnetization by Pressure in the Antiferro-Quadrupole-Ordered Phase in CeB6

    NASA Astrophysics Data System (ADS)

    Ikeda, Suguru; Sera, Masafumi; Hane, Shingo; Uwatoko, Yoshiya; Kosaka, Masashi; Kunii, Satoru

    2007-06-01

    The effect of pressure on CeB6 was investigated by the measurement of the magnetization (M) under pressure, and we obtained the following results. The effect of pressure on M in phase I is very small. By applying pressure, TQ is enhanced, but TN and the critical field from the antiferromagnetic (AFM) phase III to the antiferro-quadrupole (AFQ) phase II (HcIII--II) are suppressed, as previously reported. The magnetization curve in phase III shows the characteristic shoulder at H˜ HcIII--II/2 at ambient pressure. This shoulder becomes much more pronounced by applying pressure. Both HcIII--II and the magnetic field, where a shoulder is seen in the magnetization curve in phase III, are largely suppressed by pressure. In phase II, the M-T curve at a low magnetic field exhibits an unusual concave temperature dependence below TQ down to TN. Thus, we found that the lower the magnetic field, the larger the enhancement of M in both phases III and II. To clarify the origin of the unusual pressure effect of M, we performed a mean-field calculation for the 4-sublattice model using the experimental results of dTQ/dP>0 and dTN/dP<0 and assuming the positive pressure dependence of the Txyz-antiferro-octupole (AFO) interaction. The characteristic features of the pressure effect of M obtained by the experiments could be reproduced well by the mean-field calculation. We found that the origin of the characteristic effect of pressure on CeB6 is the change in the subtle balance between the AFM interaction and the magnetic field-induced-effective FM interaction induced by the coexistence of the Oxy-AFQ and Txyz-AFO interactions under pressure.

  6. Dynamics of thin-film piezoelectric microactuators with large vertical stroke subject to multi-axis coupling and fabrication asymmetries

    NASA Astrophysics Data System (ADS)

    Choi, Jongsoo; Wang, Thomas; Oldham, Kenn

    2018-01-01

    The high performance and small size of MEMS based scanners has allowed various optical imaging techniques to be realized in a small form factor. Many such devices are resonant scanners, and thus their linear and nonlinear dynamic behaviors have been studied in the past. Thin-film piezoelectric materials, in contrast, provide sufficient energy density to achieve both large static displacements and high-frequency resonance, but large deformation can in turn influence dynamic scanner behavior. This paper reports on the influence of very large stroke translation of a piezoelectric vertical actuator on its resonant behavior, which may not be otherwise explained fully by common causes of resonance shift such as beam stiffening or nonlinear forcing. To examine the change of structural compliance over the course of scanner motion, a model has been developed that includes internal forces from residual stress and the resultant additional multi-axis coupling among actuator leg structures. Like some preceding vertical scanning micro-actuators, the scanner of this work has four legs, with each leg featuring four serially connected thin-film PZT unimorphs that allow the scanner to generate larger than 400 µm of vertical displacement at 14 V DC. Using an excitation near one or more resonances, the input voltage can be lowered, and complementary multi-axis rotations can be also generated, but change of the resonant frequencies with scanner height needs to be understood to maximize scanner performance. The presented model well predicts the experimental observation of the decrease of the resonant frequencies of the scanner with the increase of a dc bias voltage. Also, the effects of the magnitude and uniformity of residual stress across the scanner structure on the natural frequencies have been studied.

  7. Computer-aided analysis of digital dental impressions obtained from intraoral and extraoral scanners.

    PubMed

    Bohner, Lauren Oliveira Lima; De Luca Canto, Graziela; Marció, Bruno Silva; Laganá, Dalva Cruz; Sesma, Newton; Tortamano Neto, Pedro

    2017-11-01

    The internal and marginal adaptation of a computer-aided design and computer-aided manufacturing (CAD-CAM) prosthesis relies on the quality of the 3-dimensional image. The quality of imaging systems requires evaluation. The purpose of this in vitro study was to evaluate and compare the trueness of intraoral and extraoral scanners in scanning prepared teeth. Ten acrylic resin teeth to be used as a reference dataset were prepared according to standard guidelines and scanned with an industrial computed tomography system. Data were acquired with 4 scanner devices (n=10): the Trios intraoral scanner (TIS), the D250 extraoral scanner (DES), the Cerec Bluecam intraoral scanner (CBIS), and the Cerec InEosX5 extraoral scanner (CIES). For intraoral scanners, each tooth was digitized individually. Extraoral scanning was obtained from dental casts of each prepared tooth. The discrepancy between each scan and its respective reference model was obtained by deviation analysis (μm) and volume/area difference (μm). Statistical analysis was performed using linear models for repeated measurement factors test and 1-way ANOVA (α=.05). No significant differences in deviation values were found among scanners. For CBIS and CIES, the deviation was significantly higher (P<.05) for occlusal and cervical surfaces. With regard to volume differences, no statistically significant differences were found (TIS=340 ±230 μm; DES=380 ±360 μm; CBIS=780 ±770 μm; CIES=340 ±300 μm). Intraoral and extraoral scanners showed similar trueness in scanning prepared teeth. Higher discrepancies are expected to occur in the cervical region and on the occlusal surface. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Temporal resolution measurement of 128-slice dual source and 320-row area detector computed tomography scanners in helical acquisition mode using the impulse method.

    PubMed

    Hara, Takanori; Urikura, Atsushi; Ichikawa, Katsuhiro; Hoshino, Takashi; Nishimaru, Eiji; Niwa, Shinji

    2016-04-01

    To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of <1.0 was almost equal to the gantry rotation time, whereas with pitch factor of >1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/P=0.285/1.5) and 0.074s (R/P=0.285/3.2), and the maximum TR values of the 64×0.5- and 160×0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/P=0.275/1.375) and 0.195s (R/P=0.3/0.6), respectively. Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Initial experience in treating lung cancer with helical tomotherapy

    PubMed Central

    Yartsev, S; Dar, AR; Woodford, C; Wong, E; Bauman, G; Van Dyk, J

    2007-01-01

    Helical tomotherapy is a new form of image-guided radiation therapy that combines features of a linear accelerator and a helical computed tomography (CT) scanner. Megavoltage CT (MVCT) data allow the verification and correction of patient setup on the couch by comparison and image registration with the kilovoltage CT multi-slice images used for treatment planning. An 84-year-old male patient with Stage III bulky non-small cell lung cancer was treated on a Hi-ART II tomotherapy unit. Daily MVCT imaging was useful for setup corrections and signaled the need to adapt the delivery plan when the patient’s anatomy changed significantly. PMID:21614260

  10. Diurnal, Seasonal, and Interannual Variations of Cloud Properties Derived for CERES From Imager Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Brown, Richard R.; Gibson, Sharon; Heck, Patrick W.

    2004-01-01

    Simultaneous measurement of the radiation and cloud fields on a global basis is a key component in the effort to understand and model the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project, begun in 1998, is meeting this need. Broadband shortwave (SW) and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth OD from the TRMM Visible Infrared Scanner (VIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Besides aiding the interpretation of the broadband radiances, the CERES cloud properties are valuable for understanding cloud variations at a variety of scales. In this paper, the resulting CERES cloud data taken to date are averaged at several temporal scales to examine the temporal and spatial variability of the cloud properties on a global scale at a 1 resolution.

  11. High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.

    PubMed

    Landry, James P; Fei, Yiyan; Zhu, X D

    2011-12-01

    Small-molecule compounds remain the major source of therapeutic and preventative drugs. Developing new drugs against a protein target often requires screening large collections of compounds with diverse structures for ligands or ligand fragments that exhibit sufficiently affinity and desirable inhibition effect on the target before further optimization and development. Since the number of small molecule compounds is large, high-throughput screening (HTS) methods are needed. Small-molecule microarrays (SMM) on a solid support in combination with a suitable binding assay form a viable HTS platform. We demonstrate that by combining an oblique-incidence reflectivity difference optical scanner with SMM we can screen 10,000 small-molecule compounds on a single glass slide for protein ligands without fluorescence labeling. Furthermore using such a label-free assay platform we can simultaneously acquire binding curves of a solution-phase protein to over 10,000 immobilized compounds, thus enabling full characterization of protein-ligand interactions over a wide range of affinity constants.

  12. Lensless high-resolution photoacoustic imaging scanner for in vivo skin imaging

    NASA Astrophysics Data System (ADS)

    Ida, Taiichiro; Iwazaki, Hideaki; Omuro, Toshiyuki; Kawaguchi, Yasushi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Sato, Shunichi

    2018-02-01

    We previously launched a high-resolution photoacoustic (PA) imaging scanner based on a unique lensless design for in vivo skin imaging. The design, imaging algorithm and characteristics of the system are described in this paper. Neither an optical lens nor an acoustic lens is used in the system. In the imaging head, four sensor elements are arranged quadrilaterally, and by checking the phase differences for PA waves detected with these four sensors, a set of PA signals only originating from a chromophore located on the sensor center axis is extracted for constructing an image. A phantom study using a carbon fiber showed a depth-independent horizontal resolution of 84.0 ± 3.5 µm, and the scan direction-dependent variation of PA signals was about ± 20%. We then performed imaging of vasculature phantoms: patterns of red ink lines with widths of 100 or 200 μm formed in an acrylic block co-polymer. The patterns were visualized with high contrast, showing the capability for imaging arterioles and venues in the skin. Vasculatures in rat burn models and healthy human skin were also clearly visualized in vivo.

  13. Advances in diagnostic ultrasonography.

    PubMed

    Reef, V B

    1991-08-01

    A wide variety of ultrasonographic equipment currently is available for use in equine practice, but no one machine is optimal for every type of imaging. Image quality is the most important factor in equipment selection once the needs of the practitioner are ascertained. The transducer frequencies available, transducer footprints, depth of field displayed, frame rate, gray scale, simultaneous electrocardiography, Doppler, and functions to modify the image are all important considerations. The ability to make measurements off of videocassette recorder playback and future upgradability should be evaluated. Linear array and sector technology are the backbone of equine ultrasonography today. Linear array technology is most useful for a high-volume broodmare practice, whereas sector technology is ideal for a more general equine practice. The curved or convex linear scanner has more applications than the standard linear array and is equipped with the linear array rectal probe, which provides the equine practitioner with a more versatile unit for equine ultrasonographic evaluations. The annular array and phased array systems have improved image quality, but each has its own limitations. The new sector scanners still provide the most versatile affordable equipment for equine general practice.

  14. Enter Words and Pictures the Easy Way--Scan Them.

    ERIC Educational Resources Information Center

    Olivas, Jerry

    1989-01-01

    Discusses image scanning and optical character recognition. Describes how computer scanners work. Summarizes scan quality, scanning speed requirements, and hardware requirements for scanners. Surveys the range of scanners currently available. (MVL)

  15. 33. SITE BUILDING 002 SCANNER BUILDING MECHANICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SITE BUILDING 002 - SCANNER BUILDING - MECHANICAL ROOM 105, VIEW OF CHILLER ROOM MOTOR CONTROL CENTER. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. NS001MS - Landsat-D thematic mapper band aircraft scanner

    NASA Technical Reports Server (NTRS)

    Richard, R. R.; Merkel, R. F.; Meeks, G. R.

    1978-01-01

    The thematic mapper is a multispectral scanner which will be launched aboard Landsat-D in the early 1980s. Compared with previous Landsat scanners, this instrument will have an improved spatial resolution (30 m) and new spectral bands. Designated NS001MS, the scanner is designed to duplicate the thematic mapper spectral bands plus two additional bands (1.0 to 1.3 microns and 2.08 to 2.35 microns) in an aircraft scanner for evaluation and investigation prior to design and launch of the final thematic mapper. Applicable specifications used in defining the thematic mapper were retained in the NS001MS design, primarily with respect to spectral bandwidths, noise equivalent reflectance, and noise equivalent difference temperature. The technical design and operational characteristics of the multispectral scanner (with thematic mapper bands) are discussed.

  17. Quantitative quality assurance in a multicenter HARDI clinical trial at 3T.

    PubMed

    Zhou, Xiaopeng; Sakaie, Ken E; Debbins, Josef P; Kirsch, John E; Tatsuoka, Curtis; Fox, Robert J; Lowe, Mark J

    2017-01-01

    A phantom-based quality assurance (QA) protocol was developed for a multicenter clinical trial including high angular resolution diffusion imaging (HARDI). A total of 27 3T MR scanners from 2 major manufacturers, GE (Discovery and Signa scanners) and Siemens (Trio and Skyra scanners), were included in this trial. With this protocol, agar phantoms doped to mimic relaxation properties of brain tissue are scanned on a monthly basis, and quantitative procedures are used to detect spiking and to evaluate eddy current and Nyquist ghosting artifacts. In this study, simulations were used to determine alarm thresholds for minimal acceptable signal-to-noise ratio (SNR). Our results showed that spiking artifact was the most frequently observed type of artifact. Overall, Trio scanners exhibited less eddy current distortion than GE scanners, which in turn showed less distortion than Skyra scanners. This difference was mainly caused by the different sequences used on these scanners. The SNR for phantom scans was closely correlated with the SNR from volunteers. Nearly all of the phantom measurements with artifact-free images were above the alarm threshold, suggesting that the scanners are stable longitudinally. Software upgrades and hardware replacement sometimes affected SNR substantially but sometimes did not. In light of these results, it is important to monitor longitudinal SNR with phantom QA to help interpret potential effects on in vivo measurements. Our phantom QA procedure for HARDI scans was successful in tracking scanner performance and detecting unwanted artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Data-driven CT protocol review and management—experience from a large academic hospital.

    PubMed

    Zhang, Da; Savage, Cristy A; Li, Xinhua; Liu, Bob

    2015-03-01

    Protocol review plays a critical role in CT quality assurance, but large numbers of protocols and inconsistent protocol names on scanners and in exam records make thorough protocol review formidable. In this investigation, we report on a data-driven cataloging process that can be used to assist in the reviewing and management of CT protocols. We collected lists of scanner protocols, as well as 18 months of recent exam records, for 10 clinical scanners. We developed computer algorithms to automatically deconstruct the protocol names on the scanner and in the exam records into core names and descriptive components. Based on the core names, we were able to group the scanner protocols into a much smaller set of "core protocols," and to easily link exam records with the scanner protocols. We calculated the percentage of usage for each core protocol, from which the most heavily used protocols were identified. From the percentage-of-usage data, we found that, on average, 18, 33, and 49 core protocols per scanner covered 80%, 90%, and 95%, respectively, of all exams. These numbers are one order of magnitude smaller than the typical numbers of protocols that are loaded on a scanner (200-300, as reported in the literature). Duplicated, outdated, and rarely used protocols on the scanners were easily pinpointed in the cataloging process. The data-driven cataloging process can facilitate the task of protocol review. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  19. Quantitative Quality Assurance in a Multicenter HARDI Clinical Trial at 3T

    PubMed Central

    Zhou, Xiaopeng; Sakaie, Ken E.; Debbins, Josef P.; Kirsch, John E.; Tatsuoka, Curtis; Fox, Robert J.; Lowe, Mark J.

    2016-01-01

    A phantom-based quality assurance (QA) protocol was developed for a multicenter clinical trial including high angular resolution diffusion imaging (HARDI). A total of 27 3T MR scanners from 2 major manufacturers, GE (Discovery and Signa scanners) and Siemens (Trio and Skyra scanners), were included in this trial. With this protocol, agar phantoms doped to mimic relaxation properties of brain tissue are scanned on a monthly basis, and quantitative procedures are used to detect spiking and to evaluate eddy current and Nyquist ghosting artifacts. In this study, simulations were used to determine alarm thresholds for minimal acceptable signal-to-noise ratio (SNR). Our results showed that spiking artifact was the most frequently observed type of artifact. Overall, Trio scanners exhibited less eddy current distortion than GE scanners, which in turn showed less distortion than Skyra scanners. This difference was mainly caused by the different sequences used on these scanners. The SNR for phantom scans was closely correlated with the SNR from volunteers. Nearly all of the phantom measurements with artifact-free images were above the alarm threshold, suggesting that the scanners are stable longitudinally. Software upgrades and hardware replacement sometimes affected SNR substantially but sometimes did not. In light of these results, it is important to monitor longitudinal SNR with phantom QA to help interpret potential effects on in vivo measurements. Our phantom QA procedure for HARDI scans was successful in tracking scanner performance and detecting unwanted artifacts. PMID:27587227

  20. Integration, acceptance testing, and clinical operation of the Medical Information, Communication and Archive System, phase II.

    PubMed

    Smith, E M; Wandtke, J; Robinson, A

    1999-05-01

    The Medical Information, Communication and Archive System (MICAS) is a multivendor incremental approach to picture archiving and communications system (PACS). It is a multimodality integrated image management system that is seamlessly integrated with the radiology information system (RIS). Phase II enhancements of MICAS include a permanent archive, automated workflow, study caches, Microsoft (Redmond, WA) Windows NT diagnostic workstations with all components adhering to Digital Information Communications in Medicine (DICOM) standards. MICAS is designed as an enterprise-wide PACS to provide images and reports throughout the Strong Health healthcare network. Phase II includes the addition of a Cemax-Icon (Fremont, CA) archive, PACS broker (Mitra, Waterloo, Canada), an interface (IDX PACSlink, Burlington, VT) to the RIS (IDXrad) plus the conversion of the UNIX-based redundant array of inexpensive disks (RAID) 5 temporary archives in phase I to NT-based RAID 0 DICOM modality-specific study caches (ImageLabs, Bedford, MA). The phase I acquisition engines and workflow management software was uninstalled and the Cemax archive manager (AM) assumed these functions. The existing ImageLabs UNIX-based viewing software was enhanced and converted to an NT-based DICOM viewer. Installation of phase II hardware and software and integration with existing components began in July 1998. Phase II of MICAS demonstrates that a multivendor open-system incremental approach to PACS is feasible, cost-effective, and has significant advantages over a single-vendor implementation.

  1. Chemoradiation in elderly esophageal cancer patients: rationale and design of a phase I/II multicenter study (OSAGE).

    PubMed

    Servagi-Vernat, Stéphanie; Créhange, Gilles; Bonnetain, Franck; Mertens, Cécile; Brain, Etienne; Bosset, Jean François

    2017-07-13

    The management of elderly patients with cancer is a therapeutic challenge and a public health problem. Definitive chemoradiotherapy (CRT) is an accepted standard treatment for patients with locally advanced esophageal cancer who cannot undergo surgery. However, there are few reports regarding tolerance to CRT in elderly patients. We previously reported results for CRT in patients aged ≥75 years. Following this first phase II trial, we propose to conduct a phase I/II study to evaluate the combination of carboplatin and paclitaxel, with concurrent RT in unresectable esophageal cancer patients aged 75 years or older. This prospective multicenter phase I/II study will include esophageal cancer in patients aged 75 years or older. Study procedures will consist to determinate the tolerated dose of chemotherapy (Carboplatin, paclitaxel) and of radiotherapy (41.4-45 and 50.4 Gy) in the phase I. Efficacy will be assessed using a co-primary endpoint encompassing health related quality of life and the progression-free survival in the phase II with the dose recommended of CRT in the phase I. This geriatric evaluation was defined by the French geriatric oncology group (GERICO). This trial has been designed to assess the tolerated dose of CRT in selected patient aged 75 years or older. Clinicaltrials.gov ID: NCT02735057 . Registered on 18 March 2016.

  2. Computer-aided analysis of Skylab multispectral scanner data in mountainous terrain for land use, forestry, water resource, and geologic applications

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. One of the most significant results of this Skylab research involved the geometric correction and overlay of the Skylab multispectral scanner data with the LANDSAT multispectral scanner data, and also with a set of topographic data, including elevation, slope, and aspect. The Skylab S192 multispectral scanner data had distinct differences in noise level of the data in the various wavelength bands. Results of the temporal evaluation of the SL-2 and SL-3 photography were found to be particularly important for proper interpretation of the computer-aided analysis of the SL-2 and SL-3 multispectral scanner data. There was a quality problem involving the ringing effect introduced by digital filtering. The modified clustering technique was found valuable when working with multispectral scanner data involving many wavelength bands and covering large geographic areas. Analysis of the SL-2 scanner data involved classification of major cover types and also forest cover types. Comparison of the results obtained wth Skylab MSS data and LANDSAT MSS data indicated that the improved spectral resolution of the Skylab scanner system enabled a higher classification accuracy to be obtained for forest cover types, although the classification performance for major cover types was not significantly different.

  3. Relationships between patient size, dose and image noise under automatic tube current modulation systems.

    PubMed

    Sookpeng, S; Martin, C J; Gentle, D J; Lopez-Gonzalez, M R

    2014-03-01

    Automatic tube current modulation (ATCM) systems are now used for the majority of CT scans. The principles of ATCM operation are different in CT scanners from different manufacturers. Toshiba and GE scanners base the current modulation on a target noise setting, while Philips and Siemens scanners use reference image and reference mAs concepts respectively. Knowledge of the relationships between patient size, dose and image noise are important for CT patient dose optimisation. In this study, the CT patient doses were surveyed for 14 CT scanners from four different CT scanner manufacturers. The patient cross sectional area, the tube current modulation and the image noise from the CT images were analysed using in-house software. The Toshiba and GE scanner results showed that noise levels are relatively constant but tube currents are dependent on patient size. As a result of this there is a wide range in tube current values across different patient sizes, and doses for large patients are significantly higher in these scanners. In contrast, in the Philips and Siemens scanners, tube currents are less dependent on patient size, the range in tube current is narrower, and the doses for larger patients are not as high. Image noise is more dependent on the patient size.

  4. Comparison of working efficiency of terrestrial laser scanner in day and night conditions

    NASA Astrophysics Data System (ADS)

    Arslan, A. E.; Kalkan, K.

    2013-10-01

    Terrestrial Laser Scanning is a popular and widely used technique to scan existing objects, document historical sites and items, and remodel them if and when needed. Their ability to collect thousands of point data per second makes them an invaluable tool in many areas from engineering to historical reconstruction. There are many scanners in the market with different technical specifications. One main technical specification of laser scanners is range and illumination. In this study, it is tested to be determined the optimal working times of a laser scanner and the scanners consistency with its specifications sheet. In order to conduct this work, series of GNSS measurements in Istanbul Technical University have been carried out, connected to the national reference network, to determine precise positions of target points and the scanner, which makes possible to define a precise distance between the scanner and targets. Those ground surveys has been used for calibration and registration purposes. Two different scan campaigns conducted at 12 am and 11 pm to compare working efficiency of laser scanner in different illumination conditions and targets are measured with a handheld spectro-radiometer in order to determine their reflective characteristics. The obtained results are compared and their accuracies have been analysed.

  5. Geraniol modulates tongue and hepatic phase I and phase II conjugation activities and may contribute directly to the chemopreventive activity against experimental oral carcinogenesis.

    PubMed

    Madankumar, Arumugam; Jayakumar, Subramaniyan; Gokuladhas, Krishnan; Rajan, Balan; Raghunandhakumar, Subramanian; Asokkumar, Selvamani; Devaki, Thiruvengadam

    2013-04-05

    Xenobiotic metabolizing enzymes are chief determinants in both the susceptibility to mutagenic effect of chemical carcinogens and in the response of tumors to chemotherapy. The present study was aimed to analyze the effect of geraniol administration on the activity of phase I and phase II carcinogen metabolizing enzymes through the nuclear factor erythroid 2-related factor-2 (Nrf2) activation against 4-niroquinoline-1-oxide (4NQO) induced oral carcinogenesis. The well-known chemical carcinogen 4NQO (50 ppm) was used to induce oral carcinogenesis through drinking water for 4, 12, and 20 weeks. The degree of cancer progression at each stage was confirmed by histological examination. At the end of the experimental period, 100% tumor formation was observed in the oral cavity of 4NQO induced animals with significant (P<0.05) alteration in the status of tumor markers, tongue and liver phase I and phase II drug metabolizing enzymes indicating progression of disease. Oral administration of geraniol at the dose of 200 mg/kg b.wt., thrice a week to 4NQO induced animals was able to inhibit tumor formation and thereby delayed the progression of oral carcinogenesis by modulating tongue and liver phase I and phase II drug metabolizing enzymes, as substantiated further by the histological and transmission electron microscopic studies. Our results demonstrate that geraniol exerts its chemopreventive potential by altering activities of phases I and II drug metabolizing enzymes to achieve minimum bioactivation of carcinogen and maximum detoxification. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. An operational multispectral scanner for bathymetric surveys - The ABS NORDA scanner

    NASA Technical Reports Server (NTRS)

    Haimbach, Stephen P.; Joy, Richard T.; Hickman, G. Daniel

    1987-01-01

    The Naval Ocean Research and Development Activity (NORDA) is developing the Airborne Bathymetric Survey (ABS) system, which will take shallow water depth soundings from a Navy P-3 aircraft. The system combines active and passive sensors to obtain optical measurements of water depth. The ABS NORDA Scanner is the systems passive multispectral scanner whose design goal is to provide 100 percent coverage of the seafloor, to depths of 20 m in average coastal waters. The ABS NORDA Scanner hardware and operational environment is discussed in detail. The optical model providing the basis for depth extraction is reviewed and the proposed data processing routine discussed.

  7. Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure-temperature and temperature-volume phase diagrams.

    PubMed

    Espeau, Philippe; Céolin, René; Tamarit, Josep-Lluis; Perrin, Marc-Antoine; Gauchi, Jean-Pierre; Leveiller, Franck

    2005-03-01

    The thermodynamic relationships between the two known polymorphs of paracetamol have been investigated, and the subsequent pressure-temperature and temperature-volume phase diagrams were constructed using data from crystallographic and calorimetric measurements as a function of the temperature. Irrespective of temperature, monoclinic Form I and orthorhombic Form II are stable phases at ordinary and high pressures, respectively. The I and II phase regions in the pressure-temperature diagram are bordered by the I-II equilibrium curve, for which a negative slope (dp/dT approximately -0.3 MPa x K(-1)) was determined although it was not observed experimentally. This curve goes through the I-II-liquid triple point whose coordinates (p approximately 234 MPa, T approximately 505 K) correspond to the crossing point of the melting curves, for which dp/dT values of +3.75 MPa x K(-1) (I) and +3.14 MPa x K(-1) (II) were calculated from enthalpy and volume changes upon fusion. More generally, this case exemplifies how the stability hierarchy of polymorphs may be inferred from the difference in their sublimation curves, as topologically positioned with respect to each other, using the phase rule and simple inferences resorting to Gibbs equilibrium thermodynamics. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

  8. 18. SITE BUILDING 002 SCANNER BUILDING VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SITE BUILDING 002 - SCANNER BUILDING - VIEW OF SITE SECURITY OFFICE ACCESS DOOR FROM EXTERIOR OF OFFICE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. Evaluation of scattered radiation emitted from X-ray security scanners on occupational dose to airport personnel

    NASA Astrophysics Data System (ADS)

    Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem

    2017-06-01

    Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits.

  11. Reprint of 'Evaluation of Scattered Radiation Emitted From X-ray Security Scanners on Occupational Dose to Airport Personnel'

    NASA Astrophysics Data System (ADS)

    Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem

    2017-11-01

    Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits.

  12. GeoGIS : phase II.

    DOT National Transportation Integrated Search

    2009-12-01

    A new web-based geotechnical Geographic Information System (GeoGIS) was developed and tested for the Alabama Department of Transportation (ALDOT) during Phase II of this research project. This web-based system stores geotechnical information about tr...

  13. Hazardous Materials Routing Study Phase II: Analysis of Hazardous Materials Truck Routes in Proximity to the Dallas Central Business District

    DOT National Transportation Integrated Search

    1985-10-01

    This report summarizes the findings from the second phase of a two-part analysis of hazardous materials truck routes in the Dallas-Fort Worth area. Phase II of this study analyzes the risk of transporting hazardous materials on freeways and arterial ...

  14. 75 FR 4894 - Self-Regulatory Organizations; National Securities Clearing Corporation; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... activity.\\5\\ There will also be an increase in the monthly fee for the mutual fund Profile Phase II Service.... Profile Phase I transmits mutual fund price and rate information. Profile Phase II stores data elements such as accumulation, breakpoints, and commission eligibility that relate to mutual fund processing...

  15. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: PHASE II. PRETREATMENT SYSTEM PERFORMANCE MEASUREMENT

    EPA Science Inventory

    The report describes Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. This phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impu...

  16. Characterization of unpaved road condition through the use of remote sensing project - phase II, deliverable 8-D: final report.

    DOT National Transportation Integrated Search

    2016-03-07

    Building on the success of developing a UAV based unpaved road assessment system in Phase I, the project team was awarded a Phase II project by the USDOT to focus on outreach and implementation. The project team added Valerie Lefler of Integrated Glo...

  17. A Reliability Simulator for Radiation-Hard Microelectronics Development

    DTIC Science & Technology

    1991-07-01

    1 3.0 PHASE II WORK PLANS ................................................................ 2... plan . The correlation experimental details including the devices utilized, the hot-carrier stressing and the wafer-level radiation correlation procedure...channel devices, and a new lifetime extrapolation method is demonstrated for p-channel devices. 3.0 PHASE II WORK PLANS The Phase 1I program consisted of

  18. New York State Educational Information System (NYSEIS) Systems Design. Volume I, Phase II. Final Report.

    ERIC Educational Resources Information Center

    Price Waterhouse and Co., New York, NY.

    This volume on Phase II of the New York State Educational Information System (NYSEIS) describes the Gross Systems Analysis and Design, which includes the general flow diagram and processing chart for each of the student, personnel, and financial subsystems. Volume II, Functional Specifications, includes input/output requirements and file…

  19. Objective Lightning Probability Forecasting for Kennedy Space Center and Cape Canaveral Air Force Station, Phase III

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred C.

    2010-01-01

    The AMU created new logistic regression equations in an effort to increase the skill of the Objective Lightning Forecast Tool developed in Phase II (Lambert 2007). One equation was created for each of five sub-seasons based on the daily lightning climatology instead of by month as was done in Phase II. The assumption was that these equations would capture the physical attributes that contribute to thunderstorm formation more so than monthly equations. However, the SS values in Section 5.3.2 showed that the Phase III equations had worse skill than the Phase II equations and, therefore, will not be transitioned into operations. The current Objective Lightning Forecast Tool developed in Phase II will continue to be used operationally in MIDDS. Three warm seasons were added to the Phase II dataset to increase the POR from 17 to 20 years (1989-2008), and data for October were included since the daily climatology showed lightning occurrence extending into that month. None of the three methods tested to determine the start of the subseason in each individual year were able to discern the start dates with consistent accuracy. Therefore, the start dates were determined by the daily climatology shown in Figure 10 and were the same in every year. The procedures used to create the predictors and develop the equations were identical to those in Phase II. The equations were made up of one to three predictors. TI and the flow regime probabilities were the top predictors followed by 1-day persistence, then VT and Ll. Each equation outperformed four other forecast methods by 7-57% using the verification dataset, but the new equations were outperformed by the Phase II equations in every sub-season. The reason for the degradation may be due to the fact that the same sub-season start dates were used in every year. It is likely there was overlap of sub-season days at the beginning and end of each defined sub-season in each individual year, which could very well affect equation performance.

  20. A randomized phase II/III study of cabazitaxel versus vinflunine in metastatic or locally advanced transitional cell carcinoma of the urothelium (SECAVIN).

    PubMed

    Bellmunt, J; Kerst, J M; Vázquez, F; Morales-Barrera, R; Grande, E; Medina, A; González Graguera, M B; Rubio, G; Anido, U; Fernández Calvo, O; González-Billalabeitia, E; Van den Eertwegh, A J M; Pujol, E; Perez-Gracia, J L; González Larriba, J L; Collado, R; Los, M; Maciá, S; De Wit, R

    2017-07-01

    Despite the advent of immunotherapy in urothelial cancer, there is still a need to find effective cytotoxic agents beyond first and second lines. Vinflunine is the only treatment approved in this setting by the European Medicines Agency and taxanes are also widely used in second line. Cabazitaxel is a taxane with activity in docetaxel-refractory cancers. A randomized study was conducted to compare its efficacy versus vinflunine. This is a multicenter, randomized, open-label, phase II/III study, following a Simon's optimal method with stopping rules based on an interim futility analysis and a formal efficacy analysis at the end of the phase II. ECOG Performance Status, anaemia and liver metastases were stratification factors. Primary objectives were overall response rate for the phase II and overall survival for the phase III. Seventy patients were included in the phase II across 19 institutions in Europe. Baseline characteristics were well balanced between the two arms. Three patients (13%) obtained a partial response on cabazitaxel (95% CI 2.7-32.4) and six patients (30%) in the vinflunine arm (95% CI 11.9-54.3). Median progression-free survival for cabazitaxel was 1.9 versus 2.9 months for vinflunine (P = 0.039). The study did not proceed to phase III since the futility analysis showed a lack of efficacy of cabazitaxel. A trend for overall survival benefit was found favouring vinflunine (median 7.6 versus 5.5 months). Grade 3- to 4-related adverse events were seen in 41% patients with no difference between the two arms. This phase II/III second line bladder study comparing cabazitaxel with vinflunine was closed when the phase II showed a lack of efficacy of the cabazitaxel arm. Vinflunine results were consistent with those known previously. NCT01830231. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses.

    PubMed

    Zhang, Qiang; Pi, Jingbo; Woods, Courtney G; Andersen, Melvin E

    2009-06-15

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a possibly common mechanism for the hormetic responses observed with many mutagens/carcinogens whose activities require bioactivation by phase I enzymes. Feedforward control, often operating in combination with negative feedback regulation in a homeostatic system, may be a general control theme responsible for steady-state hormesis.

  2. 2. SITE BUILDING 002 SCANNER BUILDING VIEW IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SITE BUILDING 002 - SCANNER BUILDING - VIEW IS LOOKING NORTH 80° WEST "B" FACE ALONG BUILDING "A" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. Evaluation of Scanners for C-Scan Imaging for Nondestructive Inspection of Aircraft

    DTIC Science & Technology

    1994-09-01

    mechanized and nonmechanized designs. * The basic scanner designs were divided for the purposes of this report into eight different Stypes. These are 1...electronic switching through the transducer elements of the array. The basic scanner designs were divided for the purposes of this report into eight...of this project was to evaluate all the basic scanner types that are appropriate for aircraft NDI examinations. A number of vendors sell very similar

  5. Galileo spacecraft autonomous attitude determination using a V-slit star scanner

    NASA Technical Reports Server (NTRS)

    Mobasser, Sohrab; Lin, Shuh-Ren

    1991-01-01

    The autonomous attitude determination system of Galileo spacecraft, consisting of a radiation hardened star scanner and a processing algorithm is presented. The algorithm applying to this system are the sequential star identification and attitude estimation. The star scanner model is reviewed in detail and the flight software parameters that must be updated frequently during flight, due to degradation of the scanner response and the star background change are identified.

  6. Determining density of maize canopy. 3: Temporal considerations

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Anuta, P. E.; Cipra, J. E.

    1972-01-01

    Multispectral scanner data were collected in two flights over ground cover plots at an altitude of 305 m. Eight ground reflectance panels in close proximity to the ground cover plots were used to normalize the scanner data obtained on different dates. Separate prediction equations were obtained for both flight dates for all eleven reflective wavelength bands of the multispectral scanner. Ratios of normalized scanner data were related to leaf area index over time. Normalized scanner data were used to plot relative reflectance versus wavelength for the ground cover plots. Spectral response curves were similar to those for bare soil and green vegetation as determined by laboratory measurements. The spectral response curves from the normalized scanner data indicated that reflectance in the 0.72 to 1.3 micron wavelength range increased as leaf area index increased. A decrease in reflectance was observed in the 0.65 micron chlorophyll absorption band as leaf area index increased.

  7. The response of the Seasat and Magsat infrared horizon scanners to cold clouds

    NASA Technical Reports Server (NTRS)

    Bilanow, S.; Phenneger, M.

    1980-01-01

    Cold clouds over the Earth are shown to be the principal cause of pitch and roll measurement noise in flight data from the infrared horizon scanners onboard Seasat and Magsat. The observed effects of clouds on the fixed threshold horizon detection logic of the Magsat scanner and on the variable threshold detection logic of the Seasat scanner are discussed. National Oceanic and Atmospheric Administration (NOAA) Earth photographs marked with the scanner ground trace clearly confirm the relationship between measurement errors and Earth clouds. A one to one correspondence can be seen between excursion in the pitch and roll data and cloud crossings. The characteristics of the cloud-induced noise are discussed, and the response of the satellite control systems to the cloud errors is described. Changes to the horizon scanner designs that would reduce the effects of clouds are noted.

  8. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    PubMed

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

  9. Fe(II) sorption on pyrophyllite: Effect of structural Fe(III) (impurity) in pyrophyllite on nature of layered double hydroxide (LDH) secondary mineral formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starcher, Autumn N.; Li, Wei; Kukkadapu, Ravi K.

    Fe(II)-Al(III)-LDH (layered double hydroxide) phases have been shown to form from reactions of aqueous Fe(II) with Fe-free Al-bearing minerals (phyllosilicate/clays and Al-oxides). To our knowledge, the effect of small amounts of structural Fe(III) impurities in “neutral” clays on such reactions, however, were not studied. In this study to understand the role of structural Fe(III) impurity in clays, laboratory batch studies with pyrophyllite (10 g/L), an Al-bearing phyllosilicate, containing small amounts of structural Fe(III) impurities and 0.8 mM and 3 mM Fe(II) (both natural and enriched in 57Fe) were carried out at pH 7.5 under anaerobic conditions (4% H2 – 96%more » N2 atmosphere). Samples were taken up to 4 weeks for analysis by Fe-X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy. In addition to the precipitation of Fe(II)-Al(III)-LDH phases as observed in earlier studies with pure minerals (no Fe(III) impurities in the minerals), the analyses indicated formation of small amounts of Fe(III) containing solid(s), most probably hybrid a Fe(II)-Al(III)/Fe(III)-LDH phase. The mechanism of Fe(II) oxidation was not apparent but most likely was due to interfacial electron transfer from the sorbed Fe(II) to the structural Fe(III) and/or surface-sorption-induced electron-transfer from the sorbed Fe(II) to the clay lattice. Increase in the Fe(II)/Al ratio of the LDH with reaction time further indicated the complex nature of the samples. This research provides evidence for the formation of both Fe(II)-Al(III)-LDH and Fe(II)-Fe(III)/Al(III)-LDH-like phases during reactions of Fe(II) in systems that mimic the natural environments. Better understanding Fe phase formation in complex laboratory studies will improve models of natural redox systems.« less

  10. Anal Cancer: An Examination of Radiotherapy Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glynne-Jones, Rob; Lim, Faye

    2011-04-01

    The Radiation Therapy Oncology Group 9811, ACCORD-03, and ACT II Phase III trials in anal cancer showed no benefit for cisplatin-based induction and maintenance chemotherapy, or radiation dose-escalation >59 Gy. This review examines the efficacy and toxicity of chemoradiation (CRT) in anal cancer, and discusses potential alternative radiotherapy strategies. The evidence for the review was compiled from randomized and nonrandomized trials of radiation therapy and CRT. A total of 103 retrospective/observational studies, 4 Phase I/II studies, 16 Phase II prospective studies, 2 randomized Phase II studies, and 6 Phase III trials of radiotherapy or chemoradiation were identified. There are nomore » meta-analyses based on individual patient data. A 'one-size-fits-all' approach for all stages of anal cancer is inappropriate. Early T1 tumors are probably currently overtreated, whereas T3/T4 lesions might merit escalation of treatment. Intensity-modulated radiotherapy or the integration of biological therapy may play a role in future.« less

  11. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom.

    PubMed

    Sunderland, John J; Christian, Paul E

    2015-01-01

    The Clinical Trials Network (CTN) of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) operates a PET/CT phantom imaging program using the CTN's oncology clinical simulator phantom, designed to validate scanners at sites that wish to participate in oncology clinical trials. Since its inception in 2008, the CTN has collected 406 well-characterized phantom datasets from 237 scanners at 170 imaging sites covering the spectrum of commercially available PET/CT systems. The combined and collated phantom data describe a global profile of quantitative performance and variability of PET/CT data used in both clinical practice and clinical trials. Individual sites filled and imaged the CTN oncology PET phantom according to detailed instructions. Standard clinical reconstructions were requested and submitted. The phantom itself contains uniform regions suitable for scanner calibration assessment, lung fields, and 6 hot spheric lesions with diameters ranging from 7 to 20 mm at a 4:1 contrast ratio with primary background. The CTN Phantom Imaging Core evaluated the quality of the phantom fill and imaging and measured background standardized uptake values to assess scanner calibration and maximum standardized uptake values of all 6 lesions to review quantitative performance. Scanner make-and-model-specific measurements were pooled and then subdivided by reconstruction to create scanner-specific quantitative profiles. Different makes and models of scanners predictably demonstrated different quantitative performance profiles including, in some cases, small calibration bias. Differences in site-specific reconstruction parameters increased the quantitative variability among similar scanners, with postreconstruction smoothing filters being the most influential parameter. Quantitative assessment of this intrascanner variability over this large collection of phantom data gives, for the first time, estimates of reconstruction variance introduced into trials from allowing trial sites to use their preferred reconstruction methodologies. Predictably, time-of-flight-enabled scanners exhibited less size-based partial-volume bias than non-time-of-flight scanners. The CTN scanner validation experience over the past 5 y has generated a rich, well-curated phantom dataset from which PET/CT make-and-model and reconstruction-dependent quantitative behaviors were characterized for the purposes of understanding and estimating scanner-based variances in clinical trials. These results should make it possible to identify and recommend make-and-model-specific reconstruction strategies to minimize measurement variability in cancer clinical trials. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Structures and phase transitions in a new ferroelectric -- pyridinium chlorochromate -- studied by X-ray diffraction, DSC and dielectric methods.

    PubMed

    Małuszyńska, Hanna; Czarnecki, Piotr; Czarnecka, Anna; Pająk, Zdzisław

    2012-04-01

    Pyridinium chlorochromate, [C(5)H(5)NH](+)[ClCrO(3)](-) (hereafter referred to as PyClCrO(3)), was studied by X-ray diffraction, differential scanning calorimetry (DSC) and dielectric methods. Studies reveal three reversible phase transitions at 346, 316 and 170 K with the following phase sequence: R ̅3m (I) → R3m (II) → Cm (III) → Cc (IV), c' = 2c. PyClCrO(3) is the first pyridinium salt in which all four phases have been successfully characterized by a single-crystal X-ray diffraction method. Structural results together with dielectric and calorimetric studies allow the classification of the two intermediate phases (II) and (III) as ferroelectric with the Curie point at 346 K, and the lowest phase (IV) as most probably ferroelectric. The ferroelectric hysteresis loop was observed only in phase (III). The high ionic conductivity hindered its observation in phase (II).

  13. Statistical aspects of the TNK-S2B trial of tenecteplase versus alteplase in acute ischemic stroke: an efficient, dose-adaptive, seamless phase II/III design.

    PubMed

    Levin, Bruce; Thompson, John L P; Chakraborty, Bibhas; Levy, Gilberto; MacArthur, Robert; Haley, E Clarke

    2011-08-01

    TNK-S2B, an innovative, randomized, seamless phase II/III trial of tenecteplase versus rt-PA for acute ischemic stroke, terminated for slow enrollment before regulatory approval of use of phase II patients in phase III. (1) To review the trial design and comprehensive type I error rate simulations and (2) to discuss issues raised during regulatory review, to facilitate future approval of similar designs. In phase II, an early (24-h) outcome and adaptive sequential procedure selected one of three tenecteplase doses for phase III comparison with rt-PA. Decision rules comparing this dose to rt-PA would cause stopping for futility at phase II end, or continuation to phase III. Phase III incorporated two co-primary hypotheses, allowing for a treatment effect at either end of the trichotomized Rankin scale. Assuming no early termination, four interim analyses and one final analysis of 1908 patients provided an experiment-wise type I error rate of <0.05. Over 1,000 distribution scenarios, each involving 40,000 replications, the maximum type I error in phase III was 0.038. Inflation from the dose selection was more than offset by the one-half continuity correction in the test statistics. Inflation from repeated interim analyses was more than offset by the reduction from the clinical stopping rules for futility at the first interim analysis. Design complexity and evolving regulatory requirements lengthened the review process. (1) The design was innovative and efficient. Per protocol, type I error was well controlled for the co-primary phase III hypothesis tests, and experiment-wise. (2a) Time must be allowed for communications with regulatory reviewers from first design stages. (2b) Adequate type I error control must be demonstrated. (2c) Greater clarity is needed on (i) whether this includes demonstration of type I error control if the protocol is violated and (ii) whether simulations of type I error control are acceptable. (2d) Regulatory agency concerns that protocols for futility stopping may not be followed may be allayed by submitting interim analysis results to them as these analyses occur.

  14. Feasibility of Clinician-Facilitated Three-Dimensional Printing of Synthetic Cranioplasty Flaps.

    PubMed

    Panesar, Sandip S; Belo, Joao Tiago A; D'Souza, Rhett N

    2018-05-01

    Integration of three-dimensional (3D) printing and stereolithography into clinical practice is in its nascence, and concepts may be esoteric to the practicing neurosurgeon. Currently, creation of 3D printed implants involves recruitment of offsite third parties. We explored a range of 3D scanning and stereolithographic techniques to create patient-specific synthetic implants using an onsite, clinician-facilitated approach. We simulated bilateral craniectomies in a single cadaveric specimen. We devised 3 methods of creating stereolithographically viable virtual models from removed bone. First, we used preoperative and postoperative computed tomography scanner-derived bony window models from which the flap was extracted. Second, we used an entry-level 3D light scanner to scan and render models of the individual bone pieces. Third, we used an arm-mounted, 3D laser scanner to create virtual models using a real-time approach. Flaps were printed from the computed tomography scanner and laser scanner models only in a ultraviolet-cured polymer. The light scanner did not produce suitable virtual models for printing. The computed tomography scanner-derived models required extensive postfabrication modification to fit the existing defects. The laser scanner models assumed good fit within the defects without any modification. The methods presented varying levels of complexity in acquisition and model rendering. Each technique required hardware at varying in price points from $0 to approximately $100,000. The laser scanner models produced the best quality parts, which had near-perfect fit with the original defects. Potential neurosurgical applications of this technology are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Measuring temporal stability of positron emission tomography standardized uptake value bias using long-lived sources in a multicenter network.

    PubMed

    Byrd, Darrin; Christopfel, Rebecca; Arabasz, Grae; Catana, Ciprian; Karp, Joel; Lodge, Martin A; Laymon, Charles; Moros, Eduardo G; Budzevich, Mikalai; Nehmeh, Sadek; Scheuermann, Joshua; Sunderland, John; Zhang, Jun; Kinahan, Paul

    2018-01-01

    Positron emission tomography (PET) is a quantitative imaging modality, but the computation of standardized uptake values (SUVs) requires several instruments to be correctly calibrated. Variability in the calibration process may lead to unreliable quantitation. Sealed source kits containing traceable amounts of [Formula: see text] were used to measure signal stability for 19 PET scanners at nine hospitals in the National Cancer Institute's Quantitative Imaging Network. Repeated measurements of the sources were performed on PET scanners and in dose calibrators. The measured scanner and dose calibrator signal biases were used to compute the bias in SUVs at multiple time points for each site over a 14-month period. Estimation of absolute SUV accuracy was confounded by bias from the solid phantoms' physical properties. On average, the intrascanner coefficient of variation for SUV measurements was 3.5%. Over the entire length of the study, single-scanner SUV values varied over a range of 11%. Dose calibrator bias was not correlated with scanner bias. Calibration factors from the image metadata were nearly as variable as scanner signal, and were correlated with signal for many scanners. SUVs often showed low intrascanner variability between successive measurements but were also prone to shifts in apparent bias, possibly in part due to scanner recalibrations that are part of regular scanner quality control. Biases of key factors in the computation of SUVs were not correlated and their temporal variations did not cancel out of the computation. Long-lived sources and image metadata may provide a check on the recalibration process.

  16. Planning guidelines for computerized transaxial tomography (CT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-11-23

    Guidelines to assist local communities in review and decisionmaking related to computerized tomography (CT) 'head' and 'whole body' scanner needs and placement are presented. Although medical benefits for head scanning are well established, the proper role of whole body scanning in relation to other diagnostic procedures has not been determined. It is recommended that a 20 percent weighted consideration could be given to a potential CT scanner applicant's present capabilities in diagnostic 'body' work. The following guidelines for CT are recommended for use in assessing work qualifications of potential CT scanner applicants: (1) The facility must have an active neurosurgicalmore » service, with a geographically full-time board - certified neurosurgeon and at least 50 intracranial procedures performed annually. (2) The facility must have an active neurological service, with a geographically full-time board - certified neurologist. (3) The facility must have on staff a qualified neuroradiologist. It is recommended that the CT scanner utilization level be a minimum of 3,000 examinations per year per unit of new equipment. The applicant must submit financial data and must be committed to providing care to all patients, independent of ability to pay. The applicant must submit letters from area hospitals agreeing to utilize the scanner services. Additional criteria are given for body scanning work and for the number of scanners in a specific area. Detailed information is presented about scanner development and use in southeastern Pennsylvania and neighboring planning areas, and the cost of scanner operations is compared with revenues. The CT scanner committee membership is included.« less

  17. Investigation of a Dedicated, High Resolution PET/CT Scanner for Staging and Treatment Planning of Head and Neck Cancer

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Stolin, Alexander V.; Sompalli, Prashanth; Randall, Nicole Bunda; Martone, Peter F.; Clinthorne, Neal H.

    2015-10-01

    Staging of head and neck cancer (HNC) is often hindered by the limited resolution of standard whole body PET scanners, which can make it challenging to detect small areas of metastatic disease in regional lymph nodes and accurately delineate tumor boundaries. In this investigation, the performance of a proposed high resolution PET/CT scanner designed specifically for imaging of the head and neck region was explored. The goal is to create a dedicated PET/CT system that will enhance the staging and treatment of HNCs. Its performance was assessed by simulating the scanning of a three-dimensional Rose-Burger contrast phantom. To extend the results from the simulation studies, an existing scanner with a similar geometry to the dedicated system and a whole body, clinical PET/CT scanner were used to image a Rose-Burger contrast phantom and a phantom simulating the neck of an HNC patient (out-of-field-of-view sources of activity were not included). Images of the contrast detail phantom acquired with Breast-PET/CT and simulated head and neck scanner both produced object contrasts larger than the images created by the clinical scanner. Images of a neck phantom acquired with the Breast-PET/CT scanner permitted the identification of all of the simulated metastases, while it was not possible to identify any of the simulated metastasis with the clinical scanner. The initial results from this study demonstrate the potential benefits of high-resolution PET systems for improving the diagnosis and treatment of HNC.

  18. The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II).

    PubMed

    Jayawardane, B Manori; Coo, Lilibeth dlC; Cattrall, Robert W; Kolev, Spas D

    2013-11-25

    A disposable paper-based sensor (PBS) is described for the determination of Cu(II) in natural and waste waters at approximately 2 cents per measurement. The device makes use of a polymer inclusion membrane (PIM) to provide the selectivity for Cu(II). The PIM consists of 40 wt% di(2-ethlyhexyl) phosphoric acid (D2EHPA) as the carrier, 10 wt% dioctyl phthalate (DOP) as a plasticizer, 49.5 wt% poly(vinyl chloride) (PVC) as the base polymer and 0.5 wt% (mm(-1)) 1-(2'-pyridylazo)-2-naphthol (PAN) as the colourimetric reagent. High selectivity under mildly acidic conditions (HCl, pH 2.0) is achieved for Cu(II) in the presence of frequently encountered metal ions in natural and waste waters such as Fe(III), Al(III), Zn(II), Cd(II), Pb(II), Ca(II), Mg(II), and Ni(II). The laminated PBS consists of a PIM sensing disc (2mm in diameter) attached to the centre of a circular hydrophilic zone (7 mm in diameter) pretreated with 0.01 M HCl. This hydrophilic zone separates the sample port (a circular hole in the plastic cover) from the PIM sensing disc. After introducing 19.2 μL of a sample/standard solution to the sample port, Cu(II) diffuses across the hydrophilic zone and is extracted into the PIM disc as the Cu(II)-D2EHPA complex which subsequently reacts with PAN to produce the red-purple coloured Cu(II)-PAN complex. The colour intensity of the PIM disc is measured 15 min after sample/standard introduction by scanning using a flatbed scanner. Under optimal conditions the device is characterized by a limit of detection (LOD) and limit of quantitation (LOQ) of 0.06 and 0.21 mg L(-1) Cu(II), respectively, with two linear ranges together covering the Cu(II) concentration range from 0.1 to 30.0 mg L(-1). The PBS was successfully applied to the determination of Cu(II) in hot tap water and mine tailings water. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The Systems Approach to Functional Job Analysis. Task Analysis of the Physician's Assistant: Volume II--Curriculum and Phase I Basic Core Courses and Volume III--Phases II and III--Clinical Clerkships and Assignments.

    ERIC Educational Resources Information Center

    Wake Forest Univ., Winston Salem, NC. Bowman Gray School of Medicine.

    This publication contains a curriculum developed through functional job analyses for a 24-month physician's assistant training program. Phase 1 of the 3-phase program is a 6-month basic course program in clinical and bioscience principles and is required of all students regardless of their specialty interest. Phase 2 is a 6 to 10 month period of…

  20. 47 CFR 90.765 - Licenses term for Phase II licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 220-222 MHz Band Policies Governing the Licensing and Use of Phase II Ea, Regional and Nationwide...(a), EA and Regional licenses authorized pursuant to § 90.761, and non-nationwide licenses authorized...

  1. 47 CFR 90.765 - Licenses term for Phase II licenses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 220-222 MHz Band Policies Governing the Licensing and Use of Phase II Ea, Regional and Nationwide...(a), EA and Regional licenses authorized pursuant to § 90.761, and non-nationwide licenses authorized...

  2. Planning Targets for Phase II Watershed Implementation Plans

    EPA Pesticide Factsheets

    On August 1, 2011, EPA provided planning targets for nitrogen, phosphorus and sediment for the Phase II Watershed Implementation Plans (WIPs) of the Chesapeake Bay TMDL. This page provides the letters containing those planning targets.

  3. Sears Point Tidal Marsh Restoration Project: Phase II

    EPA Pesticide Factsheets

    Information about the SFBWQP Sears Point Tidal Marsh Restoration Project: Phase II, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  4. Experimental evaluation of ballistic hazards in imaging diagnostic center.

    PubMed

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-04-01

    Serious hazards for human health and life and devices in close proximity to the magnetic resonance scanners (MRI scanners) include the effects of being hit by ferromagnetic objects attracted by static magnetic field (SMF) produced by scanner magnet - the so-called ballistic hazards classified among indirect electromagnetic hazards. International safety guidelines and technical literature specify different SMF threshold values regarding ballistic hazards - e.g. 3 mT (directive 2004/40/EC, EN 60601-2-33), and 30 mT (BMAS 2009, directive proposal 2011). Investigations presented in this article were performed in order to experimentally verify SMF threshold for ballistic hazards near MRI scanners used in Poland. Investigations were performed with the use of a laboratory source of SMF (0-30 mT) and MRI scanners of various types. The levels of SMF in which metal objects of various shapes and 0.4-500 g mass are moved by the field influence were investigated. The distance from the MRI scanners (0.2-3T) where hazards may occur were also investigated. Objects investigated under laboratory conditions were moved by SMF of 2.2-15 mT magnetic flux density when they were freely suspended, but were moved by the SMF of 5.6-22 mT when they were placed on a smooth surface. Investigated objects were moved in fields of 3.5-40 mT by MRI scanners. Distances from scanner magnet cover, where ballistic hazards might occur are: up to 0.5 m for 0.2-0.3T scanners; up to 1.3 m for 0.5T scanners; up to 2.0 m for 1.5T scanners and up to 2.5 m for 3T scanners (at the front and back of the magnet). It was shown that SMF of 3 mT magnetic flux density should be taken as the threshold for ballistic hazards. Such level is compatible with SMF limit value regarding occupational safety and health-protected areas/zones, where according to the Polish labor law the procedures of work environment inspection and prevention measures regarding indirect electromagnetic hazards should be applied. Presented results do not support the increase up to 30 mT of the SMF limit for protected area.

  5. Thermal Infrared Multispectral Scanner (TIMS): An investigator's guide to TIMS data

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.; Meeks, G. R.

    1985-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) is a NASA aircraft scanner providing six channel spectral capability in the thermal infrared region of the electromagnetic spectrum. Operating in the atmospheric window region (8 to 12 micrometers) with a channel sensitivity of approximately 0.1 C, TIMS may be used whenever an accurate measure of the Earth's surface is needed. A description of this scanner is provided as well as a discussion of data acquisition and reduction.

  6. The TT-PET project: a thin TOF-PET scanner based on fast novel silicon pixel detectors

    NASA Astrophysics Data System (ADS)

    Bandi, Y.; Benoit, M.; Cadoux, F. R.; Forshaw, D. C.; Hänni, R.; Hayakawa, D.; Iacobucci, G.; Michal, S.; Miucci, A.; Paolozzi, L.; Ratib, O.; Ripiccini, E.; Tognina, C.; Valerio, P.; Weber, M.

    2018-01-01

    The TT-PET project aims at developing a compact Time-of-flight PET scanner with 30ps time resolution, capable of withstanding high magnetic fields and allowing for integration in a traditional MRI scanner, providing complimentary real-time PET images. The very high timing resolution of the TT-PET scanner is achieved thanks to a new generation of Silicon-Germanium (Si-Ge) amplifiers, which are embedded in monolithic pixel sensors. The scanner is composed of 16 detection towers as well as cooling blocks, arranged in a ring structure. The towers are composed of multiple ultra-thin pixel modules stacked on top of each other. Making it possible to perform depth of interaction measurements and maximize the spatial resolution along the line of flight of the two photons emitted within a patient. This will result in improved image quality, contrast, and uniformity while drastically reducing backgrounds within the scanner. Allowing for a reduction in the amount of radioactivity delivered to the patient. Due to an expected data rate of about 250 MB/s a custom readout system for high data throughput has been developed, which includes noise filtering and reduced data pressure. The realisation of a first scanner prototype for small animals is foreseen by 2019. A general overview of the scanner will be given including, technical details concerning the detection elements, mechanics, DAQ readout, simulation and results.

  7. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    NASA Astrophysics Data System (ADS)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  8. Dental and skeletal changes in patients with mandibular retrognathism following treatment with Herbst and pre-adjusted fixed appliance

    PubMed Central

    Vigorito, Fabio de Abreu; Dominguez, Gladys Cristina; Aidar, Luís Antônio de Arruda

    2014-01-01

    Objective To assess the dentoskeletal changes observed in treatment of Class II, division 1 malocclusion patients with mandibular retrognathism. Treatment was performed with the Herbst orthopedic appliance during 13 months (phase I) and pre-adjusted orthodontic fixed appliance (phase II). Methods Lateral cephalograms of 17 adolescents were taken in phase I onset (T1) and completion (T2); in the first thirteen months of phase II (T3) and in phase II completion (T4). Differences among the cephalometric variables were statistically analyzed (Bonferroni variance and multiple comparisons). Results From T1 to T4, 42% of overall maxillary growth was observed between T1 and T2 (P < 0.01), 40.3% between T2 and T3 (P < 0.05) and 17.7% between T3 and T4 (n.s.). As for overall mandibular movement, 48.2% was observed between T1 and T2 (P < 0.001) and 51.8% between T2 and T4 (P < 0.01) of which 15.1% was observed between T2 and T3 (n.s.) and 36.7% between T3 and T4 (P < 0.01). Class II molar relationship and overjet were properly corrected. The occlusal plane which rotated clockwise between T1 and T2, returned to its initial position between T2 and T3 remaining stable until T4. The mandibular plane inclination did not change at any time during treatment. Conclusion Mandibular growth was significantly greater in comparison to maxillary, allowing sagittal maxillomandibular adjustment. The dentoalveolar changes (upper molar) that overcorrected the malocclusion in phase I, partially recurred in phase II, but did not hinder correction of the malocclusion. Facial type was preserved. PMID:24713559

  9. Preconcentration of trace lead and iron on activated carbon functionalized by o-Anisic acid derivatives prior to their determination in environmental samples.

    PubMed

    Tian, Hua; Hu, Zheng; He, Qun; Liu, Xueliang; Zhang, Li; Chang, Xijun

    2012-07-01

    Two solid-phase adsorbents (phase I and phase II) were synthesized successfully that o-Anisic acid derivatives were evenly functionalized on the surface of activated carbon. It was certified that the two adsorbents were applied to preconcentrate and separate trace levels of Pb(II) and Fe(III) from natural liquid samples with satisfactory results. It can be found that the adsorption capacity of the ions adsorbed on phase I and phase II was 48.3 and 85.7 mg g(-1) for Pb(II), 39.5 and 72.5 mg g(-1) for Fe(III), respectively. The detection limit (3σ) of the method separated on phase I and phase II was 0.12 and 0.09 ng mL(-1) for Pb(II), 0.23 and 0.17 ng mL(-1) for Fe(III), respectively. The relative standard deviation (R.S.D.) of the method was lower than 3.0%. The adsorption and desorption property of two kinds of adsorbents was comparatively studied, respectively. The adsorption selectivity of heavy metal ions at certain pH, the adsorption kinetics, the condition of complete elution, the effect of coexisting ions, the adsorption capacity and adsorption isotherm modes were examined. Based on the experimental datum determined by inductively coupled plasma optical emission spectrometry (ICP-OES), it was certified that the adsorption on the surface of adsorbents was in strict accordance with the monolayer adsorption principle. The structural features of series of multidentate ligand modified on adsorption matrix had been obtained. These conclusions can provide reference for synthesizing an efficient adsorbent which is specific to remove a particular kind of contaminant. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Monte Carlo proton dose calculations using a radiotherapy specific dual-energy CT scanner for tissue segmentation and range assessment

    NASA Astrophysics Data System (ADS)

    Almeida, Isabel P.; Schyns, Lotte E. J. R.; Vaniqui, Ana; van der Heyden, Brent; Dedes, George; Resch, Andreas F.; Kamp, Florian; Zindler, Jaap D.; Parodi, Katia; Landry, Guillaume; Verhaegen, Frank

    2018-06-01

    Proton beam ranges derived from dual-energy computed tomography (DECT) images from a dual-spiral radiotherapy (RT)-specific CT scanner were assessed using Monte Carlo (MC) dose calculations. Images from a dual-source and a twin-beam DECT scanner were also used to establish a comparison to the RT-specific scanner. Proton ranges extracted from conventional single-energy CT (SECT) were additionally performed to benchmark against literature values. Using two phantoms, a DECT methodology was tested as input for GEANT4 MC proton dose calculations. Proton ranges were calculated for different mono-energetic proton beams irradiating both phantoms; the results were compared to the ground truth based on the phantom compositions. The same methodology was applied in a head-and-neck cancer patient using both SECT and dual-spiral DECT scans from the RT-specific scanner. A pencil-beam-scanning plan was designed, which was subsequently optimized by MC dose calculations, and differences in proton range for the different image-based simulations were assessed. For phantoms, the DECT method yielded overall better material segmentation with  >86% of the voxel correctly assigned for the dual-spiral and dual-source scanners, but only 64% for a twin-beam scanner. For the calibration phantom, the dual-spiral scanner yielded range errors below 1.2 mm (0.6% of range), like the errors yielded by the dual-source scanner (<1.1 mm, <0.5%). With the validation phantom, the dual-spiral scanner yielded errors below 0.8 mm (0.9%), whereas SECT yielded errors up to 1.6 mm (2%). For the patient case, where the absolute truth was missing, proton range differences between DECT and SECT were on average in  ‑1.2  ±  1.2 mm (‑0.5%  ±  0.5%). MC dose calculations were successfully performed on DECT images, where the dual-spiral scanner resulted in media segmentation and range accuracy as good as the dual-source CT. In the patient, the various methods showed relevant range differences.

  11. A phantom study for the comparison of different brands of computed tomography scanners and software packages for endovascular aneurysm repair sizing and planning.

    PubMed

    Velu, Juliëtte F; Groot Jebbink, Erik; de Vries, Jean-Paul Pm; van der Palen, Job Am; Slump, Cornelis H; Geelkerken, Robert H

    2018-04-01

    Objectives Correct sizing of endoprostheses used for the treatment of abdominal aortic aneurysms is important to prevent endoleaks and migration. Sizing requires several steps and each step introduces a possible sizing error. The goal of this study was to investigate the magnitude of these errors compared to the golden standard: a vessel phantom. This study focuses on the errors in sizing with three different brands of computed tomography angiography scanners in combination with three reconstruction software packages. Methods Three phantoms with a different diameter, altitude and azimuth were scanned with three computed tomography scanners: Toshiba Aquilion 64-slice, Philips Brilliance iCT 256-slice and Siemens Somatom Sensation 64-slice. The phantom diameters were determined in the stretched view after central lumen line reconstruction by three observers using Simbionix PROcedure Rehearsal Studio, 3mensio and TeraRecon planning software. The observers, all novices in sizing endoprostheses using planning software, measured 108 slices each. Two senior vascular surgeons set the tolerated error margin of sizing on ±1.0 mm. Results In total, 11.3% of the measurements (73/648) were outside the set margins of ±1.0 mm from the phantom diameter, with significant differences between the scanner types (14.8%, 12.1%, 6.9% for the Siemens scanner, Philips scanner and Toshiba scanner, respectively, p-value = 0.032), but not between the software packages (8.3%, 11.1%, 14.4%, p-value = 0.141) or the observers (10.6%, 9.7%, 13.4%, p-value = 0.448). Conclusions It can be concluded that the errors in sizing were independent of the used software packages, but the phantoms scanned with Siemens scanner were significantly more measured incorrectly than the phantoms scanned with the Toshiba scanner. Consequently, awareness on the type of computed tomography scanner and computed tomography scanner setting is necessary, especially in complex abdominal aortic aneurysms sizing for fenestrated or branched endovascular aneurysm repair if appropriate the sizing is of upmost importance.

  12. Research safety vehicle program (Phase II) specification review. Volume II. Final technical report, Jul 1975--Nov 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliese, S.M.

    1977-02-01

    In Phase I of the Research Safety Vehicle Program (RSV), preliminary design and performance specifications were developed for a mid-1980's vehicle that integrates crashworthiness and occupant safety features with material resource conservation, economy, and producibility. Phase II of the program focused on development of the total vehicle design via systems engineering and integration analyses. As part of this effort, it was necessary to continuously review the Phase I recommended performance specification in relation to ongoing design/test activities. This document contains the results of analyses of the Phase I specifications. The RSV is expected to satisfy all of the producibility andmore » safety related specifications, i.e., handling and stability systems, crashworthiness, occupant protection, pedestrian/cyclist protection, etc.« less

  13. Validation of the phase II feasibility study in a palliative care setting: gastrografin in malignant bowel obstruction.

    PubMed

    Lee, Cindy; Vather, Ryash; O'Callaghan, Anne; Robinson, Jackie; McLeod, Briar; Findlay, Michael; Bissett, Ian

    2013-12-01

    Malignant bowel obstruction (MBO) is common in patients with advanced cancer. To perform a phase II study to assess the feasibility of conducting a phase III trial investigating the therapeutic value of gastrografin in MBO. Randomized double-blinded placebo-controlled feasibility study. Participants received 100 mL of either gastrografin or placebo. Over 8 months, 57 patients were screened and 9 enrolled (15.8% recruitment rate). Of the 9 enrolled, 4 received gastrografin (with 2 completing assessment) and 5 received placebo (with 4 completing assessment). It is not feasible to conduct a phase III trial using the same study protocol. This study validates the use of the phase II feasibility study to assess protocol viability in a palliative population prior to embarking on a larger trial.

  14. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms.

    PubMed

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Levin, Yishai; Vardi, Assaf

    2016-10-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered "ocean deserts" due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom's response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (<3 d, phase I) and chronic (>5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Evaluation of phase II toxicity identification evaluation methods for freshwater whole sediment and interstitial water.

    PubMed

    Phillips, Bryn M; Anderson, Brian S; Hunt, John W; Clark, Sara L; Voorhees, Jennifer P; Tjeerdema, Ron S; Casteline, Jane; Stewart, Margaret

    2009-02-01

    Phase I whole sediment toxicity identification evaluation (TIE) methods have been developed to characterize the cause of toxicity as organic chemicals, metals, or ammonia. In Phase II identification treatments, resins added to whole sediment to reduce toxicity caused by metals and organics can be separated and eluted much like solid-phase extraction (SPE) columns are eluted for interstitial water. In this study, formulated reference sediments spiked with toxic concentrations of copper, fluoranthene, and nonylphenol were subjected to whole sediment and interstitial water TIE treatments to evaluate Phase I and II TIE procedures for identifying the cause of toxicity to Hyalella azteca. Phase I TIE treatments consisted of adding adsorbent resins to whole sediment, and using SPE columns to remove spiked chemicals from interstitial water. Phase II treatments consisted of eluting resins and SPE columns and the preparation and testing of eluates for toxicity and chemistry. Whole sediment resins and SPE columns significantly reduced toxicity, and the eluates from all treatments contained toxic concentrations of the spiked chemical except for interstitial water fluoranthene. Toxic unit analysis based on median lethal concentrations (LC50s) allowed for the comparison of chemical concentrations among treatments, and demonstrated that the bioavailability of some chemicals was reduced in some samples and treatments. The concentration of fluoranthene in the resin eluate closely approximated the original interstitial water concentration, but the resin eluate concentrations of copper and nonylphenol were much higher than the original interstitial water concentrations. Phase II whole sediment TIE treatments provided complementary lines of evidence to the interstitial water TIE results.

  16. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms1

    PubMed Central

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Vardi, Assaf

    2016-01-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered “ocean deserts” due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom’s response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (<3 d, phase I) and chronic (>5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. PMID:27503604

  17. SH-2F LAMPS Instructional Systems Development: Phase II. Final Report.

    ERIC Educational Resources Information Center

    Gibbons, Andrew S.; Hymes, Jonah P.

    This project was one of four aircrew training development projects in a continuing study of the methodology, effectiveness, and resource requirements of the Instructional Systems Development (ISD) process. This report covers the Phase II activities of a two-phase project for the development of aircrew training for SH-2F anti-submarine warfare…

  18. 40 CFR 63.163 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... later than 1 year after the compliance date; and (C) Phase III, beginning no later than 21/2 years after... requirements; and (B) Beginning no later than 1 year after initial start-up, comply with the Phase III... parts per million or greater. (ii) For Phase II, an instrument reading of 5,000 parts per million or...

  19. 40 CFR 63.163 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... later than 1 year after the compliance date; and (C) Phase III, beginning no later than 21/2 years after... requirements; and (B) Beginning no later than 1 year after initial start-up, comply with the Phase III... parts per million or greater. (ii) For Phase II, an instrument reading of 5,000 parts per million or...

  20. 40 CFR 63.163 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... later than 1 year after the compliance date; and (C) Phase III, beginning no later than 21/2 years after... requirements; and (B) Beginning no later than 1 year after initial start-up, comply with the Phase III... parts per million or greater. (ii) For Phase II, an instrument reading of 5,000 parts per million or...

  1. An Experimental Evaluation of Hyperactivity and Food Additives. 1977-Phase II.

    ERIC Educational Resources Information Center

    Harley, J. Preston; And Others

    Phase II of a study on the effectiveness of B. Feingold's recommended diet for hyperactive children involved the nine children (mean age 9 years) who had shown the "best" response to diet manipulation in Phase I. Each child served as his own control and was challenged with specified amounts of placebo and artificial color containing food…

  2. Job Aids: Descriptive Authoring Flowcharts for Phase II--DESIGN of the Instructional Systems Development Model.

    ERIC Educational Resources Information Center

    Schulz, Russel E.; Farrell, Jean R.

    This resource guide for the use of job aids ("how-to-do-it" guidance) for activities identified in the second phase of the Instructional Systems Development Model (ISD) contains an introduction to the use of job aids, as well as descriptive authoring flowcharts for Blocks II.1 through II.4. The introduction includes definitions;…

  3. Thermal, spectroscopic and structural characterization of isostructural phase transition in 4-hydroxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Panicker, Lata

    2018-05-01

    Polycrystalline samples of 4-hydroxybenzaldehyde (4-HOBAL) were investigated using differential scanning calorimeter (DSC), Raman spectroscopy and X-ray powder diffraction. The DSC data indicated that 4-HOBAL on heating undergoes a polymorphic transformation from polymorph I to polymorph II. The polymorph II formed remains metastable at ambient condition and transforms to polymorph I when annealed at ambient temperature for more than seven days. The structural information of polymorphs I and II obtained using its X-ray powder diffraction patterns indicated that 4-HOBAL undergoes an isostructural phase transition from polymorph I (monoclinic, P21/c) to polymorph II (monoclinic, P21/c). Raman data suggest that this structural change is associated with some change in its molecular interactions. Thus, in 4-HOBAL the polymorphic phase transformation (II to I) even though energetically favoured is kinetically hindered.

  4. Phase I/II Study of Erlotinib Combined With Cisplatin and Radiotherapy in Patients With Locally Advanced Squamous Cell Carcinoma of the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herchenhorn, Daniel, E-mail: herchenhorn@hotmail.co; Dias, Fernando L.; Viegas, Celia M.P.

    Purpose: Erlotinib, an oral tyrosine kinase inhibitor, is active against head-and-neck squamous cell carcinoma (HNSCC) and possibly has a synergistic interaction with chemotherapy and radiotherapy. We investigated the safety and efficacy of erlotinib added to cisplatin and radiotherapy in locally advanced HNSCC. Methods and Materials: In this Phase I/II trial 100 mg/m{sup 2} of cisplatin was administered on Days 8, 29, and 50, and radiotherapy at 70 Gy was started on Day 8. During Phase I, the erlotinib dose was escalated (50 mg, 100 mg, and 150 mg) in consecutive cohorts of 3 patients, starting on Day 1 and continuingmore » during radiotherapy. Dose-limiting toxicity was defined as any Grade 4 event requiring radiotherapy interruptions. Phase II was initiated 8 weeks after the last Phase I enrollment. Results: The study accrued 9 patients in Phase I and 28 in Phase II; all were evaluable for efficacy and safety. No dose-limiting toxicity occurred in Phase I, and the recommended Phase II dose was 150 mg. The most frequent nonhematologic toxicities were nausea/vomiting, dysphagia, stomatitis, xerostomia and in-field dermatitis, acneiform rash, and diarrhea. Of the 31 patients receiving a 150-mg daily dose of erlotinib, 23 (74%; 95% confidence interval, 56.8%-86.3%) had a complete response, 3 were disease free after salvage surgery, 4 had inoperable residual disease, and 1 died of sepsis during treatment. With a median 37 months' follow-up, the 3-year progression-free and overall survival rates were 61% and 72%, respectively. Conclusions: This combination appears safe, has encouraging activity, and deserves further studies in locally advanced HNSCC.« less

  5. Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry.

    PubMed

    Bagheri, Hasan; Afkhami, Abbas; Saber-Tehrani, Mohammad; Khoshsafar, Hosein

    2012-08-15

    A versatile and robust solid phase with both magnetic property and a very high adsorption capacity is presented on the basis of modification of iron oxide-silica magnetic particles with a newly synthesized Schiff base (Fe(3)O(4)/SiO(2)/L). The structure of the resulting product was confirmed by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) spectrometry and transmission electron microscopy (TEM). We developed an efficient and cost-effective method for the preconcentration of trace amounts of Pb(II), Cd(II) and Cu(II) in environmental and biological samples using this novel magnetic solid phase. Prepared magnetic solid phase is an ideal support because it has a large surface area, good selectivity and can be easily retrieved from large volumes of aqueous solutions. The possible parameters affecting the enrichment were optimized. Under the optimal conditions, the method detection limit was 0.14, 0.19 and 0.12 μg L(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively. The established method has been successfully applied to analyze real samples, and satisfactory results were obtained. All these indicated that this magnetic phase had a great potential in environmental and biological fields. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Phase I/II Study of Weekly Oraxol for the Second-Line Treatment of Patients With Metastatic or Recurrent Gastric Cancer.

    PubMed

    Lee, Keun-Wook; Lee, Kyung Hee; Zang, Dae Young; Park, Young Iee; Shin, Dong Bok; Kim, Jin Won; Im, Seock-Ah; Koh, Sung Ae; Yu, Kyung-Sang; Cho, Joo-Youn; Jung, Jin-A; Bang, Yung-Jue

    2015-08-01

    Oraxol consists of paclitaxel and HM30181A, a P-glycoprotein inhibitor, to increase the oral bioavailability of paclitaxel. This phase I/II study (HM-OXL-201) was conducted to determine the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of Oraxol. In addition, we investigated the efficacy and safety of Oraxol as second-line chemotherapy for metastatic or recurrent gastric cancer (GC). In the phase I component, paclitaxel was orally administered at escalating doses (90, 120, or 150 mg/m(2) per day) with a fixed dose (15 mg/day) of HM30181A. Oraxol was administrated 6 times per cycle (days 1, 2, 8, 9, 15, and 16) every 4 weeks. In the phase II component, the efficacy and safety of Oraxol were evaluated. In the phase I component, the MTD could not be determined. Based on toxicity and pharmacokinetic data, the RP2D of oral paclitaxel was determined to be 150 mg/m(2). In the phase II component, 4 of 43 patients (9.3%) achieved partial responses. Median progression-free survival and overall survival were 2.6 and 10.7 months, respectively. Toxicity profiles were favorable, and the most common drug-related adverse events (grade ≥3) were neutropenia and diarrhea. Oraxol exhibited modest efficacy and favorable toxicity profiles as second-line chemotherapy for GC. ©AlphaMed Press; the data published online to support this summary is the property of the authors.

  7. Growth-differentiation factor-15, endoglin and N-terminal pro-brain natriuretic peptide induction in athletes participating in an ultramarathon foot race.

    PubMed

    Tchou, Isabelle; Margeli, Alexandra; Tsironi, Maria; Skenderi, Katerina; Barnet, Marc; Kanaka-Gantenbein, Christina; Papassotiriou, Ioannis; Beris, Photis

    2009-09-01

    We investigated the actions of growth-differentiation factor (GDF)-15, endoglin and N-terminal pro-brain natriuretic peptide (NT-pro-BNP) in 15 male athletes who participated in the ultradistance foot race of the 246 km 'Sparthathlon'. Measurements were performed before (phase I), at the end of the race (phase II) and 48 h post-race (phase III). GDF-15 and endoglin serum concentrations were determined with enzyme-linked immunosorbent assay and NT-pro-BNP plasma levels by electrochemiluminescence. GDF-15 levels were increased from phase I (563.9 +/- 57.1 pg ml(-1)) to phase II (2311.1 +/- 462.3 pg ml(-1)) and decreased at phase III (862.0 +/- 158.0 pg ml(-1)) (p < 0.0002). NT-pro-BNP levels followed a similar pattern to that of GDF-15 from 38.1 +/- 4.8 pg ml(-1) at phase I to 1280.6 +/- 259.0 pg ml(-1) at phase II and 89.8 +/- 13.6 pg ml(-1) at phase III (p < 0.0001) and at the same time points, endoglin levels were 4.7 +/- 0.2 ng ml(-1) at phase I, 5.8 +/- 0.2 ng ml(-1) at phase II and 4.3 +/- 0.2 ng ml(-1) at phase III (p < 0.002). These findings indicate that circulating GDF-15, endoglin and NT-pro-BNP levels reflect a transient endothelial dysfunction in these athletes who participated in a foot race consisting of continuous, prolonged and brisk exercise.

  8. Real-time Awake Animal Motion Tracking System for SPECT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon

    Enhancements have been made in the development of a real-time optical pose measurement and tracking system that provides 3D position and orientation data for a single photon emission computed tomography (SPECT) imaging system for awake, unanesthetized, unrestrained small animals. Three optical cameras with infrared (IR) illumination view the head movements of an animal enclosed in a transparent burrow. Markers placed on the head provide landmark points for image segmentation. Strobed IR LED s are synchronized to the cameras and illuminate the markers to prevent motion blur for each set of images. The system using the three cameras automatically segments themore » markers, detects missing data, rejects false reflections, performs trinocular marker correspondence, and calculates the 3D pose of the animal s head. Improvements have been made in methods for segmentation, tracking, and 3D calculation to give higher speed and more accurate measurements during a scan. The optical hardware has been installed within a Siemens MicroCAT II small animal scanner at Johns Hopkins without requiring functional changes to the scanner operation. The system has undergone testing using both phantoms and live mice and has been characterized in terms of speed, accuracy, robustness, and reliability. Experimental data showing these motion tracking results are given.« less

  9. GRAPE: a graphical pipeline environment for image analysis in adaptive magnetic resonance imaging.

    PubMed

    Gabr, Refaat E; Tefera, Getaneh B; Allen, William J; Pednekar, Amol S; Narayana, Ponnada A

    2017-03-01

    We present a platform, GRAphical Pipeline Environment (GRAPE), to facilitate the development of patient-adaptive magnetic resonance imaging (MRI) protocols. GRAPE is an open-source project implemented in the Qt C++ framework to enable graphical creation, execution, and debugging of real-time image analysis algorithms integrated with the MRI scanner. The platform provides the tools and infrastructure to design new algorithms, and build and execute an array of image analysis routines, and provides a mechanism to include existing analysis libraries, all within a graphical environment. The application of GRAPE is demonstrated in multiple MRI applications, and the software is described in detail for both the user and the developer. GRAPE was successfully used to implement and execute three applications in MRI of the brain, performed on a 3.0-T MRI scanner: (i) a multi-parametric pipeline for segmenting the brain tissue and detecting lesions in multiple sclerosis (MS), (ii) patient-specific optimization of the 3D fluid-attenuated inversion recovery MRI scan parameters to enhance the contrast of brain lesions in MS, and (iii) an algebraic image method for combining two MR images for improved lesion contrast. GRAPE allows graphical development and execution of image analysis algorithms for inline, real-time, and adaptive MRI applications.

  10. High-Throughput Density Measurement Using Magnetic Levitation.

    PubMed

    Ge, Shencheng; Wang, Yunzhe; Deshler, Nicolas J; Preston, Daniel J; Whitesides, George M

    2018-06-20

    This work describes the development of an integrated analytical system that enables high-throughput density measurements of diamagnetic particles (including cells) using magnetic levitation (MagLev), 96-well plates, and a flatbed scanner. MagLev is a simple and useful technique with which to carry out density-based analysis and separation of a broad range of diamagnetic materials with different physical forms (e.g., liquids, solids, gels, pastes, gums, etc.); one major limitation, however, is the capacity to perform high-throughput density measurements. This work addresses this limitation by (i) re-engineering the shape of the magnetic fields so that the MagLev system is compatible with 96-well plates, and (ii) integrating a flatbed scanner (and simple optical components) to carry out imaging of the samples that levitate in the system. The resulting system is compatible with both biological samples (human erythrocytes) and nonbiological samples (simple liquids and solids, such as 3-chlorotoluene, cholesterol crystals, glass beads, copper powder, and polymer beads). The high-throughput capacity of this integrated MagLev system will enable new applications in chemistry (e.g., analysis and separation of materials) and biochemistry (e.g., cellular responses under environmental stresses) in a simple and label-free format on the basis of a universal property of all matter, i.e., density.

  11. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI

    PubMed Central

    Mainero, C; Benner, T; Radding, A; van der Kouwe, A; Jensen, R; Rosen, B R.; Kinkel, R P.

    2009-01-01

    Objective: We used ultra-high field MRI to visualize cortical lesion types described by neuropathology in 16 patients with multiple sclerosis (MS) compared with 8 age-matched controls; to characterize the contrast properties of cortical lesions including T2*, T2, T1, and phase images; and to investigate the relationship between cortical lesion types and clinical data. Methods: We collected, on a 7-T scanner, 2-dimensional fast low-angle shot (FLASH)-T2*-weighted spoiled gradient-echo, T2-weighted turbo spin-echo (TSE) images (0.33 × 033 × 1 mm3), and a 3-dimensional magnetization-prepared rapid gradient echo. Results: Overall, 199 cortical lesions were detected in patients on both FLASH-T2* and T2-TSE scans. Seven-tesla MRI allowed for characterization of cortical plaques into type I (leukocortical), type II (intracortical), and type III/IV (subpial extending partly or completely through the cortical width) lesions as described histopathologically. Types III and IV were the most frequent type of cortical plaques (50.2%), followed by type I (36.2%) and type II (13.6%) lesions. Each lesion type was more frequent in secondary progressive than in relapsing–remitting MS. This difference, however, was significant only for type III/IV lesions. T2*-weighted images showed the highest, while phase images showed the lowest, contrast-to-noise ratio for all cortical lesion types. In patients, the number of type III/IV lesions was associated with greater disability (p < 0.02 by Spearman test) and older age (p < 0.04 by Spearman test). Conclusions: Seven-tesla MRI detected different histologic cortical lesion types in our small multiple sclerosis (MS) sample, suggesting, if validated in a larger population, that it may prove a valuable tool to assess the contribution of cortical MS pathology to clinical disability. GLOSSARY ANOVA = analysis of variance; BN = background noise; CNR = contrast-to-noise ratio; DIR = double-inversion recovery; EDSS = Expanded Disability Status Scale; FLAIR = fluid-attenuated inversion recovery; FLASH = fast low-angle shot; GM = gray matter; MPRAGE = magnetization-prepared rapid gradient echo; MR = magnetic resonance; MS = multiple sclerosis; NACGM = normal-appearing cortical gray matter; RF = radiofrequency; ROI = region of interest; RRMS = relapsing–remitting multiple sclerosis; SNR = signal-to-noise ratio; SPMS = secondary progressive multiple sclerosis; TA = time of acquisition; TE = echo time; TR = repetition time; TSE = turbo spin-echo; WM = white matter. PMID:19641168

  12. Generation of realistic virtual nodules based on three-dimensional spatial resolution in lung computed tomography: A pilot phantom study.

    PubMed

    Narita, Akihiro; Ohkubo, Masaki; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2017-10-01

    The aim of this feasibility study using phantoms was to propose a novel method for obtaining computer-generated realistic virtual nodules in lung computed tomography (CT). In the proposed methodology, pulmonary nodule images obtained with a CT scanner are deconvolved with the point spread function (PSF) in the scan plane and slice sensitivity profile (SSP) measured for the scanner; the resultant images are referred to as nodule-like object functions. Next, by convolving the nodule-like object function with the PSF and SSP of another (target) scanner, the virtual nodule can be generated so that it has the characteristics of the spatial resolution of the target scanner. To validate the methodology, the authors applied physical nodules of 5-, 7- and 10-mm-diameter (uniform spheres) included in a commercial CT test phantom. The nodule-like object functions were calculated from the sphere images obtained with two scanners (Scanner A and Scanner B); these functions were referred to as nodule-like object functions A and B, respectively. From these, virtual nodules were generated based on the spatial resolution of another scanner (Scanner C). By investigating the agreement of the virtual nodules generated from the nodule-like object functions A and B, the equivalence of the nodule-like object functions obtained from different scanners could be assessed. In addition, these virtual nodules were compared with the real (true) sphere images obtained with Scanner C. As a practical validation, five types of laboratory-made physical nodules with various complicated shapes and heterogeneous densities, similar to real lesions, were used. The nodule-like object functions were calculated from the images of these laboratory-made nodules obtained with Scanner A. From them, virtual nodules were generated based on the spatial resolution of Scanner C and compared with the real images of laboratory-made nodules obtained with Scanner C. Good agreement of the virtual nodules generated from the nodule-like object functions A and B of the phantom spheres was found, suggesting the validity of the nodule-like object functions. The virtual nodules generated from the nodule-like object function A of the phantom spheres were similar to the real images obtained with Scanner C; the root mean square errors (RMSEs) between them were 10.8, 11.1, and 12.5 Hounsfield units (HU) for 5-, 7-, and 10-mm-diameter spheres, respectively. The equivalent results (RMSEs) using the nodule-like object function B were 15.9, 16.8, and 16.5 HU, respectively. These RMSEs were small considering the high contrast between the sphere density and background density (approximately 674 HU). The virtual nodules generated from the nodule-like object functions of the five laboratory-made nodules were similar to the real images obtained with Scanner C; the RMSEs between them ranged from 6.2 to 8.6 HU in five cases. The nodule-like object functions calculated from real nodule images would be effective to generate realistic virtual nodules. The proposed method would be feasible for generating virtual nodules that have the characteristics of the spatial resolution of the CT system used in each institution, allowing for site-specific nodule generation. © 2017 American Association of Physicists in Medicine.

  13. South Bay Salt Pond Restoration, Phase II at Ravenswood

    EPA Pesticide Factsheets

    Information about the South Bay Salt Pond Restoration Project: Phase II Construction at Ravenswood, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  14. Carbon footprint estimator, phase II : volume II - technical appendices.

    DOT National Transportation Integrated Search

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  15. Morristown Alternative Transportation Study Phase II.

    DOT National Transportation Integrated Search

    2005-10-14

    This report summarizes the Phase II planning effort conducted by the park and the US Department of Transportation's Volpe Center (the Volpe Center) to articulate a viable park-community pilot transit service for Morristown National Historical Park. M...

  16. The topological pressure-temperature phase diagram of ritonavir, an extraordinary case of crystalline dimorphism.

    PubMed

    Céolin, R; Rietveld, I B

    2015-01-01

    A topological pressure-temperature phase diagram involving the phase relationships of ritonavir forms I and II has been constructed using experimental calorimetric and volumetric data available from the literature. The triple point I-II-liquid is located at a temperature of about 407 K and a pressure as extraordinarily small as 17.5 MPa (175 bar). Thus, the less soluble solid phase (form II) will become metastable on increasing pressure. At room temperature, form I becomes stable around 100 MPa indicating that form II may turn into form I at a relatively low pressure of 1000 bar, which may occur under processing conditions such as mixing or grinding. This case is a good example for which a proper thermodynamic evaluation trumps "rules of thumb" such as the density rule. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Detailed validation of the bidirectional effect in various Case I and Case II waters.

    PubMed

    Gleason, Arthur C R; Voss, Kenneth J; Gordon, Howard R; Twardowski, Michael; Sullivan, James; Trees, Charles; Weidemann, Alan; Berthon, Jean-François; Clark, Dennis; Lee, Zhong-Ping

    2012-03-26

    Simulated bidirectional reflectance distribution functions (BRDF) were compared with measurements made just beneath the water's surface. In Case I water, the set of simulations that varied the particle scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models. In Case II water, however, the simulations using fixed phase functions agreed well with the data and were nearly indistinguishable from each other, on average. The results suggest that BRDF corrections in Case II water are feasible using single, average, particle scattering phase functions, but that the existing approach using variable particle scattering phase functions is still warranted in Case I water.

  18. Cross-vendor harmonization of T2 -relaxation-under-spin-tagging (TRUST) MRI for the assessment of cerebral venous oxygenation.

    PubMed

    Jiang, Dengrong; Liu, Peiying; Li, Yang; Mao, Deng; Xu, Cuimei; Lu, Hanzhang

    2018-09-01

    Cerebral venous oxygenation (Y v ) is an important physiological parameter and has potential clinical application in many brain diseases. T 2 -relaxation-under-spin-tagging (TRUST) is a commonly used MRI method to measure Y v . Harmonization of this technique across MRI vendors is important for dissemination and multicenter studies of brain oxygenation and metabolism as a disease biomarker. TRUST pulse sequence components and imaging parameters were carefully matched between two major MRI vendors, Philips and Siemens. Each subject (N = 10) was scanned on both scanners within a 2.5-h period. On each scanner, the subject was scanned in two sessions to assess intersession reproducibility. A hyperoxia challenge was also included in both sessions and on both scanners to evaluate the sensitivity of the technique to Y v changes. Measured Y v values, confidence interval of Y v estimates ( εYv), as well as intrasession and intersession coefficient of variation (CoV) of Y v , were compared between the two scanners. Y v measured on the two vendors were highly compatible and strongly correlated (R 2  = 0.957). Y v changes associated with hyperoxia challenge were significant on both scanners (P < 0.001) and were also correlated across scanners (P = 0.007). Intrasession and intersession CoV of measured Y v were less than 3% and showed no difference between scanners. εYv were less than 1% on both scanners and showed no difference between scanners when echo times were matched on the two scanners. This work suggests that harmonized TRUST MRI can yield highly compatible Y v measurements across different vendors. Magn Reson Med 80:1125-1131, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  19. Handheld laser scanner automatic registration based on random coding

    NASA Astrophysics Data System (ADS)

    He, Lei; Yu, Chun-ping; Wang, Li

    2011-06-01

    Current research on Laser Scanner often focuses mainly on the static measurement. Little use has been made of dynamic measurement, that are appropriate for more problems and situations. In particular, traditional Laser Scanner must Keep stable to scan and measure coordinate transformation parameters between different station. In order to make the scanning measurement intelligently and rapidly, in this paper ,we developed a new registration algorithm for handleheld laser scanner based on the positon of target, which realize the dynamic measurement of handheld laser scanner without any more complex work. the double camera on laser scanner can take photograph of the artificial target points to get the three-dimensional coordinates, this points is designed by random coding. And then, a set of matched points is found from control points to realize the orientation of scanner by the least-square common points transformation. After that the double camera can directly measure the laser point cloud in the surface of object and get the point cloud data in an unified coordinate system. There are three major contributions in the paper. Firstly, a laser scanner based on binocular vision is designed with double camera and one laser head. By those, the real-time orientation of laser scanner is realized and the efficiency is improved. Secondly, the coding marker is introduced to solve the data matching, a random coding method is proposed. Compared with other coding methods,the marker with this method is simple to match and can avoid the shading for the object. Finally, a recognition method of coding maker is proposed, with the use of the distance recognition, it is more efficient. The method present here can be used widely in any measurement from small to huge obiect, such as vehicle, airplane which strengthen its intelligence and efficiency. The results of experiments and theory analzing demonstrate that proposed method could realize the dynamic measurement of handheld laser scanner. Theory analysis and experiment shows the method is reasonable and efficient.

  20. Mechanochemical induced structural changes in sucrose using the rotational diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Ciezak-Jenkins, Jennifer A.; Jenkins, Timothy A.

    2018-02-01

    The response of sucrose to high-pressure and shear conditions has been studied in a rotational diamond anvil cell. Previous experiments conducted by Bridgman and Teller showed divergent behavior in regard to the existence of a rheological explosion under mechanochemical stimuli. Raman spectroscopy confirmed the existence of the isostructural Phase I to Phase II transition near 5 GPa. When subjected to high-pressure and shear, Raman spectra of Phase I showed evidence that while the sucrose molecule underwent significant molecular deformation, there was no evidence of a complete chemical reaction. In contrast, Phase II showed a near-total loss of the in-situ Raman signal in response to shear, suggesting the onset of amorphization or decomposition. The divergent behaviors of Phase I and Phase II are examined in light of the differences in the hydrogen bonding and plasticity of the material.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melnyk, Roman; DiBianca, Frank A.

    The detector presampling modulation transfer function (MTF) of a 576-channel variable resolution x-ray (VRX) computed tomography (CT) scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner's field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner's pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase inmore » the cutoff frequency of the detector presampling MTF from 1.39 to 43.38 cycles/mm as the FOV of the VRX CT scanner decreases from 32 to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1-8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner.« less

  2. Immersion and dry scanner extensions for sub-10nm production nodes

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Stefan; Bornebroek, Frank; de Kort, Toine; Droste, Richard; de Graaf, Roelof F.; van Ballegoij, Rob; Botter, Herman; McLaren, Matthew G.; de Boeij, Wim P.

    2015-03-01

    Progressing towards the 10nm and 7nm imaging node, pattern-placement and layer-to-layer overlay requirements keep on scaling down and drives system improvements in immersion (ArFi) and dry (ArF/KrF) scanners. A series of module enhancements in the NXT platform have been introduced; among others, the scanner is equipped with exposure stages with better dynamics and thermal control. Grid accuracy improvements with respect to calibration, setup, stability, and layout dependency tighten MMO performance and enable mix and match scanner operation. The same platform improvements also benefit focus control. Improvements in detectability and reproducibility of low contrast alignment marks enhance the alignment solution window for 10nm logic processes and beyond. The system's architecture allows dynamic use of high-order scanner optimization based on advanced actuators of projection lens and scanning stages. This enables a holistic optimization approach for the scanner, the mask, and the patterning process. Productivity scanner design modifications esp. stage speeds and optimization in metrology schemes provide lower layer costs for customers using immersion lithography as well as conventional dry technology. Imaging, overlay, focus, and productivity data is presented, that demonstrates 10nm and 7nm node litho-capability for both (immersion & dry) platforms.

  3. 5. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 90MM STANDARD LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. MR-Guided Near Infrared Spectroscopy for Reducing Breast Cancer False Positives

    DTIC Science & Technology

    2009-09-01

    an Invivo breast coil in a (b) Philips scanner , and (b) a USA Instruments coil in a (d) GE scanner . 8 Quantitative accuracy in optical imaging...reconstruction [7], which includes a weighting term to account for the accuracy of the MR scanner in determining water and fat images. The advantage of... scanner used in this study. These methods were tested in a 86mm diameter gelatin phantom, shown in Figure 6, with porcine blood added to mimic the

  5. Prolongation of ERP latency and reaction time (RT) in simultaneous EEG/fMRI data acquisition.

    PubMed

    Chun, Jinsoo; Peltier, Scott J; Yoon, Daehyun; Manschreck, Theo C; Deldin, Patricia J

    2016-08-01

    Recording EEG and fMRI data simultaneously inside a fully-operating scanner has been recognized as a novel approach in human brain research. Studies have demonstrated high concordance between the EEG signals and hemodynamic response. However, a few studies reported altered cognitive process inside the fMRI scanner such as delayed reaction time (RT) and reduced and/or delayed N100 and P300 event-related brain potential (ERP) components. The present study investigated the influence of electromagnetic field (static magnetic field, radio frequency (RF) pulse, and gradient switching) and experimental environment on posterior N100 and P300 ERP components in four different settings with six healthy subjects using a visual oddball task: (1) classic fMRI acquisition inside the scanner (e.g., supine position, mirror glasses for stimulus presentation), (2) standard behavioral experiment outside the scanner (e.g., seated position, keyboard response), (3) controlled fMRI acquisition inside the scanner (e.g., organic light-emitting diode (OLED) goggles for stimulus presentation) inside; and (4) modified behavioral experiment outside the scanner (e.g., supine position, OLED goggles). The study findings indicated that the experimental environment in simultaneous EEG/fMRI acquisition could substantially delay N1P, P300 latency, and RT inside the scanner, and was associated with a reduced N1P amplitude. There was no effect of electromagnetic field in the prolongation of RT, N1P and P300 latency inside the scanner. N1P, but not P300, latency was sensitive to stimulus presentation method inside the scanner. Future simultaneous EEG/fMRI data collection should consider experimental environment in both design and analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Accuracy and efficiency of full-arch digitalization and 3D printing: A comparison between desktop model scanners, an intraoral scanner, a CBCT model scan, and stereolithographic 3D printing.

    PubMed

    Wesemann, Christian; Muallah, Jonas; Mah, James; Bumann, Axel

    2017-01-01

    The primary objective of this study was to compare the accuracy and time efficiency of an indirect and direct digitalization workflow with that of a three-dimensional (3D) printer in order to identify the most suitable method for orthodontic use. A master model was measured with a coordinate measuring instrument. The distances measured were the intercanine width, the intermolar width, and the dental arch length. Sixty-four scans were taken with each of the desktop scanners R900 and R700 (3Shape), the intraoral scanner TRIOS Color Pod (3Shape), and the Promax 3D Mid cone beam computed tomography (CBCT) unit (Planmeca). All scans were measured with measuring software. One scan was selected and printed 37 times on the D35 stereolithographic 3D printer (Innovation MediTech). The printed models were measured again using the coordinate measuring instrument. The most accurate results were obtained by the R900. The R700 and the TRIOS intraoral scanner showed comparable results. CBCT-3D-rendering with the Promax 3D Mid CBCT unit revealed significantly higher accuracy with regard to dental casts than dental impressions. 3D printing offered a significantly higher level of deviation than digitalization with desktop scanners or an intraoral scanner. The chairside time required for digital impressions was 27% longer than for conventional impressions. Conventional impressions, model casting, and optional digitization with desktop scanners remains the recommended workflow process. For orthodontic demands, intraoral scanners are a useful alternative for full-arch scans. For prosthodontic use, the scanning scope should be less than one quadrant and three additional teeth.

  7. Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT

    NASA Astrophysics Data System (ADS)

    Jansen, Jan T. M.; Shrimpton, Paul C.

    2016-07-01

    The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of  ±6% and  ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.

  8. Evaluation of PeneloPET Simulations of Biograph PET/CT Scanners

    NASA Astrophysics Data System (ADS)

    Abushab, K. M.; Herraiz, J. L.; Vicente, E.; Cal-González, J.; España, S.; Vaquero, J. J.; Jakoby, B. W.; Udías, J. M.

    2016-06-01

    Monte Carlo (MC) simulations are widely used in positron emission tomography (PET) for optimizing detector design, acquisition protocols, and evaluating corrections and reconstruction methods. PeneloPET is a MC code based on PENELOPE, for PET simulations which considers detector geometry, acquisition electronics and materials, and source definitions. While PeneloPET has been successfully employed and validated with small animal PET scanners, it required a proper validation with clinical PET scanners including time-of-flight (TOF) information. For this purpose, we chose the family of Biograph PET/CT scanners: the Biograph True-Point (B-TP), Biograph True-Point with TrueV (B-TPTV) and the Biograph mCT. They have similar block detectors and electronics, but a different number of rings and configuration. Some effective parameters of the simulations, such as the dead-time and the size of the reflectors in the detectors, were adjusted to reproduce the sensitivity and noise equivalent count (NEC) rate of the B-TPTV scanner. These parameters were then used to make predictions of experimental results such as sensitivity, NEC rate, spatial resolution, and scatter fraction (SF), from all the Biograph scanners and some variations of them (energy windows and additional rings of detectors). Predictions agree with the measured values for the three scanners, within 7% (sensitivity and NEC rate) and 5% (SF). The resolution obtained for the B-TPTV is slightly better (10%) than the experimental values. In conclusion, we have shown that PeneloPET is suitable for simulating and investigating clinical systems with good accuracy and short computational time, though some effort tuning of a few parameters of the scanners modeled may be needed in case that the full details of the scanners studied are not available.

  9. Comparative analysis on reproducibility among 5 intraoral scanners: sectional analysis according to restoration type and preparation outline form

    PubMed Central

    2016-01-01

    PURPOSE The trueness and precision of acquired images of intraoral digital scanners could be influenced by restoration type, preparation outline form, scanning technology and the application of power. The aim of this study is to perform the comparative evaluation of the 3-dimensional reproducibility of intraoral scanners (IOSs). MATERIALS AND METHODS The phantom containing five prepared teeth was scanned by the reference scanner (Dental Wings) and 5 test IOSs (E4D dentist, Fastscan, iTero, Trios and Zfx Intrascan). The acquired images of the scanner groups were compared with the image from the reference scanner (trueness) and within each scanner groups (precision). Statistical analysis was performed using independent two-samples t-test and analysis of variance (α=.05). RESULTS The average deviations of trueness and precision of Fastscan, iTero and Trios were significantly lower than the other scanners. According to the restoration type, significantly higher trueness was observed in crown and inlay than in bridge. However, no significant difference was observed among four sites of preparation outline form. If compared by the characteristics of IOS, high trueness was observed in the group adopting the active triangulation and using powder. However, there was no significant difference between the still image acquisition and video acquisition groups. CONCLUSION Except for two intraoral scanners, Fastscan, iTero and Trios displayed comparable levels of trueness and precision values in tested phantom model. Difference in trueness was observed depending on the restoration type, the preparation outline form and characteristics of IOS, which should be taken into consideration when the intraoral scanning data are utilized. PMID:27826385

  10. Accuracy of four different digital intraoral scanners: effects of the presence of orthodontic brackets and wire.

    PubMed

    Jung, Yoo-Ran; Park, Ji-Man; Chun, Youn-Sic; Lee, Kkot-Nim; Kim, Minji

    The objective of this study was to compare the accuracy of four different digital intraoral scanners and the effects of buccal brackets and orthodontic wire. For this study, three sets of models (Control model, BKT model with buccal bracket, and WBKT model with buccal bracket and orthodontic wire) were scanned using four different types of intraoral scanners: E4D dentist, iTero, Trios, and Zfx IntraScan. The mesiodistal width of the teeth, intercanine width, and intermolar width measured by four scanners were compared. Three-dimensional (3D) images of the brackets were taken using the four scanners. Data were analyzed with one-way ANOVA, independent t test, and post-hoc Tukey test at a significance level of P < 0.05. When comparing the 3D images with manual measurements using a traditional caliper, iTero and Trios showed the highest accuracy in horizontal measurements.iTero had the lowest values in Devmax-min of maxillary intermolar and intercanine widths (0.16 mm and 0.20 mm, respectively), whereas Trios had the lowest values in Devmax-min of mandibular intermolar and intercanine widths (0.36 mm and 0.14 mm, respectively). The horizontal variables were barely affected by the presence of buccal brackets and orthodontic wire. Comparison of 3D bracket images scanned by the four scanners showed differences in image distortion among the scanners. Bracket characteristics did not affect the 3D bracket images. The four intraoral scanners used in this study differed in accuracy. However, the results acquired by iTero and Trios were more reliable. Effects of buccal brackets and orthodontic wire on the 3D images taken by intraoral scanners were not clinically significant.

  11. Spectra of clinical CT scanners using a portable Compton spectrometer.

    PubMed

    Duisterwinkel, H A; van Abbema, J K; van Goethem, M J; Kawachimaru, R; Paganini, L; van der Graaf, E R; Brandenburg, S

    2015-04-01

    Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  12. The mechatronic design of a fast wire scanner in IHEP U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Baranov, V. T.; Makhov, S. S.; Savin, D. A.; Terekhov, V. I.

    2016-10-01

    This paper presents the mechatronic design of a fast wire scanner based on a servomotor. The design of the wire scanner is motivated by the need to measure the transverse profile of the high power proton and carbon beams at the IHEP U-70 accelerator. This paper formulates the requirements to the fast wire scanner system for the high intensity proton beam at the U-70 accelerator. The results on the design of electro-mechanical device for the wire scanner with a wire traveling speed 10-20 m/s are presented. The solution consists in a brushless servomotor and standard motor control electronics. High radiation levels in the accelerator enclosure dictate the use of a resolver as the position feedback element.

  13. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  14. Pavement performance evaluation, phase II : data collection.

    DOT National Transportation Integrated Search

    2008-12-01

    Phase I and II of this study tested approximately 1500 rehabilitated pavements (asphalt and PCC) : throughout the State. These pavements ranged from 5 to 15 years old and were intended to develop a : snapshot of how various rehabilitations were perfo...

  15. Improving traffic safety culture in Iowa : phase II.

    DOT National Transportation Integrated Search

    2013-07-01

    Phase II of Improving Traffic Safety Culture in Iowa focuses on producing actions that will improve the traffic safety culture across the state, and involves collaboration among the three large public universities in Iowa: Iowa State University, Univ...

  16. South Bay Salt Pond Tidal Wetland Restoration Phase II Planning

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Tidal Wetland Restoration Phase II Planning project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic re

  17. Thermodynamic, crystallographic, and dielectric study of the nature of glass transitions in cyclo-octanol

    NASA Astrophysics Data System (ADS)

    Puertas, Ricardo; Rute, Maria A.; Salud, Josep; López, David O.; Diez, Sergio; van Miltenburg, J. Kees; Pardo, Luis C.; Tamarit, Josep Ll.; Barrio, Maria; Pérez-Jubindo, Miguel A.; de La Fuente, Maria R.

    2004-06-01

    The stable solid polymorphism of cyclooctanol (C8H16O, for short C8 OH) is revealed to be a complex problem and only two stable solid phases, denoted on cooling from the liquid as phases I and II, are found using static (thermodynamic and x-ray diffraction) as well as dynamic (dielectric spectroscopy) experimental techniques. Both solid phases are known to exhibit glass transitions if they are cooled down fast enough to prevent transition to ordered crystalline states. Although glass transitions corresponding to both phases had been well documented by means of specific heat measurements, x-ray measurements constitute, as far as we know, the first evidence from the structural point of view. In addition, a great amount of dielectric works devoted to phase I and its glass transition, were published in the past but next to nothing relating to the dielectric properties of phase II and its glass transition. The nature of the disorder of phase II will be discussed.

  18. 6. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 65MM WIDE ANGLE LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. Small-animal CT: Its difference from, and impact on, clinical CT

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.

    2007-10-01

    For whole-body computed tomography (CT) images of small rodents, a voxel resolution of at least 10 -3 mm 3 is needed for scale-equivalence to that currently achieved in clinical CT scanners (˜1 mm 3) in adult humans. These "mini-CT" images generally require minutes rather than seconds to complete a scan. The radiation exposure resulting from these mini-CT scans, while higher than clinical CT scans, is below the level resulting in acute tissue damage. Hence, these scans are useful for performing clinical-type diagnostic and monitoring scans for animal models of disease and their response to treatment. "Micro-CT", with voxel size <10 -5 mm 3, has been useful for imaging isolated, intact organs at an almost cellular level of resolution. Micro-CT has the great advantage over traditional microscopic methods in that it generates detailed three-dimensional images in relatively large, opaque volumes such as an intact rodent heart or kidney. The radiation exposure needed in these scans results in acute tissue damage if used in living animals. Experience with micro-CT is contributing to exploration of new applications for clinical CT imaging by providing insights into different modes of X-ray image formation as follows: Spatial resolution should be sufficient to detect an individual Basic Functional Unit (BFU, the smallest collection of diverse cells, such as hepatic lobule, that behaves like the organ), which requires voxels ˜10 -3 mm 3 in volume, so that the BFUs can be counted. Contrast resolution sufficient to allow quantitation of: New microvascular growth, which manifests as increased tissue contrast due to X-ray contrast agent in those vessels' lumens during passage of injected contrast agent in blood. Impaired endothelial integrity which manifests as increased opacification and delayed washout of contrast from tissues. Discrimination of pathological accumulations of metals such as Fe and Ca, which occur in the arterial wall following hemorrhage or tissue damage. Micro-CT can also be used as a test bed for exploring the utility of several modes of X-ray image formation, such as the use of dual-energy X-ray subtraction, X-ray scatter, phase delay and refraction-based imaging for increasing the contrast amongst soft tissue components. With the recent commercial availability of high speed, multi-slice CT scanners which can be operated in dual-energy mode, some of these micro-CT scanner capabilities and insights are becoming implementable in those CT scanners. As a result, the potential diagnostic spectrum that can be addressed with those scanners is broadened considerably.

  20. Quality of reporting in oncology phase II trials: A 5-year assessment through systematic review.

    PubMed

    Langrand-Escure, Julien; Rivoirard, Romain; Oriol, Mathieu; Tinquaut, Fabien; Rancoule, Chloé; Chauvin, Frank; Magné, Nicolas; Bourmaud, Aurélie

    2017-01-01

    Phase II clinical trials are a cornerstone of the development in experimental treatments They work as a "filter" for phase III trials confirmation. Surprisingly the attrition ratio in Phase III trials in oncology is significantly higher than in any other medical specialty. This suggests phase II trials in oncology fail to achieve their goal. Objective The present study aims at estimating the quality of reporting in published oncology phase II clinical trials. A literature review was conducted among all phase II and phase II/III clinical trials published during a 5-year period (2010-2015). All articles electronically published by three randomly-selected oncology journals with Impact-Factors>4 were included: Journal of Clinical Oncology, Annals of Oncology and British Journal of Cancer. Quality of reporting was assessed using the Key Methodological Score. 557 articles were included. 315 trials were single-arm studies (56.6%), 193 (34.6%) were randomized and 49 (8.8%) were non-randomized multiple-arm studies. The Methodological Score was equal to 0 (lowest level), 1, 2, 3 (highest level) respectively for 22 (3.9%), 119 (21.4%), 270 (48.5%) and 146 (26.2%) articles. The primary end point is almost systematically reported (90.5%), while sample size calculation is missing in 66% of the articles. 3 variables were independently associated with reporting of a high standard: presence of statistical design (p-value <0.001), multicenter trial (p-value = 0.012), per-protocol analysis (p-value <0.001). Screening was mainly performed by a sole author. The Key Methodological Score was based on only 3 items, making grey zones difficult to translate. This literature review highlights the existence of gaps concerning the quality of reporting. It therefore raised the question of the suitability of the methodology as well as the quality of these trials, reporting being incomplete in the corresponding articles.

Top