Comparative study of image contrast in scanning electron microscope and helium ion microscope.
O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C
2017-12-01
Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Molina-Mendoza, Aday J; Rodrigo, José G; Island, Joshua; Burzuri, Enrique; Rubio-Bollinger, Gabino; van der Zant, Herre S J; Agraït, Nicolás
2014-02-01
The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.
Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří
2016-05-01
This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scanning-electron-microscope used in real-time study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.
Scanning electron microscope fine tuning using four-bar piezoelectric actuated mechanism
NASA Astrophysics Data System (ADS)
Hatamleh, Khaled S.; Khasawneh, Qais A.; Al-Ghasem, Adnan; Jaradat, Mohammad A.; Sawaqed, Laith; Al-Shabi, Mohammad
2018-01-01
Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.
Smart align -- A new tool for robust non-rigid registration of scanning microscope data
Jones, Lewys; Yang, Hao; Pennycook, Timothy J.; ...
2015-07-10
Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the carefulmore » alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.« less
Smart align -- A new tool for robust non-rigid registration of scanning microscope data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Lewys; Yang, Hao; Pennycook, Timothy J.
Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the carefulmore » alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.« less
Parker, I; Callamaras, N; Wier, W G
1997-06-01
We describe the construction of a high-resolution confocal laser-scanning microscope, and illustrate its use for studying elementary Ca2+ signalling events in cells. An avalanche photodiode module and simple optical path provide a high efficiency system for detection of fluorescence signals, allowing use of a small confocal aperture giving near diffraction-limited spatial resolution (< 300 nm lateral and < 400 nm axial). When operated in line-scan mode, the maximum temporal resolution is 1 ms, and the associated computer software allows complete flexibility to record line-scans continuously for long (minutes) periods or to obtain any desired pixel resolution in x-y scans. An independent UV irradiation system permits simultaneous photolysis of caged compounds over either a uniform, wide field (arc lamp source) or at a tightly focussed spot (frequency-tripled Nd:YAG laser). The microscope thus provides a versatile tool for optical studies of dynamic cellular processes, as well as excellent resolution for morphological studies. The confocal scanner can be added to virtually any inverted microscope for a component cost that is only a small fraction of that of comparable commercial instruments, yet offers better performance and greater versatility.
Scanning Tunneling Microscope For Use In Vacuum
NASA Technical Reports Server (NTRS)
Abel, Phillip B.
1993-01-01
Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.
A Student-Built Scanning Tunneling Microscope
ERIC Educational Resources Information Center
Ekkens, Tom
2015-01-01
Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-06-29
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2009-11-10
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2007-12-11
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-07-13
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2009-10-27
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
ScanImage: flexible software for operating laser scanning microscopes.
Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel
2003-05-17
Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.
Method for nanoscale spatial registration of scanning probes with substrates and surfaces
NASA Technical Reports Server (NTRS)
Wade, Lawrence A. (Inventor)
2010-01-01
Embodiments in accordance with the present invention relate to methods and apparatuses for aligning a scanning probe used to pattern a substrate, by comparing the position of the probe to a reference location or spot on the substrate. A first light beam is focused on a surface of the substrate as a spatial reference point. A second light beam then illuminates the scanning probe being used for patterning. An optical microscope images both the focused light beam, and a diffraction pattern, shadow, or light backscattered by the illuminated scanning probe tip of a scanning probe microscope (SPM), which is typically the tip of the scanning probe on an atomic force microscope (AFM). Alignment of the scanning probe tip relative to the mark is then determined by visual observation of the microscope image. This alignment process may be repeated to allow for modification or changing of the scanning probe microscope tip.
Influence of mechanical noise inside a scanning electron microscope.
de Faria, Marcelo Gaudenzi; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe
2015-04-01
The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.
The Scanning Optical Microscope: An Overview
NASA Astrophysics Data System (ADS)
Kino, G. S.; Corte, T. R.; Xiao, G. Q.
1988-07-01
In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in semiconductors, and differences in material properties associated with either acoustic or thermal effects.4,5 Thus, the range of scanning optical microscopy applications is very large. In the main, the most important applications have been to semiconductors and to biology.
NASA Technical Reports Server (NTRS)
Ware, Jacqueline; Hammond, Ernest C., Jr.
1989-01-01
The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.
Design and performance of a beetle-type double-tip scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard
2006-09-15
A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip.
Fast scanning mode and its realization in a scanning acoustic microscope
NASA Astrophysics Data System (ADS)
Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian
2012-03-01
The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.
Influence of mechanical noise inside a scanning electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudenzi de Faria, Marcelo; Haddab, Yassine, E-mail: yassine.haddab@femto-st.fr; Le Gorrec, Yann
The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to themore » identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.« less
Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.
Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana
2010-07-01
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.
1990-01-01
The Microvax 2 computer, the basic software in VMS, and the Mitsubishi High Speed Disk were received and installed. The digital scanning tunneling microscope is fully installed and operational. A new technique was developed for pseudocolor analysis of the line plot images of a scanning tunneling microscope. Computer studies and mathematical modeling of the empirical data associated with many of the film calibration studies were presented. A gas can follow-up experiment which will be launched in September, on the Space Shuttle STS-50, was prepared and loaded. Papers were presented on the structure of the human hair strand using scanning electron microscopy and x ray analysis and updated research on the annual rings produced by the surf clam of the ocean estuaries of Maryland. Scanning electron microscopic work was conducted by the research team for the study of the Mossbauer and Magnetic Susceptibility Studies on NmNi(4.25)Fe(.85) and its Hydride.
NASA Astrophysics Data System (ADS)
Helm, P. Johannes; Reppen, Trond; Heggelund, Paul
2009-02-01
Multi Photon Laser Scanning Microscopy (MPLSM) appears today as one of the most powerful experimental tools in cellular neurophysiology, notably in studies of the functional dynamics of signal processing in single neurons. Simultaneous recording of fluorescence signals at high spatial and temporal resolution and electric signals by means of multi electrode patch clamp techniques have provided new paths for the systematic investigation of neuronal mechanisms. In particular, this approach has opened for direct studies of dendritic signal processing in neurons. We report about a setup optimized for simultaneous electrophysiological multi electrode patch clamp and multi photon laser scanning fluorescence microscopic experiments on brain slices. The microscopic system is based on a modified commercially available confocal scanning laser microscope (CLSM). From a technical and operational point of view, two developments are important: Firstly, in order to reduce the workload for the experimentalist, who in general is forced to concentrate on controlling the electrophysiological parameters during the recordings, a system of shutters has been installed together with dedicated electronic modules protecting the photo detectors against destructive light levels caused by erroneous opening or closing of microscopic light paths by the experimentalist. Secondly, the standard detection unit has been improved by installing the photomultiplier tubes (PMT) in a Peltier cooled thermal box shielding the detector from both room temperature and distortions caused by external electromagnetic fields. The electrophysiological system is based on an industrial standard multi patch clamp unit ergonomically arranged around the microscope stage. The electrophysiological and scanning processes can be time coordinated by standard trigger electronics.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao
2003-01-01
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong; Gao, Chen
2001-01-01
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
Ionic channels in Langmuir-Blodgett films imaged by a scanning tunneling microscope.
Kolomytkin, O V; Golubok, A O; Davydov, D N; Timofeev, V A; Vinogradova, S A; Tipisev SYa
1991-01-01
The molecular structure of channels formed by gramicidin A in a lipid membrane was imaged by a scanning tunneling microscope operating in air. The mono- and bimolecular films of lipid with gramicidin A were deposited onto a highly oriented pyrolitic graphite substrate by the Langmuir-Blodgett technique. It has been shown that under high concentration gramicidin A molecules can form in lipid films a quasi-regular, densely packed structure. Single gramicidin A molecules were imaged for the first time as well. The cavity of 0.4 +/- 0.05 nm in halfwidth was found on the scanning tunneling microscopy image of the gramicidin A molecule. The results of direct observation obtained by means of scanning tunneling microscope are in good agreement with the known molecular model of gramicidin A. It was shown that gramicidin A molecules can exist in a lipid monolayer as individual molecules or combined into clusters. The results demonstrate that scanning tunneling microscope can be used for high spatial resolution study of ionic channel structure. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:1712239
Stemmer, A
1995-04-01
The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.
Boruah, B R; Neil, M A A
2009-01-01
We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.
Theory of a Quantum Scanning Microscope for Cold Atoms
NASA Astrophysics Data System (ADS)
Yang, D.; Laflamme, C.; Vasilyev, D. V.; Baranov, M. A.; Zoller, P.
2018-03-01
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
Theory of a Quantum Scanning Microscope for Cold Atoms.
Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P
2018-03-30
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
Creation of stable molecular junctions with a custom-designed scanning tunneling microscope.
Lee, Woochul; Reddy, Pramod
2011-12-02
The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (<1 s), impeding detailed studies of their charge transport characteristics. Here, we report a custom-designed scanning tunneling microscope that enables the creation of metal-single molecule-metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy-at the single-molecule level-on Au-hexanedithiol-Au, Au-octanedithiol-Au and Au-decanedithiol-Au junctions.
Purchase of a Laser Scanning Confocal Microscope at Xavier University of Louisiana
2016-05-04
SECURITY CLASSIFICATION OF: The purpose of this grant was to purchase a laser scanning confocal microscope to be used by multiple laboratories at...was being developed for undergraduate education. Over the course of the funding period, the microscope was purchased and installed, multiple training...Distribution Unlimited UU UU UU UU 04-05-2016 1-Feb-2015 31-Jan-2016 Final Report: Purchase of a Laser Scanning Confocal Microscope at Xavier
Development of Scanning Ultrafast Electron Microscope Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.
Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratoriesmore » based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.« less
Scanning force microscope for in situ nanofocused X-ray diffraction studies
Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.
2014-01-01
A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002
An interchangeable scanning Hall probe/scanning SQUID microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin
2014-08-15
We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a widemore » range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.« less
Experiments on terahertz 3D scanning microscopic imaging
NASA Astrophysics Data System (ADS)
Zhou, Yi; Li, Qi
2016-10-01
Compared with the visible light and infrared, terahertz (THz) radiation can penetrate nonpolar and nonmetallic materials. There are many studies on the THz coaxial transmission confocal microscopy currently. But few researches on the THz dual-axis reflective confocal microscopy were reported. In this paper, we utilized a dual-axis reflective confocal scanning microscope working at 2.52 THz. In contrast with the THz coaxial transmission confocal microscope, the microscope adopted in this paper can attain higher axial resolution at the expense of reduced lateral resolution, revealing more satisfying 3D imaging capability. Objects such as Chinese characters "Zhong-Hua" written in paper with a pencil and a combined sheet metal which has three layers were scanned. The experimental results indicate that the system can extract two Chinese characters "Zhong," "Hua" or three layers of the combined sheet metal. It can be predicted that the microscope can be applied to biology, medicine and other fields in the future due to its favorable 3D imaging capability.
Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.
Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C
2015-02-01
We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.
Excitation-scanning hyperspectral imaging microscope
Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.
2014-01-01
Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300 ms/wavelength band with excitation scanning versus 3 s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909
Excitation-scanning hyperspectral imaging microscope.
Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J
2014-04-01
Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300 ms/wavelength band with excitation scanning versus 3 s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.
NASA Astrophysics Data System (ADS)
Qiu, Yuchen; Wang, Xingwei; Chen, Xiaodong; Li, Yuhua; Liu, Hong; Li, Shibo; Zheng, Bin
2010-02-01
Visually searching for analyzable metaphase chromosome cells under microscopes is quite time-consuming and difficult. To improve detection efficiency, consistency, and diagnostic accuracy, an automated microscopic image scanning system was developed and tested to directly acquire digital images with sufficient spatial resolution for clinical diagnosis. A computer-aided detection (CAD) scheme was also developed and integrated into the image scanning system to search for and detect the regions of interest (ROI) that contain analyzable metaphase chromosome cells in the large volume of scanned images acquired from one specimen. Thus, the cytogeneticists only need to observe and interpret the limited number of ROIs. In this study, the high-resolution microscopic image scanning and CAD performance was investigated and evaluated using nine sets of images scanned from either bone marrow (three) or blood (six) specimens for diagnosis of leukemia. The automated CAD-selection results were compared with the visual selection. In the experiment, the cytogeneticists first visually searched for the analyzable metaphase chromosome cells from specimens under microscopes. The specimens were also automated scanned and followed by applying the CAD scheme to detect and save ROIs containing analyzable cells while deleting the others. The automated selected ROIs were then examined by a panel of three cytogeneticists. From the scanned images, CAD selected more analyzable cells than initially visual examinations of the cytogeneticists in both blood and bone marrow specimens. In general, CAD had higher performance in analyzing blood specimens. Even in three bone marrow specimens, CAD selected 50, 22, 9 ROIs, respectively. Except matching with the initially visual selection of 9, 7, and 5 analyzable cells in these three specimens, the cytogeneticists also selected 41, 15 and 4 new analyzable cells, which were missed in initially visual searching. This experiment showed the feasibility of applying this CAD-guided high-resolution microscopic image scanning system to prescreen and select ROIs that may contain analyzable metaphase chromosome cells. The success and the further improvement of this automated scanning system may have great impact on the future clinical practice in genetic laboratories to detect and diagnose diseases.
Compact, single-tube scanning tunneling microscope with thermoelectric cooling.
Jobbins, Matthew M; Agostino, Christopher J; Michel, Jolai D; Gans, Ashley R; Kandel, S Alex
2013-10-01
We have designed and built a scanning tunneling microscope with a compact inertial-approach mechanism that fits inside the piezoelectric scanner tube. Rigid construction allows the microscope to be operated without the use of external vibration isolators or acoustic enclosures. Thermoelectric cooling and a water-ice bath are used to increase temperature stability when scanning under ambient conditions.
The Scanning Optical Microscope.
ERIC Educational Resources Information Center
Sheppard, C. J. R.
1978-01-01
Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.
Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples
NASA Astrophysics Data System (ADS)
Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao
2018-04-01
Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.
Shi, Chun-Lin; Butenko, Melinka A
2018-01-01
Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.
NASA Astrophysics Data System (ADS)
Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.
2005-03-01
Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.
Qualitative and quantitative interpretation of SEM image using digital image processing.
Saladra, Dawid; Kopernik, Magdalena
2016-10-01
The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Correction of image drift and distortion in a scanning electron microscopy.
Jin, P; Li, X
2015-12-01
Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Using the scanning electron microscope on the production line to assure quality semiconductors
NASA Technical Reports Server (NTRS)
Adolphsen, J. W.; Anstead, R. J.
1972-01-01
The use of the scanning electron microscope to detect metallization defects introduced during batch processing of semiconductor devices is discussed. A method of determining metallization integrity was developed which culminates in a procurement specification using the scanning microscope on the production line as a quality control tool. Batch process control of the metallization operation is monitored early in the manufacturing cycle.
Internal scanning method as unique imaging method of optical vortex scanning microscope
NASA Astrophysics Data System (ADS)
Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz
2018-06-01
The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.
NASA Astrophysics Data System (ADS)
Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing
2017-06-01
In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.
Numerical restoration of surface vortices in Nb films measured by a scanning SQUID microscope
NASA Astrophysics Data System (ADS)
Ito, Atsuki; Thanh Huy, Ho; Dang, Vu The; Miyoshi, Hiroki; Hayashi, Masahiko; Ishida, Takekazu
2017-07-01
In the present work, we investigated a vortex profile appeared on a pure Nb film (500 nm in thickness, 10 mm x 10 mm) by using a scanning SQUID microscope. We found that the local magnetic distribution thus observed is broadened compared to a true vortex profile in the superconducting film. We therefore applied the numerical method to improve a spatial resolution of the scanning SQUID microscope. The method is based on the inverse Biot-Savart law and the Fourier transformation to recover a real-space image. We found that the numerical analyses give a smaller vortex than the raw vortex profile observed by the scanning microscope.
NASA Astrophysics Data System (ADS)
Wu, Jheng-Syong; Chung, Yung-Chin; Chien, Jun-Jei; Chou, Chien
2018-01-01
A two-frequency laser scanning confocal fluorescence microscope (TF-LSCFM) based on intensity modulated fluorescence signal detection was proposed. The specimen-induced spherical aberration and scattering effect were suppressed intrinsically, and high image contrast was presented due to heterodyne interference. An improved axial point spread function in a TF-LSCFM compared with a conventional laser scanning confocal fluorescence microscope was demonstrated and discussed.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-03-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.
Zhao, Zhenli; Luo, Zhenlin; Liu, Chihui; Wu, Wenbin; Gao, Chen; Lu, Yalin
2008-06-01
This article describes a new approach to quantitatively measure the piezoelectric coefficients of thin films at the microscopic level using a scanning evanescent microwave microscope. This technique can resolve 10 pm deformation caused by the piezoelectric effect and has the advantages of high scanning speed, large scanning area, submicron spatial resolution, and a simultaneous accessibility to many other related properties. Results from the test measurements on the longitudinal piezoelectric coefficient of PZT thin film agree well with those from other techniques listed in literatures.
Soft control of scanning probe microscope with high flexibility.
Liu, Zhenghui; Guo, Yuzheng; Zhang, Zhaohui; Zhu, Xing
2007-01-01
Most commercial scanning probe microscopes have multiple embedded digital microprocessors and utilize complex software for system control, which is not easily obtained or modified by researchers wishing to perform novel and special applications. In this paper, we present a simple and flexible control solution that just depends on software running on a single-processor personal computer with real-time Linux operating system to carry out all the control tasks including negative feedback, tip moving, data processing and user interface. In this way, we fully exploit the potential of a personal computer in calculating and programming, enabling us to manipulate the scanning probe as required without any special digital control circuits and related technical know-how. This solution has been successfully applied to a homemade ultrahigh vacuum scanning tunneling microscope and a multiprobe scanning tunneling microscope.
Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes
NASA Astrophysics Data System (ADS)
Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.
2017-11-01
A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.
A Mythical History of the Scanning Probe Microscope - How it Could Have Been
NASA Astrophysics Data System (ADS)
Elings, Virgil
2007-03-01
The path from the ground breaking Topografiner by Young et. al. in 1972 to the current Atomic Force Microscopes was tortuous, to say the least. Now as an entrepreneur, they say that you should study the problem, work out a plan, and then execute the plan. Since this rarely works for me in real life, let's follow the mythical history of Phil the physics student whose simple approach to scanning probe microscopes during his summer job may explain life better than real life did. Comparisons between Phil's experience and real life will be made along the way to show how random real life was compared to Phil's straightforward approach. We will follow Phil as he goes from the Scanning Touching Microscope (STM) to the All Fancy Microscope (AFM) and ends up with a current scanning probe microscope. The ``lesson'' in this story is that when you are doing something new, you learn so much while you are doing it that what you thought at the beginning (the plan) is rarely the best way to go. It is more important, I believe, for entrepreneurs to explore possibilities and keep their eyes open along the way rather than pretend the path they are on is the right one. Phil is mythical because he always knew where he was headed and it was always the right direction. So how does Phil's story end? I'm working on it and will tell you at the March Meeting.
Shigetani, Yoshimi; Okamoto, Akira; Abu-Bakr, Neamat; Iwaku, Masaaki
2002-03-01
The purpose of this study was to observe and measure the morphological changes that occur in the hard tissue after the application of Er:YAG laser. Another objective was to evaluate and compare the duration of application of both the laser apparatus and a conventional cutting device. In this study, sound and newly extracted carious tissues were used. The morphological changes in hard tooth structures produced by Er:YAG laser irradiation were examined by using a laser scanning microscope. Results showed that appropriate laser irradiation was 100 mJ/pulse for dentin, and 200 mJ/pulse for enamel. Also, the laser scanning microscope images were less damaged than the SEM images due to pretreatment of the specimens. The time taken to remove carious enamel by laser irradiation was slightly longer than the compared rotary cutting device; however, no differences between the two methods were observed in case of carious dentin removal.
Sabel, Nina; Klingberg, Gunilla; Dietz, Wolfram; Nietzsche, Sandor; Norén, Jörgen G
2010-01-01
Enamel hypoplasia is a developmental disturbance during enamel formation, defined as a macroscopic defect in the enamel, with a reduction of the enamel thickness with rounded, smooth borders. Information on the microstructural level is still limited, therefore further studies are of importance to better understand the mechanisms behind enamel hypoplasia. To study enamel hypoplasia in primary teeth by means of polarized light microscopy and scanning electron microscopy. Nineteen primary teeth with enamel hypoplasia were examined in a polarized light microscope and in a scanning electron microscope. The cervical and incisal borders of the enamel hypoplasia had a rounded appearance, as the prisms in the rounded cervical area of the hypoplasia were bent. The rounded borders had a normal surface structure whereas the base of the defects appeared rough and porous. Morphological findings in this study indicate that the aetiological factor has a short duration and affects only certain ameloblasts. The bottom of the enamel hypoplasia is porous and constitutes possible pathways for bacteria into the dentin.
Automatic analysis for neuron by confocal laser scanning microscope
NASA Astrophysics Data System (ADS)
Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko
2005-12-01
The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.
Micropaleontological studies of lunar and terrestrial precambrian materials
NASA Technical Reports Server (NTRS)
Schope, J. W.
1974-01-01
Optical microscopic and scanning electron microscopic studies of rock chips and dust returned by Apollo 14, 15, 16, and 17 are analyzed along with optical microscopic studies of petrographic thin sections of breccias and basalts returned by Apollo 14, 15, and 16. Results show no evidence of modern or fossil lunar organisms. The lunar surface is now, and apparently has been throughout the geologic past, inimical to known biologic systems.
Moore, Jayma A; Payne, Scott A
2012-01-01
Fungi often are found within plant tissues where they cannot be visualized with the scanning electron microscope (SEM). We present a simple way to reveal cell interiors while avoiding many common causes of artifact. Freeze-fracture of leaf tissue using liquid nitrogen during the 100% ethanol step of the dehydration process just before critical point drying is useful in exposing intracellular fungi to the SEM.
The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities
ERIC Educational Resources Information Center
Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex
2014-01-01
A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…
Thermal radiation scanning tunnelling microscopy
NASA Astrophysics Data System (ADS)
de Wilde, Yannick; Formanek, Florian; Carminati, Rémi; Gralak, Boris; Lemoine, Paul-Arthur; Joulain, Karl; Mulet, Jean-Philippe; Chen, Yong; Greffet, Jean-Jacques
2006-12-01
In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical `stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a `thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.
Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M
1976-10-01
Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.
Gwyscan: a library to support non-equidistant scanning probe microscope measurements
NASA Astrophysics Data System (ADS)
Klapetek, Petr; Yacoot, Andrew; Grolich, Petr; Valtr, Miroslav; Nečas, David
2017-03-01
We present a software library and related methodology for enabling easy integration of adaptive step (non-equidistant) scanning techniques into metrological scanning probe microscopes or scanning probe microscopes where individual x, y position data are recorded during measurements. Scanning with adaptive steps can reduce the amount of data collected in SPM measurements thereby leading to faster data acquisition, a smaller amount of data collection required for a specific analytical task and less sensitivity to mechanical and thermal drift. Implementation of adaptive scanning routines into a custom built microscope is not normally an easy task: regular data are much easier to handle for previewing (e.g. levelling) and storage. We present an environment to make implementation of adaptive scanning easier for an instrument developer, specifically taking into account data acquisition approaches that are used in high accuracy microscopes as those developed by National Metrology Institutes. This includes a library with algorithms written in C and LabVIEW for handling data storage, regular mesh preview generation and planning the scan path on basis of different assumptions. A set of modules for Gwyddion open source software for handling these data and for their further analysis is presented. Using this combination of data acquisition and processing tools one can implement adaptive scanning in a relatively easy way into an instrument that was previously measuring on a regular grid. The performance of the presented approach is shown and general non-equidistant data processing steps are discussed.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-11-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.
A scanning electron microscope technique for studying the sclerites of Cichlidogyrus.
Fannes, Wouter; Vanhove, Maarten P M; Huyse, Tine; Paladini, Giuseppe
2015-05-01
The genus Cichlidogyrus (Monogenea: Ancyrocephalidae) includes more than 90 species, most of which are gill parasites of African cichlid fishes. Cichlidogyrus has been studied extensively in recent years, but scanning electron microscope (SEM) investigations of the isolated hard parts have not yet been undertaken. In this paper, we describe a method for isolating and scanning the sclerites of individual Cichlidogyrus worms. Twenty-year-old, formol-fixed specimens of Cichlidogyrus casuarinus were subjected to proteinase K digestion in order to release the sclerites from the surrounding soft tissues. SEM micrographs of the haptoral sclerites and the male copulatory organ are presented. The ability to digest formol-fixed specimens makes this method a useful tool for the study of historical museum collections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
A new apparatus for electron tomography in the scanning electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morandi, V., E-mail: morandi@bo.imm.cnr.it; Maccagnani, P.; Masini, L.
2015-06-23
The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as requiredmore » by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.« less
Scanning laser microscope for imaging nanostructured superconductors
NASA Astrophysics Data System (ADS)
Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen
2010-10-01
The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.
Pan, He; Zhang, Hailing; Lai, Junhui; Gu, Xiaoxin; Sun, Jianjun; Tang, Jing; Jin, Tao
2017-03-24
We describe herein a method for the simultaneous measurement of temperature and electrochemical signal with a new type of thermocouple microelectrode. The thermocouple microelectrode can be used not only as a thermometer but also as a scanning electrochemical microscope (SECM) tip in the reaction between tip-generated bromine and a heated Cu sample. The influence of temperature on the SECM imaging process and the related kinetic parameters have been studied, such as kinetic constant and activation energy.
Pan, He; Zhang, Hailing; Lai, Junhui; Gu, Xiaoxin; Sun, Jianjun; Tang, Jing; Jin, Tao
2017-01-01
We describe herein a method for the simultaneous measurement of temperature and electrochemical signal with a new type of thermocouple microelectrode. The thermocouple microelectrode can be used not only as a thermometer but also as a scanning electrochemical microscope (SECM) tip in the reaction between tip-generated bromine and a heated Cu sample. The influence of temperature on the SECM imaging process and the related kinetic parameters have been studied, such as kinetic constant and activation energy. PMID:28338002
A 25% tannic acid solution as a root canal irrigant cleanser: a scanning electron microscope study.
Bitter, N C
1989-03-01
A scanning electron microscope was used to evaluate the cleansing properties of a 25% tannic acid solution on the dentinal surface in the pulp chamber of endodontically prepared teeth. This was compared with the amorphous smear layer of the canal with the use of hydrogen peroxide and sodium hypochlorite solution as an irrigant. The tannic acid solution removed the smear layer more effectively than the regular cleansing agent.
Ultrastructural Study of Some Pollen Grains of Prairie Flowers
ERIC Educational Resources Information Center
Kozar, Frank
1973-01-01
Discusses the importance of the electron microscope, and in particular the scanning electron microscope, in studying the surface topography, sectional substructures, and patterns of development of pollen grains. The production, dispersal methods, and structure of pollen grains are described and illustrated with numerous electron micrographs. (JR)
Scanning tunnelling microscope for boron surface studies
NASA Astrophysics Data System (ADS)
Trenary, Michael
1990-10-01
The equipment purchased is to be used in an experimental study of the relationship between atomic structure and chemical reactivity for boron and carbon surfaces. This research is currently being supported by grant AFOSR-88-0111. A renewal proposal is currently pending with AFOSR to continue these studies. Carbon and boron are exceptionally stable, covalently bonded solids with highly unique crystal structures. The specific reactions to be studied are loosely related to the problems of oxidation and oxidation inhibition of carbon/carbon composites. The main experimental instrument to be used is a scanning tunneling microscope (STM) purchased under grant number AFSOR-89-0146. Other techniques to be used include Auger electron spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), low energy electron diffraction (LEED), temperature programmed desorption (TPD) and scanning tunneling microscopy (STM).
Development of an add-on kit for scanning confocal microscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Guo, Kaikai; Zheng, Guoan
2017-03-01
Scanning confocal microscopy is a standard choice for many fluorescence imaging applications in basic biomedical research. It is able to produce optically sectioned images and provide acquisition versatility to address many samples and application demands. However, scanning a focused point across the specimen limits the speed of image acquisition. As a result, scanning confocal microscope only works well with stationary samples. Researchers have performed parallel confocal scanning using digital-micromirror-device (DMD), which was used to project a scanning multi-point pattern across the sample. The DMD based parallel confocal systems increase the imaging speed while maintaining the optical sectioning ability. In this paper, we report the development of an add-on kit for high-speed and low-cost confocal microscopy. By adapting this add-on kit to an existing regular microscope, one can convert it into a confocal microscope without significant hardware modifications. Compared with current DMD-based implementations, the reported approach is able to recover multiple layers along the z axis simultaneously. It may find applications in wafer inspection and 3D metrology of semiconductor circuit. The dissemination of the proposed add-on kit under $1000 budget could also lead to new types of experimental designs for biological research labs, e.g., cytology analysis in cell culture experiments, genetic studies on multicellular organisms, pharmaceutical drug profiling, RNA interference studies, investigation of microbial communities in environmental systems, and etc.
Imaging properties and its improvements of scanning/imaging x-ray microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, Akihisa, E-mail: take@spring8.or.jp; Uesugi, Kentaro; Suzuki, Yoshio
A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with themore » linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination.« less
NASA Astrophysics Data System (ADS)
Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan
2017-10-01
We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.
Scanning Microscopes Using X Rays and Microchannels
NASA Technical Reports Server (NTRS)
Wang, Yu
2003-01-01
Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the image sensor consists predominantly of radiation that was launched along the longitudinal direction of the microchannels. Therefore, most of the radiation arriving at each pixel on the sensor must have traveled along a straight line from a corresponding location on the specimen. Thus, there is a one-to-one mapping from a point on a specimen to a pixel in the image sensor, so that the output of the image sensor contains image information equivalent to that from a microscope.
Image Analysis, Microscopic, and Spectrochemical Study of the PVC Dry Blending Process,
The dry blending process used in the production of electrical grade pvc formulations has been studies using a combination of image analysis , microscopic...by image analysis techniques. Optical and scanning electron microscopy were used to assess morphological differences. Spectrochemical techniques were used to indicate chemical changes.
Microcircuit testing and fabrication, using scanning electron microscopes
NASA Technical Reports Server (NTRS)
Nicolas, D. P.
1975-01-01
Scanning electron microscopes are used to determine both user-induced damages and manufacturing defects subtle enough to be missed by conventional light microscopy. Method offers greater depth of field and increased working distances.
NASA Astrophysics Data System (ADS)
Jesacher, Alexander; Ritsch-Marte, Monika; Piestun, Rafael
2015-08-01
Recently we introduced RESCH microscopy [1] - a scanning microscope that allows slightly refocusing the sample after the acquisition has been performed, solely by performing appropriate data post-processing. The microscope features a double-helix phase-engineered emission point spread function in combination with camera-based detection. Based on the principle of transverse resolution enhancement in Image Scanning Microscopy [2,3], we demonstrate similar resolution improvement in RESCH. Furthermore, we outline a pathway for how the collected 3D sample information can be used to construct sharper optical sections. [1] A. Jesacher, M. Ritsch-Marte and R. Piestun, accepted for Optica. [2] C.J.R. Sheppard, "Super-resolution in Confocal imaging," Optik, 80, 53-54 (1988). [3] C.B. Müller and J. Enderlein "Image Scanning Microscopy," Phys. Rev. Lett. 104, 198101 (2010).
A densitometric analysis of commercial 35mm films
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.; Ruffin, Christopher, III
1989-01-01
IIaO films have been subjected to various sensitometric tests. The have included thermal and aging effects and reciprocity failure studies. In order to compare the special IIaO film with popular brands of 35 mm films and their possible use in astrophotography, Agfa, Fuji and Kodak print and slide formats, as well as black and white and color formats, were subjected to sensitometric, as well as densitometric analysis. A scanning electron microscope was used to analyze grain structure size, and shape as a function of both speed and brand. Preliminary analysis of the grain structure using an ISI-SS40 scanning electron microscope indicates that the grain sizes for darker densities are much larger than the grain size for lighter densities. Researchers analyze the scanning electron microscope findings of the various grains versus densities as well as enhancement of the grains, using the IP-8500 Digital Image Processor.
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).
NASA Technical Reports Server (NTRS)
Gauthier, M. K.; Miller, E. L.; Shumka, A.
1980-01-01
Laser-Scanning System pinpoints imperfections in solar cells. Entire solar panels containing large numbers of cells can be scanned. Although technique is similar to use of scanning electron microscope (SEM) to locate microscopic imperfections, it differs in that large areas may be examined, including entire solar panels, and it is not necessary to remove cover glass or encapsulants.
Tewari, Sumit; Bastiaans, Koen M; Allan, Milan P; van Ruitenbeek, Jan M
2017-01-01
Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, procedures for controlling the atomic-scale shape of STM tips have not been rigorously justified. Here, we present a method for preparing tips in situ while ensuring the crystalline structure and a reproducibly prepared tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.
CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT
This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...
Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.
Wang, D; Meza, D; Wang, Y; Gao, L; Liu, J T C
2014-09-15
We have previously developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for high-frame-rate diagnostic imaging at shallow depths. Due to the loss of confocality along one dimension, the contrast (signal-to-background ratio) of a LS-DAC microscope is deteriorated compared to a point-scanned DAC microscope. However, by using a sCMOS camera for detection, a short oblique light-sheet is imaged at each scanned position. Therefore, by scanning the light sheet in only one dimension, a thin 3D volume is imaged. Both sequential two-dimensional deconvolution and three-dimensional deconvolution are performed on the thin image volume to improve the resolution and contrast of one en face confocal image section at the center of the volume, a technique we call sheet-scanned dual-axis confocal (SS-DAC) microscopy.
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas
1996-12-01
During prior studies it could be demonstrated that engaging a frequency double Alexandrite-laser allows a fast and strictly selective ablation of supra- and subgingival calculus. Furthermore, the removal of unstained microbial plaque was observed. First conclusions were drawn following light microscopic investigations on undecalcified sections of irradiated teeth. In the present study the cementum surface after irradiation with a frequency doubled Alexandrite-laser was observed by means of a scanning electron microscope. After irradiation sections of teeth were dried in alcohol and sputtered with gold. In comparison irradiated cementum surfaces of unerupted operatively removed wisdom teeth and tooth surfaces after the selective removal of calculus were investigated. A complete removal of calculus was observed as well as a remaining smooth surface of irradiated cementum.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope
EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D
2015-01-01
Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873
Al-Omiri, Mahmoud K; Sghaireen, Mohd G; Alzarea, Bader K; Lynch, Edward
2013-12-01
This study aimed to quantify tooth wear in upper anterior teeth using a new CAD-CAM Laser scanning machine, tool maker microscope and conventional tooth wear index. Fifty participants (25 males and 25 females, mean age = 25 ± 4 years) were assessed for incisal tooth wear of upper anterior teeth using Smith and Knight clinical tooth wear index (TWI) on two occasions, the study baseline and 1 year later. Stone dies for each tooth were prepared and scanned using the CAD-CAM Laser Cercon System. Scanned images were printed and examined under a toolmaker microscope to quantify tooth wear and then the dies were directly assessed under the microscope to measure tooth wear. The Wilcoxon Signed Ranks Test was used to analyze the data. TWI scores for incisal edges were 0-3 and were similar at both occasions. Score 4 was not detected. Wear values measured by directly assessing the dies under the toolmaker microscope (range = 113 - 150 μm, mean = 130 ± 20 μm) were significantly more than those measured from Cercon Digital Machine images (range=52-80 μm, mean = 68 ± 23 μm) and both showed significant differences between the two occasions. Wear progression in upper anterior teeth was effectively detected by directly measuring the dies or the images of dies under toolmaker microscope. Measuring the dies of worn dentition directly under tool maker microscope enabled detection of wear progression more accurately than measuring die images obtained with Cercon Digital Machine. Conventional method was the least sensitive for tooth wear quantification and was unable to identify wear progression in most cases. Copyright © 2013 Elsevier Ltd. All rights reserved.
Structured illumination 3D microscopy using adaptive lenses and multimode fibers
NASA Astrophysics Data System (ADS)
Czarske, Jürgen; Philipp, Katrin; Koukourakis, Nektarios
2017-06-01
Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.
NASA Astrophysics Data System (ADS)
Tyliszczak, T.; Hitchcock, P.; Kilcoyne, A. L. D.; Ade, H.; Hitchcock, A. P.; Fakra, S.; Steele, W. F.; Warwick, T.
2002-03-01
Two new scanning x-ray transmission microscopes are being built at beamline 5.3.2 and beamline 7.0 of the Advanced Light Source that have novel aspects in their control and acquisition systems. Both microscopes use multiaxis laser interferometry to improve the precision of pixel location during imaging and energy scans as well as to remove image distortions. Beam line 5.3.2 is a new beam line where the new microscope will be dedicated to studies of polymers in the 250-600 eV energy range. Since this is a bending magnet beam line with lower x-ray brightness than undulator beam lines, special attention is given to the design not only to minimize distortions and vibrations but also to optimize the controls and acquisition to improve data collection efficiency. 5.3.2 microscope control and acquisition is based on a PC computer running WINDOWS 2000. All mechanical stages are moved by stepper motors with rack mounted controllers. A dedicated counter board is used for counting and timing and a multi-input/output board is used for analog acquisition and control of the focusing mirror. A three axis differential laser interferometer is being used to improve stability and precision by careful tracking of the relative positions of the sample and zone plate. Each axis measures the relative distance between a mirror placed on the sample stage and a mirror attached to the zone plate holder. Agilent Technologies HP 10889A servo-axis interferometer boards are used. While they were designed to control servo motors, our tests show that they can be used to directly control the piezo stage. The use of the interferometer servo-axis boards provides excellent point stability for spectral measurements. The interferometric feedback also provides active vibration isolation which reduces deleterious impact of mechanical vibrations up to 20-30 Hz. It also can improve the speed and precision of image scans. Custom C++ software has been written to provide user friendly control of the microscope and integration with visual light microscopy indexing of the samples. The beam line 7.0 microscope upgrade is a new design which will replace the existing microscope. The design is similar to that of beam line 5.3.2, including interferometric position encoding. However the acquisition and control is based on VXI systems, a Sun computer, and LABVIEW™ software. The main objective of the BL 7.0 microscope upgrade is to achieve precise image scans at very high speed (pixel dwells as short as 10 μs) to take full advantage of the high brightness of the 7.0 undulator beamline. Results of tests and a discussion of the benefits of our scanning microscope designs will be presented.
Hyperspectral imaging with laser-scanning sum-frequency generation microscopy
Hanninen, Adam; Shu, Ming Wai; Potma, Eric O.
2017-01-01
Vibrationally sensitive sum-frequency generation (SFG) microscopy is a chemically selective imaging technique sensitive to non-centrosymmetric molecular arrangements in biological samples. The routine use of SFG microscopy has been hampered by the difficulty of integrating the required mid-infrared excitation light into a conventional, laser-scanning nonlinear optical (NLO) microscope. In this work, we describe minor modifications to a regular laser-scanning microscope to accommodate SFG microscopy as an imaging modality. We achieve vibrationally sensitive SFG imaging of biological samples with sub-μm resolution at image acquisition rates of 1 frame/s, almost two orders of magnitude faster than attained with previous point-scanning SFG microscopes. Using the fast scanning capability, we demonstrate hyperspectral SFG imaging in the CH-stretching vibrational range and point out its use in the study of molecular orientation and arrangement in biologically relevant samples. We also show multimodal imaging by combining SFG microscopy with second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) on the same imaging platfrom. This development underlines that SFG microscopy is a unique modality with a spatial resolution and image acquisition time comparable to that of other NLO imaging techniques, making point-scanning SFG microscopy a valuable member of the NLO imaging family. PMID:28966861
Compact variable-temperature scanning force microscope.
Chuang, Tien-Ming; de Lozanne, Alex
2007-05-01
A compact design for a cryogenic variable-temperature scanning force microscope using a fiber-optic interferometer to measure cantilever deflection is presented. The tip-sample coarse approach and the lateral tip positioning are performed by piezoelectric positioners in situ. The microscope has been operated at temperatures between 6 and 300 K. It is designed to fit into an 8 T superconducting magnet with the field applied in the out-of-plane direction. The results of scanning in various modes are demonstrated, showing contrast based on magnetic field gradients or surface potentials.
A combined scanning tunnelling microscope and x-ray interferometer
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Kuetgens, Ulrich; Koenders, Ludger; Weimann, Thomas
2001-10-01
A monolithic x-ray interferometer made from silicon and a scanning tunnelling microscope have been combined and used to calibrate grating structures with periodicities of 100 nm or less. The x-ray interferometer is used as a translation stage which moves in discrete steps of 0.192 nm, the lattice spacing of the silicon (220) planes. Hence, movements are traceable to the definition of the metre and the nonlinearity associated with the optical interferometers used to measure displacement in more conventional metrological scanning probe microscopes (MSPMs) removed.
Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris
2014-12-01
Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.
Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform themore » various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.« less
Ramos, Glenda Quaresma; Cotta, Eduardo Adriano; da Fonseca Filho, Henrique Duarte
2016-07-01
Leaves surfaces have various structures with specific functions and contribute to the relationship with the environment. On morphological studies are analyzed various parameters, ranging from macro scale through the micro scale to the nanometer scale, which contribute to the study of taxonomy, pharmacognosy, and ecology, among others. Functional structures found in leaves are responsible for the wide variety of surfaces and some behaviors are given in terms of cellular adaptation and the presence or absence of wax. This study reports the characterization of Anacardium occidentale L. leaf surface and the techniques used therein. A set of scanning electron microscope (SEM) and atomic force microscope (AFM) images performed on fresh leaf allowed observation of textured and heterogeneous profiles on both sides. SCANNING 38:329-335, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.
2014-02-15
We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.
Steurer, Wolfram; Gross, Leo; Schlittler, Reto R; Meyer, Gerhard
2014-02-01
We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
A multiphoton laser scanning microscope setup for transcranial in vivo brain imaging on mice
NASA Astrophysics Data System (ADS)
Nase, Gabriele; Helm, P. Johannes; Reppen, Trond; Ottersen, Ole Petter
2005-12-01
We describe a multiphoton laser scanning microscope setup for transcranial in vivo brain imaging in mice. The modular system is based on a modified industrial standard Confocal Scanning Laser Microscope (CSLM) and is assembled mainly from commercially available components. A special multifunctional stage, which is optimized for both laser scanning microscopic observation and preparative animal surgery, has been developed and built. The detection unit includes a highly efficient photomultiplier tube installed in a Peltier-cooled thermal box shielding the detector from changes in room temperature and from distortions caused by external electromagnetic fields. The images are recorded using a 12-bit analog-to-digital converter. Depending on the characteristics of the staining, individual nerve cells can be imaged down to at least 100μm below the intact cranium and down to at least 200μm below the opened cranium.
Iskander, Nagi M; El-Hennawi, Diaa M; Yousef, Tarek F; El-Tabbakh, Mohammed T; Elnahriry, Tarek A
2017-06-01
To detect ultra-structural changes of Rabbit's olfactory neuro-epithelium using scanning electron microscope after exposure to cigarette smoking. Sixty six rabbits (Pathogen free New Zealand white rabbits weighing 1-1.5 kg included in the study were randomly assigned into one of three groups: control group did not expose to cigarette smoking, study group 1 was exposed to cigarette smoking for 3 months and study group 2 was exposed to cigarette smoking 3 months and then stopped for 2 months. Olfactory neuro-epithelium from all rabbits were dissected and examined under Philips XL-30 scanning electron microscope. Changes that were found in the rabbits of study group 1 in comparison to control group were loss of microvilli of sustentacular cells (p = 0.016) and decreases in distribution of specialized cilia of olfactory receptor cells (p = 0.046). Also respiratory metaplasia was detected. These changes were reversible in study group 2. Cigarette smoking causes ultra-structural changes in olfactory neuro-epithelium which may explain why smell was affected in cigarette smokers. Most of these changes were reversible after 45 days of cessation of cigarette smoking to the rabbits.
Brilhante, Raimunda Sâmia Nogueira; Correia, Edmilson Emanuel Monteiro; Guedes, Glaucia Morgana de Melo; Pereira, Vandbergue Santos; Oliveira, Jonathas Sales de; Bandeira, Silviane Praciano; Alencar, Lucas Pereira de; Andrade, Ana Raquel Colares de; Castelo-Branco, Débora de Souza Collares Maia; Cordeiro, Rossana de Aguiar; Pinheiro, Adriana de Queiroz; Chaves, Lúcio Jackson Queiroz; Pereira Neto, Waldemiro de Aquino; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha
2017-07-01
The aim of this study was to evaluate the in vitro and ex vivo biofilm-forming ability of dermatophytes on a nail fragment. Initially, four isolates of Trichophyton rubrum, six of Trichophyton tonsurans, three of Trichophyton mentagrophytes, ten of Microsporum canis and three of Microsporum gypseum were tested for production biomass by crystal violet assay. Then, one strain per species presenting the best biofilm production was chosen for further studies by optical microscopy (Congo red staining), confocal laser scanning (LIVE/DEAD staining) and scanning electron (secondary electron) microscopy. Biomass quantification by crystal violet assay, optical microscope images of Congo red staining, confocal microscope and scanning electron microscope images revealed that all species studied are able to form biofilms both in vitro and ex vivo, with variable density and architecture. M. gypseum, T. rubrum and T. tonsurans produced robust biofilms, with abundant matrix and biomass, while M. canis produced the weakest biofilms compared to other species. This study sheds light on biofilms of different dermatophyte species, which will contribute to a better understanding of the pathophysiology of dermatophytosis. Further studies of this type are necessary to investigate the processes involved in the formation and composition of dermatophyte biofilms.
Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter
2011-11-01
A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics
Studies on rock characteristics and timing of creep at selected landslide sites in Taiwan
Cheng-Yi Lee
2000-01-01
A study was conducted to investigate the causes of and rock characteristics at three landslide sites in the Tesngwen Reservoir watershed of southern Taiwan. Research methods used included the petrographic microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), inductively coupled plasma spectroscope (ICP), constant head permeameter in triaxial...
A next generation positron microscope and a survey of candidate samples for future positron studies
NASA Astrophysics Data System (ADS)
Dull, Terry Lou
A positron microscope has been constructed and is nearing the conclusion of its assembly and testing. The instrument is designed to perform positron and electron microscopy in both scanning and magnifying modes. In scanning mode, a small beam of particles is rastered across the target and the amplitude of a positron or electron related signal is recorded as a function of position. For positrons this signal may come from Doppler Broadening Spectroscopy, Reemitted Positron Spectroscopy or Positron Annihilation Lifetime Spectroscopy. For electrons this signal may come from the number of secondary electrons or Auger Electron Spectroscopy. In magnifying mode an incident beam of particles is directed onto the target and emitted particles, either secondary electrons or reemitted positrons, are magnified to form an image. As a positron microscope the instrument will primarily operate in magnifying mode, as a positron reemission microscope. As an electron microscope the instrument will be able to operate in both magnifying and scanning modes. Depth-profiled Doppler Broadening Spectroscopy studies using a non-microscopic low-energy positron beam have also been performed on a series of samples to ascertain the applicability of positron spectroscopies and/or microscopy to their study. All samples have sub-micron film and/or feature size and thus are only susceptible to positron study with low-energy beams. Several stoichiometries and crystallinities of chalcogenide thin films (which can be optically reversibly switched between crystalline states) were studied and a correlation was found to exist between the amorphous/FCC S-parameter difference and the amorphous/FCC switching time. Amorphous silicon films were studied in an attempt to observe the well-established Staebler-Wronski effect as well as the more controversial photodilatation effect. However, DBS was not able to detect either effect. The passive oxide films on titanium and aluminum were studied in an attempt to verify the Point Defect Model, a detailed, but as yet microscopically unconfirmed, theory of the corrosive breakdown of passive films. DBS results supportive of the PDM were observed. Graphitic carbon fibers were also studied and DBS indicated the presence of a 200 nm thick outer fiber skin possibly characterized by a high degree of graphitic crystallite alignment.
NASA Astrophysics Data System (ADS)
Kim, Duckhoe; Sahin, Ozgur
2015-03-01
Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.
Chen, Ye; Liu, Jonathan T C
2013-06-01
Dual-axis confocal (DAC) microscopy has been found to exhibit superior rejection of out-of-focus and multiply scattered background light compared to conventional single-axis confocal microscopy. DAC microscopes rely on the use of separated illumination and collection beam paths that focus and intersect at a single focal volume (voxel) within tissue. While it is generally recognized that the resolution and contrast of a DAC microscope depends on both the crossing angle of the DAC beams, 2θ, and the focusing numerical aperture of the individual beams, α, a detailed study to investigate these dependencies has not been performed. Contrast and resolution are considered as two main criteria to assess the performance of a point-scanned DAC microscope (DAC-PS) and a line-scanned DAC microscope (DAC-LS) as a function of θ and α. The contrast and resolution of these designs are evaluated by Monte-Carlo scattering simulations and diffraction theory calculations, respectively. These results can be used for guiding the optimal designs of DAC-PS and DAC-LS microscopes.
Microcellular nanocomposite injection molding process
Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt
2003-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...
Re-scan confocal microscopy: scanning twice for better resolution.
De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.
2017-06-29
Accurate Virus Quantitation Using a Scanning Transmission Electron Microscopy (STEM) Detector in a Scanning Electron Microscope Candace D Blancett1...L Norris2, Cynthia A Rossi4 , Pamela J Glass3, Mei G Sun1,* 1 Pathology Division, United States Army Medical Research Institute of Infectious...Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland, 21702 2Biostatistics Division, United States Army Medical Research Institute of
Scanning tunneling microscope assembly, reactor, and system
Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A
2014-11-18
An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Sanjoy; Ellman, Brett, E-mail: bellman@kent.edu; Singh, Gautam
We describe a tool for studying the two-dimensional spatial variation in electronic properties of organic semiconductors: the scanning time-of-flight microscope (STOFm). The STOFm simultaneously measures the transmittance of polarized light and time-of-flight current transients with a pixel size <30 μm, making it especially valuable for studies of the correlations of structure with charge generation and transport in liquid crystalline organic semiconductors (LC OSCs). Adapting a previously developed photopolymerization technique, we characterize the instrument using patterned samples of a LC OSC bounded by a non-semiconducting polymer matrix.
Li, Quanfeng; Lu, Qingyou
2011-05-01
We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).
Scanning electron microscope observation of dislocations in semiconductor and metal materials.
Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki
2010-08-01
Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.
Modular Scanning Confocal Microscope with Digital Image Processing.
Ye, Xianjun; McCluskey, Matthew D
2016-01-01
In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.
[Scanning electron microscope study of chemically disinfected endodontic files].
Navarro, G; Mateos, M; Navarro, J L; Canalda, C
1991-01-01
Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, J.; Nicodemus, T.; Zhuang, Y., E-mail: yan.zhuang@wright.edu
2014-05-07
Grain boundary electrical conductivity of ferrite materials has been characterized using scanning microwave microscope. Structural, electrical, and magnetic properties of Fe{sub 3}O{sub 4} spin-sprayed thin films onto glass substrates for different length of growth times were investigated using a scanning microwave microscope, an atomic force microscope, a four-point probe measurement, and a made in house transmission line based magnetic permeameter. The real part of the magnetic permeability shows almost constant between 10 and 300 MHz. As the Fe{sub 3}O{sub 4} film thickness increases, the grain size becomes larger, leading to a higher DC conductivity. However, the loss in the Fe{sub 3}O{submore » 4} films at high frequency does not increase correspondingly. By measuring the reflection coefficient s{sub 11} from the scanning microwave microscope, it turns out that the grain boundaries of the Fe{sub 3}O{sub 4} films exhibit higher electric conductivity than the grains, which contributes loss at radio frequencies. This result will provide guidance for further improvement of low loss ferrite materials for high frequency applications.« less
Understanding Imaging and Metrology with the Helium Ion Microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András E.; Ming, Bin
2009-09-01
One barrier to innovation confronting all phases of nanotechnology is the lack of accurate metrology for the characterization of nanomaterials. Ultra-high resolution microscopy is a key technology needed to achieve this goal. But, current microscope technology is being pushed to its limits. The scanning and transmission electron microscopes have incrementally improved in performance and other scanned probe technologies such as atomic force microscopy, scanning tunneling microscopy and focused ion beam microscopes have all been applied to nanotechnology with various levels of success. A relatively new tool for nanotechnology is the scanning helium ion microscope (HIM). The HIM is a new complementary imaging and metrology technology for nanotechnology which may be able to push the current resolution barrier lower. But, successful imaging and metrology with this instrument entails new ion beam/specimen interaction physics which must be fully understood. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanotechnology have yet to be fully exploited. This presentation will discuss some of the progress made at NIST in understanding the science behind this new technique.
Scanning probe microscopy of biomedical interfaces
NASA Astrophysics Data System (ADS)
Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.
1998-02-01
The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.
NASA Astrophysics Data System (ADS)
Hamers, M. F.; Pennock, G. M.; Drury, M. R.
2017-04-01
The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.
Polliack, A; McKenzie, S; Gee, T; Lampen, N; de Harven, E; Clarkson, B D
1975-09-01
This report describes the surface architecture of leukemic cells, as seen by scanning electron microscopy in 34 patients with acute nonlymphoblastic leukemia. Six patients with myeloblastic, 4 with promyelocytic, 10 with myelomonocytic, 8 with monocytic, 4 with histiocytic and 2 with undifferentiated leukemia were studied. Under the scanning electron microscope most leukemia histiocytes and monocytes appeared similar and were characterized by the presence of large, well developed broad-based ruffled membranes or prominent raised ridge-like profiles, resembling ithis respect normal monocytes. Most cells from patients with acute promyelocytic or myeloblastic leukemia exhibited narrower ridge-like profiles whereas some showed ruffles or microvilli. Patients with myelomonocytic leukemia showed mixed populations of cells with ridge-like profiles and ruffled membranes whereas cells from two patients with undifferentiated leukemia had smooth surfaces, similar to those encountered in cells from patients with acute lymphoblastic leukemia. It appears that nonlymphoblastic and lymphoblastic leukemia cells (particularly histiocytes and monocytes) can frequently be distinquished on the basis of their surface architecture. The surface features of leukemic histiocytes and monocytes are similar, suggesting that they may belong to the same cell series. The monocytes seem to have characteristic surface features recognizable with the scanning electron microscope and differ from most cells from patients with acute granulocytic leukemia. Although overlap of surface features and misidentification can occur, scanning electron microscopy is a useful adjunct to other modes of microscopy in the study and diagnosis of acute leukemia.
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-10-01
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-03-30
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
The design and construction of a cost-efficient confocal laser scanning microscope
NASA Astrophysics Data System (ADS)
Xi, Peng; Rajwa, Bartlomiej; Jones, James T.; Robinson, J. Paul
2007-03-01
The optical dissection ability of confocal microscopy makes it a powerful tool for biological materials. However, the cost and complexity of confocal scanning laser microscopy hinders its wide application in education. We describe the construction of a simplified confocal scanning laser microscope and demonstrate three-dimensional projection based on cost-efficient commercial hardware, together with available open source software.
Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng
2015-05-01
Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.
Re-scan confocal microscopy: scanning twice for better resolution
De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422
Fei, Yiyan; Landry, James P; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S
2010-01-01
We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm x 4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide.
Fei, Yiyan; Landry, James P.; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S.
2010-01-01
We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm×4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide. PMID:20210464
Performance of automatic scanning microscope for nuclear emulsion experiments
NASA Astrophysics Data System (ADS)
Güler, A. Murat; Altınok, Özgür
2015-12-01
The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.
Performance of automatic scanning microscope for nuclear emulsion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Güler, A. Murat, E-mail: mguler@newton.physics.metu.edu.tr; Altınok, Özgür; Tufts University, Medford, MA 02155
The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.
Effect of CO2 laser on Class V cavities of human molar teeth under a scanning electron microscope.
Watanabe, I; Lopes, R A; Brugnera, A; Katayama, A Y; Gardini, A E
1996-01-01
The purpose of this study was to evaluate the effects of CO2 laser on dentin of class V cavities of extracted human molar teeth using a scanning electron microscope. SEM showed a smooth area with concentric lines formed by melting with subsequent recrystallization of dentin, areas of granulation, vitrified surface, numerous cracks, and irregular areas of descamative dentin. These data indicate that CO2 laser (4 and 6 watts) produces dentin alterations and limit its clinical applications.
Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens
Grewe, Benjamin F.; Voigt, Fabian F.; van ’t Hoff, Marcel; Helmchen, Fritjof
2011-01-01
Functional two-photon Ca2+-imaging is a versatile tool to study the dynamics of neuronal populations in brain slices and living animals. However, population imaging is typically restricted to a single two-dimensional image plane. By introducing an electrically tunable lens into the excitation path of a two-photon microscope we were able to realize fast axial focus shifts within 15 ms. The maximum axial scan range was 0.7 mm employing a 40x NA0.8 water immersion objective, plenty for typically required ranges of 0.2–0.3 mm. By combining the axial scanning method with 2D acousto-optic frame scanning and random-access scanning, we measured neuronal population activity of about 40 neurons across two imaging planes separated by 40 μm and achieved scan rates up to 20–30 Hz. The method presented is easily applicable and allows upgrading of existing two-photon microscopes for fast 3D scanning. PMID:21750778
The X-ray microscopy beamline UE46-PGM2 at BESSY
NASA Astrophysics Data System (ADS)
Follath, R.; Schmidt, J. S.; Weigand, M.; Fauth, K.
2010-06-01
The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.
Compact scanning transmission x-ray microscope at the photon factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta
We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10{sup 7} photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.
To boldly glow ... applications of laser scanning confocal microscopy in developmental biology.
Paddock, S W
1994-05-01
The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.
Evaluation of a completely robotized neurosurgical operating microscope.
Kantelhardt, Sven R; Finke, Markus; Schweikard, Achim; Giese, Alf
2013-01-01
Operating microscopes are essential for most neurosurgical procedures. Modern robot-assisted controls offer new possibilities, combining the advantages of conventional and automated systems. We evaluated the prototype of a completely robotized operating microscope with an integrated optical coherence tomography module. A standard operating microscope was fitted with motors and control instruments, with the manual control mode and balance preserved. In the robot mode, the microscope was steered by a remote control that could be fixed to a surgical instrument. External encoders and accelerometers tracked microscope movements. The microscope was additionally fitted with an optical coherence tomography-scanning module. The robotized microscope was tested on model systems. It could be freely positioned, without forcing the surgeon to take the hands from the instruments or avert the eyes from the oculars. Positioning error was about 1 mm, and vibration faded in 1 second. Tracking of microscope movements, combined with an autofocus function, allowed determination of the focus position within the 3-dimensional space. This constituted a second loop of navigation independent from conventional infrared reflector-based techniques. In the robot mode, automated optical coherence tomography scanning of large surface areas was feasible. The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.
Three-dimensional scanning confocal laser microscope
Anderson, R. Rox; Webb, Robert H.; Rajadhyaksha, Milind
1999-01-01
A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.
Two-photon microscopy and spectroscopy based on a compact confocal scanning head
NASA Astrophysics Data System (ADS)
Diaspro, Alberto; Chirico, Giberto; Federici, Federico; Cannone, Fabio; Beretta, Sabrina; Robello, Mauro; Olivini, Francesca; Ramoino, Paola
2001-07-01
We have combined a confocal laser scanning head modified for TPE (two-photon excitation) microscopy with some spectroscopic modules to study single molecules and molecular aggregates. The behavior of the TPE microscope unit has been characterized by means of point spread function measurements and of the demonstration of its micropatterning abilities. One-photon and two-photon mode can be simply accomplished by switching from a mono-mode optical fiber (one-photon) coupled to conventional laser sources to an optical module that allows IR laser beam (two- photon/TPE) delivery to the confocal laser scanning head. We have then described the characterization of the two-photon microscope for spectroscopic applications: fluorescence correlation, lifetime and fluorescence polarization anisotropy measurements. We describe the measurement of the response of the two-photon microscope to the light polarization and discuss fluorescence polarization anisotropy measurements on Rhodamine 6G as a function of the viscosity and on a globular protein, the Beta-lactoglobulin B labeled with Alexa 532 at very high dilutions. The average rotational and translational diffusion coefficients measured with fluorescence polarization anisotropy and fluorescence correlation methods are in good agreement with the protein size, therefore validating the use of the microscope for two-photon spectroscopy on biomolecules.
The impact of the condenser on cytogenetic image quality in digital microscope system.
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.
Intensity calibration of a laser scanning confocal microscope based on concentrated dyes.
Model, Michael A; Blank, James L
2006-10-01
To find water-soluble fluorescent dyes with absorption in various regions of the spectrum and investigate their utility as standards for laser scanning confocal microscopy. Several dyes were found to have characteristics required for fluorescence microscopy standards. The intensity of biological fluorescent specimens was measured against the emission of concentrated dyes. Results using different optics and different microscopes were compared. Slides based on concentrated dyes can be prepared in a highly reproducible manner and are stable under laser scanning. Normalized fluorescence of biological specimens remains consistent with different objective lenses and is tolerant to some mismatch in optical filters or imperfect pinhole alignment. Careful choice of scanning parameters is necessary to ensure linearity of intensity measurements. Concentrated dyes provide a robust and inexpensive intensity standard that can be used in basic research or clinical studies.
Modular Scanning Confocal Microscope with Digital Image Processing
McCluskey, Matthew D.
2016-01-01
In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength. PMID:27829052
Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva; Czaplicka, Anna
2017-02-27
In this paper, a study of the morphology of the pupa and male imago of Glyptotendipes (G.) glaucus (Meigen 1818) was carried out, with the aid of a scanning electron microscope (SEM). The SEM provided additional valuable information on the morphology of the species. Adult male head, antenna, wing, leg, abdomen, hypopygium, pupal cephalothorax and abdomen were examined. It is emphasized that SEM was not often used in Chironomidae studies. The present results confirm SEM as a suitable approach in carrying out morphological and taxonomical descriptions of Chironomidae species.
NASA Astrophysics Data System (ADS)
Platkov, Max; Tsun, Alexander; Nagli, Lev; Katzir, Abraham
2006-12-01
We have constructed a scanning near-field infrared microscope (SNIM) which was based on a AgClBr fiber probe whose end was etched to form an aperture of a subwavelength diameter. A detailed study of the mechanical properties of a vibrating AgClBr probe was required for proper operation of the SNIM system. We have demonstrated that the system can be used for imaging and for topographic mapping of samples with a subwavelength resolution in the middle infrared. Such a SNIM will be a powerful tool for the study of microelectronic components or subcellular structures in biological cells.
Differential phase acoustic microscope for micro-NDE
NASA Technical Reports Server (NTRS)
Waters, David D.; Pusateri, T. L.; Huang, S. R.
1992-01-01
A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.
(Gene sequencing by scanning molecular exciton microscopy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)
Ali, Mohammad Javed; Baig, Farhana; Lakshman, Mekala; Naik, Milind N
2016-01-01
The aims of this study were to examine the scanning electron microscopic features of silastic nasolacrimal duct stents retained for long durations following a dacryocystorhinostomy. A prospective interventional study was performed on stents retrieved from patients who were lost to follow up after a dacryocystorhinostomy with Crawford stent insertion. Long duration was defined as stents retrieved at a minimum of 1 year following a dacryocystorhinostomy. None of the patients had any evidence of postoperative infection. After removal, the stent segments were subjected to biofilm and physical deposit analysis using standard protocols of scanning electron microscopy. These stent segments were compared against sterile stents which acted as controls. A total of 7 stents were studied. Five were consecutive patient samples, and 2 were sterile stents. All the 5 stents were retrieved from patients who were lost to follow up for a minimum of 12 months following surgery. The mean duration of intubation at retrieval was 21 months. All the stents demonstrated evidence of biofilm formation and physical deposits. However, as the duration of retention increased, the deposits and biofilms were noted to be progressively denser, multilayered and extensive. Certain areas demonstrated thick biofilm integration with the deposits. Polymicrobial communities were noted within the exopolysaccharide matrix. This is the first study to exclusively report on scanning electron microscopic features of lacrimal stents retained for long durations. Further studies on physical elements within the deposits and protein analysis would provide more insights into stent-tissue interactions.
Integration of a high-NA light microscope in a scanning electron microscope.
Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P
2013-10-01
We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Morphological changes of the hair roots in alopecia areata: a scanning electron microscopic study.
Karashima, Tadashi; Tsuruta, Daisuke; Hamada, Takahiro; Ishii, Norito; Ono, Fumitake; Ueda, Akihiro; Abe, Toshifumi; Nakama, Takekuni; Dainichi, Teruki; Hashimoto, Takashi
2013-12-01
Alopecia areata is a chronic inflammatory condition causing non-scarring patchy hair loss. Diagnosis of alopecia areata is made by clinical observations, hair pluck test and dermoscopic signs. However, because differentiation from other alopecia diseases is occasionally difficult, an invasive diagnostic method using a punch biopsy is performed. In this study, to develop a reliable, less invasive diagnostic method for alopecia areata, we performed scanning electron microscopy of the hair roots of alopecia areata patients. This study identified four patterns of hair morphology specific to alopecia areata: (I) long tapering structure with no accumulation of scales; (II) club-shaped hair root with fine scales; (III) proximal accumulation of scales; and (IV) sharp tapering of the proximal end of hair. On the basis of these results, we can distinguish alopecia areata by scanning electron microscopic observation of the proximal end of the hair shafts. © 2013 Japanese Dermatological Association.
High-resolution resonant and nonresonant fiber-scanning confocal microscope.
Hendriks, Benno H W; Bierhoff, Walter C J; Horikx, Jeroen J L; Desjardins, Adrien E; Hezemans, Cees A; 't Hooft, Gert W; Lucassen, Gerald W; Mihajlovic, Nenad
2011-02-01
We present a novel, hand-held microscope probe for acquiring confocal images of biological tissue. This probe generates images by scanning a fiber-lens combination with a miniature electromagnetic actuator, which allows it to be operated in resonant and nonresonant scanning modes. In the resonant scanning mode, a circular field of view with a diameter of 190 μm and an angular frequency of 127 Hz can be achieved. In the nonresonant scanning mode, a maximum field of view with a width of 69 μm can be achieved. The measured transverse and axial resolutions are 0.60 and 7.4 μm, respectively. Images of biological tissue acquired in the resonant mode are presented, which demonstrate its potential for real-time tissue differentiation. With an outer diameter of 3 mm, the microscope probe could be utilized to visualize cellular microstructures in vivo across a broad range of minimally-invasive procedures.
Fast parallel 3D profilometer with DMD technology
NASA Astrophysics Data System (ADS)
Hou, Wenmei; Zhang, Yunbo
2011-12-01
Confocal microscope has been a powerful tool for three-dimensional profile analysis. Single mode confocal microscope is limited by scanning speed. This paper presents a 3D profilometer prototype of parallel confocal microscope based on DMD (Digital Micromirror Device). In this system the DMD takes the place of Nipkow Disk which is a classical parallel scanning scheme to realize parallel lateral scanning technique. Operated with certain pattern, the DMD generates a virtual pinholes array which separates the light into multi-beams. The key parameters that affect the measurement (pinhole size and the lateral scanning distance) can be configured conveniently by different patterns sent to DMD chip. To avoid disturbance between two virtual pinholes working at the same time, a scanning strategy is adopted. Depth response curve both axial and abaxial were extract. Measurement experiments have been carried out on silicon structured sample, and axial resolution of 55nm is achieved.
Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function.
Higuchi, Seiji; Kuramochi, Hiromi; Laurent, Olivier; Komatsubara, Takashi; Machida, Shinichi; Aono, Masakazu; Obori, Kenichi; Nakayama, Tomonobu
2010-07-01
Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope.
Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D
2015-08-01
Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
New Windows on the Biological World
ERIC Educational Resources Information Center
Arehart-Treichel, Joan
1975-01-01
Describes two new microscopes, the acoustic microscope and a scanning transmission microscope, both of which promise to yield fresh insights, based on revolutionary techniques into cellular biology. (BR)
NASA Astrophysics Data System (ADS)
Miyasaka, Chiaki; Kasano, Hideaki; Shull, Peter J.
2004-07-01
The article presents an experimental study that has been conducted to evaluate the impact loading damage within hybrid fabric laminates-carbon and Aramid fibers. The experiments have been undertaken on a series of interply hybrid specimens with different preprags stacking sequences. Impact damage was created using an air-gun like impact device propelling spherical steel balls with diameters of 5.0mm and 10.0mm and having velocities of 113m/s and 40m/s respectively. The resulting specimen surface and internal damage (e.g., micro-cracking and debonding) was visualized nondestructively by a scanning acoustic microscope (SAM) while further interrogation of specific internal damage was visualized using a scanning electron microscope (SEM) on cross-sectioned panels.
Intraocular Gnathostoma spinigerum. Clinicopathologic study of two cases with review of literature.
Biswas, J; Gopal, L; Sharma, T; Badrinath, S S
1994-01-01
Live intraocular nematode is a rare occurrence that is mostly reported in Southeast Asian countries. Common nematodes that are seen live in the eye are microfilaria, Gnathostoma, and Angiostrongylus. Approximately 12 cases of intraocular gnathostomiasis have been reported in the literature. Two cases of intraocular gnathostoma, removed by vitrectomy in the first case and by paracentesis in the second case, are reported. Morphologic study of the parasites in wet preparation was performed under dissecting microscope and fixed in Karnovosky's fixative. Light microscopic and scanning electron microscopic studies were also performed. The first patient had anterior uveitis, multiple iris holes, and dense vitreous haze with fibrous proliferation over the optic disc. On resolution of the vitreous haze, a live worm was seen in the vitreous cavity. The second patient had anterior uveitis with secondary glaucoma, multiple iris holes, mild vitritis, and focal subretinal haemorrhage with subretinal tracts. Four days later a live worm was seen in the anterior chamber and removed. Microscopic study of the parasites from both patients revealed typical head bulb with four circumferential rows of hooklets, and fine cuticular spines were seen on the surface of the body. Iris holes, uveitis, and subretinal haemorrhage with subretinal tract can be characteristic features of intraocular gnathostomiasis. Identification of this parasite can be made by typical features, which can be identified on light and scanning electron microscopic study.
Li, Yongxiao; Montague, Samantha J; Brüstle, Anne; He, Xuefei; Gillespie, Cathy; Gaus, Katharina; Gardiner, Elizabeth E; Lee, Woei Ming
2018-02-28
In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Line-scanning, stage scanning confocal microscope
NASA Astrophysics Data System (ADS)
Carucci, John A.; Stevenson, Mary; Gareau, Daniel
2016-03-01
We created a line-scanning, stage scanning confocal microscope as part of a new procedure: video assisted micrographic surgery (VAMS). The need for rapid pathological assessment of the tissue on the surface of skin excisions very large since there are 3.5 million new skin cancers diagnosed annually in the United States. The new design presented here is a confocal microscope without any scanning optics. Instead, a line is focused in space and the sample, which is flattened, is physically translated such that the line scans across its face in a direction perpendicular to the line its self. The line is 6mm long and the stage is capable of scanning 50 mm, hence the field of view is quite large. The theoretical diffraction-limited resolution is 0.7um lateral and 3.7um axial. However, in this preliminary report, we present initial results that are a factor of 5-7 poorer in resolution. The results are encouraging because they demonstrate that the linear array detector measures sufficient signal from fluorescently labeled tissue and also demonstrate the large field of view achievable with VAMS.
Al-Omiri, Mahmoud K; Harb, Rousan; Abu Hammad, Osama A; Lamey, Philip-John; Lynch, Edward; Clifford, Thomas J
2010-07-01
This study aimed to evaluate the reliability of a new CAD-CAM Laser scanning machine in detection of incisal tooth wear through a 6-month period and to compare the accuracy of using this new machine against measuring tooth wear using tool maker microscope and conventional tooth wear index. Twenty participants (11 males and 9 females, mean age=22.7 years, SD=2.0) were assessed for incisal tooth wear of lower anterior teeth using Smith and Knight clinical tooth wear index (TWI) on two occasions, the study baseline and 6 months later. Stone dies for each tooth were prepared and scanned using the CAD-CAM Laser Cercon System (Cercon Smart Ceramics, DeguDent, Germany). Scanned images were printed and examined under a toolmaker microscope (Stedall-Dowding Machine Tool Company, Optique et Mecanique de Precision, Marcel Aubert SA, Switzerland) to quantify tooth wear and then the dies were directly assessed under the microscope to measure tooth wear. The Wilcoxon Signed Ranks Test was used to analyse the data. TWI scores for incisal edges were 0, 1, and 2 and were similar at both occasions. Scores 3 and 4 were not detected. Wear values measured by directly assessing the dies under the tool maker microscope (range=517-656microm, mean=582microm, and SD=50) were significantly more than those measured from the Cercon digital machine images (range=132-193microm, mean =165microm, and SD=27) and both showed significant differences between the two occasions. Measuring images obtained with Cercon digital machine under tool maker microscope allowed detection of wear progression over the 6-month period. However, measuring the dies of worn dentition directly under the tool maker microscope enabled detection of wear progression more accurately. Conventional method was the least sensitive for tooth wear quantification and was unable to identify wear progression in most cases. Copyright 2010 Elsevier Ltd. All rights reserved.
Diffracting aperture based differential phase contrast for scanning X-ray microscopy.
Kaulich, Burkhard; Polack, Francois; Neuhaeusler, Ulrich; Susini, Jean; di Fabrizio, Enzo; Wilhein, Thomas
2002-10-07
It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.
Macroscopic model of scanning force microscope
Guerra-Vela, Claudio; Zypman, Fredy R.
2004-10-05
A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.
Four-probe measurements with a three-probe scanning tunneling microscope.
Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A
2014-04-01
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.
Development of scanning electron and x-ray microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Tomokazu, E-mail: tomokzau.matsumura@etd.hpk.co.jp; Hirano, Tomohiko, E-mail: tomohiko.hirano@etd.hpk.co.jp; Suyama, Motohiro, E-mail: suyama@etd.hpk.co.jp
We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and softmore » materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.« less
Majima, K
1998-01-01
To examine the morphological changes of lens epithelial cells (LECs) occurring directly beneath and at regions contacting various intraocular lens (IOL) optic materials, human LECs were cultured on human anterior lens capsules and were further incubated upon placing above the cells lens optics made of polymethylmethacrylate, silicone, and soft acrylic material. Observations as to the morphological changes of LECs under phase-contrast microscope and scanning electron microscope were performed on the 14th day of incubation. Gatherings of LECs were observed at regions contacting the soft acrylic material under phase-contrast microscope, and gatherings of LECs were observed accurately at the same regions mentioned above under scanning electron microscope. On the other hand, LECs in contact with two other optic materials did not show morphological changes. The results suggest that LECs attached to and proliferated on not only the anterior lens capsules but also the soft acrylic IOL optics. The model used in this study may be useful in studying the relationship between cellular movement of LECs and IOL optic material.
Scanning Miniature Microscopes without Lenses
NASA Technical Reports Server (NTRS)
Wang, Yu
2009-01-01
The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the nonpolarizing beam splitter were replaced by a polarizing one, then the specimen would be illuminated by s-polarized light. Upon reflection from the specimen, some of the s-polarized light would become p-polarized. Only the p-polarized light would contribute to the image on the CCD; in other words, the image would contain information on the polarization rotating characteristic of the specimen.
Volumetric HiLo microscopy employing an electrically tunable lens.
Philipp, Katrin; Smolarski, André; Koukourakis, Nektarios; Fischer, Andreas; Stürmer, Moritz; Wallrabe, Ulrike; Czarske, Jürgen W
2016-06-27
Electrically tunable lenses exhibit strong potential for fast motion-free axial scanning in a variety of microscopes. However, they also lead to a degradation of the achievable resolution because of aberrations and misalignment between illumination and detection optics that are induced by the scan itself. Additionally, the typically nonlinear relation between actuation voltage and axial displacement leads to over- or under-sampled frame acquisition in most microscopic techniques because of their static depth-of-field. To overcome these limitations, we present an Adaptive-Lens-High-and-Low-frequency (AL-HiLo) microscope that enables volumetric measurements employing an electrically tunable lens. By using speckle-patterned illumination, we ensure stability against aberrations of the electrically tunable lens. Its depth-of-field can be adjusted a-posteriori and hence enables to create flexible scans, which compensates for irregular axial measurement positions. The adaptive HiLo microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 μm and sub-micron lateral resolution over the full scanning range. Proof of concept measurements at home-built specimens as well as zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are shown.
Lateral resolution testing of a novel developed confocal microscopic imaging system
NASA Astrophysics Data System (ADS)
Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun
2015-10-01
Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.
Vertically aligned nanostructure scanning probe microscope tips
Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.
2006-12-19
Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.
75 FR 23272 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-03
...) Protection in Sunscreen Products Description of Invention: There are different types of ultraviolet (UV) rays..., PhD at 301-435-3131 or [email protected] for more information. Laser Scanning Microscopy for Three... data from a high-speed laser-scanning microscope and compute motion of the sample under the microscope...
Adaptive noise Wiener filter for scanning electron microscope imaging system.
Sim, K S; Teh, V; Nia, M E
2016-01-01
Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. © Wiley Periodicals, Inc.
Manipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip
NASA Astrophysics Data System (ADS)
Hla, S.-W.
The fascinating advances in atom and molecule manipulation with the scanning tunneling microscope (STM) tip allow scientists to fabricate artificial atomic scale structures, to study local quantum phenomena, or to probe physical and chemical properties of single atoms and molecules on surfaces. Recent achievements in individual synthesis of single molecules with the STM tip further open up an entirely new opportunities in nanoscience and technology. The STM manipulation techniques usef ul in the molecular construction are reviewed and prospects for future opportunities of single molecule chemical engineering and their possible implications to nano-scale science and technology are discussed.
Masaphy, Segula; Levanon, D.; Tchelet, R.; Henis, Y.
1987-01-01
Relationships between the hyphae of Agaricus bisporus (Lang) Sing and bacteria from the mushroom bed casing layer were examined with a scanning electron microscope. Hyphae growing in the casing layer differed morphologically from compost-grown hyphae. Whereas the compost contained thin single hyphae surrounded by calcium oxalate crystals, the casing layer contained mainly wide hyphae or mycelial strands without crystals. The bacterial population in the hyphal environment consisted of several types, some attached to the hyphae with filamentlike structures. This attachment may be important in stimulation of pinhead initiation. Images PMID:16347340
Dynamic-scanning-electron-microscope study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1974-01-01
A friction and wear apparatus was built into a real time scanning electron microscope (SEM). The apparatus and SEM comprise a system which provides the capability of performing dynamic friction and wear experiments in situ. When the system is used in conjunction with dispersive X-ray analysis, a wide range of information on the wearing process can be obtained. The type of wear and variation with speed, load, and time can be investigated. The source, size, and distribution of wear particles can be determined and metallic transferal observed. Some typical results obtained with aluminum, copper, and iron specimens are given.
Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed
NASA Astrophysics Data System (ADS)
Kenton, Brian J.; Fleming, Andrew J.; Leang, Kam K.
2011-12-01
The mechanical design of a high-bandwidth, short-range vertical positioning stage is described for integration with a commercial scanning probe microscope (SPM) for dual-stage actuation to significantly improve scanning performance. The vertical motion of the sample platform is driven by a stiff and compact piezo-stack actuator and guided by a novel circular flexure to minimize undesirable mechanical resonances that can limit the performance of the vertical feedback control loop. Finite element analysis is performed to study the key issues that affect performance. To relax the need for properly securing the stage to a working surface, such as a laboratory workbench, an inertial cancellation scheme is utilized. The measured dominant unloaded mechanical resonance of a prototype stage is above 150 kHz and the travel range is approximately 1.56 μm. The high-bandwidth stage is experimentally evaluated with a basic commercial SPM, and results show over 25-times improvement in the scanning performance.
Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope
NASA Astrophysics Data System (ADS)
Saldua, Meagan A.; Olsovsky, Cory A.; Callaway, Evelyn S.; Chapkin, Robert S.; Maitland, Kristen C.
2012-01-01
Large area confocal microscopy may provide fast, high-resolution image acquisition for evaluation of tissue in pre-clinical studies with reduced tissue processing in comparison to histology. We present a rapid beam and stage-scanning confocal fluorescence microscope to image cellular and tissue features along the length of the entire excised mouse colon. The beam is scanned at 8,333 lines/sec by a polygon scanning mirror while the specimen is scanned in the orthogonal axis by a motorized translation stage with a maximum speed of 7 mm/sec. A single 1×60 mm2 field of view image spanning the length of the mouse colon is acquired in 10 s. Z-projection images generated from axial image stacks allow high resolution imaging of the surface of non-flat specimens. In contrast to the uniform size, shape, and distribution of colon crypts in confocal images of normal colon, confocal images of chronic bowel inflammation exhibit heterogeneous tissue structure with localized severe crypt distortion.
Parameters in selective laser melting for processing metallic powders
NASA Astrophysics Data System (ADS)
Kurzynowski, Tomasz; Chlebus, Edward; Kuźnicka, Bogumiła; Reiner, Jacek
2012-03-01
The paper presents results of studies on Selective Laser Melting. SLM is an additive manufacturing technology which may be used to process almost all metallic materials in the form of powder. Types of energy emission sources, mainly fiber lasers and/or Nd:YAG laser with similar characteristics and the wavelength of 1,06 - 1,08 microns, are provided primarily for processing metallic powder materials with high absorption of laser radiation. The paper presents results of selected variable parameters (laser power, scanning time, scanning strategy) and fixed parameters such as the protective atmosphere (argon, nitrogen, helium), temperature, type and shape of the powder material. The thematic scope is very broad, so the work was focused on optimizing the process of selective laser micrometallurgy for producing fully dense parts. The density is closely linked with other two conditions: discontinuity of the microstructure (microcracks) and stability (repeatability) of the process. Materials used for the research were stainless steel 316L (AISI), tool steel H13 (AISI), and titanium alloy Ti6Al7Nb (ISO 5832-11). Studies were performed with a scanning electron microscope, a light microscopes, a confocal microscope and a μCT scanner.
Abe, Shigeaki; Hyono, Atsushi; Kawai, Koji; Yonezawa, Tetsu
2014-03-01
In this study, we investigated conductivity preparation for scanning electron microscope (SEM) observation that used novel asymmetrical choline-type room temperature ionic liquids (RTIL). By immersion in only an RTIL solution, clear SEM images of several types of biological samples were successfully observed. In addition, we could visualize protozoans using RTILs without any dilution. These results suggested that the asymmetrical choline-type RTILs used in this study are suitable for visualizing of biological samples by SEM. Treatment without the need for dilution can obviate the need for adjusting the RTIL concentration and provide for a rapid and easy conductivity treatment for insulating samples.
NASA Astrophysics Data System (ADS)
Durand, Yannig; Woehl, Jörg C.; Viellerobe, Bertrand; Göhde, Wolfgang; Orrit, Michel
1999-02-01
Due to the weakness of the fluorescence signal from a single fluorophore, a scanning near-field optical microscope for single molecule spectroscopy requires a very efficient setup for the collection and detection of emitted photons. We have developed a home-built microscope for operation in a l-He cryostat which uses a solid parabolic mirror in order to optimize the fluorescence collection efficiency. This microscope works with Al-coated, tapered optical fibers in illumination mode. The tip-sample separation is probed by an optical shear-force detection. First results demonstrate the capability of the microscope to image single molecules and achieve a topographical resolution of a few nanometers vertically and better than 50 nm laterally.
1981-06-01
sessile marine inverte- brates in Monterey harbor. Veliger 17 (supplement): 1-35. 1977. The nature of primary organic films in the marine environment and...I A10A4h 605 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 11/3 SCANING ELECTRON MICROSCOPE OBSERVATIONS OF MARINE MICROORANI-E-C(U) UNLSSIFIED N*2...Scanning Electron Microscope Observations Master’s thesis; of Marine Microorganisms on Surfaces June 1981 Coated with Ant ifouling Paints 6.PERFORMING
A wide field-of-view microscope based on holographic focus grid
NASA Astrophysics Data System (ADS)
Wu, Jigang; Cui, Xiquan; Zheng, Guoan; Lee, Lap Man; Yang, Changhuei
2010-02-01
We have developed a novel microscope technique that can achieve wide field-of-view (FOV) imaging and yet possess resolution that is comparable to conventional microscope. The principle of wide FOV microscope system breaks the link between resolution and FOV magnitude of traditional microscopes. Furthermore, by eliminating bulky optical elements from its design and utilizing holographic optical elements, the wide FOV microscope system is more cost-effective. In our system, a hologram was made to focus incoming collimated beam into a focus grid. The sample is put in the focal plane and the transmissions of the focuses are detected by an imaging sensor. By scanning the incident angle of the incoming beam, the focus grid will scan across the sample and the time-varying transmission can be detected. We can then reconstruct the transmission image of the sample. The resolution of microscopic image is limited by the size of the focus formed by the hologram. The scanning area of each focus spot is determined by the separation of the focus spots and can be made small for fast imaging speed. We have fabricated a prototype system with a 2.4-mm FOV and 1-μm resolution. The prototype system was used to image onion skin cells for a demonstration. The preliminary experiments prove the feasibility of the wide FOV microscope technique, and the possibility of a wider FOV system with better resolution.
The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284
Four-probe measurements with a three-probe scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik
2014-04-15
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less
Focal depth measurement of scanning helium ion microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp; Itoh, Hiroshi; Wang, Chunmei
2014-07-14
When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at differentmore » focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.« less
KLASS: Kennedy Launch Academy Simulation System
NASA Technical Reports Server (NTRS)
Garner, Lesley C.
2007-01-01
Software provides access to many sophisticated scientific instrumentation (Scanning Electron Microscope (SEM), a Light Microscope, a Scanning Probe Microscope (covering Scanning Tunneling, Atomic Force, and Magnetic Force microscopy), and an Energy Dispersive Spectrometer for the SEM). Flash animation videos explain how each of the instruments work. Videos on how they are used at NASA and the sample preparation. Measuring and labeling tools provided with each instrument. Hands on experience of controlling the virtual instrument to conduct investigations, much like the real scientists at NASA do. Very open architecture. Open source on SourceForge. Extensive use of XML Target audience is high school and entry-level college students. "Many beginning students never get closer to an electron microscope than the photos in their textbooks. But anyone can get a sense of what the instrument can do by downloading this simulator from NASA's Kennedy Space Center." Science Magazine, April 8th, 2005
Focal depth measurement of scanning helium ion microscope
NASA Astrophysics Data System (ADS)
Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke
2014-07-01
When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.
Scanning transmission x-ray microscope for materials science spectromicroscopy at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warwick, T.; Seal, S.; Shin, H.
1997-04-01
The brightness of the Advanced Light Source will be exploited by several new instruments for materials science spectromicroscopy over the next year or so. The first of these to become operational is a scanning transmission x-ray microscope with which near edge x-ray absorption spectra (NEXAFS) can be measured on spatial features of sub-micron size. Here the authors describe the instrument as it is presently implemented, its capabilities, some studies made to date and the developments to come. The Scanning Transmission X-ray Microscope makes use of a zone plate lens to produce a small x-ray spot with which to perform absorptionmore » spectroscopy through thin samples. The x-ray beam from ALS undulator beamline 7.0 emerges into the microscope vessel through a silicon nitride vacuum window 160nm thick and 300{mu}m square. The vessel is filled with helium at atmospheric pressure. The zone plate lens is illuminated 1mm downstream from the vacuum window and forms an image in first order of a pinhole which is 3m upstream in the beamline. An order sorting aperture passes the first order converging light and blocks the unfocused zero order. The sample is at the focus a few mm downstream of the zone plate and mounted from a scanning piezo stage which rasters in x and y so that an image is formed, pixel by pixel, by an intensity detector behind the sample. Absorption spectra are measured point-by-point as the photon energy is scanned by rotating the diffraction grating in the monochromator and changing the undulator gap.« less
Alsafy, M A M; El-Gendy, S A A
2012-03-01
The aim of this study was to cast a spotlight on the topography and to point out the clinical importance of the gastroesophageal junction (GEJ) in Anatolian Shepherd dogs. Nine Anatolian Shepherd dogs were used to study the morphology of the GEJ. The esophagus was appeared has a portion within the thoracic cavity while no portion of the esophagus presented within the abdominal cavity that documented the absence of the intra-abdominal portion in all studied dogs. The topographic anatomy, scanning electron and light microscopic examinations revealed that the gastroesophageal junction was located at the level of the phrenico-esophageal ligament (PEL) inside the esophageal hiatus. Our results were distinguished the morphology of the esophageal and gastric cardiac mucosa at the level of the gastroesophageal junction by the scanning electron micrographs. The light microscopical examination was explained the PEL attached to the esophageal side in one dog and to the gastric cardiac side in three dogs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)
Scanning electron microscope view of iron crystal growing on pyroxene crystal
NASA Technical Reports Server (NTRS)
1972-01-01
A scanning electron microscope photograph of a four-micron size iron crystal growing on a pyroxene crystal (calcium-magnesium-iron silicate) from the Apollo 15 Hadley-Apennino lunar landing site. The well developed crystal faces indicate that the crystal was formed from a hot vapor as the rock was cooling.
Arc-melting preparation of single crystal LaB.sub.6 cathodes
Gibson, Edwin D.; Verhoeven, John D.
1977-06-21
A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).
Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro
2016-01-28
Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.
Bongianni, Wayne L.
1984-01-01
A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.
Bongianni, W.L.
1984-04-17
A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers. 7 figs.
Forensic tools for the diagnosis of electrocution death: Case study and literature review.
Mondello, Cristina; Micali, Antonio; Cardia, Luigi; Argo, Antonina; Zerbo, Stefania; Spagnolo, Elvira Ventura
2018-06-01
Diagnosis of death by electrocution may be difficult when electric marking is not visible or unclear. Accordingly, the body of a man who appeared to have died from accidental electrocution was carefully forensically analysed. Macroscopic and microscopic analysis of the current mark was carried out using a variable-pressure scanning electron microscope equipped with energy dispersive X-ray microanalyser to highlight skin metallisation, indicating the presence of iron and zinc. The histological findings of electrocution myocardial damage were supported by the results of biochemical analysis which demonstrated the creatine kinase-MB and cardiac troponin I elevation. The effects of electric current flow were also highlighted by perforations of endothelial surface of a pulmonary artery using scanning electron microscope, and all the results were analysed by the main tools suggested in the literature.
Two-Photon Fluorescence Correlation Spectroscopy
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Fischer, David G.
2002-01-01
We will describe a two-photon microscope currently under development at the NASA Glenn Research Center. It is composed of a Coherent Mira 900 tunable, pulsed Titanium:Sapphire laser system, an Olympus Fluoview 300 confocal scanning head, and a Leica DM IRE inverted microscope. It will be used in conjunction with a technique known as fluorescence correlation spectroscopy (FCS) to study intracellular protein dynamics. We will briefly explain the advantages of the two-photon system over a conventional confocal microscope, and provide some preliminary experimental results.
A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.
Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou
2017-01-01
A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY -scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.
Kalkan, Fatih; Zaum, Christopher; Morgenstern, Karina
2012-10-01
A beetle type stage and a flexure scanning stage are combined to form a two stages scanning tunneling microscope (STM). It operates at room temperature in ultrahigh vacuum and is capable of scanning areas up to 300 μm × 450 μm down to resolution on the nanometer scale. This multi-scale STM has been designed and constructed in order to investigate prestructured metallic or semiconducting micro- and nano-structures in real space from atomic-sized structures up to the large-scale environment. The principle of the instrument is demonstrated on two different systems. Gallium nitride based micropillars demonstrate scan areas up to hundreds of micrometers; a Au(111) surface demonstrates nanometer resolution.
Coordinate metrology using scanning probe microscopes
NASA Astrophysics Data System (ADS)
Marinello, F.; Savio, E.; Bariani, P.; Carmignato, S.
2009-08-01
New positioning, probing and measuring strategies in coordinate metrology are needed for the accomplishment of true three-dimensional characterization of microstructures, with uncertainties in the nanometre range. In the present work, the implementation of scanning probe microscopes (SPMs) as systems for coordinate metrology is discussed. A new non-raster measurement approach is proposed, where the probe is moved to sense points along free paths on the sample surface, with no loss of accuracy with respect to traditional raster scanning and scan time reduction. Furthermore, new probes featuring long tips with innovative geometries suitable for coordinate metrology through SPMs are examined and reported.
Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R
2011-05-01
A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces.
Qin, Shengyong; Kim, Tae-Hwan; Wang, Zhouhang; Li, An-Ping
2012-06-01
The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.
Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning
Wang, Thomas D.; Contag, Christopher H.; Mandella, Michael J.; Chan, Ning Y.; Kino, Gordon S.
2007-01-01
We present a novel confocal microscope that has dual-axis architecture and biaxial postobjective scanning for the collection of fluorescence images from biological specimens. This design uses two low-numerical-aperture lenses to achieve high axial resolution and long working distance, and the scanning mirror located distal to the lenses rotates along the orthogonal axes to produce arc-surface images over a large field of view (FOV). With fiber optic coupling, this microscope can potentially be scaled down to millimeter dimensions via microelectromechanical systems (MEMS) technology. We demonstrate a benchtop prototype with a spatial resolution ≤4.4 μm that collects fluorescence images with a high SNR and a good contrast ratio from specimens expressing GFP. Furthermore, the scanning mechanism produces only small differences in aberrations over the image FOV. These results demonstrate proof of concept of the dual-axis confocal architecture for in vivo molecular and cellular imaging. PMID:15250760
Stollenwerk, A. J.; Hurley, N.; Beck, B.; ...
2015-03-19
In this study, we present evidence that subsurface carbon nanoparticles in Bi₂Sr₂CaCu₂O 8+δ can be manipulated with nanometer precision using a scanning tunneling microscope. High resolution images indicate that most of the carbon particles remain subsurface after transport observable as a local increase in height as the particle pushes up on the surface. Tunneling spectra in the vicinity of these protrusions exhibit semiconducting characteristics with a band gap of approximately 1.8 eV, indicating that the incorporation of carbon locally alters the electronic properties near the surface.
Manipulation of nanoparticles of different shapes inside a scanning electron microscope
Polyakov, Boris; Dorogin, Leonid M; Butikova, Jelena; Antsov, Mikk; Oras, Sven; Lõhmus, Rünno; Kink, Ilmar
2014-01-01
Summary In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs) were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM) that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF) with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed. PMID:24605279
Scanning-electron-microscope study of normal-impingement erosion of ductile metals
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Salik, J.
1980-01-01
Scanning electron microscopy was used to characterize the erosion of annealed copper and aluminum surfaces produced by both single- and multiple-particle impacts. Macroscopic 3.2 mm diameter steel balls and microscopic, brittle erodant particles were projected by a gas gun system so as to impact at normal incidence at speeds up to 140 m/sec. During the impacts by the brittle erodant particles, at lower speeds the erosion behavior was similar to that observed for the larger steel balls. At higher velocities, particle fragmentation and the subsequent cutting by the radial wash of debris created a marked change in the erosion mechanism.
Yoshizawa, Shunsuke; Kim, Howon; Kawakami, Takuto; Nagai, Yuki; Nakayama, Tomonobu; Hu, Xiao; Hasegawa, Yukio; Uchihashi, Takashi
2014-12-12
We have studied the superconducting Si(111)-(√7×√3)-In surface using a ³He-based low-temperature scanning tunneling microscope. Zero-bias conductance images taken over a large surface area reveal that vortices are trapped at atomic steps after magnetic fields are applied. The crossover behavior from Pearl to Josephson vortices is clearly identified from their elongated shapes along the steps and significant recovery of superconductivity within the cores. Our numerical calculations combined with experiments clarify that these characteristic features are determined by the relative strength of the interterrace Josephson coupling at the atomic step.
Probing the Inelastic Interactions in Molecular Junctions by Scanning Tunneling Microscope
NASA Astrophysics Data System (ADS)
Xu, Chen
With a sub-Kelvin scanning tunneling microscope, the energy resolution of spectroscopy is improved dramatically. Detailed studies of finer features of spectrum become possible. The asymmetry in the line shape of carbon monoxide vibrational spectra is observed to correlate with the couplings of the molecule to the tip and substrates. The spin-vibronic coupling in the molecular junctions is revisited with two metal phthalocyanine molecules, unveiling sharp spin-vibronic peaks. Finally, thanks to the improved spectrum resolution, the bonding structure of the acyclic compounds molecules is surveyed with STM inelastic tunneling probe, expanding the capability of the innovative high resolution imaging technique.
Regular scanning tunneling microscope tips can be intrinsically chiral.
Tierney, Heather L; Murphy, Colin J; Sykes, E Charles H
2011-01-07
We report our discovery that regular scanning tunneling microscope tips can themselves be chiral. This chirality leads to differences in electron tunneling efficiencies through left- and right-handed molecules, and, when using the tip to electrically excite molecular rotation, large differences in rotation rate were observed which correlated with molecular chirality. As scanning tunneling microscopy is a widely used technique, this result may have unforeseen consequences for the measurement of asymmetric surface phenomena in a variety of important fields.
Regular Scanning Tunneling Microscope Tips can be Intrinsically Chiral
NASA Astrophysics Data System (ADS)
Tierney, Heather L.; Murphy, Colin J.; Sykes, E. Charles H.
2011-01-01
We report our discovery that regular scanning tunneling microscope tips can themselves be chiral. This chirality leads to differences in electron tunneling efficiencies through left- and right-handed molecules, and, when using the tip to electrically excite molecular rotation, large differences in rotation rate were observed which correlated with molecular chirality. As scanning tunneling microscopy is a widely used technique, this result may have unforeseen consequences for the measurement of asymmetric surface phenomena in a variety of important fields.
Scanning tunneling microscope nanoetching method
Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.
1990-01-01
A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.
The Development of a Scanning Soft X-Ray Microscope.
NASA Astrophysics Data System (ADS)
Rarback, Harvey Miles
We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.
Morishita, Shigeyuki; Ishikawa, Ryo; Kohno, Yuji; Sawada, Hidetaka; Shibata, Naoya; Ikuhara, Yuichi
2018-02-01
The achievement of a fine electron probe for high-resolution imaging in scanning transmission electron microscopy requires technological developments, especially in electron optics. For this purpose, we developed a microscope with a fifth-order aberration corrector that operates at 300 kV. The contrast flat region in an experimental Ronchigram, which indicates the aberration-free angle, was expanded to 70 mrad. By using a probe with convergence angle of 40 mrad in the scanning transmission electron microscope at 300 kV, we attained the spatial resolution of 40.5 pm, which is the projected interatomic distance between Ga-Ga atomic columns of GaN observed along [212] direction.
Nazin, G. V.; Wu, S. W.; Ho, W.
2005-01-01
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends. PMID:15956189
Nazin, G V; Wu, S W; Ho, W
2005-06-21
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.
Non linear optical investigations of silver nanoparticles synthesised by curcumin reduction
NASA Astrophysics Data System (ADS)
Dhanya, N. P.
2017-11-01
Metal nanoparticles have considerable applications in assorted fields like medicine, biology, photonics, metallurgy etc. Optical applications of Silver nanoparticles are of significant interest among researchers nowadays. In this paper, we report a single step chemical reduction of silver nanoparticles with Curcumin both as a reducing and stabilising agent at room temperature. Structural, plasmonic and non linear optical properties of the prepared nanoparticles are explored using Scanning Electron Microscope, Transmission Electron Microscope, UV absorption spectrometry, Spectroflurometry and Z scan. UV-Vis absorption studies affirm the Surface Plasmon Resonance (SPR) absorption and spectroflurometric studies announce the emission spectrum of the prepared silvernanoparticles at 520 nm. SEM and TEM images uphold the existence of uniform sized, spherical silvernanoparticles. Nonlinear optical studies are accomplished with the open aperture z scan technique in the nanosecond regime. The nonlinearity is in virtue of saturable absorption, two-photon absorption and excited state absorption. The marked nonlinearity and optical limiting of the Curcumin reduced silvernanoparticles enhances its photonic applications.
Any Way You Slice It—A Comparison of Confocal Microscopy Techniques
Jonkman, James
2015-01-01
The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490
NASA Astrophysics Data System (ADS)
Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang
2018-04-01
In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.
Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A
2013-10-01
We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.
Yang, Jijin; Ferranti, David C; Stern, Lewis A; Sanford, Colin A; Huang, Jason; Ren, Zheng; Qin, Lu-Chang; Hall, Adam R
2011-07-15
We report the formation of solid-state nanopores using a scanning helium ion microscope. The fabrication process offers the advantage of high sample throughput along with fine control over nanopore dimensions, producing single pores with diameters below 4 nm. Electronic noise associated with ion transport through the resultant pores is found to be comparable with levels measured on devices made with the established technique of transmission electron microscope milling. We demonstrate the utility of our nanopores for biomolecular analysis by measuring the passage of double-strand DNA.
Examination of silicon solar cells by means of the Scanning Laser Acoustic Microscope (SLAM)
NASA Technical Reports Server (NTRS)
Vorres, C.; Yuhas, D. E.
1981-01-01
The Scanning Laser Acoustic Microscope produces images of internal structure in materials. The acoustic microscope is an imaging system based upon acoustic rather than electromagnetic waves. Variations in the elastic propertis are primarily responsible for structure visualized in acoustic micrographs. The instrument used in these investigations is the SONOMICROSCOPE 100 which can be operated at ultrasonic frequencies of from 30 MHz to 500 MHz. The examination of the silicon solar cells was made at 100 MHz. Data are presented in the form of photomicrographs.
Compact scanning tunneling microscope for spin polarization measurements.
Kim, Seong Heon; de Lozanne, Alex
2012-10-01
We present a design for a scanning tunneling microscope that operates in ultrahigh vacuum down to liquid helium temperatures in magnetic fields up to 8 T. The main design philosophy is to keep everything compact in order to minimize the consumption of cryogens for initial cool-down and for extended operation. In order to achieve this, new ideas were implemented in the design of the microscope body, dewars, vacuum chamber, manipulators, support frame, and vibration isolation. After a brief description of these designs, the results of initial tests are presented.
Development of a scanning transmission x-ray microscope for the beamline P04 at PETRA III DESY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrianov, Konstantin; Ewald, Johannes; Nisius, Thomas
We present a scanning transmission x-ray microscope (STXM) built on top of our existing modular platform for high resolution imaging experiments. This platform consists of up to three separate vacuum chambers and custom designed piezo stages. These piezo stages are able to move precisely in x-, y- and z-direction, this makes it possible to adjust the components for different imaging modes. During recent experiments the endstation was operated mainly as a transmission x-ray microscope (TXM) [1, 2].
Cryogenic scanning tunneling microscope with a magnetic coarse approach
NASA Astrophysics Data System (ADS)
Davydov, D. N.; Deltour, R.; Horii, N.; Timofeev, V. A.; Grokholski, A. S.
1993-11-01
A compact, rigid, and reliable cryogenic scanning tunneling microscope (CSTM) with a vertical electromagnetic coarse approach system was developed. This device can be used for topographic and local tunneling spectroscopy studies at liquid nitrogen and helium temperatures. Minimal step sizes of 28 nm for the electromagnetic translation device were achieved. The additional possibility of a coarse approach operation in the inertial slip-stick mode, without electromagnets, was successfully tested, making this STM compatible with external magnetic fields. A simple technique for characterizing the STM rigidity has been developed. Preliminary data, taken with this instrument are presented, demonstrating the achievement, at liquid helium temperature, of atomic resolution for topographic studies, and also the possibility of measuring simultaneously superconducting energy gap spectra.
In situ study of live specimens in an environmental scanning electron microscope.
Tihlaříková, Eva; Neděla, Vilém; Shiojiri, Makoto
2013-08-01
In this paper we introduce new methodology for the observation of living biological samples in an environmental scanning electron microscope (ESEM). The methodology is based on an unconventional initiation procedure for ESEM chamber pumping, free from purge-flood cycles, and on the ability to control thermodynamic processes close to the sample. The gradual and gentle change of the working environment from air to water vapor enables the study of not only living samples in dynamic in situ experiments and their manifestation of life (sample walking) but also its experimentally stimulated physiological reactions. Moreover, Monte Carlo simulations of primary electron beam energy losses in a water layer on the sample surface were studied; consequently, the influence of the water thickness on radiation, temperature, or chemical damage of the sample was considered.
NASA Astrophysics Data System (ADS)
Ouma Alunda, Bernard; Lee, Yong Joong; Park, Soyeun
2018-06-01
A typical line-scan rate for a commercial atomic force microscope (AFM) is about 1 Hz. At such a rate, more than four minutes of scanning time is required to obtain an image of 256 × 256 pixels. Despite control electronics of most commercial AFMs permit faster scan rates, default piezoelectric X–Y scanners limit the overall speed of the system. This is a direct consequence of manufacturers choosing a large scan range over the maximum operating speed for a X–Y scanner. Although some AFM manufacturers offer reduced-scan area scanners as an option, the speed improvement is not significant because such scanners do not have large enough reduction in the scan range and are mainly targeted to reducing the overall cost of the AFM systems. In this article, we present a simple parallel-kinematic substitute scanner for a commercial atomic force microscope to afford a higher scanning speed with no other hardware or software upgrade to the original system. Although the scan area reduction is unavoidable, our modified commercial XE-70 AFM from Park Systems has achieved a line scan rate of over 50 Hz, more than 10 times faster than the original, unmodified system. Our flexure-guided X–Y scanner can be a simple drop-in replacement option for enhancing the speed of various aging atomic force microscopes.
Scanned gate microscopy of inter-edge channel scattering in the quantum Hall regime
NASA Astrophysics Data System (ADS)
Woodside, Michael T.; Vale, Chris; McEuen, Paul L.; Kadow, C.; Maranowski, K. D.; Gossard, A. C.
2000-03-01
Novel scanned probe techniques have recently been used to study in detail the microscopic properties of 2D electron gases in the quantum Hall regime [1]. We report local measurements of the scattering between edge states in a quantum Hall conductor with non-equilibrium edge state populations. Using an atomic force microscope (AFM) tip as a local gate to perturb the edge states, we find that the scattering is dominated by individual, microscopic scattering sites, which we directly image and characterise. The dependence of the scattering on the AFM tip voltage reveals that it involves tunneling both through quasi-bound impurity states and through disorder-induced weak links between the edge states. [1] S. H. Tessmer et al., Nature 392, 51 (1998); K. L. McCormick et al., Phys. Rev. B 59, 4654 (1999); A. Yacoby et al., Solid State Comm. 111, 1 (1999).
Jones, B J; Murphy, C R
1994-01-01
The field emission gun scanning electron microscope has been used to investigate morphological changes at the macromolecular level in the glycocalyx of rat uterine luminal epithelial cells during early pregnancy. This very high resolution microscope has allowed visualisation at a level previously unobtainable and has enabled us to establish that dramatic alterations occur in this glycocalyx at the time of blastocyst attachment. On d 1 of pregnancy a prominent, filamentous glycocalyx radiates from the microvilli. However, by d 6 of pregnancy when the microvilli have been replaced by irregular cell surface protrusions, the glycocalyceal filaments are completely lost and the plasma membrane appears smooth and covered with a felt-like coating. These morphological observations suggest a major reorganisation in surface carbohydrates during early pregnancy and extend histochemical observations on the uterine epithelial glycocalyx. Images Fig. 1 Fig. 2 Figs. 3 and 4 PMID:7961152
Larkin, J D; Publicover, N G; Sutko, J L
2011-01-01
In photon event distribution sampling, an image formation technique for scanning microscopes, the maximum likelihood position of origin of each detected photon is acquired as a data set rather than binning photons in pixels. Subsequently, an intensity-related probability density function describing the uncertainty associated with the photon position measurement is applied to each position and individual photon intensity distributions are summed to form an image. Compared to pixel-based images, photon event distribution sampling images exhibit increased signal-to-noise and comparable spatial resolution. Photon event distribution sampling is superior to pixel-based image formation in recognizing the presence of structured (non-random) photon distributions at low photon counts and permits use of non-raster scanning patterns. A photon event distribution sampling based method for localizing single particles derived from a multi-variate normal distribution is more precise than statistical (Gaussian) fitting to pixel-based images. Using the multi-variate normal distribution method, non-raster scanning and a typical confocal microscope, localizations with 8 nm precision were achieved at 10 ms sampling rates with acquisition of ~200 photons per frame. Single nanometre precision was obtained with a greater number of photons per frame. In summary, photon event distribution sampling provides an efficient way to form images when low numbers of photons are involved and permits particle tracking with confocal point-scanning microscopes with nanometre precision deep within specimens. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.
Spectral ophthalmoscopy based on supercontinuum
NASA Astrophysics Data System (ADS)
Cheng, Yueh-Hung; Yu, Jiun-Yann; Wu, Han-Hsuan; Huang, Bo-Jyun; Chu, Shi-Wei
2010-02-01
Confocal scanning laser ophthalmoscope (CSLO) has been established to be an important diagnostic tool for retinopathies like age-related macular degeneration, glaucoma and diabetes. Compared to a confocal laser scanning microscope, CSLO is also capable of providing optical sectioning on retina with the aid of a pinhole, but the microscope objective is replaced by the optics of eye. Since optical spectrum is the fingerprint of local chemical composition, it is attractive to incorporate spectral acquisition into CSLO. However, due to the limitation of laser bandwidth and chromatic/geometric aberration, the scanning systems in current CSLO are not compatible with spectral imaging. Here we demonstrate a spectral CSLO by combining a diffraction-limited broadband scanning system and a supercontinuum laser source. Both optical sectioning capability and sub-cellular resolution are demonstrated on zebrafish's retina. To our knowledge, it is also the first time that CSLO is applied onto the study of fish vision. The versatile spectral CSLO system will be useful to retinopathy diagnosis and neuroscience research.
Nogueira, Luísa; Quatrehomme, Gérald; Bertrand, Marie-France; Rallon, Christophe; Ceinos, Romain; du Jardin, Philippe; Adalian, Pascal; Alunni, Véronique
2017-03-01
This experimental study examined the lesions produced by a hatchet on human bones (tibiae). A total of 30 lesions were produced and examined macroscopically (naked eye) and by stereomicroscopy. 13 of them were also analyzed using scanning electron microscopy. The general shape of the lesion, both edges, both walls, the kerf floor and the extremities were described. The length and maximum width of the lesions were also recorded. The microscopic analysis of the lesions led to the description of a sharp-blunt mechanism. Specific criteria were identified (lateral pushing back, fragmentation of the upraising, fossa dug laterally to the edge and vertical striae) enabling the forensic expert to conclude that a hacking instrument was used. These criteria are easily identifiable using scanning electron microscopy, but can also be observed with stereomicroscopy. Overall, lateral pushing back and vertical striae visible using stereomicroscopy and scanning electron microscopy signal the use of a hacking tool.
Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging.
Schierbaum, Nicolas; Hack, Martin; Betz, Oliver; Schäffer, Tilman E
2018-04-17
The scanning ion conductance microscope (SICM) is a versatile, high-resolution imaging technique that uses an electrolyte-filled nanopipet as a probe. Its noncontact imaging principle makes the SICM uniquely suited for the investigation of soft and delicate surface structures in a liquid environment. The SICM has found an ever-increasing number of applications in chemistry, physics, and biology. However, a drawback of conventional SICMs is their relatively small scan range (typically 100 μm × 100 μm in the lateral and 10 μm in the vertical direction). We have developed a Macro-SICM with an exceedingly large scan range of 25 mm × 25 mm in the lateral and 0.25 mm in the vertical direction. We demonstrate the high versatility of the Macro-SICM by imaging at different length scales: from centimeters (fingerprint, coin) to millimeters (bovine tongue tissue, insect wing) to micrometers (cellular extensions). We applied the Macro-SICM to the study of collective cell migration in epithelial wound healing.
A scanning tunneling microscope for a dilution refrigerator.
Marz, M; Goll, G; Löhneysen, H v
2010-04-01
We present the main features of a home-built scanning tunneling microscope that has been attached to the mixing chamber of a dilution refrigerator. It allows scanning tunneling microscopy and spectroscopy measurements down to the base temperature of the cryostat, T approximately 30 mK, and in applied magnetic fields up to 13 T. The topography of both highly ordered pyrolytic graphite and the dichalcogenide superconductor NbSe(2) has been imaged with atomic resolution down to T approximately 50 mK as determined from a resistance thermometer adjacent to the sample. As a test for a successful operation in magnetic fields, the flux-line lattice of superconducting NbSe(2) in low magnetic fields has been studied. The lattice constant of the Abrikosov lattice shows the expected field dependence proportional to 1/square root of B and measurements in the scanning tunneling spectroscopy mode clearly show the superconductive density of states with Andreev bound states in the vortex core.
Examination of Surveyor 3 parts with the scanning electron microscope and electron microprobe
NASA Technical Reports Server (NTRS)
Chodos, A. A.; Devaney, J. R.; Evens, K. C.
1972-01-01
Two screws and two washers, several small chips of tubing, and a fiber removed from a third screw were examined with the scanning electron microscope and the electron microprobe. The purpose of the examination was to determine the nature of the material on the surface of these samples and to search for the presence of meteoritic material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta
We report the stability and recent performances of a new type of scanning transmission X-ray microscopy. The optics and compact design of the microscope realized mobility and robust performance. Detailed consideration to the vibration control will be described. The insertion device upgraded to elliptical polarization undulator enabled linear dichroism and circular dichroism experiments.
Colello, Raymond J; Tozer, Jordan; Henderson, Scott C
2012-01-01
Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.
Marovitz, W F; Khan, K M
1977-01-01
A method for removal, fixation, microdissection, and drying of early rat otocyst for examination by the scanning electron microscope is elaborated. Tissues were dissected, fixed as for conventional transmission electron microscopy and dried by critical point evaporation using amylacetate as the transitional fluid and carbon dioxide as the pressure head. Otocysts were either dissected at the time of initial fixation, or subsequent to drying. The otocyst of the 12th postcoital day was used as a model system in this preliminary report. Critical point drying retained the overall configuration and the fine ultrastructural detail of the otocyst. The interior otocystic surface was visualized and cilia bearing cells of the luminal surface were identified. Most if not all of these cells had a comspicuous, but short kinocillum which terminated in an ovoid bulb. The scanning electron microscopic appearance was correlated to the transmission electron microscopic image seen in the second paper in this Supplement.
Yoon, Yeo Hun; Kim, Seung Jae; Kim, Dong Hwan
2015-12-01
The scanning electron microscope is used in various fields to go beyond diffraction limits of the optical microscope. However, the electron pathway should be conducted in a vacuum so as not to scatter electrons. The pretreatment of the sample is needed for use in the vacuum. To directly observe large and fully hydrophilic samples without pretreatment, the atmospheric scanning electron microscope (ASEM) is needed. We developed an electron filter unit and an electron detector unit for implementation of the ASEM. The key of the electron filter unit is that electrons are transmitted while air molecules remain untransmitted through the unit. The electron detector unit collected the backscattered electrons. We conducted experiments using the selected materials with Havar foil, carbon film and SiN film. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Atmospheric scanning electron microscope for correlative microscopy.
Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J
2012-01-01
The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.
Lo, T Y; Sim, K S; Tso, C P; Nia, M E
2014-01-01
An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent. © 2014 Wiley Periodicals, Inc.
Iancu, Violeta; Hla, Saw-Wai
2006-01-01
Single chlorophyll-a molecules, a vital resource for the sustenance of life on Earth, have been investigated by using scanning tunneling microscope manipulation and spectroscopy on a gold substrate at 4.6 K. Chlorophyll-a binds on Au(111) via its porphyrin unit while the phytyl-chain is elevated from the surface by the support of four CH3 groups. By injecting tunneling electrons from the scanning tunneling microscope tip, we are able to bend the phytyl-chain, which enables the switching of four molecular conformations in a controlled manner. Statistical analyses and structural calculations reveal that all reversible switching mechanisms are initiated by a single tunneling-electron energy-transfer process, which induces bond rotation within the phytyl-chain. PMID:16954201
Ultra compact multitip scanning tunneling microscope with a diameter of 50 mm.
Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert
2012-03-01
We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or scanning electron microscopy in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called KoalaDrive. The compactness of the KoalaDrive allows building a four-tip STM as small as a single-tip STM with a drift of less than 0.2 nm/min at room temperature and lowest resonance frequencies of 2.5 kHz (xy) and 5.5 kHz (z). We present as examples of the performance of the multitip STM four point measurements of silicide nanowires and graphene.
Band Excitation for Scanning Probe Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, Stephen
2017-01-02
The Band Excitation (BE) technique for scanning probe microscopy uses a precisely determined waveform that contains specific frequencies to excite the cantilever or sample in an atomic force microscope to extract more information, and more reliable information from a sample. There are a myriad of details and complexities associated with implementing the BE technique. There is therefore a need to have a user friendly interface that allows typical microscopists access to this methodology. This software enables users of atomic force microscopes to easily: build complex band-excitation waveforms, set-up the microscope scanning conditions, configure the input and output electronics for generatemore » the waveform as a voltage signal and capture the response of the system, perform analysis on the captured response, and display the results of the measurement.« less
NASA Astrophysics Data System (ADS)
Schroer, Christian G.; Seyrich, Martin; Kahnt, Maik; Botta, Stephan; Döhrmann, Ralph; Falkenberg, Gerald; Garrevoet, Jan; Lyubomirskiy, Mikhail; Scholz, Maria; Schropp, Andreas; Wittwer, Felix
2017-09-01
In recent years, ptychography has revolutionized x-ray microscopy in that it is able to overcome the diffraction limit of x-ray optics, pushing the spatial resolution limit down to a few nanometers. However, due to the weak interaction of x rays with matter, the detection of small features inside a sample requires a high coherent fluence on the sample, a high degree of mechanical stability, and a low background signal from the x-ray microscope. The x-ray scanning microscope PtyNAMi at PETRA III is designed for high-spatial-resolution 3D imaging with high sensitivity. The design concept is presented with a special focus on real-time metrology of the sample position during tomographic scanning microscopy.
Ultrafast scanning probe microscopy
Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.
1995-05-16
An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.
Ultrafast scanning probe microscopy
Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David
1995-01-01
An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.
A pragmatic guide to multiphoton microscope design
Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff
2016-01-01
Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429
A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans
Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing
2017-01-01
A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown. PMID:29270242
NASA Technical Reports Server (NTRS)
Ochoa, Ozden O.
2004-01-01
Accurate determination of the transverse properties of carbon fibers is important for assessment and prediction of local material as well as global structural response of composite components. However the measurements are extremely difficult due to the very small diameters of the fibers (few microns only) and must be conducted within a microscope. In this work, environmental scanning electron microscope (ESEM) and transmission electron microscope (TEM) are used to determine the transverse coefficient of thermal expansion of different carbon fibers as a function of temperature.
Díaz, Florentina; Anjos-Santos, Danielle; Funes, Amparo; Ronderos, María M
2016-01-01
The fourth instar larva of Dasyhelea mediomunda Minaya is described for the first time and a complete description of the pupa is provided, through use of phase-contrast microscope and scanning electron microscope. Studied specimens were collected in a pond connected to a small wetland "mallin" on the Patagonian steppe, Chubut province, Argentina.
Trepte, O; Rokahr, I; Andersson-Engels, S; Carlsson, K
1994-12-01
A spectrometer has been developed for use with a confocal scanning laser microscope. With this unit, spectral information from a single point or a user-defined region within the microscope specimen can be recorded. A glass prism is used to disperse the spectral components of the recorded light over a linear CCD photodiode array with 256 elements. A regulated cooling unit keeps the detector at 277 K, thereby allowing integration times of up to 60 s. The spectral resolving power, lambda/delta lambda, ranges from 350 at lambda = 400 nm to 100 at lambda = 700 nm. Since the entrance aperture of the spectrometer has the same size as the detector pinhole used during normal confocal scanning, the three-dimensional spatial resolution is equivalent to that of normal confocal scanning. Light from the specimen is deflected to the spectrometer by a solenoid controlled mirror, allowing fast and easy switching between normal confocal scanning and spectrometer readings. With this equipment, studies of rodent liver specimens containing porphyrins have been made. The subcellular localization is of interest for the mechanisms of photodynamic therapy (PDT) of malignant tumours. Spectroscopic detection is necessary to distinguish the porphyrin signal from other fluorescent components in the specimen. Two different substances were administered to the tissue, Photofrin, a haematoporphyrin derivative (HPD) and delta-amino levulinic acid (ALA), a precursor to protoporphyrin IX and haem in the haem cycle. Both are substances under clinical trials for PDT of malignant tumours. Following administration of these compounds to the tissue, the potent photosensitizer and fluorescent compound Photofrin, or protoporphyrin IX, respectively, is accumulated.(ABSTRACT TRUNCATED AT 250 WORDS)
Boyde, A; Vesely, P; Gray, C; Jones, S J
1994-01-01
Chick and rat bone-derived cells were mounted in sealed coverslip-covered chambers; individual osteoclasts (but also osteoblasts) were selected and studied at 37 degrees C using three different types of high-speed scanning confocal microscopes: (1) A Noran Tandem Scanning Microscope (TSM) was used with a low light level, cooled CCD camera for image transfer to a Noran TN8502 frame store-based image analysing computer to make time lapse movie sequences using 0.1 s exposure periods, thus losing some of the advantage of the high frame rate of the TSM. Rapid focus adjustment using computer controlled piezo drivers permitted two or more focus planes to be imaged sequentially: thus (with additional light-source shuttering) the reflection confocal image could be alternated with the phase contrast image at a different focus. Individual cells were followed for up to 5 days, suggesting no significant irradiation problem. (2) Exceptional temporal and spatial resolution is available in video rate laser confocal scanning microscopes (VRCSLMs). We used the Noran Odyssey unitary beam VRCSLM with an argon ion laser at 488 nm and acousto-optic deflection (AOD) on the line axis: this instrument is truly and adjustably confocal in the reflection mode. (3) We also used the Lasertec 1LM11 line scan instrument, with an He-Ne laser at 633 nm, and AOD for the frame scan. We discuss the technical problems and merits of the different approaches. The VRCSLMs documented rapid, real-time oscillatory motion: all the methods used show rapid net movement of organelles within bone cells. The interference reflection mode gives particularly strong contrasts in confocal instruments. Phase contrast and other interference methods used in the microscopy of living cells can be used simultaneously in the TSM.
Solid state optical microscope
Young, I.T.
1983-08-09
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.
Solid state optical microscope
Young, Ian T.
1983-01-01
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey; Larionova, Olga; Ulianova, Onega; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Filonova, Nadezhda; Subbotina, Irina; Kalduzova, Irina; Utz, Sergey; Moiseeva, Yulia; Feodorova, Valentina
2018-04-01
Method of speckle-microscopy has been adapted to the problem of detection of Chlamydia trachomatis microbial cells in clinical samples. Prototype of laser scanning speckle-microscope has been designed. Spatial resolution and output characteristics of this microscope have been analyzed for the case of scanning of C. trachomatis bacteria inclusions - Elementary Bodies (EBs) inside the human cells, fixed on the glass. It has been demonstrated, that presence of C. trachomatis microbial cells in the sample can be easily detected using speckle microscopy.
Acquisition of multiple image stacks with a confocal laser scanning microscope
NASA Astrophysics Data System (ADS)
Zuschratter, Werner; Steffen, Thomas; Braun, Katharina; Herzog, Andreas; Michaelis, Bernd; Scheich, Henning
1998-06-01
Image acquisition at high magnification is inevitably correlated with a limited view over the entire tissue section. To overcome this limitation we designed software for multiple image-stack acquisition (3D-MISA) in confocal laser scanning microscopy (CLSM). The system consists of a 4 channel Leica CLSM equipped with a high resolution z- scanning stage mounted on a xy-monitorized stage. The 3D- MISA software is implemented into the microscope scanning software and uses the microscope settings for the movements of the xy-stage. It allows storage and recall of 70 xyz- positions and the automatic 3D-scanning of image arrays between selected xyz-coordinates. The number of images within one array is limited only by the amount of disk space or memory available. Although for most applications the accuracy of the xy-scanning stage is sufficient for a precise alignment of tiled views, the software provides the possibility of an adjustable overlap between two image stacks by shifting the moving steps of the xy-scanning stage. After scanning a tiled image gallery of the extended focus-images of each channel will be displayed on a graphic monitor. In addition, a tiled image gallery of individual focal planes can be created. In summary, the 3D-MISA allows 3D-image acquisition of coherent regions in combination with high resolution of single images.
Novel scanning electron microscope bulge test technique integrated with loading function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chuanwei; Xie, Huimin, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn
2014-10-15
Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplifiedmore » Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.« less
Microstructural and thermal study of Al-Si-Mg/melon shell ash particulate composite
NASA Astrophysics Data System (ADS)
Abdulwahab, M.; Umaru, O. B.; Bawa, M. A.; Jibo, H. A.
The microstructural study via scanning electron microscope (SEM) and thermal study via differential scanning calorimetric (DSC) study of Al-7%Si-0.3Mg/melon shell ash particulate composite has been carried out. The melon shell ash was used in the production of MMC ranging from 5% to 20% at interval of 5% addition using stir casting method. The melon shell ash was characterized using X-ray fluorescent (XRF) that reveal the presence of CaO, SiO2, Al2O3, MgO, and TiO2 as major compounds. The composite was machined and subjected to heat treatment. Microstructural analyses of the composite produced were done using scanning electron microscope (SEM). The microstructure obtained reveals a dark ceramic (reinforcer) and white metallic phase. Equally, the 5 wt% DSC result gives better thermal conductivity than other proportions (10 wt%, 15 wt%, and 20 wt%). These results showed that an improved property of Al-Si-Mg alloy was achieved using melon shell ash particles as reinforcement up to a maximum of 20 wt% for microstructural and 5% wt DSC respectively.
Nasu, Tetsuo
2005-10-01
The resin casts of the respiratory and vascular systems in pigeon lung were examined using a scanning electron microscope. The primary bronchi branched to form many secondary bronchi that anastomosed with each other via the parabronchi. Numerous infundibula protruded from the parabronchi via the atria and ramified into the air capillaries. The pulmonary artery entered into the lung and branched into three vessels that coursed the interparabronchial parts. The intraparabronchial arterioles penetrated the gas-exchange tissue to form the anastomosing networks of blood capillaries. The observation of the double casts of the respiratory and vascular systems revealed three-dimensional complicated networks of air capillaries and blood capillaries.
The research progress of metrological 248nm deep ultraviolent microscope inspection device
NASA Astrophysics Data System (ADS)
Wang, Zhi-xin; Li, Qi; Gao, Si-tian; Shi, Yu-shu; Li, Wei; Li, Shi
2016-01-01
In lithography process, the precision of wafer pattern to a large extent depends on the geometric dimensioning and tolerance of photomasks when accuracy of lithography aligner is certain. Since the minimum linewidth (Critical Dimension) of the aligner exposing shrinks to a few tens of nanometers in size, one-tenth of tolerance errors in fabrication may lead to microchip function failure, so it is very important to calibrate these errors of photomasks. Among different error measurement instruments, deep ultraviolent (DUV) microscope because of its high resolution, as well as its advantages compared to scanning probe microscope restrained by measuring range and scanning electron microscope restrained by vacuum environment, makes itself the most suitable apparatus. But currently there is very few DUV microscope adopting 248nm optical system, means it can attain 80nm resolution; furthermore, there is almost no DUV microscope possessing traceable calibration capability. For these reason, the National Institute of Metrology, China is developing a metrological 248nm DUV microscope mainly consists of DUV microscopic components, PZT and air supporting stages as well as interferometer calibration framework. In DUV microscopic component, the Köhler high aperture transmit condenser, DUV splitting optical elements and PMT pinhole scanning elements are built. In PZT and air supporting stages, a novel PZT actuating flexural hinge stage nested separate X, Y direction kinematics and a friction wheel driving long range air supporting stage are researched. In interferometer framework, a heterodyne multi-pass interferometer measures XY axis translation and Z axis rotation through Zerodur mirror mounted on stage. It is expected the apparatus has the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.
Design and calibration of a vacuum compatible scanning tunneling microscope
NASA Technical Reports Server (NTRS)
Abel, Phillip B.
1990-01-01
A vacuum compatible scanning tunneling microscope was designed and built, capable of imaging solid surfaces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting stubs standard to a commercially available surface analysis system. Image collection and display is computer controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are presented.
Practical application of HgI2 detectors to a space-flight scanning electron microscope
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.
1989-01-01
Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.
Kasaboğlu, Oğuzcan; Er, Nuray; Tümer, Celal; Akkocaoğlu, Murat
2004-10-01
Sialoliths are common in the submandibular gland and its duct system. The exact cause of formation of a sialolith is still a matter of debate. The aim of this study was to analyze 6 sialoliths ultrastructurally to determine their development mechanism in the submandibular salivary glands. Six sialoliths retrieved from the hilus and duct of the submandibular salivary glands of 6 patients with sialadenitis were analyzed ultrastructurally by scanning electron microscope and x-ray diffractometer. Scanning electron microscope revealed mainly irregular, partly rudely hexagonal, needle-like and plate-shaped crystals. The cross-section from the surface to the inner part of the sialoliths showed no organic material. X-ray diffraction showed that the sialoliths were composed of hydroxyapatite crystals. Energy dispersive x-ray microanalysis showed that all of the samples contained high levels of Ca and P, and small amounts of Mg, Na, Cl, Si, Fe, and K. The main structures of the submandibular sialoliths were found to be hydroxyapatite crystals. No organic cores were observed in the central parts of the sialoliths. In accordance with these preliminary results, sialoliths in the submandibular salivary glands may arise secondary to sialadenitis, but not via a luminal organic nidus.
Ozbay, Baris N.; Losacco, Justin T.; Cormack, Robert; Weir, Richard; Bright, Victor M.; Gopinath, Juliet T.; Restrepo, Diego; Gibson, Emily A.
2015-01-01
We report a miniature, lightweight fiber-coupled confocal fluorescence microscope that incorporates an electrowetting variable focus lens to provide axial scanning for full three-dimensional (3D) imaging. Lateral scanning is accomplished by coupling our device to a laser-scanning confocal microscope through a coherent imaging fiber-bundle. The optical components of the device are combined in a custom 3D-printed adapter with an assembled weight of <2 g that can be mounted onto the head of a mouse. Confocal sectioning provides an axial resolution of ~12 µm and an axial scan range of ~80 µm. The lateral field-of-view is 300 µm, and the lateral resolution is 1.8 µm. We determined these parameters by imaging fixed sections of mouse neuronal tissue labeled with green fluorescent protein (GFP) and fluorescent bead samples in agarose gel. To demonstrate viability for imaging intact tissue, we resolved multiple optical sections of ex vivo mouse olfactory nerve fibers expressing yellow fluorescent protein (YFP). PMID:26030555
Ordered Structure Formed by Biologically Related Molecules
NASA Astrophysics Data System (ADS)
Hatta, Ichiro; Nishino, Junichiro; Sumi, Akinori; Hibino, Masahiro
1995-07-01
The two-dimensional arrangement of biologically related molecules was studied by means of scanning probe microscopy. For monolayers of fatty acid molecules with a saturated hydrocarbon chain adsorbed on a graphite substrate, in the scanning tunneling microscope image, the position associated with the carbon atoms was clearly distinguished. In addition, based on the image for fatty acid molecules with an unsaturated hydrocarbon chain, at the position of a double bond, local electrical conductance was found to increase. Based on the images, it was pointed out that not the position of each carbon but the interaction between a graphite substrate and an alkyl chain plays an important role in imaging. On the other hand, for the surface of Langmuir-Blodgett films composed of phosphatidic acids with cations, the scanning force microscope image shows, for the first time, evidence of the methyl ends in the arrangement of phospholipid molecules.
A combined confocal and magnetic resonance microscope for biological studies
NASA Astrophysics Data System (ADS)
Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Holtom, Gary R.; Hopkins, Derek F.; Parkinson, Christopher I.; Weber, Thomas J.; Wind, Robert A.
2002-12-01
Complementary data acquired with different microscopy techniques provide a basis for establishing a more comprehensive understanding of cell function in health and disease, particularly when results acquired with different methodologies can be correlated in time and space. In this article, a novel microscope is described for studying live cells simultaneously with both confocal scanning laser fluorescence optical microscopy and magnetic resonance microscopy. The various design considerations necessary for integrating these two complementary techniques are discussed, the layout and specifications of the instrument are given, and examples of confocal and magnetic resonance images of large frog cells and model tumor spheroids obtained with the compound microscope are presented.
Boevé, M H; Vrensen, G F; Willekens, B L; Stades, F C; van der Linde-Sipman, J S
1993-01-01
This study provides scanning electron microscopic observations on the early morphogenesis of persistent hyperplastic tunica vasculosa lentis and primary vitreous (PHTVL/PHPV) in canine fetuses at days 28 35 postcoitum (D28 and D35). From previous studies regarding PHTVL/PHPV it is known that a retrolental plaque of fibrovascular tissue is present in eyes of affected canine fetuses from the D33 stage. The contribution of vitreous cells to the formation of the plaque is supported by the results of this study. The lens capsules at the stages described were not found to contain abnormalities such as transparent (thinner) parts or rents, as have been described for postnatal cases of PHTVL/PHPV. These findings support the hypothesis that the capsular anomalies observed in postnatal patients are secondary entities.
PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy
NASA Astrophysics Data System (ADS)
Zandvliet, Harold J. W.; Lin, Nian
2010-07-01
Scanning tunnelling microscopy has revolutionized our ability to image, manipulate, and investigate solid surfaces on the length scale of individual atoms and molecules. The strength of this technique lies in its imaging capabilities, since for many scientists 'seeing is believing'. However, scanning tunnelling microscopy also suffers from a severe limitation, namely its poor time resolution. Recording a scanning tunnelling microscopy image typically requires a few tens of seconds for a conventional scanning tunnelling microscope to a fraction of a second for a specially designed fast scanning tunnelling microscope. Designing and building such a fast scanning tunnelling microscope is a formidable task in itself and therefore, only a limited number of these microscopes have been built [1]. There is, however, another alternative route to significantly enhance the time resolution of a scanning tunnelling microscope. In this alternative method, the tunnelling current is measured as a function of time with the feedback loop switched off. The time resolution is determined by the bandwidth of the IV converter rather than the cut-off frequency of the feedback electronics. Such an approach requires a stable microscope and goes, of course, at the expense of spatial information. In this issue, we have collected a set of papers that gives an impression of the current status of this rapidly emerging field [2]. One of the very first attempts to extract information from tunnel current fluctuations was reported by Tringides' group in the mid-1990s [3]. They showed that the collective diffusion coefficient can be extracted from the autocorrelation of the time-dependent tunnelling current fluctuations produced by atom motion in and out of the tunnelling junction. In general, current-time traces provide direct information on switching/conformation rates and distributions of residence times. In the case where these processes are thermally induced it is rather straightforward to map out the potential landscape of the system (often a molecule or an atom) under study [4, 5]. However, the dynamical processes might also be induced by the tunnelling process itself [6, 7]. In the field of molecular science, excited single molecule experiments have been especially performed [8]. As a nice example, we refer to the work of Sykes' group [9] on thioether molecular rotors. In addition, several groups explore the possibility of combining time-resolved scanning tunnelling microscopy with optical techniques [10, 11]. Although the majority of studies that have been performed so far focus on rather simple systems under nearly ideal and well-defined conditions, we anticipate that time-resolved scanning tunnelling microscopy can also be applied in other research areas, such as biology and soft condensed matter, where the experimental conditions are often less ideal. We hope that readers will enjoy this collection of papers and that it will trigger them to further explore the possibilities of this simple, but powerful technique. References [1] Besenbacher F, Laegsgaard E and Stengaard I 2005 Mater. Today 8 26 [2] van Houselt A and Zandvliet H J W 2010 Rev. Mod. Phys. 82 1593 [3] Tringides M C and Hupalo M 2010 J. Phys.: Condens. Matter 22 264002 [4] Ronci F, Colonna S, Cricenti A and Le Lay G 2010 J. Phys.: Condens. Matter 22 264003 [5] van Houselt A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264004 [6] Sprodowski C, Mehlhorn M and Morgenstern K 2010 J. Phys.: Condens. Matter 22 264005 [7] Saedi A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264007 [8] Sloan P A 2010 J. Phys.: Condens. Matter 22 264001 [9] Jewell A D, Tierney H L, Baber A E, Iski E V, Laha M M and Sykes E C H 2010 J. Phys.: Condens. Matter 22 264006 [10] Riedel D 2010 J. Phys.: Condens. Matter 22 264009 [11] Terada Y, Yoshida S, Takeuchi O and Shigekawa H 2010 J. Phys.: Condens. Matter 22 264008
Integrated microfluidic probe station.
Perrault, C M; Qasaimeh, M A; Brastaviceanu, T; Anderson, K; Kabakibo, Y; Juncker, D
2010-11-01
The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution--thus hydrodynamically confining the microjet--and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.
Direct observation of the actin filament by tip-scan atomic force microscopy
Narita, Akihiro; Usukura, Eiji; Yagi, Akira; Tateyama, Kiyohiko; Akizuki, Shogo; Kikumoto, Mahito; Matsumoto, Tomoharu; Maéda, Yuichiro; Ito, Shuichi; Usukura, Jiro
2016-01-01
Actin filaments, the actin–myosin complex and the actin–tropomyosin complex were observed by a tip-scan atomic force microscope (AFM), which was recently developed by Olympus as the AFM part of a correlative microscope. This newly developed AFM uses cantilevers of similar size as stage-scan AFMs to improve substantially the spatial and temporal resolution. Such an approach has previously never been possible by a tip-scan system, in which a cantilever moves in the x, y and z directions. We evaluated the performance of this developed tip-scan AFM by observing the molecular structure of actin filaments and the actin–tropomyosin complex. In the image of the actin filament, the molecular interval of the actin subunits (∼5.5 nm) was clearly observed as stripes. From the shape of the stripes, the polarity of the actin filament was directly determined and the results were consistent with the polarity determined by myosin binding. In the image of the actin–tropomyosin complex, each tropomyosin molecule (∼2 nm in diameter) on the actin filament was directly observed without averaging images of different molecules. Each tropomyosin molecule on the actin filament has never been directly observed by AFM or electron microscopy. Thus, our developed tip-scan AFM offers significant potential in observing purified proteins and cellular structures at nanometer resolution. Current results represent an important step in the development of a new correlative microscope to observe nm-order structures at an acceptable frame rate (∼10 s/frame) by AFM at the position indicated by the fluorescent dye observed under a light microscope. PMID:27242058
High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum
NASA Astrophysics Data System (ADS)
Steidtner, Jens; Pettinger, Bruno
2007-10-01
An optical microscope based on tip-enhanced optical processes that can be used for studies on adsorbates as well as thin layers and nanostructures is presented. The microscope provides chemical and topographic informations with a resolution of a few nanometers and can be employed in ultrahigh vacuum as well as gas phase. The construction involves a number of improvements compared to conventional instruments. The central idea is to mount, within an UHV system, an optical platform with all necessary optical elements to a rigid frame that also carries the scanning tunneling microscope unit and to integrate a high numerical aperture parabolic mirror between the scanning probe microscope head and the sample. The parabolic mirror serves to focus the incident light and to collect a large fraction of the scattered light. The first experimental results of Raman measurements on silicon samples as well as brilliant cresyl blue layers on single crystalline gold and platinum surfaces in ultrahigh vacuum are presented. For dye adsorbates a Raman enhancement of ˜106 and a net signal gain of up to 4000 was observed. The focus diameter (˜λ/2) was measured by Raman imaging the focal region on a Si surface. The requirements of the parabolic mirror in terms of alignment accuracy were experimentally determined as well.
Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope
Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki
2015-01-01
Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874
Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope
NASA Astrophysics Data System (ADS)
Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki
2015-10-01
Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.
Transmission environmental scanning electron microscope with scintillation gaseous detection device.
Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios
2015-03-01
A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.
Attur, Kailash; Joy, Mathew T; Karim, Riyas; Anil Kumar, V J; Deepika, C; Ahmed, Haseena
2016-08-01
The aim of the present study was to evaluate the efficiency of different endodontic irrigants in the removal of smear layer through scanning electron microscopic image analysis. The present in vitro study was carried out on 45 single-rooted extracted human mandibular premolar teeth with single canal and complete root formation. Teeth were randomly assigned to three groups with 15 teeth in each group. Group I samples were irrigated with 17% ethylenediaminetetraacetic (EDTA) irrigation, Group II with 7% maleic acid irrigation, and Group III with 2% chlorhexidine irrigation. Scanning electron microscope evaluation was done for the assessment of smear layer removal in the coronal, middle, and apical thirds. Comparison of the smear layer removal between the three different groups was done by Kruskal-Wallis test, followed by Mann-Whitney U test for comparing individual groups. A P value less than 0.05 was considered to be statistically significant. Statistically significant difference was seen between the two test groups (17% EDTA vs. 7% maleic acid and 17% EDTA vs. 2% chlorhexidine) in smear layer removal at coronal, middle, and apical thirds of the root canal. The most efficient smear layer removal was seen in Group I with 17% EDTA irrigation compared with other groups (P < 0.05) and the least by 2% chlorhexidine. The present study shows that 17% EDTA efficiently removes the smear layer from root canal walls.
Chandra, Vinay; Gandi, Padma; Shivanna, Anil Kumar; Srinivas, Siva; Himgiri, S; Nischith, K G
2013-07-01
To evaluate the efficacy of NaviTip FX in removing the canal debris during root canal preparation using scanning electron microscopic study. Thirty single rooted teeth with completely formed apices were used in this study. Standard endodontic access cavity preparations were performed. Then the teeth were randomly divided into two groups: groups 1 and 2 of 15 teeth each group. For group 1, NaviTip FX (brush covered needle) was used to irrigate the canal with 5.25% sodium hypochlorite after each instrument use. For group 2, NaviTip (brushless needle) was used for irrigation following each instrument use. ProTaper rotary files were used for the canal preparation. The teeth were then cleaned and dried before splitting them into two halves. The half with most visible part of the apex was used for scanning electron microscopic evaluation. The results were statistically analyzed using the Mann-Whitney U-test at significance level p < 0.005. The mean values for coronal and middle third of group 1 showed lower debris scores than group 2 and this difference was statistically significant at a p-value 0.01 and 0.05 respectively, but no significance difference between them at the apical third at a p-value of < 0.05. The NaviTip FX (brush covered needle) showed effectively better canal wall debris removal than the NaviTip (brushless needle).
Seamless stitching of tile scan microscope images.
Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R
2015-06-01
For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Tanaka, Hiroshi; Okumura, Naoki; Koizumi, Noriko; Sotozono, Chie; Sumii, Yasuhiro; Kinoshita, Shigeru
2017-05-01
To observe the most peripheral region of the corneal endothelial cell (CEC) layer as long as optically recordable by use of a prototype slit-scanning wide-field contact specular microscope and produce a panoramic image to evaluate the variation of CEC density with ageing. Observational case series study. This study involved 15 eyes of 15 normal healthy subjects divided into three groups according to age: A (20-40 years), B (41-60 years) and C (>60 years). The corneal endothelial layer of each eye was recorded in a horizontal direction, from nasal to temporal, with a slit-scanning wide-field contact specular microscope (Konan) and endothelial cell density (ECD) in three specific regions (central, mid-peripheral, and peripheral) was automatically calculated via built-in analysis software. Corneal endothelial images from near the surgical limbus to limbus in all eyes were clearly recorded and panoramic images were made by combining still images. ECD in groups A, B and C were 2809±186, 2717±91 and 2580±129 cells/mm 2 at the centre, 2902±242, 2772±97 and 2604±187 cells/mm 2 at the mid-periphery and 2893±308, 2691±99 and 2533±112 cells/mm 2 at the periphery. Significance differences in ECD was found between groups A and C in all regions and groups between B and C at mid-peripheral region. A prototype slit-scanning wide-field contact specular microscope enabled us to record the endothelial layer from the surgical limbus to limbus of the cornea and compare specific areas among subjects, and showed that ECD in each region of the cornea decreases with ageing. UMIN000021264, Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
RTSPM: real-time Linux control software for scanning probe microscopy.
Chandrasekhar, V; Mehta, M M
2013-01-01
Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.
NASA Technical Reports Server (NTRS)
Dholakia, Geetha R.; Fan, Wendy; Koehne, Jessica; Han, Jie; Meyyappan, M.
2003-01-01
Conjugated phenylene(ethynylene) molecular wires are of interest as potential candidates for molecular electronic devices. Scanning tunneling microscopic study of the topography and current-voltage (I-V) characteristics of self-assembled monolayers of two types of molecular wires are presented here. The study shows that the topography and I-Vs, for small scan voltages, of the two wires are quite similar and that the electronic and structural changes introduced by the substitution of an electronegative N atom in the central phenyl ring of these wires does not significantly alter the self-assembly or the transport properties.
A combined optical, SEM and STM study of growth spirals on the polytypic cadmium iodide crystals
NASA Astrophysics Data System (ADS)
Singh, Rajendra; Samanta, S. B.; Narlikar, A. V.; Trigunayat, G. C.
2000-05-01
Some novel results of a combined sequential study of growth spirals on the basal surface of the richly polytypic CdI 2 crystals by optical microscopy, scanning electron microscopy (SEM) and scanning tunneling microscopy (STM) are presented and discussed. Under the high resolution and magnification achieved in the scanning electron microscope, the growth steps of large heights seen in the optical micrographs are found to have a large number of additional steps of smaller heights existing between any two adjacent large height growth steps. When further seen by a scanning tunneling microscope, which provides still higher resolution, sequences of unit substeps, each of height equal to the unit cell height of the underlying polytype, are revealed to exist on the surface. Several large steps also lie between the unit steps, with heights equal to an integral multiple of either the unit cell height of the underlying polytype or the thickness of a molecular sheet I-Cd-I. It is suggested that initially a giant screw dislocation may form by brittle fracture of the crystal platelet, which may gradually decompose into numerous unit dislocations during subsequent crystal growth.
King's College London/SERC Daresbury Scanning X-ray Microscope
NASA Astrophysics Data System (ADS)
Burge, R. E.; Browne, M. T.; Buckley, C. J.; Cave, R.; Charalambous, P.; Duke, P. J.; Freake, A. J.; Hare, A.; Hills, C. P. B.; Kenney, J. M.; Kuriyama, T.; Lidiard, D.; MacDowell, A.; Michette, A. G.; Morrison, G. R.; Ogawa, K.; Rogoyski, A. M.
1986-01-01
The present status of the soft X-ray microscope is described and a short description is given, with likely development paths for the future, of the Daresbury synchrotron source, the monochromator, the high-resolution zone-plates, the scanning specimen stage, image recording and methods of image enhancement. It is considered that the instrumental developments needed for images at 10 nm resolution will take a further two or three years.
Nanoscale Optical Imaging and Spectroscopy from Visible to Mid-Infrared
2015-11-13
field characterization of nanoscale materials, it also complements the near- field scanning optical microscope currently available in the PI’s lab...field scanning optical microscope currently available in the PI’s lab. This equipment will begin making major impacts on at least three current DoD...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6
Scanning electron microscope view of iron crystal
NASA Technical Reports Server (NTRS)
1972-01-01
A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).
Scanning electron microscope view of iron crystal
1972-11-10
A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).
Schröter, Tobias J.; Johnson, Shane B.; John, Kerstin; Santi, Peter A.
2011-01-01
We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. PMID:22254177
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J.; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method. PMID:22368463
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.
Watabe, Tsukasa; Amanov, Auezhan; Tsuboi, Ryo; Sasaki, Shinya
2013-12-01
Diamond-like carbon (DLC) coatings typically show low friction and high wear resistance. In this study, the friction and fretting wear characteristics of PVD, CVD and CVD-Si DLC coatings were investigated against an alumina (Al2O3) ball under water-lubricated fretting conditions. The objective of this study is to investigate and compare the friction and fretting wear characteristics of those DLC coatings at various fretting frequencies. The test results showed that the PVD DLC coating led to a lower friction coefficient and a higher resistance to fretting wear compared to those of the CVD and CVD-Si DLC coatings. However, the CVD DLC coating showed that the fretting wear resistance decreases with increasing frequency, while no significant difference in fretting wear resistances of the PVD and CVD-Si DLC coatings was observed. Quantitative surface analyses of the specimens were performed using an energy dispersive spectroscopy (EDS), a laser scanning microscope (LSM), a scanning electron microscope (SEM), an atomic force microscope (AFM) and the Raman spectroscopy.
Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2007-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously
Tracking of cells with a compact microscope imaging system with intelligent controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2007-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2006-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology
Yin, C.; Glaser, A.K.; Leigh, S. Y.; Chen, Y.; Wei, L.; Pillai, P. C. S.; Rosenberg, M. C.; Abeytunge, S.; Peterson, G.; Glazowski, C.; Sanai, N.; Mandella, M. J.; Rajadhyaksha, M.; Liu, J. T. C.
2016-01-01
There is a need for miniature optical-sectioning microscopes to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology. Such devices could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Miniature confocal microscopes have been developed by various researchers and corporations to enable optical sectioning of highly scattering tissues, all of which have necessitated various trade-offs in size, speed, depth selectivity, field of view, resolution, image contrast, and sensitivity. In this study, a miniature line-scanned (LS) dual-axis confocal (DAC) microscope, with a 12-mm diameter distal tip, has been developed for clinical point-of-care pathology. The dual-axis architecture has demonstrated an advantage over the conventional single-axis confocal configuration for reducing background noise from out-of-focus and multiply scattered light. The use of line scanning enables fast frame rates (16 frames/sec is demonstrated here, but faster rates are possible), which mitigates motion artifacts of a hand-held device during clinical use. We have developed a method to actively align the illumination and collection beams in a DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo clinical use, enables our device to achieve an optical-sectioning thickness and lateral resolution of 2.0 and 1.1 microns respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate the clinical potential of this high-speed optical-sectioning microscopy device. PMID:26977337
Zhang, L; Miyamachi, T; Tomanić, T; Dehm, R; Wulfhekel, W
2011-10-01
We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lev, Benjamin
The SQCRAMscope, Scanning Quantum Cryogenic Atom Microscope, is a novel scanning probe microscope we developed during this DOE fund period. It is now capable of imaging transport in cryogenically cooled solid-state samples, as we have recently demonstrated with iron-based pnictide superconductors. As such, it opens a new frontier in the quantum-based metrology of materials and is the first example of the direct marriage of ultracold AMO physics with condensed matter physics. We predict the SQCRAMscope will become an important element in the toolbox for exploring strongly correlated and topologically nontrivial materials.
Development of first ever scanning probe microscopy capabilities for plutonium
NASA Astrophysics Data System (ADS)
Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.
2017-04-01
Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.
Making Mn substitutional impurities in InAs using a scanning tunneling microscope.
Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A
2009-12-01
We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.
Development of first ever scanning probe microscopy capabilities for plutonium
Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; ...
2017-04-01
Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. In conclusion, these first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.
NASA Astrophysics Data System (ADS)
Yamashita, Yoshifumi; Nakata, Ryu; Nishikawa, Takeshi; Hada, Masaki; Hayashi, Yasuhiko
2018-04-01
We studied the dynamics of the expansion of a Shockley-type stacking fault (SSF) with 30° Si(g) partial dislocations (PDs) using a scanning electron microscope. We observed SSFs as dark lines (DLs), which formed the contrast at the intersection between the surface and the SSF on the (0001) face inclined by 8° from the surface. We performed experiments at different electron-beam scanning speeds, observing magnifications, and irradiation areas. The results indicated that the elongation of a DL during one-frame scanning depended on the time for which the electron beam irradiated the PD segment in the frame of view. From these results, we derived a formula to express the velocity of the PD using the elongation rate of the corresponding DL during one-frame scanning. We also obtained the result that the elongation velocity of the DL was not influenced by changing the direction in which the electron beam irradiates the PD. From this result, we deduced that the geometrical kink motion of the PD was enhanced by diffusing carriers that were generated by the electron-beam irradiation.
Kim, Jiye; Kim, MinJung; An, JinWook; Kim, Yunje
2016-05-01
The aim of this study was to verify that the combination of focused ion beam (FIB) and scanning electron microscope/energy-dispersive X-ray (SEM/EDX) could be applied to determine the sequence of line crossings. The samples were transferred into FIB/SEM for FIB milling and an imaging operation. EDX was able to explore the chemical components and the corresponding elemental distribution in the intersection. The technique was successful in determining the sequence of heterogeneous line intersections produced using gel pens and red sealing ink with highest success rate (100% correctness). These observations show that the FIB/SEM was the appropriate instrument for an overall examination of document. © 2016 American Academy of Forensic Sciences.
Herz, Markus; Bouvron, Samuel; Ćavar, Elizabeta; Fonin, Mikhail; Belzig, Wolfgang; Scheer, Elke
2013-10-21
We present a measurement scheme that enables quantitative detection of the shot noise in a scanning tunnelling microscope while scanning the sample. As test objects we study defect structures produced on an iridium single crystal at low temperatures. The defect structures appear in the constant current images as protrusions with curvature radii well below the atomic diameter. The measured power spectral density of the noise is very near to the quantum limit with Fano factor F = 1. While the constant current images show detailed structures expected for tunnelling involving d-atomic orbitals of Ir, we find the current noise to be without pronounced spatial variation as expected for shot noise arising from statistically independent events.
In situ measurements of human articular cartilage stiffness by means of a scanning force microscope
NASA Astrophysics Data System (ADS)
Imer, Raphaël; Akiyama, Terunobu; de Rooij, Nico F.; Stolz, Martin; Aebi, Ueli; Kilger, Robert; Friederich, Niklaus F.; Wirz, Dieter; Daniels, A. U.; Staufer, Urs
2007-03-01
Osteoarthritis is a painful and disabling progressive joint disease, characterized by degradation of articular cartilage. In order to study this disease at early stages, we have miniaturized and integrated a complete scanning force microscope into a standard arthroscopic device fitting through a standard orthopedic canula. This instrument will allow orthopedic surgeons to measure the mechanical properties of articular cartilage at the nanometer and micrometer scale in-vivo during a standard arthroscopy. An orthopedic surgeon assessed the handling of the instrument. First measurements of the elasticity-modulus of human cartilage were recorded in a cadaver knee non minimal invasive. Second, minimally invasive experiments were performed using arthroscopic instruments. Load-displacement curves were successfully recorded.
In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope
NASA Technical Reports Server (NTRS)
Manoharan, M.; Lewandowski, J. J.
1989-01-01
Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nafisi, Kourosh; Ranau, Werner; Hemminger, John C.
2001-01-01
We present a new ultrahigh vacuum (UHV) chamber for surface analysis and microscopy at controlled, variable temperatures. The new instrument allows surface analysis with Auger electron spectroscopy, low energy electron diffraction, quadrupole mass spectrometer, argon ion sputtering gun, and a variable temperature scanning tunneling microscope (VT-STM). In this system, we introduce a novel procedure for transferring a sample off a conventional UHV manipulator and onto a scanning tunneling microscope in the conventional ''beetle'' geometry, without disconnecting the heating or thermocouple wires. The microscope, a modified version of the Besocke beetle microscope, is mounted on a 2.75 in. outer diameter UHVmore » flange and is directly attached to the base of the chamber. The sample is attached to a tripod sample holder that is held by the main manipulator. Under UHV conditions the tripod sample holder can be removed from the main manipulator and placed onto the STM. The VT-STM has the capability of acquiring images between the temperature range of 180--500 K. The performance of the chamber is demonstrated here by producing an ordered array of island vacancy defects on a Pt(111) surface and obtaining STM images of these defects.« less
Scanning tunneling microscopy and atomic force microscopy: application to biology and technology.
Hansma, P K; Elings, V B; Marti, O; Bracker, C E
1988-10-14
The scanning tunneling microscope (STM) and the atomic force microscope (AFM) are scanning probe microscopes capable of resolving surface detail down to the atomic level. The potential of these microscopes for revealing subtle details of structure is illustrated by atomic resolution images including graphite, an organic conductor, an insulating layered compound, and individual adsorbed oxygen atoms on a semiconductor. Application of the STM for imaging biological materials directly has been hampered by the poor electron conductivity of most biological samples. The use of thin conductive metal coatings and replicas has made it possible to image some biological samples, as indicated by recently obtained images of a recA-DNA complex, a phospholipid bilayer, and an enzyme crystal. The potential of the AFM, which does not require a conductive sample, is shown with molecular resolution images of a nonconducting organic monolayer and an amino acid crystal that reveals individual methyl groups on the ends of the amino acids. Applications of these new microscopes to technology are demonstrated with images of an optical disk stamper, a diffraction grating, a thin-film magnetic recording head, and a diamond cutting tool. The STM has even been used to improve the quality of diffraction gratings and magnetic recording heads.
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy
1989-01-01
Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.
Terrestrial Clay under Microscope
2008-09-30
A scanning electron microscope captured this image of terresterial soil containing a phyllosilicate mineral from Koua Bocca, Ivory Coast, West Africa. This soil shares some similarities with Martian soil scooped by NASA Phoenix Lander.
NASA Astrophysics Data System (ADS)
Foley, Andrew; Alam, Khan; Lin, Wenzhi; Wang, Kangkang; Chinchore, Abhijit; Corbett, Joseph; Savage, Alan; Chen, Tianjiao; Shi, Meng; Pak, Jeongihm; Smith, Arthur
2014-03-01
A custom low-temperature (4.2 K) scanning tunneling microscope system has been developed which is combined directly with a custom molecular beam epitaxy facility (and also including pulsed laser epitaxy) for the purpose of studying surface nanomagnetism of complex spintronic materials down to the atomic scale. For purposes of carrying out spin-polarized STM measurements, the microscope is built into a split-coil, 4.5 Tesla superconducting magnet system where the magnetic field can be applied normal to the sample surface; since, as a result, the microscope does not include eddy current damping, vibration isolation is achieved using a unique combination of two stages of pneumatic isolators along with an acoustical noise shield, in addition to the use of a highly stable as well as modular `Pan'-style STM design with a high Q factor. First 4.2 K results reveal, with clear atomic resolution, various reconstructions on wurtzite GaN c-plane surfaces grown by MBE, including the c(6x12) on N-polar GaN(0001). Details of the system design and functionality will be presented.
Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.
Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro
2018-06-07
Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.
Alkali layered compounds interfaces for energy conversion and energy storage
NASA Technical Reports Server (NTRS)
Papageorgopoulos, Chris A.
1996-01-01
During year one a new ultra-high vacuum, an Ar(+) ion sputterer, a low energy electron diffraction (LEED) system, an Auger electron spectrometer (AES), a work function measurement device with a Kelvin probe, and related accessories were used. The study found a focus in the adsorption of chalcogenides on Si and III-V compound semiconductors. In the second year, a scanning tunneling microscope was obtained along with a quadrapole mass spectrometer, power supplies, a computer, a chart recorder, etc. We started the systematic study on the adsorption of chalcogenides on the compound semiconductor surfaces. The third year saw the mounting of the scanning tunneling microscope (STM) on the existing UHV system. The investigation continued with the adsorption of Cs (alkali) on S-covered Si(100)2x1 surfaces. Then the adsorption of S on Cs-covered Si(100) surfaces was studied.
Apertureless scanning microscope probe as a detector of semiconductor laser emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunaevskiy, Mikhail, E-mail: Mike.Dunaeffsky@mail.ioffe.ru; National Research University of Information Technologies, Mechanics and Optics; Dontsov, Anton
2015-04-27
An operating semiconductor laser has been studied using a scanning probe microscope. A shift of the resonance frequency of probe that is due to its heating by laser radiation has been analyzed. The observed shift is proportional to the absorbed radiation and can be used to measure the laser near field or its output power. A periodical dependence of the measured signal has been observed as a function of distance between the probe and the surface of the laser due to the interference of the outgoing and cantilever-reflected waves. Due to the multiple reflections resulting in the interference, the lightmore » absorption by the probe cantilever is greatly enhanced compared with a single pass case. Interaction of infrared emission of a diode laser with different probes has been studied.« less
Imaging sequential dehydrogenation of methanol on Cu(110) with a scanning tunneling microscope.
Kitaguchi, Y; Shiotari, A; Okuyama, H; Hatta, S; Aruga, T
2011-05-07
Adsorption of methanol and its dehydrogenation on Cu(110) were studied by using a scanning tunneling microscope (STM). Upon adsorption at 12 K, methanol preferentially forms clusters on the surface. The STM could induce dehydrogenation of methanol sequentially to methoxy and formaldehyde. This enabled us to study the binding structures of these products in a single-molecule limit. Methoxy was imaged as a pair of protrusion and depression along the [001] direction. This feature is fully consistent with the previous result that it adsorbs on the short-bridge site with the C-O axis tilted along the [001] direction. The axis was induced to flip back and forth by vibrational excitations with the STM. Two configurations were observed for formaldehyde, whose structures were proposed based on their characteristic images and motions.
Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter
NASA Astrophysics Data System (ADS)
Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.
2013-10-01
An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.
Kuruvilla, Aby; Jaganath, Bharath Makonahalli; Krishnegowda, Sahadev Chickmagaravalli; Ramachandra, Praveen Kumar Makonahalli; Johns, Dexton Antony; Abraham, Aby
2015-01-01
Aim: The purpose of this study is to evaluate and compare the efficacy of 17% EDTA, 18% etidronic acid, and 7% maleic acid in smear layer removal using scanning electron microscopic image analysis. Materials and Methods: Thirty, freshly extracted mandibular premolars were used. The teeth were decoronated to obtain working length of 17mm and instrumentation up to 40 size (K file) with 2.5% NaOCl irrigation between each file. The samples were divided into Groups I (17% ethylenediaminetetraacetic acid (EDTA)), II (18% etidronic acid), and III (7% maleic acid) containing 10 samples each. Longitudinal sectioning of the samples was done. Then the samples were observed under scanning electron microscope (SEM) at apical, middle, and coronal levels. The images were scored according to the criteria: 1. No smear layer, 2. moderate smear layer, and 3 heavy smear layer. Statistical Analysis: Data was analyzed statistically using Kruskal–Wallis analysis of variance (ANOVA) followed by Mann-Whitney U test for individual comparisons. The level for significance was set at 0.05. Results: The present study showed that all the three experimental irrigants removed the smear layer from different tooth levels (coronal, middle, and apical). Final irrigation with 7% maleic acid is more efficient than 17% EDTA and 18% etidronic acid in the removal of smear layer from the apical third of root canal. PMID:26069414
Iwaya, Katsuya; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro
2011-08-01
We designed and constructed an effective vibration isolation system for stable scanning tunneling microscopy measurements using a separate foundation and two vibration isolation stages (i.e., a combination of passive and active vibration isolation dampers). Systematic analyses of vibration data along the horizontal and vertical directions are present, including the vibration transfer functions of each stage and the overall vibration isolation system. To demonstrate the performance of the system, tunneling current noise measurements are conducted with and without the vibration isolation. Combining passive and active vibration isolation dampers successfully removes most of the vibration noise in the tunneling current up to 100 Hz. These comprehensive vibration noise data, along with details of the entire system, can be used to establish a clear guideline for building an effective vibration isolation system for various scanning probe microscopes and electron microscopes.
Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C
2014-01-01
We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields.
Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho
2007-08-20
In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.
de Jonge, Niels [Oak Ridge, TN
2010-08-17
A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.
Stimmelmayr, Michael; Edelhoff, Daniel; Güth, Jan-Frederik; Erdelt, Kurt; Happe, Arndt; Beuer, Florian
2012-12-01
The purpose of this study was to determine and measure the wear of the interface between titanium implants and one-piece zirconia abutments in comparison to titanium abutments. 6 implants were secured into epoxy resin blocks. The implant interface of these implants and 6 corresponding abutments (group Zr: three one-piece zirconia abutments; group Ti: three titanium abutments) were examined by a microscope and scanning electron micrograph (SEM). Also the implants and the abutments were scanned by 3D-Micro Computer Tomography (CT). The abutments were connected to the implants and cyclically loaded with 1,200,000 cycles at 100N in a two-axis fatigue testing machine. Afterwards, all specimens were unscrewed and the implants and abutments again were scanned by microscope, SEM and CT. The microscope and SEM images were compared, the CT data were superimposed and the wear was calculated by inspection software. The statistical analysis was carried out with an unpaired t-test. Abutment fracture or screw loosening was not observed during cyclical loading. Comparing the microscope and SEM images more wear was observed on the implants connected to zirconia abutments. The maximum wear on the implant shoulder calculated by the inspection software was 10.2μm for group Zr, and 0.7μm for group Ti. The influence of the abutment material on the measured wear was statistically significant (p≤0.001; Levene-test). Titanium implants showed higher wear at the implant interface following cyclic loading when connected to one-piece zirconia implant abutments compared to titanium abutments. The clinical relevance is not clear; hence damage of the internal implant connection could result in prosthetic failures up to the need of implant removal. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Scanning electron microscopy of a pink inclusion from the Allende meteorite
NASA Technical Reports Server (NTRS)
Grossman, L.; Fruland, R. M.; Mckay, D. S.
1975-01-01
A scanning electron microscope study of a fine-grained, pin, Ca-rich inclusion from the Allende meteorite has revealed strong evidence for direct condensation of its constituent minerals from a vapor. This observation extends to the alkali-bearing phases in addition to the Ca-, Al-silicates and suggests that the feldspathoids as well as the refractory silicates are solar nebular condensates.
Two-photon laser scanning microscopy with electrowetting-based prism scanning
Supekar, Omkar D.; Ozbay, Baris N.; Zohrabi, Mo; Nystrom, Philip D.; Futia, Gregory L.; Restrepo, Diego; Gibson, Emily A.; Gopinath, Juliet T.; Bright, Victor M.
2017-01-01
Laser scanners are an integral part of high resolution biomedical imaging systems such as confocal or 2-photon excitation (2PE) microscopes. In this work, we demonstrate the utility of electrowetting on dielectric (EWOD) prisms as a lateral laser-scanning element integrated in a conventional 2PE microscope. To the best of our knowledge, this is the first such demonstration for EWOD prisms. EWOD devices provide a transmissive, low power consuming, and compact alternative to conventional adaptive optics, and hence this technology has tremendous potential. We demonstrate 2PE microscope imaging of cultured mouse hippocampal neurons with a FOV of 130 × 130 μm2 using EWOD prism scanning. In addition, we show simulations of the optical system with the EWOD prism, to evaluate the effect of propagating a Gaussian beam through the EWOD prism on the imaging quality. Based on the simulation results a beam size of 0.91 mm full width half max was chosen to conduct the imaging experiments, resulting in a numerical aperture of 0.17 of the imaging system. PMID:29296477
NASA Astrophysics Data System (ADS)
Liebmann, Marcus; Bindel, Jan Raphael; Pezzotta, Mike; Becker, Stefan; Muckel, Florian; Johnsen, Tjorven; Saunus, Christian; Ast, Christian R.; Morgenstern, Markus
2017-12-01
We present the design and calibration measurements of a scanning tunneling microscope setup in a 3He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pmrms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 μeV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 μeV, implying that the system operates close to the physical noise limit.
Liebmann, Marcus; Bindel, Jan Raphael; Pezzotta, Mike; Becker, Stefan; Muckel, Florian; Johnsen, Tjorven; Saunus, Christian; Ast, Christian R; Morgenstern, Markus
2017-12-01
We present the design and calibration measurements of a scanning tunneling microscope setup in a 3 He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pm rms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 μeV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 μeV, implying that the system operates close to the physical noise limit.
Shatrov, A B
2003-01-01
The history of the electron microscope investigations in zoology and parasitology in the Zoological Institute of the Russian Academy of Sciences and progress in scanning and transmission electron microscope investigations in this field of biology to the moment are briefly accounted.
Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
Fang, Yimin; Wang, Hui; Yu, Hui; Liu, Xianwei; Wang, Wei; Chen, Hong-Yuan; Tao, N J
2016-11-15
Electrochemical reactions are involved in many natural phenomena, and are responsible for various applications, including energy conversion and storage, material processing and protection, and chemical detection and analysis. An electrochemical reaction is accompanied by electron transfer between a chemical species and an electrode. For this reason, it has been studied by measuring current, charge, or related electrical quantities. This approach has led to the development of various electrochemical methods, which have played an essential role in the understanding and applications of electrochemistry. While powerful, most of the traditional methods lack spatial and temporal resolutions desired for studying heterogeneous electrochemical reactions on electrode surfaces and in nanoscale materials. To overcome the limitations, scanning probe microscopes have been invented to map local electrochemical reactions with nanometer resolution. Examples include the scanning electrochemical microscope and scanning electrochemical cell microscope, which directly image local electrochemical reaction current using a scanning electrode or pipet. The use of a scanning probe in these microscopes provides high spatial resolution, but at the expense of temporal resolution and throughput. This Account discusses an alternative approach to study electrochemical reactions. Instead of measuring electron transfer electrically, it detects the accompanying changes in the reactant and product concentrations on the electrode surface optically via surface plasmon resonance (SPR). SPR is highly surface sensitive, and it provides quantitative information on the surface concentrations of reactants and products vs time and electrode potential, from which local reaction kinetics can be analyzed and quantified. The plasmonic approach allows imaging of local electrochemical reactions with high temporal resolution and sensitivity, making it attractive for studying electrochemical reactions in biological systems and nanoscale materials with high throughput. The plasmonic approach has two imaging modes: electrochemical current imaging and interfacial impedance imaging. The former images local electrochemical current associated with electrochemical reactions (faradic current), and the latter maps local interfacial impedance, including nonfaradic contributions (e.g., double layer charging). The plasmonic imaging technique can perform voltammetry (cyclic or square wave) in an analogous manner to the traditional electrochemical methods. It can also be integrated with bright field, dark field, and fluorescence imaging capabilities in one optical setup to provide additional capabilities. To date the plasmonic imaging technique has found various applications, including mapping of heterogeneous surface reactions, analysis of trace substances, detection of catalytic reactions, and measurement of graphene quantum capacitance. The plasmonic and other emerging optical imaging techniques (e.g., dark field and fluorescence microscopy), together with the scanning probe-based electrochemical imaging and single nanoparticle analysis techniques, provide new capabilities for one to study single nanoparticle electrochemistry with unprecedented spatial and temporal resolutions. In this Account, we focus on imaging of electrochemical reactions at single nanoparticles.
Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi
2015-09-01
Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.
Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates.
Zhang, Hao; Li, Xianqi; Chen, Yunmei; Park, Jewook; Li, An-Ping; Zhang, X-G
2017-01-01
We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a "rubber band" model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.
Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes
NASA Technical Reports Server (NTRS)
Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.
2017-01-01
In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.
Stainless Steel Vacuum Chamber for Scanning Transmission X-ray Microsopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcoyne, Arthur L.
The stainless steel chamber was specifically conceived and designed for housing an interferometer controlled scanning transmission x-ray microscope (STXM). The construction of the chamber is such that internal components of the microscope rest within the chamber and are fixed to a 4 inch stainless steel belly band. The integral and most important part of the chamber is the belly band, which serves to isolate high frequency vibrations (e.g., floor surroundings, people traffic) from the sensitive measurements performed using the microscope. In addition, the chamber effectively acts as a sound barrier to the nanometer measurements conducted within. The assembled chamber (andmore » microscope) are readily adjustable at the micron level using strut members external to the chamber but fixed to the belly band and a stand made of polymer concreate.« less
Kaymakçı, Mustafa; Acar, Mustafa; Burukoglu, Dilek; Kutlu, Hatice Mehtap; Shojaolsadati, Paria; Cingi, Cemal; Bayar Muluk, Nuray
2015-04-01
In this prospective experimental study, we investigated the preventive effects of 2-aminoethyl diphenylborinate (2-APB) in rats exposed to acoustic trauma (AT). Light microscopic, transmission electron microscopic (TEM), and scanning electron microscopic (SEM) examinations were performed. Eighteen healthy Wistar albino rats were divided into the following three groups: groups 1 (control), 2 (AT), and 3 (AT+APB). The rats in groups 2 and 3 were exposed to AT; in group 3 rats, 2-APB at 2 mg/kg was also administered, initially transperitoneally, after 10 min. During the light microscopic, TEM, and SEM examinations, the structures of the cochlear hair cells, stereocilia, and Deiter's cells were normal in the control group. In the AT group, the organ of Corti and proximate structures were damaged according to the light microscopic examination. During the TEM examination, intense cellular damage and stereocilia loss were detected, while during the SEM examination, extensive damage and stereocilia loss were observed. Decreased damage with preserved cochlear structure was detected during the light microscopic examination in the AT+APB group than in the AT group. During the TEM and SEM examinations, although stereocilia loss occurred in the AT+APB group, near-normal cell, cilia, and tectorial membrane structures were also observed in the AT+APB group compared with the AT group. 2-APB may have protective effects against AT damage of the cochlea. The main mechanism underlying this effect is the inhibition of the vasoconstriction of the cochlear spiral modiolar artery, thereby improving cochlear blood flow. We conclude that 2-APB may also be effective if used immediately following AT.
Ippolitov, E V; Didenko, L V; Tzarev, V N
2015-12-01
The study was carried out to analyze morphology of biofilm of periodontium and to develop electronic microscopic criteria of differentiated diagnostic of inflammatory diseases of gums. The scanning electronic microscopy was applied to analyze samples of bioflm of periodont from 70 patients. Including ten patients with every nosologic form of groups with chronic catarrhal periodontitis. of light, mean and severe degree, chronic catarrhal gingivitis, Candida-associated paroperiodontitis and 20 healthy persons with intact periodontium. The analysis was implemented using dual-beam scanning electronic microscope Quanta 200 3D (FEI company, USA) and walk-through electronic micJEM 100B (JEOL, Japan). To detect marker DNA of periodont pathogenic bacteria in analyzed samples the kit of reagentsfor polymerase chain reaction "MultiDent-5" ("GenLab", Russia). The scanning electronic microscopy in combination with transmission electronic microscopy and polymerase chain reaction permits analyzing structure, composition and degree of development of biofilm of periodontium and to apply differentiated diagnostic of different nosologic forms of inflammatory diseases of periodontium, including light form of chronic periodontitis and gingivitis. The electronic microscopical indications of diseases ofperiodontium of inflammatory character are established: catarrhal gingivitis, (coccal morphological alternate), chronic periodontitis (bacillary morphological alternate), Candida-associated periodontitis (Candida morphological alternate of biofilm ofperiodontium).
Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald
2013-01-01
Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.
Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope.
den Engelsen, Daniel; Harris, Paul G; Ireland, Terry G; Fern, George R; Silver, Jack
2015-10-01
Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Egorov, D. I.
2017-06-01
Our study focuses on an analysis of the original method of investigation biological tissues in the spectral OCT (optical coherence tomography) with usage hyperchromatic lenses. Using hyperchromatic lens, i.e. the lens with uncorrected longitudinal color allows scanning in the depth of the object by changing the wavelength of the emitter. In this case, the depth of the scan will be determined not by the microlens depth of field, but the value of axial color. In our study, we demonstrated the advantages of this method of research on biological tissues existing. Spectral OCT schemes with the hyperchromatic lens could increase the depth of spectral scanning, eliminate the use of multi-channel systems with a set of microscope objectives, reduce the time of measurement. In our paper, we show the developed method of calculation of hyperchromatic lenses and hybrid hyperchromatic lens consisting of a diffractive and refractive component in spectral OCT systems. We also demonstrate the results of aberration calculation designed microscope lenses. We show examples of developed hyperchromatic lenses with the diffractive element and without it.
Shiloh, Roy; Remez, Roei; Lu, Peng-Han; Jin, Lei; Lereah, Yossi; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady
2018-06-01
Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Scanning Electron Microscopic Evaluation of Several Resharpening Techniques.
1982-08-19
AD-AI20 320 ARMY INST OF DENTAL RESEARCH WASHINGTON OC F/6 6/5 SCANNING ELECTRON MICROSCOPIC EVALUATION OF SEVERAL RESHARPENIN-ETC(U) UNLASSIFIE D...NIT NUMBERS US Army Institute of Dental Research Walter Reed Army Medical Center N/A Washington, DC 20012 it. CONTROLLING OFFICE NAME AND ADORESS I...several resharpening techniques by Donald J. DeNucci, DDS, MS and Carson L. Mader, DMD, MSD United States Army Institute of Dental Research Walter Reed
NASA Astrophysics Data System (ADS)
Pozzi, Paolo; Wilding, Dean; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel
2018-02-01
In this work, we present a new confocal laser scanning microscope capable to perform sensorless wavefront optimization in real time. The device is a parallelized laser scanning microscope in which the excitation light is structured in a lattice of spots by a spatial light modulator, while a deformable mirror provides aberration correction and scanning. A binary DMD is positioned in an image plane of the detection optical path, acting as a dynamic array of reflective confocal pinholes, images by a high performance cmos camera. A second camera detects images of the light rejected by the pinholes for sensorless aberration correction.
Characterisation of a resolution enhancing image inversion interferometer.
Wicker, Kai; Sindbert, Simon; Heintzmann, Rainer
2009-08-31
Image inversion interferometers have the potential to significantly enhance the lateral resolution and light efficiency of scanning fluorescence microscopes. Self-interference of a point source's coherent point spread function with its inverted copy leads to a reduction in the integrated signal for off-axis sources compared to sources on the inversion axis. This can be used to enhance the resolution in a confocal laser scanning microscope. We present a simple image inversion interferometer relying solely on reflections off planar surfaces. Measurements of the detection point spread function for several types of light sources confirm the predicted performance and suggest its usability for scanning confocal fluorescence microscopy.
Scanning Electron Microscopy (SEM) Procedure for HE Powders on a Zeiss Sigma HD VP SEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, F.
This method describes the characterization of inert and HE materials by the Zeiss Sigma HD VP field emission Scanning Electron Microscope (SEM). The SEM uses an accelerated electron beam to generate high-magnification images of explosives and other materials. It is fitted with five detectors (SE, Inlens, STEM, VPSE, HDBSD) to enable imaging of the sample via different secondary electron signatures, angles, and energies. In addition to imaging through electron detection, the microscope is also fitted with two Oxford Instrument Energy Dispersive Spectrometer (EDS) 80 mm detectors to generate elemental constituent spectra and two-dimensional maps of the material being scanned.
A landmark-based 3D calibration strategy for SPM
NASA Astrophysics Data System (ADS)
Ritter, Martin; Dziomba, Thorsten; Kranzmann, Axel; Koenders, Ludger
2007-02-01
We present a new method for the complete three-dimensional (3D) calibration of scanning probe microscopes (SPM) and other high-resolution microscopes, e.g., scanning electron microscopes (SEM) and confocal laser scanning microscopes (CLSM), by applying a 3D micrometre-sized reference structure with the shape of a cascade slope-step pyramid. The 3D reference structure was produced by focused ion beam induced metal deposition. In contrast to pitch featured calibration procedures that require separate lateral and vertical reference standards such as gratings and step height structures, the new method includes the use of landmarks, which are well established in calibration and measurement tasks on a larger scale. However, the landmarks applied to the new 3D reference structures are of sub-micrometre size, the so-called 'nanomarkers'. The nanomarker coordinates are used for a geometrical calibration of the scanning process of SPM as well as of other instrument types such as SEM and CLSM. For that purpose, a parameter estimation routine involving three scale factors and three coupling factors has been developed that allows lateral and vertical calibration in only one sampling step. With this new calibration strategy, we are able to detect deviations of SPM lateral scaling errors as well as coupling effects causing, e.g., a lateral coordinate shift depending on the measured height position of the probe.
Schröter, Tobias J; Johnson, Shane B; John, Kerstin; Santi, Peter A
2012-01-01
We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Iyer, Vijay; Saggau, Peter
2003-10-01
In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).
Dark-field imaging with the scanning transmission x-ray microscope
NASA Astrophysics Data System (ADS)
Morrison, G. R.; Browne, M. T.
1992-01-01
The King's College London scanning transmission x-ray microscope in use on beam line 5U2 at the SRS, SERC Daresbury Laboratory, has been modified to allow dark-field images to be formed using only the x rays scattered by the specimen. Experiments have been performed with a number of different detector geometries, and this has confirmed that the strongest scattering arises from edges or thickness gradients in the specimen. Although the dark-field signal is only a small fraction of the normal transmitted bright-field signal, features can be revealed with high contrast, and it has proved possible to detect the presence of features that are below the resolution limit of the microscope.
Development of a miniature scanning electron microscope for in-flight analysis of comet dust
NASA Technical Reports Server (NTRS)
Conley, J. M.; Bradley, J. G.; Giffin, C. E.; Albee, A. L.; Tomassian, A. D.
1983-01-01
A description is presented of an instrument which was developed with the original goal of being flown on the International Comet Mission, scheduled for a 1985 launch. The Scanning Electron Microscope and Particle Analyzer (SEMPA) electron miniprobe is a miniaturized electrostatically focused electron microscope and energy dispersive X-ray analyzer for in-flight analysis of comet dust particles. It was designed to be flown on board a comet rendezvous spacecraft. Other potential applications are related to asteroid rendezvous and planetary lander missions. According to the development objectives, SEMPA miniprobe is to have the capability for imaging and elemental analysis of particles in the size range of 0.25 microns and larger.
Excitation of propagating surface plasmons with a scanning tunnelling microscope.
Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G
2011-04-29
Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.
Pupil engineering for a confocal reflectance line-scanning microscope
NASA Astrophysics Data System (ADS)
Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.
2011-03-01
Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current confocal point-scanning systems are large, complex, and expensive. A confocal line-scanning microscope, utilizing a of linear array detector can be simpler, smaller, less expensive, and may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A line scanner may be implemented with a divided-pupil, half used for transmission and half for detection, or with a full-pupil using a beamsplitter. The premise is that a confocal line-scanner with either a divided-pupil or a full-pupil will provide high resolution and optical sectioning that would be competitive to that of the standard confocal point-scanner. We have developed a confocal line-scanner that combines both divided-pupil and full-pupil configurations. This combined-pupil prototype is being evaluated to determine the advantages and limitations of each configuration for imaging skin, and comparison of performance to that of commercially available standard confocal point-scanning microscopes. With the combined configuration, experimental evaluation of line spread functions (LSFs), contrast, signal-to-noise ratio, and imaging performance is in progress under identical optical and skin conditions. Experimental comparisons between divided-pupil and full-pupil LSFs will be used to determine imaging performance. Both results will be compared to theoretical calculations using our previously reported Fourier analysis model and to the confocal point spread function (PSF). These results may lead to a simpler class of confocal reflectance scanning microscopes for clinical and surgical dermatology.
Vise holds specimens for microscope
NASA Technical Reports Server (NTRS)
Greule, W. N.
1980-01-01
Convenient, miniature, spring-loaded clamp holds specimens for scanning electron microscope. Clamp is made out of nesting sections of studded angle-aluminum. Specimens are easier to mount and dismount with vise than with conductive adhesive or paint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Chikara, E-mail: ti-sato@aist.go.jp; Manaka, Sachie; Nakane, Daisuke
Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. Inmore » current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.« less
Spine micromorphology of normal and hyperhydric Mammillaria gracilis Pfeiff. (Cactaceae) shoots.
Peharec, P; Posilović, H; Balen, B; Krsnik-Rasol, M
2010-07-01
Artificial conditions of tissue culture affect growth and physiology of crassulacean acid metabolism plants which often results in formation of hyperhydric shoots. In in vitro conditions Mammillaria gracilis Pfeiff. (Cactaceae) growth switches from organized to unorganized way, producing a habituated organogenic callus which simultaneously regenerates morphologically normal as well as altered hyperhydric shoots. In this study, influence of tissue culture conditions on morphology of cactus spines of normal and hyperhydric shoots was investigated. Spines of pot-grown Mammillaria plants and of in vitro regenerated shoots were examined with stereo microscope and scanning electron microscope. The pot-grown plants had 16-17 spines per areole. In vitro grown normal shoots, even though they kept typical shoot morphology, had lower number of spines (11-12) and altered spine morphology. This difference was even more pronounced in spine number (six to seven) and morphology of the hyperhydric shoots. Scanning electron microscopy analysis revealed remarkable differences in micromorphology of spine surface between pot-grown and in vitro grown shoots. Spines of in vitro grown normal shoots showed numerous long trichomes, which were more elongated on spines of the hyperhydric shoots; the corresponding structures on spine surface of pot-grown plants were noticed only as small protrusions. Scanning electron microscopy morphometric studies showed that the spines of pot-grown plants were significantly longer compared to the spines of shoots grown in tissue culture. Moreover, transverse section shape varies from elliptical in pot-grown plants to circular in normal and hyperhydric shoots grown in vitro. Cluster and correspondence analyses performed on the scanning electron microscope obtained results suggest great variability among spines of pot-grown plants. Spines of in vitro grown normal and hyperhydric shoots showed low level of morphological variation among themselves despite the significant difference in shoot morphology.
Near-Field Scanning Optical Microscopy and Raman Microscopy.
NASA Astrophysics Data System (ADS)
Harootunian, Alec Tate
1987-09-01
Both a one dimensional near-field scanning optical microscope and Raman microprobe were constructed. In near -field scanning optical microscopy (NSOM) a subwavelength aperture is scanned in the near-field of the object. Radiation transmitted through the aperture is collected to form an image as the aperture scans over the object. The resolution of an NSOM system is essentially wavelength independent and is limited by the diameter of the aperture used to scan the object. NSOM was developed in an effort to provide a nondestructive in situ high spatial resolution probe while still utilizing photons at optical wavelengths. The Raman microprobe constructed provided vibrational Raman information with spatial resolution equivalent that of a conventional diffraction limited microscope. Both transmission studies and near-field diffration studies of subwavelength apertures were performed. Diffraction theories for a small aperture in an infinitely thin conducting screen, a slit in a thick conducting screen, and an aperture in a black screen were examined. All three theories indicate collimation of radiation to the size to the size of the subwavelength aperture or slit in the near-field. Theoretical calculations and experimental results indicate that light transmitted through subwavelength apertures is readily detectable. Light of wavelength 4579 (ANGSTROM) was transmitted through apertures with diameters as small as 300 (ANGSTROM). These studies indicate the feasibility of constructing an NSOM system. One dimensional transmission and fluorescence NSOM systems were constructed. Apertures in the tips of metallized glass pipettes width inner diameters of less than 1000 (ANGSTROM) were used as a light source in the NSOM system. A tunneling current was used to maintain the aperture position in the near-field. Fluorescence NSOM was demonstrated for the first time. Microspectroscopic and Raman microscopic studies of turtle cone oil droplets were performed. Both the Raman vibrational frequencies and the Raman excitation data indicate that the carotenoids are unaggregated. The carotenoid astaxanthin was identified in the orange and red droplets by Raman microscopy. Future applications for both Raman microscopy and near-field microscopy were proposed. Four methods of near-field distance regulation were also examined. Finally, theoretical exposure curves for near-field lithography were calculated. Both the near-field lithographic results and the near field diffraction studies indicate essentially wavelength independent resolution. (Abstract shortened with permission of author.).
Baliga, M S; Bhat, S S
2010-01-01
The aim of the study was to evaluate the extent of surface zone remineralization and the effect of fluoride at the inter-proximal adjacent tooth surface, using restorative materials FusionAlloy, Ketac-Fil and Heliomolar. Ninety extracted molar teeth were used of which 45 were placed in artificial caries for 10 weeks. The remaining 45 teeth were filled with the respective restorative materials, mounted with the artificial carious teeth in proximal contact with plaster and placed in artificial saliva for a period of 28 days. Finally, sectioning of artificially carious teeth was done mesio-distally and observed under the optical microscope and scanning electron microscope. Comparison among the groups was done by one-way analysis of variance [ANOVA] and Fischer's F test. Intercomparison between the groups was done by using Dunnett's t-test. Results obtained from transmitted electron microscopic and scanning electron microscopic observations were almost similar with the Ketac-Fil and Heliomolar showing better results in surface zone remineralization compared to FusionAlloy. Also, Ketac-Fil is a good material in releasing fluoride to remineralize enamel when compared to Heliomolar and FusionAlloy. Thus, it can be used mainly in class II cavity restorations of primary and permanent dentitions due to the potential ability of fluoride containing glass ionomer cements and composite resins to remineralize incipient carious lesions on adjacent teeth.
Onouchi, Takanori; Shiogama, Kazuya; Mizutani, Yasuyoshi; Takaki, Takashi; Tsutsumi, Yutaka
2016-01-01
Neutrophil extracellular traps (NETs) released from dead neutrophils at the site of inflammation represent webs of neutrophilic DNA stretches dotted with granule-derived antimicrobial proteins, including lactoferrin, and play important roles in innate immunity against microbial infection. We have shown the coexistence of NETs and fibrin meshwork in varied fibrinopurulent inflammatory lesions at both light and electron microscopic levels. In the present study, correlative light and electron microscopy (CLEM) employing confocal laser scanning microscopy and scanning electron microscopy was performed to bridge light and electron microscopic images of NETs and fibrin fibrils in formalin-fixed, paraffin-embedded, autopsied lung sections of legionnaire’s pneumonia. Lactoferrin immunoreactivity and 4'-6-diamidino-2-phenylindole (DAPI) reactivity were used as markers of NETs, and fibrin was probed by fibrinogen gamma chain. Of note is that NETs light microscopically represented as lactoferrin and DAPI-colocalized dots, 2.5 μm in diameter. CLEM gave super-resolution images of NETs and fibrin fibrils: “Dotted” NETs were ultrastructurally composed of fine filaments and masses of 58 nm-sized globular materials. A fibrin fibril consisted of clusters of smooth-surfaced filaments. NETs filaments (26 nm in diameter) were significantly thinner than fibrin filaments (295 nm in diameter). Of note is that CLEM was applicable to formalin-fixed, paraffin-embedded sections of autopsy material. PMID:27917008
Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou
2013-11-01
We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.
Pelliccione, M; Sciambi, A; Bartel, J; Keller, A J; Goldhaber-Gordon, D
2013-03-01
We report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigerator with a base temperature of 15 mK. The recent increase in efficiency of pulse tube cryocoolers has made cryogen-free systems popular in recent years. However, this new style of cryostat presents challenges for performing scanning probe measurements, mainly as a result of the vibrations introduced by the cryocooler. We demonstrate scanning with root-mean-square vibrations of 0.8 nm at 3 K and 2.1 nm at 15 mK in a 1 kHz bandwidth with our design. Using Coulomb blockade thermometry on a GaAs/AlGaAs gate-defined quantum dot, we demonstrate an electron temperature of 45 mK.
Development of 1500mm Wide Wrought Magnesium Alloys by Twin Roll Casting Technique in Turkey
NASA Astrophysics Data System (ADS)
Duygulu, Ozgur; Ucuncuoglu, Selda; Oktay, Gizem; Temur, Deniz Sultan; Yucel, Onuralp; Kaya, Ali Arslan
Magnesium alloy AZ31, AZ61, AZ91, AM50 and AM60 sheets were produced by twin roll casting first time in Turkey. Sheets of 4.5-6.5mm thick and 1500mm width were successfully achieved. Microstructure of the sheet was analyzed by optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). Semi-quantitative analyses were performed by SEM-EDS. In addition, X-ray studies were performed for both characterization and texture purposes. Mechanical properties were investigated by tensile tests and also hardness measurements. Homogenization and annealing heat treatments were performed on the produced sheets.
A simplified focusing and astigmatism correction method for a scanning electron microscope
NASA Astrophysics Data System (ADS)
Lu, Yihua; Zhang, Xianmin; Li, Hai
2018-01-01
Defocus and astigmatism can lead to blurred images and poor resolution. This paper presents a simplified method for focusing and astigmatism correction of a scanning electron microscope (SEM). The method consists of two steps. In the first step, the fast Fourier transform (FFT) of the SEM image is performed and the FFT is subsequently processed with a threshold to achieve a suitable result. In the second step, the threshold FFT is used for ellipse fitting to determine the presence of defocus and astigmatism. The proposed method clearly provides the relationships between the defocus, the astigmatism and the direction of stretching of the FFT, and it can determine the astigmatism in a single image. Experimental studies are conducted to demonstrate the validity of the proposed method.
Identification of sandstone core damage using scanning electron microscopy
NASA Astrophysics Data System (ADS)
Ismail, Abdul Razak; Jaafar, Mohd Zaidi; Sulaiman, Wan Rosli Wan; Ismail, Issham; Shiunn, Ng Yinn
2017-12-01
Particles and fluids invasion into the pore spaces causes serious damage to the formation, resulting reduction in petroleum production. In order to prevent permeability damage for a well effectively, the damage mechanisms should be identified. In this study, water-based drilling fluid was compared to oil-based drilling fluids based on microscopic observation. The cores were damaged by several drilling fluid systems. Scanning electron microscope (SEM) was used to observe the damage mechanism caused by the drilling fluids. Results showed that the ester based drilling fluid system caused the most serious damage followed by synthetic oil based system and KCI-polymer system. Fine solids and filtrate migration and emulsion blockage are believed to be the major mechanisms controlling the changes in flow properties for the sandstone samples.
Mikoshiba, K; Nishimura, Y; Tsukada, Y
The reeler mutant mouse is characterized by a derangement of the cerebral cortical structure due to abnormalities during the migration step at the embryonic stage. We have analyzed both the control and reeler cerebral cortex by means of scanning electron microscopic fractography. In the control cerebral cortex, the bundle formation was composed of fine fibers on which the migrating neuroblasts were attached perpendicular to the pial surface, whereas no bundle formation was observed in the reeler; instead, there was a fine meshwork of fibers surrounding the neuroblasts. The possible role of bundle formation in the normal cerebral cortex and the correlation between the inability of cells to migrate and the absence of bundle formation in the reeler is discussed.
Kamlapure, Anand; Saraswat, Garima; Ganguli, Somesh Chandra; Bagwe, Vivas; Raychaudhuri, Pratap; Pai, Subash P
2013-12-01
We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described. We demonstrate the capability of our instrument through the atomic resolution imaging and spectroscopy on NbSe2 single crystal and spectroscopic maps obtained on homogeneously disordered NbN thin film.
Review of current progress in nanometrology with the helium ion microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András; Archie, Charles; Ming, Bin
2011-02-01
Scanning electron microscopy has been employed as an imaging and measurement tool for more than 50 years and it continues as a primary tool in many research and manufacturing facilities across the world. A new challenger to this work is the helium ion microscope (HIM). The HIM is a new imaging and metrology technology. Essentially, substitution of the electron source with a helium ion source yields a tool visually similar in function to the scanning electron microscope, but very different in the fundamental imaging and measurement process. The imaged and measured signal originates differently than in the scanning electron microscope and that fact and its single atom source diameter may be able to push the obtainable resolution lower, provide greater depth-of-field and ultimately improve the metrology. Successful imaging and metrology with this instrument entails understanding and modeling of new ion beam/specimen interaction physics. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanometrology has yet to be fully exploited. This paper discusses some of the progress made at NIST in collaboration with IBM to understand the science behind this new technology.
NASA Astrophysics Data System (ADS)
Stinson, Harry Theodore, III
This dissertation describes the design and construction of the world's first cryogenic apertureless near-field microscope designed for terahertz sources and detectors. I first provide motivation for the creation of this instrument in the context of spectroscopy of correlated electron materials, and background information on the two techniques that the instrument combines, scanning near-field optical microscopy and terahertz time-domain spectroscopy. I then detail key components of the instrument design, including proof-of-principle results obtained at room and cryogenic temperatures. Following this, I discuss an imaging experiment performed with this instrument on vanadium dioxide, an insulator-metal transition material, which sheds new light on the nature of the phase transition and provides support for a new model Hamiltonian for the system. Finally, I discuss a theoretical proposal for the study of cuprate superconductors using this instrument.
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461
Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio
2013-01-01
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.
Li, Xiaodong; Li, Xiaohui; Zhang, Jianxiang; Zhao, Shifang; Shen, Jiacong
2008-06-01
Novel "micelles enhanced" polyelectrolyte (PE) capsules based on functional templates of hybrid calcium carbonate were fabricated. Evidences suggested that the structure of capsule wall was different from that of conventional PE capsules, and the wall permeability of these PE capsules changed significantly. Lysozyme, a positively charged protein in neutral solution, was studied as a model protein to be encapsulated into the "micelles enhanced" PE capsules. Confocal laser scanning microscope was used to observe the entrapping process in real time, while UV-Vis spectroscope and scanning force microscope measurements suggested the high efficiency of encapsulation. In addition, the fluorescence recovery after photobleaching technique was employed to determine the existence form of deposited molecules. Further studies showed even negatively charged water-soluble peptides or proteins can be encapsulated into these hybrid capsules by modulating the pH value in bulk solution under its isoelectronic point as well. Copyright 2007 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... 94305. Instrument: Titan 80-300 Environmental Transmission Electron Microscope. Manufacturer: FEI Co.../Scanning Electron Microscope. Manufacturer: FEI Co., the Netherlands. Intended Use: See notice at 77 FR...
Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, Evgeny
Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.
Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten
2007-10-01
We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.
A versatile atomic force microscope integrated with a scanning electron microscope.
Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J
2017-05-01
A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.
Nazaretski, E.; Yan, H.; Lauer, K.; ...
2017-10-05
A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, E.; Yan, H.; Lauer, K.
A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less
An investigation of nitride precipitates in archaeological iron artefacts from Poland.
Kedzierski, Z; Stepiński, J; Zielińska-Lipiec, A
2010-03-01
The paper describes the investigations of nitride precipitates in a spearhead and a sword found in the territory of Poland, in cremation graveyards of the Przeworsk Culture, dated to the Roman Period. Three different techniques of the examination of nitride precipitates were employed: optical microscope, scanning electron microscope (scanning electron microscope with energy dispersive X-ray spectrometer) and transmission electron microscope. Two types of precipitates have been observed, and their plate-like shape was demonstrated. The large precipitate has been confirmed to be gamma'-Fe(4)N, whereas the small one has been identified as alpha''-Fe(16)N(2). The origin of nitride precipitates in archaeological iron artefacts from Poland is probably a result of the manufacturing process or cremation as part of burial rites. An examination of available iron artefacts indicates that nitride precipitates (have only limited effect on mechanical properties) influence the hardness of metal only to a very limited degree.
Diffusion length measurements using the scanning electron microscope. [in semiconductor devices
NASA Technical Reports Server (NTRS)
Weizer, V. G.
1975-01-01
A measurement technique employing the scanning electron microscope is described in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through the application of highly doped surface field layers. The influence of high injection level effects and low-high junction current generation on the resulting measurement was investigated. Close agreement is found between the diffusion lengths measured by this method and those obtained using a penetrating radiation technique.
Local dynamic range compensation for scanning electron microscope imaging system.
Sim, K S; Huang, Y H
2015-01-01
This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.
Kim, Kyung-Il; Lee, Seonghyun; Jin, Xuelin; Kim, Su Ji; Jo, Kyubong; Lee, Jung Heon
2017-01-01
Synthesis of smooth and continuous DNA nanowires, preserving the original structure of native DNA, and allowing its analysis by scanning electron microscope (SEM), is demonstrated. Gold nanoparticles densely assembled on the DNA backbone via thiol-tagged DNA binding peptides work as seeds for metallization of DNA. This method allows whole analysis of DNA molecules with entangled 3D features. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasmon-mediated circularly polarized luminescence of GaAs in a scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mühlenberend, Svenja; Gruyters, Markus; Berndt, Richard, E-mail: berndt@physik.uni-kiel.de
2015-12-14
The electroluminescence from p-type GaAs(110) in a scanning tunneling microscope has been investigated at 6 K. Unexpectedly, high degrees of circular polarization have often been observed with ferromagnetic Ni tips and also with paramagnetic W and Ag tips. The data are interpreted in terms of two distinct excitation mechanisms. Electron injection generates intense luminescence with low polarization. Plasmon-mediated generation of electron-hole pairs leads to less intense emission, which, however, is highly polarized for many tips.
Distinction of nuclear spin states with the scanning tunneling microscope.
Natterer, Fabian Donat; Patthey, François; Brune, Harald
2013-10-25
We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
MAXIMUM is short for Multiple Application X-ray IMaging Undulator Microscope, a project started in 1988 by our group at the Synchrotron Radiation Center of the University of Wisconsin-Madison. It is a scanning x-ray photoemission microscope that uses a multilayer-coated Schwarzschild objective as the focusing element. It was designed primarily for materials science studies of lateral variations in surface chemistry. Suitable problems include: lateral inhomogeneities in Schottky barrier formation, heterojunction formation, patterned samples and devices, insulating samples. Any system which has interesting properties that are not uniform as a function of spatial dimension can potentially be studied with MAXIMUM. 6 figs.,more » 3 tabs.« less
Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques
NASA Astrophysics Data System (ADS)
Rekha, Suganthini; Bupesh Raja, V. K.
2017-05-01
The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.
Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study
Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna
2015-01-01
The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 32 full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device. PMID:27347511
NASA Astrophysics Data System (ADS)
Yacoot, Andrew; Koenders, Ludger
2003-09-01
This feasibility study investigates the potential combination of an x-ray interferometer and optical interferometer as a one-dimensional long range high resolution scanning stage for an atomic force microscope (AFM) in order to overcome the problems of non-linearity associated with conventional AFMs and interferometers. Preliminary results of measurements of the uniformity of the period of a grating used as a transfer standards show variations in period at the nanometre level.
Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D
2017-12-01
Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.
NASA Astrophysics Data System (ADS)
Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.
2017-12-01
Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.
Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates
Zhang, Hao; Li, Xianqi; Park, Jewook; Li, An-Ping
2017-01-01
We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a “rubber band” model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data. PMID:29362664
Wang, Zhen; Xiao, Zhiyu; Huang, Chuanshou; Wen, Liping; Zhang, Weiwen
2017-01-01
The present article studied the effect of ultrasonic surface rolling process (USRP) on the microstructure and wear behavior of a selective laser melted Ti-6Al-4V alloy. Surface characteristics were investigated using optical microscope, nano-indentation, scanning electron microscope, transmission electron microscope and laser scanning confocal microscope. Results indicated that the thickness of pore-free surfaces increased to 100~200 μm with the increasing ultrasonic surface rolling numbers. Severe work hardening occurred in the densified layer, resulting in the formation of refined grains, dislocation walls and deformation twins. After 1000 N 6 passes, about 15.5% and 14.1% increment in surficial Nano-hardness and Vickers-hardness was obtained, respectively. The hardness decreased gradually from the top surface to the substrate. Wear tests revealed that the friction coefficient declined from 0.74 (polished surface) to 0.64 (USRP treated surface) and the wear volume reduced from 0.205 mm−3 to 0.195 mm−3. The difference in wear volume between USRP treated and polished samples increased with sliding time. The enhanced wear resistance was concluded to be associated with the improvement of hardness and shear resistance and also the inhibition of delamination initiation. PMID:29048344
Zeiss ΣIGMA VP-FE-SEM User Guide
User guide for analyzing carbon based nanomaterials on a Zeiss Sigma microscope. The guide includes helpful steps for sample preparation and loading. Specific topics utilizing the scanning electron microscope are instrumentation startup and imagining. A variety of detectors in...
EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE
BACKGROUND. The confocal laser scanning microscope (CLSM) has enormous potential in many biological fields. Currently there is a subjective nature in the assessment of a confocal microscope's performance by primarily evaluating the system with a specific test slide provided by ea...
High-resolution electron microscope
NASA Technical Reports Server (NTRS)
Nathan, R.
1977-01-01
Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.
Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics
Nazaretski, Evgeny
2018-06-13
Evgeny Nazaretski, a physicist at Brookhaven Labâs National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.
A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart
2014-01-15
We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines amore » tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.« less
Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope
NASA Astrophysics Data System (ADS)
Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.
2012-06-01
We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].
Contour metrology using critical dimension atomic force microscopy
NASA Astrophysics Data System (ADS)
Orji, Ndubuisi G.; Dixson, Ronald G.; Vladár, András E.; Ming, Bin; Postek, Michael T.
2012-03-01
The critical dimension atomic force microscope (CD-AFM), which is used as a reference instrument in lithography metrology, has been proposed as a complementary instrument for contour measurement and verification. Although data from CD-AFM is inherently three dimensional, the planar two-dimensional data required for contour metrology is not easily extracted from the top-down CD-AFM data. This is largely due to the limitations of the CD-AFM method for controlling the tip position and scanning. We describe scanning techniques and profile extraction methods to obtain contours from CD-AFM data. We also describe how we validated our technique, and explain some of its limitations. Potential sources of error for this approach are described, and a rigorous uncertainty model is presented. Our objective is to show which data acquisition and analysis methods could yield optimum contour information while preserving some of the strengths of CD-AFM metrology. We present comparison of contours extracted using our technique to those obtained from the scanning electron microscope (SEM), and the helium ion microscope (HIM).
Fabrication of silver tips for scanning tunneling microscope induced luminescence.
Zhang, C; Gao, B; Chen, L G; Meng, Q S; Yang, H; Zhang, R; Tao, X; Gao, H Y; Liao, Y; Dong, Z C
2011-08-01
We describe a reliable fabrication procedure of silver tips for scanning tunneling microscope (STM) induced luminescence experiments. The tip was first etched electrochemically to yield a sharp cone shape using selected electrolyte solutions and then sputter cleaned in ultrahigh vacuum to remove surface oxidation. The tip status, in particular the tip induced plasmon mode and its emission intensity, can be further tuned through field emission and voltage pulse. The quality of silver tips thus fabricated not only offers atomically resolved STM imaging, but more importantly, also allows us to perform challenging "color" photon mapping with emission spectra taken at each pixel simultaneously during the STM scan under relatively small tunnel currents and relatively short exposure time.
Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.
Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun
2016-08-01
We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.
NASA Astrophysics Data System (ADS)
Efimov, Anton E.; Agapov, Igor I.; Agapova, Olga I.; Oleinikov, Vladimir A.; Mezin, Alexey V.; Molinari, Michael; Nabiev, Igor; Mochalov, Konstantin E.
2017-02-01
We present a new concept of a combined scanning probe microscope (SPM)/ultramicrotome apparatus. It enables "slice-and-view" scanning probe nanotomography measurements and 3D reconstruction of the bulk sample nanostructure from series of SPM images after consecutive ultrathin sections. The sample is fixed on a flat XYZ scanning piezostage mounted on the ultramicrotome arm. The SPM measuring head with a cantilever tip and a laser-photodiode tip detection system approaches the sample for SPM measurements of the block-face surface immediately after the ultramicrotome sectioning is performed. The SPM head is moved along guides that are also fixed on the ultramicrotome arm. Thereby, relative dysfunctional displacements of the tip, the sample, and the ultramicrotome knife are minimized. The design of the SPM head enables open frontal optical access to the sample block-face adapted for high-resolution optical lenses for correlative SPM/optical microscopy applications. The new system can be used in a wide range of applications for the study of 3D nanostructures of biological objects, biomaterials, polymer nanocomposites, and nanohybrid materials in various SPM and optical microscopy measuring modes.
Distortion Correction for a Brewster Angle Microscope Using an Optical Grating.
Sun, Zhe; Zheng, Desheng; Baldelli, Steven
2017-02-21
A distortion-corrected Brewster angle microscope (DC-BAM) is designed, constructed, and tested based on the combination of an optical grating and a relay lens. Avoiding the drawbacks of most conventional BAM instruments, this configuration corrects the image propagation direction and consequently provides an image in focus over the entire field of view without any beam scanning or imaging reconstruction. This new BAM can be applied to both liquid and solid subphases with good spatial resolution in static and dynamic studies.
Tannic acid for smear layer removal: pilot study with scanning electron microscope.
Bitter, N C
1989-04-01
The effects of a 25% tannic acid solution applied to the surface of prepared dentin was compared with untreated prepared dentin surfaces. The following results were demonstrated by electron microscope observation: (1) cavity preparations created an amorphous dentinal smear layer, (2) placement of a 25% tannic acid solution for 15 seconds removed the smear layer, (3) the contents of the dentinal tubules were not removed and no enlargement of dentinal tubules was found, and (3) a clean dentinal surface was observed.
Tylko, G; Karasiński, J; Wróblewski, R; Roomans, G M; Kilarski, W M
2000-01-01
Heterogeneity of the elemental content of myogenic C2C12 cultured cells was studied by electron probe X-ray microanalysis (EPXMA) with scanning (SEM EPXMA) and scanning transmission electron microscopy (STEM EPXMA). The best plastic substrate for growing cells was Thermanox. For STEM EPXMA, a Formvar film coated with carbon was found to be suitable substrate. The cells examined by scanning transmission electron microscopy showed great heterogeneity in their elemental content in comparison with the cells examined in the scanning electron microscope despite of an almost identical preparation procedure for EPXMA. Nevertheless the K/Na ratios obtained from both methods of EPXMA were very close (4.1 and 4.3). We conclude that the observed discrepancy in the elemental content obtained by the two methods may be due to differences in instrumentation and this must be taken into account when planning a comparative study.
NASA Astrophysics Data System (ADS)
Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.
2018-05-01
Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.
A milliKelvin scanning Hall probe microscope for high resolution magnetic imaging
NASA Astrophysics Data System (ADS)
Khotkevych, V. V.; Bending, S. J.
2009-02-01
The design and performance of a novel scanning Hall probe microscope for milliKelvin magnetic imaging with submicron lateral resolution is presented. The microscope head is housed in the vacuum chamber of a commercial 3He-refrigerator and operates between room temperature and 300 mK in magnetic fields up to 10 T. Mapping of the local magnetic induction at the sample surface is performed by a micro-fabricated 2DEG Hall probe equipped with an integrated STM tip. The latter provides a reliable mechanism of surface tracking by sensing and controlling the tunnel currents. We discuss the results of tests of the system and illustrate its potential with images of suitable reference samples captured in different modes of operation.
Analytical model of the optical vortex microscope.
Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz
2016-04-20
This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas; Sadegh, Hamid M. M.; Goldin, Dan S.
1997-05-01
With respect to lasers emitting within the mid-IR spectral domain fiber applicators are being developed. Intended is the use of these lasers in periodontal therapy and their application inside the gingival pocket. Aim of the study presented here is to compare the effect of an Er:YAG laser on dental calculus with the results following irradiation with a frequency doubled Alexandrite laser. The surface of freshly extracted wisdom teeth and of extracted teeth suffering from severe periodontitis were irradiated with both laser wavelengths using a standardized application protocol. Calculus on the enamel surface, at the enamel cementum junction and on the root surface was irradiated. For light microscope investigations undecalcified histological sections were prepared after treatment. For the scanning electron microscope teeth were dried in alcohol and sputtered with gold. Investigations revealed that with both laser systems calculus can be removed. Using the frequency doubled Alexandrite laser selective removal of calculus is possible while engaging the Er:YAG laser even at lowest energies necessary for calculus removal healthy cementum is ablated without control.
MACRAE, K.; TRAVIS, C.; AMOR, R.; NORRIS, G.; WILSON, S.H.; OPPO, G.‐L.; MCCONNELL, G.
2015-01-01
Summary We report a method for characterizing the focussing laser beam exiting the objective in a laser scanning microscope. This method provides the size of the optical focus, the divergence of the beam, the ellipticity and the astigmatism. We use a microscopic‐scale knife edge in the form of a simple transmission electron microscopy grid attached to a glass microscope slide, and a light‐collecting optical fibre and photodiode underneath the specimen. By scanning the laser spot from a reflective to a transmitting part of the grid, a beam profile in the form of an error function can be obtained and by repeating this with the knife edge at different axial positions relative to the beam waist, the divergence and astigmatism of the postobjective laser beam can be obtained. The measured divergence can be used to quantify how much of the full numerical aperture of the lens is used in practice. We present data of the beam radius, beam divergence, ellipticity and astigmatism obtained with low (0.15, 0.7) and high (1.3) numerical aperture lenses and lasers commonly used in confocal and multiphoton laser scanning microscopy. Our knife‐edge method has several advantages over alternative knife‐edge methods used in microscopy including that the knife edge is easy to prepare, that the beam can be characterized also directly under a cover slip, as necessary to reduce spherical aberrations for objectives designed to be used with a cover slip, and it is suitable for use with commercial laser scanning microscopes where access to the laser beam can be limited. PMID:25864964
Halkai, Rahul S; Hegde, Mithra N; Halkai, Kiran R
2016-01-01
To ascertain the role of Enterococcus faecalis in persistent infection and a possible method to prevent the penetration of E. faecalis into root cementum. One hundred and twenty human single-rooted extracted teeth divided into five groups. Group I (control): intact teeth, Group II: no apical treatment done, Group III divided into two subgroups. In Groups IIIa and IIIb, root apex treated with lactic acid of acidic and neutral pH, respectively. Group IV: apical root cementum exposed to lactic acid and roughened to mimic the apical resorption. Group V: apical treatment done same as Group IV and root-end filling done using mineral trioxide aggregate (MTA). Apical one-third of all samples immersed in E. faecalis broth for 8 weeks followed by bone morphogenetic protein and obturation and again immersed into broth for 8 weeks. Teeth split into two halves and observed under confocal laser scanning microscope and scanning electron microscope, organism identified by culture and polymerase chain reaction techniques. Adhesion and penetration was observed in Group IIIa and Group IV. Only adhesion in Group II and IIIB and no adhesion and penetration in Group I and V. Adhesion and penetration of E. faecalis into root cementum providing a long-term nidus for subsequent infection are the possible reason for persistent infection and root-end filling with MTA prevents the adhesion and penetration.
Two-Photon Imaging with Diffractive Optical Elements
Watson, Brendon O.; Nikolenko, Volodymyr; Yuste, Rafael
2009-01-01
Two-photon imaging has become a useful tool for optical monitoring of neural circuits, but it requires high laser power and serial scanning of each pixel in a sample. This results in slow imaging rates, limiting the measurements of fast signals such as neuronal activity. To improve the speed and signal-to-noise ratio of two-photon imaging, we introduce a simple modification of a two-photon microscope, using a diffractive optical element (DOE) which splits the laser beam into several beamlets that can simultaneously scan the sample. We demonstrate the advantages of DOE scanning by enhancing the speed and sensitivity of two-photon calcium imaging of action potentials in neurons from neocortical brain slices. DOE scanning can easily improve the detection of time-varying signals in two-photon and other non-linear microscopic techniques. PMID:19636390
Atomic force microscopy of biological samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doktycz, Mitchel John
2010-01-01
The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate howmore » this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).« less
Fast-scan EM with digital image processing for dynamic experiments
C.W. McMillin; F.C. Billingsley; R.E. Frazer
1974-01-01
The recent introduction of accessory instrumentation capable of display at television scan rates suggests a broadened application for the scanning electron microscope- the direct observation of motion (dynamic events) at magnifications otherwise unattainable. In one illustrative experiment, the transverse surface of southern pine was observed when subjected to large...
Fast-scan em with digital image processing for dynamic experiments
Charles W. McMillin; Fred C. Billingsley; Robert E. Frazer
1973-01-01
The recent introduction of accessory instrumentation capable of display at television scan rates suggests a broadened application for the scanning electron microscope - the direct observation of motion (dynamic events) at magnifactions otherwise unattainable. In one illustrative experiment, the transverse surface of southern pine was observed when subjected to large...
Scanning Probe Platform | Materials Science | NREL
level; this image obtained using a scanning tunneling microscope shows gray and white clusters of produce high-resolution color images or maps like this one obtained using scanning tunneling luminescence gray clusters. Gold substrate: (Left) STM image reveals the terraces of the H2 flamed substrate. (Right
Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald
2015-01-01
Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Classification of Streptomyces Spore Surfaces into Five Groups
Dietz, Alma; Mathews, John
1971-01-01
Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607
Flexible high-voltage supply for experimental electron microscope
NASA Technical Reports Server (NTRS)
Chapman, G. L.; Jung, E. A.; Lewis, R. N.; Van Loon, L. S.; Welter, L. M.
1969-01-01
Scanning microscope uses a field-emission tip for the electron source, an electron gun that simultaneously accelerates and focuses electrons from the source, and one auxiliary lens to produce a final probe size at the specimen on the order of angstroms.
Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun
2017-01-01
Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.
Drummond, J F; Dominici, J T; Sammon, P J; Okazaki, K; Geissler, R; Lifland, M I; Anderson, S A; Renshaw, W
1995-01-01
This study used light and scanning electron microscopic (SEM) histomorphometric methods to quantitate the rate of osseointegration of totally porous titanium alloy (Ti-6Al-4V) implants prepared by a novel fabrication technique--electrodischarge compaction (EDC). EDC was used to fuse 150-250-micrometer spherical titanium alloy beads into 4 X 6 mm cylindrical implants through application of a 300-microsecond pulse of high-voltage/high-current density. Two sterilized implants were surgically placed into each tibia of 20 New Zealand white rabbits and left in situ for periods corresponding to 2, 4, 8, 12, and 24 weeks. At each time point, 4 rabbits were humanely killed, and the implants with surrounding bone were removed, fixed, and sectioned for light and SEM studies. The degree of osseointegration was quantitated by means of a True Grid Digitizing Pad and Jandel Scan Version 3.9 software on an IBM PS/2 computer. The total pore area occupied by bone was divided by the total pore area available for bone ingrowth, and a Bone Ingrowth Factor (BIF) was calculated as a percent. The light microscopic results showed BIFs of 4% at week 2, 47% at week 4, 62% at week 8, 84% at week 12, and greater than 90% at week 24. The SEM results showed BIFs of 5% at week 2, 34% at week 4, 69% at week 8, 75% at week 12, and in excess of 90% at week 24. The results of this study show that EDC implants are biocompatible and support rapid osseointegration in the rabbit tibia and suggest that, after additional studies, they may be suitable for use as dental implants in humans.
Maldonado, J; Solé, A; Puyen, Z M; Esteve, I
2011-07-01
Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-λscan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Smieska, Louisa Marion
Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field noise in both methods is examined.
Optical scanning tests of complex CMOS microcircuits
NASA Technical Reports Server (NTRS)
Levy, M. E.; Erickson, J. J.
1977-01-01
The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.
Use of fluorescence and scanning electron microscopy as tools in teaching biology
NASA Astrophysics Data System (ADS)
Ghosh, Nabarun; Silva, Jessica; Vazquez, Aracely; Das, A. B.; Smith, Don W.
2011-06-01
Recent nationwide surveys reveal significant decline in students' interest in Math and Sciences. The objective of this project was to inspire young minds in using various techniques involved in Sciences including Scanning Electron Microscopy. We used Scanning Electron Microscope in demonstrating various types of Biological samples. An SEM Tabletop model in the past decade has revolutionized the use of Scanning Electron Microscopes. Using SEM Tabletop model TM 1000 we studied biological specimens of fungal spores, pollen grains, diatoms, plant fibers, dust mites, insect parts and leaf surfaces. We also used fluorescence microscopy to view, to record and analyze various specimens with an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, DP-70 digital camera with Image Pro 6.0 software. Micrographs were captured using bright field microscopy, the fluoresceinisothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. We used fluorescent microscopy to confirm the localization of sugar beet viruses in plant organs by viewing the vascular bundles in the thin sections of the leaves and other tissues. We worked with the REU summer students on sample preparation and observation on various samples utilizing the SEM. Critical Point Drying (CPD) and metal coating with the sputter coater was followed before observing some cultured specimen and the samples that were soft in textures with high water content. SEM Top allowed investigating the detailed morphological features that can be used for classroom teaching. Undergraduate and graduate researchers studied biological samples of Arthropods, pollen grains and teeth collected from four species of snakes using SEM. This project inspired the research students to pursue their career in higher studies in science and 45% of the undergraduates participated in this project entered Graduate school.
Optimization of the imaging response of scanning microwave microscopy measurements
NASA Astrophysics Data System (ADS)
Sardi, G. M.; Lucibello, A.; Kasper, M.; Gramse, G.; Proietti, E.; Kienberger, F.; Marcelli, R.
2015-07-01
In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S11. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.
Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin
2016-06-01
A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.
Electrode erosion in steady-state electric propulsion engines
NASA Technical Reports Server (NTRS)
Pivirotto, Thomas J.; Deininger, William D.
1988-01-01
The anode and cathode of a 30 kW class arcjet engine were sectioned and analyzed. This arcjet was operated for a total time of 573 hr at power levels between 25 and 30 kW with ammonia at flow rates of 0.25 and 0.27 gm/s. The accumulated run time was sufficient to clearly establish erosion patterns and their causes. The type of electron emission from various parts of the cathode surface was made clear by scanning electron microscope analysis. A scanning electron microscope was used to study recrystallization on the hot anode surface. These electrodes were made of 2 percent thoriated tungsten and the surface thorium content and gradient perpendicular to the surfaces was determined by quantitative microprobe analysis. The results of this material analysis on the electrodes and recommendations for improving electrode operational life time are presented.
Li, Hui; Cui, Quan; Zhang, Zhihong; Luo, Qingming
2015-01-01
Background The nonlinear optical microscopy has become the current state-of-the-art for intravital imaging. Due to its advantages of high resolution, superior tissue penetration, lower photodamage and photobleaching, as well as intrinsic z-sectioning ability, this technology has been widely applied in immunoimaging for a decade. However, in terms of monitoring immune events in native physiological environment, the conventional nonlinear optical microscope system has to be optimized for live animal imaging. Generally speaking, three crucial capabilities are desired, including high-speed, large-area and multicolor imaging. Among numerous high-speed scanning mechanisms used in nonlinear optical imaging, polygon scanning is not only linearly but also dispersion-freely with high stability and tunable rotation speed, which can overcome disadvantages of multifocal scanning, resonant scanner and acousto-optical deflector (AOD). However, low frame rate, lacking large-area or multicolor imaging ability make current polygonbased nonlinear optical microscopes unable to meet the requirements of immune event monitoring. Methods We built up a polygon-based nonlinear optical microscope system which was custom optimized for immunoimaging with high-speed, large-are and multicolor imaging abilities. Results Firstly, we validated the imaging performance of the system by standard methods. Then, to demonstrate the ability to monitor immune events, migration of immunocytes observed by the system based on typical immunological models such as lymph node, footpad and dorsal skinfold chamber are shown. Finally, we take an outlook for the possible advance of related technologies such as sample stabilization and optical clearing for more stable and deeper intravital immunoimaging. Conclusions This study will be helpful for optimizing nonlinear optical microscope to obtain more comprehensive and accurate information of immune events. PMID:25694951
Hard x-ray phase contrastmicroscopy - techniques and applications
NASA Astrophysics Data System (ADS)
Holzner, Christian
In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.
Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction.
Ichikawa, Tetsuo; Hayasaki, Yoshio; Fujita, Keiji; Nagao, Kan; Murata, Masayo; Kawano, Takanori; Chen, JianRong
2006-12-01
The purpose of this study was to evaluate the feasibility of using a femtosecond pulse laser processing technique to store information on a dental prosthesis. Commercially pure titanium plates were processed by a femtosecond pulse laser system. The processed surface structure was observed with a reflective illumination microscope, scanning electron microscope, and atomic force microscope. Processed area was an almost conical pit with a clear boundary. When laser pulse energy was 2 microJ, the diameter and depth were approximately 10microm and 0.2 microm respectively--whereby both increased with laser pulse energy. Further, depth of pit increased with laser pulse number without any thermal effect. This study showed that the femtosecond pulse processing system was capable of recording personal identification and optional additional information on a dental prosthesis.
A microscopic study investigating the structure of SnSe surfaces
NASA Astrophysics Data System (ADS)
Kim, Sang-ui; Duong, Anh-Tuan; Cho, Sunglae; Rhim, S. H.; Kim, Jungdae
2016-09-01
SnSe has been widely studied due to its many potential applications that take advantage of its excellent thermoelectric, photovoltaic, and optoelectronic properties. However, experimental investigations into the microscopic structure of SnSe remain largely unexplored. Herein, for the first time, the atomic and electronic structures of SnSe surfaces are studied by a home-built low temperature scanning tunneling microscope (STM) and density functional theory (DFT) calculations. The cleaved surface of SnSe is comprised of covalently bonded Se and Sn atoms in zigzag patterns. However, rectangular periodicity was observed in the atomic images of SnSe surfaces for filled and empty state probing. Detailed atomic structures are analyzed by DFT calculations, indicating that the bright extrusions of both filled and empty state images are mostly located at the positions of Sn atoms.
Comparative study viruses with computer-aided phase microscope AIRYSCAN
NASA Astrophysics Data System (ADS)
Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.
1996-12-01
Traditionally viruses are studied with scanning electron microscopy (SEM) after complicated procedure of sample preparation without the possibility to study it under natural conditions. We obtained images of viruses (Vaccinia virus, Rotavirus) and rickettsias (Rickettsia provazekii, Coxiella burnetti) in native state with computer-aided phase microscope airyscan -- the interference microscope of Linnik layout with phase modulation of the reference wave with dissector image tube as coordinate-sensitive photodetector and computer processing of phase image. A light source was the He-Ne laser. The main result is coincidence of dimensions and shape of phase images with available information concerning their morphology obtained with SEM and other methods. The fine structure of surface and nuclei is observed. This method may be applied for virus recognition and express identification, investigation of virus structure and the analysis of cell-virus interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, V.; Chawla, G.; Kumar, V.
1987-04-01
Pathomorphological changes in the skin was noticed under the scanning electron microscope in fish fingerlings (Cirrhina mrigala) exposed to 0.005 ppm (25% of the LC50) concentration to linear alkyl benzene sulfonate. The epithelial cells present in the epidermis of the skin were found to secrete more mucus with linear alkyl benzene sulfonate (LAS) than did controls. The presence or deposition of mucus on the surface of skin indicated likely molecular interaction between constituents of mucus and LAS.
2013-01-01
Utilizing semiconductor nanowires for (opto)electronics requires exact knowledge of their current–voltage properties. We report accurate on-top imaging and I–V characterization of individual as-grown nanowires, using a subnanometer resolution scanning tunneling microscope with no need for additional microscopy tools, thus allowing versatile application. We form Ohmic contacts to InP and InAs nanowires without any sample processing, followed by quantitative measurements of diameter dependent I–V properties with a very small spread in measured values compared to standard techniques. PMID:24059470
Environmental scanning electron microscopy of personal and household products.
Hoyberg, K
1997-03-01
The ability to forego sample preparation and to make observation directly in the environmental scanning electron microscope has benefited both household and personal product research at Unilever Research. Product efficacy on biological materials such as microcomedones was easily ascertained. Skin biopsies were examined in a moist state with no sample preparation. Effects of relative humidity on detergents were visually determined by recreating the necessary conditions in the microscope. Effects of cooling rates on the morphology of softener sheet actives that remained on polyester fabric were characterized via dynamic experimentation.
Nong, Xiang; Zeng, Xuemei; Yang, Yaojun; Liang, Zi; Tang, Mei; Liao, Lejuan; Luo, Chaobing
2017-11-01
Both leica microscopic camera system and scanning electron microscopy was used to observe and characterize the feet, back, abdomen, antennae and mouthparts of the Pseudoregma bambucicola from the bamboo, Bambusa multiplex . The possible functions of all the external morphological characteristics of the P. bambucicola were described and discussed in detail, which offers a basis for further enriching the biology, phylogeny and ecological niche of the P. bambucicola . Moreover, the morphological results should contribute to morphological identification and differentiation of the P. bambucicola from other aphids in the same family.
Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D
2014-10-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.
Timm, Rainer; Persson, Olof; Engberg, David L J; Fian, Alexander; Webb, James L; Wallentin, Jesper; Jönsson, Andreas; Borgström, Magnus T; Samuelson, Lars; Mikkelsen, Anders
2013-11-13
Utilizing semiconductor nanowires for (opto)electronics requires exact knowledge of their current-voltage properties. We report accurate on-top imaging and I-V characterization of individual as-grown nanowires, using a subnanometer resolution scanning tunneling microscope with no need for additional microscopy tools, thus allowing versatile application. We form Ohmic contacts to InP and InAs nanowires without any sample processing, followed by quantitative measurements of diameter dependent I-V properties with a very small spread in measured values compared to standard techniques.
Superconducting phonon spectroscopy using a low-temperature scanning tunneling microscope
NASA Technical Reports Server (NTRS)
Leduc, H. G.; Kaiser, W. J.; Hunt, B. D.; Bell, L. D.; Jaklevic, R. C.
1989-01-01
The low-temperature scanning tunneling microscope (STM) system described by LeDuc et al. (1987) was used to observe the phonon density of states effects in a superconductor. Using techniques based on those employed in macroscopic tunneling spectroscopy, electron tunneling current-voltage (I-V) spectra were measured for NbN and Pb, and dI/dV vs V spectra were measured using standard analog derivative techniques. I-V measurements on NbN and Pb samples under typical STM conditions showed no evidence for multiparticle tunneling effects.
Characteristics of different frequency ranges in scanning electron microscope images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.
2015-07-22
We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.
Park, Kyoung-Duck; Park, Doo Jae; Lee, Seung Gol; Choi, Geunchang; Kim, Dai-Sik; Byeon, Clare Chisu; Choi, Soo Bong; Jeong, Mun Seok
2014-02-21
A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.
Ultra-large field-of-view two-photon microscopy.
Tsai, Philbert S; Mateo, Celine; Field, Jeffrey J; Schaffer, Chris B; Anderson, Matthew E; Kleinfeld, David
2015-06-01
We present a two-photon microscope that images the full extent of murine cortex with an objective-limited spatial resolution across an 8 mm by 10 mm field. The lateral resolution is approximately 1 µm and the maximum scan speed is 5 mm/ms. The scan pathway employs large diameter compound lenses to minimize aberrations and performs near theoretical limits. We demonstrate the special utility of the microscope by recording resting-state vasomotion across both hemispheres of the murine brain through a transcranial window and by imaging histological sections without the need to stitch.
Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou
2014-09-01
In this paper, we provide and demonstrate a design of a unique cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope (ECSTM) measurements. The active metal Pt electrode can be protected from air contamination during the preparation process. The transparency of the cell allows the tip and bead to be aligned by direct observation. Based on this, a new and effective alignment method is introduced. The high-quality bead preparations through this new cell have been confirmed by the ECSTM images of Pt (111).
Self-navigation of a scanning tunneling microscope tip toward a micron-sized graphene sample.
Li, Guohong; Luican, Adina; Andrei, Eva Y
2011-07-01
We demonstrate a simple capacitance-based method to quickly and efficiently locate micron-sized conductive samples, such as graphene flakes, on insulating substrates in a scanning tunneling microscope (STM). By using edge recognition, the method is designed to locate and to identify small features when the STM tip is far above the surface, allowing for crash-free search and navigation. The method can be implemented in any STM environment, even at low temperatures and in strong magnetic field, with minimal or no hardware modifications.
Reecht, Gaël; Scheurer, Fabrice; Speisser, Virginie; Dappe, Yannick J; Mathevet, Fabrice; Schull, Guillaume
2014-01-31
The electroluminescence of a polythiophene wire suspended between a metallic surface and the tip of a scanning tunneling microscope is reported. Under positive sample voltage, the spectral and voltage dependencies of the emitted light are consistent with the fluorescence of the wire junction mediated by localized plasmons. This emission is strongly attenuated for the opposite polarity. Both emission mechanism and polarity dependence are similar to what occurs in organic light emitting diodes (OLED) but at the level of a single molecular wire.
Smerieri, M; Reichelt, R; Savio, L; Vattuone, L; Rocca, M
2012-09-01
We report here on a new experimental apparatus combining a commercial low temperature scanning tunneling microscope with a supersonic molecular beam. This setup provides a unique tool for the in situ investigation of the topography of activated adsorption systems and opens thus new interesting perspectives. It has been tested towards the formation of the O/Ag(110) added rows reconstruction and of their hydroxylation, comparing data recorded upon O(2) exposure at thermal and hyperthermal energies.
Ballistic-Electron-Emission Microscope
NASA Technical Reports Server (NTRS)
Kaiser, William J.; Bell, L. Douglas
1990-01-01
Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.
Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.
2016-01-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114
Solid-state optical microscope
Young, I.T.
1981-01-07
A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
Rad, Maryam Alsadat; Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio
2017-01-01
The preparation and observations of spheroplast W303 cells are described with Environmental Scanning Electron Microscope (ESEM). The spheroplasting conversion was successfully confirmed qualitatively, by the evaluation of the morphological change between the normal W303 cells and the spheroplast W303 cells, and quantitatively, by determining the spheroplast conversion percentage based on the OD 800 absorbance data. From the optical microscope observations as expected, the normal cells had an oval shape whereas spheroplast cells resemble a spherical shape. This was also confirmed under four different mediums, that is, yeast peptone-dextrose (YPD), sterile water, sorbitol-EDTA-sodium citrate buffer (SCE), and sorbitol-Tris-Hcl-CaCl 2 (CaS). It was also observed that the SCE and CaS mediums had a higher number of spheroplast cells as compared to the YPD and sterile water mediums. The OD 800 absorbance data also showed that the whole W303 cells were fully converted to the spheroplast cells after about 15 minutes. The observations of the normal and the spheroplast W303 cells were then performed under an environmental scanning electron microscope (ESEM). The normal cells showed a smooth cell surface whereas the spheroplast cells had a bleb-like surface after the loss of its integrity when removing the cell wall.
NASA Technical Reports Server (NTRS)
Hagiya, K.; Ohsumi, K.; Komatsu, M.; Mikouchi, T.; Zolensky, M. E.; Hirata, A.; Yamaguchi, S.; Kurokawa, A.
2016-01-01
The petrographic study of Itokawa particle, RA-QD02-0127 has been performed by SEM-EDS and optical microscope observations. The purpose of this study is to understand better the metamorphic and impact shock history of asteroid Itokawa, and other S-class asteroids.
Amos, W B; Reichelt, S; Cattermole, D M; Laufer, J
2003-05-01
In this paper, differential phase imaging (DPC) with transmitted light is implemented by adding a suitable detection system to a standard commercially available scanning confocal microscope. DPC, a long-established method in scanning optical microscopy, depends on detecting the intensity difference between opposite halves or quadrants of a split photodiode detector placed in an aperture plane. Here, DPC is compared with scanned differential interference contrast (DIC) using a variety of biological specimens and objective lenses of high numerical aperture. While DPC and DIC images are generally similar, DPC seems to have a greater depth of field. DPC has several advantages over DIC. These include low cost (no polarizing or strain-free optics are required), absence of a double scanning spot, electronically variable direction of shading and the ability to image specimens in plastic dishes where birefringence prevents the use of DIC. DPC is also here found to need 20 times less laser power at the specimen than DIC.
NASA Astrophysics Data System (ADS)
Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.
2017-02-01
Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.
Fine Metal Mask 3-Dimensional Measurement by using Scanning Digital Holographic Microscope
NASA Astrophysics Data System (ADS)
Shin, Sanghoon; Yu, Younghun
2018-04-01
For three-dimensional microscopy, fast and high axial resolution are very important. Extending the depth of field for digital holographic is necessary for three-dimensional measurements of thick samples. We propose an optical sectioning method for optical scanning digital holography that is performed in the frequency domain by spatial filtering of a reconstructed amplitude image. We established a scanning dual-wavelength off-axis digital holographic microscope to measure samples that exhibit a large amount of coherent noise and a thickness larger than the depth of focus of the objective lens. As a demonstration, we performed a three-dimensional measurement of a fine metal mask with a reconstructed sectional phase image and filtering with a reconstructed amplitude image.
Mahieu-Williame, L; Falgayrettes, P; Nativel, L; Gall-Borrut, P; Costa, L; Salehzada, T; Bisbal, C
2010-04-01
We have coupled a spectrophotometer with a scanning near-field optical microscope to obtain, with a single scan, simultaneously scanning near-field optical microscope fluorescence images at different wavelengths as well as topography and transmission images. Extraction of the fluorescence spectra enabled us to decompose the different wavelengths of the fluorescence signals which normally overlap. We thus obtained images of the different fluorescence emissions of acridine orange bound to single or double stranded nucleic acids in human metaphase chromosomes before and after DNAse I or RNAse A treatment. The analysis of these images allowed us to visualize some specific chromatin areas where RNA is associated with DNA showing that such a technique could be used to identify multiple components within a cell.
Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke
We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than themore » size of the incident electron beam.« less
Scanning electron microscopy of clays and clay minerals
Bohor, B.F.; Hughes, R.E.
1971-01-01
The scanning electron microscope (SEM) proves to be ideally suited for studying the configuration, texture, and fabric of clay samples. Growth mechanics of crystalline units—interpenetration and interlocking of crystallites, crystal habits, twinning, helical growth, and topotaxis—also are uniquely revealed by the SEM.Authigenic kaolins make up the bulk of the examples because their larger crystallite size, better crystallinity, and open texture make them more suited to examination by the SEM than most other clay mineral types.
Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2006-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Scanning SQUID Microscope and its Application in Detecting Weak Currents
NASA Astrophysics Data System (ADS)
Zhong, Chaorong; Li, Fei; Zhang, Fenghui; Ding, Hongsheng; Luo, Sheng; Lin, Dehua; He, Yusheng
A scanning SQUID microscope based on HTS dc SQUID has been developed. One of the applications of this microscope is to detect weak currents inside the sample. Considering that what being detected by the SQUID is the vertical component of the magnetic field on a plan where the SQUID lies, whereas the current which produces the magnetic field is actually located in a plan below the SQUID, a TWO PLAN model has been established. In this model Biot-Savart force laws and Fourier transformation were used to inverse the detected magnetic field into the underneath weak current. It has been shown that the distance between the current and the SQUID and the noise ratio of the experimental data have significant effects on the quality of the inverse process.
Quantitative characterization of semiconductor structures with a scanning microwave microscope.
Korolyov, S A; Reznik, A N
2018-02-01
In this work, our earlier method for measuring resistance R sh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq < R sh < 15 kΩ/sq range. The method is based on a microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al 2 O 3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of R sh . With a coaxial probe, such accordance was observed only in high-ohmic samples with R sh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of R sh to a level of ∼10%.
Quantitative characterization of semiconductor structures with a scanning microwave microscope
NASA Astrophysics Data System (ADS)
Korolyov, S. A.; Reznik, A. N.
2018-02-01
In this work, our earlier method for measuring resistance Rsh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq < Rsh < 15 kΩ/sq range. The method is based on a microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al2O3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of Rsh. With a coaxial probe, such accordance was observed only in high-ohmic samples with Rsh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of Rsh to a level of ˜10%.
Transcriptome profiling analysis of cultivar-specific apple fruit ripening and texture attributes
USDA-ARS?s Scientific Manuscript database
Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. In this study, transcriptome profile analysis, scanning electron microscopic examination an...
INVESTIGATING THE PREFERENTIAL DISSOLUTION OF LEAD FROM SOLDER PARTICULATES
During a building corrosion control study, bottles containing acid-preserved water samples with high levels of lead often had particulate material on the bottom. Scanning electron microscope analysis of the particles showed the presence of tin and the absence of lead, indicating ...
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
NASA Astrophysics Data System (ADS)
Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.
1991-03-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.
Scanning optical microscope with long working distance objective
Cloutier, Sylvain G.
2010-10-19
A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.
Analytical scanning evanescent microwave microscope and control stage
Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin
2013-01-22
A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.
Analytical scanning evanescent microwave microscope and control stage
Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin
2009-06-23
A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.
How the confocal laser scanning microscope entered biological research.
Amos, W B; White, J G
2003-09-01
A history of the early development of the confocal laser scanning microscope in the MRC Laboratory of Molecular Biology in Cambridge is presented. The rapid uptake of this technology is explained by the wide use of fluorescence in the 80s. The key innovations were the scanning of the light beam over the specimen rather than vice-versa and a high magnification at the level of the detector, allowing the use of a macroscopic iris. These were followed by an achromatic all-reflective relay system, a non-confocal transmission detector and novel software for control and basic image processing. This design was commercialized successfully and has been produced and developed over 17 years, surviving challenges from alternative technologies, including solid-state scanning systems. Lessons are pointed out from the unusual nature of the original funding and research environment. Attention is drawn to the slow adoption of the instrument in diagnostic medicine, despite promising applications.
Tao, W; Singh, S; Rossi, L; Gerritsen, J W; Hendriksen, B L M; Khajetoorians, A A; Christianen, P C M; Maan, J C; Zeitler, U; Bryant, B
2017-09-01
We present the design and performance of a cryogenic scanning tunneling microscope (STM) which operates inside a water-cooled Bitter magnet, which can attain a magnetic field of up to 38 T. Due to the high vibration environment generated by the magnet cooling water, a uniquely designed STM and a vibration damping system are required. The STM scan head is designed to be as compact and rigid as possible, to minimize the effect of vibrational noise as well as fit the size constraints of the Bitter magnet. The STM uses a differential screw mechanism for coarse tip-sample approach, and operates in helium exchange gas at cryogenic temperatures. The reliability and performance of the STM are demonstrated through topographic imaging and scanning tunneling spectroscopy on highly oriented pyrolytic graphite at T = 4.2 K and in magnetic fields up to 34 T.
Ju, Bing-Feng; Chen, Yuan-Liu; Zhang, Wei; Zhu, Wule; Jin, Chao; Fang, F Z
2012-05-01
A compact but practical scanning tunneling microscope (STM) with high aspect ratio and high depth capability has been specially developed. Long range scanning mechanism with tilt-adjustment stage is adopted for the purpose of adjusting the probe-sample relative angle to compensate the non-parallel effects. A periodical trench microstructure with a pitch of 10 μm has been successfully imaged with a long scanning range up to 2.0 mm. More innovatively, a deep trench with depth and step height of 23.0 μm has also been successfully measured, and slope angle of the sidewall can approximately achieve 67°. The probe can continuously climb the high step and exploring the trench bottom without tip crashing. The new STM could perform long range measurement for the deep trench and high step surfaces without image distortion. It enables accurate measurement and quality control of periodical trench microstructures.
NASA Astrophysics Data System (ADS)
Li, Xiao-Fen; Kochat, Mehdi; Majkic, Goran; Selvamanickam, Venkat
2016-08-01
In this paper the authors succeeded in measuring the critical current density ({J}{{c}}) of multifilament-coated conductors (CCs) with thin filaments as low as 0.25 mm using the scanning hall probe microscope (SHPM) technique. A new iterative method of data analysis is developed to make the calculation of {J}{{c}} for thin filaments possible, even without a very small scan distance. The authors also discussed in detail the advantage and limitation of the iterative method using both simulation and experiment results. The results of the new method correspond well with the traditional fast Fourier transform method where this is still applicable. However, the new method is applicable for the filamentized CCs in much wider measurement conditions such as with thin filament and a large scan distance, thus overcoming the barrier for application of the SHPM technique on {J}{{c}} measurement of long filamentized CCs with narrow filaments.
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzen, M.; Campbell, D.R.; Johnson, C.W.
1991-01-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less
NASA Astrophysics Data System (ADS)
Peterson, Gary; Abeytunge, Sanjeewa; Eastman, Zachary; Rajadhyaksha, Milind
2012-02-01
Reflectance confocal microscopy with a line scanning approach potentially offers a smaller, simpler and less expensive approach than traditional methods of point scanning for imaging in living tissues. With one moving mechanical element (galvanometric scanner), a linear array detector and off-the-shelf optics, we designed a compact (102x102x76mm) line scanning confocal reflectance microscope (LSCRM) for imaging human tissues in vivo in a clinical setting. Custom-designed electronics, based on field programmable gate array (FPGA) logic has been developed. With 405 nm illumination and a custom objective lens of numerical aperture 0.5, lateral resolution was measured to be 0.8 um (calculated 0.64 um). The calculated optical sectioning is 3.2 um. Preliminary imaging shows nuclear and cellular detail in human skin and oral epithelium in vivo. Blood flow is also visualized in the deeper connective tissue (lamina propria) in oral mucosa. Since a line is confocal only in one dimension (parallel) but not in the other, the detection is more sensitive to multiply scattered out of focus background noise than in the traditional point scanning configuration. Based on the results of our translational studies thus far, a simpler, smaller and lower-cost approach based on a LSCRM appears to be promising for clinical imaging.
Sivasankaran, T G; Udayakumar, R; Elanchezhiyan, C; Sabhanayakam, Selvi
2008-02-01
The effects of sildenafil citrate with ethanol on the rat testis was studied using scanning electron microscopy. Male Albino rats were divided into 8 groups, each being treated for a maximum of 45 days as follows. In the 4 short-term treatment groups, control rats were administered normal saline orally, whereas experimental animals were fed sildenafil citrate (Viagra) 1 microg/g with 18% ethanol (5 g/kg body weight), which was given orally as a single dose. After 1, 2.5, 4 and 24h the rats were killed. In the 4 long-term treatment groups, daily continuous doses of drug and ethanol with a single dosage were given for 15, 30 and 45 days and the animals killed 4h after the last dosage. Changes in the testis were compared with the normal healthy rat testis. The use of a scanning electron microscope for evaluation of the changes in the testis is more suitable for observation of the surface and morphological shapes of the tissue structures.
Isolation and Structural Studies of Mitochondria from Pea Roots.
Vishwakarma, Abhaypratap; Gupta, Kapuganti Jagadis
2017-01-01
For structural and respiratory studies, isolation of intact and active mitochondria is essential. Here, we describe an isolation method which gave good yield and intact mitochondria from 2-week-old pea (Pisum sativum) roots grown hydroponically under standard growth conditions. We used Percoll gradient centrifugation for this isolation procedure. The yield of purified mitochondria was 50 μg/g FW. Isolated mitochondria maintained their structure which was observed by using MitoTracker green in confocal microscope and scanning electron microscopy (SEM). Intact mitochondria are clearly visible in SCM images. Taken together this isolation method can be used for physiological and microscopic studies on mitochondria.
The microscopic world: A demonstration of electron microscopy for younger students
NASA Technical Reports Server (NTRS)
Horton, Linda L.
1992-01-01
The purpose is to excite students about the importance of scientific investigation and demonstrate why they should look at things in greater detail, extending beyond superficial examination. The topics covered include: microscopy, scanning electron microscopes, high magnification, and the scientific method.
Acoustical nanometre-scale vibrations of live cells detected by a near-field optical setup
NASA Astrophysics Data System (ADS)
Piga, Rosaria; Micheletto, Ruggero; Kawakami, Yoichi
2007-04-01
The Scanning Near-field Optical Microscope (SNOM) is able to detect tiny vertical movement on the cell membrane in the range of only 1 nanometer or less, about 3 orders of magnitude better than conventional optical microscopes. Here we show intriguing data of cell membrane nanometer-scale dynamics associated to different phenomena of the cell’s The Scanning Near-field Optical Microscope (SNOM) is able to detect tiny vertical movement on the cell membrane in the range of only 1 nanometer or less, about 3 orders of magnitude better than conventional optical microscopes. Here we show intriguing data of cell membrane nanometer-scale dynamics associated to different phenomena of the cell’s life, such as cell cycle and cell death, on rat pheochromocytoma line PC12. Working in culture medium with alive and unperturbed samples, we could detect nanometer-sized movements; Fourier components revealed a clear distinct behavior associated to regulation of neurite outgrowth and changes on morphology after necrotic stimulus.
Data processing device test apparatus and method therefor
Wilcox, Richard Jacob; Mulig, Jason D.; Eppes, David; Bruce, Michael R.; Bruce, Victoria J.; Ring, Rosalinda M.; Cole, Jr., Edward I.; Tangyunyong, Paiboon; Hawkins, Charles F.; Louie, Arnold Y.
2003-04-08
A method and apparatus mechanism for testing data processing devices are implemented. The test mechanism isolates critical paths by correlating a scanning microscope image with a selected speed path failure. A trigger signal having a preselected value is generated at the start of each pattern vector. The sweep of the scanning microscope is controlled by a computer, which also receives and processes the image signals returned from the microscope. The value of the trigger signal is correlated with a set of pattern lines being driven on the DUT. The trigger is either asserted or negated depending the detection of a pattern line failure and the particular line that failed. In response to the detection of the particular speed path failure being characterized, and the trigger signal, the control computer overlays a mask on the image of the device under test (DUT). The overlaid image provides a visual correlation of the failure with the structural elements of the DUT at the level of resolution of the microscope itself.
Sharp Tips on the Atomic Force Microscope
NASA Technical Reports Server (NTRS)
2008-01-01
This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA. The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007. The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.
2014-10-01
Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.
Tunneling magnetic force microscopy
NASA Technical Reports Server (NTRS)
Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.
1993-01-01
We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.
Lampi, Tiina; Dekker, Hannah; Ten Bruggenkate, Chris M; Schulten, Engelbert A J M; Mikkonen, Jopi J W; Koistinen, Arto; Kullaa, Arja M
2018-01-01
The aim of this study was to define the acid-etching technique for bone samples embedded in polymethyl metacrylate (PMMA) in order to visualize the osteocyte lacuno-canalicular network (LCN) for scanning electron microscopy (SEM). Human jaw bone tissue samples (N = 18) were collected from the study population consisting of patients having received dental implant surgery. After collection, the bone samples were fixed in 70% ethanol and non-decalcified samples embedded routinely into polymethyl metacrylate (PMMA). The PMMA embedded specimens were acid-etched in either 9 or 37% phosphoric acid (PA) and prepared for SEM for further analysis. PMMA embedded bone specimens acid-etched by 9% PA concentration accomplishes the most informative and favorable visualization of the LCN to be observed by SEM. Etching of PMMA embedded specimens is recommendable to start with 30 s or 40 s etching duration in order to find the proper etching duration for the samples examined. Visualizing osteocytes and LCN provides a tool to study bone structure that reflects changes in bone metabolism and diseases related to bone tissue. By proper etching protocol of non-decalcified and using scanning electron microscope it is possible to visualize the morphology of osteocytes and the network supporting vitality of bone tissue.
Epiphany sealer penetration into dentinal tubules: Confocal laser scanning microscopic study.
Ravi, S V; Nageswar, Rao; Swapna, Honwad; Sreekant, Puthalath; Ranjith, Madhavan; Mahidhar, Surabhi
2014-03-01
The aim of the following study was to evaluate the percentage and average depth of epiphany sealer penetration into dentinal tubules among the coronal, middle and apical thirds of the root using the confocal laser scanning microscopy (CLSM). A total of 10 maxillary central incisors were prepared and obturated with Resilon-Epiphany system. Sealer was mixed with fluorescent rhodamine B isothiyocyanate dye for visibility under confocal microscope. Teeth were cross-sectioned into coronal, middle and apical sections-2 mm thick. Sections were observed under CLSM. Images were analyzed for percentage and average depth of sealer penetration into dentinal tubules using the lasso tool in Adobe Photoshop CS3 (Adobe systems incorporated, San jose, CA) and laser scanning microscopy (LSM 5) image analyzer. One-way analysis of variance with Student Neuman Keuls post hoc tests, Kruskal-Wallis test and Wilcoxon signed-rank post hoc tests. The results showed that a higher percentage of sealer penetration in coronal section-89.23%, followed by middle section-84.19% and the apical section-64.9%. Average depth of sealer penetration for coronal section was 526.02 μm, middle-385.26 μm and apical-193.49 μm. Study concluded that there was higher epiphany sealer penetration seen in coronal followed by middle and least at apical third of the roots.
EDITORIAL: Nature's building blocks Nature's building blocks
NASA Astrophysics Data System (ADS)
Engel, Andreas
2009-10-01
The scanning tunnelling microscope (STM), invented by Gerd Binnig and Heinrich Rohrer in the early 1980s in the IBM Laboratory in Zurich, and the atomic force microscope (AFM) that followed shortly afterwards, were key developments that initiated a new era in scientific research: nanotechnology. These and related scanning probe microscopes have become fruitful tools in the study of cells, supramolecular assemblies and single biomolecules, as well as other nanoscale structures. In particular, the ability to investigate living matter in native environments made possible by atomic force microscopy, has allowed pronounced progress in biological research. The journal Nanotechnology was the first to serve as a publication platform for this rapidly developing field of science. The journal celebrates its 20th volume with this special issue, which presents a collection of original research articles in various fields of science, but all with the common feature that the structures, processes and functions all take place at the nanometre scale. Scanning probe microscopes are constantly being devised with increasingly sophisticated sensing and actuating features that optimize their performance. However, while these tools continue to provide impressive and informative images of nanoscale systems and allow single molecules to be manipulated with increasing dexterity, a wider field of research activity stimulated either by or for biology has emerged. The unique properties of matter at the nanoscale, such as localized surface plasmons supported by nanostructures, have been exploited in sensors with unprecedented sensitivity. Nanostructures have also found a profitable role in the encapsulation of molecules for 'smart' drug delivery. The potential application of DNA in the self-assembly of nanostructures guided by molecular recognition is another rapidly advancing area of research. In this issue a group of researchers in Germany report how the addition of copper ions can promote the stability of modified double-stranded DNA. They use scanning force microscope observations to provide insights into the energy landscape as DNA complexes form. This research provides just one example of how developments on biological systems are being applied to research across the spectrum of disciplines. This 20th volume special issue provides a snapshot of current state-of-the-art research activity in various areas of nanotechnology, and highlights the breadth and range of research progressing in this field. The developments reported here highlight the continued prominence of biology-related research and promise a bright future for nanotechnology.
Aziz, Farooq; Bano, Khizra; Siddique, Ahmad Hassan; Bajwa, Sadia Zafar; Nazir, Aalia; Munawar, Anam; Shaheen, Ayesha; Saeed, Madiha; Afzal, Muhammad; Iqbal, M Zubair; Wu, Aiguo; Khan, Waheed S
2018-01-09
We report a novel strategy for the fabrication of lecithin-coated gold nanoflowers (GNFs) via single-step design for CT imaging application. Field-emission electron microscope confirmed flowers like morphology of the as-synthesized nanostructures. Furthermore, these show absorption peak in near-infrared (NIR) region at λ max 690 nm Different concentrations of GNFs are tested as a contrast agent in CT scans at tube voltage 135 kV and tube current 350 mA. These results are compared with same amount of iodine at same CT scan parameters. The results of in vitro CT scan study show that GNFs have good contrast enhancement properties, whereas in vivo study of rabbits CT scan shows that GNFs enhance the CT image clearly at 135 kV as compared to that of iodine. Cytotoxicity was studied and blood profile show minor increase of white blood cells and haemoglobin, whereas decrease of red blood cells and platelets.
Min-su, Han
2013-08-01
This paper aims at identifying the provenance of Goryeo celadons by understanding its microstructural characteristics, such as particles, blisters, forms and amount of pores, and the presence of crystal formation, bodies, and glazes and its boundary, using an optical microscope and scanning electron microscopy (SEM). The analysis of the reproduced samples shows that the glazed layer of the sherd fired at higher temperatures has lower viscosity and therefore it encourages the blisters to be combined together and the layer to become more transparent. In addition, the result showed that the vitrification and melting process of clay minerals such as feldspars and quartzs on the bodies was accelerated for those samples. To factor such characteristics of the microstructure and apply it to the sherds, the samples could be divided into six categories based on status, such as small particles with many small pores or mainly large and small circular pores in the bodies, only a limited number of varied sized blisters in the glazes, and a few blisters and needle-shaped crystals on the boundary surface. In conclusion, the analysis of the microstructural characteristics using an optical microscope and SEM have proven to be useful as a categorizing reference factor in a provenance study on Goryeo celadons.
Improved Scanners for Microscopic Hyperspectral Imaging
NASA Technical Reports Server (NTRS)
Mao, Chengye
2009-01-01
Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version, the window would be a slit, the CCD would contain a one-dimensional array of pixels, and the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion. The image built up by scanning in this case would be an ordinary (non-spectral) image. In another version, the optics of which are depicted in the lower part of the figure, the spatial window would be a slit, the CCD would contain a two-dimensional array of pixels, the slit image would be refocused onto the CCD by a relay-lens pair consisting of a collimating and a focusing lens, and a prism-gratingprism optical spectrometer would be placed between the collimating and focusing lenses. Consequently, the image on the CCD would be spatially resolved along the slit axis and spectrally resolved along the axis perpendicular to the slit. As in the first-mentioned version, the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion.
2014-01-01
Substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by sol-gel technique. After various annealing temperatures, the surface mechanisms of each sample were analyzed using scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The chemical durability examinations and antibacterial tests of each sample were also carried out for the confirmation of its practical usage. Based on the result of the above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils. PMID:25136275
Overview of nanoscale NEXAFS performed with soft X-ray microscopes.
Guttmann, Peter; Bittencourt, Carla
2015-01-01
Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.
NASA Astrophysics Data System (ADS)
Bocsi, Jozsef; Luther, Ed; Mittag, Anja; Jensen, Ingo; Sack, Ulrich; Lenz, Dominik; Trezl, Lajos; Varga, Viktor S.; Molnar, Beea; Tarnok, Attila
2004-06-01
Background: Slide based cytometry (SBC) is a technology for the rapid stoichiometric analysis of cells fixed to surfaces. Its applications are highly versatile and ranges from the clinics to high throughput drug discovery. SBC is realized in different instruments such as the Laser Scanning Cytometer (LSC) and Scanning Fluorescent Microscope (SFM) and the novel inverted microscope based iCyte image cytometer (Compucyte Corp.). Methods: Fluorochrome labeled specimens were immobilized on microscopic slides. They were placed on a conventional fluorescence microscope and analyzed by photomultiplayers or digital camera. Data comparable to flow cytometry were generated. In addition, each individual event could be visualized. Applications: The major advantage of instruments is the combination of two features: a) the minimal sample volume needed, and b) the connection of fluorescence data and morphological information. Rare cells were detected, frequency of apoptosis by myricetin formaldehyde and H2O2 mixtures was determined;. Conclusion: LSC, SFM and the novel iCyte have a wide spectrum of applicability in SBC and can be introduced as a standard technology for multiple settings. In addition, the iCyte and SFM instrument is suited for high throughput screening by automation and may be in future adapted to telepathology due to their high quality images. (This study was supported by the IZKF-Leipzig, Germany and T 034245 OTKA, Hungary)
NASA Astrophysics Data System (ADS)
Mao, Gaojun; Cao, Rui; Guo, Xili; Jiang, Yong; Chen, Jianhong
2017-12-01
The kinetic processes of nucleation and growth of bainite laths in reheated weld metals are observed and analyzed by a combination of a laser confocal scanning microscope and an electron backscattering diffraction with a field emission scanning electron microscope. The results indicate that the surface relief induced by phase transformation is able to reveal the real microstructural morphologies of bainite laths when viewed from various angles. Five nucleation modes and six types of growth behaviors of bainite laths are revealed. The bainite lath growth rates are measured to vary over a wide range, from 2 μm/s to higher than 2000 μm/s. The orientations of the bainite laths within a prior austenite grain are examined and denoted as different variants. On the basis of variant identification, the reason is analyzed for various growth rates which are demonstrated to be affected by (1) the density of the high-angle misorientation in it, (2) the included angle between habit planes of different variants, and (3) the direction of lath growth with respect to the free (polished) surface.
Ojha, Saroj Kumar; Javdekar, Sadashiv Bhaskar; Dhir, Sangeeta
2015-01-01
Context: Plaque control has been shown to be pivotal in maintaining the optimal periodontal health. Mechanical plaque control is the most popular option for establishing the optimal oral health. Toothbrushes have been the novel tool for mechanical cleansing. However, the abrasive potential of the toothbrushes on the enamel surface is an area in gray. Aims: The aim of this in vitro study is to evaluate the abrasivity of the toothbrush versus the velcro fasteners. Materials and Methods: The mounted teeth of both the groups were subjected to abrasion test, and the tooth surfaces were observed for the possible abrasions from the oscillating strokes (toothbrush) and frictional contacts (hook and loop velcro) and examined under the scanning electron microscope. Results: Comparative assessment of both velcro (hook and loop) and toothbrush bristles did not reveal any evidence of abrasion on the tooth specimens. Conclusions: Veclro fasteners are safe and qualitatively at par to the manual toothbrush for their efficacy and efficiency in teeth cleansing PMID:26229264
Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover
2012-06-01
The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.
Theoretical Study of tip apex electronic structure in Scanning Tunneling Microscope
NASA Astrophysics Data System (ADS)
Choi, Heesung; Huang, Min; Randall, John; Cho, Kyeongjae
2011-03-01
Scanning Tunneling Microscope (STM) has been widely used to explore diverse surface properties with an atomic resolution, and STM tip has played a critical role in controlling surface structures. However, detailed information of atomic and electronic structure of STM tip and the fundamental understanding of STM images are still incomplete. Therefore, it is important to develop a comprehensive understanding of the electronic structure of STM tip. We have studied the atomic and electronic structures of STM tip with various transition metals (TMs) by DFT method. The d-electrons of TM tip apex atoms show different orbital states near the Fermi level. We will present comprehensive data of STM tips from our DFT calculation. Verified quantification of the tip electronic structures will lead to fundamental understanding of STM tip structure-property relationship. This work is supported by the DARPA TBN Program and the Texas ETF. DARPA Tip Based Nanofabrication Program and the Emerging Technology Fund of the State of Texas.
Doxorubicin-loaded Zein in situ gel for interstitial chemotherapy.
Cao, Xiaoying; Geng, Jianning; Su, Suwen; Zhang, Linan; Xu, Qian; Zhang, Li; Xie, Yinghua; Wu, Shaomei; Sun, Yongjun; Gao, Zibin
2012-01-01
A novel drug delivery system of doxorubicin (DOX)-loaded Zein in situ gel for interstitial chemotherapy was investigated in this study. The possible mechanisms of drug release were described according to morphological analysis by optical microscopy and scanning electronic microscope (SEM). In vitro and in vivo anti-tumor activity studies showed that DOX-loaded Zein in situ gel was superior to DOX solution. Local pharmacokinetics in tumor tissue was studied by quantitative analysis with confocal laser scanning microscopy (CLSM) combined with microdialysis technology. A pharmacokinetics mathematical model of DOX-loaded Zein in situ gel in tumors was then built.
Investigation of the Radial Compression of Carbon Nanotubes with a Scanning Probe Microscope
NASA Astrophysics Data System (ADS)
Shen, Weidian; Jiang, Bin; Han, Bao Shan; Xie, Si-Shen
2001-03-01
Carbon nanotubes have attracted great interest since they were first synthesized. The tubes have substantial promise in a variety of applications due to their unique properties. Efforts have been made to characterize the mechanical properties of the tubes. However, previous work has concentrated on the tubes’ longitudinal properties, and studies of their radial properties lag behind. We have operated a scanning probe microscope, NanoScopeTM IIIa, in the indentation/scratching mode to carry out a nanoindentation test on the top of multiwalled carbon nanotubes. We measured the correlation between the radial stress and the tube compression, and thereby determined the radial compressive elastic modulus at different compressive forces. The measurements also allowed us to estimate the radial compressive strength of the tubes. Support of this work by an Eastern Michigan University Faculty Research Fellowship and by the K. C. Wong Education Foundation, Hong Kong is gratefully acknowledged.
On universality of scaling law describing roughness of triple line.
Bormashenko, Edward; Musin, Albina; Whyman, Gene; Barkay, Zahava; Zinigrad, Michael
2015-01-01
The fine structure of the three-phase (triple) line was studied for different liquids, various topographies of micro-rough substrates and various wetting regimes. Wetting of porous and pillar-based micro-scaled polymer surfaces was investigated. The triple line was visualized with the environmental scanning electron microscope and scanning electron microscope for the "frozen" triple lines. The value of the roughness exponent ζ for water (ice)/rough polymer systems was located within 0.55-0.63. For epoxy glue/rough polymer systems somewhat lower values of the exponent, 0.42 < ζ < 0.54, were established. The obtained values of ζ were close for the Cassie and Wenzel wetting regimes, different liquids, and different substrates' topographies. Thus, the above values of the exponent are to a great extent universal. The switch of the exponent, when the roughness size approaches to the correlation length of the defects, is also universal.
Lin, Huirong; Zhang, Shuting; Gong, Song; Zhang, Shenghua; Yu, Xin
2015-01-01
The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed different distributions of attached cells, extracellular proteins, α-polysaccharides, and β-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales) and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence. PMID:26273617
Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study
Orlova, Anna; Shirmanova, Marina; Postnikova, Anna; Turchin, Ilya
2015-01-01
We propose the use of thermoelastic (TE) excitation of an ultrasonic (US) detector by backscattered laser radiation as a means of upgrading a single-modality photoacoustic (PA) microscope to dual-modality PA/US imaging at minimal cost. The upgraded scanning head of our dual-modality microscope consists of a fiber bundle with 14 output arms and a 32MHz polyvinylidene difluoride (PVDF) detector with a 34 MHz bandwidth (−6 dB level), 12.7 mm focal length, and a 0.25 numerical aperture. A single optical pulse delivered through the fiber bundle to the biotissue being investigated, in combination with a metalized surface on the PVDF detector allows us to obtain both PA and US A-scans. To demonstrate the in vivo capabilities of the proposed method we present the results of bimodal imaging of the brain of a newborn rat, a mouse tail and a mouse tumor. PMID:25780752
Nanoscale imaging of the photoresponse in PN junctions of InGaAs infrared detector
Xia, Hui; Li, Tian-Xin; Tang, Heng-Jing; Zhu, Liang; Li, Xue; Gong, Hai-Mei; Lu, Wei
2016-01-01
Electronic layout, such as distributions of charge carriers and electric field, in PN junction is determinant for the photovoltaic devices to realize their functionality. Considerable efforts have been dedicated to the carrier profiling of this specific region with Scanning Probe Microscope, yet reliable analysis was impeded by the difficulty in resolving carriers with high mobility and the unclear surface effect, particularly on compound semiconductors. Here we realize nanometer Scanning Capacitance Microscopic study on the cross-section of InGaAs/InP photodetctors with the featured dC/dV layout of PN junction unveiled for the first time. It enables us to probe the photo-excited minority carriers in junction region and diagnose the performance deficiency of the diode devices. This work provides an illuminating insight into the PN junction for assessing its basic capability of harvesting photo-carriers as well as blocking leakage current in nanoscopic scale. PMID:26892069
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M.
The (001) cleavage surface of vanadium pentoxide (V{sub 2}O{sub 5}) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V{sub 2}O{sub 5} crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surfacemore » (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.« less
Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva
2016-09-21
Larvae belonging to the family Chironomidae are difficult to identify. The aim of the present study was to describe the larval morphology of G. (G.) glaucus with the aid of a Scanning Electron Microscope (SEM), the karyotype and biology based on materials obtained from laboratory culture. Describing the morphology of larvae, special attention was paid to rarely or never described structures like the maxilla (lacinia and maxillary palp), the long plate situated below the ventromental plate, and plate X situated between lacinia and mentum. The use of SEM allowed also to obtain better images of labrum and ventromental plate. Morphological features of this species have been supplemented by karyotype and biology of larvae in laboratory conditions. Under controlled experimental conditions we found non-synchronous development of G. (G.) glaucus larvae hatched from one egg mass reflected in different lengths of larvae and emerged imagoes.