Evaluation of three lidar scanning strategies for turbulence measurements
NASA Astrophysics Data System (ADS)
Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.
2015-11-01
Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.
Evaluation of three lidar scanning strategies for turbulence measurements
NASA Astrophysics Data System (ADS)
Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas
2016-05-01
Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.
Evaluation of three lidar scanning strategies for turbulence measurements
Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; ...
2016-05-03
Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less
Evaluation of three lidar scanning strategies for turbulence measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia
Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less
NASA Astrophysics Data System (ADS)
Goulden, T.; Hopkinson, C.
2013-12-01
The quantification of LiDAR sensor measurement uncertainty is important for evaluating the quality of derived DEM products, compiling risk assessment of management decisions based from LiDAR information, and enhancing LiDAR mission planning capabilities. Current quality assurance estimates of LiDAR measurement uncertainty are limited to post-survey empirical assessments or vendor estimates from commercial literature. Empirical evidence can provide valuable information for the performance of the sensor in validated areas; however, it cannot characterize the spatial distribution of measurement uncertainty throughout the extensive coverage of typical LiDAR surveys. Vendor advertised error estimates are often restricted to strict and optimal survey conditions, resulting in idealized values. Numerical modeling of individual pulse uncertainty provides an alternative method for estimating LiDAR measurement uncertainty. LiDAR measurement uncertainty is theoretically assumed to fall into three distinct categories, 1) sensor sub-system errors, 2) terrain influences, and 3) vegetative influences. This research details the procedures for numerical modeling of measurement uncertainty from the sensor sub-system (GPS, IMU, laser scanner, laser ranger) and terrain influences. Results show that errors tend to increase as the laser scan angle, altitude or laser beam incidence angle increase. An experimental survey over a flat and paved runway site, performed with an Optech ALTM 3100 sensor, showed an increase in modeled vertical errors of 5 cm, at a nadir scan orientation, to 8 cm at scan edges; for an aircraft altitude of 1200 m and half scan angle of 15°. In a survey with the same sensor, at a highly sloped glacial basin site absent of vegetation, modeled vertical errors reached over 2 m. Validation of error models within the glacial environment, over three separate flight lines, respectively showed 100%, 85%, and 75% of elevation residuals fell below error predictions. Future work in LiDAR sensor measurement uncertainty must focus on the development of vegetative error models to create more robust error prediction algorithms. To achieve this objective, comprehensive empirical exploratory analysis is recommended to relate vegetative parameters to observed errors.
Flow tilt angles near forest edges - Part 2: Lidar anemometry
NASA Astrophysics Data System (ADS)
Dellwik, E.; Mann, J.; Bingöl, F.
2010-05-01
A novel way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 min mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175 m a.g.l. (above ground level), (2) a reference site in flat agricultural terrain and (3) a second reference site in complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by assuming zero tilt angle at high altitudes. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. It is demonstrated that the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2°. The results of the vertical conical scans were promising, and yielded positive flow angles for a sector where the forest is fetch-limited. However, more data and analysis are needed for a complete evaluation of the lidar technique.
Flow tilt angle measurements using lidar anemometry
NASA Astrophysics Data System (ADS)
Dellwik, Ebba; Mann, Jakob
2010-05-01
A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2 degrees. Other possibilities for utilizing lidars for flow tilt angle and mean vertical velocities are discussed.
Errors in radial velocity variance from Doppler wind lidar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Barthelmie, R. J.; Doubrawa, P.
A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less
Errors in radial velocity variance from Doppler wind lidar
Wang, H.; Barthelmie, R. J.; Doubrawa, P.; ...
2016-08-29
A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less
Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.
Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael
2016-03-02
Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.
Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar
Li, Zhan; Jupp, David L. B.; Strahler, Alan H.; Schaaf, Crystal B.; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S.; Chakrabarti, Supriya; Cook, Timothy A.; Paynter, Ian; Saenz, Edward J.; Schaefer, Michael
2016-01-01
Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126
NASA Astrophysics Data System (ADS)
Bacha, Tulu
The Goddard Lidar Observatory for Wind (GLOW), a mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the troposphere and lower stratosphere region of atmosphere is operated and its errors characterized. It was operated at Howard University Beltsville Center for Climate Observation System (BCCOS) side by side with other operating instruments: the NASA/Langely Research Center Validation Lidar (VALIDAR), Leosphere WLS70, and other standard wind sensing instruments. The performance of Goddard Lidar Observatory for Wind (GLOW) is presented for various optical thicknesses of cloud conditions. It was also compared to VALIDAR under various conditions. These conditions include clear and cloudy sky regions. The performance degradation due to the presence of cirrus clouds is quantified by comparing the wind speed error to cloud thickness. The cloud thickness is quantified in terms of aerosol backscatter ratio (ASR) and cloud optical depth (COD). ASR and COD are determined from Howard University Raman Lidar (HURL) operating at the same station as GLOW. The wind speed error of GLOW was correlated with COD and aerosol backscatter ratio (ASR) which are determined from HURL data. The correlation related in a weak linear relationship. Finally, the wind speed measurements of GLOW were corrected using the quantitative relation from the correlation relations. Using ASR reduced the GLOW wind error from 19% to 8% in a thin cirrus cloud and from 58% to 28% in a relatively thick cloud. After correcting for cloud induced error, the remaining error is due to shot noise and atmospheric variability. Shot-noise error is the statistical random error of backscattered photons detected by photon multiplier tube (PMT) can only be minimized by averaging large number of data recorded. The atmospheric backscatter measured by GLOW along its line-of-sight direction is also used to analyze error due to atmospheric variability within the volume of measurement. GLOW scans in five different directions (vertical and at elevation angles of 45° in north, south, east, and west) to generate wind profiles. The non-uniformity of the atmosphere in all scanning directions is a factor contributing to the measurement error of GLOW. The atmospheric variability in the scanning region leads to difference in the intensity of backscattered signals for scanning directions. Taking the ratio of the north (east) to south (west) and comparing the statistical differences lead to a weak linear relation between atmospheric variability and line-of-sights wind speed differences. This relation was used to make correction which reduced by about 50%.
Wang, Zhangjun; Liu, Zhishen; Liu, Liping; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Chu, Xinzhao
2010-12-20
An incoherent Doppler wind lidar based on iodine edge filters has been developed at the Ocean University of China for remote measurements of atmospheric wind fields. The lidar is compact enough to fit in a minivan for mobile deployment. With its sophisticated and user-friendly data acquisition and analysis system (DAAS), this lidar has made a variety of line-of-sight (LOS) wind measurements in different operational modes. Through carefully developed data retrieval procedures, various wind products are provided by the lidar, including wind profile, LOS wind velocities in plan position indicator (PPI) and range height indicator (RHI) modes, and sea surface wind. Data are processed and displayed in real time, and continuous wind measurements have been demonstrated for as many as 16 days. Full-azimuth-scanned wind measurements in PPI mode and full-elevation-scanned wind measurements in RHI mode have been achieved with this lidar. The detection range of LOS wind velocity PPI and RHI reaches 8-10 km at night and 6-8 km during daytime with range resolution of 10 m and temporal resolution of 3 min. In this paper, we introduce the DAAS architecture and describe the data retrieval methods for various operation modes. We present the measurement procedures and results of LOS wind velocities in PPI and RHI scans along with wind profiles obtained by Doppler beam swing. The sea surface wind measured for the sailing competition during the 2008 Beijing Olympics is also presented. The precision and accuracy of wind measurements are estimated through analysis of the random errors associated with photon noise and the systematic errors introduced by the assumptions made in data retrieval. The three assumptions of horizontal homogeneity of atmosphere, close-to-zero vertical wind, and uniform sensitivity are made in order to experimentally determine the zero wind ratio and the measurement sensitivity, which are important factors in LOS wind retrieval. Deviations may occur under certain meteorological conditions, leading to bias in these situations. Based on the error analyses and measurement results, we point out the application ranges of this Doppler lidar and propose several paths for future improvement.
An Improved Calibration Method for a Rotating 2D LIDAR System.
Zeng, Yadan; Yu, Heng; Dai, Houde; Song, Shuang; Lin, Mingqiang; Sun, Bo; Jiang, Wei; Meng, Max Q-H
2018-02-07
This paper presents an improved calibration method of a rotating two-dimensional light detection and ranging (R2D-LIDAR) system, which can obtain the 3D scanning map of the surroundings. The proposed R2D-LIDAR system, composed of a 2D LIDAR and a rotating unit, is pervasively used in the field of robotics owing to its low cost and dense scanning data. Nevertheless, the R2D-LIDAR system must be calibrated before building the geometric model because there are assembled deviation and abrasion between the 2D LIDAR and the rotating unit. Hence, the calibration procedures should contain both the adjustment between the two devices and the bias of 2D LIDAR itself. The main purpose of this work is to resolve the 2D LIDAR bias issue with a flat plane based on the Levenberg-Marquardt (LM) algorithm. Experimental results for the calibration of the R2D-LIDAR system prove the reliability of this strategy to accurately estimate sensor offsets with the error range from -15 mm to 15 mm for the performance of capturing scans.
An Improved Calibration Method for a Rotating 2D LIDAR System
Zeng, Yadan; Yu, Heng; Song, Shuang; Lin, Mingqiang; Sun, Bo; Jiang, Wei; Meng, Max Q.-H.
2018-01-01
This paper presents an improved calibration method of a rotating two-dimensional light detection and ranging (R2D-LIDAR) system, which can obtain the 3D scanning map of the surroundings. The proposed R2D-LIDAR system, composed of a 2D LIDAR and a rotating unit, is pervasively used in the field of robotics owing to its low cost and dense scanning data. Nevertheless, the R2D-LIDAR system must be calibrated before building the geometric model because there are assembled deviation and abrasion between the 2D LIDAR and the rotating unit. Hence, the calibration procedures should contain both the adjustment between the two devices and the bias of 2D LIDAR itself. The main purpose of this work is to resolve the 2D LIDAR bias issue with a flat plane based on the Levenberg–Marquardt (LM) algorithm. Experimental results for the calibration of the R2D-LIDAR system prove the reliability of this strategy to accurately estimate sensor offsets with the error range from −15 mm to 15 mm for the performance of capturing scans. PMID:29414885
Error Sources in Proccessing LIDAR Based Bridge Inspection
NASA Astrophysics Data System (ADS)
Bian, H.; Chen, S. E.; Liu, W.
2017-09-01
Bridge inspection is a critical task in infrastructure management and is facing unprecedented challenges after a series of bridge failures. The prevailing visual inspection was insufficient in providing reliable and quantitative bridge information although a systematic quality management framework was built to ensure visual bridge inspection data quality to minimize errors during the inspection process. The LiDAR based remote sensing is recommended as an effective tool in overcoming some of the disadvantages of visual inspection. In order to evaluate the potential of applying this technology in bridge inspection, some of the error sources in LiDAR based bridge inspection are analysed. The scanning angle variance in field data collection and the different algorithm design in scanning data processing are the found factors that will introduce errors into inspection results. Besides studying the errors sources, advanced considerations should be placed on improving the inspection data quality, and statistical analysis might be employed to evaluate inspection operation process that contains a series of uncertain factors in the future. Overall, the development of a reliable bridge inspection system requires not only the improvement of data processing algorithms, but also systematic considerations to mitigate possible errors in the entire inspection workflow. If LiDAR or some other technology can be accepted as a supplement for visual inspection, the current quality management framework will be modified or redesigned, and this would be as urgent as the refine of inspection techniques.
An error reduction algorithm to improve lidar turbulence estimates for wind energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.« less
An error reduction algorithm to improve lidar turbulence estimates for wind energy
Newman, Jennifer F.; Clifton, Andrew
2017-02-10
Remote-sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers for the measurement of wind speed and direction. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, vertically profiling lidarsmore » in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The Lidar Turbulence Error Reduction Algorithm, L-TERRA, can be applied using only data from a stand-alone vertically profiling lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of physics-based corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. The lessons learned from creating the L-TERRA model for a WINDCUBE v2 lidar can also be applied to other lidar devices. L-TERRA was tested on data from two sites in the Southern Plains region of the United States. The physics-based corrections in L-TERRA brought regression line slopes much closer to 1 at both sites and significantly reduced the sensitivity of lidar turbulence errors to atmospheric stability. The accuracy of machine-learning methods in L-TERRA was highly dependent on the input variables and training dataset used, suggesting that machine learning may not be the best technique for reducing lidar turbulence intensity (TI) error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.« less
Impact of survey workflow on precision and accuracy of terrestrial LiDAR datasets
NASA Astrophysics Data System (ADS)
Gold, P. O.; Cowgill, E.; Kreylos, O.
2009-12-01
Ground-based LiDAR (Light Detection and Ranging) survey techniques are enabling remote visualization and quantitative analysis of geologic features at unprecedented levels of detail. For example, digital terrain models computed from LiDAR data have been used to measure displaced landforms along active faults and to quantify fault-surface roughness. But how accurately do terrestrial LiDAR data represent the true ground surface, and in particular, how internally consistent and precise are the mosaiced LiDAR datasets from which surface models are constructed? Addressing this question is essential for designing survey workflows that capture the necessary level of accuracy for a given project while minimizing survey time and equipment, which is essential for effective surveying of remote sites. To address this problem, we seek to define a metric that quantifies how scan registration error changes as a function of survey workflow. Specifically, we are using a Trimble GX3D laser scanner to conduct a series of experimental surveys to quantify how common variables in field workflows impact the precision of scan registration. Primary variables we are testing include 1) use of an independently measured network of control points to locate scanner and target positions, 2) the number of known-point locations used to place the scanner and point clouds in 3-D space, 3) the type of target used to measure distances between the scanner and the known points, and 4) setting up the scanner over a known point as opposed to resectioning of known points. Precision of the registered point cloud is quantified using Trimble Realworks software by automatic calculation of registration errors (errors between locations of the same known points in different scans). Accuracy of the registered cloud (i.e., its ground-truth) will be measured in subsequent experiments. To obtain an independent measure of scan-registration errors and to better visualize the effects of these errors on a registered point cloud, we scan from multiple locations an object of known geometry (a cylinder mounted above a square box). Preliminary results show that even in a controlled experimental scan of an object of known dimensions, there is significant variability in the precision of the registered point cloud. For example, when 3 scans of the central object are registered using 4 known points (maximum time, maximum equipment), the point clouds align to within ~1 cm (normal to the object surface). However, when the same point clouds are registered with only 1 known point (minimum time, minimum equipment), misalignment of the point clouds can range from 2.5 to 5 cm, depending on target type. The greater misalignment of the 3 point clouds when registered with fewer known points stems from the field method employed in acquiring the dataset and demonstrates the impact of field workflow on LiDAR dataset precision. By quantifying the degree of scan mismatch in results such as this, we can provide users with the information needed to maximize efficiency in remote field surveys.
Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan
2014-09-08
Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.
Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...
2017-02-06
Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less
NASA Astrophysics Data System (ADS)
Simley, Eric; Y Pao, Lucy; Gebraad, Pieter; Churchfield, Matthew
2014-06-01
Several sources of error exist in lidar measurements for feedforward control of wind turbines including the ability to detect only radial velocities, spatial averaging, and wind evolution. This paper investigates another potential source of error: the upstream induction zone. The induction zone can directly affect lidar measurements and presents an opportunity for further decorrelation between upstream wind and the wind that interacts with the rotor. The impact of the induction zone is investigated using the combined CFD and aeroelastic code SOWFA. Lidar measurements are simulated upstream of a 5 MW turbine rotor and the true wind disturbances are found using a wind speed estimator and turbine outputs. Lidar performance in the absence of an induction zone is determined by simulating lidar measurements and the turbine response using the aeroelastic code FAST with wind inputs taken far upstream of the original turbine location in the SOWFA wind field. Results indicate that while measurement quality strongly depends on the amount of wind evolution, the induction zone has little effect. However, the optimal lidar preview distance and circular scan radius change slightly due to the presence of the induction zone.
Lidar arc scan uncertainty reduction through scanning geometry optimization
NASA Astrophysics Data System (ADS)
Wang, H.; Barthelmie, R. J.; Pryor, S. C.; Brown, G.
2015-10-01
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation when arc scans are used for wind resource assessment.
Lidar arc scan uncertainty reduction through scanning geometry optimization
NASA Astrophysics Data System (ADS)
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.
2016-04-01
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.
lidar change detection using building models
NASA Astrophysics Data System (ADS)
Kim, Angela M.; Runyon, Scott C.; Jalobeanu, Andre; Esterline, Chelsea H.; Kruse, Fred A.
2014-06-01
Terrestrial LiDAR scans of building models collected with a FARO Focus3D and a RIEGL VZ-400 were used to investigate point-to-point and model-to-model LiDAR change detection. LiDAR data were scaled, decimated, and georegistered to mimic real world airborne collects. Two physical building models were used to explore various aspects of the change detection process. The first model was a 1:250-scale representation of the Naval Postgraduate School campus in Monterey, CA, constructed from Lego blocks and scanned in a laboratory setting using both the FARO and RIEGL. The second model at 1:8-scale consisted of large cardboard boxes placed outdoors and scanned from rooftops of adjacent buildings using the RIEGL. A point-to-point change detection scheme was applied directly to the point-cloud datasets. In the model-to-model change detection scheme, changes were detected by comparing Digital Surface Models (DSMs). The use of physical models allowed analysis of effects of changes in scanner and scanning geometry, and performance of the change detection methods on different types of changes, including building collapse or subsistence, construction, and shifts in location. Results indicate that at low false-alarm rates, the point-to-point method slightly outperforms the model-to-model method. The point-to-point method is less sensitive to misregistration errors in the data. Best results are obtained when the baseline and change datasets are collected using the same LiDAR system and collection geometry.
A scanning Raman lidar for observing the spatio-temporal distribution of water vapor
NASA Astrophysics Data System (ADS)
Yabuki, Masanori; Matsuda, Makoto; Nakamura, Takuji; Hayashi, Taiichi; Tsuda, Toshitaka
2016-12-01
We have constructed a scanning Raman lidar to observe the cross-sectional distribution of the water vapor mixing ratio and aerosols near the Earth's surface, which are difficult to observe when a conventional Raman lidar system is used. The Raman lidar is designed for a nighttime operating system by employing a ultra-violet (UV) laser source and can measure the water vapor mixing ratio at an altitude up to 7 km using vertically pointing observations. The scanning mirror system consists of reflective flat mirrors and a rotational stage. By using a program-controlled rotational stage, a vertical scan can be operated with a speed of 1.5°/s. The beam was pointed at 33 angles over range of 0-48° for the elevation angle with a constant step width of 1.5°. The range-height cross sections of the water vapor and aerosol within a 400 m range can be obtained for 25 min. The lidar signals at each direction were individually smoothed with the moving average to spread proportionally with the distance from the laser-emitting point. The averaged range at a distance of 200 m (400 m) from the lidar was 30.0 m (67.5 m) along the lidar signal in a specific direction. The experimental observations using the scanning lidar were conducted at night in the Shigaraki MU radar observatory located on a plateau with undulating topography and surrounded by forests. The root mean square error (RMSE) between the temporal variations of the water vapor mixing ratio by the scanning Raman lidar and by an in-situ weather sensor equipped with a tethered balloon was 0.17 g/kg at an altitude of 100 m. In cross-sectional measurements taken at altitudes and horizontal distances up to 400 m from the observatory, we found that the water vapor mixing ratio above and within the surface layer varied vertically and horizontally. The spatio-temporal variability of water vapor near the surface seemed to be sensitive to topographic variations as well as the wind field and the temperature gradient over the site. From the wide-range cross-sectional observations of the water vapor mixing ratio and the backscatter ratio of aerosols within a 2000 m range, we can detect small-scale water vapor structures on a horizontal scale of several hundred meters in the atmospheric boundary layer.
Lidar arc scan uncertainty reduction through scanning geometry optimization
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; ...
2016-04-13
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less
Lidar arc scan uncertainty reduction through scanning geometry optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.
Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annualmore » energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30% of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. As a result, large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.« less
Validating precision estimates in horizontal wind measurements from a Doppler lidar
Newsom, Rob K.; Brewer, W. Alan; Wilczak, James M.; ...
2017-03-30
Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating themore » precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.« less
Vertical Corner Feature Based Precise Vehicle Localization Using 3D LIDAR in Urban Area
Im, Jun-Hyuck; Im, Sung-Hyuck; Jee, Gyu-In
2016-01-01
Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m. PMID:27517936
LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments
Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha
2015-01-01
A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment. PMID:26184206
LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.
Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha
2015-07-10
A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.
NASA Astrophysics Data System (ADS)
Armston, J.; Marselis, S.; Hancock, S.; Duncanson, L.; Tang, H.; Kellner, J. R.; Calders, K.; Disney, M.; Dubayah, R.
2017-12-01
The NASA Global Ecosystem Dynamics Investigation (GEDI) will place a multi-beam waveform lidar instrument on the International Space Station (ISS) to provide measurements of forest vertical structure globally. These measurements of structure will underpin empirical modelling of above ground biomass density (AGBD) at the scale of individual GEDI lidar footprints (25m diameter). The GEDI pre-launch calibration strategy for footprint level models relies on linking AGBD estimates from ground plots with GEDI lidar waveforms simulated from coincident discrete return airborne laser scanning data. Currently available ground plot data have variable and often large uncertainty at the spatial resolution of GEDI footprints due to poor colocation, allometric model error, sample size and plot edge effects. The relative importance of these sources of uncertainty partly depends on the quality of ground measurements and region. It is usually difficult to know the magnitude of these uncertainties a priori so a common approach to mitigate their influence on model training is to aggregate ground plot and waveform lidar data to a coarser spatial scale (0.25-1ha). Here we examine the impacts of these principal sources of uncertainty using a 3D simulation approach. Sets of realistic tree models generated from terrestrial laser scanning (TLS) data or parametric modelling matched to tree inventory data were assembled from four contrasting forest plots across tropical rainforest, deciduous temperate forest, and sclerophyll eucalypt woodland sites. These tree models were used to simulate geometrically explicit 3D scenes with variable tree density, size class and spatial distribution. GEDI lidar waveforms are simulated over ground plots within these scenes using monte carlo ray tracing, allowing the impact of varying ground plot and waveform colocation error, forest structure and edge effects on the relationship between ground plot AGBD and GEDI lidar waveforms to be directly assessed. We quantify the sensitivity of calibration equations relating GEDI lidar structure measurements and AGBD to these factors at a range of spatial scales (0.0625-1ha) and discuss the implications for the expanding use of existing in situ ground plot data by GEDI.
Building a LiDAR point cloud simulator: Testing algorithms for high resolution topographic change
NASA Astrophysics Data System (ADS)
Carrea, Dario; Abellán, Antonio; Derron, Marc-Henri; Jaboyedoff, Michel
2014-05-01
Terrestrial laser technique (TLS) is becoming a common tool in Geosciences, with clear applications ranging from the generation of a high resolution 3D models to the monitoring of unstable slopes and the quantification of morphological changes. Nevertheless, like every measurement techniques, TLS still has some limitations that are not clearly understood and affect the accuracy of the dataset (point cloud). A challenge in LiDAR research is to understand the influence of instrumental parameters on measurement errors during LiDAR acquisition. Indeed, different critical parameters interact with the scans quality at different ranges: the existence of shadow areas, the spatial resolution (point density), and the diameter of the laser beam, the incidence angle and the single point accuracy. The objective of this study is to test the main limitations of different algorithms usually applied on point cloud data treatment, from alignment to monitoring. To this end, we built in MATLAB(c) environment a LiDAR point cloud simulator able to recreate the multiple sources of errors related to instrumental settings that we normally observe in real datasets. In a first step we characterized the error from single laser pulse by modelling the influence of range and incidence angle on single point data accuracy. In a second step, we simulated the scanning part of the system in order to analyze the shifting and angular error effects. Other parameters have been added to the point cloud simulator, such as point spacing, acquisition window, etc., in order to create point clouds of simple and/or complex geometries. We tested the influence of point density and vitiating point of view on the Iterative Closest Point (ICP) alignment and also in some deformation tracking algorithm with same point cloud geometry, in order to determine alignment and deformation detection threshold. We also generated a series of high resolution point clouds in order to model small changes on different environments (erosion, landslide monitoring, etc) and we then tested the use of filtering techniques using 3D moving windows along the space and time, which considerably reduces data scattering due to the benefits of data redundancy. In conclusion, the simulator allowed us to improve our different algorithms and to understand how instrumental error affects final results. And also, improve the methodology of scans acquisition to find the best compromise between point density, positioning and acquisition time with the best accuracy possible to characterize the topographic change.
M3RSM: Many-to-Many Multi-Resolution Scan Matching
2015-05-01
a localization problem), or may be derived from a LIDAR scan earlier in the robot’s trajectory (a SLAM problem). The reference map is generally...Mapping ( SLAM ) systems prevent the unbounded accumulation of error. A typical approach with laser range-finder data is to compute the posterior...even greater bottleneck than the SLAM optimiza- tion itself. In our multi-robot mapping system, over a dozen robots explored an area simultaneously [14
Calculation of the overlap factor for scanning LiDAR based on the tridimensional ray-tracing method.
Chen, Ruiqiang; Jiang, Yuesong; Wen, Luhong; Wen, Donghai
2017-06-01
The overlap factor is used to evaluate the LiDAR light collection ability. Ranging LiDAR is mainly determined by the optical configuration. However, scanning LiDAR, equipped with a scanning mechanism to acquire a 3D coordinate points cloud for a specified target, is essential in considering the scanning effect at the same time. Otherwise, scanning LiDAR will reduce the light collection ability and even cannot receive any echo. From this point of view, we propose a scanning LiDAR overlap factor calculation method based on the tridimensional ray-tracing method, which can be applied to scanning LiDAR with any special laser intensity distribution, any type of telescope (reflector, refractor, or mixed), and any shape obstruction (i.e., the reflector of a coaxial optical system). A case study for our LiDAR with a scanning mirror is carried out, and a MATLAB program is written to analyze the laser emission and reception process. Sensitivity analysis is carried out as a function of scanning mirror rotation speed and detector position, and the results guide how to optimize the overlap factor for our LiDAR. The results of this research will have a guiding significance in scanning LiDAR design and assembly.
Wind Measurements from Arc Scans with Doppler Wind Lidar
Wang, H.; Barthelmie, R. J.; Clifton, Andy; ...
2015-11-25
When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less
All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles
NASA Astrophysics Data System (ADS)
Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao
2016-06-01
An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.
Influence of survey strategy and interpolation model on DEM quality
NASA Astrophysics Data System (ADS)
Heritage, George L.; Milan, David J.; Large, Andrew R. G.; Fuller, Ian C.
2009-11-01
Accurate characterisation of morphology is critical to many studies in the field of geomorphology, particularly those dealing with changes over time. Digital elevation models (DEMs) are commonly used to represent morphology in three dimensions. The quality of the DEM is largely a function of the accuracy of individual survey points, field survey strategy, and the method of interpolation. Recommendations concerning field survey strategy and appropriate methods of interpolation are currently lacking. Furthermore, the majority of studies to date consider error to be uniform across a surface. This study quantifies survey strategy and interpolation error for a gravel bar on the River Nent, Blagill, Cumbria, UK. Five sampling strategies were compared: (i) cross section; (ii) bar outline only; (iii) bar and chute outline; (iv) bar and chute outline with spot heights; and (v) aerial LiDAR equivalent, derived from degraded terrestrial laser scan (TLS) data. Digital Elevation Models were then produced using five different common interpolation algorithms. Each resultant DEM was differentiated from a terrestrial laser scan of the gravel bar surface in order to define the spatial distribution of vertical and volumetric error. Overall triangulation with linear interpolation (TIN) or point kriging appeared to provide the best interpolators for the bar surface. Lowest error on average was found for the simulated aerial LiDAR survey strategy, regardless of interpolation technique. However, comparably low errors were also found for the bar-chute-spot sampling strategy when TINs or point kriging was used as the interpolator. The magnitude of the errors between survey strategy exceeded those found between interpolation technique for a specific survey strategy. Strong relationships between local surface topographic variation (as defined by the standard deviation of vertical elevations in a 0.2-m diameter moving window), and DEM errors were also found, with much greater errors found at slope breaks such as bank edges. A series of curves are presented that demonstrate these relationships for each interpolation and survey strategy. The simulated aerial LiDAR data set displayed the lowest errors across the flatter surfaces; however, sharp slope breaks are better modelled by the morphologically based survey strategy. The curves presented have general application to spatially distributed data of river beds and may be applied to standard deviation grids to predict spatial error within a surface, depending upon sampling strategy and interpolation algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Bonin, Timothy A.; Klein, Petra M.
Several factors cause lidars to measure different values of turbulence than an anemometer on a tower, including volume averaging, instrument noise, and the use of a scanning circle to estimate the wind field. One way to avoid the use of a scanning circle is to deploy multiple scanning lidars and point them toward the same volume in space to collect velocity measurements and extract high-resolution turbulence information. This paper explores the use of two multi-lidar scanning strategies, the tri-Doppler technique and the virtual tower technique, for measuring 3-D turbulence. In Summer 2013, a vertically profiling Leosphere WindCube lidar and threemore » Halo Photonics Streamline lidars were operated at the Southern Great Plains Atmospheric Radiation Measurement site to test these multi-lidar scanning strategies. During the first half of the field campaign, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every second. Next, all three scanning lidars were used to build a “virtual tower” above the WindCube lidar. Results indicate that the tri-Doppler technique measures higher values of horizontal turbulence than the WindCube lidar under stable atmospheric conditions, reduces variance contamination under unstable conditions, and can measure highresolution profiles of mean wind speed and direction. The virtual tower technique provides adequate turbulence information under stable conditions but cannot capture the full temporal variability of turbulence experienced under unstable conditions because of the time needed to readjust the scans.« less
NASA Astrophysics Data System (ADS)
Sweeney, K.; Major, J. J.
2016-12-01
Advances in structure-from-motion (SfM) photogrammetry and point cloud comparison have fueled a proliferation of studies using modern imagery to monitor geomorphic change. These techniques also have obvious applications for reconstructing historical landscapes from vertical aerial imagery, but known challenges include insufficient photo overlap, systematic "doming" induced by photo-spacing regularity, missing metadata, and lack of ground control. Aerial imagery of landscape change in the North Fork Toutle River (NFTR) following the 1980 eruption of Mount St. Helens is a prime dataset to refine methodologies. In particular, (1) 14-μm film scans are available for 1:9600 images at 4-month intervals from 1980 - 1986, (2) the large magnitude of landscape change swamps systematic error and noise, and (3) stable areas (primary deposit features, roads, etc.) provide targets for both ground control and matching to modern lidar. Using AgiSoft PhotoScan, we create digital surface models from the NFTR imagery and examine how common steps in SfM workflows affect results. Tests of scan quality show high-resolution, professional film scans are superior to office scans of paper prints, reducing spurious points related to scan infidelity and image damage. We confirm earlier findings that cropping and rotating images improves point matching and the final surface model produced by the SfM algorithm. We demonstrate how the iterative closest point algorithm, implemented in CloudCompare and using modern lidar as a reference dataset, can serve as an adequate substitute for absolute ground control. Elevation difference maps derived from our surface models of Mount St. Helens show patterns consistent with field observations, including channel avulsion and migration, though systematic errors remain. We suggest that subtracting an empirical function fit to the long-wavelength topographic signal may be one avenue for correcting systematic error in similar datasets.
Calibration of a Three Wavelength Lidar for Size Discriminated Ambient Particulate Measurement
NASA Astrophysics Data System (ADS)
Martin, R. S.; Zavyalov, V.; Bingham, G. E.; Marchant, C.; Herron, J.; Jones, D.; Bowman, J.; Moore, K. D.
2007-12-01
A three wavelength Lidar has been developed at Utah State University's Space Dynamics Laboratory for the measurement of size segregated ambient particulate matter concentrations as part of the AgLite program. The AgLite program, primarily funded by the U.S. Department of Agriculture's Agricultural Research Service, was developed to quantify particulate emissions from diffuse area sources, such as those typically found around confined animal feeding operations (CAFOs) and tillage operations. The Lidar system is capable of scanning horizontally and vertically across a suspected source area and can identify both spatial and temporal concentration fields which, when combined with locally measured wind field data, can be used to derive source emission estimates. The Lidar measures the relative magnitude of optical scattering by the atmosphere, which is a function of aerosol concentration. A Lidar scan around a source area gives a map of relative aerosol concentration. During an operational experiment, a scan is calibrated by point-sensors collocated with one or more points of the Lidar scan. In order to minimize potential systematic errors, a detailed calibration experiment was designed to compare Lidar return signals with Met One Instruments 8-channel Optical Particle Counters (Model 9722) and Airmetrics MiniVol filter-based samplers configured for collection of TSP, PM10, PM2.5, and PM1. The Lidar calibration experiment was performed in July 2007 at a farm owned and operated by Utah State University near Cache Junction, Utah. Multiple datasets were collected during which the Lidar moved between three stares, each a minute in duration, that were collocated with a cluster of MiniVols sampling the four size fractionations and an OPC. Sampler duration was between three and eight hours, depending upon background particulate concentrations. Prior to comparison of these instruments with the Lidar, the MiniVols and OPCs were compared against collocated PM2.5 and PM10 Federal Reference Method (FRM) samplers operated by the State of Utah Division of Air Quality at the designated air quality sampling site in Logan, Utah to ensure the accuracy of the point sensors. Preliminary analysis demonstrates the average concentrations measured by the MiniVols were within eight percent of the concentrations measured by the FRM samplers at ambient levels greater than 10 μg m-3 for PM2.5 and 14 percent for PM10 at 35 μg m-3. The volume-based concentration determined from the OPCs demonstrated a consistent relationship with the MiniVols filter-based mass concentrations across the observed size ranges. Results of the Lidar comparison with the OPCs and MiniVols will also be presented.
Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.
2000-01-01
During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.
Lidar - ND Halo Scanning Doppler, Boardman - Derived Data
Leo, Laura
2018-01-26
The University of Notre Dame (ND) scanning LiDAR dataset used for the WFIP2 Campaign is provided. The LiDAR is a Halo Photonics Stream Line Scanning Doppler LiDAR. **It is highly recommended to discuss any planned use of these data with University of Notre Dame scientists**. For more information refer to the attached "WFIP2 Project (lidar.z07)" Readme file.
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.
2012-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The measurements showed -1 ppm random errors for 8-10 km altitudes and -30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2 lidar on the NASA DC-8 and added an O2 lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected -linear change of DOD with altitude. For measurements at altitudes> 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. The seven flights in the 2011 Ascends campaign were flown over a wide variety of surface and cloud conditions in the US, which produced a wide variety of lidar signal conditions. Details of the lidar measurements and their analysis will be described in the presentation.
NASA Astrophysics Data System (ADS)
Yuen, W.; Ma, Q.; Du, K.; Koloutsou-Vakakis, S.; Rood, M. J.
2015-12-01
Measurements of particulate matter (PM) emissions generated from fugitive sources are of interest in air pollution studies, since such emissions vary widely both spatially and temporally. This research focuses on determining the uncertainties in quantifying fugitive PM emission factors (EFs) generated from mobile vehicles using a vertical scanning micro-pulse lidar (MPL). The goal of this research is to identify the greatest sources of uncertainty of the applied lidar technique in determining fugitive PM EFs, and to recommend methods to reduce the uncertainties in this measurement. The MPL detects the PM plume generated by mobile fugitive sources that are carried downwind to the MPL's vertical scanning plane. Range-resolved MPL signals are measured, corrected, and converted to light extinction coefficients, through inversion of the lidar equation and calculation of the lidar ratio. In this research, both the near-end and far-end lidar equation inversion methods are considered. Range-resolved PM mass concentrations are then determined from the extinction coefficient measurements using the measured mass extinction efficiency (MEE) value, which is an intensive PM property. MEE is determined by collocated PM mass concentration and light extinction measurements, provided respectively by a DustTrak and an open-path laser transmissometer. These PM mass concentrations are then integrated with wind information, duration of plume event, and vehicle distance travelled to obtain fugitive PM EFs. To obtain the uncertainty of PM EFs, uncertainties in MPL signals, lidar ratio, MEE, and wind variation are considered. Error propagation method is applied to each of the above intermediate steps to aggregate uncertainty sources. Results include determination of uncertainties in each intermediate step, and comparison of uncertainties between the use of near-end and far-end lidar equation inversion methods.
Lidar - ND Halo Scanning Doppler, Boardman - Reviewed Data
Otarola, Sebastian
2017-10-23
The University of Notre Dame (ND) scanning LiDAR dataset used for the WFIP2 Campaign is provided. The LiDAR is a Halo Photonics Stream Line Scanning Doppler LiDAR. **It is highly recommended to discuss any planned use of these data with University of Notre Dame scientists**. For more information refer to Section 4.c) in the updated version of the "WFIP2 Project (lidar.z07)" Readme file, where the lidar.z07.b0 dataset is fully explained.
Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR
Bartholomeus, Harm M.; Kooistra, Lammert
2017-01-01
In recent years, LIght Detection And Ranging (LiDAR) and especially Terrestrial Laser Scanning (TLS) systems have shown the potential to revolutionise forest structural characterisation by providing unprecedented 3D data. However, manned Airborne Laser Scanning (ALS) requires costly campaigns and produces relatively low point density, while TLS is labour intense and time demanding. Unmanned Aerial Vehicle (UAV)-borne laser scanning can be the way in between. In this study, we present first results and experiences with the RIEGL RiCOPTER with VUX®-1UAV ALS system and compare it with the well tested RIEGL VZ-400 TLS system. We scanned the same forest plots with both systems over the course of two days. We derived Digital Terrain Models (DTMs), Digital Surface Models (DSMs) and finally Canopy Height Models (CHMs) from the resulting point clouds. ALS CHMs were on average 11.5 cm higher in five plots with different canopy conditions. This showed that TLS could not always detect the top of canopy. Moreover, we extracted trunk segments of 58 trees for ALS and TLS simultaneously, of which 39 could be used to model Diameter at Breast Height (DBH). ALS DBH showed a high agreement with TLS DBH with a correlation coefficient of 0.98 and root mean square error of 4.24 cm. We conclude that RiCOPTER has the potential to perform comparable to TLS for estimating forest canopy height and DBH under the studied forest conditions. Further research should be directed to testing UAV-borne LiDAR for explicit 3D modelling of whole trees to estimate tree volume and subsequently Above-Ground Biomass (AGB). PMID:29039755
Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.
Brede, Benjamin; Lau, Alvaro; Bartholomeus, Harm M; Kooistra, Lammert
2017-10-17
In recent years, LIght Detection And Ranging (LiDAR) and especially Terrestrial Laser Scanning (TLS) systems have shown the potential to revolutionise forest structural characterisation by providing unprecedented 3D data. However, manned Airborne Laser Scanning (ALS) requires costly campaigns and produces relatively low point density, while TLS is labour intense and time demanding. Unmanned Aerial Vehicle (UAV)-borne laser scanning can be the way in between. In this study, we present first results and experiences with the RIEGL RiCOPTER with VUX ® -1UAV ALS system and compare it with the well tested RIEGL VZ-400 TLS system. We scanned the same forest plots with both systems over the course of two days. We derived Digital Terrain Model (DTMs), Digital Surface Model (DSMs) and finally Canopy Height Model (CHMs) from the resulting point clouds. ALS CHMs were on average 11.5 c m higher in five plots with different canopy conditions. This showed that TLS could not always detect the top of canopy. Moreover, we extracted trunk segments of 58 trees for ALS and TLS simultaneously, of which 39 could be used to model Diameter at Breast Height (DBH). ALS DBH showed a high agreement with TLS DBH with a correlation coefficient of 0.98 and root mean square error of 4.24 c m . We conclude that RiCOPTER has the potential to perform comparable to TLS for estimating forest canopy height and DBH under the studied forest conditions. Further research should be directed to testing UAV-borne LiDAR for explicit 3D modelling of whole trees to estimate tree volume and subsequently Above-Ground Biomass (AGB).
Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)
NASA Astrophysics Data System (ADS)
Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.
2013-12-01
Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of the scanning lidars ran a Doppler beam-swinging technique identical to that used by the WindCube lidar while another scanning lidar used a novel six-beam technique that has been presented in the literature as a better alternative for measuring turbulence. In this presentation, turbulence measurements from these techniques are compared to turbulence measured by the WindCube lidar and sonic anemometers on the 60-m meteorological tower. In addition, recommendations are made for lidar measurement campaigns for wind energy applications.
Improving lidar turbulence estimates for wind energy
NASA Astrophysics Data System (ADS)
Newman, J. F.; Clifton, A.; Churchfield, M. J.; Klein, P.
2016-09-01
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.
Filtering Photogrammetric Point Clouds Using Standard LIDAR Filters Towards DTM Generation
NASA Astrophysics Data System (ADS)
Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M. Y.
2018-05-01
Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level.
Lidar Data Products and Applications Enabled by Conical Scanning
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Lee, Sang-Woo
2004-01-01
Several new data products and applications for elastic backscatter lidar are achieved using simple conical scanning. Atmospheric boundary layer spatial and temporal structure is revealed with resolution not possible with static pointing lidars. Cloud fractional coverage as a function of altitude is possible with high temporal resolution. Wind profiles are retrieved from the cloud and aerosol structure motions revealed by scanning. New holographic technology will soon allow quasi-conical scanning and push-broom lidar imaging without mechanical scanning, high resolution, on the order of seconds.
Cheng, Chih-Hao; Chen, Chih-Ying; Chen, Jun-Da; Pan, Da-Kung; Ting, Kai-Ting; Lin, Fan-Yi
2018-04-30
We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.
Conically scanned lidar telescope using holographic optical elements
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Wilkerson, Thomas D.
1992-01-01
Holographic optical elements (HOE) using volume phase holograms make possible a new class of lightweight scanning telescopes having advantages for lidar remote sensing instruments. So far, the only application of HOE's to lidar has been a non-scanning receiver for a laser range finder. We introduce a large aperture, narrow field of view (FOV) telescope used in a conical scanning configuration, having a much smaller rotating mass than in conventional designs. Typically, lidars employ a large aperture collector and require a narrow FOV to limit the amount of skylight background. Focal plane techniques are not good approaches to scanning because they require a large FOV within which to scan a smaller FOV mirror or detector array. Thus, scanning lidar systems have either used a large flat scanning mirror at which the receiver telescope is pointed, or the entire telescope is steered. We present a concept for a conically scanned lidar telescope in which the only moving part is the HOE which serves as the primary collecting optic. We also describe methods by which a multiplexed HOE can be used simultaneously as a dichroic beamsplitter.
Improving Lidar Turbulence Estimates for Wind Energy: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer; Clifton, Andrew; Churchfield, Matthew
2016-10-01
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less
Improving Lidar Turbulence Estimates for Wind Energy
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; ...
2016-10-03
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less
Evaluation of airborne topographic lidar for quantifying beach changes
2003-01-01
A scanning airborne topographic lidar was evaluated for its ability to quantify beach topography and changes during the Sandy Duck experiment in 1997 along the North Carolina coast. Elevation estimates, acquired with NASA's Airborne Topographic Mapper (ATM), were compared to elevations measured with three types of ground-based mea- surements-1) differential GPS equipped all-terrain vehicle (ATV) that surveyed a 3-km reach of beach from the shoreline to the dune, 2) GPS antenna mounted on a stadia rod used to intensely survey a different 100 m reach of beach, and 3) a second GPS-equipped ATV that surveyed a 70-km-long transect along the coast. Over 40,000 individual intercomparisons between ATM and ground surveys were calculated. RMS vertical differences associated with the ATM when compared to ground measurements ranged from 13 to 19 cm. Considering all of the intercomparisons together, RMS ≃15 cm. This RMS error represents a total error for individual elevation estimates including uncertainties associated with random and mean errors. The latter was the largest source of error and was attributed to drift in differential GPS. The ≃15cm vertical accuracy of the ATM is adequate to resolve beach-change signals typical of the impact of storms. For example, ATM surveys of Assateague Island (spanning the border of MD and VA) prior to and immediately following a severe northeaster showed vertical beach changes in places greater than 2 m, much greater than expected errors associated with the ATM. A major asset of airborne lidar is the high spatial data density. Measurements of elevation are acquired every few m2 over regional scales of hundreds of kilometers. Hence, many scales of beach morphology and change can be resolved, from beach cusps tens of meters in wavelength to entire coastal cells com- prising tens to hundreds of kilometers of coast. Topographic lidars similar to the ATM are becoming increasingly available from commercial vendors and should, in the future, be widely used in beach su
Evaluation of airborne topographic lidar for quantifying beach changes
Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; Morgan, K.; Yunkel, J.K.; Frederick, E.B.; Stockdon, H.
2003-01-01
A scanning airborne topographic lidar was evaluated for its ability to quantify beach topography and changes during the Sandy Duck experiment in 1997 along the North Carolina coast. Elevation estimates, acquired with NASA's Airborne Topographic Mapper (ATM), were compared to elevations measured with three types of ground-based measurements - 1) differential GPS equipped all-terrain vehicle (ATV) that surveyed a 3-km reach of beach from the shoreline to the dune, 2) GPS antenna mounted on a stadia rod used to intensely survey a different 100 m reach of beach, and 3) a second GPS-equipped ATV that surveyed a 70-km-long transect along the coast. Over 40,000 individual intercomparisons between ATM and ground surveys were calculated. RMS vertical differences associated with the ATM when compared to ground measurements ranged from 13 to 19 cm. Considering all of the intercomparisons together, RMS ??? 15 cm. This RMS error represents a total error for individual elevation estimates including uncertainties associated with random and mean errors. The latter was the largest source of error and was attributed to drift in differential GPS. The ??? 15 cm vertical accuracy of the ATM is adequate to resolve beach-change signals typical of the impact of storms. For example, ATM surveys of Assateague Island (spanning the border of MD and VA) prior to and immediately following a severe northeaster showed vertical beach changes in places greater than 2 m, much greater than expected errors associated with the ATM. A major asset of airborne lidar is the high spatial data density. Measurements of elevation are acquired every few m2 over regional scales of hundreds of kilometers. Hence, many scales of beach morphology and change can be resolved, from beach cusps tens of meters in wavelength to entire coastal cells comprising tens to hundreds of kilometers of coast. Topographic lidars similar to the ATM are becoming increasingly available from commercial vendors and should, in the future, be widely used in beach surveying.
Improving Lidar Turbulence Estimates for Wind Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.
2016-10-06
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.« less
An Algorithm to Identify and Localize Suitable Dock Locations from 3-D LiDAR Scans
2013-05-10
Locations from 3-D LiDAR Scans 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Graves, Mitchell Robert 5d. PROJECT NUMBER...Ranging ( LiDAR ) scans. A LiDAR sensor is a sensor that collects range images from a rotating array of vertically aligned lasers. Our solution leverages...Algorithm, Dock, Locations, Point Clouds, LiDAR , Identify 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a
Case Study Analyses of the SUCCESS DC-8 Scanning Lidar Database
NASA Technical Reports Server (NTRS)
Uthe, Edward E.
2000-01-01
Under project SUCCESS (Subsonic Aircraft Contrail and Cloud Effects Special Study) funded by the Atmospheric Effects of Aviation Program, SRI International (SRI) developed an angular scanning backscatter lidar for operation on the NASA DC-8 research aircraft and deployed the scanning lidar during the SUCCESS field campaign. The primary purpose of the lidar was to generate real-time video displays of clouds and contrails above, ahead of, and below the DC-8 as a means to help position the aircraft for optimum cloud and contrail sampling by onboard in situ sensors, and to help extend the geometrical domain of the in situ sampling records. A large, relatively complex lidar database was collected and several data examples were processed to illustrate the value of the lidar data for interpreting the other data records collected during SUCCESS. These data examples were used to develop a journal publication for the special SUCCESS Geophysical Research Letters issue. The data examples justified data analyses of a larger part of the DC-8 lidar database and is the objective of the current study. Efficient processing of the SUCCESS DC-8 scanning lidar database required substantial effort to enhance hardware and software components of the data system that was used for the initial analyses. MATLAB instructions are used to generate altitude and distance color-coded lidar displays corrected for effects introduced by aircraft pitch and forward movement during an angular scan time interval. Onboard in situ sensor atmospheric measurements are propagated to distances ahead of the DC-8 using recorded aircraft velocity so that they can be plotted on the lidar displays for comparison with lidar remotely observed aerosol distributions. Resulting lidar and in situ sensor polar scan displays over extended sampling intervals are integrated into a time series movie format for 36 case studies. Contrails and clouds were detected to ranges of 15 km by the forward-viewing angular scanning lidar and were progressively mapped as the aircraft approached and penetrated them. Near aircraft lidar observations were much better correlated with in situ sensor observations than lidar observations at greater distances ahead of the aircraft. The major cause of this difference was thought to be the about 2 deg. offset of the lidar viewing direction from the flight direction. Contrail spatial distributions were not of the quality obtainable from ground-based lidar observations. This results because contrails tend to become horizontally stratified, vertical distance between angular lidar observations increases with increased distance from the aircraft, and erratic aircraft motions during an angular scan. The most useful lidar observations were made with lidar viewing directions of vertically upward or vertically downward. These provided real-time information on aircraft altitudes to achieve optimum in situ cloud and contrail sampling. At sampling altitudes, the forward viewing angular scanning observations were useful for fine-tuning the aircraft altitude for cloud and contrail penetration. Best information on cloud and contrail properties were obtained from vertically directed lidar observations as the aircraft performed a series of upward and downward penetrations of contrails. This operational mode was especially well suited for lidar and radiometric evaluation of cloud and contrail optical and radiative properties. The vertical viewing lidar detected ice crystals thought to be precipitating from an aircraft contrail and their scavenging by a cirrus cloud layer. The lidar display indicates that the crystals are effective for increasing cirrus cloud density. Vertical angular scanning observations can evaluate the sharp decrease in lidar backscatter for small off-vertical viewing directions that result from horizontally aligned ice crystals and perhaps can provide additional information on crystal shapes. The about 2 deg. offset of the lidar viewing direction from the flight direction is thought to have greatly degraded the forward-viewing angular scanning observations and this mode of operation was not fully evaluated. However, the reasoning for this capability remains valid and the angular scan presentations collected during this program justifies modification of the lidar pod for true forward direction lidar viewing during future cloud and contrail studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount ofmore » uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST for a 1.5 MW turbine. The impact of lidar turbulence error on the predicted power from these different models is examined to determine the degree of turbulence measurement accuracy needed for accurate power prediction.« less
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.
2012-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The measurements showed 1 ppm random errors for 8-10 km altitudes and 30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2lidar on the NASA DC-8 and added an 02lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected linear change of DOD with altitude. For measurements at altitudes> 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. We demonstrated measurements over the California Central Valley, to stratus cloud tops over the Pacific Ocean, over mountain regions with snow, and over several areas with broken clouds. Details of the lidar measurements and their analysis will be described in the presentation.
Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan; ...
2017-03-29
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less
Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.
1998-01-01
Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.
Applicability Analysis of Cloth Simulation Filtering Algorithm for Mobile LIDAR Point Cloud
NASA Astrophysics Data System (ADS)
Cai, S.; Zhang, W.; Qi, J.; Wan, P.; Shao, J.; Shen, A.
2018-04-01
Classifying the original point clouds into ground and non-ground points is a key step in LiDAR (light detection and ranging) data post-processing. Cloth simulation filtering (CSF) algorithm, which based on a physical process, has been validated to be an accurate, automatic and easy-to-use algorithm for airborne LiDAR point cloud. As a new technique of three-dimensional data collection, the mobile laser scanning (MLS) has been gradually applied in various fields, such as reconstruction of digital terrain models (DTM), 3D building modeling and forest inventory and management. Compared with airborne LiDAR point cloud, there are some different features (such as point density feature, distribution feature and complexity feature) for mobile LiDAR point cloud. Some filtering algorithms for airborne LiDAR data were directly used in mobile LiDAR point cloud, but it did not give satisfactory results. In this paper, we explore the ability of the CSF algorithm for mobile LiDAR point cloud. Three samples with different shape of the terrain are selected to test the performance of this algorithm, which respectively yields total errors of 0.44 %, 0.77 % and1.20 %. Additionally, large area dataset is also tested to further validate the effectiveness of this algorithm, and results show that it can quickly and accurately separate point clouds into ground and non-ground points. In summary, this algorithm is efficient and reliable for mobile LiDAR point cloud.
The impact of lidar elevation uncertainty on mapping intertidal habitats on barrier islands
Enwright, Nicholas M.; Wang, Lei; Borchert, Sinéad M.; Day, Richard H.; Feher, Laura C.; Osland, Michael J.
2018-01-01
While airborne lidar data have revolutionized the spatial resolution that elevations can be realized, data limitations are often magnified in coastal settings. Researchers have found that airborne lidar can have a vertical error as high as 60 cm in densely vegetated intertidal areas. The uncertainty of digital elevation models is often left unaddressed; however, in low-relief environments, such as barrier islands, centimeter differences in elevation can affect exposure to physically demanding abiotic conditions, which greatly influence ecosystem structure and function. In this study, we used airborne lidar elevation data, in situ elevation observations, lidar metadata, and tide gauge information to delineate low-lying lands and the intertidal wetlands on Dauphin Island, a barrier island along the coast of Alabama, USA. We compared three different elevation error treatments, which included leaving error untreated and treatments that used Monte Carlo simulations to incorporate elevation vertical uncertainty using general information from lidar metadata and site-specific Real-Time Kinematic Global Position System data, respectively. To aid researchers in instances where limited information is available for error propagation, we conducted a sensitivity test to assess the effect of minor changes to error and bias. Treatment of error with site-specific observations produced the fewest omission errors, although the treatment using the lidar metadata had the most well-balanced results. The percent coverage of intertidal wetlands was increased by up to 80% when treating the vertical error of the digital elevation models. Based on the results from the sensitivity analysis, it could be reasonable to use error and positive bias values from literature for similar environments, conditions, and lidar acquisition characteristics in the event that collection of site-specific data is not feasible and information in the lidar metadata is insufficient. The methodology presented in this study should increase efficiency and enhance results for habitat mapping and analyses in dynamic, low-relief coastal environments.
Scanning Raman Lidar Measurements During the WVIOP2000 and AFWEX Field Experiments
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Evans, K. D.; Berkoff, T. B.; Demoz, B. D.; DiGirolamo, P.; Smith, David E. (Technical Monitor)
2001-01-01
The NASA/Goddard Space Flight Center Scanning Raman Lidar (SRL) participated in the Water Vapor IOP 2000 (WVIOP2000) and ARM FIRE Water Vapor Experiment (AFWEX) at the DOE SGP CART site in northern Oklahoma. These experiments occurred during the period of September and December, 2000. The goals of both the WVIOP2000 and AFWEX were to better characterize the water vapor measurement capability of numerous sensors in the lower atmosphere and upper troposphere, respectively. The SRL received several hardware upgrades in anticipation of these experiments that permitted improved measurements of water vapor during the daytime and in the upper troposphere (UT). The daytime SRL water vapor error statistics were demonstrated a factor of 2-3 improvement compared to the permanently stationed CART Raman lidar (CARL). The performance of the SRL in the UT showed improvements as well. The technological upgrades that permitted these improved SRL measurements could also be implemented in the CARL system. Data examples demonstrating the new daytime and upper tropospheric measurement capability of the SRL will be shown at the meeting. In addition, preliminary analysis will be presented on several topics: 1) inter comparison of the water vapor measurements for several water vapor sensors including SRL, CARL, the NASA/Langley Lidar Atmospheric Sensing Experiment (LASE) flown onboard the NASA DC-8, in-situ sensors flown on the DC-8, and the Max Planck Institute Differential Absorption Lidar 2) comparison of cirrus cloud measurements using SRL and CARL and 3) case studies of meteorological events that occurred during the IOPs such as a cold frontal passage on the night of September 23.
3D turbulence measurements in inhomogeneous boundary layers with three wind LiDARs
NASA Astrophysics Data System (ADS)
Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando
2014-05-01
One of the most challenging tasks in atmospheric anemometry is obtaining reliable turbulence measurements of inhomogeneous boundary layers at heights or in locations where is not possible or convenient to install tower-based measurement systems, e.g. mountainous terrain, cities, wind farms, etc. Wind LiDARs are being extensively used for the measurement of averaged vertical wind profiles, but they can only successfully accomplish this task under the limiting conditions of flat terrain and horizontally homogeneous flow. Moreover, it has been shown that common scanning strategies introduce large systematic errors in turbulence measurements, regardless of the characteristics of the flow addressed. From the point of view of research, there exist a variety of techniques and scanning strategies to estimate different turbulence quantities but most of them rely in the combination of raw measurements with atmospheric models. Most of those models are only valid under the assumption of horizontal homogeneity. The limitations stated above can be overcome by a new triple LiDAR technique which uses simultaneous measurements from three intersecting Doppler wind LiDARs. It allows for the reconstruction of the three-dimensional velocity vector in time as well as local velocity gradients without the need of any turbulence model and with minimal assumptions [EGU2013-9670]. The triple LiDAR technique has been applied to the study of the flow over the campus of EPFL in Lausanne (Switzerland). The results show the potential of the technique for the measurement of turbulence in highly complex boundary layer flows. The technique is particularly useful for micrometeorology and wind engineering studies.
Registration of Laser Scanning Point Clouds: A Review.
Cheng, Liang; Chen, Song; Liu, Xiaoqiang; Xu, Hao; Wu, Yang; Li, Manchun; Chen, Yanming
2018-05-21
The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles.
Registration of Laser Scanning Point Clouds: A Review
Cheng, Liang; Chen, Song; Xu, Hao; Wu, Yang; Li, Manchun
2018-01-01
The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles. PMID:29883397
Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.
2015-01-01
Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.
Tele-Operated Lunar Rover Navigation Using Lidar
NASA Technical Reports Server (NTRS)
Pedersen, Liam; Allan, Mark B.; Utz, Hans, Heinrich; Deans, Matthew C.; Bouyssounouse, Xavier; Choi, Yoonhyuk; Fluckiger, Lorenzo; Lee, Susan Y.; To, Vinh; Loh, Jonathan;
2012-01-01
Near real-time tele-operated driving on the lunar surface remains constrained by bandwidth and signal latency despite the Moon s relative proximity. As part of our work within NASA s Human-Robotic Systems Project (HRS), we have developed a stand-alone modular LIDAR based safeguarded tele-operation system of hardware, middleware, navigation software and user interface. The system has been installed and tested on two distinct NASA rovers-JSC s Centaur2 lunar rover prototype and ARC s KRex research rover- and tested over several kilometers of tele-operated driving at average sustained speeds of 0.15 - 0.25 m/s around rocks, slopes and simulated lunar craters using a deliberately constrained telemetry link. The navigation system builds onboard terrain and hazard maps, returning highest priority sections to the off-board operator as permitted by bandwidth availability. It also analyzes hazard maps onboard and can stop the vehicle prior to contacting hazards. It is robust to severe pose errors and uses a novel scan alignment algorithm to compensate for attitude and elevation errors.
Attitude-error compensation for airborne down-looking synthetic-aperture imaging lidar
NASA Astrophysics Data System (ADS)
Li, Guang-yuan; Sun, Jian-feng; Zhou, Yu; Lu, Zhi-yong; Zhang, Guo; Cai, Guang-yu; Liu, Li-ren
2017-11-01
Target-coordinate transformation in the lidar spot of the down-looking synthetic-aperture imaging lidar (SAIL) was performed, and the attitude errors were deduced in the process of imaging, according to the principle of the airborne down-looking SAIL. The influence of the attitude errors on the imaging quality was analyzed theoretically. A compensation method for the attitude errors was proposed and theoretically verified. An airborne down-looking SAIL experiment was performed and yielded the same results. A point-by-point error-compensation method for solving the azimuthal-direction space-dependent attitude errors was also proposed.
NASA Astrophysics Data System (ADS)
van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.
2016-09-01
This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leo, Laura
The University of Notre Dame (ND) scanning LiDAR dataset used for the WFIP2 Campaign is provided. The LiDAR is a Halo Photonics Stream Line Scanning Doppler LiDAR. **It is highly recommended to discuss any planned use of these data with University of Notre Dame scientists**. For more information refer to the attached "WFIP2 Project (lidar.z07)" Readme file.
Lidar - ND Halo Scanning Doppler, Boardman - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leo, Laura
2017-10-23
The University of Notre Dame (ND) scanning lidar dataset used for the WFIP2 Campaign is provided. The raw dataset contains the radial velocity and backscatter measurements along with the beam location and other lidar parameters in the header.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less
Wind Ressources in Complex Terrain investigated with Synchronized Lidar Measurements
NASA Astrophysics Data System (ADS)
Mann, J.; Menke, R.; Vasiljevic, N.
2017-12-01
The Perdigao experiment was performed by a number of European and American universities in Portugal 2017, and it is probably the largest field campaign focussing on wind energy ressources in complex terrain ever conducted. 186 sonic anemometers on 50 masts, 20 scanning wind lidars and a host of other instruments were deployed. The experiment is a part of an effort to make a new European wind atlas. In this presentation we investigate whether scanning the wind speed over ridges in this complex terrain with multiple Doppler lidars can lead to an efficient mapping of the wind resources at relevant positions. We do that by having pairs of Doppler lidars scanning 80 m above the ridges in Perdigao. We compare wind resources obtained from the lidars and from the mast-mounted sonic anemometers at 80 m on two 100 m masts, one on each of the two ridges. In addition, the scanning lidar measurements are also compared to profiling lidars on the ridges. We take into account the fact that the profiling lidars may be biased due to the curvature of the streamlines over the instrument, see Bingol et al, Meteorolog. Z. vol. 18, pp. 189-195 (2009). We also investigate the impact of interruptions of the lidar measurements on the estimated wind resource. We calculate the relative differences of wind along the ridge from the lidar measurements and compare those to the same obtained from various micro-scale models. A particular subject investigated is how stability affects the wind resources. We often observe internal gravity waves with the scanning lidars during the night and we quantify how these affect the relative wind speed on the ridges.
Ground Based Operational Testing Of Holographic Scanning Lidars : The HOLO Experiments
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Wilkerson, Thomas D.; Sanders, Jason A.; Guerra, David V.; Miller, David O.; Moody, Stephen E.
2000-01-01
Two aerosol backscatter lidar measurement campaigns were conducted using two holographic scanning lidars and one zenith staring lidar for the purposes of reliability testing under field conditions three new lidar systems and to develop new scanning measurement techniques and applications. The first campaign took place near the campus of Utah State University in Logan Utah in March of 1999 and is called HOLO-1. HOLO-2 was conducted in June of 1999 on the campus of Saint Anselm College, near the city of Manchester, New Hampshire. Each campaign covered a period of approximately one week of nearly continuous observation of cloud and aerosol backscatter in the visible and near infrared by lidar, and wide field visible sky images by video camera in the daytime. The scanning capability coupled with a high rep-rate, high average power laser enables both high spatial and high temporal resolution observations that Particularly intriguing is the possibility of deriving atmospheric wind profiles from temporal analysis of aerosol backscatter spatial structure obtained by conical scan without the use of Doppler techniques.
NASA Technical Reports Server (NTRS)
Naesset, Erik; Gobakken, Terje; Bollandsas, Ole Martin; Gregoire, Timothy G.; Nelson, Ross; Stahl, Goeran
2013-01-01
Airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool to provide auxiliary data for sample surveys aiming at estimation of above-ground tree biomass (AGB), with potential applications in REDD forest monitoring. For larger geographical regions such as counties, states or nations, it is not feasible to collect airborne LiDAR data continuously ("wall-to-wall") over the entire area of interest. Two-stage cluster survey designs have therefore been demonstrated by which LiDAR data are collected along selected individual flight-lines treated as clusters and with ground plots sampled along these LiDAR swaths. Recently, analytical AGB estimators and associated variance estimators that quantify the sampling variability have been proposed. Empirical studies employing these estimators have shown a seemingly equal or even larger uncertainty of the AGB estimates obtained with extensive use of LiDAR data to support the estimation as compared to pure field-based estimates employing estimators appropriate under simple random sampling (SRS). However, comparison of uncertainty estimates under SRS and sophisticated two-stage designs is complicated by large differences in the designs and assumptions. In this study, probability-based principles to estimation and inference were followed. We assumed designs of a field sample and a LiDAR-assisted survey of Hedmark County (HC) (27,390 km2), Norway, considered to be more comparable than those assumed in previous studies. The field sample consisted of 659 systematically distributed National Forest Inventory (NFI) plots and the airborne scanning LiDAR data were collected along 53 parallel flight-lines flown over the NFI plots. We compared AGB estimates based on the field survey only assuming SRS against corresponding estimates assuming two-phase (double) sampling with LiDAR and employing model-assisted estimators. We also compared AGB estimates based on the field survey only assuming two-stage sampling (the NFI plots being grouped in clusters) against corresponding estimates assuming two-stage sampling with the LiDAR and employing model-assisted estimators. For each of the two comparisons, the standard errors of the AGB estimates were consistently lower for the LiDAR-assisted designs. The overall reduction of the standard errors in the LiDAR-assisted estimation was around 40-60% compared to the pure field survey. We conclude that the previously proposed two-stage model-assisted estimators are inappropriate for surveys with unequal lengths of the LiDAR flight-lines and new estimators are needed. Some options for design of LiDAR-assisted sample surveys under REDD are also discussed, which capitalize on the flexibility offered when the field survey is designed as an integrated part of the overall survey design as opposed to previous LiDAR-assisted sample surveys in the boreal and temperate zones which have been restricted by the current design of an existing NFI.
An Error-Reduction Algorithm to Improve Lidar Turbulence Estimates for Wind Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
2016-08-01
Currently, cup anemometers on meteorological (met) towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability. However, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install met towers at potential sites. As a result, remote sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. While lidars can accurately estimate mean wind speeds and wind directions, there is still a largemore » amount of uncertainty surrounding the measurement of turbulence with lidars. This uncertainty in lidar turbulence measurements is one of the key roadblocks that must be overcome in order to replace met towers with lidars for wind energy applications. In this talk, a model for reducing errors in lidar turbulence estimates is presented. Techniques for reducing errors from instrument noise, volume averaging, and variance contamination are combined in the model to produce a corrected value of the turbulence intensity (TI), a commonly used parameter in wind energy. In the next step of the model, machine learning techniques are used to further decrease the error in lidar TI estimates.« less
No Substitute for Going to the Field: Correcting Lidar DEMs in Salt Marshes
NASA Astrophysics Data System (ADS)
Renken, K.; Morris, J. T.; Lynch, J.; Bayley, H.; Neil, A.; Rasmussen, S.; Tyrrell, M.; Tanis, M.
2016-12-01
Models that forecast the response of salt marshes to current and future trends in sea level rise increasingly are used to guide management of these vulnerable ecosystems. Lidar-derived DEMs serve as the foundation for modeling landform change. However, caution is advised when using these DEMs as the starting point for models of salt marsh evolution. While broad vegetation class (i.e., young forest, old forest, grasslands, desert, etc.) has proven to be a significant predictor of vertical displacement error in terrestrial environments, differentiating error among different species or community types within the same ecosystem has received less attention. Salt marshes are dominated by monocultures of grass species and thus are an ideal environment to examine the within-species effect on lidar DEM error. We analyzed error of lidar DEMs using elevations from real-time kinematic (RTK) surveys in saltmarshes in multiple national parks and wildlife refuge areas from the mouth of the Chesapeake Bay to Massachusetts. Error of the lidar DEMs was sometimes large, on the order of 0.25 m, and varied significantly between sites because vegetation cover varies seasonally and lidar data was not always collected in the same season for each park. Vegetation cover and composition were used to explain differences between RTK elevations and lidar DEMs. This research underscores the importance of collecting RTK elevation data and vegetation cover data coincident with lidar data to produce correction factors specific to individual salt marsh sites.
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.
2005-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.
NASA Astrophysics Data System (ADS)
Bolkas, Dimitrios; Martinez, Aaron
2018-01-01
Point-cloud coordinate information derived from terrestrial Light Detection And Ranging (LiDAR) is important for several applications in surveying and civil engineering. Plane fitting and segmentation of target-surfaces is an important step in several applications such as in the monitoring of structures. Reliable parametric modeling and segmentation relies on the underlying quality of the point-cloud. Therefore, understanding how point-cloud errors affect fitting of planes and segmentation is important. Point-cloud intensity, which accompanies the point-cloud data, often goes hand-in-hand with point-cloud noise. This study uses industrial particle boards painted with eight different colors (black, white, grey, red, green, blue, brown, and yellow) and two different sheens (flat and semi-gloss) to explore how noise and plane residuals vary with scanning geometry (i.e., distance and incidence angle) and target-color. Results show that darker colors, such as black and brown, can produce point clouds that are several times noisier than bright targets, such as white. In addition, semi-gloss targets manage to reduce noise in dark targets by about 2-3 times. The study of plane residuals with scanning geometry reveals that, in many of the cases tested, residuals decrease with increasing incidence angles, which can assist in understanding the distribution of plane residuals in a dataset. Finally, a scheme is developed to derive survey guidelines based on the data collected in this experiment. Three examples demonstrate that users should consider instrument specification, required precision of plane residuals, required point-spacing, target-color, and target-sheen, when selecting scanning locations. Outcomes of this study can aid users to select appropriate instrumentation and improve planning of terrestrial LiDAR data-acquisition.
The HOLO Series: Critical Ground-Based Demonstrations of Holographic Scanning Lidars
NASA Technical Reports Server (NTRS)
Wilkerson, Thomas D.; Sanders, Jason A.; Andrus, Ionio Q.; Schwemmer, Geary K.; Miller, David O.; Guerra, David; Schnick, Jeffrey; Moody, Stephen E.
2000-01-01
Results of two lidar measurement campaigns are presented, HOLO-1 (Utah, March 1999) and HOLO-2 (New Hampshire, June 1999). These tests demonstrate the ability of lidars utilizing holographic optical elements (HOEs) to determine tropospheric wind velocity and direction at cloud altitude. Several instruments were employed. HOLO-1 used the 1,064 mm transmission-HOE lidar (HARLIE, Goddard Space Flight Center), a zenith-staring 532 nm lidar (AROL-2, Utah State University), and a wide-field video camera (SkyCam) for imagery of clouds overhead. HOLO-2 included these instruments plus the 532 nm reflection-HOE lidar (PHASERS, St. Anselm College). HARLIE and PHASERS scan the sky at constant cone angles of 45 deg. and 42 deg. from normal, respectively. The progress of clouds and entire cloud fields across the sky is tracked by the repetitive conical scans of the HOE lidars. AROL-2 provides the attitude information enabling the SkyCam cloud images to be analyzed for independent data on cloud motion. Data from the HOE lidars are reduced by means of correlations, visualization by animation techniques, and kinematic diagrams of cloud feature motion. Excellent agreement is observed between the HOE lidar results and those obtained with video imagery and lidar ranging.
Multi-beam and single-chip LIDAR with discrete beam steering by digital micromirror device
NASA Astrophysics Data System (ADS)
Rodriguez, Joshua; Smith, Braden; Hellman, Brandon; Gin, Adley; Espinoza, Alonzo; Takashima, Yuzuru
2018-02-01
A novel Digital Micromirror Device (DMD) based beam steering enables a single chip Light Detection and Ranging (LIDAR) system for discrete scanning points. We present increasing number of scanning point by using multiple laser diodes for Multi-beam and Single-chip DMD-based LIDAR.
Compact high-speed scanning lidar system
NASA Astrophysics Data System (ADS)
Dickinson, Cameron; Hussein, Marwan; Tripp, Jeff; Nimelman, Manny; Koujelev, Alexander
2012-06-01
The compact High Speed Scanning Lidar (HSSL) was designed to meet the requirements for a rover GN&C sensor. The eye-safe HSSL's fast scanning speed, low volume and low power, make it the ideal choice for a variety of real-time and non-real-time applications including: 3D Mapping; Vehicle guidance and Navigation; Obstacle Detection; Orbiter Rendezvous; Spacecraft Landing / Hazard Avoidance. The HSSL comprises two main hardware units: Sensor Head and Control Unit. In a rover application, the Sensor Head mounts on the top of the rover while the Control Unit can be mounted on the rover deck or within its avionics bay. An Operator Computer is used to command the lidar and immediately display the acquired scan data. The innovative lidar design concept was a result of an extensive trade study conducted during the initial phase of an exploration rover program. The lidar utilizes an innovative scanner coupled with a compact fiber laser and high-speed timing electronics. Compared to existing compact lidar systems, distinguishing features of the HSSL include its high accuracy, high resolution, high refresh rate and large field of view. Other benefits of this design include the capability to quickly configure scan settings to fit various operational modes.
Estimation of shoreline position and change using airborne topographic lidar data
Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A.
2002-01-01
A method has been developed for estimating shoreline position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ?? 1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.
NASA Astrophysics Data System (ADS)
DeLong, S. B.; Avdievitch, N. N.
2014-12-01
As high-resolution topographic data become increasingly available, comparison of multitemporal and disparate datasets (e.g. airborne and terrestrial lidar) enable high-accuracy quantification of landscape change and detailed mapping of surface processes. However, if these data are not properly managed and aligned with maximum precision, results may be spurious. Often this is due to slight differences in coordinate systems that require complex geographic transformations and systematic error that is difficult to diagnose and correct. Here we present an analysis of four airborne and three terrestrial lidar datasets collected between 2003 and 2014 that we use to quantify change at an active earthflow in Mill Gulch, Sonoma County, California. We first identify and address systematic error internal to each dataset, such as registration offset between flight lines or scan positions. We then use a variant of an iterative closest point (ICP) algorithm to align point cloud data by maximizing use of stable portions of the landscape with minimal internal error. Using products derived from the aligned point clouds, we make our geomorphic analyses. These methods may be especially useful for change detection analyses in which accurate georeferencing is unavailable, as is often the case with some terrestrial lidar or "structure from motion" data. Our results show that the Mill Gulch earthflow has been active throughout the study period. We see continuous downslope flow, ongoing incorporation of new hillslope material into the flow, sediment loss from hillslopes, episodic fluvial erosion of the earthflow toe, and an indication of increased activity during periods of high precipitation.
A generalized adaptive mathematical morphological filter for LIDAR data
NASA Astrophysics Data System (ADS)
Cui, Zheng
Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.
Determination of smoke plume and layer heights using scanning lidar data
Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; Shawn Urbanski; Wei Min Hao
2009-01-01
The methodology of using mobile scanning lidar data for investigation of smoke plume rise and high-resolution smoke dispersion is considered. The methodology is based on the lidar-signal transformation proposed recently [Appl. Opt. 48, 2559 (2009)]. In this study, similar methodology is used to create the atmospheric heterogeneity height indicator (HHI...
DOT National Transportation Integrated Search
2012-03-01
This report describes Phase Two enhancement of terrestrial LiDAR scanning for bridge damage : evaluation that was initially developed in Phase One. Considering the spatial and reflectivity : information contained in LiDAR scans, two detection algorit...
Backscatter nephelometer to calibrate scanning lidar
Cyle E. Wold; Vladmir A. Kovalev; Wei Min Hao
2008-01-01
The general concept of an open-path backscatter nephelometer, its design, principles of calibration and the operational use are discussed. The research-grade instrument, which operates at the wavelength 355 nm, will be co-located with a scanning-lidar at measurement sites near wildfires, and used for the lidar calibration. Such a near-end calibration has significant...
NASA Astrophysics Data System (ADS)
Rudaz, Benjamin; Carrea, Dario; Antonio, Abellan; Jaboyedoff, Michel; Klotz, Sébastien
2016-04-01
The black marls outcrops of Draix (SE France) are an ideal site to study multiple erosional processes such as rain splashing, sheet erosion, concentrated flow erosion and micro-landslides. Their erosion constitute an important contribution to the bedload and suspended load of the Durance river basin, which can affect human infrastructure such as hydroelectric dams, irrigation systems and in general river maintenance. The badlands response to climatic events is thus crucial for long term management of those human endeavours. The topographical changes resulting from those different processes can be quantified and localized in both space and time, with repeated LiDAR acquisitions of high-resolution topography (up to 10 pts per cm2). To avoid shadowing induced vy vegetation or topography's curvature, an instrumented individual gully (named Roubinette) is equipped with a 4 m high scanning tower. It is small enough (400 m2) that the LiDAR can acquire it with no shadowing and in one scan, reducing merging and alignment errors. Seasonal acquisitions have been carried out since 2011, constituting a comprehensive dataset of the gully's evolution. The aligned scans are then converted to square grids and compared vertically to obtain DEMs of differences (DoD). Concentrated flow erosion, volume remobilization inside the secondary gullies and micro-landslides are easily detected by the DoD. Diffuse erosion is detected using a space-time filter to improve detection level accuracy. Combined with local meteorological data, photographic monitoring and sediment trap content data, a sequence of events can be reconstituted between each acquisition.
Lidars as an operational tool for meteorology and advanced atmospheric research
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; Dinoev, Todor; Serikov, Ilya; Froidevaux, Martin; Bartlome, Marcel; Calpini, Bertrand; Bobrovnikov, Sergei; Ristori, Pablo; van den Bergh, Hubert; Parlange, Marc; Archinov, Yury
2010-05-01
The talk will present the concept and observation results of three advanced lidar systems developed recently at the Swiss federal Institute of Technology- Lausanne (EPFL) Switzerland. Two of the systems are Raman lidars for simultaneous water vapor, temperature and aerosol observations and the third one is an ozone UV DIAL system. The Ranan lidars use vibrational water vapor and nitrogen signals to derive water vapor mixing ratio and temperature, aerosol extinction and backscatter are measured using pure-rotational Raman and elastic signals. The first Raman lidar (RALMO) is a fully automated, water vapor /temperature/aerosol lidar developed for operational use by the Swiss meteorological office (MeteoSiss). The lidar supplies water vapor mixing ratio and temperature plus aerosol extinction and backscatter coefficients at 355 nm. The operational range of the lidar is 100-7000 m (night time) and 100- 5000 m (daytime) with time resolution of 30 min. The spatial resolution varies with height from 25 to 300 m in order to maintain the maximum measurement error of 10%. The system is designed to provide long-term database with minimal instrument-induced variations in time of the measured parameters. The lidar has been in regular operation in the main aerological station of Meteoswiss- Payerne since September 2008. The second Raman lidar is a new generation, solar-blind system with an operational range 10-500 m and high spatial (1.5 m) and temporal (1 s) resolutions designed for simultaneous humidity, temperature, and aerosol measurements in the lower atmosphere. To maintain the measurement accuracy while operating with fixed spatial and temporal resolution, the receiver is designed to provide lower than ten dynamic range of the signals within the distance range of the lidar. The lidar has 360° azimuth and 240°elevation scanning ability. The lidar was used in two field campaigns aiming to study the structure of the lower atmosphere over complex terrains and, in particular, to advance our understanding of turbulent blending mechanisms in the unstable atmosphere. The third lidar is an ozone UV DIAL system designed for studies of the upper troposphere, lower stratosphere ozone exchange processes. The lidar is based on a commercial fourth harmonic Nd:YAG laser. The DIAL wavelengths (284 and 304 nm) are produced by stimulated Raman conversion in high pressure nitrogen. A 76 cm in diameter Cassegrein telescope is used in the receiver and the spectral separation of the signals is carried out by an imaging-grating based polychromator. The operational distance of the lidar is 6000 -12000 m ASL with a statistical error lower than 10%. The lidar is deployed at the High Altitude Research Station Jungfraujoch at 3600 m altitude in the Swiss Alps. The lidar accuracy was verified by comparison to profiles taken by ECC balloon-borne sondes launched by Meteoswiss from Payerne. The lidar has been in use from September 2008 and since that time several stratospheric intrusions and cases of intercontinental transport and transport from the atmospheric boundary layer have been observed.
Holographic Optical Elements as Scanning Lidar Telescopes
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.
2003-01-01
We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.
Wind turbine wake characterization from temporally disjunct 3-D measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui
Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes tomore » probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. Lastly, we find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.« less
Wind turbine wake characterization from temporally disjunct 3-D measurements
Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui; ...
2016-11-10
Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes tomore » probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. Lastly, we find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.« less
Gao, Yanbin; Liu, Shifei; Atia, Mohamed M.; Noureldin, Aboelmagd
2015-01-01
This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory. PMID:26389906
Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data
Weekley, R. Andrew; Goodrich, R. Kent; Cornman, Larry B.
2016-04-06
An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinatemore » system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.« less
Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd
2015-09-15
This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.
NASA Technical Reports Server (NTRS)
Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.
2012-01-01
The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized forest AGB sampling errors by 15 - 38%. Furthermore, spaceborne global scale accuracy requirements were achieved. At least 80% of the grid cells at 100m, 250m, 500m, and 1km grid levels met AGB density accuracy requirements using a combination of passive optical and SAR along with machine learning methods to predict vegetation structure metrics for forested areas without LiDAR samples. Finally, using either passive optical or SAR, accuracy requirements were met at the 500m and 250m grid level, respectively.
Extraction of tidal channel networks from airborne scanning laser altimetry
NASA Astrophysics Data System (ADS)
Mason, David C.; Scott, Tania R.; Wang, Hai-Jing
Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm specifically designed for extracting tidal networks from LiDAR data is able to achieve substantially improved results compared with those obtained using standard algorithms for drainage network extraction from Digital Terrain Models.
Wade T. Tinkham; Alistair M. S. Smith; Chad Hoffman; Andrew T. Hudak; Michael J. Falkowski; Mark E. Swanson; Paul E. Gessler
2012-01-01
Light detection and ranging, or LiDAR, effectively produces products spatially characterizing both terrain and vegetation structure; however, development and use of those products has outpaced our understanding of the errors within them. LiDAR's ability to capture three-dimensional structure has led to interest in conducting or augmenting forest inventories with...
Holographic Optical Elements as Scanning Lidar Telescopes
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.
2005-01-01
We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.
Automated Mounting Bias Calibration for Airborne LIDAR System
NASA Astrophysics Data System (ADS)
Zhang, J.; Jiang, W.; Jiang, S.
2012-07-01
Mounting bias is the major error source of Airborne LIDAR system. In this paper, an automated calibration method for estimating LIDAR system mounting parameters is introduced. LIDAR direct geo-referencing model is used to calculate systematic errors. Due to LIDAR footprints discretely sampled, the real corresponding laser points are hardly existence among different strips. The traditional corresponding point methodology does not seem to apply to LIDAR strip registration. We proposed a Virtual Corresponding Point Model to resolve the corresponding problem among discrete laser points. Each VCPM contains a corresponding point and three real laser footprints. Two rules are defined to calculate tie point coordinate from real laser footprints. The Scale Invariant Feature Transform (SIFT) is used to extract corresponding points in LIDAR strips, and the automatic flow of LIDAR system calibration based on VCPM is detailed described. The practical examples illustrate the feasibility and effectiveness of the proposed calibration method.
Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR
NASA Astrophysics Data System (ADS)
Gao, Yang; Zhong, Ruofei; Tang, Tao; Wang, Liuzhao; Liu, Xianlin
2017-08-01
Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness (p) and completeness (r) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR.
LOSA-M3: multi-wave polarization scanning lidar for research of the troposphere and cirrus clouds
NASA Astrophysics Data System (ADS)
Kokhanenko, G. P.; Balin, Yu. S.; Klemasheva, M. G.; Penner, I. E.; Nasonov, S. V.; Samoilova, S. V.
2017-11-01
Lidar is designed to study the aerosol fields of the troposphere and the polarization characteristics of crystal clouds. Two laser wavelengths are used - 1064 and 532 nm, elastic scattering signals and spontaneous Raman scattering of nitrogen (607 nm) are recorded. Lidar is made in a mobile version, allowing its transportation by road and working under expeditionary conditions. The lidar transceiver is placed on a scanning column, which allows to change the direction of sounding within the upper hemisphere at a speed of 1 degree per second. The polarization characteristics of the transmitter and receiver can be changed by rotating the phase plates synchronously with the the laser pulses. In combination with conical scanning of the lidar, this makes it possible to detect the anisotropy of scattering and the possible azimuthal orientation of the crystal particles.
Case Study Analyses of the Success DC-8 Scanning Lidar Database
NASA Technical Reports Server (NTRS)
Uthe, Edward E.
2000-01-01
Under project SUCCESS (Subsonic Aircraft Contrail and Cloud Effects Special Study) funded by the Atmospheric Effects of Aviation Program, SRI International (SRI) developed an angular scanning back'scatter lidar for operation on the NASA DC-8 research aircraft and deployed the scanning lidar during the SUCCESS field campaign. The primary purpose of the lidar was to generate real-time video displays of clouds and contrails above, ahead of, and below the DC-8 as a means to help position the aircraft for optimum cloud and contrail sampling by onboard in situ sensors, and to help extend the geometrical domain of the in situ sampling records. A large, relatively complex lidar database was collected and several data examples were processed to illustrate the value of the lidar data for interpreting the other data records collected during SUCCESS. These data examples were used to develop a journal publication for the special SUCCESS Geophysical Research Letters issue (reprint presented as Appendix A). The data examples justified data analyses of a larger part of the DC-8 lidar database and is the objective of the current study.
Probabilistic change mapping from airborne LiDAR for post-disaster damage assessment
NASA Astrophysics Data System (ADS)
Jalobeanu, A.; Runyon, S. C.; Kruse, F. A.
2013-12-01
When both pre- and post-event LiDAR point clouds are available, change detection can be performed to identify areas that were most affected by a disaster event, and to obtain a map of quantitative changes in terms of height differences. In the case of earthquakes in built-up areas for instance, first responders can use a LiDAR change map to help prioritize search and recovery efforts. The main challenge consists of producing reliable change maps, robust to collection conditions, free of processing artifacts (due for instance to triangulation or gridding), and taking into account the various sources of uncertainty. Indeed, datasets acquired within a few years interval are often of different point density (sometimes an order of magnitude higher for recent data), different acquisition geometries, and very likely suffer from georeferencing errors and geometric discrepancies. All these differences might not be important for producing maps from each dataset separately, but they are crucial when performing change detection. We have developed a novel technique for the estimation of uncertainty maps from the LiDAR point clouds, using Bayesian inference, treating all variables as random. The main principle is to grid all points on a common grid before attempting any comparison, as working directly with point clouds is cumbersome and time consuming. A non-parametric approach based on local linear regression was implemented, assuming a locally linear model for the surface. This enabled us to derive error bars on gridded elevations, and then elevation differences. In this way, a map of statistically significant changes could be computed - whereas a deterministic approach would not allow testing of the significance of differences between the two datasets. This approach allowed us to take into account not only the observation noise (due to ranging, position and attitude errors) but also the intrinsic roughness of the observed surfaces occurring when scanning vegetation. As only elevation differences above a predefined noise level are accounted for (according to a specified confidence interval related to the allowable false alarm rate) the change detection is robust to all these sources of noise. To first validate the approach, we built small-scale models and scanned them using a terrestrial laser scanner to establish 'ground truth'. Changes were manually applied to the models then new scans were performed and analyzed. Additionally, two airborne datasets of the Monterey Peninsula, California, were processed and analyzed. The first one was acquired during 2010 (with relatively low point density, 1-3 pts/m2), and the second one was acquired during 2012 (with up to 30 pts/m2). To perform the comparison, a new point cloud registration technique was developed and the data were registered to a common 1 m grid. The goal was to correct systematic shifts due to GPS and INS errors, and focus on the actual height differences regardless of the absolute planimetric accuracy of the datasets. Though no major disaster event occurred between the two acquisition dates, sparse changes were detected and interpreted mostly as construction and natural landscape evolution.
Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System
NASA Technical Reports Server (NTRS)
Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott
2006-01-01
In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls velocity accuracy.
Field evaluation of remote wind sensing technologies: Shore-based and buoy mounted LIDAR systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrington, Thomas
In developing a national energy strategy, the United States has a number of objectives, including increasing economic growth, improving environmental quality, and enhancing national energy security. Wind power contributes to these objectives through the deployment of clean, affordable and reliable domestic energy. To achieve U.S. wind generation objectives, the Wind and Water Power Program within the Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE) instituted the U.S. Offshore Wind: Removing Market Barriers Program in FY 2011. Accurate and comprehensive information on offshore wind resource characteristics across a range of spatial and temporal scales is one marketmore » barrier that needs to be addressed through advanced research in remote sensing technologies. There is a pressing need for reliable offshore wind-speed measurements to assess the availability of the potential wind energy resource in terms of power production and to identify any frequently occurring spatial variability in the offshore wind resource that may impact the operational reliability and lifetime of wind turbines and their components and to provide a verification program to validate the “bankability” of the output of these alternative technologies for use by finance institutions for the financing of offshore wind farm construction. The application of emerging remote sensing technologies is viewed as a means to cost-effectively meet the data needs of the offshore wind industry. In particular, scanning and buoy mounted LIDAR have been proposed as a means to obtain accurate offshore wind data at multiple locations without the high cost and regulatory hurdles associated with the construction of offshore meteorological towers. However; before these remote sensing technologies can be accepted the validity of the measured data must be evaluated to ensure their accuracy. The proposed research will establish a unique coastal ocean test-bed in the Mid-Atlantic for the evaluation of LIDAR-based wind measurement systems to validate the accuracy of remotely measured wind data in marine applications. Specifically, the test-bed will be utilized to systematically evaluate the capability of emerging scanning LIDAR and buoy mounted vertically profiling LIDAR by: (1) Evaluating a fixed scanning LIDAR against land-based 50 and 60 meter high meteorological masts fitted with research quality cup-vane and/or sonic anemometers; (2) Evaluating a buoy mounted vertically profiling LIDAR fixed on land and floating in a sheltered bay against a co-located 60 meter high meteorological mast fitted with a research quality cup-vane and/or sonic anemometers and the fixed scanning LIDAR; and (3) Offshore field evaluation of both LIDAR platforms through a comparison of the fixed scanning LIDAR data and data obtained by the buoy mounted LIDAR located 10 miles offshore. The proposed research will systematically validate Light Detection and Ranging (LIDAR) based wind measurement systems and assess the temporal and spatial variability of the offshore wind resource in the Mid-Atlantic east of New Jersey. The goal of the proposed project is to address the technical and commercial challenges of the offshore wind energy industry by validating and assessing cost-effective, over ocean wind resource characterization technologies. The objective is to systematically evaluate the capability of both scanning and vertically profiling LIDARs to accurately measure 3D wind fields through comparison with fixed met masts and intercomparison among LIDAR platforms. Once validated, data collected by both buoy mounted vertically profiling LIDARs and shore-based, pulsed horizontally scanning LIDARs can be used to accurately assess offshore wind resources and to quantify the spatial and temporal variability in the offshore wind fields. One of the fundamental research questions to be addressed in phase 1 is the assessment of various measurement and data processing schemes to retrieve accurate wind vectors in the marine environment over large sampling ranges (10 to 12 km) and varying atmospheric aerosol levels. Atmospheric conditions and aerosol content within the coastal ocean region of the Mid-Atlantic seaboard of the US can vary significantly over short time periods in response to frontal passages and extratropical and tropical low pressure system passage offshore of the coast. Since aerosols provide the scattering medium for the determination of LIDAR Doppler shifts in the atmosphere the accuracy and range of LIDAR derived velocity measurements as a function of variation in aerosol content in the marine environment is a key research question to be addressed. In phase 1, it is desired to capture as much variation in atmospheric conditions and aerosol content as possible. To this end, collocated measurements of LIDAR and standard anemometer wind fields will be captured by the project PIs over all four seasons and during specific events (e.g., coastal low pressure system passage) in year 1. Additionally, since the meteorological masts are permanent structures, additional events can be captured over the three year duration of the field research project. All research instruments are owned by Fishermen’s Energy and made available to the PIs though a lease agreement as part of the DOE grant. Energy Fishermen’s Energy will be responsible for the operation and maintenance of the scanning LIDAR and met mast anemometers. On a daily basis, environmental data and systems performance indicators will be transmitted from each measurement station to the Fishermen’s project team consisting of both in-house personnel and equipment manufacturer engineers. Data sets include compiled LIDAR files as well as data sets from ancillary sensors. Diagnostic parameters to be monitored include standard deviations of measured values, battery levels and charging systems output, and the operational status. Once data have been confirmed as complete and reliable, files will be transferred to the Garrad Hassan (a subcontractor to Fishermen’s Energy) for incorporation in to the validation database, which is accessible to other scientific team members. Data collection times and durations will be determined by the PI and Co-PIs in consultation with instrument engineers to ensure the capture of data representative of the expected range of mid-Atlantic atmospheric conditions (e.g., temperature, moisture, coastal low pressure systems, tropical systems, rain, snow, fog). The collection and processing of the data is a function of site specific measurement requirements (Kelley et.al. 2007; Hannon et.al. 2008). To determine the optimal profiles of wind speed and direction from the LIDAR radial velocities as a function of azimuth angle, rigorous estimates of the bias and random error of each radial velocity estimate are required. Lockheed Martin Coherent Technologies, Inc., under contract with Fishermen’s Energy, will provide analyses of raw and processed data using various scan patterns to determine optimal performance settings for the pulsed scanning LIDAR. Once optimized, appropriate processing and analyses techniques will be evaluated by Garrad Hassan for use in validating the accuracy of the LIDAR wind field measurements against the standard anemometer measurements from the meteorological masts. The most attractive capability of the scanning LIDAR is the ability to provide high spatial resolution observations in a three-dimensional volume which provides superior statistical accuracy due to the large number of samples obtained. Each radial scan provides measurements in 100 range gates over a distance of 10 to 12 km at an update rate of 5 to 10 Hz and rotation of 2.5° per second. Each rotation at a fixed azimuth requires 2.4 minutes. Depending on the number of azimuths desired a complete scan can take up to 10 minutes or longer to complete. Once collected the radial velocities are processed to produce vector wind velocity estimates based on a set of data distributed in angle and range around points of interest, typically a standard grid within the radial wind map. To calculate wind vectors over a limited spatial area of interest for the comparison of data with other measurement platforms a localized least-squares approach has been applied by Hannon et.al. (2008) and a Variation Assimilation (VAR) processing technique has been applied by Chan and al Assimilation (VAR) processing technique has been applied by Chan and Shao (2006). Additionally, Kelley et.al. (2007) applied a “stare” technique that fixed a scanning LIDAR in both azimuth and elevation angles to measure over collocated sampling volumes of the LIDAR and a 3D sonic anemometer mounted to a fixed mast. Although the stare technique is limited to wind directions aligned with the sampling radial of the LIDAR, it does provide a direct comparison of sampling volumes. Each of the processing techniques described above (and possibly others) will be evaluated to determine the validity of the LIDAR derived wind fields in the marine environment. Numerical methods such as linear regression and comparison of probability density functions of wind fields measured by each instrument platform will be used to assess the processing techniques. Linear regression has the advantage of directly evaluating corresponding pairs of wind data measured by each instrument and can lend insight into deviations and bias between instruments as a function of wind speed. Assessment of the coherency between the probability density function of the wind measured by each instrument provides insight into processes that may not be accurately resolved by each instrument at specific frequencies. Once processed and assessed the most appropriate technique will be utilized to provide valid wind measurements from the pulsed scanning LIDAR. A detailed analysis of the measurement data from the LIDAR and the three meteorological towers and comparison of the coastal wind characteristics from the different systems will be performed by the CO_PI at NREL. This analysis will evaluate how the WT LIDAR performance and measurement of the wind characteristics vary with distance from the LIDAR and by atmospheric conditions; using the tower measurements at different distances (4.8, 9.6, and 19 km) from the LIDAR as a reference. The comparative analysis will include, to the extent possible, evaluation of parameters such as wind speed and direction distributions, wind shear, turbulence intensity and their variations by atmospheric conditions, month or season, and time of day.« less
Lidar - DOE ARM StreamLine Doppler Lidar (Halo) - Raw Data
Newsom, Rob
2017-11-20
1. Evaluate performance of the Halo Photonics Streamline lidar against a calibrated reference (i.e. the BAO tower). 2. Provide measurements of vertical velocity for use with other scanning lidars to better constrain velocity retrievals. 3. Provide colocated reference for comparison with Vindicator lidars.
Morales, Jesús; Plaza-Leiva, Victoria; Mandow, Anthony; Gomez-Ruiz, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso
2018-01-30
Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley's K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL.
Plaza-Leiva, Victoria; Serón, Javier
2018-01-01
Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley’s K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL. PMID:29385705
NASA DC-8 Airborne Scanning Lidar Sensor Development
NASA Technical Reports Server (NTRS)
Nielsen, Norman B.; Uthe, Edward E.; Kaiser, Robert D.; Tucker, Michael A.; Baloun, James E.; Gorordo, Javier G.
1996-01-01
The NASA DC-8 aircraft is used to support a variety of in-situ and remote sensors for conducting environmental measurements over global regions. As part of the atmospheric effects of aviation program (AEAP) the DC-8 is scheduled to conduct atmospheric aerosol and gas chemistry and radiation measurements of subsonic aircraft contrails and cirrus clouds. A scanning lidar system is being developed for installation on the DC-8 to support and extend the domain of the AEAP measurements. Design and objectives of the DC-8 scanning lidar are presented.
Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars
NASA Astrophysics Data System (ADS)
Mikkelsen, T.; Mann, J.; Courtney, M.; Sjöholm, M.
2008-05-01
At RISØ DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed.
DOT National Transportation Integrated Search
2012-03-01
This report focused on two potential applications of terrestrial LiDAR scans on highway : bridges: 1) vehicle crossing effects measured by3-D, terrestrial LiDAR scans of highway bridges : measuring clearance distance; and 2) bridge post-blast geometr...
First Results of the Land Atmosphere Feedback Experiment
NASA Astrophysics Data System (ADS)
Wulfmeyer, V.; Turner, D. D.
2017-12-01
The Land-Atmosphere Feedback Experiment (LAFE) deployed several state-of-the-art scanning lidar and remote sensing systems to the ARM SGP site during August 2017. A novel synergy of remote sensing systems was applied for simultaneous measurements of land-surface fluxes and horizontal and vertical transport processes in the atmospheric boundary layer (ABL). The impact of spatial inhomogeneities of the soil-vegetation continuum on LA feedback was studied using the scanning capability of the instrumentation as well as soil, vegetation, and surface flux measurements. The synergy of remote sensing and in-situ instruments consisted of three components: 1) The SGP water-vapor and temperature Raman lidar, the SGP Doppler lidar, the University of Hohenheim (UHOH) Doppler lidar, and the NCAR water-vapor DIAL to measure mean profiles and gradients of moisture, temperature, and horizontal wind. Due to their high vertical and temporal resolutions, also profiles of higher-order turbulent moments in the water vapor and wind fields as well as of profiles of the latent heat flux, the sensible heat flux, TKE, and momentum flux were observed. 2) A novel scanning lidar system synergy consisting of the NOAA High-Resolution Doppler lidar, the UHOH water-vapor differential absorption lidar, and the UHOH temperature rotational Raman lidar. These systems performed coordinated range-height indicator (RHI) scans from just above the canopy level to the lower troposphere including the interfacial layer at the ABL top. This component was augmented by three energy balance closure towers of NOAA and one EBC station of UHOH. 3) The University of Wisconsin SPARC and the University of Oklahoma CLAMPS systems operating two vertically pointing atmospheric emitted radiance interferometers and two Doppler lidar systems scanning cross track to the central RHI for determining the surface friction velocity and the horizontal variability of temperature, moisture, and wind. NOAA ARL also provided UAS and aircraft measurements (Navajo Piper) in accordance with the surface scans. Thus, both the variability of surface fluxes and CBL dynamics and thermodynamics over the SGP site was studied for the first time. This is essential for advanced observation and understanding of LA feedback. First results are presented at the conference.
Modelling rating curves using remotely sensed LiDAR data
Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.
2012-01-01
Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations.
A Scanning scheimpflug lidar system developed for urban pollution monitoring
NASA Astrophysics Data System (ADS)
Yang, Yang; Guan, Peng; Mei, Liang
2018-04-01
A scanning Scheimpflug lidar system based on the Scheimpflug principle has been developed by employing a high power multimode 808 nm laser diode and a highly integrated CMOS sensor in Dalian University of Technology, Dalian, Northern China. Atmospheric scanning measurements in urban area were performed for the studies of particle emission sources.
3D Modeling of Landslide in Open-pit Mining on Basis of Ground-based LIDAR Data
NASA Astrophysics Data System (ADS)
Hu, H.; Fernandez-Steeger, T. M.; Azzam, R.; Arnhardt, C.
2009-04-01
Slope stability is not only an important problem which is related to production and safety in open-pit mining, but also very complex task. There are three main reasons which affect the slope stability as follows: geotechnical factors: Geological structure, lithologic characteristics, water, cohesion, friction, etc.; climate factors: Rainfall and temperature; and external factors: Open-pit mining process, explosion vibration, dynamic load, etc.. The 3rd reason, as a specially one in open-pit mining, not only causes some dynamic problems but also induces the fast geometry changing which must be considered in the following research using numerical simulation and stability analysis. Recently, LIDAR technology has been applied in many fields and places in the world wide. Ground-based LIDAR technology with high accuracy up to 3mm increasingly accommodates to monitoring landslides and detecting changing. LIDAR data collection and preprocessing research have been carried out by Department of Engineering Geology and Hydrogeology at RWTH Aachen University. LIDAR data, so-called a point-cloud of mass data in high density can be obtained in short time for the sensitive open-pit mining area by using ground-based LIDAR. To obtain a consistent surface model, it is necessary to set up multiple scans with the ground-based LIDAR. The framework of data preprocessing which can be implemented by Poly-Works is introduced as follows: gross error detection and elimination, integration of reference frame, model fusion of different scans (re-sampled in overlap region), data reduction without removing the useful information which is a challenge and research front in LIDAR data processing. After data preprocessing, 3D surface model can be directly generated in Poly-Works or generated in other software by building the triangular meshes. The 3D surface landslide model can be applied to further researches such as: real time landslide geometry monitoring due to the fast data collection and processing; change detecting by means of overlying different periods of topographic or geometric data; FEM (Finite Element Method) numerical simulation on basis of combining with the geotechnical properties and parameters to analyze slope stability and predict future movements for designing and rectifying the open-pit mining process; using the reverse engineering thought for developing constitutive models. An improved 3D surface model (HRDEM) which is based on fast data collection and precise data processing on basis of ground-based LIDAR technology is important contribution for further researches of slope stability in open-pit mining area.
A Backscatter-Lidar Forward-Operator
NASA Astrophysics Data System (ADS)
Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Vogel, Bernhard; Mattis, Ina; Flentje, Harald; Förstner, Jochen; Potthast, Roland
2015-04-01
We have developed a forward-operator which is capable of calculating virtual lidar profiles from atmospheric state simulations. The operator allows us to compare lidar measurements and model simulations based on the same measurement parameter: the lidar backscatter profile. This method simplifies qualitative comparisons and also makes quantitative comparisons possible, including statistical error quantification. Implemented into an aerosol-capable model system, the operator will act as a component to assimilate backscatter-lidar measurements. As many weather services maintain already networks of backscatter-lidars, such data are acquired already in an operational manner. To estimate and quantify errors due to missing or uncertain aerosol information, we started sensitivity studies about several scattering parameters such as the aerosol size and both the real and imaginary part of the complex index of refraction. Furthermore, quantitative and statistical comparisons between measurements and virtual measurements are shown in this study, i.e. applying the backscatter-lidar forward-operator on model output.
Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements
NASA Astrophysics Data System (ADS)
Sand, S. C.; Pichugina, Y. L.; Brewer, A.
2016-12-01
Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.
NASA Astrophysics Data System (ADS)
Richter, Dale A.; Higdon, N. S.; Ponsardin, Patrick L.; Sanchez, David; Chyba, Thomas H.; Temple, Doyle A.; Gong, Wei; Battle, Russell; Edmondson, Mika; Futrell, Anne; Harper, David; Haughton, Lincoln; Johnson, Demetra; Lewis, Kyle; Payne-Baggott, Renee S.
2002-01-01
ITTs Advanced Engineering and Sciences Division and the Hampton University Center for Lidar and Atmospheric Sciences Students (CLASS) team have worked closely to design, fabricate and test an eye-safe, scanning aerosol-lidar system that can be safely deployed and used by students form a variety of disciplines. CLASS is a 5-year undergraduate- research training program funded by NASA to provide hands-on atmospheric-science and lidar-technology education. The system is based on a 1.5 micron, 125 mJ, 20 Hz eye-safe optical parametric oscillator (OPO) and will be used by the HU researchers and students to evaluate the biological impact of aerosols, clouds, and pollution a variety of systems issues. The system design tasks we addressed include the development of software to calculate eye-safety levels and to model lidar performance, implementation of eye-safety features in the lidar transmitter, optimization of the receiver using optical ray tracing software, evaluation of detectors and amplifiers in the near RI, test of OPO and receiver technology, development of hardware and software for laser and scanner control and video display of the scan region.
The new scanning iron lidar, current state and future developments
NASA Astrophysics Data System (ADS)
Lautenbach, J.; Höffner, J.; Menzel, P.; Keller, P.
2005-08-01
This paper gives an update on the design and developments of the new scanning Doppler iron temperature lidar. Continuous temperature profiles in the altitude range from 50 to 105 km are derived by using the iron resonance and Rayleigh backscatter signal of this lidar. We show a common volume measurement with the well established potassium and Rayleigh-Mie-Raman (RMR) lidar at the Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn (Germany, 54°N). The iron lidar temperatures match quite well and have an uncertainty of 0.4K at the top of the iron layer. Improvements for daylight capability are under development and will be pointed out.
A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry
NASA Astrophysics Data System (ADS)
Wang, Chisheng; Li, Qingquan; Liu, Yanxiong; Wu, Guofeng; Liu, Peng; Ding, Xiaoli
2015-03-01
Due to the low-cost and lightweight units, single-wavelength LiDAR bathymetric systems are an ideal option for shallow-water (<12 m) bathymetry. However, one disadvantage of such systems is the lack of near-infrared and Raman channels, which results in difficulties in extracting the water surface. Therefore, the choice of a suitable waveform processing method is extremely important to guarantee the accuracy of the bathymetric retrieval. In this paper, we test six algorithms for single-wavelength bathymetric waveform processing, i.e. peak detection (PD), the average square difference function (ASDF), Gaussian decomposition (GD), quadrilateral fitting (QF), Richardson-Lucy deconvolution (RLD), and Wiener filter deconvolution (WD). To date, most of these algorithms have previously only been applied in topographic LiDAR waveforms captured over land. A simulated dataset and an Optech Aquarius dataset were used to assess the algorithms, with the focus being on their capability of extracting the depth and the bottom response. The influences of a number of water and equipment parameters were also investigated by the use of a Monte Carlo method. The results showed that the RLD method had a superior performance in terms of a high detection rate and low errors in the retrieved depth and magnitude. The attenuation coefficient, noise level, water depth, and bottom reflectance had significant influences on the measurement error of the retrieved depth, while the effects of scan angle and water surface roughness were not so obvious.
NASA Astrophysics Data System (ADS)
Ji, Hongzhu; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan
2018-06-01
An iterative method, based on a derived inverse relationship between atmospheric backscatter coefficient and aerosol lidar ratio, is proposed to invert the lidar ratio profile and aerosol extinction coefficient. The feasibility of this method is investigated theoretically and experimentally. Simulation results show the inversion accuracy of aerosol optical properties for iterative method can be improved in the near-surface aerosol layer and the optical thick layer. Experimentally, as a result of the reduced insufficiency error and incoherence error, the aerosol optical properties with higher accuracy can be obtained in the near-surface region and the region of numerical derivative distortion. In addition, the particle component can be distinguished roughly based on this improved lidar ratio profile.
Uncertainty in multispectral lidar signals caused by incidence angle effects
Nevalainen, Olli; Hakala, Teemu; Kaasalainen, Mikko
2018-01-01
Multispectral terrestrial laser scanning (TLS) is an emerging technology. Several manufacturers already offer commercial dual or three wavelength airborne laser scanners, while multispectral TLS is still carried out mainly with research instruments. Many of these research efforts have focused on the study of vegetation. The aim of this paper is to study the uncertainty of the measurement of spectral indices of vegetation with multispectral lidar. Using two spectral indices as examples, we find that the uncertainty is due to systematic errors caused by the wavelength dependency of laser incidence angle effects. This finding is empirical, and the error cannot be removed by modelling or instrument modification. The discovery and study of these effects has been enabled by hyperspectral and multispectral TLS, and it has become a subject of active research within the past few years. We summarize the most recent studies on multi-wavelength incidence angle effects and present new results on the effect of specular reflection from the leaf surface, and the surface structure, which have been suggested to play a key role. We also discuss the consequences to the measurement of spectral indices with multispectral TLS, and a possible correction scheme using a synthetic laser footprint. PMID:29503718
Burns, W.J.; Coe, J.A.; Kaya, B.S.; Ma, Liwang
2010-01-01
We examined elevation changes detected from two successive sets of Light Detection and Ranging (LiDAR) data in the northern Coast Range of Oregon. The first set of LiDAR data was acquired during leafon conditions and the second set during leaf-off conditions. We were able to successfully identify and map active landslides using a differential digital elevation model (DEM) created from the two LiDAR data sets, but this required the use of thresholds (0.50 and 0.75 m) to remove noise from the differential elevation data, visual pattern recognition of landslideinduced elevation changes, and supplemental QuickBird satellite imagery. After mapping, we field-verified 88 percent of the landslides that we had mapped with high confidence, but we could not detect active landslides with elevation changes of less than 0.50 m. Volumetric calculations showed that a total of about 18,100 m3 of material was missing from landslide areas, probably as a result of systematic negative elevation errors in the differential DEM and as a result of removal of material by erosion and transport. We also examined the accuracies of 285 leaf-off LiDAR elevations at four landslide sites using Global Positioning System and total station surveys. A comparison of LiDAR and survey data indicated an overall root mean square error of 0.50 m, a maximum error of 2.21 m, and a systematic error of 0.09 m. LiDAR ground-point densities were lowest in areas with young conifer forests and deciduous vegetation, which resulted in extensive interpolations of elevations in the leaf-on, bare-earth DEM. For optimal use of multi-temporal LiDAR data in forested areas, we recommend that all data sets be flown during leaf-off seasons.
Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR
Reddy, Ashwan D.; Hawbaker, Todd J.; Wurster, F.; Zhu, Zhiliang; Ward, S.; Newcomb, Doug; Murray, R.
2015-01-01
Peatlands are a major reservoir of global soil carbon, yet account for just 3% of global land cover. Human impacts like draining can hinder the ability of peatlands to sequester carbon and expose their soils to fire under dry conditions. Estimating soil carbon loss from peat fires can be challenging due to uncertainty about pre-fire surface elevations. This study uses multi-temporal LiDAR to obtain pre- and post-fire elevations and estimate soil carbon loss caused by the 2011 Lateral West fire in the Great Dismal Swamp National Wildlife Refuge, VA, USA. We also determine how LiDAR elevation error affects uncertainty in our carbon loss estimate by randomly perturbing the LiDAR point elevations and recalculating elevation change and carbon loss, iterating this process 1000 times. We calculated a total loss using LiDAR of 1.10 Tg C across the 25 km2 burned area. The fire burned an average of 47 cm deep, equivalent to 44 kg C/m2, a value larger than the 1997 Indonesian peat fires (29 kg C/m2). Carbon loss via the First-Order Fire Effects Model (FOFEM) was estimated to be 0.06 Tg C. Propagating the LiDAR elevation error to the carbon loss estimates, we calculated a standard deviation of 0.00009 Tg C, equivalent to 0.008% of total carbon loss. We conclude that LiDAR elevation error is not a significant contributor to uncertainty in soil carbon loss under severe fire conditions with substantial peat consumption. However, uncertainties may be more substantial when soil elevation loss is of a similar or smaller magnitude than the reported LiDAR error.
Improvement on Timing Accuracy of LIDAR for Remote Sensing
NASA Astrophysics Data System (ADS)
Zhou, G.; Huang, W.; Zhou, X.; Huang, Y.; He, C.; Li, X.; Zhang, L.
2018-05-01
The traditional timing discrimination technique for laser rangefinding in remote sensing, which is lower in measurement performance and also has a larger error, has been unable to meet the high precision measurement and high definition lidar image. To solve this problem, an improvement of timing accuracy based on the improved leading-edge timing discrimination (LED) is proposed. Firstly, the method enables the corresponding timing point of the same threshold to move forward with the multiple amplifying of the received signal. Then, timing information is sampled, and fitted the timing points through algorithms in MATLAB software. Finally, the minimum timing error is calculated by the fitting function. Thereby, the timing error of the received signal from the lidar is compressed and the lidar data quality is improved. Experiments show that timing error can be significantly reduced by the multiple amplifying of the received signal and the algorithm of fitting the parameters, and a timing accuracy of 4.63 ps is achieved.
NASA Astrophysics Data System (ADS)
Kotchenova, Svetlana Y.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Davis, Anthony B.; Dubayah, Ralph; Myneni, Ranga B.
2003-08-01
Large footprint waveform-recording laser altimeters (lidars) have demonstrated a potential for accurate remote sensing of forest biomass and structure, important for regional and global climate studies. Currently, radiative transfer analyses of lidar data are based on the simplifying assumption that only single scattering contributes to the return signal, which may lead to errors in the modeling of the lower portions of recorded waveforms in the near-infrared spectrum. In this study we apply time-dependent stochastic radiative transfer (RT) theory to model the propagation of lidar pulses through forest canopies. A time-dependent stochastic RT equation is formulated and solved numerically. Such an approach describes multiple scattering events, allows for realistic representation of forest structure including foliage clumping and gaps, simulates off-nadir and multiangular observations, and has the potential to provide better approximations of return waveforms. The model was tested with field data from two conifer forest stands (southern old jack pine and southern old black spruce) in central Canada and two closed canopy deciduous forest stands (with overstory dominated by tulip poplar) in eastern Maryland. Model-simulated signals were compared with waveforms recorded by the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) over these regions. Model simulations show good agreement with SLICER signals having a slow decay of the waveform. The analysis of the effects of multiple scattering shows that multiply scattered photons magnify the amplitude of the reflected signal, especially that originating from the lower portions of the canopy.
Scanning elastic lidar observations of aerosol transport in New York City
NASA Astrophysics Data System (ADS)
Diaz, Adrian; Dominguez, Victor; Dobryansky, Selma; Wu, Yonghua; Arend, Mark; Vladutescu, Daniela Viviana; Gross, Barry; Moshary, Fred
2018-04-01
In this study, spatial distribution of aerosols in New York City is observed using a scanning eyesafe 532 nm elastic-backscatter micro-pulse lidar system. Observations show dynamics of the boundary layer and inhomogeneous distribution and transport of aerosols. The data acquired are complemented with simultaneous measurements of particulate matter and wind speed and direction. Furthermore, the system observations are validated by comparing them with a colocated multi-wavelength lidar.
LiDAR error estimation with WAsP engineering
NASA Astrophysics Data System (ADS)
Bingöl, F.; Mann, J.; Foussekis, D.
2008-05-01
The LiDAR measurements, vertical wind profile in any height between 10 to 150m, are based on assumption that the measured wind is a product of a homogenous wind. In reality there are many factors affecting the wind on each measurement point which the terrain plays the main role. To model LiDAR measurements and predict possible error in different wind directions for a certain terrain we have analyzed two experiment data sets from Greece. In both sites LiDAR and met, mast data have been collected and the same conditions are simulated with RisØ/DTU software, WAsP Engineering 2.0. Finally measurement data is compared with the model results. The model results are acceptable and very close for one site while the more complex one is returning higher errors at higher positions and in some wind directions.
Lidar-based Research and Innovation at DTU Wind Energy - a Review
NASA Astrophysics Data System (ADS)
Mikkelsen, T.
2014-06-01
As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars (short-range system), and another consisting of three synchronized pulsed wind lidar systems (long-range system). Today, wind lidar profilers and WindScanners are routinely deployed and operated during field tests and measurement campaigns. Lidars have been installed and operated from ground, on offshore platforms, and also as scanning lidars integrated in operating turbines. As a result, wind profiles and also detailed 3D scanning of wind and turbulence fields have been achieved: 1) of the free wind aloft, 2) over complex terrain, 3) at coastal ranges with land-sea interfaces, 4) offshore, 5) in turbine inflow induction zone, and 6) of the complex and turbulent flow fields in the wakes inside wind parks.
Cotton phenotyping with lidar from a track-mounted platform
NASA Astrophysics Data System (ADS)
French, Andrew N.; Gore, Michael A.; Thompson, Alison
2016-05-01
High-Throughput Phenotyping (HTP) is a discipline for rapidly identifying plant architectural and physiological responses to environmental factors such as heat and water stress. Experiments conducted since 2010 at Maricopa, Arizona with a three-fold sensor group, including thermal infrared radiometers, active visible/near infrared reflectance sensors, and acoustic plant height sensors, have shown the validity of HTP with a tractor-based system. However, results from these experiments also show that accuracy of plant phenotyping is limited by the system's inability to discriminate plant components and their local environmental conditions. This limitation may be overcome with plant imaging and laser scanning which can help map details in plant architecture and sunlit/shaded leaves. To test the capability for mapping cotton plants with a laser system, a track-mounted platform was deployed in 2015 over a full canopy and defoliated cotton crop consisting of a scanning LIDAR driven by Arduinocontrolled stepper motors. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at 0.1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). These tests showed that an autonomous LIDAR platform can reduce HTP logistical problems and provide the capability to accurately map cotton plants and cotton bolls. A prototype track-mounted platform was developed to test the use of LIDAR scanning for High- Throughput Phenotyping (HTP). The platform was deployed in 2015 at Maricopa, Arizona over a senescent cotton crop. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at <1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). Scanning data mapped the canopy heights and widths, and detected cotton bolls.
From LIDAR Scanning to 3d FEM Analysis for Complex Surface and Underground Excavations
NASA Astrophysics Data System (ADS)
Chun, K.; Kemeny, J.
2017-12-01
Light detection and ranging (LIDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease to use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of three-dimensional numerical model that can be used in FEM analysis. To date, however, straightforward techniques in reconstructing numerical model from the scanned data of underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating from LIDAR scanning to finite element numerical analysis, specifically converting LIDAR 3D point clouds of object containing complex surface geometry into finite element model. This methodology has been applied to the Kartchner Caverns in Arizona for the stability analysis. Numerical simulations were performed using the finite element code ABAQUS. The results indicate that the highlights of our technologies obtained from LIDAR is effective and provide reference for other similar engineering project in practice.
Estimating random errors due to shot noise in backscatter lidar observations.
Liu, Zhaoyan; Hunt, William; Vaughan, Mark; Hostetler, Chris; McGill, Matthew; Powell, Kathleen; Winker, David; Hu, Yongxiang
2006-06-20
We discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson- distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root mean square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF, uncertainties can be reliably calculated from or for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar and tested using data from the Lidar In-space Technology Experiment.
Estimating Random Errors Due to Shot Noise in Backscatter Lidar Observations
NASA Technical Reports Server (NTRS)
Liu, Zhaoyan; Hunt, William; Vaughan, Mark A.; Hostetler, Chris A.; McGill, Matthew J.; Powell, Kathy; Winker, David M.; Hu, Yongxiang
2006-01-01
In this paper, we discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson-distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root-mean-square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF uncertainties can be reliably calculated from/for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar and tested using data from the Lidar In-space Technology Experiment (LITE). OCIS Codes:
DC-8 Scanning Lidar Characterization of Aircraft Contrails and Cirrus Clouds
NASA Technical Reports Server (NTRS)
Uthe, Edward E.; Nielsen, Norman B.; Oseberg, Terje E.
1998-01-01
An angular-scanning large-aperture (36 cm) backscatter lidar was developed and deployed on the NASA DC-8 research aircraft as part of the SUCCESS (Subsonic Aircraft: Contrail and Cloud Effects Special Study) program. The lidar viewing direction could be scanned continuously during aircraft flight from vertically upward to forward to vertically downward, or the viewing could be at fixed angles. Real-time pictorial displays generated from the lidar signatures were broadcast on the DC-8 video network and used to locate clouds and contrails above, ahead of, and below the DC-8 to depict their spatial structure and to help select DC-8 altitudes for achieving optimum sampling by onboard in situ sensors. Several lidar receiver systems and real-time data displays were evaluated to help extend in situ data into vertical dimensions and to help establish possible lidar configurations and applications on future missions. Digital lidar signatures were recorded on 8 mm Exabyte tape and generated real-time displays were recorded on 8mm video tape. The digital records were transcribed in a common format to compact disks to facilitate data analysis and delivery to SUCCESS participants. Data selected from the real-time display video recordings were processed for publication-quality displays incorporating several standard lidar data corrections. Data examples are presented that illustrate: (1) correlation with particulate, gas, and radiometric measurements made by onboard sensors, (2) discrimination and identification between contrails observed by onboard sensors, (3) high-altitude (13 km) scattering layer that exhibits greatly enhanced vertical backscatter relative to off-vertical backscatter, and (4) mapping of vertical distributions of individual precipitating ice crystals and their capture by cloud layers. An angular scan plotting program was developed that accounts for DC-8 pitch and velocity.
Modelling vertical error in LiDAR-derived digital elevation models
NASA Astrophysics Data System (ADS)
Aguilar, Fernando J.; Mills, Jon P.; Delgado, Jorge; Aguilar, Manuel A.; Negreiros, J. G.; Pérez, José L.
2010-01-01
A hybrid theoretical-empirical model has been developed for modelling the error in LiDAR-derived digital elevation models (DEMs) of non-open terrain. The theoretical component seeks to model the propagation of the sample data error (SDE), i.e. the error from light detection and ranging (LiDAR) data capture of ground sampled points in open terrain, towards interpolated points. The interpolation methods used for infilling gaps may produce a non-negligible error that is referred to as gridding error. In this case, interpolation is performed using an inverse distance weighting (IDW) method with the local support of the five closest neighbours, although it would be possible to utilize other interpolation methods. The empirical component refers to what is known as "information loss". This is the error purely due to modelling the continuous terrain surface from only a discrete number of points plus the error arising from the interpolation process. The SDE must be previously calculated from a suitable number of check points located in open terrain and assumes that the LiDAR point density was sufficiently high to neglect the gridding error. For model calibration, data for 29 study sites, 200×200 m in size, belonging to different areas around Almeria province, south-east Spain, were acquired by means of stereo photogrammetric methods. The developed methodology was validated against two different LiDAR datasets. The first dataset used was an Ordnance Survey (OS) LiDAR survey carried out over a region of Bristol in the UK. The second dataset was an area located at Gador mountain range, south of Almería province, Spain. Both terrain slope and sampling density were incorporated in the empirical component through the calibration phase, resulting in a very good agreement between predicted and observed data (R2 = 0.9856 ; p < 0.001). In validation, Bristol observed vertical errors, corresponding to different LiDAR point densities, offered a reasonably good fit to the predicted errors. Even better results were achieved in the more rugged morphology of the Gador mountain range dataset. The findings presented in this article could be used as a guide for the selection of appropriate operational parameters (essentially point density in order to optimize survey cost), in projects related to LiDAR survey in non-open terrain, for instance those projects dealing with forestry applications.
NASA Astrophysics Data System (ADS)
da Costa, Renata F.; Marques, Marcia T. A.; M Macedo, Fernanda de; Andrade, Izabel da Silva; Araujo, Elaine Cristina; Correa, Thais; de Andrade Salani, Maria Helena Goncalves; Lopes, Daniel Silveira; Goncalves Guardani, Maria Lucia; Landulfo, Eduardo; Guardani, Roberto
2018-04-01
Field campaigns with a scanning multiwavelength elastic lidar coupled with a Doppler system to monitor industrial atmospheric aerosol emissions were carried out, with the objective of monitoring aerosol emission sources and plume dispersion. Since the technique provides information on the spatial and temporal distribution of aerosol concentration, the implementation of a systematic monitoring procedure is proposed as a valuable tool in air quality monitoring applied to regions of interest.
Lidar Remote Sensing for Industry and Environment Monitoring
NASA Technical Reports Server (NTRS)
Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)
2000-01-01
Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space Station. 13. Space lidar II: Using coherent Doppler lidar to estimate river discharge. 14. Poster session: Lidar technology, optics for lidar. Laser for lidar. Middle atmosphere observations. Tropospheric observations (aerosols, clouds). Boundary layer, urban pollution. Differential absorption lidar. Doppler lidar. and Space lidar.
NASA Technical Reports Server (NTRS)
Leitold, Veronika; Keller, Michael; Morton, Douglas C.; Cook, Bruce D.; Shimabukuro, Yosio E.
2015-01-01
Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. Results: We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (approx. 20 returns/sq m) data was highly accurate (mean signed error of 0.19 +/-0.97 m), while those derived from reduced-density datasets (8/sq m, 4/sq m, 2/sq m and 1/sq m) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4/sq m, the bias in height estimates translated into errors of 80-125 Mg/ha in predicted aboveground biomass. Conclusions: Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.
Leitold, Veronika; Keller, Michael; Morton, Douglas C; Cook, Bruce D; Shimabukuro, Yosio E
2015-12-01
Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (~20 returns m -2 ) data was highly accurate (mean signed error of 0.19 ± 0.97 m), while those derived from reduced-density datasets (8 m -2 , 4 m -2 , 2 m -2 and 1 m -2 ) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4 m -2 , the bias in height estimates translated into errors of 80-125 Mg ha -1 in predicted aboveground biomass. Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.
Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; Wei Min Hao
2010-01-01
Data-processing techniques for the scanning lidar data are considered that allow determining the upper and lower boundaries of the smoke plume or smoke layering in the vicinity of wildfires. The task is fulfilled by utilizing the Atmospheric Heterogeneity Height Indicator (AHHI). The AHHI is a histogram, which shows a number of heterogeneity events defined by scanning...
Stationary LiDAR for traffic and safety applications - vehicles interpretation and tracking.
DOT National Transportation Integrated Search
2014-01-01
The goal of the T-Scan project is to develop a data processing module for a novel LiDAR-based traffic scanner to collect highly accurate microscopic traffic data at road intersections. : T-Scan uses Light Detection and Ranging (LiDAR) technology that...
Remote Sensing of Multi-Level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Olivier, Lisa D.; Banta, Robert M.; Hardesty, R. Michael; Howell, James N.; Cutten, Dean R.; Johnson, Steven C.; Menzies, Robert T.; Tratt, David M.
1997-01-01
The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the troposphere and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.
Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.
Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M
1998-01-19
The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.
Aerosol backscatter lidar calibration and data interpretation
NASA Technical Reports Server (NTRS)
Kavaya, M. J.; Menzies, R. T.
1984-01-01
A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.
NASA Astrophysics Data System (ADS)
Williams, George M.
2017-03-01
Newly emerging accident-reducing, driver-assistance, and autonomous-navigation technology for automobiles is based on real-time three-dimensional mapping and object detection, tracking, and classification using lidar sensors. Yet, the lack of lidar sensors suitable for meeting application requirements appreciably limits practical widespread use of lidar in trucking, public livery, consumer cars, and fleet automobiles. To address this need, a system-engineering perspective to eyesafe lidar-system design for high-level advanced driver-assistance sensor systems and a design trade study including 1.5-μm spot-scanned, line-scanned, and flash-lidar systems are presented. A cost-effective lidar instrument design is then proposed based on high-repetition-rate diode-pumped solid-state lasers and high-gain, low-excess-noise InGaAs avalanche photodiode receivers and focal plane arrays. Using probabilistic receiver-operating-characteristic analysis, derived from measured component performance, a compact lidar system is proposed that is capable of 220 m ranging with 5-cm accuracy, which can be readily scaled to a 360-deg field of regard.
NASA Astrophysics Data System (ADS)
Schaaf, C.; Paynter, I.; Saenz, E. J.; Li, Z.; Strahler, A. H.; Peri, F.; Erb, A.; Raumonen, P.; Muir, J.; Howe, G.; Hewawasam, K.; Martel, J.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Schaefer, M.; Newnham, G.; Jupp, D. L. B.; van Aardt, J. A.; Kelbe, D.; Romanczyk, P.; Faulring, J.
2014-12-01
Terrestrial lidars are increasingly being deployed in a variety of ecosystems to calibrate and validate large scale airborne and spaceborne estimates of forest structure and biomass. While these lidars provide a wealth of high resolution information on canopy structure and understory vegetation, they tend to be expensive, slow scanning and somewhat ponderous to deploy. Therefore, frequent deployments and characterization of larger areas of a hectare or more can still be challenging. This suggests a role for low cost, ultra-portable, rapid scanning (but lower resolution) instruments -- particularly in scanning extreme environments and as a way to augment and extend strategically placed scans from the more highly capable lidars. The Canopy Biomass Lidar (CBL) is an inexpensive, highly portable, fast-scanning (33 seconds), time-of-flight, terrestrial laser scanning (TLS) instrument, built in collaboration with RIT, by U Mass Boston. The instrument uses a 905nm SICK time of flight laser with a 0.25o resolution and 30m range. The higher resolution, full-waveform Dual Wavelength Echidna® Lidar (DWEL), developed by Boston University, U Mass Lowell and U Mass Boston, builds on the Australian CSIRO single wavelength, full-waveform Echidna® Validation Instrument (EVI), but utilizes two simultaneous laser pulses at 1064 and 1548 nm to separate woody returns from those of foliage at a range of up to 100m range. The UMass Boston CBL has been deployed in rangelands (San Joaquin Experimental Range, CA), high altitude conifers (Sierra National Forest, CA), mixed forests (Harvard Forest LTER MA), tropical forests (La Selva and Sirena Biological Stations, Costa Rica), eucalypts (Karawatha, Brisbane TERN, Australia), and woodlands (Alice Holt Forest, UK), frequently along-side the DWEL, as well as in more challenging environments such as mangrove forests (Corcovado National Park, Costa Rica) and Massachusetts salt marshes and eroding bluffs (Plum Island LTER, and UMass Boston Nantucket Field Station). Multiple hemispherical point clouds can be combined to generate detailed reconstructions of ecosystem biomass and structure. By combining these scans and reconstructions, the strengths of the DWEL can be coupled with the speed and portability of the CBL to extrapolate comprehensive structure information to larger areas.
Evaluating Mesoscale Simulations of the Coastal Flow Using Lidar Measurements
NASA Astrophysics Data System (ADS)
Floors, R.; Hahmann, A. N.; Peña, A.
2018-03-01
The atmospheric flow in the coastal zone is investigated using lidar and mast measurements and model simulations. Novel dual-Doppler scanning lidars were used to investigate the flow over a 7 km transect across the coast, and vertically profiling lidars were used to study the vertical wind profile at offshore and onshore positions. The Weather, Research and Forecasting model is set up in 12 different configurations using 2 planetary boundary layer schemes, 3 horizontal grid spacings and varied sources of land use, and initial and lower boundary conditions. All model simulations describe the observed mean wind profile well at different onshore and offshore locations from the surface up to 500 m. The simulated mean horizontal wind speed gradient across the shoreline is close to that observed, although all simulations show wind speeds that are slightly higher than those observed. Inland at the lowest observed height, the model has the largest deviations compared to the observations. Taylor diagrams show that using ERA-Interim data as boundary conditions improves the model skill scores. Simulations with 0.5 and 1 km horizontal grid spacing show poorer model performance compared to those with a 2 km spacing, partially because smaller resolved wave lengths degrade standard error metrics. Modeled and observed velocity spectra were compared and showed that simulations with the finest horizontal grid spacing resolved more high-frequency atmospheric motion.
Wind observations above an urban river using a new lidar technique, scintillometry and anemometry.
Wood, C R; Pauscher, L; Ward, H C; Kotthaus, S; Barlow, J F; Gouvea, M; Lane, S E; Grimmond, C S B
2013-01-01
Airflow along rivers might provide a key mechanism for ventilation in cities: important for air quality and thermal comfort. Airflow varies in space and time in the vicinity of rivers. Consequently, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D airflow in locations which are difficult to observe with conventional approaches. For three months in the winter and spring of 2011, the airflow above the River Thames in central London was observed using a scanning Doppler lidar, a scintillometer and sonic anemometers. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65-0.68 ms(-1)) as comparisons between sonic anemometers (0.35-0.73 ms(-1)). Second, the lidar duo-beam operating strategy provided horizontal transects of wind vectors (comparison with scintillometer rmse 1.12-1.63 ms(-1)) which revealed mean and turbulent airflow across the river and surrounds; in particular, channelled airflow along the river and changes in turbulence quantities consistent with the roughness changes between built and river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on roads located on riverbanks. Copyright © 2012 Elsevier B.V. All rights reserved.
Essentials of multiangle data-processing methodology for smoke polluted atmospheres
Vladimir Kovalev; A. Petkov; Cyle Wold; Shawn Urbanski; WeiMin Hao
2011-01-01
Essentials for investigating smoke plume characteristics with scanning lidar are discussed. Particularly, we outline basic principles for determining dynamics, heights, and optical properties of smoke plumes and layers in wildfire-polluted atmospheres. Both simulated and experimental data obtained in vicinities of wildfires with a two-wavelength scanning lidar are...
NASA Astrophysics Data System (ADS)
Liu, Jing; Skidmore, Andrew K.; Jones, Simon; Wang, Tiejun; Heurich, Marco; Zhu, Xi; Shi, Yifang
2018-02-01
Gap fraction (Pgap) and vertical gap fraction profile (vertical Pgap profile) are important forest structural metrics. Accurate estimation of Pgap and vertical Pgap profile is therefore critical for many ecological applications, including leaf area index (LAI) mapping, LAI profile estimation and wildlife habitat modelling. Although many studies estimated Pgap and vertical Pgap profile from airborne LiDAR data, the scan angle was often overlooked and a nadir view assumed. However, the scan angle can be off-nadir and highly variable in the same flight strip or across different flight strips. In this research, the impact of off-nadir scan angle on Pgap and vertical Pgap profile was evaluated, for several forest types. Airborne LiDAR data from nadir (0°∼7°), small off-nadir (7°∼23°), and large off-nadir (23°∼38°) directions were used to calculate both Pgap and vertical Pgap profile. Digital hemispherical photographs (DHP) acquired during fieldwork were used as references for validation. Our results show that angular Pgap from airborne LiDAR correlates well with angular Pgap from DHP (R2 = 0.74, 0.87, and 0.67 for nadir, small off-nadir and large off-nadir direction). But underestimation of Pgap from LiDAR amplifies at large off-nadir scan angle. By comparing Pgap and vertical Pgap profiles retrieved from different directions, it is shown that scan angle impact on Pgap and vertical Pgap profile differs amongst different forest types. The difference is likely to be caused by different leaf angle distribution and canopy architecture in these forest types. Statistical results demonstrate that the scan angle impact is more severe for plots with discontinuous or sparse canopies. These include coniferous plots, and deciduous or mixed plots with between-crown gaps. In these discontinuous plots, Pgap and vertical Pgap profiles are maximum when observed from nadir direction, and then rapidly decrease with increasing scan angle. The results of this research have many important practical implications. First, it is suggested that large off-nadir scan angle of airborne LiDAR should be avoided to ensure a more accurate Pgap and LAI estimation. Second, the angular dependence of vertical Pgap profiles observed from airborne LiDAR should be accounted for, in order to improve the retrieval of LAI profiles, and other quantitative canopy structural metrics. This is especially necessary when using multi-temporal datasets in discontinuous forest types. Third, the anisotropy of Pgap and vertical Pgap profile observed by airborne LiDAR, can potentially help to resolve the anisotropic behavior of canopy reflectance, and refine the inversion of biophysical and biochemical properties from passive multispectral or hyperspectral data.
Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information
NASA Astrophysics Data System (ADS)
Hosoi, F.
2014-12-01
Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of consecutive voxels that filled the outer surface and the interior of the stem and large branches. From the model, the woody material volume of any part of the target tree can be directly calculated easily by counting the number of corresponding voxels and multiplying the result by the per-voxel volume.
Study on analysis from sources of error for Airborne LIDAR
NASA Astrophysics Data System (ADS)
Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.
2016-11-01
With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.
Ross Nelson; Hank Margolis; Paul Montesano; Guoqing Sun; Bruce Cook; Larry Corp; Hans-Erik Andersen; Ben deJong; Fernando Paz Pellat; Thaddeus Fickel; Jobriath Kauffman; Stephen Prisley
2017-01-01
Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banta, Robert M.; Pichugina, Yelena L.; Brewer, W. Alan
Wind turbine wakes in the atmosphere are three-dimensional (3D) and time dependent. An important question is how best to measure atmospheric wake properties, both for characterizing these properties observationally and for verification of numerical, conceptual, and physical (e.g., wind tunnel) models of wakes. Here a scanning, pulsed, coherent Doppler lidar is used to sample a turbine wake using 3D volume scan patterns that envelop the wake and simultaneously measure the inflow profile. The volume data are analyzed for quantities of interest, such as peak velocity deficit, downwind variability of the deficit, and downwind extent of the wake, in a mannermore » that preserves the measured data. For the case study presented here, in which the wake was well defined in the lidar data, peak deficits of up to 80% were measured 0.6-2 rotor diameters (D) downwind of the turbine, and the wakes extended more than 11D downwind. Temporal wake variability over periods of minutes and the effects of atmospheric gusts and lulls in the inflow are demonstrated in the analysis. Lidar scanning trade-offs important to ensuring that the wake quantities of interest are adequately sampled by the scan pattern, including scan coverage, number of scans per volume, data resolution, and scan-cycle repeat interval, are discussed.« less
DC-8 scanning lidar characterization of aircraft contrails and cirrus clouds
NASA Technical Reports Server (NTRS)
Nielsen, Norman B.; Uthe, Edward E. (Principal Investigator)
1996-01-01
A Subsonic Assessment (SASS) element of the overall Atmospheric Effects of Aviation Project (AEAP) was initiated by NASA to assess the atmospheric impact of subsonic aircraft. SRI was awarded a project to develop and test a scanning backscatter lidar for installation on the NASA DC-8 (year 1), participate in the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program (year 2), and conduct a comprehensive analysis of field data (year 3). A scanning mirror pod attached to the DC-8 aircraft provides for scanning lidar observations ahead of the DC-8 and fixed-angle upward or downward observations. The lidar system installed within the DC-8 transmits 275 MJ at 1.06 gm wavelength or about 130 mJ at 1.06 and 0.53 gm simultaneously. Range-resolved aerosol backscatter is displayed in real time in terms of cloud/contrail spatial distributions. The objectives of the project are to map contrail/cloud vertical distributions ahead of DC-8; provide DC-8 guidance into enhanced scattering layers; document DC-8 flight path intersection of contrail and cloud geometries (in-situ measurement positions relative to cloud/contrail shape and an extension of in-situ measurements into the vertical -- integrated contrail/cloud properties); analyze contrail/cloud radiative properties with LIRAD (combined lidar and radiometry) technique; evaluate mean particle sizes of aircraft emissions from two-wavelength observations; study contrail/cloud interactions, diffusion, and mass decay/growth; and make observations in the near-field of aircraft engine emissions. The scanning mirror pod may also provide a scanning capability for other remote sensing instruments.
On the impact of a refined stochastic model for airborne LiDAR measurements
NASA Astrophysics Data System (ADS)
Bolkas, Dimitrios; Fotopoulos, Georgia; Glennie, Craig
2016-09-01
Accurate topographic information is critical for a number of applications in science and engineering. In recent years, airborne light detection and ranging (LiDAR) has become a standard tool for acquiring high quality topographic information. The assessment of airborne LiDAR derived DEMs is typically based on (i) independent ground control points and (ii) forward error propagation utilizing the LiDAR geo-referencing equation. The latter approach is dependent on the stochastic model information of the LiDAR observation components. In this paper, the well-known statistical tool of variance component estimation (VCE) is implemented for a dataset in Houston, Texas, in order to refine the initial stochastic information. Simulations demonstrate the impact of stochastic-model refinement for two practical applications, namely coastal inundation mapping and surface displacement estimation. Results highlight scenarios where erroneous stochastic information is detrimental. Furthermore, the refined stochastic information provides insights on the effect of each LiDAR measurement in the airborne LiDAR error budget. The latter is important for targeting future advancements in order to improve point cloud accuracy.
The Registration and Segmentation of Heterogeneous Laser Scanning Data
NASA Astrophysics Data System (ADS)
Al-Durgham, Mohannad M.
Light Detection And Ranging (LiDAR) mapping has been emerging over the past few years as a mainstream tool for the dense acquisition of three dimensional point data. Besides the conventional mapping missions, LiDAR systems have proven to be very useful for a wide spectrum of applications such as forestry, structural deformation analysis, urban mapping, and reverse engineering. The wide application scope of LiDAR lead to the development of many laser scanning technologies that are mountable on multiple platforms (i.e., airborne, mobile terrestrial, and tripod mounted), this caused variations in the characteristics and quality of the generated point clouds. As a result of the increased popularity and diversity of laser scanners, one should address the heterogeneous LiDAR data post processing (i.e., registration and segmentation) problems adequately. Current LiDAR integration techniques do not take into account the varying nature of laser scans originating from various platforms. In this dissertation, the author proposes a methodology designed particularly for the registration and segmentation of heterogeneous LiDAR data. A data characterization and filtering step is proposed to populate the points' attributes and remove non-planar LiDAR points. Then, a modified version of the Iterative Closest Point (ICP), denoted by the Iterative Closest Projected Point (ICPP) is designed for the registration of heterogeneous scans to remove any misalignments between overlapping strips. Next, a region-growing-based heterogeneous segmentation algorithm is developed to ensure the proper extraction of planar segments from the point clouds. Validation experiments show that the proposed heterogeneous registration can successfully align airborne and terrestrial datasets despite the great differences in their point density and their noise level. In addition, similar testes have been conducted to examine the heterogeneous segmentation and it is shown that one is able to identify common planar features in airborne and terrestrial data without resampling or manipulating the data in any way. The work presented in this dissertation provides a framework for the registration and segmentation of airborne and terrestrial laser scans which has a positive impact on the completeness of the scanned feature. Therefore, the derived products from these point clouds have higher accuracy as seen in the full manuscript.
Differential absorption and Raman lidar for water vapor profile measurements - A review
NASA Technical Reports Server (NTRS)
Grant, William B.
1991-01-01
Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.
Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan
2014-01-01
Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880
Simulated full-waveform lidar compared to Riegl VZ-400 terrestrial laser scans
NASA Astrophysics Data System (ADS)
Kim, Angela M.; Olsen, Richard C.; Béland, Martin
2016-05-01
A 3-D Monte Carlo ray-tracing simulation of LiDAR propagation models the reflection, transmission and ab- sorption interactions of laser energy with materials in a simulated scene. In this presentation, a model scene consisting of a single Victorian Boxwood (Pittosporum undulatum) tree is generated by the high-fidelity tree voxel model VoxLAD using high-spatial resolution point cloud data from a Riegl VZ-400 terrestrial laser scanner. The VoxLAD model uses terrestrial LiDAR scanner data to determine Leaf Area Density (LAD) measurements for small volume voxels (20 cm sides) of a single tree canopy. VoxLAD is also used in a non-traditional fashion in this case to generate a voxel model of wood density. Information from the VoxLAD model is used within the LiDAR simulation to determine the probability of LiDAR energy interacting with materials at a given voxel location. The LiDAR simulation is defined to replicate the scanning arrangement of the Riegl VZ-400; the resulting simulated full-waveform LiDAR signals compare favorably to those obtained with the Riegl VZ-400 terrestrial laser scanner.
H.E. Anderson; J. Breidenbach
2007-01-01
Airborne laser scanning (LIDAR) can be a valuable tool in double-sampling forest survey designs. LIDAR-derived forest structure metrics are often highly correlated with important forest inventory variables, such as mean stand biomass, and LIDAR-based synthetic regression estimators have the potential to be highly efficient compared to single-stage estimators, which...
NASA Technical Reports Server (NTRS)
Zhao, Feng; Yang, Xiaoyuan; Strahler, Alan H.; Schaaf, Crystal L.; Yao, Tian; Wang, Zhuosen; Roman, Miguel O.; Woodcock, Curtis E.; Ni-Meister, Wenge; Jupp, David L. B.;
2013-01-01
Foliage profiles retrieved froma scanning, terrestrial, near-infrared (1064 nm), full-waveformlidar, the Echidna Validation Instrument (EVI), agree well with those obtained from an airborne, near-infrared, full-waveform, large footprint lidar, the Lidar Vegetation Imaging Sensor (LVIS). We conducted trials at 5 plots within a conifer stand at Sierra National Forest in August, 2008. Foliage profiles retrieved from these two lidar systems are closely correlated (e.g., r = 0.987 at 100 mhorizontal distances) at large spatial coverage while they differ significantly at small spatial coverage, indicating the apparent scanning perspective effect on foliage profile retrievals. Alsowe noted the obvious effects of local topography on foliage profile retrievals, particularly on the topmost height retrievals. With a fine spatial resolution and a small beam size, terrestrial lidar systems complement the strengths of the airborne lidars by making a detailed characterization of the crowns from a small field site, and thereby serving as a validation tool and providing localized tuning information for future airborne and spaceborne lidar missions.
Target 3-D reconstruction of streak tube imaging lidar based on Gaussian fitting
NASA Astrophysics Data System (ADS)
Yuan, Qingyu; Niu, Lihong; Hu, Cuichun; Wu, Lei; Yang, Hongru; Yu, Bing
2018-02-01
Streak images obtained by the streak tube imaging lidar (STIL) contain the distance-azimuth-intensity information of a scanned target, and a 3-D reconstruction of the target can be carried out through extracting the characteristic data of multiple streak images. Significant errors will be caused in the reconstruction result by the peak detection method due to noise and other factors. So as to get a more precise 3-D reconstruction, a peak detection method based on Gaussian fitting of trust region is proposed in this work. Gaussian modeling is performed on the returned wave of single time channel of each frame, then the modeling result which can effectively reduce the noise interference and possesses a unique peak could be taken as the new returned waveform, lastly extracting its feature data through peak detection. The experimental data of aerial target is for verifying this method. This work shows that the peak detection method based on Gaussian fitting reduces the extraction error of the feature data to less than 10%; utilizing this method to extract the feature data and reconstruct the target make it possible to realize the spatial resolution with a minimum 30 cm in the depth direction, and improve the 3-D imaging accuracy of the STIL concurrently.
Advances in Raman Lidar Measurements of Water Vapor
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Evans, K.; Demoz, B.; DiGirolamo, P.; Mielke, B.; Stein, B.; Goldsmith, J. E. M.; Tooman, T.; Turner, D.; Starr, David OC. (Technical Monitor)
2002-01-01
Recent technology upgrades to the NASA/GSFC Scanning Raman Lidar have permitted significant improvements in the daytime and nighttime measurement of water vapor using Raman lidar. Numerical simulation has been used to study the temperature sensitivity of the narrow spectral band measurements presented here.
Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory.
Stephen E. Reutebuch; Hans-Erik Andersen; Robert J. McGaughey
2005-01-01
Airborne laser scanning of forests has been shown to provide accurate terrain models and, at the same time, estimates of multiple resource inventory variables through active sensing of three-dimensional (3D) forest vegetation. Brief overviews of airborne laser scanning technology [often referred to as "light detection and ranging" (LIDAR)] and research...
Profiling of poorly stratified atmospheres with scanning lidar
C. E. Wold; V. A. Kovalev; A. P. Petkov; W. M. Hao
2012-01-01
The direct multiangle solution may allow inversion of the scanning lidar data even when the requirement of the horizontally stratified atmosphere is poorly met. The solution is based on two principles: (1) The signal measured in zenith is the core source for extracting the information about the atmospheric aerosol loading, and (2) The multiangle signals are used as...
1984-10-03
aerosol , and the name " laser radar" is used to denote systems de- signed for the detection of solid objects...34* MEASUREMENW OF T(Li) BY SEPARATE TRANSMISSOMETER . One method of measuring * T(Li) is by a separate transmissometer system operating at the lidar wavelength... transmissometer path may be radially outward from the lidar (along the lidar beam) to save the expense of scanning hardware in a developing lidar system ,
NASA Technical Reports Server (NTRS)
Zhao, Feng; Yang, Xiaoyuan; Schull, Mithcell A.; Roman-Colon, Miguel O.; Yao, Tian; Wang, Zhuosen; Zhang, Qingling; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius;
2011-01-01
Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different ( b0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by .0.91 m with RMSE=2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.
F. Mauro; Vicente J. Monleon; H. Temesgen; L.A. Ruiz
2017-01-01
Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (
Demystifying LiDAR technologies for temperate rainforest in the Pacific Northwest
Rhonda Mazza; Demetrios Gatziolis
2013-01-01
Light detection and ranging (LiDAR), also known as airborne laser scanning, is a rapidly emerging technology for remote sensing. Used to help map, monitor, and assess natural resources, LiDAR data were first embraced by forestry professionals in Scandinavia as a tool for conducting forest inventories in the mid to late 1990s. Thus early LiDAR theory and applications...
Test Bed Doppler Wind Lidar and Intercomparison Facility At NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey; Amzajerdian, Farzin; Yu, Ji-Rong; Singh, Upendra N.
2004-01-01
State of the art 2-micron lasers and other lidar components under development by NASA are being demonstrated and validated in a mobile test bed Doppler wind lidar. A lidar intercomparison facility has been developed to ensure parallel alignment of up to 4 Doppler lidar systems while measuring wind. Investigations of the new components; their operation in a complete system; systematic and random errors; the hybrid (joint coherent and direct detection) approach to global wind measurement; and atmospheric wind behavior are planned. Future uses of the VALIDAR (VALIDation LIDAR) mobile lidar may include comparison with the data from an airborne Doppler wind lidar in preparation for validation by the airborne system of an earth orbiting Doppler wind lidar sensor.
Highly sensitive LIDAR with a thumb-sized sensor-head built using an optical fiber preamplifier (3)
NASA Astrophysics Data System (ADS)
Inoue, Daisuke; Ichikawa, Tadashi; Matsubara, Hiroyuki; Kagami, Manabu
2013-05-01
We have developed a LIDAR system with a sensor head which, although it includes a scanning mechanism, is less than 20 cc in size. The system is not only small, but is also highly sensitive. Our LIDAR system is based on time-of-flight measurements, and incorporates an optical fiber. The main feature of our system is the utilization of optical amplifiers for both the transmitter and the receiver, and the optical amplifiers enable us to exceed the detection limit set by thermal noise. In conventional LIDAR systems the detection limit is determined by the thermal noise, because the avalanche photo-diodes (APD) and trans-impedance amplifiers (TIA) that they use detect the received signals directly. In the case of our LIDAR system, the received signal is amplified by an optical fiber amplifier before reaching the photo diode and the TIA. Therefore, our LIDAR system boosts the signal level before the weak incoming signal is depleted by thermal noise. There are conditions under which the noise figure for the combination of an optical fiber amplifier and a photo diode is superior to the noise figure for an avalanche photo diode. We optimized the gains of the optical fiber amplifier and the TIA in our LIDAR system such that it would be capable of detecting a single photon. As a result, the detection limit of our system is determined by shot noise. We have previously demonstrated scanning up to a range of 80 m with this LIDAR system with a 2 mm diameter of receiving lens. We improved the optical amplifier and the peak output power of LIDAR was over 10KW. We redesigned the sensor-head and improved coupling efficiency. As a result, we succeeded in scanning over a range of 100 m. This small and highly sensitive measurement technology shows great potential for use in LIDAR.
Five-year lidar observational results and effects of El Chichon particles on Umkehr ozone data
NASA Astrophysics Data System (ADS)
Uchino, Osamu; Tabata, Isao; Kai, Kenji; Akita, Iwao
1988-08-01
Based on the values of integrated backscattering coefficient B, obtained from the ruby lidar measurements at the Meteorological Research Institude (MRI, at Tsukuba, Japan), the effect of dust particles due to two volcanic eruptions of Mt. El Chichon in 1982 on the Umkehr ozone data at the Tateno Aerological Observatory was determined. In addition, the effects of the aerosols on the Umkehr ozone data at Arosa, Switzerland were investigated using lidar data collected at Garmisch-Partenkirchen, Germany. It was found that both stratospheric and tropospheric aerosols induced a significant negative ozone error in the uppermost layers (33-47 km), caused a small and usually negative ozone error in layers between 16 and 33 km, and induced a significant positive ozone error in layers between 6 and 16 km.
Optical design for uniform scanning in MEMS-based 3D imaging lidar.
Lee, Xiaobao; Wang, Chunhui
2015-03-20
This paper proposes a method for the optical system design of uniform scanning in a larger scan field of view (FOV) in 3D imaging lidar. The theoretical formulas are derived for the design scheme. By employing the optical design software ZEMAX, a foldaway uniform scanning optical system based on MEMS has been designed, and the scanning uniformity and spot size of the system on the target plane, perpendicular to optical axis, are analyzed and discussed. Results show that the designed system can scan uniformly within the FOV of 40°×40° with small spot size for the target at distance of about 100 m.
Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.
2016-01-01
Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.
Essentials of LIDAR multiangle data processing methodology for smoke polluted atmospheres
V. A. Kovalev; A. Petkov; C. Wold; S. Urbanski; W. M. Hao
2009-01-01
Mobile scanning lidar is the most appropriate tool for monitoring wildfire smoke-plume dynamics and optical properties. Lidar is the only remote sensing instrument capable of obtaining detailed three-dimensional range-resolved information for smoke distributions and optical properties over ranges of 10+ km at different wavelengths simultaneously.
Influence of coherent mesoscale structures on satellite-based Doppler lidar wind measurements
NASA Technical Reports Server (NTRS)
Emmitt, G. D.
1985-01-01
The influence of coherent mesoscale structures on satellite based Doppler lidar wind measurements was investigated. Range dependent weighting functions and the single shot SNR of scan angle are examined and a space shuttle lidar experiment which used a fixed beam and rotating shuttle is simulated.
The Application of Lidar to Synthetic Vision System Integrity
NASA Technical Reports Server (NTRS)
Campbell, Jacob L.; UijtdeHaag, Maarten; Vadlamani, Ananth; Young, Steve
2003-01-01
One goal in the development of a Synthetic Vision System (SVS) is to create a system that can be certified by the Federal Aviation Administration (FAA) for use at various flight criticality levels. As part of NASA s Aviation Safety Program, Ohio University and NASA Langley have been involved in the research and development of real-time terrain database integrity monitors for SVS. Integrity monitors based on a consistency check with onboard sensors may be required if the inherent terrain database integrity is not sufficient for a particular operation. Sensors such as the radar altimeter and weather radar, which are available on most commercial aircraft, are currently being investigated for use in a real-time terrain database integrity monitor. This paper introduces the concept of using a Light Detection And Ranging (LiDAR) sensor as part of a real-time terrain database integrity monitor. A LiDAR system consists of a scanning laser ranger, an inertial measurement unit (IMU), and a Global Positioning System (GPS) receiver. Information from these three sensors can be combined to generate synthesized terrain models (profiles), which can then be compared to the stored SVS terrain model. This paper discusses an initial performance evaluation of the LiDAR-based terrain database integrity monitor using LiDAR data collected over Reno, Nevada. The paper will address the consistency checking mechanism and test statistic, sensitivity to position errors, and a comparison of the LiDAR-based integrity monitor to a radar altimeter-based integrity monitor.
Development of a wing-beat-modulation scanning lidar system for insect studies
NASA Astrophysics Data System (ADS)
Tauc, Martin Jan; Fristrup, Kurt M.; Shaw, Joseph A.
2017-08-01
The spatial distributions of flying insects are not well understood since most sampling methods - Malaise traps, sticky traps, vacuum traps, light traps - are not suited to documenting movements or changing distributions of various insects on short time scales. These methods also capture and kill the insects. To noninvasively monitor the spatial distributions of flying insects, we developed and implemented a scanning lidar system that measured wing-beat-modulated scattered laser light. The oscillating signal from wing-beat returns allowed for reliable separation of lidar returns for insects and stationary objects. Transmitting and receiving optics were mounted to a telescope that was attached to a scanning mount. As it scanned, the lidar collected and analyzed the light scattered from insect wings of various species. Mount position and pulse time-of-flight determined spatial location and spectral analysis of the backscattered light provided clues to insect identity. During one day of a four-day field campaign at Grand Teton National Park in June of 2016, 76 very likely insects and 662 somewhat likely insects were detected, with a maximum range to the insect of 87.6 m for very likely insects
Quantifying Biomass and Bare Earth Changes from the Hayman Fire Using Multi-temporal Lidar
NASA Astrophysics Data System (ADS)
Stoker, J. M.; Kaufmann, M. R.; Greenlee, S. K.
2007-12-01
Small-footprint multiple-return lidar data collected in the Cheesman Lake property prior to the 2002 Hayman fire in Colorado provided an excellent opportunity to evaluate Lidar as a tool to predict and analyze fire effects on both soil erosion and overstory structure. Re-measuring this area and applying change detection techniques allowed for analyses at a high level of detail. Our primary objectives focused on the use of change detection techniques using multi-temporal lidar data to: (1) evaluate the effectiveness of change detection to identify and quantify areas of erosion or deposition caused by post-fire rain events and rehab activities; (2) identify and quantify areas of biomass loss or forest structure change due to the Hayman fire; and (3) examine effects of pre-fire fuels and vegetation structure derived from lidar data on patterns of burn severity. While we were successful in identifying areas where changes occurred, the original error bounds on the variation in actual elevations made it difficult, if not misleading to quantify volumes of material changed on a per pixel basis. In order to minimize these variations in the two datasets, we investigated several correction and co-registration methodologies. The lessons learned from this project highlight the need for a high level of flight planning and understanding of errors in a lidar dataset in order to correctly estimate and report quantities of vertical change. Directly measuring vertical change using only lidar without ancillary information can provide errors that could make quantifications confusing, especially in areas with steep slopes.
Long range lidar data processing for validating LES of wind turbine wakes
NASA Astrophysics Data System (ADS)
Trabucchi, D.; van Dooren, M.; Vollmer, L.; Schneemann, J.; Trujillo, J. J.; Witha, B.; Kühn, M.
2014-12-01
Scanning wind lidars offer the possibility to compare full-scale measurements in the wake of a wind turbine with LES wind fields calculated for the same test case. Due to the novelty and the peculiarity of lidar measurements, a comparison between experimental data and simulation results is non-trivial and several methods can be applied. This study presents validation methods for single and dual-doppler lidar measurements respectively.Consecutive azimuthal scans - commonly indicated as Plan Position Indicator (PPI) - at a low fixed elevation and centered on the wind turbine wake provide the radial wind speed, i.e. the wind component along the laser beam, on an almost flat polar grid. This data can be directly compared with the radial wind speed evaluated at the measurement point from the simulated wind field. This approach provides a detailed spatial description of the wind field and can be applied to averaged data for steady analysis. For the comparison with LES results, time average and spatial interpolation of the computed wind field are needed. Moreover, a proper wind direction should be chosen to evaluate the radial wind speed.With two lidars performing consecutive PPI scans over the same region from different places it is possible to estimate the horizontal wind field where the scanned regions overlap. Due to the limits in the synchronization of the PPI scans by the lidars, only steady analysis based on time averaged data can be done. A horizontal grid based on the one used for the LES is overlapped to the region covered by the two non-co-planar scans. The horizontal wind field at a considered point can be evaluated solving the system given by at least two non-aligned radial directions about this point. For each node, the data sampled by the lidars in a well defined volume during the considered time interval is used to write this system. Moreover, a discrete approximation of the continuity equation is applied to link the solutions for all the grid nodes. Instead of an interpolation on the LES wind field, this approach requires a temporal and vertical average over the considered time and height intervals.The application of these two approaches to lidar measurements performed in the offshore wind farm »alpha ventus« is presented in this work. The results are going to be used to evaluate different wind turbine wake models applied to LES.
Evaluating lidar point densities for effective estimation of aboveground biomass
Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.
2016-01-01
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.
Extraction of Features from High-resolution 3D LiDaR Point-cloud Data
NASA Astrophysics Data System (ADS)
Keller, P.; Kreylos, O.; Hamann, B.; Kellogg, L. H.; Cowgill, E. S.; Yikilmaz, M. B.; Hering-Bertram, M.; Hagen, H.
2008-12-01
Airborne and tripod-based LiDaR scans are capable of producing new insight into geologic features by providing high-quality 3D measurements of the landscape. High-resolution LiDaR is a promising method for studying slip on faults, erosion, and other landscape-altering processes. LiDaR scans can produce up to several billion individual point returns associated with the reflection of a laser from natural and engineered surfaces; these point clouds are typically used to derive a high-resolution digital elevation model (DEM). Currently, there exist only few methods that can support the analysis of the data at full resolution and in the natural 3D perspective in which it was collected by working directly with the points. We are developing new algorithms for extracting features from LiDaR scans, and present method for determining the local curvature of a LiDaR data set, working directly with the individual point returns of a scan. Computing the curvature enables us to rapidly and automatically identify key features such as ridge-lines, stream beds, and edges of terraces. We fit polynomial surface patches via a moving least squares (MLS) approach to local point neighborhoods, determining curvature values for each point. The size of the local point neighborhood is defined by a user. Since both terrestrial and airborne LiDaR scans suffer from high noise, we apply additional pre- and post-processing smoothing steps to eliminate unwanted features. LiDaR data also captures objects like buildings and trees complicating greatly the task of extracting reliable curvature values. Hence, we use a stochastic approach to determine whether a point can be reliably used to estimate curvature or not. Additionally, we have developed a graph-based approach to establish connectivities among points that correspond to regions of high curvature. The result is an explicit description of ridge-lines, for example. We have applied our method to the raw point cloud data collected as part of the GeoEarthScope B-4 project on a section of the San Andreas Fault (Segment SA09). This section provides an excellent test site for our method as it exposes the fault clearly, contains few extraneous structures, and exhibits multiple dry stream-beds that have been off-set by motion on the fault.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.
2008-01-01
Over 20 years of investigation by NASA and NOAA scientists and Doppler lidar technologists into a global wind profiling mission from earth orbit have led to the current favored concept of an instrument with both coherent- and direct-detection pulsed Doppler lidars (i.e., a hybrid Doppler lidar) and a stepstare beam scanning approach covering several azimuth angles with a fixed nadir angle. The nominal lidar wavelengths are 2 microns for coherent detection, and 0.355 microns for direct detection. The two agencies have also generated two sets of sophisticated wind measurement requirements for a space mission: science demonstration requirements and operational requirements. The requirements contain the necessary details to permit mission design and optimization by lidar technologists. Simulations have been developed that connect the science requirements to the wind measurement requirements, and that connect the wind measurement requirements to the Doppler lidar parameters. The simulations also permit trade studies within the multi-parameter space. These tools, combined with knowledge of the state of the Doppler lidar technology, have been used to conduct space instrument and mission design activities to validate the feasibility of the chosen mission and lidar parameters. Recently, the NRC Earth Science Decadal Survey recommended the wind mission to NASA as one of 15 recommended missions. A full description of the wind measurement product from these notional missions and the possible trades available are presented in this paper.
Shared Aperture Multiplexed (SAM) Lidar Telescopes
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.
1999-01-01
A concept is introduced in which a single optic containing several holographic optical elements, are employed to effect multiple fields of view as an alternative to mechanically scanned lidar receivers.
Two-wavelength backscattering lidar for stand off detection of aerosols
NASA Astrophysics Data System (ADS)
Mierczyk, Zygmunt; Zygmunt, Marek; Gawlikowski, Andrzej; Gietka, Andrzej; Kaszczuk, Miroslawa; Knysak, Piotr; Mlodzianko, Andrzej; Muzal, Michal; Piotrowski, Wiesław; Wojtanowski, Jacek
2008-10-01
Following article presents LIDAR for stand off detection of aerosols which was constructed in Institute of Optoelectronics in Military University of Technology. LIDAR is a DISC type system (DIfferential SCattering) and is based on analysis of backscattering signal for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) - the first and the second harmonic of Nd:YAG laser. Optical receiving system is consisted of aspherical mirror lens, two additional mirrors and a system of interference filters. In detection system of LIDAR a silicon avalanche photodiode and two different amplifiers were used. Whole system is mounted on a specialized platform designed for possibility of LIDAR scanning movements. LIDAR is computer controlled. The compiled software enables regulation of the scanning platform work, gain control, and control of data processing and acquisition system. In the article main functional elements of LIDAR are shown and typical parameters of system work and construction are presented. One presented also first results of research with use of LIDAR. The aim of research was to detect and characterize scattering aerosol, both natural and anthropogenic one. For analyses of natural aerosols, cumulus cloud was used. For analyses of anthropogenic aerosols one used three various pyrotechnic mixtures (DM11, M2, M16) which generate smoke of different parameters. All scattering centers were firstly well described and theoretical analyses were conducted. Results of LIDAR research were compared with theoretical analyses and general conclusions concerning correctness of LIDAR work and its application were drawn.
DOT National Transportation Integrated Search
2009-12-01
This volume introduces several applications of remote bridge inspection technologies studied in : this Integrated Remote Sensing and Visualization (IRSV) study using ground-based LiDAR : systems. In particular, the application of terrestrial LiDAR fo...
Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan; ...
2017-03-07
To assess current capabilities for measuring flow within the atmospheric boundary layer, including within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment, highlight novel measurement approaches, and quantify uncertainties associated with these measurement methods. Line-of-sight velocities measured by scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or radars, also agree well with tower and profiling lidar measurements. Estimates of windsmore » over volumes from scanning lidars and radars are in close agreement, enabling assessment of spatial variability. Strengths of the radar systems used here include high scan rates, large domain coverage, and availability during most precipitation events, but they struggle at times to provide data during periods with limited atmospheric scatterers. In contrast, for the deployment geometry tested here, the lidars have slower scan rates and less range, but provide more data during non-precipitating atmospheric conditions. Microwave radiometers provide temperature profiles with approximately the same uncertainty as Radio-Acoustic Sounding Systems (RASS). Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. As a result, we highlight cases for validation of mesoscale or large-eddy simulations, providing information on accessing the archived dataset. We conclude that modern remote sensing systems provide a generational improvement in observational capabilities, enabling resolution of fine-scale processes critical to understanding inhomogeneous boundary-layer flows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan
To assess current capabilities for measuring flow within the atmospheric boundary layer, including within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment, highlight novel measurement approaches, and quantify uncertainties associated with these measurement methods. Line-of-sight velocities measured by scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or radars, also agree well with tower and profiling lidar measurements. Estimates of windsmore » over volumes from scanning lidars and radars are in close agreement, enabling assessment of spatial variability. Strengths of the radar systems used here include high scan rates, large domain coverage, and availability during most precipitation events, but they struggle at times to provide data during periods with limited atmospheric scatterers. In contrast, for the deployment geometry tested here, the lidars have slower scan rates and less range, but provide more data during non-precipitating atmospheric conditions. Microwave radiometers provide temperature profiles with approximately the same uncertainty as Radio-Acoustic Sounding Systems (RASS). Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. As a result, we highlight cases for validation of mesoscale or large-eddy simulations, providing information on accessing the archived dataset. We conclude that modern remote sensing systems provide a generational improvement in observational capabilities, enabling resolution of fine-scale processes critical to understanding inhomogeneous boundary-layer flows.« less
Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.
2012-01-01
We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".
Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.
2012-12-01
Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)
The marbll experiment: towards a martian wind lidar
NASA Astrophysics Data System (ADS)
Määttänen, Anni; Ravetta, François; Montmessin, Franck; Bruneau, Didier; Mariscal, Jean-François; Van Haecke, Mathilde; Fayolle, Guillaume; Montaron, Christophe; Coscia, David
2018-04-01
Operating a lidar on Mars would fulfill the need of accessing wind and aerosol profiles in the atmospheric boundary layer. This is the purpose of the MARs Boundary Layer Lidar (MARBLL) instrument. We report recent developments of this compact direct-detection wind lidar designed to operate from the surface of Mars. A new laser source has been developed and an azimuthal scanning capability has been added. Preliminary results of a field campaign are presented.
NASA Technical Reports Server (NTRS)
Ramirez, Daniel Perez; Whiteman, David N.; Veselovskii, Igor; Kolgotin, Alexei; Korenskiy, Michael; Alados-Arboledas, Lucas
2013-01-01
In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Center. Its applicability to Raman lidar systems based on backscattering measurements at three wavelengths (355, 532 and 1064 nm) and extinction measurements at two wavelengths (355 and 532 nm) has been demonstrated widely. The systematic error sensitivity is quantified by first determining the retrieved parameters for a given set of optical input data consistent with three different sets of aerosol physical parameters. Then each optical input is perturbed by varying amounts and the inversion is repeated. Using bimodal aerosol size distributions, we find a generally linear dependence of the retrieved errors in the microphysical properties on the induced systematic errors in the optical data. For the retrievals of effective radius, number/surface/volume concentrations and fine-mode radius and volume, we find that these results are not significantly affected by the range of the constraints used in inversions. But significant sensitivity was found to the allowed range of the imaginary part of the particle refractive index. Our results also indicate that there exists an additive property for the deviations induced by the biases present in the individual optical data. This property permits the results here to be used to predict deviations in retrieved parameters when multiple input optical data are biased simultaneously as well as to study the influence of random errors on the retrievals. The above results are applied to questions regarding lidar design, in particular for the spaceborne multiwavelength lidar under consideration for the upcoming ACE mission.
NASA Astrophysics Data System (ADS)
Elliott, A. J.; Oskin, M. E.; Banesh, D.; Gold, P. O.; Hinojosa-Corona, A.; Styron, R. H.; Taylor, M. H.
2012-12-01
Differencing repeat terrestrial lidar scans of the 2010 M7.2 El Mayor-Cucapah (EMC) earthquake rupture reveals the rapid onset of surface processes that simultaneously degrade and preserve evidence of coseismic fault rupture in the landscape and paleoseismic record. We surveyed fresh fault rupture two weeks after the 4 April 2010 earthquake, then repeated these surveys one year later. We imaged fault rupture through four substrates varying in degree of consolidation and scarp facing-direction, recording modification due to a range of aeolian, fluvial, and hillslope processes. Using lidar-derived DEM rasters to calculate the topographic differences between years results in aliasing errors because GPS uncertainty between years (~1.5cm) exceeds lidar point-spacing (<1.0cm) shifting the raster sampling of the point cloud. Instead, we coregister each year's scans by iteratively minimizing the horizontal and vertical misfit between neighborhoods of points in each raw point cloud. With the misfit between datasets minimized, we compute the vertical difference between points in each scan within a specified neighborhood. Differencing results reveal two variables controlling the type and extent of erosion: cohesion of the substrate controls the degree to which hillslope processes affect the scarp, while scarp facing direction controls whether more effective fluvial erosion can act on the scarp. In poorly consolidated materials, large portions (>50% along strike distance) of the scarp crest are eroded up to 5cm by a combination of aeolian abrasion and diffusive hillslope processes, such as rainsplash and mass-wasting, while in firmer substrate (i.e., bedrock mantled by fault gouge) there is no detectable hillslope erosion. On the other hand, where small gullies cross downhill-facing scarps (<5% along strike distance), fluvial erosion has caused 5-50cm of headward scarp retreat in bedrock. Thus, although aeolian and hillslope processes operate over a greater along-strike distance, fluvial processes concentrated in pre-existing bedrock gullies transport a far greater volume of material across the scarp. Substrate cohesiveness dictates the degree to which erosive processes act to relax the scarp (e.g., gravels erode more easily than bedrock). However, scarp locations that favor fluvial processes suffer rapid, localized erosion of vertical scarp faces, regardless of substrate. Differential lidar also reveals debris cones formed at the base of the scarp below locations of scarp crest erosion. These indicate the rapid growth of a colluvial wedge. Where a fissure occupies the base of the scarp we observe nearly complete in-filling by silt and sand moved by both mass wasting and fluvial deposition, indicating that fissure fills observed in paleoseismic trenches likely bracket the age of an earthquake to within one year. We find no evidence of differential postseismic tectonic deformation across the fault within the ~100m aperture of our surveys.
Lundquist, J. K.; Churchfield, M. J.; Lee, S.; ...
2015-02-23
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s -1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s −1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 s -1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Furthermore, measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.« less
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.
2015-02-01
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 m s-1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.
Sun, Guodong; Qin, Laian; Hou, Zaihong; Jing, Xu; He, Feng; Tan, Fengfu; Zhang, Silong
2018-03-19
In this paper, a new prototypical Scheimpflug lidar capable of detecting the aerosol extinction coefficient and vertical atmospheric transmittance at 1 km above the ground is described. The lidar system operates at 532 nm and can be used to detect aerosol extinction coefficients throughout an entire day. Then, the vertical atmospheric transmittance can be determined from the extinction coefficients with the equation of numerical integration in this area. CCD flat fielding of the image data is used to mitigate the effects of pixel sensitivity variation. An efficient method of two-dimensional wavelet transform according to a local threshold value has been proposed to reduce the Gaussian white noise in the lidar signal. Furthermore, a new iteration method of backscattering ratio based on genetic algorithm is presented to calculate the aerosol extinction coefficient and vertical atmospheric transmittance. Some simulations are performed to reduce the different levels of noise in the simulated signal in order to test the precision of the de-noising method and inversion algorithm. The simulation result shows that the root-mean-square errors of extinction coefficients are all less than 0.02 km -1 , and that the relative errors of the atmospheric transmittance between the model and inversion data are below 0.56% for all cases. The feasibility of the instrument and the inversion algorithm have also been verified by an optical experiment. The average relative errors of aerosol extinction coefficients between the Scheimpflug lidar and the conventional backscattering elastic lidar are 3.54% and 2.79% in the full overlap heights of two time points, respectively. This work opens up new possibilities of using a small-scale Scheimpflug lidar system for the remote sensing of atmospheric aerosols.
Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study
S. Urbanski; V. Kovalev; W. M. Hao; C. Wold; A. Petkov
2010-01-01
A ground-based scanning lidar was utilized with a set of airborne instruments to acquire measurements of smoke plume dynamics, smoke aerosol distribution and chemical composition in the vicinity of active wildfires in the western U.S. A new retrieval technique was used for processing lidar multiangle measurements. The technique determines the location of...
Low-pass parabolic FFT filter for airborne and satellite lidar signal processing.
Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian
2015-10-14
In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing.
Monitoring and Quantifying Particles Emissions around Industrial Sites with Scanning Doppler Lidar
NASA Astrophysics Data System (ADS)
Thobois, L.; Royer, P.; Parmentier, R.; Brooks, M.; Knoepfle, A.; Alexander, J.; Stidwell, P.; Kumar, R.
2018-04-01
Scanning Coherent Doppler Lidars have been used over the last decade for measuring wind for applications in wind energy [1], meteorology [2] and aviation [3]. They allow for accurate measurements of wind speeds up to a distance of 10 km based on the Doppler shift effect of aerosols. The signal reflectivity (CNR or Carrier-to-Noise Ratio) profiles can also be retrieved from the strength of the Lidar signal. In this study, we will present the developments of algorithm for retrieving aerosol optical properties like the relative attenuated backscatter coefficient and the mass concentration of particles. The use of these algorithms during one operational trial in Point Samson, Western Australia to monitor fugitive emissions over a mine will be presented. This project has been initiated by the Australian Department of Environment Regulations to better determine the impact of the Port on the neighboring town. During the trial in Summer, the strong impact of turbulence refractive index on Lidar performances has been observed. Multiple methodologies have been applied to reduce this impact with more or less success. At the end, a dedicated setup and configuration have been established that allow to properly observe the plumes of the mine with the scanning Lidar. The Lidar data has also been coupled to beta attenuation in-situ sensors for retrieving mass concentration maps. A few case of dispersion of plumes will be presented showing the necessity to combine both the wind and aerosol data.
Fast ground filtering for TLS data via Scanline Density Analysis
NASA Astrophysics Data System (ADS)
Che, Erzhuo; Olsen, Michael J.
2017-07-01
Terrestrial Laser Scanning (TLS) efficiently collects 3D information based on lidar (light detection and ranging) technology. TLS has been widely used in topographic mapping, engineering surveying, forestry, industrial facilities, cultural heritage, and so on. Ground filtering is a common procedure in lidar data processing, which separates the point cloud data into ground points and non-ground points. Effective ground filtering is helpful for subsequent procedures such as segmentation, classification, and modeling. Numerous ground filtering algorithms have been developed for Airborne Laser Scanning (ALS) data. However, many of these are error prone in application to TLS data because of its different angle of view and highly variable resolution. Further, many ground filtering techniques are limited in application within challenging topography and experience difficulty coping with some objects such as short vegetation, steep slopes, and so forth. Lastly, due to the large size of point cloud data, operations such as data traversing, multiple iterations, and neighbor searching significantly affect the computation efficiency. In order to overcome these challenges, we present an efficient ground filtering method for TLS data via a Scanline Density Analysis, which is very fast because it exploits the grid structure storing TLS data. The process first separates the ground candidates, density features, and unidentified points based on an analysis of point density within each scanline. Second, a region growth using the scan pattern is performed to cluster the ground candidates and further refine the ground points (clusters). In the experiment, the effectiveness, parameter robustness, and efficiency of the proposed method is demonstrated with datasets collected from an urban scene and a natural scene, respectively.
Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR
Jim McKean; Dave Nagel; Daniele Tonina; Philip Bailey; Charles Wayne Wright; Carolyn Bohn; Amar Nayegandhi
2009-01-01
The high-resolution Experimental Advanced Airborne Research LIDAR (EAARL) is a new technology for cross-environment surveys of channels and floodplains. EAARL measurements of basic channel geometry, such as wetted cross-sectional area, are within a few percent of those from control field surveys. The largest channel mapping errors are along stream banks. The LIDAR data...
NASA Technical Reports Server (NTRS)
Whiteman, David N.
2003-01-01
In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.
Analysis of Lidar Remote Sensing Concepts
NASA Technical Reports Server (NTRS)
Spiers, Gary D.
1999-01-01
Line of sight velocity and measurement position sensitivity analyses for an orbiting coherent Doppler lidar are developed and applied to two lidars, one with a nadir angle of 30 deg. in a 300 km altitude, 58 deg. inclination orbit and the second for a 45 deg. nadir angle instrument in a 833 km altitude, 89 deg. inclination orbit. The effect of orbit related effects on the backscatter sensitivity of a coherent Doppler lidar is also discussed. Draft performance estimate, error budgets and payload accommodation requirements for the SPARCLE (Space Readiness Coherent Lidar) instrument were also developed and documented.
Spatiotemporal Path-Matching for Comparisons Between Ground- Based and Satellite Lidar Measurements
NASA Technical Reports Server (NTRS)
Berkoff, Timothy A.; Valencia, Sandra; Welton, Ellsworth J.; Spinhirne, James D.
2005-01-01
The spatiotemporal sampling differences between ground-based and satellite lidar data can contribute to significant errors for direct measurement comparisons. Improvement in sample correspondence is examined by the use of radiosonde wind velocity to vary the time average in ground-based lidar data to spatially match coincident satellite lidar measurements. Results are shown for the 26 February 2004 GLAS/ICESat overflight of a ground-based lidar stationed at NASA GSFC. Statistical analysis indicates that improvement in signal correlation is expected under certain conditions, even when a ground-based observation is mismatched in directional orientation to the satellite track.
Filtering Airborne LIDAR Data by AN Improved Morphological Method Based on Multi-Gradient Analysis
NASA Astrophysics Data System (ADS)
Li, Y.
2013-05-01
The technology of airborne Light Detection And Ranging (LIDAR) is capable of acquiring dense and accurate 3D geospatial data. Although many related efforts have been made by a lot of researchers in the last few years, LIDAR data filtering is still a challenging task, especially for area with high relief or hybrid geographic features. In order to address the bare-ground extraction from LIDAR point clouds of complex landscapes, a novel morphological filtering algorithm is proposed based on multi-gradient analysis in terms of the characteristic of LIDAR data distribution in this paper. Firstly, point clouds are organized by an index mesh. Then, the multigradient of each point is calculated using the morphological method. And, objects are removed gradually by choosing some points to carry on an improved opening operation constrained by multi-gradient iteratively. 15 sample data provided by ISPRS Working Group III/3 are employed to test the filtering algorithm proposed. These sample data include those environments that may lead to filtering difficulty. Experimental results show that filtering algorithm proposed by this paper is of high adaptability to various scenes including urban and rural areas. Omission error, commission error and total error can be simultaneously controlled in a relatively small interval. This algorithm can efficiently remove object points while preserves ground points to a great degree.
Sampling and mapping forest volume and biomass using airborne LIDARs
Erik Naesset; Terje Gobakken; Ross Nelson
2009-01-01
Since around 1995, extensive research efforts have been made in Scandinavia to develop airborne Light Detection and Ranging (LIDAR) as an operational tool for wall-to-wall mapping of forest stands for planning purposes. Scanning LIDAR has the ability to capture the entire three-dimensional structure of forest canopies and has therefore proved to be a very efficient...
Strategies for lidar characterization of particulates from point and area sources
NASA Astrophysics Data System (ADS)
Wojcik, Michael D.; Moore, Kori D.; Martin, Randal S.; Hatfield, Jerry
2010-10-01
Use of ground based remote sensing technologies such as scanning lidar systems (light detection and ranging) has gained traction in characterizing ambient aerosols due to some key advantages such as wide area of regard (10 km2), fast response time, high spatial resolution (<10 m) and high sensitivity. Energy Dynamics Laboratory and Utah State University, in conjunction with the USDA-ARS, has developed a three-wavelength scanning lidar system called Aglite that has been successfully deployed to characterize particle motion, concentration, and size distribution at both point and diffuse area sources in agricultural and industrial settings. A suite of massbased and size distribution point sensors are used to locally calibrate the lidar. Generating meaningful particle size distribution, mass concentration, and emission rate results based on lidar data is dependent on strategic onsite deployment of these point sensors with successful local meteorological measurements. Deployment strategies learned from field use of this entire measurement system over five years include the characterization of local meteorology and its predictability prior to deployment, the placement of point sensors to prevent contamination and overloading, the positioning of the lidar and beam plane to avoid hard target interferences, and the usefulness of photographic and written observational data.
Raman water vapor lidar calibration
NASA Astrophysics Data System (ADS)
Landulfo, E.; Da Costa, R. F.; Torres, A. S.; Lopes, F. J. S.; Whiteman, D. N.; Venable, D. D.
2009-09-01
We show here new results of a Raman LIDAR calibration methodology effort putting emphasis in the assessment of the cross-section ratio between water vapor and nitrogen by the use of a calibrated NIST traceable tungsten lamp. Therein we give a step by step procedure of how to employ such equipment by means of a mapping/scanning procedure over the receiving optics of a water vapor Raman LIDAR. This methodology has been independently used at Howard University Raman LIDAR and at IPEN Raman LIDAR what strongly supports its reproducibility and points towards an independently calibration methodology to be carried on within an experiment routine.
Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm
Yan, Li; Xie, Hong; Chen, Changjun
2017-01-01
Registration of point clouds is a fundamental issue in Light Detection and Ranging (LiDAR) remote sensing because point clouds scanned from multiple scan stations or by different platforms need to be transformed to a uniform coordinate reference frame. This paper proposes an efficient registration method based on genetic algorithm (GA) for automatic alignment of two terrestrial LiDAR scanning (TLS) point clouds (TLS-TLS point clouds) and alignment between TLS and mobile LiDAR scanning (MLS) point clouds (TLS-MLS point clouds). The scanning station position acquired by the TLS built-in GPS and the quasi-horizontal orientation of the LiDAR sensor in data acquisition are used as constraints to narrow the search space in GA. A new fitness function to evaluate the solutions for GA, named as Normalized Sum of Matching Scores, is proposed for accurate registration. Our method is divided into five steps: selection of matching points, initialization of population, transformation of matching points, calculation of fitness values, and genetic operation. The method is verified using a TLS-TLS data set and a TLS-MLS data set. The experimental results indicate that the RMSE of registration of TLS-TLS point clouds is 3~5 mm, and that of TLS-MLS point clouds is 2~4 cm. The registration integrating the existing well-known ICP with GA is further proposed to accelerate the optimization and its optimizing time decreases by about 50%. PMID:28850100
Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm.
Yan, Li; Tan, Junxiang; Liu, Hua; Xie, Hong; Chen, Changjun
2017-08-29
Registration of point clouds is a fundamental issue in Light Detection and Ranging (LiDAR) remote sensing because point clouds scanned from multiple scan stations or by different platforms need to be transformed to a uniform coordinate reference frame. This paper proposes an efficient registration method based on genetic algorithm (GA) for automatic alignment of two terrestrial LiDAR scanning (TLS) point clouds (TLS-TLS point clouds) and alignment between TLS and mobile LiDAR scanning (MLS) point clouds (TLS-MLS point clouds). The scanning station position acquired by the TLS built-in GPS and the quasi-horizontal orientation of the LiDAR sensor in data acquisition are used as constraints to narrow the search space in GA. A new fitness function to evaluate the solutions for GA, named as Normalized Sum of Matching Scores, is proposed for accurate registration. Our method is divided into five steps: selection of matching points, initialization of population, transformation of matching points, calculation of fitness values, and genetic operation. The method is verified using a TLS-TLS data set and a TLS-MLS data set. The experimental results indicate that the RMSE of registration of TLS-TLS point clouds is 3~5 mm, and that of TLS-MLS point clouds is 2~4 cm. The registration integrating the existing well-known ICP with GA is further proposed to accelerate the optimization and its optimizing time decreases by about 50%.
Large Aperture Scanning Lidar Based on Holographic Optical Elements
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)
2001-01-01
Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE). The HOE spins like a compact disk in a large ring ball bearing. In an aircraft the HOE faces down, looking out through a window at an angle of 45 degrees off-nadir. The HOE diffracts 85% of the incident 532 nm light into a 160 micron spot at a focal length of 1 meter. HARLIE is a field deployable lidar measuring aerosol, cloud, and boundary layer backscatter for atmospheric research. It has flown several times and is also used from a ground-based trailer in an upward-looking mode. The HOE generates a 45 degree conical scan pattern by rotating at speeds up to 30 rpm. Like PHASERS, the HOE in HARLIE serves both as the laser collimating lens as well as the receiver telescope primary optic. The telescope is coupled to the receiver package via fiber optic. The transmitter is a diode pumped Nd:YAG laser operating at 1064 nm, delivering 1 mJ pulses at a 5 KHz rep-rate. The receiver has a 200 microradian field-of-view and a 0.5 nm optical bandpass. The photon counting data system utilizes a single Geiger-mode silicon avalanche photodiode detector, This new technology has also presented us with new data visualization challenges as well as new measurement techniques. The backscatter data obtained from a stationary (i.e. ground-based) scanning HOE lidar is on the surface of a cone, which when viewed over many consecutive scans can reveal atmospheric motions on this surface over time as the atmosphere advects over the site. In a moving platform such as an airplane or satellite, the data from consecutive scans cover different areas under the flight path, revealing atmospheric structure in 3-dimensions. An example of a visualization of HARLIE ground-based data is presented, showing aerosol backscatter on a 90 degree conical surface generated from one 360 degree scan of the lidar during the HOLO-1 field campaign on the afternoon of 10 March 1999. Higher backscatter levels are rendered as lighter signal against a dark background. Breaking Kelvin-Helmholtz waves are evident on the north side of the scan at an altitude of 10-11 km. Time series of successive scans made at regular intervals render unique views of atmospheric motions, from which vertical profiles of atmospheric wind vectors can be obtained using a unique data analysis approach. Wind vectors obtained from the lidar were compared with co-located radiosonde wind profiles during an intensive operating period in September-October 2000 at the Atmospheric Radiation Measurement Program's Southern Great Plains Central Facility.
Error Analysis of Wind Measurements for the University of Illinois Sodium Doppler Temperature System
NASA Technical Reports Server (NTRS)
Pfenninger, W. Matthew; Papen, George C.
1992-01-01
Four-frequency lidar measurements of temperature and wind velocity require accurate frequency tuning to an absolute reference and long term frequency stability. We quantify frequency tuning errors for the Illinois sodium system, to measure absolute frequencies and a reference interferometer to measure relative frequencies. To determine laser tuning errors, we monitor the vapor cell and interferometer during lidar data acquisition and analyze the two signals for variations as functions of time. Both sodium cell and interferometer are the same as those used to frequency tune the laser. By quantifying the frequency variations of the laser during data acquisition, an error analysis of temperature and wind measurements can be calculated. These error bounds determine the confidence in the calculated temperatures and wind velocities.
NASA Technical Reports Server (NTRS)
Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.
2014-01-01
From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.
New fiber laser for lidar developments in disaster management
NASA Astrophysics Data System (ADS)
Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.
2014-10-01
Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.
NASA Astrophysics Data System (ADS)
Wildmann, N.; Kigle, S.; Hagen, M.; Gerz, T.
2017-12-01
As the resource wind is increasingly exploited to produce electricity, wind energy converter (WEC) deployment relocates to more complex terrain such as hilltops or mountain ridges. In that context, it is crucial to understand the interaction between the atmospheric boundary layer (ABL) flow and the WEC in order to predict downstream flow characteristics. In the context of the Perdigão 2017 experiment, the German Aerospace Center (DLR) performed full-scale wake measurements on a single WEC of type Enercon E82 with three Leosphere Windcube 200S long-range scanning lidar systems. The experimental setup covers two parallel ridges 1.4 km apart, separated by a 200 m deep valley. The ridges are oriented in NW-SE direction, perpendicular to main wind direction, which is SW. Two of the three scanning lidar systems are positioned downstream of the WEC in line with main wind direction to span a vertical plane, perpendicular to the ridges, with RHI scans. This allows investigating wake events with single or dual-doppler lidar techniques. The third lidar system, which is positioned along the WEC ridge, is used to measure the wake position outside the before mentioned measurement plane. Wake events in three different ABL regimes (neutral, stable and convective) are evaluated with respect to wake position, dispersion, propagation and the wind-speed deficit. It is found that wake position and propagation are strongly influenced by the atmospheric stability, forcing the wake to deviate from hub height, migrating to higher levels for convective regimes. For stable ABL conditions wakes descend into the valley, and are clearly detectable up to at least eight rotor diameters downstream of the WEC. The coplanar scanning strategy furthermore allows to calculate the two-dimensional wind vector in the vertical scanning plane, indicating that vertical wind components with up to 2 ms-1 play an important role in the interaction between ABL flow and WEC. With the help of the third lidar system on the WEC ridge, wake meandering can be quantified. The presentation will provide a thorough analysis of three exemplary measurement days.
NASA Astrophysics Data System (ADS)
Lendzioch, Theodora; Langhammer, Jakub; Hartvich, Filip
2015-04-01
Fusion of remote sensing data is a common and rapidly developing discipline, which combines data from multiple sources with different spatial and spectral resolution, from satellite sensors, aircraft and ground platforms. Fusion data contains more detailed information than each of the source and enhances the interpretation performance and accuracy of the source data and produces a high-quality visualisation of the final data. Especially, in fluvial geomorphology it is essential to get valuable images in sub-meter resolution to obtain high quality 2D and 3D information for a detailed identification, extraction and description of channel features of different river regimes and to perform a rapid mapping of changes in river topography. In order to design, test and evaluate a new approach for detection of river morphology, we combine different research techniques from remote sensing products to drone-based photogrammetry and LiDAR products (aerial LiDAR Scanner and TLS). Topographic information (e.g. changes in river channel morphology, surface roughness, evaluation of floodplain inundation, mapping gravel bars and slope characteristics) will be extracted either from one single layer or from combined layers in accordance to detect fluvial topographic changes before and after flood events. Besides statistical approaches for predictive geomorphological mapping and the determination of errors and uncertainties of the data, we will also provide 3D modelling of small fluvial features.
Acquisition of a Leica ScanStation II LIDAR unit
DOT National Transportation Integrated Search
2008-04-01
The funding will be used to purchase a LiDAR (Light Detection and Ranging) unit to generate external funding in many diverse areas. The investigators will initially seek funding from NSF, transportation agencies, and emergency management agencies for...
NASA Astrophysics Data System (ADS)
Hair, J. W.; Hostetler, C. A.; Brian, C.; Ziemba, L. D.; Alexandrov, M. D.; Hu, Y.; Crosbie, E.; Scarino, A. J.; Butler, C. F.; Moore, R.; Berkoff, T.; Harper, D. B.; Cook, A. L.; Hare, R. J.; Lee, J.; Anderson, B. E.
2017-12-01
The NASA Langley High Spectral Resolution lidar (HSRL) and the NASA GISS Research Scanning Polarimeter (RSP) were deployed onboard the NASA C-130 during two field campaigns as part of the NASA's Earth Venture-Suborbital (EVS) North Atlantic Aerosol and Marine Ecosystems Study (NAAMES) during November 2015 and May 2016. The main objectives of NAAMES are to study the phases of the North Atlantic annual plankton cycle and to investigate remote marine aerosols and their impact on boundary layer clouds. Lidar retrievals of the cloud-top extinction and lidar ratio (extinction/backscatter ratio) of boundary layer clouds are presented. These retrievals are unique and are enabled by two characteristics of the lidar: employment of the high-spectral-resolution lidar technique and the high-vertical-resolution (1.25 m) the Langley HSRL instrument. The HSRL lidar ratio retrievals are compared to estimates derived from Research Scanning Polarimeter data to assess consistency between the two remote sensors. The measurements of effective size and variance from RSP are combined with the HSRL cloud top extinction to retrieve the cloud droplet number concentrations (CDNC). The lidar+polarimeter CDNC estimates are compared to those from the Cloud Droplet Probe (CDP) that is part of the NASA Langley Aerosol Research Group Experiment (LARGE) instrument suite. Histograms of the CNDC measurements from remote sensors are shown to highlight the observed differences in CDNC between the November and May deployments.
Intelligent Behavioral Action Aiding for Improved Autonomous Image Navigation
2012-09-13
odometry, SICK laser scanning unit ( Lidar ), Inertial Measurement Unit (IMU) and ultrasonic distance measurement system (Figure 32). The Lidar , IMU...2010, July) GPS world. [Online]. http://www.gpsworld.com/tech-talk- blog/gnss-independent-navigation-solution-using-integrated- lidar -data-11378 [4...Milford, David McKinnon, Michael Warren, Gordon Wyeth, and Ben Upcroft, "Feature-based Visual Odometry and Featureless Place Recognition for SLAM in
Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems
Nicholas S. Skowronski; Kenneth L. Clark; Matthew Duveneck; John. Hom
2011-01-01
We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey Pinelands. LiDAR-derived height profiles were also...
Mapping above- and below-ground carbon pools in boreal forests: The case for airborne lidar
Terje Kristensen; Erik Naesset; Mikael Ohlson; Paul V. Bolstad; Randall Kolka
2015-01-01
A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest...
NASA Astrophysics Data System (ADS)
Venable, Demetrius D.; Whiteman, David N.; Calhoun, Monique N.; Dirisu, Afusat O.; Connell, Rasheen M.; Landulfo, Eduardo
2011-08-01
We have investigated a technique that allows for the independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system. This technique utilizes a procedure whereby a light source of known spectral characteristics is scanned across the aperture of the lidar system's telescope and the overall optical efficiency of the system is determined. Direct analysis of the temperature-dependent differential scattering cross sections for vibration and vibration-rotation transitions (convolved with narrowband filters) along with the measured efficiency of the system, leads to a theoretical determination of the water vapor mixing ratio calibration factor. A calibration factor was also obtained experimentally from lidar measurements and radiosonde data. A comparison of the theoretical and experimentally determined values agrees within 5%. We report on the sensitivity of the water vapor mixing ratio calibration factor to uncertainties in parameters that characterize the narrowband transmission filters, the temperature-dependent differential scattering cross section, and the variability of the system efficiency ratios as the lamp is scanned across the aperture of the telescope used in the Howard University Raman Lidar system.
A High Spectral Resolution Lidar Based on Absorption Filter
NASA Technical Reports Server (NTRS)
Piironen, Paivi
1996-01-01
A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.
Li, Zhan; Schaefer, Michael; Strahler, Alan; Schaaf, Crystal; Jupp, David
2018-04-06
The Dual-Wavelength Echidna Lidar (DWEL), a full waveform terrestrial laser scanner (TLS), has been used to scan a variety of forested and agricultural environments. From these scanning campaigns, we summarize the benefits and challenges given by DWEL's novel coaxial dual-wavelength scanning technology, particularly for the three-dimensional (3D) classification of vegetation elements. Simultaneous scanning at both 1064 nm and 1548 nm by DWEL instruments provides a new spectral dimension to TLS data that joins the 3D spatial dimension of lidar as an information source. Our point cloud classification algorithm explores the utilization of both spectral and spatial attributes of individual points from DWEL scans and highlights the strengths and weaknesses of each attribute domain. The spectral and spatial attributes for vegetation element classification each perform better in different parts of vegetation (canopy interior, fine branches, coarse trunks, etc.) and under different vegetation conditions (dead or live, leaf-on or leaf-off, water content, etc.). These environmental characteristics of vegetation, convolved with the lidar instrument specifications and lidar data quality, result in the actual capabilities of spectral and spatial attributes to classify vegetation elements in 3D space. The spectral and spatial information domains thus complement each other in the classification process. The joint use of both not only enhances the classification accuracy but also reduces its variance across the multiple vegetation types we have examined, highlighting the value of the DWEL as a new source of 3D spectral information. Wider deployment of the DWEL instruments is in practice currently held back by challenges in instrument development and the demands of data processing required by coaxial dual- or multi-wavelength scanning. But the simultaneous 3D acquisition of both spectral and spatial features, offered by new multispectral scanning instruments such as the DWEL, opens doors to study biophysical and biochemical properties of forested and agricultural ecosystems at more detailed scales.
2013-01-01
are calculated from coherently -detected fields, e.g., coherent Doppler lidar . Our CRB results reveal that the best-case mean-square error scales as 1...1088 (2001). 7. K. Asaka, Y. Hirano, K. Tatsumi, K. Kasahara, and T. Tajime, “A pseudo-random frequency modulation continuous wave coherent lidar using...multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007). 11. T. J. Karr, “Atmospheric phase error in coherent laser radar
Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin
2017-01-01
Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R2 = 0.340, root-mean-square error (RMSE) = 81.89 g·m−2, and relative error of 14.1%). The improvement of multiple regressions to the R2 and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns. PMID:28106819
Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin
2017-01-19
Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass ( R ² = 0.340, root-mean-square error (RMSE) = 81.89 g·m -2 , and relative error of 14.1%). The improvement of multiple regressions to the R ² and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns.
Evaluation of Light Detection and Ranging (LIDAR) for measuring river corridor topography
Bowen, Z.H.; Waltermire, R.G.
2002-01-01
LIDAR is relatively new in the commercial market for remote sensing of topography and it is difficult to find objective reporting on the accuracy of LIDAR measurements in an applied context. Accuracy specifications for LIDAR data in published evaluations range from 1 to 2 m root mean square error (RMSEx,y) and 15 to 20 cm RMSEz. Most of these estimates are based on measurements over relatively flat, homogeneous terrain. This study evaluated the accuracy of one LIDAR data set over a range of terrain types in a western river corridor. Elevation errors based on measurements over all terrain types were larger (RMSEz equals 43 cm) than values typically reported. This result is largely attributable to horizontal positioning limitations (1 to 2 m RMSEx,y) in areas with variable terrain and large topographic relief. Cross-sectional profiles indicated algorithms that were effective for removing vegetation in relatively flat terrain were less effective near the active channel where dense vegetation was found in a narrow band along a low terrace. LIDAR provides relatively accurate data at densities (50,000 to 100,000 points per km2) not feasible with other survey technologies. Other options for projects requiring higher accuracy include low-altitude aerial photography and intensive ground surveying.
Time Resolved 3-D Mapping of Atmospheric Aerosols and Clouds During the Recent ARM Water Vapor IOP
NASA Technical Reports Server (NTRS)
Schwemmer, Geary; Miller, David; Wilkerson, Thomas; Andrus, Ionio; Starr, David OC. (Technical Monitor)
2001-01-01
The HARLIE lidar was deployed at the ARM SGP site in north central Oklahoma and recorded over 100 hours of data on 16 days between 17 September and 6 October 2000 during the recent Water Vapor Intensive Operating Period (IOP). Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1 micron wavelength. The conical scanning lidar images atmospheric backscatter along the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km. 360 degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds. Various boundary layer and cloud parameters are derived from the lidar data, as well as atmospheric wind vectors where there is Sufficiently resolved structure that can be traced moving through the surface described by the scanning laser beam. Comparison of HARLIE measured winds with radiosonde measured winds validates the accuracy of this new technique for remotely measuring atmospheric winds without Doppler information.
Assessing LiDAR elevation data for KDOT applications.
DOT National Transportation Integrated Search
2013-02-01
LiDAR-based elevation surveys are a cost-effective means for mapping topography over large areas. LiDAR : surveys use an airplane-mounted or ground-based laser radar unit to scan terrain. Post-processing techniques are : applied to remove vegetation ...
Fully Convolutional Networks for Ground Classification from LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Rizaldy, A.; Persello, C.; Gevaert, C. M.; Oude Elberink, S. J.
2018-05-01
Deep Learning has been massively used for image classification in recent years. The use of deep learning for ground classification from LIDAR point clouds has also been recently studied. However, point clouds need to be converted into an image in order to use Convolutional Neural Networks (CNNs). In state-of-the-art techniques, this conversion is slow because each point is converted into a separate image. This approach leads to highly redundant computation during conversion and classification. The goal of this study is to design a more efficient data conversion and ground classification. This goal is achieved by first converting the whole point cloud into a single image. The classification is then performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. The proposed method is significantly faster than state-of-the-art techniques. On the ISPRS Filter Test dataset, it is 78 times faster for conversion and 16 times faster for classification. Our experimental analysis on the same dataset shows that the proposed method results in 5.22 % of total error, 4.10 % of type I error, and 15.07 % of type II error. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on a very high point density LIDAR point clouds resulting in 4.02 % of total error, 2.15 % of type I error and 6.14 % of type II error.
NASA Astrophysics Data System (ADS)
Boreysho, Anatoly; Savin, Andrey; Morozov, Alexey; Konyaev, Maxim; Konovalov, Konstantin
2007-06-01
Recognition of aerosol clouds material at some significant distance is now a key requirement for the wide range of applications. The elastic backscatter lidar have demonstrated high capabilities in aerosol remote detection, cloud real-time mapping at very long distances for low-concentration natural aerosols as well as artificial ones [1]. However, recognition ability is required to make them more relevant. Laser-induced fluorescence (LIF) looks very promising with respect to the recognition problem. New approach based on mobile lidar complex [2] equipped by spectrally-and range-resolved LIF-sensor is described as well as some results of field tests. The LIF-sensor consists of four-harmonics Nd:YAG laser equipped by an output expander to provide final beam divergence <1 mrad, 500-mm aspheric Cassegrain-type multi-wavelength receiving telescope, set of single-element receivers for measurement of the elastic backscatter radiation, and multi-element receiver with monochromator for spectrally-resolved LIF measurements. The system is equipped by 2-axis scanning mirror and variable-FOV video-camera collimated with the lidar scanning direction. The LIF-lidar is mounted on a truck-based platform (20-feet container) as a part of multi-purpose mobile lidar complex and adjusted for field conditions.
Estimating forest and woodland aboveground biomass using active and passive remote sensing
Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.
2016-01-01
Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.
Assessing LiDAR elevation data for KDOT applications : [technical summary].
DOT National Transportation Integrated Search
2013-02-01
LiDAR-based elevation surveys : are a cost-effective means for : mapping topography over large : areas. LiDAR surveys use an : airplane-mounted or ground-based : laser radar unit to scan terrain. : Post-processing techniques are : applied to remove v...
Airborne LiDAR : a new source of traffic flow data : executive summary.
DOT National Transportation Integrated Search
2005-10-01
LiDAR (or airborne laser scanning) systems became a : dominant player in high-precision spatial data : acquisition in the late 90s. This new technology : quickly established itself as the main source of surface : information in commercial mapping,...
Airborne LiDAR : a new source of traffic flow data, executive summary report.
DOT National Transportation Integrated Search
2005-10-01
LiDAR (or airborne laser scanning) systems became a : dominant player in high-precision spatial data : acquisition in the late 90s. This new technology : quickly established itself as the main source of surface : information in commercial mapping,...
Airborne LiDAR : a new source of traffic flow data.
DOT National Transportation Integrated Search
2005-10-01
LiDAR (or airborne laser scanning) systems became a dominant player in high-precision spatial data acquisition : to efficiently create DEM/DSM in the late 90's. With increasing point density, new systems are now able to : support object extraction, s...
Airborne LiDAR : a new source of traffic flow data.
DOT National Transportation Integrated Search
2005-10-01
LiDAR (or airborne laser scanning) systems became a dominant player in high-precision spatial data acquisition : to efficiently create DEM/DSM in the late 90s. With increasing point density, new systems are now able to : support object extraction, ...
Improved simulation of aerosol, cloud, and density measurements by shuttle lidar
NASA Technical Reports Server (NTRS)
Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. W.
1981-01-01
Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km.
Error suppression and correction for quantum annealing
NASA Astrophysics Data System (ADS)
Lidar, Daniel
While adiabatic quantum computing and quantum annealing enjoy a certain degree of inherent robustness against excitations and control errors, there is no escaping the need for error correction or suppression. In this talk I will give an overview of our work on the development of such error correction and suppression methods. We have experimentally tested one such method combining encoding, energy penalties and decoding, on a D-Wave Two processor, with encouraging results. Mean field theory shows that this can be explained in terms of a softening of the closing of the gap due to the energy penalty, resulting in protection against excitations that occur near the quantum critical point. Decoding recovers population from excited states and enhances the success probability of quantum annealing. Moreover, we have demonstrated that using repetition codes with increasing code distance can lower the effective temperature of the annealer. References: K.L. Pudenz, T. Albash, D.A. Lidar, ``Error corrected quantum annealing with hundreds of qubits'', Nature Commun. 5, 3243 (2014). K.L. Pudenz, T. Albash, D.A. Lidar, ``Quantum annealing correction for random Ising problems'', Phys. Rev. A. 91, 042302 (2015). S. Matsuura, H. Nishimori, T. Albash, D.A. Lidar, ``Mean Field Analysis of Quantum Annealing Correction''. arXiv:1510.07709. W. Vinci et al., in preparation.
2017-04-01
ER D C/ CH L TR -1 7- 5 Coastal Field Data Collection Program Collection, Processing, and Accuracy of Mobile Terrestrial Lidar Survey ... Survey Data in the Coastal Environment Nicholas J. Spore and Katherine L. Brodie Field Research Facility U.S. Army Engineer Research and Development...value to a mobile lidar survey may misrepresent some of the spatially variable error throughout the survey , and further work should incorporate full
2017-04-01
ER D C/ CH L TR -1 7- 5 Coastal Field Data Collection Program Collection, Processing, and Accuracy of Mobile Terrestrial Lidar Survey ... Survey Data in the Coastal Environment Nicholas J. Spore and Katherine L. Brodie Field Research Facility U.S. Army Engineer Research and Development...value to a mobile lidar survey may misrepresent some of the spatially variable error throughout the survey , and further work should incorporate full
Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar
Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V.; Kolka, Randall
2015-01-01
A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C. PMID:26426532
Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.
Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall
2015-01-01
A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.
Further Studies of Forest Structure Parameter Retrievals Using the Echidna® Ground-Based Lidar
NASA Astrophysics Data System (ADS)
Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Wang, Z.; Li, Z.; Woodcock, C. E.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.
2012-12-01
Ongoing work with the Echidna® Validation Instrument (EVI), a full-waveform, ground-based scanning lidar (1064 nm) developed by Australia's CSIRO and deployed by Boston University in California conifers (2008) and New England hardwood and softwood (conifer) stands (2007, 2009, 2010), confirms the importance of slope correction in forest structural parameter retrieval; detects growth and disturbance over periods of 2-3 years; provides a new way to measure the between-crown clumping factor in leaf area index retrieval using lidar range; and retrieves foliage profiles with more lower-canopy detail than a large-footprint aircraft scanner (LVIS), while simulating LVIS foliage profiles accurately from a nadir viewpoint using a 3-D point cloud. Slope correction is important for accurate retrieval of forest canopy structural parameters, such as mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass. Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identify, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. A test of three methods at southern Sierra Nevada conifer sites improved the range of correlations of these EVI-retrieved parameters with field measurements from 0.53-0.68 to 0.85-0.93 for the best method. EVI scans can detect change, including both growth and disturbance, in periods of two to three years. We revisited three New England forest sites scanned in 2007-2009 or 2007-2010. A shelterwood stand at the Howland Experimental Forest, Howland, Maine, showed increased mean DBH, above-ground biomass and leaf area index between 2007 and 2009. Two stands at the Harvard Forest, Petersham, Massachusetts, suffered reduced leaf area index and reduced stem count density as the result of an ice storm that damaged the stands. At one stand, broken tops were visible in the 2010 point cloud canopy reconstruction. A new method for retrieval of the forest canopy between-crown clumping index from angular gaps in hemispherically-projected EVI data traces gaps as they narrow with range from the instrument, thus providing the approximate physical size, rather than angular size, of the gaps. In applying this method to a range of sites in the southern Sierra Nevada, element clumping index values are lower (more between-crown clumping effect) in more open stands, providing improved results as compared to conventional hemispherical photography. In dense stands with fewer gaps, the clumping index values were closer. Foliage profiles retrieved from EVI scans at five Sierra Nevada sites are closely correlated with those of the airborne Lidar Vegetation Imaging Sensor (LVIS) when averaged over a diameter of 100 m. At smaller diameters, the EVI scans have more detail in lower canopy layers and the LVIS and EVI foliage profiles are more distinct. Foliage profiles derived from processing 3-D site point clouds with a nadir view match the LVIS foliage profiles more closely than profiles derived from EVI in scan mode. Removal of terrain effects significantly enhances the match with LVIS profiles. This research was supported by the US National Science Foundation under grant MRI DBI-0923389.
Accuracy assessment of a mobile terrestrial lidar survey at Padre Island National Seashore
Lim, Samsung; Thatcher, Cindy A.; Brock, John C.; Kimbrow, Dustin R.; Danielson, Jeffrey J.; Reynolds, B.J.
2013-01-01
The higher point density and mobility of terrestrial laser scanning (light detection and ranging (lidar)) is desired when extremely detailed elevation data are needed for mapping vertically orientated complex features such as levees, dunes, and cliffs, or when highly accurate data are needed for monitoring geomorphic changes. Mobile terrestrial lidar scanners have the capability for rapid data collection on a larger spatial scale compared with tripod-based terrestrial lidar, but few studies have examined the accuracy of this relatively new mapping technology. For this reason, we conducted a field test at Padre Island National Seashore of a mobile lidar scanner mounted on a sport utility vehicle and integrated with a position and orientation system. The purpose of the study was to assess the vertical and horizontal accuracy of data collected by the mobile terrestrial lidar system, which is georeferenced to the Universal Transverse Mercator coordinate system and the North American Vertical Datum of 1988. To accomplish the study objectives, independent elevation data were collected by conducting a high-accuracy global positioning system survey to establish the coordinates and elevations of 12 targets spaced throughout the 12 km transect. These independent ground control data were compared to the lidar scanner-derived elevations to quantify the accuracy of the mobile lidar system. The performance of the mobile lidar system was also tested at various vehicle speeds and scan density settings (e.g. field of view and linear point spacing) to estimate the optimal parameters for desired point density. After adjustment of the lever arm parameters, the final point cloud accuracy was 0.060 m (east), 0.095 m (north), and 0.053 m (height). The very high density of the resulting point cloud was sufficient to map fine-scale topographic features, such as the complex shape of the sand dunes.
Kumar, G. Ajay; Patil, Ashok Kumar; Patil, Rekha; Park, Seong Sill; Chai, Young Ho
2017-01-01
Mapping the environment of a vehicle and localizing a vehicle within that unknown environment are complex issues. Although many approaches based on various types of sensory inputs and computational concepts have been successfully utilized for ground robot localization, there is difficulty in localizing an unmanned aerial vehicle (UAV) due to variation in altitude and motion dynamics. This paper proposes a robust and efficient indoor mapping and localization solution for a UAV integrated with low-cost Light Detection and Ranging (LiDAR) and Inertial Measurement Unit (IMU) sensors. Considering the advantage of the typical geometric structure of indoor environments, the planar position of UAVs can be efficiently calculated from a point-to-point scan matching algorithm using measurements from a horizontally scanning primary LiDAR. The altitude of the UAV with respect to the floor can be estimated accurately using a vertically scanning secondary LiDAR scanner, which is mounted orthogonally to the primary LiDAR. Furthermore, a Kalman filter is used to derive the 3D position by fusing primary and secondary LiDAR data. Additionally, this work presents a novel method for its application in the real-time classification of a pipeline in an indoor map by integrating the proposed navigation approach. Classification of the pipeline is based on the pipe radius estimation considering the region of interest (ROI) and the typical angle. The ROI is selected by finding the nearest neighbors of the selected seed point in the pipeline point cloud, and the typical angle is estimated with the directional histogram. Experimental results are provided to determine the feasibility of the proposed navigation system and its integration with real-time application in industrial plant engineering. PMID:28574474
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor
2013-01-01
Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.
Parameterization of cloud lidar backscattering profiles by means of asymmetrical Gaussians
NASA Astrophysics Data System (ADS)
del Guasta, Massimo; Morandi, Marco; Stefanutti, Leopoldo
1995-06-01
A fitting procedure for cloud lidar data processing is shown that is based on the computation of the first three moments of the vertical-backscattering (or -extinction) profile. Single-peak clouds or single cloud layers are approximated to asymmetrical Gaussians. The algorithm is particularly stable with respect to noise and processing errors, and it is much faster than the equivalent least-squares approach. Multilayer clouds can easily be treated as a sum of single asymmetrical Gaussian peaks. The method is suitable for cloud-shape parametrization in noisy lidar signatures (like those expected from satellite lidars). It also permits an improvement of cloud radiative-property computations that are based on huge lidar data sets for which storage and careful examination of single lidar profiles can't be carried out.
Medeiros, Stephen; Hagen, Scott; Weishampel, John; ...
2015-03-25
Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore » true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less
Turbulent CO2 Flux Measurements by Lidar: Length Scales, Results and Comparison with In-Situ Sensors
NASA Technical Reports Server (NTRS)
Gilbert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.
2009-01-01
The vertical CO2 flux in the atmospheric boundary layer (ABL) is investigated with a Doppler differential absorption lidar (DIAL). The instrument was operated next to the WLEF instrumented tall tower in Park Falls, Wisconsin during three days and nights in June 2007. Profiles of turbulent CO2 mixing ratio and vertical velocity fluctuations are measured by in-situ sensors and Doppler DIAL. Time and space scales of turbulence are precisely defined in the ABL. The eddy-covariance method is applied to calculate turbulent CO2 flux both by lidar and in-situ sensors. We show preliminary mean lidar CO2 flux measurements in the ABL with a time and space resolution of 6 h and 1500 m respectively. The flux instrumental errors decrease linearly with the standard deviation of the CO2 data, as expected. Although turbulent fluctuations of CO2 are negligible with respect to the mean (0.1 %), we show that the eddy-covariance method can provide 2-h, 150-m range resolved CO2 flux estimates as long as the CO2 mixing ratio instrumental error is no greater than 10 ppm and the vertical velocity error is lower than the natural fluctuations over a time resolution of 10 s.
Airborne LiDAR : a new source of traffic flow data, research implementation plan.
DOT National Transportation Integrated Search
2005-10-01
LiDAR (or airborne laser scanning) systems became a dominant player in high-precision spatial data acquisition in the late 90's. This new technology quickly established itself as the main source of surface information in commercial mapping, deliverin...
Spectral purity study for IPDA lidar measurement of CO2
NASA Astrophysics Data System (ADS)
Ma, Hui; Liu, Dong; Xie, Chen-Bo; Tan, Min; Deng, Qian; Xu, Ji-Wei; Tian, Xiao-Min; Wang, Zhen-Zhu; Wang, Bang-Xin; Wang, Ying-Jian
2018-02-01
A high sensitivity and global covered observation of carbon dioxide (CO2) is expected by space-borne integrated path differential absorption (IPDA) lidar which has been designed as the next generation measurement. The stringent precision of space-borne CO2 data, for example 1ppm or better, is required to address the largest number of carbon cycle science questions. Spectral purity, which is defined as the ratio of effective absorbed energy to the total energy transmitted, is one of the most important system parameters of IPDA lidar which directly influences the precision of CO2. Due to the column averaged dry air mixing ratio of CO2 is inferred from comparison of the two echo pulse signals, the laser output usually accompanied by an unexpected spectrally broadband background radiation would posing significant systematic error. In this study, the spectral energy density line shape and spectral impurity line shape are modeled as Lorentz line shape for the simulation, and the latter is assumed as an unabsorbed component by CO2. An error equation is deduced according to IPDA detecting theory for calculating the system error caused by spectral impurity. For a spectral purity of 99%, the induced error could reach up to 8.97 ppm.
Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements
NASA Technical Reports Server (NTRS)
Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)
2002-01-01
In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the ability to fit the MODIS data. Therefore the MODIS measurements can be used to identify the calibration problem and correct for it. The CALIPSO-MODIS measurements of the profiles of fine and coarse aerosols, together with CALIPSO measurements of clouds vertical distribution, is expected to be critically important in understanding aerosol transport across continents and political boundaries, and to study aerosol-cloud interaction and its effect on precipitation and global forcing of climate.
NASA Astrophysics Data System (ADS)
Hudnut, K. W.; Glennie, C. L.; Brooks, B. A.; Hauser, D. L.; Ericksen, T.; Boatwright, J.; Rosinski, A.; Dawson, T. E.; Mccrink, T. P.; Mardock, D. K.; Hoirup, D. F., Jr.; Bray, J.
2014-12-01
Pre-earthquake airborne LiDAR coverage exists for the area impacted by the M 6.0 South Napa earthquake. The Napa watershed data set was acquired in 2003, and data sets were acquired in other portions of the impacted area in 2007, 2010 and 2014. The pre-earthquake data are being assessed and are of variable quality and point density. Following the earthquake, a coalition was formed to enable rapid acquisition of post-earthquake LiDAR. Coordination of this coalition took place through the California Earthquake Clearinghouse; consequently, a commercial contract was organized by Department of Water Resources that allowed for the main fault rupture and damaged Browns Valley area to be covered 16 days after the earthquake at a density of 20 points per square meter over a 20 square kilometer area. Along with the airborne LiDAR, aerial imagery was acquired and will be processed to form an orthomosaic using the LiDAR-derived DEM. The 'Phase I' airborne data were acquired using an Optech Orion M300 scanner, an Applanix 200 GPS-IMU, and a DiMac ultralight medium format camera by Towill. These new data, once delivered, will be differenced against the pre-earthquake data sets using a newly developed algorithm for point cloud matching, which is improved over prior methods by accounting for scan geometry error sources. Proposed additional 'Phase II' coverage would allow repeat-pass, post-earthquake coverage of the same area of interest as in Phase I, as well as an addition of up to 4,150 square kilometers that would potentially allow for differential LiDAR assessment of levee and bridge impacts at a greater distance from the earthquake source. Levee damage was reported up to 30 km away from the epicenter, and proposed LiDAR coverage would extend up to 50 km away and cover important critical lifeline infrastructure in the western Sacramento River delta, as well as providing full post-earthquake repeat-pass coverage of the Napa watershed to study transient deformation.
Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2
NASA Astrophysics Data System (ADS)
Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.
2017-12-01
The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.
Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar
NASA Technical Reports Server (NTRS)
Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.
2003-01-01
A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.
High resolution wind turbine wake measurements with a scanning lidar
NASA Astrophysics Data System (ADS)
Herges, T. G.; Maniaci, D. C.; Naughton, B. T.; Mikkelsen, T.; Sjöholm, M.
2017-05-01
High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One of the primary objectives is to collect experimental data to improve the predictive capability of wind plant computational models to represent the response of the turbine wake to varying inflow conditions and turbine operating states. The present work summarizes the experimental setup and illustrates several wake measurement example cases. The cases focus on demonstrating the impact of the atmospheric conditions on the wake shape and position, and exhibit a sample of the data that has been made public through the Department of Energy Atmosphere to Electrons Data Archive and Portal.
MERLIN: a Franco-German LIDAR space mission for atmospheric methane
NASA Astrophysics Data System (ADS)
Bousquet, P.; Ehret, G.; Pierangelo, C.; Marshall, J.; Bacour, C.; Chevallier, F.; Gibert, F.; Armante, R.; Crevoisier, C. D.; Edouart, D.; Esteve, F.; Julien, E.; Kiemle, C.; Alpers, M.; Millet, B.
2017-12-01
The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development, launch and operation of a space LIDAR dedicated to the retrieval of total weighted methane (CH4) atmospheric columns. Atmospheric methane is the second most potent anthropogenic greenhouse gas, contributing 20% to climate radiative forcing but also plying an important role in atmospheric chemistry as a precursor of tropospheric ozone and low-stratosphere water vapour. Its short lifetime ( 9 years) and the nature and variety of its anthropogenic sources also offer interesting mitigation options in regards to the 2° objective of the Paris agreement. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging), with a precision (target ±27 ppb for a 50km aggregation along the trace) and accuracy (target <3.7 ppb at 68%) sufficient to significantly reduce the uncertainties on methane emissions. The very low targeted systematic error target is particularly ambitious compared to current passive methane space mission. It is achievable because of the differential active measurements of MERLIN, which guarantees almost no contamination by aerosols or water vapour cross-sensitivity. As an active mission, MERLIN will deliver global methane weighted columns (XCH4) for all seasons and all latitudes, day and night Here, we recall the MERLIN objectives and mission characteristics. We also propose an end-to-end error analysis, from the causes of random and systematic errors of the instrument, of the platform and of the data treatment, to the error on methane emissions. To do so, we propose an OSSE analysis (observing system simulation experiment) to estimate the uncertainty reduction on methane emissions brought by MERLIN XCH4. The originality of our inversion system is to transfer both random and systematic errors from the observation space to the flux space, thus providing more realistic error reductions than usually provided in OSSE only using the random part of errors. Uncertainty reductions are presented using two different atmospheric transport models, TM3 and LMDZ, and compared with error reduction achieved with the GOSAT passive mission.
Visible/Infrared Optical Depths of Cirrus as Seen by Satellite and Scanning Lidar
NASA Technical Reports Server (NTRS)
Wylie, Donald; Wolf, Walt; Piironen, Paivi; Eloranta, Edwin
1996-01-01
The High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL) were combined to produce a quantitative image of the visible optical depth of cirrus clouds. The HSRL was used to calibrate the VIL signal into backscatter cross sections of particulates. The backscatter cross sections were related to extinction by a constant backscatter phase function determined from the HSRL data. This produced a three dimensional image of visual extinction in the cirrus clouds over a one hour period. Two lidar images were constructed from one hour VIL cross section records.
NASA Astrophysics Data System (ADS)
Cook, Kristen
2015-04-01
With the recent explosion in the use and availability of unmanned aerial vehicle platforms and development of easy to use structure from motion (SfM) software, UAV based photogrammetry is increasingly being adopted to produce high resolution topography for the study of surface processes. UAV systems can vary substantially in price and complexity, but the tradeoffs between these and the quality of the resulting data are not well constrained. We look at one end of this spectrum and evaluate the effectiveness of a simple low cost UAV setup for obtaining high resolution topography in a challenging field setting. Our study site is the Daan River gorge in western Taiwan, a rapidly eroding bedrock gorge that we have monitored with terrestrial Lidar since 2009. The site presents challenges for the generation and analysis of high resolution topography, including vertical gorge walls, vegetation, wide variation in surface roughness, and a complicated 3D morphology. In order to evaluate the accuracy of the UAV-derived topography, we compare it with terrestrial Lidar data collected during the same survey period. Our UAV setup combines a DJI Phantom 2 quadcopter with a 16 megapixel Canon Powershot camera for a total platform cost of less than 850. The quadcopter is flown manually, and the camera is programmed to take a photograph every 4 seconds, yielding 200-250 pictures per flight. We measured ground control points and targets for both the Lidar scans and the aerial surveys using a Leica RTK GPS with 1-2 cm accuracy. UAV derived point clouds were obtained using Agisoft Photoscan software. We conducted both Lidar and UAV surveys before and after the 2014 typhoon season, allowing us to evaluate the reliability of the UAV survey to detect geomorphic changes in the range of one to several meters. The accuracy of the SfM point clouds depends strongly on the characteristics of the surface being considered, with vegetation and small scale texture causing inaccuracies. However, we find that this simple UAV setup can yield point clouds with 78% of points within 20 cm and 60% within 10 cm of the Lidar point clouds, with the higher errors dominated by vegetation effects. Well-distributed and accurately located ground control points are critical, but we achieve good accuracy with even with relatively few ground control points (25) over a 150,000 sq m area. The large number of photographs taken during each flight also allows us to explore the reproducibility of the UAV-derived topography by generating point clouds from different subsets of photographs taken of the same area during a single survey. These results show the same pattern of higher errors due to vegetation, but bedrock surfaces generally have errors of less than 4 cm. These results suggest that even very basic UAV surveys can yield data suitable for measuring geomorphic change on the scale of a channel reach.
NASA Astrophysics Data System (ADS)
Lidar, Daniel A.; Brun, Todd A.
2013-09-01
Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.
NASA Astrophysics Data System (ADS)
Alexandrov, M. D.; Mishchenko, M. I.
2017-12-01
Accurate aerosol retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. We suggested to address this ill-posedness by flying a bistatic lidar system. Such a system would consist of formation flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and an additional platform hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar. Thus, bistatic lidar observations will be free of deficiencies affecting both monostatic lidar measurements (caused by the highly limited information content) and passive photopolarimetric measurements (caused by vertical integration and surface reflection).We present a preliminary aerosol retrieval algorithm for a bistatic lidar system consisting of a high spectral resolution lidar (HSRL) and an additional receiver flown in formation with it at a scattering angle of 165 degrees. This algorithm was applied to synthetic data generated using Mie-theory computations. The model/retrieval parameters in our tests were the effective radius and variance of the aerosol size distribution, complex refractive index of the particles, and their number concentration. Both mono- and bimodal aerosol mixtures were considered. Our algorithm allowed for definitive evaluation of error propagation from measurements to retrievals using a Monte Carlo technique, which involves random distortion of the observations and statistical characterization of the resulting retrieval errors. Our tests demonstrated that supplementing a conventional monostatic HSRL with an additional receiver dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols.
Accuracy evaluation of 3D lidar data from small UAV
NASA Astrophysics Data System (ADS)
Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav
2015-10-01
A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.
UAV-borne lidar with MEMS mirror-based scanning capability
NASA Astrophysics Data System (ADS)
Kasturi, Abhishek; Milanovic, Veljko; Atwood, Bryan H.; Yang, James
2016-05-01
Firstly, we demonstrated a wirelessly controlled MEMS scan module with imaging and laser tracking capability which can be mounted and flown on a small UAV quadcopter. The MEMS scan module was reduced down to a small volume of <90mm x 60mm x 40mm, weighing less than 40g and consuming less than 750mW of power using a ~5mW laser. This MEMS scan module was controlled by a smartphone via Bluetooth while flying on a drone, and could project vector content, text, and perform laser based tracking. Also, a "point-and-range" LiDAR module was developed for UAV applications based on low SWaP (Size, Weight and Power) gimbal-less MEMS mirror beam-steering technology and off-the-shelf OEM LRF modules. For demonstration purposes of an integrated laser range finder module, we used a simple off-the-shelf OEM laser range finder (LRF) with a 100m range, +/-1.5mm accuracy, and 4Hz ranging capability. The LRFs receiver optics were modified to accept 20° of angle, matching the transmitter's FoR. A relatively large (5.0mm) diameter MEMS mirror with +/-10° optical scanning angle was utilized in the demonstration to maintain the small beam divergence of the module. The complete LiDAR prototype can fit into a small volume of <70mm x 60mm x 60mm, and weigh <50g when powered by the UAV's battery. The MEMS mirror based LiDAR system allows for ondemand ranging of points or areas within the FoR without altering the UAV's position. Increasing the LRF ranging frequency and stabilizing the pointing of the laser beam by utilizing the onboard inertial sensors and the camera are additional goals of the next design.
NASA Astrophysics Data System (ADS)
Belanger, Brigitte; Fougeres, Andre; Talbot, Mario
2001-02-01
12 Over the past few years, INO has developed an Industrial Fiber Lidar (IFL). It enables the particulate pollution monitoring on industrial sites. More particularly, it has been used to take measurements of particulate concentration at Port Facilities of an aluminum plant during boat unloading. It is an eye-safe and portable lidar. It uses a fiber laser also developed at INO emitting 1.7 microJoules at 1534 nm with a pulse repetition frequency of 5 kHz. Given the harsh environment of an industrial site, all the sensitive equipment like the laser source, detector, computer and acquisition electronics are located in a building and connected to the optical module, placed outside, via optical fibers up to 500 m long. The fiber link also offers all the flexibility for placing the optical module at a proper location. The optical module is mounted on a two axis scanning platform, able to perform an azimuth scan of 0 to 355 deg and an elevation scan of +/- 90 deg, which enables the scanning of zones defined by the user. On this industrial site, materials like bauxite, alumina, spathfluor and calcined coke having mass extinction coefficients ranging from 0.53 to 2.7 m2/g can be detected. Data for different measurement configurations have been obtained. Concentration values have been calculated for measurements in a hopper, along a wharf and over the urban area close to the port facilities. The lidar measurements have been compared to high volume samplers. Based on these comparisons, it has been established that the IFL is able to monitor the relative fluctuations of dust concentrations. It can be integrated to the process control of the industrial site for alarm generation when concentrations are above threshold.
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.
1999-01-01
The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general/regional circulation models; obtain similar datasets to improve understanding and predictive capabilities for similarly-scaled processes and features; and simulate and validate the performance of prospective satellite Doppler lidars for global tropospheric wind measurement.
Accuracy assessment of TanDEM-X IDEM using airborne LiDAR on the area of Poland
NASA Astrophysics Data System (ADS)
Woroszkiewicz, Małgorzata; Ewiak, Ireneusz; Lulkowska, Paulina
2017-06-01
The TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) mission launched in 2010 is another programme - after the Shuttle Radar Topography Mission (SRTM) in 2000 - that uses space-borne radar interferometry to build a global digital surface model. This article presents the accuracy assessment of the TanDEM-X intermediate Digital Elevation Model (IDEM) provided by the German Aerospace Center (DLR) under the project "Accuracy assessment of a Digital Elevation Model based on TanDEM-X data" for the southwestern territory of Poland. The study area included: open terrain, urban terrain and forested terrain. Based on a set of 17,498 reference points acquired by airborne laser scanning, the mean errors of average heights and standard deviations were calculated for areas with a terrain slope below 2 degrees, between 2 and 6 degrees and above 6 degrees. The absolute accuracy of the IDEM data for the analysed area, expressed as a root mean square error (Total RMSE), was 0.77 m.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
An investigation of rock fall and pore water pressure using LIDAR in Highway 63 rock cuts.
DOT National Transportation Integrated Search
2014-07-01
The purpose of this research work is compare LIDAR scanning measurements of rock fall with the natural changes in groundwater level to determining the effect of water pressures (levels) on rock fall. To collect the information of rock cut volume chan...
Development of LIDAR-guided sprayer to synchronize spray outputs with canopy structures
USDA-ARS?s Scientific Manuscript database
Variable-rate application is an effective way for nursery and orchard growers to reduce pesticide use and potential contaminations to the environment. To realize this goal, an intelligent air-assisted sprayer implementing a high speed laser scanning sensor (LIDAR) was developed to vary spray output ...
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Evans, K. D.; DiGirolamo, P.; Demoz, B. B.; Turner, D.; Comstock, J.; Ismail, S.; Ferrare, R. A.; Browell, E. V.; Goldsmith, J. E. M.;
2002-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Southern Great Plains CART site from September - December, 2000 and participated in two field campaigns devoted to comparisons of various water vapor measurement technologies and calibrations. These campaigns were the Water Vapor Intensive Operations Period 2000 (WVIOP2000) and the ARM FIRE Water Vapor Experiment (AFWEX). WVIOP2000 was devoted to validating water vapor measurements in the lower atmosphere while AFWEX had similar goals but for measurements in the upper troposphere. The SRL was significantly upgraded both optically and electronically prior to these field campaigns. These upgrades enabled the SRL to demonstrate the highest resolution lidar measurements of water vapor ever acquired during the nighttime and the highest S/N Raman lidar measurements of water vapor in the daytime; more than a factor of 2 increase in S/N versus the DOE CARL Raman Lidar. Examples of these new measurement capabilities along with comparisons of SRL and CARL, LASE, MPI-DIAL, in-situ sensors, radiosonde, and others will be presented. The profile comparisons of the SRL and CARL have revealed what appears to be an overlap correction or countrate correction problem in CARL. This may be involved in an overall dry bias in the precipitable water calibration of CARL with respect to the MWR of approx. 4%. Preliminary analysis indicates that the application of a temperature dependent correction to the narrowband Raman lidar measurements of water vapor improves the lidar/Vaisala radiosonde comparisons of upper tropospheric water vapor. Other results including the comparison of the first-ever simultaneous measurements from four water vapor lidar systems, a bore-wave event captured at high resolution by the SRL and cirrus cloud optical depth studies using the SRL and CARL will be presented at the meeting.
Lidar detection of carbon dioxide in volcanic plumes
NASA Astrophysics Data System (ADS)
Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro
2015-06-01
Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.
Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data
NASA Technical Reports Server (NTRS)
Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn
1989-01-01
Techniques for extraction boundary layer parameters from measurements of a short-pulse CO2 Doppler lidar are described. The measurements are those collected during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). By continuously operating the lidar for about an hour, stable statistics of the radial velocities can be extracted. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. Combining many measurements would normally reduce the error provided that, it is unbiased and uncorrelated. The nature of some of the algorithms however, is such that, biased and correlated errors may be generated even though the raw measurements are not. Data processing procedures were developed that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is shown to reduce the errors substantially. The principal features of the derived turbulence statistics for two case studied are presented.
LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)
NASA Astrophysics Data System (ADS)
Shrestha, K.; Carter, W. E.; Slatton, K. C.
2009-12-01
Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the sensitivity of the sensor by changing the PMT supply voltage. For heavily turbid water, the multi-photon state (2300 V, 2.5*10^5 gain) was not sufficient for feature identification. Extraction of the bottom signal in a heavily turbid suspension necessitated maximum MCP-PMT gain (2500 V, 8*10^5 gain). Extrapolation of bathymetric test results suggest that the density of data points from the sea bottom should be sufficient to establish near-shore depths (up to 5 m) at a spatial resolution of 1 meter, in moderately turbid water. Initial airborne tests over fresh water lakes in central Florida indicate that scan patterns containing near nadir laser points produce strong returns from the surface of the water that cause oscillations in the PMT—preventing the detection of the lake bottom in shallow clear water. These results suggest that it may be necessary to tilt the sensor head in its mount, or use a scan pattern that does not include nadir points, such as a circular scan, for bathymetric mapping. Additional tests are ongoing to optimize the performance of the CATS LSNR airborne LIDAR system for both high spatial resolution terrain mapping and shallow water bathymetric mapping.
Open quantum systems and error correction
NASA Astrophysics Data System (ADS)
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC) that applies to any linear map, in particular maps that are not completely positive (CP). This is a complementary to the second chapter which is published in [Shabani and Lidar, 2007]. In the last chapter 7 before the conclusion, a formulation for evaluating the performance of quantum error correcting codes for a general error model is presented, also published in [Shabani, 2005]. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery.
NASA Technical Reports Server (NTRS)
Liskovich, Diana; Simard, Marc
2011-01-01
Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.
NASA Astrophysics Data System (ADS)
Michoud, Clément; Carrea, Dario; Augereau, Emmanuel; Cancouët, Romain; Costa, Stéphane; Davidson, Robert; Delacourt, Chirstophe; Derron, Marc-Henri; Jaboyedoff, Michel; Letortu, Pauline; Maquaire, Olivier
2013-04-01
Dieppe coastal cliffs, in Normandy, France, are mainly formed by sub-horizontal deposits of chalk and flintstone. Largely destabilized by an intense weathering and the Channel sea erosion, small and large rockfalls are regularly observed and contribute to retrogressive cliff processes. During autumn 2012, cliff and intertidal topographies have been acquired with a Terrestrial Laser Scanner (TLS) and a Mobile Laser Scanner (MLS), coupled with seafloor bathymetries realized with a multibeam echosounder (MBES). MLS is a recent development of laser scanning based on the same theoretical principles of aerial LiDAR, but using smaller, cheaper and portable devices. The MLS system, which is composed by an accurate dynamic positioning and orientation (INS) devices and a long range LiDAR, is mounted on a marine vessel; it is then possible to quickly acquire in motion georeferenced LiDAR point clouds with a resolution of about 15 cm. For example, it takes about 1 h to scan of shoreline of 2 km long. MLS is becoming a promising technique supporting erosion and rockfall assessments along the shores of lakes, fjords or seas. In this study, the MLS system used to acquire cliffs and intertidal areas of the Cap d'Ailly was composed by the INS Applanix POS-MV 320 V4 and the LiDAR Optech Ilirs LR. On the same day, three MLS scans with large overlaps (J1, J21 and J3) have been performed at ranges from 600 m at 4 knots (low tide) up to 200 m at 2.2 knots (up tide) with a calm sea at 2.5 Beaufort (small wavelets). Mean scan resolutions go from 26 cm for far scan (J1) to about 8.1 cm for close scan (J3). Moreover, one TLS point cloud on this test site has been acquired with a mean resolution of about 2.3 cm, using a Riegl LMS Z390i. In order to quantify the reliability of the methodology, comparisons between scans have been realized with the software Polyworks™, calculating shortest distances between points of one cloud and the interpolated surface of the reference point cloud. A MatLab™ routine was also written to extract interesting statistics. First, mean distances between points of the reference point clouds (J21) and its interpolated surface are about 0.35 cm with a standard deviation of 15 cm; errors introduced during the surface interpolation step, especially in vegetated areas, may explain those differences. Then, mean distances between J1's points (resp. J3) and the J21's reference surface are about 4 cm (resp. -17 cm) with a standard deviation of 53 cm (resp. 55 cm). After a best fit alignment of J1 and J3 on J21, mean distances between J1 (resp. J3) and the J21's reference surface decrease to about 0.15 cm (resp. 1.6 cm) with a standard deviation of 41 cm (resp. 21 cm). Finally, mean distances between the TLS point clouds and the J21's reference surface are about 3.2 cm with a standard deviation of 26 cm. In conclusion, MLS devices are able to quickly scan long shoreline with a resolution up to about 10 cm. The precision of the acquired data is relatively small enough to investigate on geomorphological features of coastal cliffs. The ability of the MLS technique to detect and monitor small and large rockfalls will be investigated thanks to new acquisitions of the Dieppe cliffs in a close future and enhanced adapted post-processing steps.
Application of the Doppler lidar system to agricultural burning and air-sea interactions
NASA Technical Reports Server (NTRS)
Fitzjarrald, D.
1980-01-01
The Doppler lidar system is potentially a very powerful measurement system. Three areas concerning the system are discussed: (1) error analysis of the system to verify the results; (2) application of the system to agricultural burning in California central valley; and (3) oceanographic possibilities of the system.
Liu, Wanli
2017-03-08
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.
NASA Astrophysics Data System (ADS)
Carrea, Dario; Abellan, Antonio; Humair, Florian; Matasci, Battista; Derron, Marc-Henri; Jaboyedoff, Michel
2016-03-01
Ground-based LiDAR has been traditionally used for surveying purposes via 3D point clouds. In addition to XYZ coordinates, an intensity value is also recorded by LiDAR devices. The intensity of the backscattered signal can be a significant source of information for various applications in geosciences. Previous attempts to account for the scattering of the laser signal are usually modelled using a perfect diffuse reflection. Nevertheless, experience on natural outcrops shows that rock surfaces do not behave as perfect diffuse reflectors. The geometry (or relief) of the scanned surfaces plays a major role in the recorded intensity values. Our study proposes a new terrestrial LiDAR intensity correction, which takes into consideration the range, the incidence angle and the geometry of the scanned surfaces. The proposed correction equation combines the classical radar equation for LiDAR with the bidirectional reflectance distribution function of the Oren-Nayar model. It is based on the idea that the surface geometry can be modelled by a relief of multiple micro-facets. This model is constrained by only one tuning parameter: the standard deviation of the slope angle distribution (σslope) of micro-facets. Firstly, a series of tests have been carried out in laboratory conditions on a 2 m2 board covered by black/white matte paper (perfect diffuse reflector) and scanned at different ranges and incidence angles. Secondly, other tests were carried out on rock blocks of different lithologies and surface conditions. Those tests demonstrated that the non-perfect diffuse reflectance of rock surfaces can be practically handled by the proposed correction method. Finally, the intensity correction method was applied to a real case study, with two scans of the carbonate rock outcrop of the Dents-du-Midi (Swiss Alps), to improve the lithological identification for geological mapping purposes. After correction, the intensity values are proportional to the intrinsic material reflectance and are independent from range, incidence angle and scanned surface geometry. The corrected intensity values significantly improve the material differentiation.
Scanning Raman lidar for tropospheric water vapor profiling and GPS path delay correction
NASA Astrophysics Data System (ADS)
Tarniewicz, Jerome; Bock, Olivier; Pelon, Jacques R.; Thom, Christian
2002-01-01
The design of a ground based and transportable combined Raman elastic-backscatter lidar for the remote sensing of lower tropospheric water vapor and nitrogen concentration is described. This lidar is intended to be used for an external calibration of the wet path delay of GPS signals. A description of the method used to derive water vapor and nitrogen profiles in the lower troposphere is given. The instrument has been tested during the ESCOMPTE campaign in June 2001 and first measurements are presented.
Imaging doppler lidar for wind turbine wake profiling
Bossert, David J.
2015-11-19
An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.
Evaluation of turbulence measurement techniques from a single Doppler lidar
NASA Astrophysics Data System (ADS)
Bonin, Timothy A.; Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann M.; Pichugina, Yelena L.; Banta, Robert M.; Oncley, Steven P.; Wolfe, Daniel E.
2017-08-01
Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL). Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity-azimuth display (VAD), six-beam scans, and range-height indicators (RHIs) with a vertical stare.Measurements of turbulence kinetic energy (TKE), turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2 ≈ 0.78), showing little bias in its observations (slope of ≈ 0. 95). Turbulence measurements from the velocity-azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 = 0.15-0.17). Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.
Development of State of the Art Solid State Lasers for Altimetry and other LIDAR Applications
NASA Technical Reports Server (NTRS)
Kay, Richard B.
1997-01-01
This report describes work performed and research accomplished through the end of 1997. During this time period, we have designed and fabricated two lasers for flight LIDAR applications to medium altitudes (Laser Vegetation Imaging System designs LVIS 1 and LVIS 2), designed one earth orbiting LIDAR transmitter (VCL-Alt), and continued work on a high rep-rate LIDAR laser (Raster Scanned Altimeter, RASCAL). Additionally, a 'White Paper' was prepared which evaluates the current state of the art of Nd:YAG lasers and projects efficiencies to the year 2004. This report is attached as Appendix 1 of this report.
Coherent Doppler Lidar for Boundary Layer Studies and Wind Energy
NASA Astrophysics Data System (ADS)
Choukulkar, Aditya
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS RTM) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
NASA Astrophysics Data System (ADS)
Watlet, A.; Triantafyllou, A.; Kaufmann, O.; Le Mouelic, S.
2016-12-01
Amongst today's techniques that are able to produce 3D point clouds, LIDAR and UAV (Unmanned Aerial Vehicle) photogrammetry are probably the most commonly used. Both methods have their own advantages and limitations. LIDAR scans create high resolution and high precision 3D point clouds, but such methods are generally costly, especially for sporadic surveys. Compared to LIDAR, UAV (e.g. drones) are cheap and flexible to use in different types of environments. Moreover, the photogrammetric processing workflow of digital images taken with UAV becomes easier with the rise of many affordable software packages (e.g., Agisoft PhotoScan, MicMac, VisualSFM). In this canvas, we present a challenging study made at the Rochefort Cave Laboratory (South Belgium) comprising surface and underground surveys. The main chamber of the cave ( 10000 m³) was the principal target of the study. A LIDAR scan and an UAV photoscan were acquired underground, producing respective 3D models. An additional 3D photoscan was performed at the surface, in the sinkhole in direct connection with the main chamber. The main goal of the project is to combine this different datasets for quantifying the orientation of inaccessible geological structures (e.g. faults, tectonic and gravitational joints, and sediments bedding), and for comparing them to structural data surveyed on the field. To go through structural interpretations, we used a subsampling method merging neighboured model polygons that have similar orientations, allowing statistical analyses of polygons spatial distribution. The benefit of this method is to verify the spatial continuity of in-situ structural measurements to larger scale. Roughness and colorimetric/spectral analyses may also be of great interest for several geosciences purposes by discriminating different facies among the geological beddings. Amongst others, this study was helpful to precise the local petrophysical properties associated with particular geological layers, what improved interpreting results from an ERT monitoring of the karst hydrological processes in terms of groundwater content.
Coherent Lidar Design and Performance Verification
NASA Technical Reports Server (NTRS)
Frehlich, Rod
1996-01-01
This final report summarizes the investigative results from the 3 complete years of funding and corresponding publications are listed. The first year saw the verification of beam alignment for coherent Doppler lidar in space by using the surface return. The second year saw the analysis and computerized simulation of using heterodyne efficiency as an absolute measure of performance of coherent Doppler lidar. A new method was proposed to determine the estimation error for Doppler lidar wind measurements without the need for an independent wind measurement. Coherent Doppler lidar signal covariance, including wind shear and turbulence, was derived and calculated for typical atmospheric conditions. The effects of wind turbulence defined by Kolmogorov spatial statistics were investigated theoretically and with simulations. The third year saw the performance of coherent Doppler lidar in the weak signal regime determined by computer simulations using the best velocity estimators. Improved algorithms for extracting the performance of velocity estimators with wind turbulence included were also produced.
Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds.
Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun
2016-06-17
Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average completeness, correctness, and F-measure of 0.96, 0.93, and 0.94, respectively. The time complexity analysis shows that the scan line based road markings extraction method proposed in this paper provides a promising alternative for offline road markings extraction from MLS data.
Scan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds†
Yan, Li; Liu, Hua; Tan, Junxiang; Li, Zan; Xie, Hong; Chen, Changjun
2016-01-01
Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and self-driving technology, there will be a great demand for lane-level detailed 3D maps, and MLS is the most promising technology to generate such lane-level detailed 3D maps. Road markings and road edges are necessary information in creating such lane-level detailed 3D maps. This paper proposes a scan line based method to extract road markings from mobile LiDAR point clouds in three steps: (1) preprocessing; (2) road points extraction; (3) road markings extraction and refinement. In preprocessing step, the isolated LiDAR points in the air are removed from the LiDAR point clouds and the point clouds are organized into scan lines. In the road points extraction step, seed road points are first extracted by Height Difference (HD) between trajectory data and road surface, then full road points are extracted from the point clouds by moving least squares line fitting. In the road markings extraction and refinement step, the intensity values of road points in a scan line are first smoothed by a dynamic window median filter to suppress intensity noises, then road markings are extracted by Edge Detection and Edge Constraint (EDEC) method, and the Fake Road Marking Points (FRMPs) are eliminated from the detected road markings by segment and dimensionality feature-based refinement. The performance of the proposed method is evaluated by three data samples and the experiment results indicate that road points are well extracted from MLS data and road markings are well extracted from road points by the applied method. A quantitative study shows that the proposed method achieves an average completeness, correctness, and F-measure of 0.96, 0.93, and 0.94, respectively. The time complexity analysis shows that the scan line based road markings extraction method proposed in this paper provides a promising alternative for offline road markings extraction from MLS data. PMID:27322279
NASA Technical Reports Server (NTRS)
Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.
1999-01-01
Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.
Coherent lidar design and performance verification
NASA Technical Reports Server (NTRS)
Frehlich, Rod
1993-01-01
The verification of LAWS beam alignment in space can be achieved by a measurement of heterodyne efficiency using the surface return. The crucial element is a direct detection signal that can be identified for each surface return. This should be satisfied for LAWS but will not be satisfied for descoped LAWS. The performance of algorithms for velocity estimation can be described with two basic parameters: the number of coherently detected photo-electrons per estimate and the number of independent signal samples per estimate. The average error of spectral domain velocity estimation algorithms are bounded by a new periodogram Cramer-Rao Bound. Comparison of the periodogram CRB with the exact CRB indicates a factor of two improvement in velocity accuracy is possible using non-spectral domain estimators. This improvement has been demonstrated with a maximum-likelihood estimator. The comparison of velocity estimation algorithms for 2 and 10 micron coherent lidar was performed by assuming all the system design parameters are fixed and the signal statistics are dominated by a 1 m/s rms wind fluctuation over the range gate. The beam alignment requirements for 2 micron are much more severe than for a 10 micron lidar. The effects of the random backscattered field on estimating the alignment error is a major problem for space based lidar operation, especially if the heterodyne efficiency cannot be estimated. For LAWS, the biggest science payoff would result from a short transmitted pulse, on the order of 0.5 microseconds instead of 3 microseconds. The numerically errors for simulation of laser propagation in the atmosphere have been determined as a joint project with the University of California, San Diego. Useful scaling laws were obtained for Kolmogorov atmospheric refractive turbulence and an atmospheric refractive turbulence characterized with an inner scale. This permits verification of the simulation procedure which is essential for the evaluation of the effects of refractive turbulence on coherent Doppler lidar systems. The analysis of 2 micron Doppler lidar data from Coherent Technologies, Inc. (CTI) has demonstrated many of the advantages of doppler lidar measurements of boundary layer winds. The effects of wind shear and wind turbulence over the pulse volume are probably the dominant source of the reduced performance. The effects of wind shear and wind turbulence on the statistical description of doppler lidar data has been derived and calculated.
NASA Astrophysics Data System (ADS)
Di Girolamo, P.; Summa, D.; Stelitano, D.
2012-04-01
This paper illustrates an approach to determine the convective available potential energy (CAPE) and the convective inhibition (CIN) based on the use of data from a Raman lidar system. The use of Raman lidar data allows to provide high temporal resolution (5 min) measurements of CAPE and CIN and follow their evolution over extended time period covering the full cycle of convective activity. Lidar-based measurements of CAPE and CIN are obtained from Raman lidar measurements of the temperature profile and the surface measurements of temperature, pressure and dew point temperature provided from a surface weather station. The approach is tested and applied to the data collected by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) in the period 01 June - 31 August 2007 in the frame of the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France. Reported measurements are found to be in good agreement with simultaneous measurements obtained from the radiosondes launched in Achern and with estimates from different mesoscale models. An estimate of the different random error sources affecting the measurements of CAPE and CIN has also been performed, together with a detail sensitivity study to quantify the different systematic error sources. Preliminary results from this study will be illustrated and discussed at the Conference.
Using Airborne Lidar Data from IcePod to Measure Annual and Seasonal Ice Changes Over Greenland
NASA Astrophysics Data System (ADS)
Frearson, N.; Bertinato, C.; Das, I.
2014-12-01
The IcePod is a multi-sensor airborne science platform that supports a wide suite of instruments, including a Riegl VQ-580 infrared scanning laser, GPS-inertial positioning system, shallow and deep-ice radars, visible-wave and infrared cameras, and upward-looking pyrometer. These instruments allow us to image the ice from top to bottom, including the surface of melt-water plumes that originate at the ice-ocean boundary. In collaboration with the New York Air National Guard 109th Airlift Wing, the IcePod is flown on LC-130 aircraft, which presents the unique opportunity to routinely image the Greenland ice sheet several times within a season. This is particularly important for mass balance studies, as we can measure elevation changes during the melt season. During the 2014 summer, laser data was collected via IcePod over the Greenland ice sheet, including Russell Glacier, Jakobshavn Glacier, Eqip Glacier, and Summit Camp. The Icepod will also be routinely operated in Antarctica. We present the initial testing, calibration, and error estimates from the first set of laser data that were collected on IcePod. At a survey altitude of 1000 m, the laser swath covers ~ 1000 m. A Northrop-Grumman LN-200 tactical grade IMU is rigidly attached to the laser scanner to provide attitude data at a rate of 200 Hz. Several methods were used to determine the lever arm between the IMU center of navigation and GPS antenna phase center, terrestrial scanning laser, total station survey, and optimal estimation. Additionally, initial bore sight calibration flights yielded misalignment angles within an accuracy of ±4 cm. We also performed routine passes over the airport ramp in Kangerlussuaq, Greenland, comparing the airborne GPS and Lidar data to a reference GPS-based ground survey across the ramp, spot GPS points on the ramp and a nearby GPS base station. Positioning errors can severely impact the accuracy of a laser altimeter when flying over remote regions such as across the ice sheets. Setting up GPS base stations along the flight track can prove to be logistically challenging. We have processed the GPS-inertial data using both DGPS and PPP and present the comparison of those results here. Finally, we discuss our processing, calibration and error estimation methods and compare our results to previously flown IceBridge lines.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Emmitt, G. David; Frehlich, Rod G.; Amzajerdian, Farzin; Singh, Upendra N.
2002-01-01
An end-to-end point design, including lidar, orbit, scanning, atmospheric, and data processing parameters, for space-based global profiling of atmospheric wind will be presented. The point design attempts to match the recent NASA/NOAA draft science requirements for wind measurement.
Three-beam aerosol backscatter correlation lidar for wind profiling
NASA Astrophysics Data System (ADS)
Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand
2017-03-01
The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.
Light Detection and Ranging-Based Terrain Navigation: A Concept Exploration
NASA Technical Reports Server (NTRS)
Campbell, Jacob; UijtdeHaag, Maarten; vanGraas, Frank; Young, Steve
2003-01-01
This paper discusses the use of Airborne Light Detection And Ranging (LiDAR) equipment for terrain navigation. Airborne LiDAR is a relatively new technology used primarily by the geo-spatial mapping community to produce highly accurate and dense terrain elevation maps. In this paper, the term LiDAR refers to a scanning laser ranger rigidly mounted to an aircraft, as opposed to an integrated sensor system that consists of a scanning laser ranger integrated with Global Positioning System (GPS) and Inertial Measurement Unit (IMU) data. Data from the laser range scanner and IMU will be integrated with a terrain database to estimate the aircraft position and data from the laser range scanner will be integrated with GPS to estimate the aircraft attitude. LiDAR data was collected using NASA Dryden's DC-8 flying laboratory in Reno, NV and was used to test the proposed terrain navigation system. The results of LiDAR-based terrain navigation shown in this paper indicate that airborne LiDAR is a viable technology enabler for fully autonomous aircraft navigation. The navigation performance is highly dependent on the quality of the terrain databases used for positioning and therefore high-resolution (2 m post-spacing) data was used as the terrain reference.
Raster Vs. Point Cloud LiDAR Data Classification
NASA Astrophysics Data System (ADS)
El-Ashmawy, N.; Shaker, A.
2014-09-01
Airborne Laser Scanning systems with light detection and ranging (LiDAR) technology is one of the fast and accurate 3D point data acquisition techniques. Generating accurate digital terrain and/or surface models (DTM/DSM) is the main application of collecting LiDAR range data. Recently, LiDAR range and intensity data have been used for land cover classification applications. Data range and Intensity, (strength of the backscattered signals measured by the LiDAR systems), are affected by the flying height, the ground elevation, scanning angle and the physical characteristics of the objects surface. These effects may lead to uneven distribution of point cloud or some gaps that may affect the classification process. Researchers have investigated the conversion of LiDAR range point data to raster image for terrain modelling. Interpolation techniques have been used to achieve the best representation of surfaces, and to fill the gaps between the LiDAR footprints. Interpolation methods are also investigated to generate LiDAR range and intensity image data for land cover classification applications. In this paper, different approach has been followed to classifying the LiDAR data (range and intensity) for land cover mapping. The methodology relies on the classification of the point cloud data based on their range and intensity and then converted the classified points into raster image. The gaps in the data are filled based on the classes of the nearest neighbour. Land cover maps are produced using two approaches using: (a) the conventional raster image data based on point interpolation; and (b) the proposed point data classification. A study area covering an urban district in Burnaby, British Colombia, Canada, is selected to compare the results of the two approaches. Five different land cover classes can be distinguished in that area: buildings, roads and parking areas, trees, low vegetation (grass), and bare soil. The results show that an improvement of around 10 % in the classification results can be achieved by using the proposed approach.
Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark
2016-01-01
Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.
Pulsed Airborne Lidar Measurements of C02 Column Absorption
NASA Technical Reports Server (NTRS)
Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.
2011-01-01
We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.
NASA Astrophysics Data System (ADS)
Kong, Wei; Li, Jiatang; Liu, Hao; Chen, Tao; Hong, Guanglie; Shu, Rong
2017-11-01
Observation on small-time-scale features of water vapor density is essential for turbulence, convection and many other fast atmospheric processes study. For the high signal-to-noise signal of elastic signal acquired by differential absorption lidar, it has great potential for all-day water vapor turbulence observation. This paper presents a set of differential absorption lidar at 935nm developed by Shanghai Institute of Technical Physics of the Chinese Academy of Science for water vapor turbulence observation. A case at the midday is presented to demonstrate the daytime observation ability of this system. "Autocovariance method" is used to separate the contribution of water vapor fluctuation from random error. The results show that the relative error is less than 10% at temporal and spatial resolution of 10 seconds and 60 meters in the ABL. This indicate that the system has excellent performance for daytime water vapor turbulence observation.
NASA Technical Reports Server (NTRS)
Spiers, Gary D.
1994-01-01
Section 1 details the theory used to build the lidar model, provides results of using the model to evaluate AEOLUS design instrument designs, and provides snapshots of the visual appearance of the coded model. Appendix A contains a Fortran program to calculate various forms of the refractive index structure function. This program was used to determine the refractive index structure function used in the main lidar simulation code. Appendix B contains a memo on the optimization of the lidar telescope geometry for a line-scan geometry. Appendix C contains the code for the main lidar simulation and brief instruction on running the code. Appendix D contains a Fortran code to calculate the maximum permissible exposure for the eye from the ANSI Z136.1-1992 eye safety standards. Appendix E contains a paper on the eye safety analysis of a space-based coherent lidar presented at the 7th Coherent Laser Radar Applications and Technology Conference, Paris, France, 19-23 July 1993.
NASA Astrophysics Data System (ADS)
Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert
2018-05-01
We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman lidar. The relative humidity profiles from lidar, GDAS (simulation) and radiosonde are compared, too. It is found that the combination of water vapor mixing ratio and GDAS temperature profiles allow us to derive relative humidity profiles with the relative uncertainty of 10-20 %.
NASA Technical Reports Server (NTRS)
Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.;
2000-01-01
We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.
Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis
NASA Astrophysics Data System (ADS)
Che, E.; Olsen, M. J.
2017-09-01
Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.
NASA Technical Reports Server (NTRS)
Ivanova, I. D.; Gurdev, L. L.; Mitev, V. M.
1992-01-01
Various lidar methods have been developed for measuring the atmospheric temperature, making use of the temperature dependant characteristics of rotational Raman scattering (RRS) from nitrogen and oxygen, and Rayleigh or Rayleigh-Brillowin scattering (RS or RBS). These methods have various advantages and disadvantages as compared to each other but their potential accuracies are principal characteristics of their efficiency. No systematic attempt has been undertaken so far to compare the efficiences, in the above meaning, of different temperature lidar methods. Two RRS techniques have been compared. Here, we do such a comparison using two methods based on the detection and analysis of RS (RBS) spectra. Four methods are considered here for measuring the atmospheric temperature. One of them (Schwiesow and Lading, 1981) is based on an analysis of the RS linewidth with two Michelson interferometers (MI) in parallel. The second method (Shimisu et al., 1986) employs a high-resolution analysis of the RBS line shape. The third method (Cooney, 1972) employs the temperature dependance of the RRS spectrum envelope. The fourth method (Armstrong, 1974) makes use of a scanning Fabry-Perot interferometer (FPI) as a comb filter for processing the periodic RRS spectrum of the nitrogen. Let us denote the corresponding errors in measuring the temperature by sigma(sub MI), sigma(sub HR), sigma(sub ENV), and sigma(sub FPI). Let us also define the ratios chi(sub 1) = sigma(sub MI)/sigma(sub ENV), chi(sub 2) = sigma(sub HR)/sigma(sub ENV), and chi(sub 3) = sigma(sub FPI)/sigma(sub ENV) interpreted as relative errors with respect to sigma(sub ENV).
LiDAR Point Cloud and Stereo Image Point Cloud Fusion
2013-09-01
LiDAR point cloud (right) highlighting linear edge features ideal for automatic registration...point cloud (right) highlighting linear edge features ideal for automatic registration. Areas where topography is being derived, unfortunately, do...with the least amount of automatic correlation errors was used. The following graphic (Figure 12) shows the coverage of the WV1 stereo triplet as
NASA Astrophysics Data System (ADS)
Guerrero-Rascado, Juan Luis; da Costa, Renata; Esteban Bedoya, Andrés; Guardani, Roberto; Alados-Arboledas, Lucas; Efrain Bastidas, Álvaro; Landulfo, Eduardo
2015-04-01
The emission of pollutants in megacities and industrial areas can have strong impact, not only from an environmental point of view, but also for human health. Cubatão (23° 53' S, 46° 26' W, 10 m asl) has been one of the most industrialized city in Brazil (located at São Paulo state coast) during the last decades. This work deals with the recent advances made on a 3-λ scanning lidar placed at this industrial region. Special attention has been paid to the characterization of the electronic performance of this lidar system. For this goal, the quality assurance tests, regularly applied in well-established lidar networks such as LALINET [Guerrero-Rascado et al., 2014] and EARLINET [Pappalardo et al. 2014], were applied to the Cubatão scanning lidar in order to improve the knowledge of its performing itself and to design protocols for correcting lidar signal for undesirable instrumental effects. The application of the results derived from these quality assurance tests together with the state-of-the-art methodologies to map the particle optical and microphysical properties inside industrial flares demonstrate the potential of this lidar for the study and measurement of industrial emissions. References: J. L. Guerrero-Rascado, E. Landulfo, J. C. Antuña, H. M. J. Barbosa, B. Barja, A. E. Bastidas, A. E. Bedoya, R. da Costa, R. Estevan, R. N. Forno, D. A. Gouveia, C. Jiménez, E. G. Larroza, F. J. S. Lopes, E. Montilla-Rosero, G. A. Moreira, W. M. Nakaema, D. Nisperuza, L. Otero, J. V. Pallotta, S. Papandrea, E. Pawelko, E. J. Quel, P. Ristori, P. F. Rodrigues, J. Salvador, M. F. Sánchez, and A. Silva, "Towards an instrumental harmonization in the framework of LAINET: dataset of technical specifications", Proceedings of SPIE 2014, vol. 9246, 92460O-1 -- 92460O-14, doi: 10.1117/12.2066873 (2014) G. Pappalardo, A. Amodeo, A. Apituley, A. Comerón, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D'Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, "EARLINET: towards an advanced sustainable European aerosol lidar network," Atmos. Meas. Tech. 7(8), 2389-2409 (2014)
Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.
2014-12-01
Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface. Finally, we compare characteristics of wakes at the outside of the row of turbines to wakes from turbines in the interior of the row, quantifying how wakes from outer turbines erode faster than those from interior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komhyr, W.D.; McDermid, I.S.; Margitan, J.J.
1995-05-20
Ground-based measurements of stratospheric ozone using a Jet Propulsion Laboratory (JPL) lidar, a NASA Goddard Space Flight Center (GSFC) lidar, a Millitech Corporation/NASA Langley Research Center (Millitech/LaRC) microwave spectrometer, and a NOAA Dobson ozone spectrophotometer were compared with in situ measurements made quasi-simultaneously with balloon-borne electrochemical concentration cell (ECC) ozonesondes during 10 days of the Stratospheric Ozone Intercomparison Campaign (STOIC). Within the altitude range of 20-32 km, ozone measurement precisions were estimated to be {+-}0.6 to {+-}1.2% for the JPL lidar, {+-}0.7% for the GSFC lidar, {+-}4% for the microwave spectrometer, and {+-}3% for the NOAA ECC ozonesonde instruments. Thesemore » precisions decreased in the 32 to 38.6-km altitude range to {+-}1.3, {+-}1.5 and {+-}3% to {+-}10% for the JPL lidar, GSFC lidar, and the ECC sondes, respectively, but remained at {+-}4% for the microwave radiometer, and {+-}5% for the ECC ozonesondes. The accuracies decreased in the 32 to 38.6-km altitude range to {+-}2.6, {+-}3.0, {+-}7, and 1{+-}4% to {minus}4{+-}10% for the JPL lidar, the GSFC lidar, the microwave spectrometer, and the ECC ozonesondes, respectively. While accuracy estimates for the ECC sondes were obtained by combining random and estimated bias errors, the accuracies for the lidar instruments were obtained by doubling the measurement precision figures, with the assumption that such doubling accounts for systematic errors. Within the altitude range of 20-36 km the mean ozone profiles produced by the JPL, GSFC, and the Millitech/LaRC groups did not differ from the mean ozone profiles produced by the mean ECC sonde ozone profile by more than about 2, 4, and 5% respectively. Six morning Dobson instrument Umkehr observations yielded mean ozone amounts in layers 3 and 5-7 that agreed with comparison ECC ozonesonde data to within {+-}4%. In layer 4 the difference was 7.8%. 24 refs., 6 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; di Girolamo, P.; Summa, D.; Whiteman, D. N.; Mishchenko, M.; Tanré, D.
2010-11-01
Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event.
Four-wavelength lidar evaluation of particle characteristics and aerosol densities
NASA Astrophysics Data System (ADS)
Uthe, E. E.; Livingston, J. M.; Delateur, S. A.; Nielsen, N. B.
1985-06-01
The SRI International four-wavelength (0.53, 1.06, 3.8, 10.6 micron) lidar systems was used during the SNOW-ONE-B and Smoke Week XI/SNOW-TWO field experiments to validate its capabilities in assessing obscurant optical and physical properties. The lidar viewed along a horizontal path terminated by a passive reflector. Data examples were analyzed in terms of time-dependent transmission, wavelength dependence of optical depth, and range-resolved extinction coefficients. Three methods were used to derive extinction data from the lidar signatures. These were target method, Klett method and experimental data method. The results of the field and analysis programs are reported in the journal and conference papers that are appended to this report, and include: comparison study of lidar extinction methods, submitted to applied optics, error analysis of lidar solution techniques for range-resolved extinction coefficients based on observational data, smoke/obscurants symposium 9, Four--Wavelength Lidar Measurements from smoke week 6/SNOW-TWO, smoke/obscurants symposium 8, SNOW-ONE-B multiple-wavelength lidar measurements. Snow symposium 3, and lidar applications for obscurant evaluations, smoke/obscurants Symposium 7. The report also provides a summary of background work leading to this project, and of project results.
NASA Astrophysics Data System (ADS)
Stovall, A. E.; Shugart, H. H., Jr.
2017-12-01
Future NASA and ESA satellite missions plan to better quantify global carbon through detailed observations of forest structure, but ultimately rely on uncertain ground measurement approaches for calibration and validation. A significant amount of the uncertainty in estimating plot-level biomass can be attributed to inadequate and unrepresentative allometric relationships used to convert plot-level tree measurements to estimates of aboveground biomass. These allometric equations are known to have high errors and biases, particularly in carbon rich forests because they were calibrated with small and often biased samples of destructively harvested trees. To overcome this issue, a non-destructive methodology for estimating tree and plot-level biomass has been proposed through the use of Terrestrial Laser Scanning (TLS). We investigated the potential for using TLS as a ground validation approach in LiDAR-based biomass mapping though virtual plot-level tree volume reconstruction and biomass estimation. Plot-level biomass estimates were compared on the Virginia-based Smithsonian Conservation Biology Institute's SIGEO forest with full 3D reconstruction, TLS allometry, and Jenkins et al. (2003) allometry. On average, full 3D reconstruction ultimately provided the lowest uncertainty estimate of plot-level biomass (9.6%), followed by TLS allometry (16.9%) and the national equations (20.2%). TLS offered modest improvements to the airborne LiDAR empirical models, reducing RMSE from 16.2% to 14%. Our findings suggest TLS plot acquisitions and non-destructive allometry can play a vital role for reducing uncertainty in calibration and validation data for biomass mapping in the upcoming NASA and ESA missions.
Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles
NASA Technical Reports Server (NTRS)
Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie
2009-01-01
A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration
Vanderhoof, Melanie; Distler, Hayley; Mendiola, Di Ana; Lang, Megan
2017-01-01
Natural variability in surface-water extent and associated characteristics presents a challenge to gathering timely, accurate information, particularly in environments that are dominated by small and/or forested wetlands. This study mapped inundation extent across the Upper Choptank River Watershed on the Delmarva Peninsula, occurring within both Maryland and Delaware. We integrated six quad-polarized Radarsat-2 images, Worldview-3 imagery, and an enhanced topographic wetness index in a random forest model. Output maps were filtered using light detection and ranging (lidar)-derived depressions to maximize the accuracy of forested inundation extent. Overall accuracy within the integrated and filtered model was 94.3%, with 5.5% and 6.0% errors of omission and commission for inundation, respectively. Accuracy of inundation maps obtained using Radarsat-2 alone were likely detrimentally affected by less than ideal angles of incidence and recent precipitation, but were likely improved by targeting the period between snowmelt and leaf-out for imagery collection. Across the six Radarsat-2 dates, filtering inundation outputs by lidar-derived depressions slightly elevated errors of omission for water (+1.0%), but decreased errors of commission (−7.8%), resulting in an average increase of 5.4% in overall accuracy. Depressions were derived from lidar datasets collected under both dry and average wetness conditions. Although antecedent wetness conditions influenced the abundance and total area mapped as depression, the two versions of the depression datasets showed a similar ability to reduce error in the inundation maps. Accurate mapping of surface water is critical to predicting and monitoring the effect of human-induced change and interannual variability on water quantity and quality.
NASA Astrophysics Data System (ADS)
Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao
2018-04-01
A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.
i-LOVE: ISS-JEM lidar for observation of vegetation environment
NASA Astrophysics Data System (ADS)
Asai, Kazuhiro; Sawada, Haruo; Sugimoto, Nobuo; Mizutani, Kohei; Ishii, Shoken; Nishizawa, Tomoaki; Shimoda, Haruhisa; Honda, Yoshiaki; Kajiwara, Koji; Takao, Gen; Hirata, Yasumasa; Saigusa, Nobuko; Hayashi, Masatomo; Oguma, Hiroyuki; Saito, Hideki; Awaya, Yoshio; Endo, Takahiro; Imai, Tadashi; Murooka, Jumpei; Kobatashi, Takashi; Suzuki, Keiko; Sato, Ryota
2012-11-01
It is very important to watch the spatial distribution of vegetation biomass and changes in biomass over time, representing invaluable information to improve present assessments and future projections of the terrestrial carbon cycle. A space lidar is well known as a powerful remote sensing technology for measuring the canopy height accurately. This paper describes the ISS(International Space Station)-JEM(Japanese Experimental Module)-EF(Exposed Facility) borne vegetation lidar using a two dimensional array detector in order to reduce the root mean square error (RMSE) of tree height due to sloped surface.
Quantifying Vegetation Structure with Lightweight, Rapid-Scanning Terrestrial Lidar
NASA Astrophysics Data System (ADS)
Paynter, I.; Genest, D.; Saenz, E. J.; Strahler, A. H.; Li, Z.; Peri, F.; Schaaf, C.
2016-12-01
Light Detection and Ranging (lidar) is proving a competent technology for observing vegetation structure. Terrestrial laser scanners (TLS) are ground-based instruments which utilize hundreds of thousands to millions of lidar observations to provide detailed structural and reflective information of their surroundings. TLS has enjoyed initial success as a validation tool for satellite and airborne estimates of vegetation structure, and are producing independent estimates with increasing accuracy. Reconstruction techniques for TLS observations of vegetation have also improved rapidly, especially for trees. However, uncertainties and challenges still remain in TLS modelling of vegetation structure, especially in geometrically complex ecosystems such as tropical forests (where observation extent and density is hampered by occlusion) and highly temporally dynamic coastal ecosystems (such as saltmarshes and mangroves), where observations may be restricted to narrow microstates. Some of these uncertainties can be mitigated, and challenges met, through the use of lidar instruments optimized for favorable deployment logistics through low weight, rapid scanning, and improved durability. We have conducted studies of vegetation structure in temperate and tropical forests, saltmarshes and mangroves, utilizing a highly portable TLS with considerable deployment flexibility, the Compact Biomass Lidar (CBL). We show results from studies in the temperate Long Term Ecological Research site of Harvard Forest (MA, USA); the tropical forested long-term Carbono sites of La Selva Biological Station (Sarapiqui, Costa Rica); and the saltmarsh LTER of Plum Island (MA, USA). These results demonstrate the improvements to observations in these ecosystems which are facilitated by the specifications of the CBL (and similar TLS) which are optimized for favorable deployment logistics and flexibility. We show the benefits of increased numbers of scanning positions, and specialized deployment platforms to meet ecosystem challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan
The synthesis of new measurement technologies with advances in high performance computing provides an unprecedented opportunity to advance our understanding of the atmosphere, particularly with regard to the complex flows in the atmospheric boundary layer. To assess current measurement capabilities for quantifying features of atmospheric flow within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment design, highlight novel approaches to boundary-layer measurements, and quantify measurement uncertainties associated with these experimental methods. Line-of-sight velocities measured bymore » scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or dual radars, also agree well with tower and profiling lidar measurements. Estimates of winds over volumes,conducted with rapid lidar scans, agree with those from scanning radars, enabling assessment of spatial variability. Microwave radiometers provide temperature profiles within and above the boundary layer with approximately the same uncertainty as operational remote sensing measurements. Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. Finally, we highlight cases that could be useful for validation of large-eddy simulations or mesoscale numerical weather prediction, providing information on accessing the archived dataset. We conclude that modern remote Lundquist et al. XPIA BAMS Page 4 of 81 sensing systems provide a generational improvement in observational capabilities, enabling resolution of refined processes critical to understanding 61 inhomogeneous boundary-layer flows such as those found in wind farms.« less
NASA Astrophysics Data System (ADS)
Inoue, Daisuke; Ichikawa, Tadashi; Matsubara, Hiroyuki; Mao, Xueon; Maeda, Mitsutoshi; Nagashima, Chie; Kagami, Manabu
2012-06-01
We have developed a LIDAR system with a sensor head which, although it includes a scanning mechanism, is less than 20 cc in size. The system is not only small, but is also highly sensitive. Our LIDAR system is based on time-of-flight measurements, and incorporates an optical fiber. The main feature of our system is the utilization of optical amplifiers for both the transmitter and the receiver, and the optical amplifiers enable us to exceed the detection limit set by thermal noise. In conventional LIDAR systems the detection limit is determined by the thermal noise, because the avalanche photo-diodes (APD) and trans-impedance amplifiers (TIA) that they use detect the received signals directly. In the case of our LIDAR system, the received signal is amplified by an optical fiber amplifier before reaching the photo diode and the TIA. Therefore, our LIDAR system boosts the signal level before the weak incoming signal is depleted by thermal noise. There are conditions under which the noise figure for the combination of an optical fiber amplifier and a photo diode is superior to the noise figure for an avalanche photo diode. We optimized the gains of the optical fiber amplifier and the TIA in our LIDAR system such that it would be capable of detecting a single photon. As a result, the detection limit of our system is determined by shot noise. We have previously demonstrated optical pre-amplified LIDAR with a perfect co-axial optical system[1]. For this we used a variable optical attenuator to remove internal reflection from the transmission and receiving lenses. However, the optical attenuator had an insertion loss of 6dB which reduced the sensitivity of the LIDAR. We re-designed the optical system such that it was semi-co-axial and removed the variable optical attenuator. As a result, we succeeded in scanning up to a range of 80 m. This small and highly sensitive measurement technology shows great potential for use in LIDAR.
Monitoring selective logging in western Amazonia with repeat lidar flights
H.E. Andersen; S.E. Reutebuch; R.J. McGaughey; M.V.N. d' Oliveira; M. Keller
2014-01-01
The objective of this study was to test the use of repeat flight, airborne laser scanning data (lidar) for estimating changes associated with low-impact selective logging (approx. 10-15 m3 ha−1 = 5-7% of total standing volume harvested) in natural tropical forests in the Western Brazilian Amazon. Specifically, we investigated change in area...
Cyle E. Wold; Vladimir A. Kovalev; Alexander P. Petkov; Wei Min Hao
2012-01-01
Scanning elastic lidar, which can operate in different slant directions, is the most appropriate remote sensing tool for investigating the optical properties of smoke-polluted atmospheres. However, the commonly used methodologies of multiangle measurements are based on the assumption of horizontal stratification of the searched atmosphere1,2. When working in real...
Flash LIDAR Systems for Planetary Exploration
NASA Astrophysics Data System (ADS)
Dissly, Richard; Weinberg, J.; Weimer, C.; Craig, R.; Earhart, P.; Miller, K.
2009-01-01
Ball Aerospace offers a mature, highly capable 3D flash-imaging LIDAR system for planetary exploration. Multi mission applications include orbital, standoff and surface terrain mapping, long distance and rapid close-in ranging, descent and surface navigation and rendezvous and docking. Our flash LIDAR is an optical, time-of-flight, topographic imaging system, leveraging innovations in focal plane arrays, readout integrated circuit real time processing, and compact and efficient pulsed laser sources. Due to its modular design, it can be easily tailored to satisfy a wide range of mission requirements. Flash LIDAR offers several distinct advantages over traditional scanning systems. The entire scene within the sensor's field of view is imaged with a single laser flash. This directly produces an image with each pixel already correlated in time, making the sensor resistant to the relative motion of a target subject. Additionally, images may be produced at rates much faster than are possible with a scanning system. And because the system captures a new complete image with each flash, optical glint and clutter are easily filtered and discarded. This allows for imaging under any lighting condition and makes the system virtually insensitive to stray light. Finally, because there are no moving parts, our flash LIDAR system is highly reliable and has a long life expectancy. As an industry leader in laser active sensor system development, Ball Aerospace has been working for more than four years to mature flash LIDAR systems for space applications, and is now under contract to provide the Vision Navigation System for NASA's Orion spacecraft. Our system uses heritage optics and electronics from our star tracker products, and space qualified lasers similar to those used in our CALIPSO LIDAR, which has been in continuous operation since 2006, providing more than 1.3 billion laser pulses to date.
NASA Astrophysics Data System (ADS)
Lux, Oliver; Lemmerz, Christian; Weiler, Fabian; Marksteiner, Uwe; Witschas, Benjamin; Rahm, Stephan; Schäfler, Andreas; Reitebuch, Oliver
2018-06-01
In preparation of the satellite mission Aeolus carried out by the European Space Agency, airborne wind lidar observations have been performed in the frame of the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX), employing the prototype of the satellite instrument, the ALADIN Airborne Demonstrator (A2D). The direct-detection Doppler wind lidar system is composed of a frequency-stabilized Nd:YAG laser operating at 355 nm, a Cassegrain telescope and a dual-channel receiver. The latter incorporates a Fizeau interferometer and two sequential Fabry-Pérot interferometers to measure line-of-sight (LOS) wind speeds by analysing both Mie and Rayleigh backscatter signals. The benefit of the complementary design is demonstrated by airborne observations of strong wind shear related to the jet stream over the North Atlantic on 27 September and 4 October 2016, yielding high data coverage in diverse atmospheric conditions. The paper also highlights the relevance of accurate ground detection for the Rayleigh and Mie response calibration and wind retrieval. Using a detection scheme developed for the NAWDEX campaign, the obtained ground return signals are exploited for the correction of systematic wind errors. Validation of the instrument performance and retrieval algorithms was conducted by comparison with DLR's coherent wind lidar which was operated in parallel, showing a systematic error of the A2D LOS winds of less than 0.5 m s-1 and random errors from 1.5 (Mie) to 2.7 m s-1 (Rayleigh).
Simulation of the Performances of WIND, an Airborne CO2 Lidar
NASA Technical Reports Server (NTRS)
Oh, D.; Dabas, A.; Lieutaud, F.; Loth, C.; Flamant, P. H.
1992-01-01
An airborne Doppler coherent lidar is under development as a joint project between France and Germany. The instrument is designed around CO2 laser technology, heterodyne detection, and a conical scanning of the line-of-site. The 10 micron domain is suitable for long range measurements due to the maturity of the technology and because it corresponds to an atmospheric window. The objectives of WIND are twofold: (1) to conduct mesoscale scientific studies in particular over oceanic and inhomogeneous terrain areas; and (2) to support the Earth-orbiting wind lidar projects.
Development of a mobile Doppler lidar system for wind and temperature measurements at 30-70 km
NASA Astrophysics Data System (ADS)
Yan, Zhaoai; Hu, Xiong; Guo, Wenjie; Guo, Shangyong; Cheng, Yongqiang; Gong, Jiancun; Yue, Jia
2017-02-01
A mobile Doppler lidar system has been developed to simultaneously measure zonal and meridional winds and temperature from 30 to 70 km. Each of the two zonal and meridional wind subsystems employs a 15 W power, 532 nm laser and a 1 m diameter telescope. Iodine vapor filters are used to stabilize laser frequency and to detect the Doppler shift of backscattered signal. The integration method is used for temperature measurement. Experiments were carried out using the mobile Doppler lidar in August 2014 at Qinghai, China (91°E, 38°N). The zonal wind was measured from 20 to 70 km at a 3 km spatial resolution and 2 h temporal resolution. The measurement error is about 0.5 m/s at 30 km, and 10 m/s at 70 km. In addition, the temperature was measured from 30 to 70 km at 1 km spatial resolution and 1 h temporal resolution. The temperature measurement error is about 0.4 K at 30 km, and 8.0 K at 70 km. Comparison of the lidar results with the temperature of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), the zonal wind of the Modern-Era Retrospective Analysis for Re-search and Applications (MERRA), and radiosonde zonal wind shows good agreement, indicating that the Doppler lidar results are reliable.
NASA Astrophysics Data System (ADS)
Shang, Xiang; Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Li, Manyi; Wang, Chong
2018-07-01
An eye-safe 1 . 5 μm visibility lidar is presented in this work considering in situ particle size distribution, which can be deployed in crowded places like airports. In such a case, the measured extinction coefficient at 1 . 5 μm should be converted to that at 0 . 55 μm for visibility retrieval. Although several models have been established since 1962, the accurate wavelength conversion remains a challenge. An adaptive inversion algorithm for 1 . 5 μm visibility lidar is proposed and demonstrated by using the in situ Angstrom wavelength exponent, which is derived from an aerosol spectrometer. The impact of the particle size distribution of atmospheric aerosols and the Rayleigh backscattering of atmospheric molecules are taken into account. Using the 1 . 5 μm visibility lidar, the visibility with a temporal resolution of 5 min is detected over 48 h in Hefei (31 . 83∘ N, 117 . 25∘ E). The average visibility error between the new method and a visibility sensor (Vaisala, PWD52) is 5.2% with the R-square value of 0.96, while the relative error between another reference visibility lidar at 532 nm and the visibility sensor is 6.7% with the R-square value of 0.91. All results agree with each other well, demonstrating the accuracy and stability of the algorithm.
Double-Pulse Two-Micron IPDA Lidar Simulation for Airborne Carbon Dioxide Measurements
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta
2015-01-01
An advanced double-pulsed 2-micron integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-micron laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation from up to 11 km altitude. This study is useful for defining CO2 measurement weighting, instrument setting, validation and sensitivity trade-offs.
Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model
NASA Astrophysics Data System (ADS)
Carbajo Fuertes, Fernando; Porté-Agel, Fernando
2016-04-01
A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements and large-eddy simulation (LES) data of miniature wind turbine wakes, as well as LES data of real-scale wind-turbine wakes, but not yet with full-scale wind turbine wake measurements. [1] M. Bastankhah and F. Porté-Agel. A New Analytical Model For Wind-Turbine Wakes, in Renewable Energy, vol. 70, p. 116-123, 2014.
Advanced Water Vapor Lidar Detection System
NASA Technical Reports Server (NTRS)
Elsayed-Ali, Hani
1998-01-01
In the present water vapor lidar system, the detected signal is sent over long cables to a waveform digitizer in a CAMAC crate. This has the disadvantage of transmitting analog signals for a relatively long distance, which is subjected to pickup noise, leading to a decrease in the signal to noise ratio. Generally, errors in the measurement of water vapor with the DIAL method arise from both random and systematic sources. Systematic errors in DIAL measurements are caused by both atmospheric and instrumentation effects. The selection of the on-line alexandrite laser with a narrow linewidth, suitable intensity and high spectral purity, and its operation at the center of the water vapor lines, ensures minimum influence in the DIAL measurement that are caused by the laser spectral distribution and avoid system overloads. Random errors are caused by noise in the detected signal. Variability of the photon statistics in the lidar return signal, noise resulting from detector dark current, and noise in the background signal are the main sources of random error. This type of error can be minimized by maximizing the signal to noise ratio. The increase in the signal to noise ratio can be achieved by several ways. One way is to increase the laser pulse energy, by increasing its amplitude or the pulse repetition rate. Another way, is to use a detector system with higher quantum efficiency and lower noise, on the other hand, the selection of a narrow band optical filter that rejects most of the day background light and retains high optical efficiency is an important issue. Following acquisition of the lidar data, we minimize random errors in the DIAL measurement by averaging the data, but this will result in the reduction of the vertical and horizontal resolutions. Thus, a trade off is necessary to achieve a balance between the spatial resolution and the measurement precision. Therefore, the main goal of this research effort is to increase the signal to noise ratio by a factor of 10 over the current system, using a newly evaluated, very low noise avalanche photo diode detector and constructing a 10 MHz waveform digitizer which will replace the current CAMAC system.
J. McKean; D. Tonina; C. Bohn; C. W. Wright
2014-01-01
New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...
LIDAR forest inventory with single-tree, double- and single-phase procedures
Robert C. Parker; David L. Evans
2009-01-01
Light Detection and Ranging (LIDAR) data at 0.5- to 2-m postings were used with doublesample, stratified inventory procedures involving single-tree attribute relationships in mixed, natural, and planted species stands to yield sampling errors (one-half the confidence interval expressed as a percentage of the mean) ranging from ±2.1 percent to ±11.5...
Liu, Wanli
2017-01-01
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897
Long-range wind monitoring in real time with optimized coherent lidar
NASA Astrophysics Data System (ADS)
Dolfi-Bouteyre, Agnes; Canat, Guillaume; Lombard, Laurent; Valla, Matthieu; Durécu, Anne; Besson, Claudine
2017-03-01
Two important enabling technologies for pulsed coherent detection wind lidar are the laser and real-time signal processing. In particular, fiber laser is limited in peak power by nonlinear effects, such as stimulated Brillouin scattering (SBS). We report on various technologies that have been developed to mitigate SBS and increase peak power in 1.5-μm fiber lasers, such as special large mode area fiber designs or strain management. Range-resolved wind profiles up to a record range of 16 km within 0.1-s averaging time have been obtained thanks to those high-peak power fiber lasers. At long range, the lidar signal gets much weaker than the noise and special care is required to extract the Doppler peak from the spectral noise. To optimize real-time processing for weak carrier-to-noise ratio signal, we have studied various Doppler mean frequency estimators (MFE) and the influence of data accumulation on outliers occurrence. Five real-time MFEs (maximum, centroid, matched filter, maximum likelihood, and polynomial fit) have been compared in terms of error and processing time using lidar experimental data. MFE errors and data accumulation limits are established using a spectral method.
Mitigating Uncertainty from Vegetation Spatial Complexity with Highly Portable Lidar
NASA Astrophysics Data System (ADS)
Paynter, I.; Schaaf, C.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.
2015-12-01
To fully utilize the excellent spatial coverage and temporal resolution offered by satellite resources for estimating ecological variables, fine-scale observations are required for comparison, calibration and validation. Lidar instruments have proved effective in estimating the properties of vegetation components of ecosystems, but they are often challenged by occlusion, especially in structurally complex and spatially fragmented ecosystems such as tropical forests. Increasing the range of view angles, both horizontally and vertically, by increasing the number of scans, can mitigate occlusion. However these scans must occur within the window of temporal stability for the ecosystem and vegetation property being measured. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The ability to acquire many scans within narrow windows of temporal stability for ecological variables has facilitated the more complete investigation of ecosystem structural characteristics, and their expression as a function of view angle. The lightweight CBL has facilitated the use of alternative deployment platforms including towers, trams and masts, allowing analysis of the vertical structure of ecosystems, even in highly enclosed environments such as the sub-canopy of tropical forests where aerial vehicles cannot currently operate. We will present results from view angle analyses of lidar surveys of tropical rainforest in La Selva, Costa Rica where the CBL was deployed at heights up to 10m in Carbono long-term research plots utilizing a portable mast, and on a 25m stationary tower; and temperate forest at Harvard Forest, Massachusetts, USA, where the CBL has been deployed biannually at long-term research plots of hardwood and hemlock, as well as at heights of up to 25m utilizing a stationary tower.
Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges
NASA Astrophysics Data System (ADS)
Cherukuru, N. W.; Calhoun, R.
2016-06-01
Augmented reality (AR) is a technology in which the enables the user to view virtual content as if it existed in real world. We are exploring the possibility of using this technology to view radial velocities or processed wind vectors from a Doppler wind lidar, thus giving the user an ability to see the wind in a literal sense. This approach could find possible applications in aviation safety, atmospheric data visualization as well as in weather education and public outreach. As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.
Structure-From-Motion in 3D Space Using 2D Lidars
Choi, Dong-Geol; Bok, Yunsu; Kim, Jun-Sik; Shim, Inwook; Kweon, In So
2017-01-01
This paper presents a novel structure-from-motion methodology using 2D lidars (Light Detection And Ranging). In 3D space, 2D lidars do not provide sufficient information for pose estimation. For this reason, additional sensors have been used along with the lidar measurement. In this paper, we use a sensor system that consists of only 2D lidars, without any additional sensors. We propose a new method of estimating both the 6D pose of the system and the surrounding 3D structures. We compute the pose of the system using line segments of scan data and their corresponding planes. After discarding the outliers, both the pose and the 3D structures are refined via nonlinear optimization. Experiments with both synthetic and real data show the accuracy and robustness of the proposed method. PMID:28165372
Development of Rayleigh Doppler lidar for measuring middle atmosphere winds
NASA Astrophysics Data System (ADS)
Raghunath, K.; Patra, A. K.; Narayana Rao, D.
Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar
Analyzing Hydro-Geomorphic Responses in Post-Fire Stream Channels with Terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Nourbakhshbeidokhti, S.; Kinoshita, A. M.; Chin, A.
2015-12-01
Wildfires have potential to significantly alter soil properties and vegetation within watersheds. These alterations often contribute to accelerated erosion, runoff, and sediment transport in stream channels and hillslopes. This research applies repeated Terrestrial Laser Scanning (TLS) Light Detection and Ranging (LiDAR) to stream reaches within the Pike National Forest in Colorado following the 2012 Waldo Canyon Fire. These scans allow investigation of the relationship between sediment delivery and environmental characteristics such as precipitation, soil burn severity, and vegetation. Post-fire LiDAR images provide high resolution information of stream channel changes in eight reaches for three years (2012-2014). All images are processed with RiSCAN PRO to remove vegetation and triangulated and smoothed to create a Digital Elevation Model (DEM) with 0.1 m resolution. Study reaches with two or more successive DEM images are compared using a differencing method to estimate the volume of sediment erosion and deposition. Preliminary analysis of four channel reaches within Williams Canyon and Camp Creek yielded erosion estimates between 0.035 and 0.618 m3 per unit area. Deposition was estimated as 0.365 to 1.67 m3 per unit area. Reaches that experienced higher soil burn severity or larger rainfall events produced the greatest geomorphic changes. Results from LiDAR analyses can be incorporated into post-fire hydrologic models to improve estimates of runoff and sediment yield. These models will, in turn, provide guidance for water resources management and downstream hazards mitigation.
Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles
NASA Technical Reports Server (NTRS)
Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania
2011-01-01
A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.
Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control
NASA Astrophysics Data System (ADS)
Schlipf, David; Raach, Steffen
2016-09-01
This work presents a wind field generator which allows to shape wind fields in the time domain while maintaining the spectral properties. This is done by an iterative generation of wind fields and by minimizing the error between wind characteristics of the generated wind fields and desired values. The method leads towards realistic ultimate load calculations for lidar-assisted control. This is demonstrated by fitting a turbulent wind field to an Extreme Operating Gust. The wind field is then used to compare a baseline feedback controller alone against a combined feedback and feedforward controller using simulated lidar measurements. The comparison confirms that the lidar-assisted controller is still able to significantly reduce the ultimate loads on the tower base under this more realistic conditions.
Monitoring forests at the speed of light.
Valerie Rapp
2005-01-01
Airborne laser scanning is a technology developed in the last 15 years. Commonly referred to as light detection and ranging, or LIDAR, these systems can map ground with up to a 6-inch elevation accuracy in open, flat terrain. LIDAR is being rapidly adopted for topographical and flood-plain mapping and the detection of earthquake faults hidden by vegetation, among other...
Real-Time Assessment of Robot Performance during Remote Exploration Operations
2009-03-01
degraded instruments (i.e., instrument performance) and to improve plant performance (e.g., increase thermal efficiency). Such degraded instrument...activities. Lidar is used for 3D terrain mapping. During reconnaissance, the rover acquires multiple scans to construct a panorama at specified...Metric Interpretation Operational Use Panorama in Progress Should be true while taking a panorama RO: indicates whether Lidar is functioning
A polar grid estimator of forest canopy structure metrics using airborne laser scanning data
Nicholas R. Vaughn; Greg P. Asner; Christian P. Giardina
2013-01-01
The structure of a forest canopy is the key determinant of light transmission, use and understory availability. Airborne light detection and ranging (LiDAR) has been used successfully to measure multiple canopy structural properties, thereby greatly reducing the fieldwork required to map spatial variation in structure. However, lidar metrics to date do not reflect the...
Determination of the smoke-plume heights and their dynamics with ground-based scanning LIDAR
V. Kovalev; A. Petkov; C. Wold; S. Urbanski; W. M. Hao
2015-01-01
Lidar-data processing techniques are analyzed, which allow determining smoke-plume heights and their dynamics and can be helpful for the improvement of smoke dispersion and air quality models. The data processing algorithms considered in the paper are based on the analysis of two alternative characteristics related to the smoke dispersion process: the regularized...
Wind speed vector restoration algorithm
NASA Astrophysics Data System (ADS)
Baranov, Nikolay; Petrov, Gleb; Shiriaev, Ilia
2018-04-01
Impulse wind lidar (IWL) signal processing software developed by JSC «BANS» recovers full wind speed vector by radial projections and provides wind parameters information up to 2 km distance. Increasing accuracy and speed of wind parameters calculation signal processing technics have been studied in this research. Measurements results of IWL and continuous scanning lidar were compared. Also, IWL data processing modeling results have been analyzed.
Frequency Agile Tm,Ho:YLF Local Oscillator for a Scanning Doppler wind Lidar in Earth Orbit
NASA Technical Reports Server (NTRS)
Menzies, Robert T.; Hemmati, Hamid; Esproles, Carlos
1997-01-01
A compact cw Tm,Ho:YLF laser with single-mode tunability over +/-4 GHz has been developed into a modular unit containing an isolator and photomixer for offset tuning of the LO from a master oscillator which controls the frequency of a Doppler lidar transmitter. This and an alternative diode laser LO will be described.
Hans-Erik Andersen; Robert J. McGaughey; Ward W. Carson; Stephen E. Reutebuch; Bryan Mercer; Jeremy Allan
2004-01-01
Active remote sensing technologies, including interferometric radar (InSAR) and airborne laser scanning (LIDAR) have the potential to provide accurate information relating to three-dimensional forest canopy structure over extensive areas of the landscape. In order to assess the capabilities of these alternative systems for characterizing the forest canopy dimensions,...
Concept for maritime near-surface surveillance using water Raman scattering
Shokair, Isaac R.; Johnson, Mark S.; Schmitt, Randal L.; ...
2018-06-08
Here, we discuss a maritime surveillance and detection concept based on Raman scattering of water molecules. Using a range-gated scanning lidar that detects Raman scattered photons from water, the absence or change of signal indicates the presence of a non-water object. With sufficient spatial resolution, a two-dimensional outline of the object can be generated by the scanning lidar. Because Raman scattering is an inelastic process with a relatively large wavelength shift for water, this concept avoids the often problematic elastic scattering for objects at or very close to the water surface or from the bottom surface for shallow waters. Themore » maximum detection depth for this concept is limited by the attenuation of the excitation and return Raman light in water. If excitation in the UV is used, fluorescence can be used for discrimination between organic and non-organic objects. In this paper, we present a lidar model for this concept and discuss results of proof-of-concept measurements. Using published cross section values, the model and measurements are in reasonable agreement and show that a sufficient number of Raman photons can be generated for modest lidar parameters to make this concept useful for near-surface detection.« less
NASA Astrophysics Data System (ADS)
Yang, Shu; Nína Petersen, Guðrún; Finger, David C.
2017-04-01
Turbulence and wind shear are a major natural hazards for aviation safety in Iceland. The temporal and spatial scale of atmospheric turbulence is very dynamic, requiring an adequate method to detect and monitor turbulence with high resolution. The Doppler Light Detection and Ranging (LiDAR) system can provide continuous information about the wind field using the Doppler effect form emitted light signals. In this study, we use a Leosphere Windcube 200s LiDAR systems stationed near Reykjavik city Airport and at Keflavik International Airport, Iceland, to evaluate turbulence intensity by estimating eddy dissipation rate (EDR). For this purpose, we retrieved radial wind velocity observations from Velocity Azimuth Display (VAD) scans (360°scans at 15° and 75° elevation angle) to compute EDR. The method was used to monitor and characterize storm events in fall 2016 and the following winter. The preliminary result reveal that the LiDAR observations can detect and quantify atmospheric turbulence with high spatial and temporal resolution. This finding is an important step towards enhanced aviation safety in subpolar climate characterized by sever wind turbulence.
Concept for maritime near-surface surveillance using water Raman scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shokair, Isaac R.; Johnson, Mark S.; Schmitt, Randal L.
Here, we discuss a maritime surveillance and detection concept based on Raman scattering of water molecules. Using a range-gated scanning lidar that detects Raman scattered photons from water, the absence or change of signal indicates the presence of a non-water object. With sufficient spatial resolution, a two-dimensional outline of the object can be generated by the scanning lidar. Because Raman scattering is an inelastic process with a relatively large wavelength shift for water, this concept avoids the often problematic elastic scattering for objects at or very close to the water surface or from the bottom surface for shallow waters. Themore » maximum detection depth for this concept is limited by the attenuation of the excitation and return Raman light in water. If excitation in the UV is used, fluorescence can be used for discrimination between organic and non-organic objects. In this paper, we present a lidar model for this concept and discuss results of proof-of-concept measurements. Using published cross section values, the model and measurements are in reasonable agreement and show that a sufficient number of Raman photons can be generated for modest lidar parameters to make this concept useful for near-surface detection.« less
Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR
NASA Astrophysics Data System (ADS)
Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin
2016-06-01
Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.
Li, Ainong; Huang, Chengquan; Sun, Guoqing; Shi, Hua; Toney, Chris; Zhu, Zhiliang; Rollins, Matthew G.; Goward, Samuel N.; Masek, Jeffery G.
2011-01-01
Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps over large areas. This paper describes a Landsat–lidar fusion approach for modeling the height of young forests by integrating historical Landsat observations with lidar data acquired by the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation (ICESat) satellite. In this approach, “young” forests refer to forests reestablished following recent disturbances mapped using Landsat time-series stacks (LTSS) and a vegetation change tracker (VCT) algorithm. The GLAS lidar data is used to retrieve forest height at sample locations represented by the footprints of the lidar data. These samples are used to establish relationships between lidar-based forest height measurements and LTSS–VCT disturbance products. The height of “young” forest is then mapped based on the derived relationships and the LTSS–VCT disturbance products. This approach was developed and tested over the state of Mississippi. Of the various models evaluated, a regression tree model predicting forest height from age since disturbance and three cumulative indices produced by the LTSS–VCT method yielded the lowest cross validation error. The R2 and root mean square difference (RMSD) between predicted and GLAS-based height measurements were 0.91 and 1.97 m, respectively. Predictions of this model had much higher errors than indicated by cross validation analysis when evaluated using field plot data collected through the Forest Inventory and Analysis Program of USDA Forest Service. Much of these errors were due to a lack of separation between stand clearing and non-stand clearing disturbances in current LTSS–VCT products and difficulty in deriving reliable forest height measurements using GLAS samples when terrain relief was present within their footprints. In addition, a systematic underestimation of about 5 m by the developed model was also observed, half of which could be explained by forest growth that occurred between field measurement year and model target year. The remaining difference suggests that tree height measurements derived using waveform lidar data could be significantly underestimated, especially for young pine forests. Options for improving the height modeling approach developed in this study were discussed.
NASA Technical Reports Server (NTRS)
Li, Ainong; Huang, Chengquan; Sun, Guoqing; Shi, Hua; Toney, Chris; Zhu, Zhiliang; Rollins, Matthew G.; Goward, Samuel N.; Masek, Jeffrey G.
2011-01-01
Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps over large areas. This paper describes a Landsat-lidar fusion approach for modeling the height of young forests by integrating historical Landsat observations with lidar data acquired by the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation (ICESat) satellite. In this approach, "young" forests refer to forests reestablished following recent disturbances mapped using Landsat time-series stacks (LTSS) and a vegetation change tracker (VCT) algorithm. The GLAS lidar data is used to retrieve forest height at sample locations represented by the footprints of the lidar data. These samples are used to establish relationships between lidar-based forest height measurements and LTSS-VCT disturbance products. The height of "young" forest is then mapped based on the derived relationships and the LTSS-VCT disturbance products. This approach was developed and tested over the state of Mississippi. Of the various models evaluated, a regression tree model predicting forest height from age since disturbance and three cumulative indices produced by the LTSS-VCT method yielded the lowest cross validation error. The R(exp 2) and root mean square difference (RMSD) between predicted and GLAS-based height measurements were 0.91 and 1.97 m, respectively. Predictions of this model had much higher errors than indicated by cross validation analysis when evaluated using field plot data collected through the Forest Inventory and Analysis Program of USDA Forest Service. Much of these errors were due to a lack of separation between stand clearing and non-stand clearing disturbances in current LTSS-VCT products and difficulty in deriving reliable forest height measurements using GLAS samples when terrain relief was present within their footprints. In addition, a systematic underestimation of about 5 m by the developed model was also observed, half of which could be explained by forest growth that occurred between field measurement year and model target year. The remaining difference suggests that tree height measurements derived using waveform lidar data could be significantly underestimated, especially for young pine forests. Options for improving the height modeling approach developed in this study were discussed.
Geometric Quality Assessment of LIDAR Data Based on Swath Overlap
NASA Astrophysics Data System (ADS)
Sampath, A.; Heidemann, H. K.; Stensaas, G. L.
2016-06-01
This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014) do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data). For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD) can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a) Median Discrepancy Angle b) Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c) RMSD for sampled locations from flat areas (defined as areas with less than 5 degrees of slope) It is suggested that 4000-5000 points are uniformly sampled in the overlapping regions of the point cloud, and depending on the surface roughness, to measure the discrepancy between swaths. Care must be taken to sample only areas of single return points only. Point-to-Plane distance based data quality measures are determined for each sample point. These measurements are used to determine the above mentioned parameters. This paper details the measurements and analysis of measurements required to determine these metrics, i.e. Discrepancy Angle, Mean and RMSD of errors in flat regions and horizontal errors obtained using measurements extracted from sloping regions (slope greater than 10 degrees). The research is a result of an ad-hoc joint working group of the US Geological Survey and the American Society for Photogrammetry and Remote Sensing (ASPRS) Airborne Lidar Committee.
Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica.
Cho, Hyoungsig; Hong, Seunghwan; Kim, Sangmin; Park, Hyokeun; Park, Ilsuk; Sohn, Hong-Gyoo
2015-09-16
A terrestrial Light Detection and Ranging (LIDAR) system has high productivity and accuracy for topographic mapping, but the harsh conditions of Antarctica make LIDAR operation difficult. Low temperatures cause malfunctioning of the LIDAR system, and unpredictable strong winds can deteriorate data quality by irregularly shaking co-registration targets. For stable and efficient LIDAR operation in Antarctica, this study proposes and demonstrates the following practical solutions: (1) a lagging cover with a heating pack to maintain the temperature of the terrestrial LIDAR system; (2) co-registration using square planar targets and two-step point-merging methods based on extracted feature points and the Iterative Closest Point (ICP) algorithm; and (3) a georeferencing module consisting of an artificial target and a Global Navigation Satellite System (GNSS) receiver. The solutions were used to produce a topographic map for construction of the Jang Bogo Research Station in Terra Nova Bay, Antarctica. Co-registration and georeferencing precision reached 5 and 45 mm, respectively, and the accuracy of the Digital Elevation Model (DEM) generated from the LIDAR scanning data was ±27.7 cm.
Geometric Accuracy Analysis of Worlddem in Relation to AW3D30, Srtm and Aster GDEM2
NASA Astrophysics Data System (ADS)
Bayburt, S.; Kurtak, A. B.; Büyüksalih, G.; Jacobsen, K.
2017-05-01
In a project area close to Istanbul the quality of WorldDEM, AW3D30, SRTM DSM and ASTER GDEM2 have been analyzed in relation to a reference aerial LiDAR DEM and to each other. The random and the systematic height errors have been separated. The absolute offset for all height models in X, Y and Z is within the expectation. The shifts have been respected in advance for a satisfying estimation of the random error component. All height models are influenced by some tilts, different in size. In addition systematic deformations can be seen not influencing the standard deviation too much. The delivery of WorldDEM includes information about the height error map which is based on the interferometric phase errors, and the number and location of coverage's from different orbits. A dependency of the height accuracy from the height error map information and the number of coverage's can be seen, but it is smaller as expected. WorldDEM is more accurate as the other investigated height models and with 10 m point spacing it includes more morphologic details, visible at contour lines. The morphologic details are close to the details based on the LiDAR digital surface model (DSM). As usual a dependency of the accuracy from the terrain slope can be seen. In forest areas the canopy definition of InSAR X- and C-band height models as well as for the height models based on optical satellite images is not the same as the height definition by LiDAR. In addition the interferometric phase uncertainty over forest areas is larger. Both effects lead to lower height accuracy in forest areas, also visible in the height error map.
Weinman, J A
1988-10-01
A simulated analysis is presented that shows that returns from a single-frequency space-borne lidar can be combined with data from conventional visible satellite imagery to yield profiles of aerosol extinction coefficients and the wind speed at the ocean surface. The optical thickness of the aerosols in the atmosphere can be derived from visible imagery. That measurement of the total optical thickness can constrain the solution to the lidar equation to yield a robust estimate of the extinction profile. The specular reflection of the lidar beam from the ocean can be used to determine the wind speed at the sea surface once the transmission of the atmosphere is known. The impact on the retrieved aerosol profiles and surface wind speed produced by errors in the input parameters and noise in the lidar measurements is also considered.
Measurement of phase function of aerosol at different altitudes by CCD Lidar
NASA Astrophysics Data System (ADS)
Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing
2018-02-01
The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.
Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao
2017-03-06
Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.
Impact of Lidar Wind Sounding on Mesoscale Forecast
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; Chou, Shih-Hung; Goodman, H. Michael (Technical Monitor)
2001-01-01
An Observing System Simulation Experiment (OSSE) was conducted to study the impact of airborne lidar wind sounding on mesoscale weather forecast. A wind retrieval scheme, which interpolates wind data from a grid data system, simulates the retrieval of wind profile from a satellite lidar system. A mesoscale forecast system based on the PSU/NCAR MM5 model is developed and incorporated the assimilation of the retrieved line-of-sight wind. To avoid the "identical twin" problem, the NCEP reanalysis data is used as our reference "nature" atmosphere. The simulated space-based lidar wind observations were retrieved by interpolating the NCEP values to the observation locations. A modified dataset obtained by smoothing the NCEP dataset was used as the initial state whose forecast was sought to be improved by assimilating the retrieved lidar observations. Forecasts using wind profiles with various lidar instrument parameters has been conducted. The results show that to significantly improve the mesoscale forecast the satellite should fly near the storm center with large scanning radius. Increasing lidar firing rate also improves the forecast. Cloud cover and lack of aerosol degrade the quality of the lidar wind data and, subsequently, the forecast.
Hassebo, Yasser Y; Gross, Barry; Oo, Min; Moshary, Fred; Ahmed, Samir
2006-08-01
The impact and potential of a polarization-selection technique to reduce the sky background signal for linearly polarized monostatic elastic backscatter lidar measurements are examined. Taking advantage of naturally occurring polarization properties in scattered skylight, we devised a polarization-discrimination technique in which both the lidar transmitter and the receiver track and minimize detected sky background noise while maintaining maximum lidar signal throughput. Lidar elastic backscatter measurements, carried out continuously during daylight hours at 532 nm, show as much as a factor of square root 10 improvement in the signal-to-noise ratio (SNR) over conventional unpolarized schemes. For vertically pointing lidars, the largest improvements are limited to the early morning and late afternoon hours, while for lidars scanning azimuthally and in elevation at angles other than vertical, significant improvements are achievable over more extended time periods with the specific times and improvement factors depending on the specific angle between the lidar and the solar axes. The resulting diurnal variations in SNR improvement sometimes show an asymmetry with the solar angle that analysis indicates can be attributed to changes in observed relative humidity that modifies the underlying aerosol microphysics and observed optical depth.
NASA Astrophysics Data System (ADS)
Hassebo, Yasser Y.; Gross, Barry; Oo, Min; Moshary, Fred; Ahmed, Samir
2006-08-01
The impact and potential of a polarization-selection technique to reduce the sky background signal for linearly polarized monostatic elastic backscatter lidar measurements are examined. Taking advantage of naturally occurring polarization properties in scattered skylight, we devised a polarization-discrimination technique in which both the lidar transmitter and the receiver track and minimize detected sky background noise while maintaining maximum lidar signal throughput. Lidar elastic backscatter measurements, carried out continuously during daylight hours at 532 nm, show as much as a factor of square root 10 improvement in the signal-to-noise ratio (SNR) over conventional unpolarized schemes. For vertically pointing lidars, the largest improvements are limited to the early morning and late afternoon hours, while for lidars scanning azimuthally and in elevation at angles other than vertical, significant improvements are achievable over more extended time periods with the specific times and improvement factors depending on the specific angle between the lidar and the solar axes. The resulting diurnal variations in SNR improvement sometimes show an asymmetry with the solar angle that analysis indicates can be attributed to changes in observed relative humidity that modifies the underlying aerosol microphysics and observed optical depth.
NASA Astrophysics Data System (ADS)
Hamshaw, S. D.; Dewoolkar, M. M.; Rizzo, D.; ONeil-Dunne, J.; Frolik, J.
2016-12-01
Measurement of rates and extent of streambank erosion along river corridors is an important component of many catchment studies and necessary for engineering projects such as river restoration, hazard assessment, and total maximum daily load (TMDL) development. A variety of methods have been developed to quantify streambank erosion, including bank pins, ground surveys, photogrammetry, LiDAR, and analytical models. However, these methods are not only resource intensive, but many are feasible and appropriate only for site-specific studies and not practical for erosion estimates at larger scales. Recent advancements in unmanned aircraft systems (UAS) and photogrammetry software provide capabilities for more rapid and economical quantification of streambank erosion and deposition at multiple scales (from site-specific to river network). At the site-specific scale, the capability of UAS to quantify streambank erosion was compared to terrestrial laser scanning (TLS) and RTK-GPS ground survey and assessed at seven streambank monitoring sites in central Vermont. Across all sites, the UAS-derived bank topography had mean errors of 0.21 m compared to TLS and GPS data. Highest accuracies were achieved in early spring conditions where mean errors approached 10 cm. The cross sectional area of bank erosion at a typical, vegetated streambank site was found to be reliably calculated within 10% of actual for erosion areas greater than 3.5 m2. At the river network-level scale, 20 km of river corridor along the New Haven, Winooski, and Mad Rivers was flown on multiple dates with UAS and used to generate digital elevation models (DEMs) that were then compared for change detection analysis. Airborne LiDAR data collected prior to UAS surveys was also compared to UAS data to determine multi-year rates of bank erosion. UAS-based photogrammetry for generation of fine scale topographic data shows promise for the monitoring of streambank erosion both at the individual site scale and river-network scale in areas that are not densely covered with vegetation year-round.
Ground-Truthing of Airborne LiDAR Using RTK-GPS Surveyed Data in Coastal Louisiana's Wetlands
NASA Astrophysics Data System (ADS)
Lauve, R. M.; Alizad, K.; Hagen, S. C.
2017-12-01
Airborne LiDAR (Light Detection and Ranging) data are used by engineers and scientists to create bare earth digital elevation models (DEM), which are essential to modeling complex coastal, ecological, and hydrological systems. However, acquiring accurate bare earth elevations in coastal wetlands is difficult due to the density of marsh grasses that prevent the sensors reflection off the true ground surface. Previous work by Medeiros et al. [2015] developed a technique to assess LiDAR error and adjust elevations according to marsh vegetation density and index. The aim of this study is the collection of ground truth points and the investigation on the range of potential errors found in existing LiDAR datasets within coastal Louisiana's wetlands. Survey grids were mapped out in an area dominated by Spartina alterniflora and a survey-grade Trimble Real Time Kinematic (RTK) GPS device was employed to measure bare earth ground elevations in the marsh system adjacent to Terrebonne Bay, LA. Elevations were obtained for 20 meter-spaced surveyed grid points and were used to generate a DEM. The comparison between LiDAR derived and surveyed data DEMs yield an average difference of 23 cm with a maximum difference of 68 cm. Considering the local tidal range of 45 cm, these differences can introduce substantial error when the DEM is used for ecological modeling [Alizad et al., 2016]. Results from this study will be further analyzed and implemented in order to adjust LiDAR-derived DEMs closer to their true elevation across Louisiana's coastal wetlands. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497, 10.1002/2016EF000385. Medeiros, S., S. Hagen, J. Weishampel, and J. Angelo (2015), Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density, Remote Sensing, 7(4), 3507-3525, 10.3390/rs70403507.
NASA Technical Reports Server (NTRS)
Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott
2006-01-01
Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical resolution and less than 2 meters per second velocity accuracy. The instrument design, technologies and predicted performance will be presented.
4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR
NASA Astrophysics Data System (ADS)
Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas
2016-04-01
The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten, Austria) and an agricultural maize crop stand (Heidelberg, Germany). This research demonstrates the potential and also limitations of fully automated, near real-time 4D LiDAR monitoring in geosciences.
Quantifying measurement uncertainty and spatial variability in the context of model evaluation
NASA Astrophysics Data System (ADS)
Choukulkar, A.; Brewer, A.; Pichugina, Y. L.; Bonin, T.; Banta, R. M.; Sandberg, S.; Weickmann, A. M.; Djalalova, I.; McCaffrey, K.; Bianco, L.; Wilczak, J. M.; Newman, J. F.; Draxl, C.; Lundquist, J. K.; Wharton, S.; Olson, J.; Kenyon, J.; Marquis, M.
2017-12-01
In an effort to improve wind forecasts for the wind energy sector, the Department of Energy and the NOAA funded the second Wind Forecast Improvement Project (WFIP2). As part of the WFIP2 field campaign, a large suite of in-situ and remote sensing instrumentation was deployed to the Columbia River Gorge in Oregon and Washington from October 2015 - March 2017. The array of instrumentation deployed included 915-MHz wind profiling radars, sodars, wind- profiling lidars, and scanning lidars. The role of these instruments was to provide wind measurements at high spatial and temporal resolution for model evaluation and improvement of model physics. To properly determine model errors, the uncertainties in instrument-model comparisons need to be quantified accurately. These uncertainties arise from several factors such as measurement uncertainty, spatial variability, and interpolation of model output to instrument locations, to name a few. In this presentation, we will introduce a formalism to quantify measurement uncertainty and spatial variability. The accuracy of this formalism will be tested using existing datasets such as the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign. Finally, the uncertainties in wind measurement and the spatial variability estimates from the WFIP2 field campaign will be discussed to understand the challenges involved in model evaluation.
FLASH LIDAR Based Relative Navigation
NASA Technical Reports Server (NTRS)
Brazzel, Jack; Clark, Fred; Milenkovic, Zoran
2014-01-01
Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.
Laplace Transform Based Radiative Transfer Studies
NASA Astrophysics Data System (ADS)
Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.
2006-12-01
Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.
Lidar-based mapping of flood control levees in south Louisiana
Thatcher, Cindy A.; Lim, Samsung; Palaseanu-Lovejoy, Monica; Danielson, Jeffrey J.; Kimbrow, Dustin R.
2016-01-01
Flood protection in south Louisiana is largely dependent on earthen levees, and in the aftermath of Hurricane Katrina the state’s levee system has received intense scrutiny. Accurate elevation data along the levees are critical to local levee district managers responsible for monitoring and maintaining the extensive system of non-federal levees in coastal Louisiana. In 2012, high resolution airborne lidar data were acquired over levees in Lafourche Parish, Louisiana, and a mobile terrestrial lidar survey was conducted for selected levee segments using a terrestrial lidar scanner mounted on a truck. The mobile terrestrial lidar data were collected to test the feasibility of using this relatively new technology to map flood control levees and to compare the accuracy of the terrestrial and airborne lidar. Metrics assessing levee geometry derived from the two lidar surveys are also presented as an efficient, comprehensive method to quantify levee height and stability. The vertical root mean square error values of the terrestrial lidar and airborne lidar digital-derived digital terrain models were 0.038 m and 0.055 m, respectively. The comparison of levee metrics derived from the airborne and terrestrial lidar-based digital terrain models showed that both types of lidar yielded similar results, indicating that either or both surveying techniques could be used to monitor geomorphic change over time. Because airborne lidar is costly, many parts of the USA and other countries have never been mapped with airborne lidar, and repeat surveys are often not available for change detection studies. Terrestrial lidar provides a practical option for conducting repeat surveys of levees and other terrain features that cover a relatively small area, such as eroding cliffs or stream banks, and dunes.
Gluing for Raman lidar systems using the lamp mapping technique.
Walker, Monique; Venable, Demetrius; Whiteman, David N
2014-12-20
In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.
Accuracy of a high-resolution lidar terrain model under a conifer forest canopy
S.E. Reutebuch; R.J. McGaughey; H.-E. Andersen; W.W. Carson
2003-01-01
Airborne laser scanning systems can provide terrain elevation data for open areas with a vertical accuracy of 15 cm. In this study, a high-resolution digital terrain model (DTM) was produced from high-density lidar data. Vegetation in the 500-ha mountainous study area varied from bare ground to dense 70-year-old conifer forest. Conventional ground survey methods were...
Occupancy Grid Map Merging Using Feature Maps
2010-11-01
each robot begins exploring at different starting points, once two robots can communicate, they send their odometry data, LIDAR observations, and maps...robots [11]. Moreover, it is relevant to mention that significant success has been achieved in solving SLAM problems when using hybrid maps [12...represents the environment by parametric features. Our method is capable of representing a LIDAR scanned environment map in a parametric fashion. In general
H.-E. Andersen; R.J. McGaughey; S.E. Reutebuch
2008-01-01
High resolution, active remote sensing technologies, such as interferometric synthetic aperture radar (IFSAR) and airborne laser scanning (LIDAR) have the capability to provide forest managers with direct measurements of 3-dimensional forest canopy surface structure. Although LIDAR systems can provide highly accurate measurements of canopy and terrain surfaces, high-...
Drawing for Traffic Marking Using Bidirectional Gradient-Based Detection with MMS LIDAR Intensity
NASA Astrophysics Data System (ADS)
Takahashi, G.; Takeda, H.; Nakamura, K.
2016-06-01
Recently, the development of autonomous cars is accelerating on the integration of highly advanced artificial intelligence, which increases demand for a digital map with high accuracy. In particular, traffic markings are required to be precisely digitized since automatic driving utilizes them for position detection. To draw traffic markings, we benefit from Mobile Mapping Systems (MMS) equipped with high-density Laser imaging Detection and Ranging (LiDAR) scanners, which produces large amount of data efficiently with XYZ coordination along with reflectance intensity. Digitizing this data, on the other hand, conventionally has been dependent on human operation, which thus suffers from human errors, subjectivity errors, and low reproductivity. We have tackled this problem by means of automatic extraction of traffic marking, which partially accomplished to draw several traffic markings (G. Takahashi et al., 2014). The key idea of the method was extracting lines using the Hough transform strategically focused on changes in local reflection intensity along scan lines. However, it failed to extract traffic markings properly in a densely marked area, especially when local changing points are close each other. In this paper, we propose a bidirectional gradient-based detection method where local changing points are labelled with plus or minus group. Given that each label corresponds to the boundary between traffic markings and background, we can identify traffic markings explicitly, meaning traffic lines are differentiated correctly by the proposed method. As such, our automated method, a highly accurate and non-human-operator-dependent method using bidirectional gradient-based algorithm, can successfully extract traffic lines composed of complex shapes such as a cross walk, resulting in minimizing cost and obtaining highly accurate results.
NASA Astrophysics Data System (ADS)
Creegan, E. D.; Krishnamurthy, R.; Hocut, C. M.; Pattantyus, A.; Leo, L. S.; Wang, Y.; Fernando, H. J.; Bariteau, L.
2017-12-01
The Perdigao campaign is a joint EU/US science project designed to provide information on flow field(s) over complex terrain and through wind turbines at unprecedented high spatial and temporal resolution. The goal is to improve wind energy physics and overcome the current deficiencies of wind resource models. Topographically the Perdigao location is an expansion of the "double hill in crossflow", consisting of two parallel ridges along the NW-SE direction. The site was heavily instrumented with an array of towers (with multiple transects along the valley and across two ridges) and a large suite of ground based and aerial remote sensing platforms. On the outflow side of the NW ridge a scintillometer was emplaced with the line-of-sight (LOS) running adjacent to the towers comprising the NE transect from the ridgetop down to the base. Scanning lidars were placed at both ends of this LOS. Other instruments included a tethered lifting system (TLS), sodar, microwave radiometer, an energy budget flux tower and radiosonde releases. Scintillomoter data provides a quantitative measure of the intensity of optical turbulence, through the refractive index structure parameter, Cn2, where averaged Cn2 is often determined as a function of local differences in temperature, moisture, and wind velocity at discrete points. The refractive index structure parameter is also a function of the inner (dissipation) and outer (energy producing) turbulent scales. The scintillometer directly gives path averaged Cn2 and Eddy Dissipation rate along the LOS. Coplanar scans along the same path were synchronized using two scanning coherent Doppler lidars. Algorithms have been developed to estimate both eddy dissipation rate and Cn2 from Doppler lidar data effectively creating a new lidar data product. Additionally, from TLS measurements, Cn2 and dissipation rate are calculated using the high frequency spectra of the hot-wire sensor. In this work, measurements of Cn2 and Eddy Dissipation rate between multiple Doppler lidars, scintillometer and TLS are compared and the relationship between refractive index structure parameter and turbulence is explored. The effect of optical turbulence under various atmospheric conditions in complex terrain will be investigated.
Advanced Raman water vapor lidar
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Melfi, S. Harvey; Ferrare, Richard A.; Evans, Keith A.; Ramos-Izquierdo, Luis; Staley, O. Glenn; Disilvestre, Raymond W.; Gorin, Inna; Kirks, Kenneth R.; Mamakos, William A.
1992-01-01
Water vapor and aerosols are important atmospheric constituents. Knowledge of the structure of water vapor is important in understanding convective development, atmospheric stability, the interaction of the atmosphere with the surface, and energy feedback mechanisms and how they relate to global warming calculations. The Raman Lidar group at the NASA Goddard Space Flight Center (GSFC) developed an advanced Raman Lidar for use in measuring water vapor and aerosols in the earth's atmosphere. Drawing on the experience gained through the development and use of our previous Nd:YAG based system, we have developed a completely new lidar system which uses a XeF excimer laser and a large scanning mirror. The additional power of the excimer and the considerably improved optical throughput of the system have resulted in approximately a factor of 25 improvement in system performance for nighttime measurements. Every component of the current system has new design concepts incorporated. The lidar system consists of two mobile trailers; the first (13m x 2.4m) houses the lidar instrument, the other (9.75m x 2.4m) is for system control, realtime data display, and analysis. The laser transmitter is a Lambda Physik LPX 240 iCC operating at 400 Hz with a XeF gas mixture (351 nm). The telescope is a .75m horizontally mounted Dall-Kirkham system which is bore sited with a .8m x 1.1m elliptical flat which has a full 180 degree scan capability - horizon to horizon within a plane perpendicular to the long axis of the trailer. The telescope and scan mirror assembly are mounted on a 3.65m x .9m optical table which deploys out the rear of the trailer through the use of a motor driven slide rail system. The Raman returns from water vapor (403 nm), nitrogen (383 nm) and oxygen (372 nm) are measured in addition to the direct Rayleigh/Mie backscatter (351). The signal from each of these is split at about a 5/95 ratio between two photomultiplier detectors. The 5 percent detector is used for measurements below about 4.0 km, while the 95 percent detector provides the information above this level.
NASA Astrophysics Data System (ADS)
Chiang, Chih-Wei; Chiang, Hong-Wei; Chou, Huann-Ming; Sun, Shu-Huang; Lee, Jiann-Shen
2017-06-01
The wind-blown dust emissions frequently occur in the open storage yards of steel-making companies. Tracking the dust source and monitoring their dispersion are rather difficult. This type of open-air storage yards poses many environmental hazards. The 3-D scanning lidar system is effective in environmental monitoring (e.g., dust) with high temporal and spatial resolution, which is lacking in traditional ground-based measurement. The objective of this paper is to make an attempt for the flux estimation of dust concentration by using lidar system. Further, we investigate the dynamical process of dust and their relationship with local air quality monitoring data. The results show that the material storage erosion by wind ( 3.6 m/s) could cause dust to elevate up to 20m height above the material storage, and produces the flux of dust around 674 mg/s. The flux of dust is proportional to the dust mass concentration (PM10) measured by commercial ambient particular monitors.
EAARL-B coastal topography: eastern New Jersey, Hurricane Sandy, 2012: first surface
Wright, C. Wayne; Fredericks, Xan; Troche, Rodolfo J.; Klipp, Emily S.; Kranenburg, Christine J.; Nagle, David B.
2014-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida. This project provides highly detailed and accurate datasets for a portion of the New Jersey coastline beachface, acquired pre-Hurricane Sandy on October 26, and post-Hurricane Sandy on November 1 and November 5, 2012. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar system, known as the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), was used during data acquisition. The EAARL-B system is a raster-scanning, waveform-resolving, green-wavelength (532-nm) lidar designed to map nearshore bathymetry, topography, and vegetation structure simultaneously. The EAARL-B sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, down-looking red-green-blue (RGB) and infrared (IR) digital cameras, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL-B platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL-B system. The resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Lidar for Science and Resource Management Web site.
Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling
NASA Technical Reports Server (NTRS)
Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.
2013-01-01
This paper investigates multiwavelength retrievals of median equivolumetric drop diameter D(sub 0) suitable for drizzle and light rain, through collocated 355-/527-nm Micropulse Lidar Network (MPLNET) observations collected during precipitation occurring 9 May 2012 at the Goddard Space Flight Center (GSFC) project site. By applying a previously developed retrieval technique for infrared bands, the method exploits the differential backscatter by liquid water at 355 and 527 nm for water drops larger than approximately 50 micrometers. In the absence of molecular and aerosol scattering and neglecting any transmission losses, the ratio of the backscattering profiles at the two wavelengths (355 and 527 nm), measured from light rain below the cloud melting layer, can be described as a color ratio, which is directly related to D(sub 0). The uncertainty associated with this method is related to the unknown shape of the drop size spectrum and to the measurement error. Molecular and aerosol scattering contributions and relative transmission losses due to the various atmospheric constituents should be evaluated to derive D(sub 0) from the observed color ratio profiles. This process is responsible for increasing the uncertainty in the retrieval. Multiple scattering, especially for UV lidar, is another source of error, but it exhibits lower overall uncertainty with respect to other identified error sources. It is found that the total error upper limit on D(sub 0) approaches 50%. The impact of this retrieval for long-term MPLNET monitoring and its global data archive is discussed.
NASA Astrophysics Data System (ADS)
Mitishita, E.; Costa, F.; Martins, M.
2017-05-01
Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO) approach was performed using Interior Orientation Parameter (IOP) values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE) of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.
Automation of lidar-based hydrologic feature extraction workflows using GIS
NASA Astrophysics Data System (ADS)
Borlongan, Noel Jerome B.; de la Cruz, Roel M.; Olfindo, Nestor T.; Perez, Anjillyn Mae C.
2016-10-01
With the advent of LiDAR technology, higher resolution datasets become available for use in different remote sensing and GIS applications. One significant application of LiDAR datasets in the Philippines is in resource features extraction. Feature extraction using LiDAR datasets require complex and repetitive workflows which can take a lot of time for researchers through manual execution and supervision. The Development of the Philippine Hydrologic Dataset for Watersheds from LiDAR Surveys (PHD), a project under the Nationwide Detailed Resources Assessment Using LiDAR (Phil-LiDAR 2) program, created a set of scripts, the PHD Toolkit, to automate its processes and workflows necessary for hydrologic features extraction specifically Streams and Drainages, Irrigation Network, and Inland Wetlands, using LiDAR Datasets. These scripts are created in Python and can be added in the ArcGIS® environment as a toolbox. The toolkit is currently being used as an aid for the researchers in hydrologic feature extraction by simplifying the workflows, eliminating human errors when providing the inputs, and providing quick and easy-to-use tools for repetitive tasks. This paper discusses the actual implementation of different workflows developed by Phil-LiDAR 2 Project 4 in Streams, Irrigation Network and Inland Wetlands extraction.
Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.
2011-01-01
The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detection
EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data
NASA Astrophysics Data System (ADS)
D'Amico, Giuseppe; Amodeo, Aldo; Mattis, Ina; Freudenthaler, Volker; Pappalardo, Gelsomina
2016-02-01
In this paper we describe an automatic tool for the pre-processing of aerosol lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of ELPP, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of ELPP is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of ELPP. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. ELPP has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.
ATM Coastal Topography-Alabama 2001
Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Alabama coastline, acquired October 3-4, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface, and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.
ATM Coastal Topography-Florida 2001: Eastern Panhandle
Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.
3D volumetric modeling of grapevine biomass using Tripod LiDAR
Keightley, K.E.; Bawden, G.W.
2010-01-01
Tripod mounted laser scanning provides the means to generate high-resolution volumetric measures of vegetation structure and perennial woody tissue for the calculation of standing biomass in agronomic and natural ecosystems. Other than costly destructive harvest methods, no technique exists to rapidly and accurately measure above-ground perennial tissue for woody plants such as Vitis vinifera (common grape vine). Data collected from grapevine trunks and cordons were used to study the accuracy of wood volume derived from laser scanning as compared with volume derived from analog measurements. A set of 10 laser scan datasets were collected for each of 36 vines from which volume was calculated using combinations of two, three, four, six and 10 scans. Likewise, analog volume measurements were made by submerging the vine trunks and cordons in water and capturing the displaced water. A regression analysis examined the relationship between digital and non-digital techniques among the 36 vines and found that the standard error drops rapidly as additional scans are added to the volume calculation process and stabilizes at the four-view geometry with an average Pearson's product moment correlation coefficient of 0.93. Estimates of digital volumes are systematically greater than those of analog volumes and can be explained by the manner in which each technique interacts with the vine tissue. This laser scanning technique yields a highly linear relationship between vine volume and tissue mass revealing a new, rapid and non-destructive method to remotely measure standing biomass. This application shows promise for use in other ecosystems such as orchards and forests. ?? 2010 Elsevier B.V.
Development and validation of fuel height models for terrestrial lidar - RxCADRE 2012
Eric M. Rowell; Carl A. Seielstad; Roger D. Ottmar
2016-01-01
Terrestrial laser scanning (TLS) was used to collect spatially continuous measurements of fuelbed characteristics across the plots and burn blocks of the 2012 RxCADRE experiments in Florida. Fuelbeds were scanned obliquely from plot/block edges at a height of 20 m above ground. Pre-fire blocks were scanned from six perspectives and four perspectives for post-...
Colgan, Matthew S; Asner, Gregory P; Swemmer, Tony
2013-07-01
Tree biomass is an integrated measure of net growth and is critical for understanding, monitoring, and modeling ecosystem functions. Despite the importance of accurately measuring tree biomass, several fundamental barriers preclude direct measurement at large spatial scales, including the facts that trees must be felled to be weighed and that even modestly sized trees are challenging to maneuver once felled. Allometric methods allow for estimation of tree mass using structural characteristics, such as trunk diameter. Savanna trees present additional challenges, including limited available allometry and a prevalence of multiple stems per individual. Here we collected airborne lidar data over a semiarid savanna adjacent to the Kruger National Park, South Africa, and then harvested and weighed woody plant biomass at the plot scale to provide a standard against which field and airborne estimation methods could be compared. For an existing airborne lidar method, we found that half of the total error was due to averaging canopy height at the plot scale. This error was eliminated by instead measuring maximum height and crown area of individual trees from lidar data using an object-based method to identify individual tree crowns and estimate their biomass. The best object-based model approached the accuracy of field allometry at both the tree and plot levels, and it more than doubled the accuracy compared to existing airborne methods (17% vs. 44% deviation from harvested biomass). Allometric error accounted for less than one-third of the total residual error in airborne biomass estimates at the plot scale when using allometry with low bias. Airborne methods also gave more accurate predictions at the plot level than did field methods based on diameter-only allometry. These results provide a novel comparison of field and airborne biomass estimates using harvested plots and advance the role of lidar remote sensing in savanna ecosystems.
Design of an ultraviolet fluorescence lidar for biological aerosol detection
NASA Astrophysics Data System (ADS)
Rao, Zhimin; Hua, Dengxin; He, Tingyao; Le, Jing
2016-09-01
In order to investigate the biological aerosols in the atmosphere, we have designed an ultraviolet laser induced fluorescence lidar based on the lidar measuring principle. The fluorescence lidar employs a Nd:YAG laser of 266 nm as an excited transmitter, and examines the intensity of the received light at 400 nm for biological aerosol concentration measurements. In this work, we firstly describe the designed configuration and the simulation to estimate the measure range and the system resolution of biological aerosol concentration under certain background radiation. With a relative error of less than 10%, numerical simulations show the system is able to monitor biological aerosols within detected distances of 1.8 km and of 7.3 km in the daytime and nighttime, respectively. Simulated results demonstrate the designed fluorescence lidar is capable to identify a minimum concentration of biological aerosols at 5.0×10-5 ppb in the daytime and 1.0×10-7 ppb in the nighttime at the range of 0.1 km. We believe the ultraviolet laser induced fluorescence lidar can be spread in the field of remote sensing of biological aerosols in the atmosphere.
Operating range of a differential-absorption lidar based on a CO{sub 2} laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivashchenko, M V; Sherstov, I V
2000-08-31
The echolocation range and the remote sensing of ethylene in the atmosphere are simulated for a differential-absorption lidar based on TEA CO{sub 2} lasers. The dependence of the lidar echolocation range on the energy and the peak power of probe pulses is shown to be close to logarithmic. It is demonstrated that the use of narrow-band spectral filters is justified only for low-noise detectors and viewing angles of the receiver exceeding 5 mrad. The relative measurement error of the ethylene concentration in the atmosphere is estimated for various detection modes. (laser applications and other topics in quantum electronics)
Stratified Volume Diffractive Optical Elements as Low-Mass Coherent Lidar Scanners
NASA Technical Reports Server (NTRS)
Chambers, Diana M.; Nordin, Gregory P.; Kavaya, Michael J.
1999-01-01
Transmissive scanning elements for coherent laser radar systems are typically optical wedges, or prisms, which deflect the lidar beam at a specified angle and are then rotated about the instrument optical axis to produce a scan pattern. The wedge is placed in the lidar optical system subsequent to a beam-expanding telescope, implying that it has the largest diameter of any element in the system. The combination of the wedge diameter and asymmetric profile result in the element having very large mass and, consequently, relatively large power consumption required for scanning. These two parameters, mass and power consumption, are among the instrument requirements which need to be minimized when designing a lidar for a space-borne platform. Reducing the scanner contributions in these areas will have a significant effect on the overall instrument specifications, Replacing the optical wedge with a diffraction grating on the surface of a thin substrate is a straight forward approach with potential to reduce the mass of the scanning element significantly. For example, the optical wedge that will be used for the SPAce Readiness Coherent Lidar Experiment (SPARCLE) is approximately 25 cm in diameter and is made from silicon with a wedge angle designed for 30 degree deflection of a beam operating at approx. 2 micrometer wavelength. The mass of this element could be reduced by a factor of four by instead using a fused silica substrate, 1 cm thick, with a grating fabricated on one of the surfaces. For a grating to deflect a beam with a 2 micrometer wavelength by 30 degrees, a period of approximately 4 micrometers is required. This is small enough that fabrication of appropriate high efficiency blazed or multi-phase level diffractive optical gratings is prohibitively difficult. Moreover, bulk or stratified volume holographic approaches appear impractical due to materials limitations at 2 micrometers and the need to maintain adequate wavefront quality. In order to avoid the difficulties encountered in these approaches, we have developed a new type of high-efficiency grating which we call a Stratified Volume Diffractive Optical Element (SVDOE). The features of the gratings in this approach can be easily fabricated using standard photolithography and etching techniques and the materials used in the grating can be chosen specifically for a given application, In this paper we will briefly discuss the SVDOE technique and will present an example design of a lidar scanner using this approach. We will also discuss performance predictions for the example design.
LIDAR Investigation Of The 2004 Niigata Ken Chuetsu, Japan, Earthquake
NASA Astrophysics Data System (ADS)
Kayen, R.; Pack, R. T.; Sugimoto, S.; Tanaka, H.
2005-12-01
The 23 October 2004 Niigata Ken Chuetsu, Japan, Mw 6.6 earthquake was the most significant earthquake to affect Japan since the 1995 Kobe earthquake. Forty people were killed, almost 3,000 injured, and numerous landslides destroyed entire upland villages. Landslides and permanent ground deformation caused extensive damage to roads, rail lines and other lifelines, resulting in major economic disruption. The cities and towns most significantly affected by the earthquake were Nagaoka, Ojiya, and the mountainous rural areas of Yamakoshi village and Kawaguchi town. Our EERI team traveled with a tripod mounted LIDAR (Light Detection and Ranging) unit, a scanning-laser that creates ultra high-resolution 3-D digital terrain models of the earthquake damaged surfaces the ground, structures, and life-lines. This new technology allows for rapid and remote sensing of damaged terrain. Ground-based LIDAR has an accuracy range of 0.5-2.5 cm, and can illuminate targets up to 400m away from the sensor. During a single tripod-mounted LIDAR scan of 10 minutes, several million survey points are collected and processed into an ultra-high resolution terrain model of the damaged ground or structure. There are several benefits in acquiring these LIDAR data in the initial reconnaissance effort after the earthquake. First, we record the detailed failure morphologies of damaged ground and structures in order to make measurements that are either impractical or impossible by conventional survey means. The digital terrain models allow us to enlarge, enhance and rotate data in order to visualize damage in orientations and scales not previously possible. This ability to visualize damage allows us to better understand failure modes. Finally, LIDAR allows us to archive 3-D terrain models so that the engineering community can evaluate analytical and numerical models of deformation potential against detailed field measurements. Here, we discuss the findings of this 2004 Niigata Chuetsu Earthquake (M6.6) reconnaissance presented with LIDAR examples for damage-visualization.
Performance modelling of miniaturized flash-imaging lidars for future mars exploration missions
NASA Astrophysics Data System (ADS)
Mitev, V.; Pollini, A.; Haesler, J.; Pereira do Carmo, João.
2017-11-01
Future planetary exploration missions require the support of 3D vision in the GN&C during key spacecraft's proximity phases, namely: i) spacecraft precision and soft Landing on the planet's surface; ii) Rendezvous and Docking (RVD) between a Sample Canister (SC) and an orbiter spacecraft; iii) Rover Navigation (RN) on planetary surface. The imaging LiDARs are among the best candidate for such tasks [1-3]. The combination of measurement requirements and environmental conditions seems to find its optimum in the flash 3D LiDAR architecture. Here we present key steps is the evaluation of novelty light detectors and MOEMS (Micro-Opto- Electro-Mechanical Systems) technologies with respect to LiDAR system performance and miniaturization. The objectives of the project MILS (Miniaturized Imaging LiDAR System, Phase 1) concentrated on the evaluation of novel detection and scanning technologies for the miniaturization of 3D LiDARs intended for planetary mission. Preliminary designs for an elegant breadboard (EBB) for the three tasks stated above (Landing, RVD and RN) were proposed, based on results obtained with a numerical model developed in the project and providing the performances evaluation of imaging LiDARs.
EAARL-B submerged topography: Barnegat Bay, New Jersey, post-Hurricane Sandy, 2012-2013
Wright, C. Wayne; Troche, Rodolfo J.; Kranenburg, Christine J.; Klipp, Emily S.; Fredericks, Xan; Nagle, David B.
2014-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived submerged topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida. This project provides highly detailed and accurate datasets for part of Barnegat Bay, New Jersey, acquired post-Hurricane Sandy on November 1, 5, 16, 20, and 30, 2012; December 5, 6, and 21, 2012; and January 10, 2013. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar system, known as the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), was used during data acquisition. The EAARL-B system is a raster-scanning, waveform-resolving, green-wavelength (532-nm) lidar designed to map nearshore bathymetry, topography, and vegetation structure simultaneously. The EAARL-B sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, down-looking red-green-blue (RGB) and infrared (IR) digital cameras, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL-B platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL-B system. The resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed originally in a NASA-USGS collaboration. The exploration and processing of lidar data in an interactive or batch mode is supported using ALPS. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. The Airborne Lidar Processing System (ALPS) is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Lidar for Science and Resource Management Web site.
Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test
NASA Astrophysics Data System (ADS)
Zhao, Guangyu; Malmqvist, Elin; Rydhmer, Klas; Strand, Alfred; Bianco, Giuseppe; Hansson, Lars-Anders; Svanberg, Sune; Brydegaard, Mikkel
2018-04-01
We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.
Multi-Autonomous Ground-robotic International Challenge (MAGIC) 2010
2010-12-14
SLAM technique since this setup, having a LIDAR with long-range high-accuracy measurement capability, allows accurate localization and mapping more...achieve the accuracy of 25cm due to the use of multi-dimensional information. OGM is, similarly to SLAM , carried out by using LIDAR data. The OGM...a result of the development and implementation of the hybrid feature-based/scan-matching Simultaneous Localization and Mapping ( SLAM ) technique, the
Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR
Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.
2015-01-01
Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.
Angelidis, Ioannis; Levin, Gregor; Díaz-Varela, Ramón Alberto; Malinowski, Radek
2017-09-01
LiDAR (Light Detection and Ranging) is a remote sensing technology that uses light in the form of pulses to measure the range between a sensor and the Earth's surface. Recent increase in availability of airborne LiDAR scanning (ALS) data providing national coverage with high point densities has opened a wide range of possibilities for monitoring landscape elements and their changes at broad geographical extent. We assessed the dynamics of the spatial extent of non-forest woody vegetation (NFW) in a study area of approx. 2500 km 2 in southern Jutland, Denmark, based on two acquisitions of ALS data for 2006 and 2014 in combination with other spatial data. Our results show a net-increase (4.8%) in the total area of NFW. Furthermore, this net change comprises of both areas with a decrease and areas with an increase of NFW. An accuracy assessment based on visual interpretation of aerial photos indicates high accuracy (>95%) in the delineation of NFW without changes during the study period. For NFW that changed between 2006 and 2014, accuracies were lower (90 and 82% in removed and new features, respectively), which is probably due to lower point densities of the 2006 ALS data (0.5 pts./m 2 ) compared to the 2014 data (4-5 pts./m 2 ). We conclude that ALS data, if combined with other spatial data, in principle are highly suitable for detailed assessment of changes in landscape features, such as formations of NFW at broad geographical extent. However, in change assessment based on multi-temporal ALS data with different point densities errors occur, particularly when examining small or narrow NFW objects.
Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS)
NASA Technical Reports Server (NTRS)
Guerra, David V.; Schwemmer, Geary K.; Wooten, Albert D., Jr.; Chaudhuri, Sandipan S.; Wilkerson, Thomas D.
1995-01-01
A ground-based atmospheric lidar system that utilizes a Holographic Optical Telescope and Scanner has been developed and successfully operated to obtain atmospheric backscatter profiles. The Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing is built around a volume phase reflection Holographic Optical Element. This single optical element both directs and collimates the outgoing laser beam as well as collects, focuses, and filters the atmospheric laser backscatter, while offering significant weight savings over existing telescope mirror technology. Conical scanning is accomplished as the HOE rotates on a turntable sweeping the 1.2 mrad field of view around a 42deg cone. During this technology demonstration, atmospheric aerosol and cloud return signals have been received in both stationary and scanning modes. The success of this program has led to the further development of this technology for integration into airborne and eventually satellite earth observing scanning lidar telescopes.
NASA Astrophysics Data System (ADS)
Church, Philip; Borribanbunpotkat, Kiatchai; Trickey, Evan; Iles, Peter; Sekerka, Mike
2014-06-01
Neptec has developed a family of obscurant-penetrating 3D laser scanners called OPAL 2.0 that are being adapted for rotorcraft platforms. Neptec and Boeing have been working on an integrated system utilizing the OPAL LiDAR to support operations in degraded visual environments. OPAL scanners incorporate Neptec's patented obscurantpenetrating LiDAR technology which was extensively tested in controlled dust environments and helicopters for brownout mitigation. The OPAL uses a scanning mechanism based on the Risley prism pair. Data acquisition rates can go as high as 200kHz for ranges within 200m and 25kHz for ranges exceeding 200m. The scan patterns are created by the rotation of two prisms under independent motor control. The geometry and material properties of the prisms will define the conical field-of-view of the sensor, which can be set up to 120 degrees. Through detailed simulations and analysis of mission profiles, the system can be tailored for applications to rotorcrafts. Examples of scan patterns and control schemes based on these simulations will be provided along with data density predictions versus acquisition time for applicable DVE scenarios. Preliminary 3D data acquired in clear and obscurant conditions will be presented.
NASA Technical Reports Server (NTRS)
Demoz, Belay; Miller, David; Schwemmer, Geary; Starr, David OC (Technical Monitor)
2001-01-01
Lidar atmospheric systems have required large telescope for receiving atmospheric backscatter signals. Thus, the relative complexity in size and ease of operation has limited their wider use in the atmospheric science and meteorology community. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) uses a scanning holographic receiver and demonstrates that these issues can be overcome. HARLIE participated at the DOE-ARM Southern Great Plains site (CART) during the Water Vapor Intensive Operation Period (WVIOP2000) held September-October 2000. It provided exceptional high temporal and spatial resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE recorded over 110 hours of data were recorded on 16 days between 17 September and 6 October 2000. Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1-micron wavelength. The conical scanning lidar measures atmospheric backscatter on the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km, 360-degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds during the daily, operating period. In this study we present highlights of HARLIE-based measurements of the boundary layer and cloud parameters as well as atmospheric wind vectors where there is sufficiently resolved structure in the backscatter. In particular we present data and discussions from a bore-front case observed on 23 September 2000.
Schlipf, David; Fleming, Paul; Haizmann, Florian; ...
2014-12-16
This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, whenmore » the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Moreover, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Turner, David
The Land-Atmosphere Feedback Experiment (LAFE; pronounced “la-fey”) deploys several state-of-the-art scanning lidar and remote sensing systems to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site. These instruments will augment the ARM instrument suite in order to collect a data set for studying feedback processes between the land surface and the atmosphere. The novel synergy of remote-sensing systems will be applied for simultaneous measurements of land-surface fluxes and horizontal and vertical transport processes in the atmospheric convective boundary layer (CBL). The impact of spatial inhomogeneities of the soil-vegetation continuum on land-surface-atmospheremore » (LSA) feedback will be studied using the scanning capability of the instrumentation. The time period of the observations is August 2017, because large differences in surface fluxes between different fields and bare soil can be observed, e.g., pastures versus fields where the wheat has already been harvested. The remote sensing system synergy will consist of three components: 1) The SGP water vapor and temperature Raman lidar (SRL), the SGP Doppler lidar (SDL), and the National Center for Atmospheric Research (NCAR) water vapor differential absorption lidar (DIAL) (NDIAL) mainly in vertical staring modes to measure mean profiles and gradients of moisture, temperature, and horizontal wind. They will also measure profiles of higher-order turbulent moments in the water vapor and wind fields and profiles of the latent heat flux. 2) A novel scanning lidar system synergy consisting of the National Oceanic and Atmospheric Administration (NOAA) High-Resolution Doppler lidar (HRDL), the University of Hohenheim (UHOH) water-vapor differential absorption lidar (UDIAL), and the UHOH temperature Raman lidar (URL). These systems will perform coordinated range-height indicator (RHI) scans from just above the canopy level to the lower troposphere, including the interfacial layer of the CBL. The optimal azimuth is to the ENE of the SGP central facility, which takes advantage of both changes in the surface elevation and different crop types planted along that path. 3) The University of Wisconsin Space Science and Engineering Center Portable Atmospheric Research Center (SPARC) and the University of Oklahoma Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS) operating two vertically pointing atmospheric emitted radiance interferometers (AERIs) and two Doppler lidar (DL) systems scanning cross track to the central RHI for determining the surface friction velocity and the horizontal variability of temperature, moisture, and wind. Thus, both the variability of surface fluxes and CBL dynamics and thermodynamics over the SGP site will be studied for the first time. The combination of these three components will enable us to estimate both the divergence of the latent heat profile and the advection of moisture. Thus, the moisture budget in the SGP domain can be studied. Furthermore, the simultaneous measurements of surface and entrainment fluxes as well as the daily cycle of the CBL thermodynamic state will provide a unique data set for characterizing LSA interaction in dependence of large-scale and local conditions such as soil moisture and the state of the vegetation. The measurements will also be applied for the development of improved parameterizations of surface fluxes and turbulence in the CBL. The latter is possible because mean profiles, gradients, higher-order moments, and fluxes are measured simultaneously. The results will be used for the verification of simulations of LSA feedback in large-eddy simulation (LES) and mesoscale models, which are planned for the SGP site. Due to the strong connection between the pre-convective state of the CBL and the formation of clouds and precipitation, this new generation of experiments will strongly contribute to the improvement of their representation in weather, climate, and earth system models.« less
EAARL coastal topography--Alligator Point, Louisiana, 2010
Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan; Barras, J.A.
2012-01-01
This project provides highly detailed and accurate datasets of a portion of Alligator Point, Louisiana, acquired on March 5 and 6, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations.
Determining the Center Path of Ground Surface LIDAR Data
2017-01-01
2 Methods ………………………………………………………………………................... 5 Results………………………………………………………………………...................... 14 Conclusions...LIDAR ground surveying. The methods employed include a preliminary approximate ordering of the LIDAR coordinates and color data, followed by the...from a wide scan of a long walking trail, with hundreds to thousands of survey data per square meter. The output of the method is a uniformly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, John
High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angularmore » field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.« less
Hank A. Margolis; Ross F. Nelson; Paul M. Montesano; André Beaudoin; Guoqing Sun; Hans-Erik Andersen; Michael A. Wulder
2015-01-01
We report estimates of the amount, distribution, and uncertainty of aboveground biomass (AGB) of the different ecoregions and forest land cover classes within the North American boreal forest, analyze the factors driving the error estimates, and compare our estimates with other reported values. A three-phase sampling strategy was used (i) to tie ground plot AGB to...
Calibration of a Direct Detection Doppler Wind Lidar System using a Wind Tunnel
NASA Astrophysics Data System (ADS)
Rees, David
2012-07-01
As a critical stage of a Project to develop an airborne Direct-Detection Doppler Wind Lidar System, it was possible to exploit a Wind Tunnel of the VZLU, Prague, Czech Republic for a comprehensive series of tests against calibrated Air Speed generated by the Wind Tunnel. The initial results from these test sequences will be presented. The rms wind speed errors were of order 0.25 m/sec - very satisfactory for this class of Doppler Wind Lidar measurements. The next stage of this Project will exploit a more highly-developed laser and detection system for measurements of wind shear, wake vortex and other potentially hazardous meteorological phenomena at Airports. Following the end of this Project, key parts of the instrumentation will be used for routine ground-based Doppler Wind Lidar measurements of the troposphere and stratosphere.
Ye, Liangchen; Zhang, Gaofei; You, Zheng
2017-03-05
The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively.
Ye, Liangchen; Zhang, Gaofei; You, Zheng
2017-01-01
The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively. PMID:28273880
NASA Astrophysics Data System (ADS)
Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang
2017-02-01
A wind measurement Doppler Lidar system was developed, in which injection seeded laser was used to generate narrow linewidth laser pulse. Frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range,with long-time (>4 h) frequency-locking accuracy being ≤0.5 MHz and long-time frequency stability being 3.55×10-9. Design the continuous light velocity measuring system, which concluded the cure about doppler frequency shift and actual speed of chopped wave plate, the velocity error is less than 0.4 m/s. The experiment showed that the stabilized frequency of the seed laser was different from the transmission frequency of the Lidar. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10 MHz, long-time stability deviation was around 5 MHz. When the temporal and spatial resolutions were respectively set to 100 s and 96 m, the wind velocity measurement error of the horizontal wind field at the attitude of 15-35 km was within ±5 m/s, the results showed that the wind measurement Doppler Lidar implemented in Yanqing, Beijing was capable of continuously detecting in the middle and low atmospheric wind field at nighttime. With further development of this technique, system measurement error could be lowered, and long-run routine observations are promising.
NASA Astrophysics Data System (ADS)
Burton, S. P.; Liu, X.; Chemyakin, E.; Hostetler, C. A.; Stamnes, S.; Moore, R.; Sawamura, P.; Ferrare, R. A.; Knobelspiesse, K. D.
2015-12-01
There is considerable interest in retrieving aerosol effective radius, number concentration and refractive index from lidar measurements of extinction and backscatter at several wavelengths. The 3 backscatter + 2 extinction (3β+2α) combination is particularly important since the planned NASA Aerosol-Clouds-Ecosystem (ACE) mission recommends this combination of measurements. The 2nd-generation NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) has been making 3β+2α measurements since 2012. Here we develop a deeper understanding of the information content and sensitivities of the 3β+2α system in terms of aerosol microphysical parameters of interest. We determine best case results using a retrieval-free methodology. We calculate information content and uncertainty metrics from Optimal Estimation techniques using only a simplified forward model look-up table, with no explicit inversion. Simplifications include spherical particles, mono-modal log-normal size distributions, and wavelength-independent refractive indices. Since we only use the forward model with no retrieval, our results are applicable as a best case for all existing retrievals. Retrieval-dependent errors due to mismatch between the assumptions and true atmospheric aerosols are not included. The sensitivity metrics allow for identifying (1) information content of the measurements versus a priori information; (2) best-case error bars on the retrieved parameters; and (3) potential sources of cross-talk or "compensating" errors wherein different retrieval parameters are not independently captured by the measurements. These results suggest that even in the best case, this retrieval system is underdetermined. Recommendations are given for addressing cross-talk between effective radius and number concentration. A potential solution to the under-determination problem is a combined active (lidar) and passive (polarimeter) retrieval, which is the subject of a new funded NASA project by our team.
EAARL Coastal Topography - Northeast Barrier Islands 2007: Bare Earth
Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Topography - Natchez Trace Parkway 2007: First Surface
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Natchez Trace Parkway in Mississippi, acquired on September 14, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Topography - Vicksburg National Military Park 2008: Bare Earth
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on March 6, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography - Northeast Barrier Islands 2007: First Surface
Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Topography-Vicksburg National Military Park 2007: First Surface
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on September 12, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface
Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.
2011-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations.
EAARL Coastal Topography - Sandy Hook 2007
Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.
2008-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of Gateway National Recreation Area's Sandy Hook Unit in New Jersey, acquired on May 16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.
Calibration between Color Camera and 3D LIDAR Instruments with a Polygonal Planar Board
Park, Yoonsu; Yun, Seokmin; Won, Chee Sun; Cho, Kyungeun; Um, Kyhyun; Sim, Sungdae
2014-01-01
Calibration between color camera and 3D Light Detection And Ranging (LIDAR) equipment is an essential process for data fusion. The goal of this paper is to improve the calibration accuracy between a camera and a 3D LIDAR. In particular, we are interested in calibrating a low resolution 3D LIDAR with a relatively small number of vertical sensors. Our goal is achieved by employing a new methodology for the calibration board, which exploits 2D-3D correspondences. The 3D corresponding points are estimated from the scanned laser points on the polygonal planar board with adjacent sides. Since the lengths of adjacent sides are known, we can estimate the vertices of the board as a meeting point of two projected sides of the polygonal board. The estimated vertices from the range data and those detected from the color image serve as the corresponding points for the calibration. Experiments using a low-resolution LIDAR with 32 sensors show robust results. PMID:24643005
Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs
NASA Astrophysics Data System (ADS)
Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team
2011-11-01
An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.
Acousto-optic filtering of lidar signals
NASA Technical Reports Server (NTRS)
Kolarov, G.; Deleva, A.; Mitsev, TS.
1992-01-01
The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.
Typical Applications of Airborne LIDAR Technolagy in Geological Investigation
NASA Astrophysics Data System (ADS)
Zheng, X.; Xiao, C.
2018-05-01
The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.
NASA Technical Reports Server (NTRS)
Gentry, Bruce; Li, Steven; Chen, Huai-Lin; Comer, Joseph; Mathur, Savyasachee; Bobler, Jeremy
2005-01-01
The Goddard Lidar Observatory for Winds (GLOW) is a mobile Doppler lidar system that uses direct detection techniques for profiling winds in the troposphere and lower stratosphere. In May and June of 2002 GLOW was deployed to the Southern Great Plains of the US to participate in the International H2O Project (IHOP). GLOW was located at the Homestead profiling site in the Oklahoma panhandle about 15 km east of the SPOL radar. Several other Goddard lidars, the Scanning Raman Lidar (SRL) and HARLIE, as well as radars and passive instruments were permanently operated from the Homestead site during the IHOP campaign providing a unique cluster of observations. During the IHOP observation period (May 14, 2002 to June 25, 2002) over 240 hours of wind profile measurements were obtained with GLOW. In this paper we will describe the GLOW instrument as it was configured for the IHOP campaign and we will present examples of wind profiles obtained.
Coplanar Doppler Lidar Retrieval of Rotors from T-REX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Michael; Calhoun, Ron; Fernando, H. J. S.
2010-03-01
Two coherent Doppler lidars were deployed during the Terrain-induced Rotor EXperiment (T-REX). Coplanar Range Height Indicator (RHI) scans by the lidars (along the same azimuthal angle) allowed retrieval of two-dimensional velocity vectors on a vertical/cross-barrier plane using the least squares method. Vortices are shown to evolve and advect in the flow field, allowing analysis of their behavior in the mountain-wave-boundary layer system. The locations, magnitudes, and evolution of the vortices can be studied through calculated fields of velocity, vorticity, streamlines, and swirl. Two classes of vortical motions are identified: rotors and sub-rotors, which differ in scale and behavior. The levelmore » of coordination of the two lidars and the nature of the output (i.e., in range-gates) creates inherent restrictions on the spatial and temporal resolution of retrieved fields.« less
The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns Across a Boreal Forest Gradient
NASA Technical Reports Server (NTRS)
Montesano, P. M.; Rosette, J.; Sun, G.; North, P.; Nelson, R. F.; Dubayah, R. O.; Ranson, K. J.; Kharuk, V.
2014-01-01
The Forest Light (FLIGHT) radiative transfer model was used to examine the uncertainty of vegetation structure measurements from NASA's planned ICESat-2 photon counting light detection and ranging (LiDAR) instrument across a synthetic Larix forest gradient in the taiga-tundra ecotone. The simulations demonstrate how measurements from the planned spaceborne mission, which differ from those of previous LiDAR systems, may perform across a boreal forest to non-forest structure gradient in globally important ecological region of northern Siberia. We used a modified version of FLIGHT to simulate the acquisition parameters of ICESat-2. Modeled returns were analyzed from collections of sequential footprints along LiDAR tracks (link-scales) of lengths ranging from 20 m-90 m. These link-scales traversed synthetic forest stands that were initialized with parameters drawn from field surveys in Siberian Larix forests. LiDAR returns from vegetation were compiled for 100 simulated LiDAR collections for each 10 Mg · ha(exp -1) interval in the 0-100 Mg · ha(exp -1) above-ground biomass density (AGB) forest gradient. Canopy height metrics were computed and AGB was inferred from empirical models. The root mean square error (RMSE) and RMSE uncertainty associated with the distribution of inferred AGB within each AGB interval across the gradient was examined. Simulation results of the bright daylight and low vegetation reflectivity conditions for collecting photon counting LiDAR with no topographic relief show that 1-2 photons are returned for 79%-88% of LiDAR shots. Signal photons account for approximately 67% of all LiDAR returns, while approximately 50% of shots result in 1 signal photon returned. The proportion of these signal photon returns do not differ significantly (p greater than 0.05) for AGB intervals greater than 20 Mg · ha(exp -1). The 50m link-scale approximates the finest horizontal resolution (length) at which photon counting LiDAR collection provides strong model fits and minimizes forest structure uncertainty in the synthetic Larix stands. At this link-scale AGB greater than 20 Mg · ha(exp -1) has AGB error from 20-50% at the 95% confidence level. These results suggest that the theoretical sensitivity of ICESat-2 photon counting LiDAR measurements alone lack the ability to consistently discern differences in inferred AGB at 10 Mg · ha(exp -1) intervals in sparse forests characteristic of the taiga-tundra ecotone.
Land-based lidar mapping: a new surveying technique to shed light on rapid topographic change
Collins, Brian D.; Kayen, Robert
2006-01-01
The rate of natural change in such dynamic environments as rivers and coastlines can sometimes overwhelm the monitoring capacity of conventional surveying methods. In response to this limitation, U.S. Geological Survey (USGS) scientists are pioneering new applications of light detection and ranging (lidar), a laser-based scanning technology that promises to greatly increase our ability to track rapid topographic changes and manage their impact on affected communities.
Marcus V.N. d' Oliveira; Stephen E. Reutebuch; Robert J. McGaughey; Hans-Erik. Andersen
2012-01-01
The objectives of this study were to estimate above ground forest biomass and identify areas disturbed by selective logging in a 1000 ha Brazilian tropical forest in the Antimary State Forest using airborne lidar data. The study area consisted of three management units, two of which were unlogged, while the third unit was selectively logged at a low intensity. A...
Doppler lidar wind measurement on Eos
NASA Technical Reports Server (NTRS)
Fitzjarrald, D.; Bilbro, J.; Beranek, R.; Mabry, J.
1985-01-01
A polar-orbiting platform segment of the Earth Observing System (EOS) could carry a CO2-laser based Doppler lidar for recording global wind profiles. Development goals would include the manufacture of a 10 J laser with a 2 yr operational life, space-rating the optics and associated software, and the definition of models for global aerosol distributions. Techniques will be needed for optimal scanning and generating computer simulations which will provide adequately accurate weather predictions.
Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Scanning
NASA Technical Reports Server (NTRS)
Cole, H. J.; Chambers, D. M.; Dixit, S. N.; Britten, J. A.; Shore, B. W.; Kavaya, M. J.
1999-01-01
The application of specialized rectangular relief transmission gratings to coherent lidar beam scanning is presented. Two types of surface relief transmission grating approaches are studied with an eye toward potential insertion of a constant thickness, diffractive scanner where refractive wedges now exist. The first diffractive approach uses vertically oriented relief structure in the surface of an optical flat; illumination of the diffractive scanner is off-normal in nature. The second grating design case describes rectangular relief structure slanted at a prescribed angle with respect to the surface. In this case, illumination is normal to the diffractive scanner. In both cases, performance predictions for 2.0 micron, circularly polarized light at beam deflection angles of 30 or 45 degrees are presented.
NASA Astrophysics Data System (ADS)
Bauer, Harald; Hatzenbichler, Georg; Amon, Philipp; Fallah, Mohammad; Tari, Gabor; Grasemann, Bernhard
2013-04-01
As part of a cooperation project between OMV, RIEGL and the University of Vienna the new LiDAR (Light Detection and Ranging) VZ-4000 laser scanner was tested at the Grimming Mts. of the Eastern Alps in Austria. The prominent Grimming Mts. lies in the eastern part of the Dachstein Massif at the southern margin of the Northern Calcareous Alps. The Grimming, with a peak of 2,351 m above sea level, is one of the highest isolated mountains in Europe. Because of its spectacular topography, the Grimming has been used as an important surface reference mark since 1822. From a structural geology standpoint, the Grimming forms a huge antiform made up of dominantly well-bedded Triassic Dachstein Limestone. Because of the relatively well exposed bedrock surfaces above the tree-line and the fairly complex internal structure, the Grimming Mts. provides an ideal target for testing new high resolution laser scan techniques and devices. The maximum distance from the scanning positions on the nearby valley floor to the mountain face was about 4,500 m and the generated point cloud has an average resolution of 25 points per square meter. The purpose of this work was to test the latest version of the high resolution LiDAR laser equipment in a setting which falls beyond the capabilities of most existing LiDAR devices. The results of the pilot study include high-resolution spatial data on bedding planes, fault planes and the thickness variations of individual beds within the Dachstein Limestone. For the first time, the data obtained can be directly used to generate the proper 3D geometry of folds and faults observed on the Grimming Mts. This leads to a modern understanding of this prominent Alpine anticline in terms of structural geology.
Liu, Feng; Tan, Chang; Lei, Pi-Feng
2014-11-01
Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.
Development of LiDAR aware allometrics for Abies grandis: A Case Study
NASA Astrophysics Data System (ADS)
Stone, G. A.; Tinkham, W. T.; Smith, A. M.; Hudak, A. T.; Falkowski, M. J.; Keefe, R.
2012-12-01
Forest managers rely increasingly on accurate allometric relationships to inform decisions regarding stand rotations, silvilcultural treatments, timber harvesting, and biometric modeling. At the same time, advances in remote sensing techniques like LiDAR (light detection and ranging) have brought about opportunities to advance how we assess forest growth, and thus are contributing to the need for more accurate allometries. Past studies have attempted to relate LiDAR data to both plot and individual tree measures of forest biomass. However, many of these studies have been limited by the accuracy of their coincident observations. In this study, 24 Abies grandis were measured, felled, and dissected for the explicit objective of developing LiDAR aware allometrics. The analysis predicts spatial variables of competition, growth potential (e.g, trees per acre, aspect, elevation, etc.) and common statistical distributional metrics (e.g., mean, mode, percentiles, variance, skewness, kurtosis, etc.) derived from LiDAR point cloud returns to coincident in situ measures of Abies grandis stem biomass. The resulting allometries exemplify a new approach for predicting structural attributes of interest (biomass, basal area, volume, etc.) directly from LiDAR point cloud data, precluding the measurement errors that are propogated by indirectly predicting these structure attributes of interest from LiDAR data using traditional plot-based measurements.
Absolute tracer dye concentration using airborne laser-induced water Raman backscatter
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1981-01-01
The use of simultaneous airborne-laser-induced dye fluorescence and water Raman backscatter to measure the absolute concentration of an ocean-dispersed tracer dye is discussed. Theoretical considerations of the calculation of dye concentration by the numerical comparison of airborne laser-induced fluorescence spectra with laboratory spectra for known dye concentrations using the 3400/cm OH-stretch water Raman scatter as a calibration signal are presented which show that minimum errors are obtained and no data concerning water mass transmission properties are required when the laser wavelength is chosen to yield a Raman signal near the dye emission band. Results of field experiments conducted with an airborne conical scan lidar over a site in New York Bight into which rhodamine dye had been injected in a study of oil spill dispersion are then indicated which resulted in a contour map of dye concentrations, with a minimum detectable dye concentration of approximately 2 ppb by weight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newsom, Rob
2016-03-01
In March and April of 2015, the ARM Doppler lidar that was formerly operated at the Tropical Western Pacific site in Darwin, Australia (S/N 0710-08) was deployed to the Boulder Atmospheric Observatory (BAO) for the eXperimental Planetary boundary-layer Instrument Assessment (XPIA) field campaign. The goal of the XPIA field campaign was to investigate methods of using multiple Doppler lidars to obtain high-resolution three-dimensional measurements of winds and turbulence in the atmospheric boundary layer, and to characterize the uncertainties in these measurements. The ARM Doppler lidar was one of many Doppler lidar systems that participated in this study. During XPIA themore » 300-m tower at the BAO site was instrumented with well-calibrated sonic anemometers at six levels. These sonic anemometers provided highly accurate reference measurements against which the lidars could be compared. Thus, the deployment of the ARM Doppler lidar during XPIA offered a rare opportunity for the ARM program to characterize the uncertainties in their lidar wind measurements. Results of the lidar-tower comparison indicate that the lidar wind speed measurements are essentially unbiased (~1cm s-1), with a random error of approximately 50 cm s-1. Two methods of uncertainty estimation were tested. The first method was found to produce uncertainties that were too low. The second method produced estimates that were more accurate and better indicators of data quality. As of December 2015, the first method is being used by the ARM Doppler lidar wind value-added product (VAP). One outcome of this work will be to update this VAP to use the second method for uncertainty estimation.« less
Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg
1995-01-01
A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.
EAARL coastal topography and imagery–Western Louisiana, post-Hurricane Rita, 2005: First surface
Bonisteel-Cormier, Jamie M.; Wright, Wayne C.; Fredericks, Alexandra M.; Klipp, Emily S.; Nagle, Doug B.; Sallenger, Asbury H.; Brock, John C.
2013-01-01
These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, Virginia. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beachface, acquired post-Hurricane Rita on September 27-28 and October 2, 2005. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Lidar for Science and Resource Management Website.
Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar
NASA Astrophysics Data System (ADS)
Chen, Qi
2015-08-01
Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical component for understanding the global C cycle and mitigating climate change. However, the importance of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of this study are to understand the differences and relationships among three national-scale allometric methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest, USA were used to predict woody AGB estimated from the different allometric methods. It was found that the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable stem biomass on merchantable stem biomass. This study also argues that it is important to characterize the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction errors.
Subtropical Cirrus Properties Derived from GSFC Scanning Raman Lidar Measurements during CAMEX 3
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Wang, Z.; Demoz, B.
2004-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.
Highly sensitive lidar with a thumb-sized sensor-head built using an optical fiber preamplifier
NASA Astrophysics Data System (ADS)
Inoue, Daisuke; Ichikawa, Tadashi; Matsubara, Hiroyuki; Mao, Xueon; Maeda, Mitsutoshi; Nagashima, Chie; Kagami, Manabu
2011-06-01
We developed a LIDAR system with a sensor head as small as 22 cc, in spite of the inclusion of a scanning mechanism. This LIDAR system not only has a small body, but is also highly sensitive. Our LIDAR system is based on time-of-flight measurements, and it incorporates an optical fiber. The main feature of our system is the utilization of optical amplifiers for both the transmitter and the receiver, and the optical amplifiers enabled us to exceed the detection limit of thermal noise. In conventional LIDAR systems the detection limit is determined by thermal noise, because the avalanche photo-diodes (APD) and trans-impedance amplifiers (TIA) that they use detect the received signals directly. In the case of our LIDAR system, received signal is amplified by an optical fiber amplifier in front of the photo diode and the TIA. Therefore, our LIDAR system can boost the signal level before the weak incoming signal is depleted by thermal noise. There are conditions under which the noise figure for the combination of an optical fiber amplifier and a photo diode is superior to the noise figure for an avalanche photo diode. We optimized the gain of the optical fiber amplifier and TIA in our LIDAR system such that it is capable of detecting a single photon. As a result, the detection limit of our LIDAR system is determined by shot noise. This small and highly sensitive measurement technology shows great potential for use in LIDAR with an optical preamplifier.
Application of the Kano-Hamilton multiangle inversion method in clear atmospheres
Mariana Adam; Vladimir A. Kovalev; Cyle Wold; Jenny Newton; Markus Pahlow; Wei M. Hao; Marc B. Parlange
2007-01-01
An improved measurement methodology and a data-processing technique for multiangle data obtained with an elastic scanning lidar in clear atmospheres are introduced. Azimuthal and slope scans are combined to reduce the atmospheric heterogeneity. Vertical profiles of optical depth and intercept (proportional to the logarithm of the backscatter coefficient) are determined...
Improvements in Raman Lidar Measurements Using New Interference Filter Technology
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Potter, John R.; Tola, Rebecca; Veselovskii, Igor; Cadirola, Martin; Rush, Kurt; Comer, Joseph
2006-01-01
Narrow-band interference filters with improved transmission in the ultra-violet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground-based, upward-looking tests. Measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary and mixed layer profiling of water vapor mixing ratio up to an altitude of approximately 4 h is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction-to-backscatter ratio measurements are made using 1 -minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. A description of the filter technology developments is provided followed by examples of the improved Raman lidar measurements.
Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination
Fasano, Giancarmine; Grassi, Michele
2017-01-01
In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective-n-Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal. PMID:28946651
Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination.
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2017-09-24
In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective- n -Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal.
Fluorescence lidar measurements at the archaeological site House of Augustus at Palatino, Rome
NASA Astrophysics Data System (ADS)
Raimondi, Valentina; Alisi, Chiara; Barup, Kerstin; Bracciale, Maria Paola; Broggi, Alessandra; Conti, Cinzia; Hällström, Jenny; Lognoli, David; Palombi, Lorenzo; Santarelli, Maria Laura; Sprocati, Anna Rosa
2013-10-01
Early diagnostics and documentation fulfill an essential role for an effective planning of conservation and restoration of cultural heritage assets. In particular, remote sensing techniques that do not require the use of scaffolds or lifts, such as fluoresence lidar, can provide useful information to obtain an overall assessment of the status of the investigated surfaces and can be exploited to address analytical studies in selected areas. Here we present the results of a joint Italian-Swedish project focused on documenting and recording the status of some sections of the part closed to the public by using fluorescence hyperspectral imaging lidar. The lidar used a tripled-frequency Nd:YAG laser emitting at 355 nm as excitation source and an intensified, gated 512x512-pixel CCD as detector. The lidar had imaging capabilities thanks to a computer-controlled scanning mirror. The fluorescence characteristics of fresco wall paintings were compared to those of fresco fragments found at the same archaeological site and separately examined in the lab using FT-IR and Raman techniques for the identification of pigments. The fluorescence lidar was also used to remotely detect the growth of phototrophic biodeteriogens on the walls. The fluorescence lidar data were compared with results from biological sampling, cultivation and laboratory analysis by molecular techniques.
Calibration Technique for Polarization-Sensitive Lidars
NASA Technical Reports Server (NTRS)
Alvarez, J. M.; Vaughan, M. A.; Hostetler, C. A.; Hung, W. H.; Winker, D. M.
2006-01-01
Polarization-sensitive lidars have proven to be highly effective in discriminating between spherical and non-spherical particles in the atmosphere. These lidars use a linearly polarized laser and are equipped with a receiver that can separately measure the components of the return signal polarized parallel and perpendicular to the outgoing beam. In this work we describe a technique for calibrating polarization-sensitive lidars that was originally developed at NASA s Langley Research Center (LaRC) and has been used continually over the past fifteen years. The procedure uses a rotatable half-wave plate inserted into the optical path of the lidar receiver to introduce controlled amounts of polarization cross-talk into a sequence of atmospheric backscatter measurements. Solving the resulting system of nonlinear equations generates the system calibration constants (gain ratio, G, and offset angle, theta) required for deriving calibrated measurements of depolarization ratio from the lidar signals. In addition, this procedure also determines the mean depolarization ratio within the region of the atmosphere that is analyzed. Simulations and error propagation studies show the method to be both reliable and well behaved. Operational details of the technique are illustrated using measurements obtained as part of Langley Research Center s participation in the First ISCCP Regional Experiment (FIRE).
EARLINET Single Calculus Chain - technical - Part 1: Pre-processing of raw lidar data
NASA Astrophysics Data System (ADS)
D'Amico, G.; Amodeo, A.; Mattis, I.; Freudenthaler, V.; Pappalardo, G.
2015-10-01
In this paper we describe an automatic tool for the pre-processing of lidar data called ELPP (EARLINET Lidar Pre-Processor). It is one of two calculus modules of the EARLINET Single Calculus Chain (SCC), the automatic tool for the analysis of EARLINET data. The ELPP is an open source module that executes instrumental corrections and data handling of the raw lidar signals, making the lidar data ready to be processed by the optical retrieval algorithms. According to the specific lidar configuration, the ELPP automatically performs dead-time correction, atmospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay correction. Moreover, the signal-to-noise ratio of the pre-processed signals can be improved by means of configurable time integration of the raw signals and/or spatial smoothing. The ELPP delivers the statistical uncertainties of the final products by means of error propagation or Monte Carlo simulations. During the development of the ELPP module, particular attention has been payed to make the tool flexible enough to handle all lidar configurations currently used within the EARLINET community. Moreover, it has been designed in a modular way to allow an easy extension to lidar configurations not yet implemented. The primary goal of the ELPP module is to enable the application of quality-assured procedures in the lidar data analysis starting from the raw lidar data. This provides the added value of full traceability of each delivered lidar product. Several tests have been performed to check the proper functioning of the ELPP module. The whole SCC has been tested with the same synthetic data sets, which were used for the EARLINET algorithm inter-comparison exercise. The ELPP module has been successfully employed for the automatic near-real-time pre-processing of the raw lidar data measured during several EARLINET inter-comparison campaigns as well as during intense field campaigns.
Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation
NASA Astrophysics Data System (ADS)
Matvienko, G. G.; Sukhanov, A. Y.
2015-11-01
Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.
Clustering of Multispectral Airborne Laser Scanning Data Using Gaussian Decomposition
NASA Astrophysics Data System (ADS)
Morsy, S.; Shaker, A.; El-Rabbany, A.
2017-09-01
With the evolution of the LiDAR technology, multispectral airborne laser scanning systems are currently available. The first operational multispectral airborne LiDAR sensor, the Optech Titan, acquires LiDAR point clouds at three different wavelengths (1.550, 1.064, 0.532 μm), allowing the acquisition of different spectral information of land surface. Consequently, the recent studies are devoted to use the radiometric information (i.e., intensity) of the LiDAR data along with the geometric information (e.g., height) for classification purposes. In this study, a data clustering method, based on Gaussian decomposition, is presented. First, a ground filtering mechanism is applied to separate non-ground from ground points. Then, three normalized difference vegetation indices (NDVIs) are computed for both non-ground and ground points, followed by histograms construction from each NDVI. The Gaussian function model is used to decompose the histograms into a number of Gaussian components. The maximum likelihood estimate of the Gaussian components is then optimized using Expectation - Maximization algorithm. The intersection points of the adjacent Gaussian components are subsequently used as threshold values, whereas different classes can be clustered. This method is used to classify the terrain of an urban area in Oshawa, Ontario, Canada, into four main classes, namely roofs, trees, asphalt and grass. It is shown that the proposed method has achieved an overall accuracy up to 95.1 % using different NDVIs.
NASA Astrophysics Data System (ADS)
Zawieska, D.; Ostrowski, W.; Antoszewski, M.
2013-12-01
Due to the turbulent history extremely reach and unique resources of military architectural objects (modern fortification complexes) are located in Poland. The paper presents results of analysis of utilization of aerial laser scanning data for identification and visualization of forts in Poland. A cloud of point from the ISOK Projects has been utilized for that purpose. Two types of areas are distinguished in this Project, covered by products of diversified standards: standards II - laser scanning of the increased density (12 points per sq.m.), standard I - laser scanning of the basic density (4 points per sq.m.). Investigations were carried out concerning the quality of geospatial data classification with respect to further topographic analysis of fortifications. These investigations were performed for four test sites, two test sites for each standard. Objects were selected in such a way that fortifications were characterized by the sufficient level of restoration and that at least one point located in forest and one point located in an open area could be located for each standard. The preliminary verification of the classification correctness was performed with the use of ArcGIS 10.1 software package, basing on the shaded Digital Elevation Model (DEM) and the Digital Fortification Model (DFM), an orthophotomap and the analysis of sections of the spatial cloud of points. Changes of classification of point clouds were introduced with the use of TerraSolid software package. Basing on the performed analysis two groups of errors of point cloud classification were detected. In the first group fragments of fortification facilities were classified with errors; in the case of the second group - entire elements of fortifications were classified with errors or they remained unclassified. The first type error, which occurs in the majority of cases, results in errors of 2x4 meters in object locations and variations of elevations of those fragments of DFM, which achieve up to 14 m. At present, fortifications are partially or entirely covered with forests or invasive vegetation. Therefore, the influence of the land cover and the terrain slope on the DEM quality, obtained from Lidar data, should be considered in evaluation of the ISOK data potential for topographic investigations of fortifications. Investigations performed in the world proved that if the area is covered by dense, 70 year old forests, where forest clearance is not performed, this may result in double decrease of the created DTM. (comparing to the open area). In the summary it may be stressed that performed experimental works proved the high usefulness of ISOK laser scanning data for identification of forms of fortifications and for their visualization. As opposed to conventional information acquisition methods (field inventory together with historical documents), laser scanning data is the new generation of geospatial data. They create the possibility to develop the new technology, to be utilized in protection and inventory of military architectural objects in Poland.
NASA Astrophysics Data System (ADS)
Wang, Li; Wang, Jun; Bao, Dong; Yang, Rong; Yan, Qing; Gao, Fei; Hua, Dengxin
2018-01-01
All fiber Raman temperature lidar for space borne platform has been proposed for profiling of the temperature with high accuracy. Fiber Bragg grating (FBG) is proposed as the spectroscopic system of Raman lidar because of good wavelength selectivity, high spectral resolution and high out-of-band rejection rate. Two sets of FBGs at visible wavelength 532 nm as Raman spectroscopy system are designed for extracting the rotational Raman spectra of atmospheric molecules, which intensities depend on the atmospheric temperature. The optimization design of the tuning method of an all-fiber rotational Raman spectroscopy system is analyzed and tested for estimating the potential temperature inversion error caused by the instability of FBG. The cantilever structure with temperature control device is designed to realize the tuning and stabilization of the central wavelengths of FBGs. According to numerical calculation of FBG and finite element analysis of the cantilever structure, the center wavelength offset of FBG is 11.03 nm/°C with the temperature change in the spectroscopy system. By experimental observation, the center wavelength offset of surface-bonded FBG is 9.80 nm/°C with temperature changing when subjected to certain strain for the high quantum number channel, while 10.01 nm/°C for the low quantum number channel. The tunable wavelength range of FBG is from 528.707 nm to 529.014 nm for the high quantum number channel and from 530.226 nm to 530.547 nm for the low quantum number channel. The temperature control accuracy of the FBG spectroscopy system is up to 0.03 °C, the corresponding potential atmospheric temperature inversion error is 0.04 K based on the numerical analysis of all-fiber Raman temperature lidar. The fine tuning and stabilization of the FBG wavelength realize the elaborate spectroscope of Raman lidar system. The conclusion is of great significance for the application of FBG spectroscopy system for space-borne platform Raman lidar.
Lidar system for air-pollution monitoring over urban areas
NASA Astrophysics Data System (ADS)
Moskalenko, Irina V.; Shcheglov, Djolinard A.; Molodtsov, Nikolai A.
1997-05-01
The atmospheric environmental situation over the urban area of a large city is determined by a complex combination of anthropogenic pollution and meteorological factors. The efficient way to provide three-dimensional mapping of gaseous pollutants over wide areas is utilization of lidar systems employing tunable narrowband transmitters. The paper presented describes activity of RRC 'Kurchatov Institute' in the field of lidar atmospheric monitoring. The project 'mobile remote sensing system based on tunable laser transmitter for environmental monitoring' is developed under financial support of International Scientific and Technology Center (Moscow). The objective of the project is design, construction and field testing of a DIAL-technique system. The lidar transmitter consists of an excimer laser pumping dye laser, BBO crystal frequency doubler, and scanning flat mirror. Sulfur dioxide and atomic mercury have been selected as pollutants for field tests of the lidar system under development. A recent large increase in Moscow traffic stimulated taking into consideration also the remote sensing of lower troposphere ozone because of the photochemical smog problem. The status of the project is briefly discussed. The current activity includes also collecting of environmental data relevant to lidar remote sensing. Main attention is paid to pollutant concentration levels over Moscow city and Moscow district areas.
NASA Technical Reports Server (NTRS)
Demoz, Belay; Whiteman, David; Gentry, Bruce; Schwemmer, Geary; Evans, Keith; DiGirolamo, Paolo; Comer, Joseph
2005-01-01
A large array of state-of-the-art ground-based and airborne remote and in-situ sensors were deployed during the International H2O Project (THOP), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. These instruments provided extensive measurements of water vapor mixing ratio in order to better understand the influence of its variability on convection and on the skill of quantitative precipitation prediction (Weckwerth et all, 2004). Among the instrument deployed were ground based lidars from NASA/GSFC that included the Scanning Raman Lidar (SRL), the Goddard Laboratory for Observing Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE). A brief description of the three lidars is given below. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars during MOP at the MOP ground profiling site in the Oklahoma Panhandle (hereafter referred as Homestead). This presentation will focus on the evolution and variability of moisture and wind in the boundary layer when frontal and/or convergence boundaries (e.g. bores, dry lines, thunderstorm outflows etc) were observed.
LIDAR pulse coding for high resolution range imaging at improved refresh rate.
Kim, Gunzung; Park, Yongwan
2016-10-17
In this study, a light detection and ranging system (LIDAR) was designed that codes pixel location information in its laser pulses using the direct- sequence optical code division multiple access (DS-OCDMA) method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. This LIDAR can constantly measure the distance without idle listening time for the return of reflected waves because its laser pulses include pixel location information encoded by applying the DS-OCDMA. Therefore, this emits in each bearing direction without waiting for the reflected wave to return. The MEMS mirror is used to deflect and steer the coded laser pulses in the desired bearing direction. The receiver digitizes the received reflected pulses using a low-temperature-grown (LTG) indium gallium arsenide (InGaAs) based photoconductive antenna (PCA) and the time-to-digital converter (TDC) and demodulates them using the DS-OCDMA. When all of the reflected waves corresponding to the pixels forming a range image are received, the proposed LIDAR generates a point cloud based on the time-of-flight (ToF) of each reflected wave. The results of simulations performed on the proposed LIDAR are compared with simulations of existing LIDARs.
NASA Astrophysics Data System (ADS)
Ganendra, T. R.; Khan, N. M.; Razak, W. J.; Kouame, Y.; Mobarakeh, E. T.
2016-06-01
The use of Light Detection and Ranging (LiDAR) remote sensing technology to scan and map landscapes has proven to be one of the most popular techniques to accurately map topography. Thus, LiDAR technology is the ultimate method of unveiling the surface feature under dense vegetation, and, this paper intends to emphasize the diverse techniques that can be utilized to elucidate topographical changes over the study area, using multi-temporal airborne full waveform LiDAR datasets collected in 2012 and 2014. Full waveform LiDAR data offers access to an almost unlimited number of returns per shot, which enables the user to explore in detail topographical changes, such as vegetation growth measurement. The study also found out topography changes at the study area due to earthwork activities contributing to soil consolidation, soil erosion and runoff, requiring cautious monitoring. The implications of this study not only concurs with numerous investigations undertaken by prominent researchers to improve decision making, but also corroborates once again that investigations employing multi-temporal LiDAR data to unveil topography changes in vegetated terrains, produce more detailed and accurate results than most other remote sensing data.
LIDAR wind speed measurements at a Taiwan onshore wind park
NASA Astrophysics Data System (ADS)
Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng
2016-04-01
Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.
Hämmerle, Martin; Höfle, Bernhard
2014-01-01
3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up. PMID:25521383
Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR Scans
NASA Astrophysics Data System (ADS)
Boussaha, M.; Vallet, B.; Rives, P.
2018-05-01
The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.
Complex terrain experiments in the New European Wind Atlas.
Mann, J; Angelou, N; Arnqvist, J; Callies, D; Cantero, E; Arroyo, R Chávez; Courtney, M; Cuxart, J; Dellwik, E; Gottschall, J; Ivanell, S; Kühn, P; Lea, G; Matos, J C; Palma, J M L M; Pauscher, L; Peña, A; Rodrigo, J Sanz; Söderberg, S; Vasiljevic, N; Rodrigues, C Veiga
2017-04-13
The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiments of which some are nearly completed while others are in the planning stage. All experiments focus on the flow properties that are relevant for wind turbines, so the main focus is the mean flow and the turbulence at heights between 40 and 300 m. Also extreme winds, wind shear and veer, and diurnal and seasonal variations of the wind are of interest. Common to all the experiments is the use of Doppler lidar systems to supplement and in some cases replace completely meteorological towers. Many of the lidars will be equipped with scan heads that will allow for arbitrary scan patterns by several synchronized systems. Two pilot experiments, one in Portugal and one in Germany, show the value of using multiple synchronized, scanning lidar, both in terms of the accuracy of the measurements and the atmospheric physical processes that can be studied. The experimental data will be used for validation of atmospheric flow models and will by the end of the project be freely available.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Authors.
Complex terrain experiments in the New European Wind Atlas
Angelou, N.; Callies, D.; Cantero, E.; Arroyo, R. Chávez; Courtney, M.; Cuxart, J.; Dellwik, E.; Gottschall, J.; Ivanell, S.; Kühn, P.; Lea, G.; Matos, J. C.; Palma, J. M. L. M.; Peña, A.; Rodrigo, J. Sanz; Söderberg, S.; Vasiljevic, N.; Rodrigues, C. Veiga
2017-01-01
The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiments of which some are nearly completed while others are in the planning stage. All experiments focus on the flow properties that are relevant for wind turbines, so the main focus is the mean flow and the turbulence at heights between 40 and 300 m. Also extreme winds, wind shear and veer, and diurnal and seasonal variations of the wind are of interest. Common to all the experiments is the use of Doppler lidar systems to supplement and in some cases replace completely meteorological towers. Many of the lidars will be equipped with scan heads that will allow for arbitrary scan patterns by several synchronized systems. Two pilot experiments, one in Portugal and one in Germany, show the value of using multiple synchronized, scanning lidar, both in terms of the accuracy of the measurements and the atmospheric physical processes that can be studied. The experimental data will be used for validation of atmospheric flow models and will by the end of the project be freely available. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265025
Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection
NASA Technical Reports Server (NTRS)
Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.
1999-01-01
LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.
NASA Astrophysics Data System (ADS)
Patterson, V. M.; Bormann, K.; Deems, J. S.; Painter, T. H.
2017-12-01
The NASA SnowEx campaign conducted in 2016 and 2017 provides a rich source of high-resolution Lidar data from JPL's Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) combined with extensive in-situ measurements in two key areas in Colorado: Grand Mesa and Senator Beck. While the uncertainty in the 50m snow depth retrievals from NASA's ASO been estimated at 1-2cm in non-vegetated exposed areas (Painter et al., 2016), the impact of forest cover and point-cloud density on ASO snow lidar depth retrievals is relatively unknown. Dense forest canopies are known to reduce lidar penetration and ground strikes thus affecting the elevation surface retrieved from in the forest. Using high-resolution lidar point cloud data from the ASO SnowEx campaigns (26pt/m2) we applied a series of data decimations (up to 90% point reduction) to the point cloud data to quantify the relationship between vegetation, ground point density, resulting snow-off and snow-on surface elevations and finally snow depth. We observed non-linear reductions in lidar ground point density in forested areas that were strongly correlated to structural forest cover metrics. Previously, the impacts of these data decimations on a small study area in Grand Mesa showed a sharp increase in under-canopy surface elevation errors of -0.18m when ground point densities were reduced to 1.5pt/m2. In this study, we expanded the evaluation to the more topographically challenging Senator Beck basin, have conducted analysis along a vegetation gradient and are considering snow the impacts of snow depth rather than snow-off surface elevation. Preliminary analysis suggest that snow depth retrievals inferred from airborne lidar elevation differentials may systematically underestimate snow depth in forests where canopy density exceeds 1.75 and where tree heights exceed 5m. These results provide a basis from which to identify areas that may suffer from vegetation-induced biases in surface elevation models and snow depths derived from airborne lidar data, and help quantify expected spatial distributions of errors in the snow depth that can be used to improve the accuracy of ASO basin-scale depth and water equivalent products.
Airborne differential absorption lidar system for water vapor investigations
NASA Technical Reports Server (NTRS)
Browell, E. V.; Carter, A. F.; Wilkerson, T. D.
1981-01-01
Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.
2013-03-21
instruments where frequency estimates are calcu- lated from coherently detected fields, e.g., coherent Doppler LIDAR . Our CRB results reveal that the best...wave coherent lidar using an optical field correlation detection method,” Opt. Rev. 5, 310–314 (1998). 8. H. P. Yuen and V. W. S. Chan, “Noise in...2170–2180 (2007). 13. T. J. Karr, “Atmospheric phase error in coherent laser radar,” IEEE Trans. Antennas Propag. 55, 1122–1133 (2007). 14. Throughout
NASA Astrophysics Data System (ADS)
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi; Song, Xiaoquan
2018-04-01
Shipborne wind observations by the Coherent Doppler Lidar (CDL) during the 2014 Yellow Sea campaign are presented to study the structure of the Marine Atmospheric Boundary Layer (MABL). This paper gives an analysis of the correction for horizontal and vertical wind measurement, demonstrating that the combination of the CDL with the attitude correction system enables the retrieval of wind profiles in the MABL during both anchored and cruising measurement with satisfied statistical uncertainties.
NASA Astrophysics Data System (ADS)
Arrighi, Chiara; Campo, Lorenzo
2017-04-01
In last years, the concern about the economical and lives loss due to urban floods has grown hand in hand with the numerical skills in simulating such events. The large amount of computational power needed in order to address the problem (simulating a flood in a complex terrain such as a medium-large city) is only one of the issues. Among them it is possible to consider the general lack of exhaustive observations during the event (exact extension, dynamic, water level reached in different parts of the involved area), needed for calibration and validation of the model, the need of considering the sewers effects, and the availability of a correct and precise description of the geometry of the problem. In large cities the topographic surveys are in general available with a number of points, but a complete hydraulic simulation needs a detailed description of the terrain on the whole computational domain. LIDAR surveys can achieve this goal, providing a comprehensive description of the terrain, although they often lack precision. In this work an optimal merging of these two sources of geometrical information, measured elevation points and LIDAR survey, is proposed, by taking into account the error variance of both. The procedure is applied to a flood-prone city over an area of 35 square km approximately starting with a DTM from LIDAR with a spatial resolution of 1 m, and 13000 measured points. The spatial pattern of the error (LIDAR vs points) is analysed, and the merging method is tested with a series of Jackknife procedures that take into account different densities of the available points. A discussion of the results is provided.
NASA Astrophysics Data System (ADS)
Rzonca, A.
2013-12-01
The paper presents the state of the art of quality control of photogrammetric and laser scanning data captured by airborne sensors. The described subject is very important for photogrammetric and LiDAR project execution, because the data quality a prior decides about the final product quality. On the other hand, precise and effective quality control process allows to execute the missions without wide margin of safety, especially in case of the mountain areas projects. For introduction, the author presents theoretical background of the quality control, basing on his own experience, instructions and technical documentation. He describes several variants of organization solutions. Basically, there are two main approaches: quality control of the captured data and the control of discrepancies of the flight plan and its results of its execution. Both of them are able to use test of control and analysis of the data. The test is an automatic algorithm controlling the data and generating the control report. Analysis is a less complicated process, that is based on documentation, data and metadata manual check. The example of quality control system for large area project was presented. The project is being realized periodically for the territory of all Spain and named National Plan of Aerial Orthophotography (Plan Nacional de Ortofotografía Aérea, PNOA). The system of the internal control guarantees its results soon after the flight and informs the flight team of the company. It allows to correct all the errors shortly after the flight and it might stop transferring the data to another team or company, for further data processing. The described system of data quality control contains geometrical and radiometrical control of photogrammetric data and geometrical control of LiDAR data. According to all specified parameters, it checks all of them and generates the reports. They are very helpful in case of some errors or low quality data. The paper includes the author experience in the field of data quality control, presents the conclusions and suggestions of the organization and technical aspects, with a short definition of the necessary control software.
Multi-wavelength differential absorption measurements of chemical species
NASA Astrophysics Data System (ADS)
Brown, David M.
The probability of accurate detection and quantification of airborne species is enhanced when several optical wavelengths are used to measure the differential absorption of molecular spectral features. Characterization of minor atmospheric constituents, biological hazards, and chemical plumes containing multiple species is difficult when using current approaches because of weak signatures and the use of a limited number of wavelengths used for identification. Current broadband systems such as Differential Optical Absorption Spectroscopy (DOAS) have either limitations for long-range propagation, or require transmitter power levels that are unsafe for operation in urban environments. Passive hyperspectral imaging systems that utilize absorption of solar scatter at visible and infrared wavelengths, or use absorption of background thermal emission, have been employed routinely for detection of airborne chemical species. Passive approaches have operational limitations at various ranges, or under adverse atmospheric conditions because the source intensity and spectrum is often an unknown variable. The work presented here describes a measurement approach that uses a known source of a low transmitted power level for an active system, while retaining the benefits of broadband and extremely long-path absorption operations. An optimized passive imaging system also is described that operates in the 3 to 4 mum window of the mid-infrared. Such active and passive instruments can be configured to optimize the detection of several hydrocarbon gases, as well as many other species of interest. Measurements have provided the incentive to develop algorithms for the calculations of atmospheric species concentrations using multiple wavelengths. These algorithms are used to prepare simulations and make comparisons with experimental results from absorption data of a supercontinuum laser source. The MODTRAN model is used in preparing the simulations, and also in developing additional algorithms to select filters for use with a MWIR (midwave infrared) imager for detection of plumes of methane, propane, gasoline vapor, and diesel vapor. These simulations were prepared for system designs operating on a down-looking airborne platform. A data analysis algorithm for use with a hydrocarbon imaging system extracts regions of interest from the field-of-view for further analysis. An error analysis is presented for a scanning DAS (Differential Absorption Spectroscopy) lidar system operating from an airborne platform that uses signals scattered from topographical targets. The analysis is built into a simulation program for testing real-time data processing approaches, and to gauge the effects on measurements of path column concentration due to ground reflectivity variations. An example simulation provides a description of the data expected for methane. Several accomplishments of this research include: (1) A new lidar technique for detection and measurement of concentrations of atmospheric species is demonstrated that uses a low-power supercontinuum source. (2) A new multi-wavelength algorithm, which demonstrates excellent performance, is applied to processing spectroscopic data collected by a longpath supercontinuum laser absorption instrument. (3) A simulation program for topographical scattering of a scanning DAS system is developed, and it is validated with aircraft data from the ITT Industries ANGEL (Airborne Natural Gas Emission Lidar) 3-lambda lidar system. (4) An error analysis procedure for DAS is developed, and is applied to measurements and simulations for an airborne platform. (5) A method for filter selection is developed and tested for use with an infrared imager that optimizes the detection for various hydrocarbons that absorb in the midwave infrared. (6) The development of a Fourier analysis algorithm is described that allows a user to rapidly separate hydrocarbon plumes from the background features in the field of view of an imaging system.
NASA Astrophysics Data System (ADS)
Taori, Alok; Raghunath, Karnam; Jayaraman, Achuthan
We use combination of simultaneous measurements made with Rayleigh lidar and O2 airglow monitoring to improve lidar investigation capability to cover a higher altitude range. We feed instantaneous O2 airglow temperatures instead the model values at the top altitude for subsequent integration method of temperature retrieval using Rayleigh lidar back scattered signals. Using this method, errors in the lidar temperature estimates converges at higher altitudes indicating better altitude coverage compared to regular methods where model temperatures are used instead of real-time measurements. This improvement enables the measurements of short period waves at upper mesospheric altitudes (~90 km). With two case studies, we show that above 60 km the few short period wave amplitude drastically increases while, some of the short period wave show either damping or saturation. We claim that by using such combined measurements, a significant and cost effective progress can be made in the understanding of short period wave processes which are important for the coupling across the different atmospheric regions.
Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements
NASA Technical Reports Server (NTRS)
Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong
2013-01-01
Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.
ATM Coastal Topography - Louisiana, 2001: UTM Zone 16 (Part 2 of 2)
Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, Asbury H.; Klipp, Emily S.; Wright, C. Wayne
2009-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 16, from Grand Isle to the Chandeleur Islands, acquired September 7 and 9, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.
ATM Coastal Topography-Louisiana, 2001: UTM Zone 15 (Part 1 of 2)
Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne
2010-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 15, from Isles Dernieres to Grand Isle, acquired September 7 and 10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.
ATM Coastal Topography-Texas, 2001: UTM Zone 14
Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne
2009-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 14, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.
ATM Coastal Topography-Texas, 2001: UTM Zone 15
Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne
2009-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 15, from Matagorda Peninsula to Galveston Island, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.
ATM Coastal Topography-Florida 2001: Western Panhandle
Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne
2009-01-01
These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the western Florida panhandle coastline, acquired October 2-4 and 7-10, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.
ATM Coastal Topography-Mississippi, 2001
Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne
2009-01-01
These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Mississippi coastline, from Lakeshore to Petit Bois Island, acquired September 9-10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.
Categorisation of full waveform data provided by laser scanning devices
NASA Astrophysics Data System (ADS)
Ullrich, Andreas; Pfennigbauer, Martin
2011-11-01
In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.
Estimation of terracing characteristics from airborne laser scanning data
NASA Astrophysics Data System (ADS)
Kokalj, Žiga
2015-04-01
Agricultural terraces are a fundamental morphological form of the Slovenian landscape. They are present in all of its diverse geographical regions, from Mediterranean and Dinaric hills and plateaus, Alpine mountains and plains, to Pannonian hills. New systematic research based on mapping aerial orthophotos and historical maps revealed previously unrecorded distribution and extent of terracing. However, the extensive overgrowing of the Slovenian countryside in the past century, when forest cover has grown from 40% to more than 60%, hid many of the terraces under a thick forest canopy. This is especially true for the higher and more remote areas where unfavourable natural conditions have coupled with depopulation processes. In such conditions, the only reasonable technique to observe cultural terraces and other remains of past human activities over large areas is airborne laser scanning. With the country-wide airborne lidar data becoming available, many new possibilities for discovery as well as quantitative analyses are becoming available. We explored manual and semiautomatic approaches to obtain terracing characteristics around representative villages of diverse landscape types. Individual terraces can be described with several attributes, such as riser slope gradient, riser height, tread area, length and width, ratio of length and width, altitude, location of the terrace in the thermal band, distance to the settlement, number and type of trees, distance between trees, and number of vineyard rows. Such characteristics can be derived manually, which can be painstakingly slow, but with relative precisions reaching the order of centimetres and decimetres, or semiautomatically, which is much faster, but with worse precision levels, mainly due to various outliers and errors in processing. The success of attribute derivation is highly dependent on raw lidar data acquisition parameters and processing. Manual interpretation has a distinct advantage of the possibility to explore and manipulate the raw data, i.e. the lidar point cloud, where relevant features that could be removed in the filtering process can still be traced and their exact extents discernible. However, this is only possible for specific and very detailed analyses, while much more of the work has to be done with already processed raster elevation data. Processing has to be tailored specifically with terracing in mind, otherwise typical characteristics, such as riser slope gradient and thread edges can be distorted. We also investigated the role different elevation model visualizations have on the manual interpretation of terraced landscapes and which visualizations can benefit semiautomatic processing.
NASA Astrophysics Data System (ADS)
Hirsikko, Anne; O'Connor, Ewan J.; Wood, Curtis R.; Vakkari, Ville
2013-04-01
Aerosol particle and trace gas atmospheric content is controlled by natural and anthropological emissions. However, further dispersion in the atmosphere is driven by wind and dynamic mixing. Atmospheric surface and boundary layer dynamics have direct and indirect effects on weather, air quality and processes affecting climate (e.g. gas exchange between ecosystem and atmosphere). In addition to the amount of solar energy and prevailing meteorological condition, the surface topography has a strong influence on the close to surface wind field and turbulence, particularly in urban areas (e.g. Barlow and Coceal, 2009). In order to characterise the effect of forest, urban and coastal surfaces on boundary layer wind and mixing, we have utilised the Finnish Doppler lidar network (Hirsikko et al., 2013). The network consists of five 1.5 μm Doppler lidars (HALO Photonics, Pearson et al., 2009), of which four are capable of full hemispheric scanning and are located at Helsinki (60.12°N, 25.58°E, 45 m asl.), Utö island (59.47°N, 21.23°E, 8 m asl.), SMEAR II at Hyytiälä (61.50°N, 24.17°E, 181 m asl.) and Kuopio (62.44°N, 27.32°E, 190 m asl.). The fifth lidar at Sodankylä (67.37°N, 26.63°E, 171 m asl.) is a new model designed for the Arctic environment with no external moving parts, but still retains limited scan capability. Investigation of boundary layer wind and mixing condition can now be extended beyond vertical profiles of horizontal wind, and dissipation rate of turbulent kinetic energy (O'Connor et al., 2010) throughout the boundary layer. We have applied custom designed scanning routines for 3D-observation of the wind fields and simultaneous aerosol particle distribution continuously for over one year at Helsinki and Utö, and began similar scanning routines at Kuopio and Hyytiälä in spring 2013. In this long term project, our aims are to 1) characterise the effect of the land-sea interface and the urban environment on the wind and its turbulent nature near the surface (< 200 m above the ground) observed at our four measurement sites, 2) characterise aerosol particle spatial and temporal distribution, and 3) deploy obtained results in air quality monitoring purpose and weather models. Here, we focus on wind field characterisation. The effect of sea, land and certain buildings were clear and evident in our wind data. The results compare favourably with in-situ point observations available indicating the applicability of the 3D-measurement routines and subsequent data analysis. Acknowledgements This research was supported by funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant 262254, and by the Maj and Tor Nessling foundation (Dispersion of air pollution in the boundary layer - new approach with scanning Doppler lidars). References Barlow J. and Coceal, O.: A review of urban roughness sublayer turbulence, Met Office Tech. Rep., Exeter, p. 68, 2009. Hirsikko, A., et al.: Observing aerosol particles, clouds and boundary layer wind: a new remote sensing network in Finland, in preparation for Atmos. Meas. Tech., 2013. O'Connor, E.J., Illingworth, A.J., Brooks, I.M., Westbrook, C.D., Hogan, R.J., Davies, F. and Brooks, B.J.: A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements, J. Atmos. Ocean. Technol., 27, 1652-1664, 2010. Pearson, G., Davies, F., and Collier, C.: An Analysis of the Performance of the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer, J. Atmos. Ocean. Tech., 26, 240-250, 2009.
NASA Astrophysics Data System (ADS)
Ahmed, S. A.; Hassebo, Y. Y.; Gross, B.; Oo, M.; Moshary, F.
2006-09-01
We examine the potential, range of application, and limiting factors of a polarization selection technique, recently devised by us, which takes advantage of naturally occurring polarization properties of scattered sky light to minimize the detected sky background signal and which can be used in conjunction with linearly polarized elastic backscatter lidars to maximize lidar receiver SNR. In this approach, a polarization selective lidar receiver is aligned to minimize detected skylight, while the polarization of the transmitted lidar signal is rotated to maintain maximum lidar backscatter signal throughput to the receiver detector, consequently maximizing detected signal to noise ratio. Results presented include lidar elastic backscatter measurements, at 532 nm which show as much as a factor of √10 improvement in signal-to-noise ratio over conventional un-polarized schemes. For vertically pointing lidars, the largest improvements are limited to symmetric early morning and late afternoon hours. For non-vertical scanning lidars, significant improvements are achievable over much more extended time periods, depending on the specific angle between the lidar and solar axes. A theoretical model that simulates the background skylight within the single scattering approximation showed good agreement with measured SNR improvement factors. Diurnally asymmetric improvement factors, sometimes observed, are explained by measured increases in PWV and subsequent modification of aerosol optical depth by dehydration from morning to afternoon. Finally, since the polarization axis follows the solar azimuth angle even for high aerosol loading, as demonstrated using radiative transfer simulations, it is possible to conceive automation of the technique. In addition, it is shown that while multiple scattering reduces the SNR improvement, the orientation of the minimum noise state remains the same.
NASA Technical Reports Server (NTRS)
Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.
2000-01-01
We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.
Analysis of measurements for solid state laser remote lidar system
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1995-01-01
The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.
Tracking aerosol plumes: lidar, modeling, and in situ measurement
NASA Astrophysics Data System (ADS)
Calhoun, Ron J.; Heap, Robert; Sommer, Jeffrey; Princevac, Marko; Peccia, Jordan; Fernando, H.
2004-09-01
The authors report on recent progress of on-going research at Arizona State University for tracking aerosol plumes using remote sensing and modeling approaches. ASU participated in a large field experiment, Joint Urban 2003, focused on urban and suburban flows and dispersion phenomena which took place in Oklahoma City during summer 2003. A variety of instruments were deployed, including two Doppler-lidars. ASU deployed one lidar and the Army Research deployed the other. Close communication and collaboration has produced datasets which will be available for dual Doppler analysis. The lidars were situated in a way to provide insight into dynamical flow structures caused by the urban core. Complementary scanning by the two lidars during the July 4 firework display in Oklahoma City demonstrated that smoke plumes could be tracked through the atmosphere above the urban area. Horizontal advection and dispersion of the smoke plumes were tracked on two horizontal planes by the ASU lidar and in two vertical planes with a similar lidar operated by the Army Research Laboratory. A number of plume dispersion modeling systems are being used at ASU for the modeling of plumes in catastrophic release scenarios. Progress using feature tracking techniques and data fusion approaches is presented for utilizing single and dual radial velocity fields from coherent Doppler lidar to improve dispersion modeling. The possibility of producing sensor/computational tools for civil and military defense applications appears worth further investigation. An experiment attempting to characterize bioaerosol plumes (using both lidar and in situ biological measurements) associated with the application of biosolids on agricultural fields is in progress at the time of writing.
Automatic drawing for traffic marking with MMS LIDAR intensity
NASA Astrophysics Data System (ADS)
Takahashi, G.; Takeda, H.; Shimano, Y.
2014-05-01
Upgrading the database of CYBER JAPAN has been strategically promoted because the "Basic Act on Promotion of Utilization of Geographical Information", was enacted in May 2007. In particular, there is a high demand for road information that comprises a framework in this database. Therefore, road inventory mapping work has to be accurate and eliminate variation caused by individual human operators. Further, the large number of traffic markings that are periodically maintained and possibly changed require an efficient method for updating spatial data. Currently, we apply manual photogrammetry drawing for mapping traffic markings. However, this method is not sufficiently efficient in terms of the required productivity, and data variation can arise from individual operators. In contrast, Mobile Mapping Systems (MMS) and high-density Laser Imaging Detection and Ranging (LIDAR) scanners are rapidly gaining popularity. The aim in this study is to build an efficient method for automatically drawing traffic markings using MMS LIDAR data. The key idea in this method is extracting lines using a Hough transform strategically focused on changes in local reflection intensity along scan lines. However, also note that this method processes every traffic marking. In this paper, we discuss a highly accurate and non-human-operator-dependent method that applies the following steps: (1) Binarizing LIDAR points by intensity and extracting higher intensity points; (2) Generating a Triangulated Irregular Network (TIN) from higher intensity points; (3) Deleting arcs by length and generating outline polygons on the TIN; (4) Generating buffers from the outline polygons; (5) Extracting points from the buffers using the original LIDAR points; (6) Extracting local-intensity-changing points along scan lines using the extracted points; (7) Extracting lines from intensity-changing points through a Hough transform; and (8) Connecting lines to generate automated traffic marking mapping data.
Mixed layer depths via Doppler lidar during low-level jet events
NASA Astrophysics Data System (ADS)
Carroll, Brian; Demoz, Belay; Bonin, Timothy; Delgado, Ruben
2018-04-01
A low-level jet (LLJ) is a prominent wind speed peak in the lower troposphere. Nocturnal LLJs have been shown to transport and mix atmospheric constituents from the residual layer down to the surface, breaching quiescent nocturnal conditions due to high wind shear. A new fuzzy logic algorithm combining turbulence and aerosol information from Doppler lidar scans can resolve the strength and depth of this mixing below the jet. Conclusions will be drawn about LLJ relations to turbulence and mixing.
University of Wisconsin Cirrus Remote Sensing Pilot Experiment
NASA Technical Reports Server (NTRS)
Ackerman, Steven A.; Eloranta, Ed W.; Grund, Chris J.; Knuteson, Robert O.; Revercomb, Henry E.; Smith, William L.; Wylie, Donald P.
1993-01-01
During the period of 26 October 1989 through 6 December 1989 a unique complement of measurements was made at the University of Wisconsin-Madison to study the radiative properties of cirrus clouds. Simultaneous observations were obtained from a scanning lidar, two interferometers, a high spectral resolution lidar, geostationary and polar orbiting satellites, radiosonde launches, and a whole-sky imager. This paper describes the experiment, the instruments deployed, and, as an example, the data collected during one day of the experiment.
2012-06-30
laser wave height ( lidar ) measurement system was deployed from a boom connected between the bows of the R/V Kilo Moana’s twin hulls [Zappa et al...Robbins et al., 2006], and a surfactant skimmer called the Lil KM (Figure 1). Also, a small aircraft equipped with lidar instrumentation made...c) R/P FLIP starboard boom during the Hawaii Exper- iment in September 2009. The air-sea flux package, orthogonal scanning laser altimeters
Coastal Applications of the Canopy Biomass Lidar (CBL)
NASA Astrophysics Data System (ADS)
Paynter, I.; Saenz, E.; Peri, F.; Schaaf, C.; Wang, Z.; Erb, A.; Yang, Y.; Rouhani, S.; Liu, Y.; Yang, X.; Chen, R. F.; Oktay, S.; Gontz, A. M.; Douglas, E. M.; Kim, J.; Sun, Q.; Strahler, A. H.; Li, Z.; van Aardt, J. A.; Kelbe, D.; Romanczyk, P.; Cawse-Nicholson, K.
2013-12-01
Airborne discrete and full waveform lidars have increasingly been utilized to augment multispectral and hyperspectral imaging of coastal ecosystems. While these data provide important landscape assessments of the shore and nearshore environment, they often lack the frequency that is really needed to monitor complex vegetative systems such as salt marshes and mangroves and provide rapid evaluations in the aftermath of severe storms. One solution is to augment the sparse airborne and satellite acquisitions with terrestrial laser scanning (TLS) information. However, most institutions with fine resolution discrete or full waveform TLS instruments are unwilling to risk these expensive (and often heavy) lidar in marine or estuarine environments. The Canopy Biomass Lidar (CBL) is an inexpensive, highly portable, fast-scanning, time-of-flight, TLS instrument, originally conceived by the Katholieke Universiteit Leuven (KUL) and refined by the Rochester Institute of Technology (RIT). Two new CBLs, constructed by the University of Massachusetts Boston (UMB), have been successfully deployed in deciduous and conifer forests at Long Term Ecological Research (LTER) and National Ecological Observatory Network (NEON) sites in Massachusetts (Harvard Forest) and California (Sierra National Forest), and in eucalypt forests at long-term and Terrestrial Ecosystem Research Network (TERN) sites in Queensland, Australia. Both the UMB and RIT CBLs have also been deployed in savanna systems at the San Joaquin Rangeland (and NEON site) in California. The UMB CBLs are now being deployed in salt marsh systems in Massachusetts with plans underway to deploy them in mangrove forests later in the year. In particular, they are being used to characterize the water facing edge of saltmarsh at UMB's Nantucket Island field station and remnant salt marshes on the highly urbanized Neponset estuary draining into Boston Harbor. While CBL's 905nm nearIR wavelength is of little use in nearshore inundated systems (such as eel grass and kelp), it is excellent for characterizing 3D foliage structure via multiple scan point clouds. The system is light and the scanning is rapid enough (30seconds for a full hemispherical scan) to be deployed manually or in small watercraft. The portability also means that it can be used frequently to monitor vegetation dynamics throughout the growing season and assess marsh damage and erosion after severe storms. While airborne lidar and hyperspectral data and high resolution satellite imagery (and indeed even the more frequently available coarser resolution multispectral satellite imagery from the newly launched Landsat 8) will provide the most expansive views of such environments, tools such as the CBL can provide important ancillary information to augment the remote sensing data and provide rapid and fine scale shore level details to improve modeling and monitoring of these coastal vegetation ecosystems.