Science.gov

Sample records for scanning probe spectroscopy

  1. Full information acquisition in scanning probe microscopy and spectroscopy

    DOEpatents

    Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas

    2017-04-04

    Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.

  2. Combining scanning probe microscopy and x-ray spectroscopy

    PubMed Central

    2011-01-01

    A new versatile tool, combining Shear Force Microscopy and X-Ray Spectroscopy was designed and constructed to obtain simultaneously surface topography and chemical mapping. Using a sharp optical fiber as microscope probe, it is possible to collect locally the visible luminescence of the sample. Results of tests on ZnO and on ZnWO4 thin layers are in perfect agreement with that obtained with other conventional techniques. Twin images obtained by simultaneous acquisition in near field of surface topography and of local visible light emitted by the sample under X-Ray irradiation in synchrotron environment are shown. Replacing the optical fibre by an X-ray capillary, it is possible to collect local X-ray fluorescence of the sample. Preliminary results on Co-Ti sample analysis are presented. PMID:21711848

  3. Characterization of semiconductor nanowires using Raman spectroscopy and multifunctional scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Soudi, Afsoon

    Over the past decade, research on wide bandgap semiconductor nanowires has become one of the most active areas within the nanoscience community. Particularly, there has been extensive research on ZnO and GaN nanowires due to their promising applications in next-generation optoelectronics and highly efficient photovoltaics. Central to realizing these applications is a fundamental understanding of physical properties, such as impurity incorporations, phonon dynamics, and carrier transport. Multi-functional scanning probe microscopy and spatially resolved Raman spectroscopy are suitable tools for studying these properties in individual nanowires. Specifically, Raman spectroscopy, aided by mass spectrometry, was used to identify unintentional impurities in ZnO and GaN nanowires and their incorporation route. Phonon dynamics, in particular the enharmonic phonon coupling strength, was also studied by Raman spectroscopy. A near-field scanning photocurrent microscopy was used to directly measure minority carrier diffusion length and to determine its diameter dependence in individual ZnO nanowires. The origin of this diameter dependence was elucidated by surface photovoltage measurements using scanning Kelvin probe force microscopy and finite-element simulations. In addition, a demonstration of probing heat transport along nanowires and across various nanowire device interfaces using scanning thermal microscopy combined with Raman spectroscopy was also presented.

  4. Perspective: Structure and dynamics of water at surfaces probed by scanning tunneling microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Bian, Ke; Lin, Zeren; Jiang, Ying

    2016-10-01

    The detailed and precise understanding of water-solid interaction largely relies on the development of atomic-scale experimental techniques, among which scanning tunneling microscopy (STM) has proven to be a noteworthy example. In this perspective, we review the recent advances of STM techniques in imaging, spectroscopy, and manipulation of water molecules. We discuss how those newly developed techniques are applied to probe the structure and dynamics of water at solid surfaces with single-molecule and even submolecular resolution, paying particular attention to the ability of accessing the degree of freedom of hydrogen. In the end, we present an outlook on the directions of future STM studies of water-solid interfaces as well as the challenges faced by this field. Some new scanning probe techniques beyond STM are also envisaged.

  5. Perspective: Structure and dynamics of water at surfaces probed by scanning tunneling microscopy and spectroscopy.

    PubMed

    Guo, Jing; Bian, Ke; Lin, Zeren; Jiang, Ying

    2016-10-28

    The detailed and precise understanding of water-solid interaction largely relies on the development of atomic-scale experimental techniques, among which scanning tunneling microscopy (STM) has proven to be a noteworthy example. In this perspective, we review the recent advances of STM techniques in imaging, spectroscopy, and manipulation of water molecules. We discuss how those newly developed techniques are applied to probe the structure and dynamics of water at solid surfaces with single-molecule and even submolecular resolution, paying particular attention to the ability of accessing the degree of freedom of hydrogen. In the end, we present an outlook on the directions of future STM studies of water-solid interfaces as well as the challenges faced by this field. Some new scanning probe techniques beyond STM are also envisaged.

  6. Characterization of thin film semiconductors by scanning probe microscopy and tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Gichuhi, Anthony

    We have used scanning tunneling microscopy, atomic force microscopy, tunneling spectroscopy, resonance Raman spectroscopy and electrochemistry to study the electrosynthesis of II-VI compound semiconductors with special emphasis on ZnS, CdS, and HgS. This dissertation will focus mainly on the electrochemical and scanning probe (STM and AFM) applications to these compounds, in addition to novel materials such as CoSb. We hope to understand the structural, as well optical properties of these materials. Finally, we hope to develop a recipe for the electrosynthesis of high quality semiconductor films. In Chapter 2, we report an electrochemical, scanning probe microscopic and Raman spectroscopic investigation of thin US films grown by electrochemical atomic layer epitaxy (EC-ALE) aimed at understanding the role played by the order of deposition on film quality. In Chapter 3, we report a study of electrosynthesized CdS-HgS heterojunctions using scanning tunneling microscopy (STM), photoluminescence spectroscopy (PL), and electrochemistry. US thin films were grown by electrochemical atomic layer epitaxy onto Au(111) substrates and were terminated with a single HgS monolayer. In Chapter 4, the structure and chemical composition of electrosynthesized ZnS thin films on Au(111) substrates grown by alternating underpotential deposition and oxidative adsorption cycles of S and Zn from solution precursors was studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In Chapter 5, conditions for the growth of. stable mercury sulfide (HgS) monolayers on Au(111) surfaces using electrochemical atomic layer epitaxy have been investigated. HgS thin films were characterized by X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Chapter 6: This chapter describes the use of resonance Raman spectroscopy to characterize thin films of the II-VI compound semiconductors electrosynthesized on metal surfaces. We describe how resonance

  7. Laser heating of scanning probe tips for thermal near-field spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    O'Callahan, Brian T.; Raschke, Markus B.

    2017-02-01

    Spectroscopy and microscopy of the thermal near-field yield valuable insight into the mechanisms of resonant near-field heat transfer and Casimir and Casimir-Polder forces, as well as providing nanoscale spatial resolution for infrared vibrational spectroscopy. A heated scanning probe tip brought close to a sample surface can excite and probe the thermal near-field. Typically, tip temperature control is provided by resistive heating of the tip cantilever. However, this requires specialized tips with limited temperature range and temporal response. By focusing laser radiation onto AFM cantilevers, we achieve heating up to ˜1800 K, with millisecond thermal response time. We demonstrate application to thermal infrared near-field spectroscopy (TINS) by acquiring near-field spectra of the vibrational resonances of silicon carbide, hexagonal boron nitride, and polytetrafluoroethylene. We discuss the thermal response as a function of the incident excitation laser power and model the dominant cooling contributions. Our results provide a basis for laser heating as a viable approach for TINS, nanoscale thermal transport measurements, and thermal desorption nano-spectroscopy.

  8. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    DOE PAGES

    Hachtel, Jordan A.; Marvinney, Claire; Mouti, Anas; ...

    2016-03-02

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows usmore » to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. Furthermore, the approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.« less

  9. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    SciTech Connect

    Hachtel, Jordan A.; Marvinney, Claire; Mouti, Anas; Mayo, Daniel; Mu, Richard R.; Pennycook, Stephen J.; Lupini, Andrew R.; Chisholm, Matthew F.; Haglund, R. F.; Pantelides, Sokrates T.

    2016-03-02

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. Furthermore, the approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.

  10. A proximal retarding field analyzer for scanning probe energy loss spectroscopy.

    PubMed

    Bauer, Karl; Murphy, Shane; Palmer, Richard E

    2017-03-10

    A compact proximal retarding field analyzer for scanning probe energy loss spectroscopy measurements is described. Using the scanning tunneling microscope (STM) tip as a field emission (FE) electron source in conjunction with this analyzer, which is placed at a glancing angle to the surface plane, FE sample current and electron reflectivity imaging may be performed simultaneously. This is demonstrated in measurements of Ag nanostructures prepared on graphite by electron-beam lithography, where a material contrast of 13% is observed, with a lateral resolution of 25 nm, between the silver and graphite in electron reflectivity images. Topological contrast mechanisms such as edge enhancement and shadowing are also observed, giving rise to additional features in the electron reflectivity images. The same instrument configuration has been used to measure electron energy loss spectra on bare graphite, where the zero loss peak, π band plasmon loss peak and secondary electron peaks are observed. Using this simple and compact analyzer an STM, with sufficient open access to the tip-sample junction, may easily be augmented to provide simultaneous elemental and topographic mapping, supplementing STM image measurements with FE sample current and electron reflectivity images, as well as electron energy loss spectroscopy measurements, in the same instrument.

  11. A proximal retarding field analyzer for scanning probe energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Bauer, Karl; Murphy, Shane; Palmer, Richard E.

    2017-03-01

    A compact proximal retarding field analyzer for scanning probe energy loss spectroscopy measurements is described. Using the scanning tunneling microscope (STM) tip as a field emission (FE) electron source in conjunction with this analyzer, which is placed at a glancing angle to the surface plane, FE sample current and electron reflectivity imaging may be performed simultaneously. This is demonstrated in measurements of Ag nanostructures prepared on graphite by electron-beam lithography, where a material contrast of 13% is observed, with a lateral resolution of 25 nm, between the silver and graphite in electron reflectivity images. Topological contrast mechanisms such as edge enhancement and shadowing are also observed, giving rise to additional features in the electron reflectivity images. The same instrument configuration has been used to measure electron energy loss spectra on bare graphite, where the zero loss peak, π band plasmon loss peak and secondary electron peaks are observed. Using this simple and compact analyzer an STM, with sufficient open access to the tip-sample junction, may easily be augmented to provide simultaneous elemental and topographic mapping, supplementing STM image measurements with FE sample current and electron reflectivity images, as well as electron energy loss spectroscopy measurements, in the same instrument.

  12. Fabrication of co-axial field emitter tips for scanning probe energy loss spectroscopy.

    PubMed

    Song, Mi Yeon; Robinson, Alex P G; Palmer, Richard E

    2010-04-16

    We report on the fabrication of a co-axial tip for application to scanning probe energy loss spectroscopy (SPELS). The device consists of a 23.3 microm tall tip on a 76 microm tall mesa with a multilayer Si/Au/HfO(2)/Au structure; the outer Au and HfO(2) layers are stripped from the apex of the tip. The inner Au layer is used as a field emitting layer and the outer Au layer is grounded to screen the electric field between the tip and the substrate. The co-axial tip shows comparable field emission characteristics to electrochemically etched tungsten tips. The SPELS spectra of graphite obtained with the new tips show pi and sigma plasmon peaks and intense secondary electron emission peaks. It is anticipated that such co-axial tips will present a significant advantage for future angular resolved SPELS measurements.

  13. Imaging via complete cantilever dynamic detection: General dynamic mode imaging and spectroscopy in scanning probe microscopy

    SciTech Connect

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; Sukumar, Sreenivas R.; Kalinin, Sergei V.; Jesse, Stephen

    2016-09-08

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.

  14. Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; Sukumar, Sreenivas R.; Kalinin, Sergei V.; Jesse, Stephen

    2016-10-01

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.

  15. Imaging via complete cantilever dynamic detection: General dynamic mode imaging and spectroscopy in scanning probe microscopy

    SciTech Connect

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; Sukumar, Sreenivas R.; Kalinin, Sergei V.; Jesse, Stephen

    2016-09-08

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.

  16. Imaging via complete cantilever dynamic detection: General dynamic mode imaging and spectroscopy in scanning probe microscopy

    DOE PAGES

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; ...

    2016-09-08

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify themore » findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.« less

  17. SpectraFox: A free open-source data management and analysis tool for scanning probe microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruby, Michael

    In the last decades scanning probe microscopy and spectroscopy have become well-established tools in nanotechnology and surface science. This opened the market for many commercial manufacturers, each with different hardware and software standards. Besides the advantage of a wide variety of available hardware, the diversity may software-wise complicate the data exchange between scientists, and the data analysis for groups working with hardware developed by different manufacturers. Not only the file format differs between manufacturers, but also the data often requires further numerical treatment before publication. SpectraFox is an open-source and independent tool which manages, processes, and evaluates scanning probe spectroscopy and microscopy data. It aims at simplifying the documentation in parallel to measurement, and it provides solid evaluation tools for a large number of data.

  18. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  19. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  20. Two-dimensional dielectric spectroscopy: implementation and validation of a scanning open-ended coaxial probe.

    PubMed

    Habibi, Mohammad; Klemer, David P; Raicu, Valerica

    2010-07-01

    Dielectric spectroscopy is a powerful tool for characterizing and classifying materials based on their electrical properties. In order to perform dielectric measurements on a sample with spatially varying properties, the measuring probe typically is repositioned manually on the surface of the sample for each measurement. In this paper, we present a novel technique, based on a reconfigurable multielectrode array, which facilitates the recording of measurements at various different spatial locations without physically moving the measuring electrodes. By electronically selecting one of the electrodes as the inner line and connecting the remainder of the electrodes together to form the outer line, an open-ended coaxial probe is created, which can be repositioned by simply selecting different electrode combinations; hence the name of a "traveling" coaxial probe. The geometric factor, or the cell constant, of each coaxial probe in the array was estimated from measurements on saline solutions with known electrical characteristics. In order to validate the setup for measurement of dielectric properties of biological cells, the plasma membrane capacitance and cytoplasm conductivity of yeast cells suspended in aqueous solutions were measured and compared to results from published reports. Dielectric spectroscopy imaging was carried out on tissue phantoms made of an agar gel with inclusions consisting of concentrated yeast cell suspensions. Measurements were performed on the phantoms, and the dielectric data were spatially mapped with respect to electrode location. The spatial electrical data correlated precisely with locations of yeast cell inclusions within the phantoms.

  1. Adsorbate-induced quantum Hall system probed by scanning tunneling spectroscopy combined with transport measurements

    SciTech Connect

    Masutomi, Ryuichi Okamoto, Tohru

    2015-06-22

    An adsorbate-induced quantum Hall system at the cleaved InSb surfaces is investigated in magnetic fields up to 14 T using low-temperature scanning tunneling microscopy and spectroscopy combined with transport measurements. We show that an enhanced Zeeman splitting in the Shubnikov-de Haas oscillations is explained by an exchange enhancement of spin splitting and potential disorder, both of which are obtained from the spatially averaged density of states (DOS). Moreover, the Altshuler–Aronov correlation gap is observed in the spatially averaged DOS at 0 T.

  2. Sample exchange by beam scanning with applications to noncollinear pump-probe spectroscopy at kilohertz repetition rates

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hill, Robert J.; Peters, William K.; Baranov, Dmitry; Cho, Byungmoon; Huerta-Viga, Adriana; Carollo, Alexa R.; Curtis, Anna C.; Jonas, David M.

    2017-06-01

    In laser spectroscopy, high photon flux can perturb the sample away from thermal equilibrium, altering its spectroscopic properties. Here, we describe an optical beam scanning apparatus that minimizes repetitive sample excitation while providing shot-to-shot sample exchange for samples such as cryostats, films, and air-tight cuvettes. In this apparatus, the beam crossing point is moved within the focal plane inside the sample by scanning both tilt angles of a flat mirror. A space-filling spiral scan pattern was designed that efficiently utilizes the sample area and mirror scanning bandwidth. Scanning beams along a spiral path is shown to increase the average number of laser shots that can be sampled before a spot on the sample cell is resampled by the laser to ˜1700 (out of the maximum possible 2500 for the sample area and laser spot size) while ensuring minimal shot-to-shot spatial overlap. Both an all-refractive version and an all-reflective version of the apparatus are demonstrated. The beam scanning apparatus does not measurably alter the time delay (less than the 0.4 fs measurement uncertainty), the laser focal spot size (less than the 2 μ m measurement uncertainty), or the beam overlap (less than the 3.3% measurement uncertainty), leading to pump-probe and autocorrelation signal transients that accurately characterize the equilibrium sample.

  3. Scanning tunnelling spectroscopy as a probe of multi-Q magnetic states of itinerant magnets

    DOE PAGES

    Gastiasoro, Maria N.; Eremin, Ilya; Fernandes, Rafael M.; ...

    2017-02-08

    The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states (LDOS) near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept bymore » computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors—one single-Q and two double-Q phases. Our results open a promising avenue to investigate the complex magnetic configurations in itinerant systems via standard scanning tunnelling spectroscopy, without requiring spin-resolved capability.« less

  4. Scanning tunnelling spectroscopy as a probe of multi-Q magnetic states of itinerant magnets.

    PubMed

    Gastiasoro, Maria N; Eremin, Ilya; Fernandes, Rafael M; Andersen, Brian M

    2017-02-08

    The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states (LDOS) near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept by computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors-one single-Q and two double-Q phases. Our results open a promising avenue to investigate the complex magnetic configurations in itinerant systems via standard scanning tunnelling spectroscopy, without requiring spin-resolved capability.

  5. Scanning tunnelling spectroscopy as a probe of multi-Q magnetic states of itinerant magnets

    NASA Astrophysics Data System (ADS)

    Gastiasoro, Maria N.; Eremin, Ilya; Fernandes, Rafael M.; Andersen, Brian M.

    2017-02-01

    The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states (LDOS) near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept by computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors--one single-Q and two double-Q phases. Our results open a promising avenue to investigate the complex magnetic configurations in itinerant systems via standard scanning tunnelling spectroscopy, without requiring spin-resolved capability.

  6. Scanning tunnelling spectroscopy as a probe of multi-Q magnetic states of itinerant magnets

    PubMed Central

    Gastiasoro, Maria N.; Eremin, Ilya; Fernandes, Rafael M.; Andersen, Brian M.

    2017-01-01

    The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states (LDOS) near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept by computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors—one single-Q and two double-Q phases. Our results open a promising avenue to investigate the complex magnetic configurations in itinerant systems via standard scanning tunnelling spectroscopy, without requiring spin-resolved capability. PMID:28176779

  7. Controlled Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Ruskell, Todd G.; Sarid, Dror; Workman, Richard K.; Pyle, Jason L.

    1997-03-01

    A method for real-time monitoring of the quality and quantity of silicon oxide grown on silicon using conducting-tip scanning probe lithography has been developed. The sub-picoampere tip-sample currents measured during lithography in ambient conditions are shown to be proportional to the amount of silicon oxide being grown. In addition, we have demonstrated the ability to control the composition of the grown material by altering the lithographic environment. Silicon nitride growth is shown to result from lithography on silicon samples in an environment of annhydrous ammonia.

  8. Studies in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Sarid, Dror

    1995-06-01

    The following is a final report on our work in the field of Scanning Probe Microscopy (SPM), which has been funded by the AFOSR under Contract #F49620-92-J-0164. The AFOSR funding was instrumental in the establishment of a multi-lab facility at the Optical Sciences Center, which performs research in SPM using two ultrahigh vacuum (UHV) STM facilities, and several Atomic Force Microscopy (AFM) facilities. The fabrication and characterization work performed in the SPM Laboratory is supplemented by infrared (IR) spectroscopy, high resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM), available in other departments on campus. The report covers the following areas: (1) GaAs and CdSe Structures, (2) Optical Interactions on a nm and nsec Scales, (3) Fullerenes on Gold, (4) Fullerenes on MoS2, (5) Fullerenes on Si, (6) SiC, (7) Nanotubes, (8) Scanning Force Microscopy, and (9) Biology.

  9. Multiband superconductivity in 2 H -NbSe2 probed by Doppler-modulated scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Fridman, I.; Kloc, C.; Petrovic, C.; Wei, J. Y. T.

    Cooper pairing in multiband superconductors can involve carriers from bands having different dimensionalities, and the interband coupling can provide for novel pairing interactions. In addition to MgB2, recent experiments on 2 H -NbSe2 have studied the Fermi surface topology using angle- and temperature-dependent scanning tunneling spectroscopy. We present another novel method for probing multiband pairing: using a field-induced diamagnetic supercurrent, applied along different crystal axes, to perturb the quasiparticle density-of-states spectrum. By measuring the evolution of the quasiparticle spectrum under finite superfluid momentum, we characterize the pairing gaps and gap anisotropies. This approach is demonstrated on 2 H -NbSe2 at 300 mK with a magnetic field of up to 9 T applied in the ab -plane. The STM measurements revealed unambiguous evidence for multiband pairing, and evidence for a novel transition of the in-plane vortex lattice. We discuss the characteristics of this transition in light of data from other probes Work supported by NSERC, CFI/OIT, CIFAR, U.S. DOE and Brookhaven Science Associates (No. DE-AC02-98CH10886).

  10. Surface structure and analysis with scanning probe microscopy and electron tunneling spectroscopy. Final report

    SciTech Connect

    Hsu, Julia

    1998-05-01

    This report summarizes the results accomplished during the funding period of this grant (June 1, 1995 to May 31, 1998). The projects are (1) room-temperature atomic force microscopy (AFM) studies of NbSe{sub 3} doped with various elements and (2) low-temperature scanning tunneling microscopy (STM) studies of NbSe{sub 3}. In addition, AFM was used to study the surface morphology and defects of GaAs films grown on Ge and Ge/Si substracts.

  11. Probing magnetic excitations and correlations in single and coupled spin systems with scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Ternes, Markus

    2017-02-01

    Spectroscopic measurements with low-temperature scanning tunneling microscopes have been used very successfully for studying not only individual atomic or molecular spins on surfaces but also complexly designed coupled systems. The symmetry breaking of the supporting surface induces magnetic anisotropy which lead to characteristic fingerprints in the spectrum of the differential conductance and can be well understood with simple model Hamiltonians. Furthermore, correlated many-particle states can emerge due to the interaction with itinerant electrons of the electrodes, making these systems ideal prototypical quantum systems. In this manuscript more complex bipartite and spin-chains will be discussed additionally. Their spectra enable to determine precisely the nature of the interactions between the spins which can lead to the formation of new quantum states which emerge by interatomic entanglement.

  12. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy

    PubMed Central

    Tan, Eric M. M.; Amirjalayer, Saeed; Smolarek, Szymon; Vdovin, Alexander; Zerbetto, Francesco; Buma, Wybren Jan

    2015-01-01

    Azobenzene, a versatile and polymorphic molecule, has been extensively and successfully used for photoswitching applications. The debate over its photoisomerization mechanism leveraged on the computational scrutiny with ever-increasing levels of theory. However, the most resolved absorption spectrum for the transition to S1(nπ*) has not followed the computational advances and is more than half a century old. Here, using jet-cooled molecular beam and multiphoton ionization techniques we report the first high-resolution spectra of S1(nπ*) and S2(ππ*). The photophysical characterization reveals directly the structural changes upon excitation and the timescales of dynamical processes. For S1(nπ*), we find that changes in the hybridization of the nitrogen atoms are the driving force that triggers isomerization. In combination with quantum chemical calculations we conclude that photoisomerization occurs along an inversion-assisted torsional pathway with a barrier of ~2 kcal mol−1. This methodology can be extended to photoresponsive molecular systems so far deemed non-accessible to high-resolution spectroscopy. PMID:25562840

  13. Nanobits: customizable scanning probe tips

    NASA Astrophysics Data System (ADS)

    Rajendra Kumar, R. T.; Hassan, S. U.; Sardan Sukas, O.; Eichhorn, V.; Krohs, F.; Fatikow, S.; Boggild, P.

    2009-09-01

    We present here a proof-of-principle study of scanning probe tips defined by planar nanolithography and integrated with AFM probes using nanomanipulation. The so-called 'nanobits' are 2-4 µm long and 120-150 nm thin flakes of Si3N4 or SiO2, fabricated by electron beam lithography and standard silicon processing. Using a microgripper they were detached from an array and fixed to a standard pyramidal AFM probe or alternatively inserted into a tipless cantilever equipped with a narrow slit. The nanobit-enhanced probes were used for imaging of deep trenches, without visible deformation, wear or dislocation of the tips of the nanobit after several scans. This approach allows an unprecedented freedom in adapting the shape and size of scanning probe tips to the surface topology or to the specific application.

  14. Nanobits: customizable scanning probe tips.

    PubMed

    Rajendra Kumar, R T; Hassan, S U; Sardan Sukas, O; Eichhorn, V; Krohs, F; Fatikow, S; Boggild, P

    2009-09-30

    We present here a proof-of-principle study of scanning probe tips defined by planar nanolithography and integrated with AFM probes using nanomanipulation. The so-called 'nanobits' are 2-4 microm long and 120-150 nm thin flakes of Si(3)N(4) or SiO(2), fabricated by electron beam lithography and standard silicon processing. Using a microgripper they were detached from an array and fixed to a standard pyramidal AFM probe or alternatively inserted into a tipless cantilever equipped with a narrow slit. The nanobit-enhanced probes were used for imaging of deep trenches, without visible deformation, wear or dislocation of the tips of the nanobit after several scans. This approach allows an unprecedented freedom in adapting the shape and size of scanning probe tips to the surface topology or to the specific application.

  15. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy.

    PubMed

    Hill, Heather M; Rigosi, Albert F; Rim, Kwang Taeg; Flynn, George W; Heinz, Tony F

    2016-08-10

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2. We report the band gaps of MoS2 (2.16 ± 0.04 eV) and WS2 (2.38 ± 0.06 eV) in the materials as measured on the heterostructure regions and the general type II band alignment for the heterostructure, which shows an interfacial band gap of 1.45 ± 0.06 eV.

  16. Surface Studies by Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Seob

    The scanning probe microscopy reported here includes scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and atomic force microscopy (AFM). The scanning tunneling microscope is a novel tool which can reveal the atomic structure and electronic properties of surfaces using a probe with a sharp tip. An additional technique, atomic force microscopy has the potential to record geometric structures for both conducting and non -conducting materials. The first AFM designs utilized short range forces between a small stylus and a sample surface to produce high resolution images of defects and structural features of the surface. The current-voltage characteristics were also investigated during dynamic changes of the tunnel current and barrier height with an additional technology, tunneling spectroscopy. An advanced design for an AFM has been developed which utilizes a dielectric tunnel junction to retain the high sensitivity of tunnel current control over force ranges between 10^{-6} and 10 ^{-11}N. This AFM has been successfully applied to physical and biological samples. Scanning probe techniques have been developed and applied to a range of sample types including conductors, semi-conductors and non-conductors. Each technique utilizes the same electronics, computers, and imaging facilities. A fundamental problem of the atomic structure of graphite has existed since the inception of STM images. The experimental and theoretical hypotheses have been considered and a resolution of the problem has been developed as reported in this dissertation. Unprecedented resolving power, greater than 1A, has confirmed our hypothesis and has been correctly correlated with the structure of graphite surface. This dissertation also presents the results from studies of the surface structure of: MoS_2 , Cu, Au, Ag, Si, CdTe, HgTe, Fe_2 O_3, mica, gypsum, purple membranes with protein chains, and an organic photoconducting material, by scanning probe microscopes.

  17. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  18. Scanning Probe Microscopy Markup Language

    NASA Astrophysics Data System (ADS)

    Bolhuis, T.; Pasop, J. R.; Abelmann, L.; Lodder, J. C.

    2003-12-01

    The numerous, proprietary file formats for Scanning Probe Microscopy (SPM) have caused problems in the field of both off-line quantitative, data analysis and comparison, as well as long-term archiving of measurement results. Because of the eminent roll SPM's are playing in the multidisciplinary scientific world of today, an open, XML-based, standard SPM data format, called Scanning Probe Microscopy Markup Language (SPML) is proposed. XML (eXtensible Markup Language) has proven to be well applicable for standardized, structured, scientific data formats in many other disciplines. The structure of SPML will be explained briefly. The versatility of SPML as well as the possibilities of documenting, publishing, searching and exchanging SPM-data will be shown in examples. This paper gives an overview of the proposed data format, while the complete description can be found at http://spml.net.

  19. Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri L.; Romanchenko, Alexander S.; Asanov, Igor P.

    2006-10-01

    We have used ex situ atomic force microscopy (AFM), scanning tunneling microscopy and spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS) to study the surfaces of natural arsenopyrite samples that were electrochemically polarized in 1 M HCl, or leached in acidic solutions containing ferric iron salts, and then reacted with aqueous gold (III) chloride at ambient temperatures. For arsenopyrite oxidized on a positive-going potential sweep, progressively increasing amounts of surface Fe(III)-O and As-O species, and of S/Fe and S/As ratios in a non-stoichiometric sulfidic layer were found. The products formed in the sweep to a potential of 0.6 V (Ag/AgCl) of the passivity region are shaped in about 100 nm protrusions of two sorts, which are arranged in micrometer-size separate areas, while they are largely mixed at higher, "transpassive" potentials. The quantities of surface alteration substances notably decrease after leaching in ferric chloride and ferric sulfate acidic solutions. Passivation of arsenopyrite was suggested to associate with the disordered, metal-deficient surface layer having moderate excess of sulfur rather than with the products of arsenopyrite oxidation. Exposure of arsenopyrite to 10 -5-10 -3 M AuCl4- (pH 2) solutions results in the deposition of 8-50 nm gold particles; only a small fraction of the gold is present as Au(I)-S species. The electrochemical oxidation at 0.6 V or ageing of arsenopyrite in air promotes the subsequent gold deposition; in contrast, the amount of Au deposited on arsenopyrite that was treated by leaching in ferric chloride and sulfate solutions was about 10 times smaller than with polished arsenopyrite samples. It has been concluded that reducing agents formed as intermediates of arsenopyrite decomposition facilitate the Au 0 cementation although other factors related to the surface state of the arsenopyrite play a role as well. A decrease in the tunneling current magnitudes with decreasing the Au 0 particle

  20. The Effect of Electrode Coupling on Single Molecule Device Characteristics: An X-Ray Spectroscopy and Scanning Probe Microscopy Study

    NASA Astrophysics Data System (ADS)

    Batra, Arunabh

    This thesis studies electronic properties of molecular devices in the limiting cases of strong and weak electrode-molecule coupling. In these two limits, we use the complementary techniques of X-Ray spectroscopy and Scanning Tunneling Microscopy (STM) to understand the mechanisms for electrode-molecule bond formation, the energy level realignment due to metal-molecule bonds, the effect of coupling strength on single-molecule conductance in low-bias measurements, and the effect of coupling on transport under high-bias. We also introduce molecular designs with inherent asymmetries, and develop an analytical method to determine the effect of these features on high-bias conductance. This understanding of the role of electrode-molecule coupling in high-bias regimes enables us to develop a series of functional electronic devices whose properties can be predictably tuned through chemical design. First, we explore the weak electrode-molecule coupling regime by studing the interaction of two types of paracyclophane derivates that are coupled 'through-space' to underlying gold substrates. The two paracyclophane derivatives differ in the strength of their intramolecular through-space coupling. X-Ray photoemission spectroscopy (XPS) and Near-Edge X-ray Absorbance Fine Structure (NEXAFS) spectroscopy allows us to determine the orientation of both molecules; Resonant Photoemission Spectroscopy (RPES) then allows us to measure charge transfer time from molecule to metal for both molecules. This study provides a quantititative measure of charge transfer time as a function of through-space coupling strength. Next we use this understanding in STM based single-molecule current-voltage measurements of a series of molecules that couple through-space to one electrode, and through-bond to the other. We find that in the high-bias regime, these molecules respond differently depending on the direction of the applied field. This asymmetric response to electric field direction results in

  1. Scanning probe microscopy in catalysis.

    PubMed

    Yeung, King Lun; Yao, Nan

    2004-09-01

    This review discusses the recent progress in the application of scanning probe microscopy (SPM) in catalysis. SPM proves to be an invaluable technique for imaging catalytic surfaces and interfaces. Most SPM research is related to the structural and morphological transformation associated with catalyst preparation and use. Real-time SPM observation of surface dynamics including adsorption, diffusion and reaction, provides invaluable insights to the mechanism of catalysis. SPM is also used to shape and manipulate surfaces and surface processes. Fabrication of nanostructured catalysts, direct manipulation of adsorbed atoms and molecules and tip-mediated reactions are some examples of new SPM approach in catalyst research.

  2. Preparation of reliable probes for electrochemical tunneling spectroscopy.

    PubMed

    Güell, Aleix G; Díez-Pérez, Ismael; Gorostiza, Pau; Sanz, Fausto

    2004-09-01

    We present a new procedure to prepare Pt/Ir probes for electrochemical scanning tunneling microscopy (STM) and spectroscopy applications. We detail the experimental setup and the improvements over previous methods. The probes have been used successfully for measurements of tunneling spectroscopy under electrochemical control, which requires scanning the potential of the tip at high velocity. Copyright 2004 American Chemical Society

  3. Advanced oxidation scanning probe lithography.

    PubMed

    Ryu, Yu K; Garcia, Ricardo

    2017-04-07

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  4. Advanced oxidation scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Ryu, Yu K.; Garcia, Ricardo

    2017-04-01

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  5. Immobilization of DNA for scanning probe microscopy.

    PubMed Central

    Allison, D P; Bottomley, L A; Thundat, T; Brown, G M; Woychik, R P; Schrick, J J; Jacobson, K B; Warmack, R J

    1992-01-01

    Reproducible scanning tunneling microscope and atomic force microscope images of entire molecules of uncoated plasmid DNA chemically bound to surfaces are presented. The chemically mediated immobilization of DNA to surfaces and subsequent scanning tunneling microscope imaging of DNA molecules demonstrate that the problem of molecular instability to forces exerted by the probe tip, inherent with scanning probe microscopes, can be prevented. Images PMID:1438201

  6. Scanning probe microscopy of protein nanowires

    NASA Astrophysics Data System (ADS)

    Walsh, Kathleen Ann

    The bacterium Geobacter sulfurreducens grows electrically-conductive pili, which act as protein nanowires, in order to transfer electrons from the cell to electron acceptors in its environment when direct charge transfer through the cell membrane is not feasible. Understanding the electronic structure of the pili can provide insight into fundamental processes of electron transfer in biological systems. This study investigated the electronic structure of these protein nanowires using the toolbox of scanning probe microscopy, specifically scanning tunneling microscopy and point tunneling spectroscopy. These measurements were performed at 77 K and at room temperature. The measured data are compared to theoretical calculations. Density of states measurements using tunneling spectroscopy show that these pili act as narrow-gap biological semiconductors at 77 K. The onset of nonzero density of states remains within the metabolically-relevant voltage range. At room temperature, spectroscopy of the pili retains a gap-like structure, but this pseudogap is raised to a nonzero density of states at even the smallest applied voltages. These pilus nanowires also exhibit a distinct spatial dependence of the density of states across the breadth of the pili.

  7. The Integration of Scanning Electron Microscopy, Scanning Probe Microscopy, and Luminescence Spectroscopy in one Platform: New Opportunities and Applications in Photovoltaics

    NASA Astrophysics Data System (ADS)

    Romero, Manuel

    2012-02-01

    We have recently integrated scanning tunneling microscopy (STM), atomic force microscopy (AFM), and near-field scanning optical microscopy (NSOM) onto the mechanical stage of a scanning electron microscope compatible with operation under high vacuum and the use of cryogenics. This instrument is unique in the sense that is not just the assembly of different microscopes but an integrated platform in which both the electron beam and the ultrasharp tip of the AFM/STM/NSOM can be controlled simultaneously and independently as excitation or sensing elements, providing innovative modes of operation and access to optoelectronic properties in the micro and nanoscale not accessible before. Furthermore, this instrument is equipped with focused laser illumination of the tip and detection of luminescence and can be used to measure cathodoluminescence, scanning tunneling luminescence, photoluminescence, and electroluminescence, all with high resolution. In this contribution, we review the application of these techniques to the development of second- and third-generation photovoltaics (PV) beyond those commercially available today. Among these applications, we present the luminescence and electron transport across single grain boundaries in chalcopyrite and kesterite compounds, the detection of single molecule species using plasmonics, the nanoscale imaging of the exciton transport in organic semiconductors, and the insitu manipulation and measurement of nanowires.

  8. Scanning probe block copolymer lithography

    PubMed Central

    Chai, Jinan; Huo, Fengwei; Zheng, Zijian; Giam, Louise R.; Shim, Wooyoung; Mirkin, Chad A.

    2010-01-01

    Integration of individual nanoparticles into desired spatial arrangements over large areas is a prerequisite for exploiting their unique electrical, optical, and chemical properties. However, positioning single sub-10-nm nanoparticles in a specific location individually on a substrate remains challenging. Herein we have developed a unique approach, termed scanning probe block copolymer lithography, which enables one to control the growth and position of individual nanoparticles in situ. This technique relies on either dip-pen nanolithography (DPN) or polymer pen lithography (PPL) to transfer phase-separating block copolymer inks in the form of 100 or more nanometer features on an underlying substrate. Reduction of the metal ions via plasma results in the high-yield formation of single crystal nanoparticles per block copolymer feature. Because the size of each feature controls the number of metal atoms within it, the DPN or PPL step can be used to control precisely the size of each nanocrystal down to 4.8 ± 0.2 nm. PMID:21059942

  9. Information Acquisition & Processing in Scanning Probe Microscopy

    SciTech Connect

    Kalinin, Sergei V; Jesse, Stephen; Proksch, Roger

    2008-01-01

    Much of the imaging and spectroscopy capabilities of the existing 20,000+ scanning probe microscopes worldwide relies on specialized data processing that links the microsecond (and sometimes faster) time scale of cantilever motion to the millisecond (and sometimes slower) time scale of image acquisition and feedback. In most SPMs, the cantilever is excited to oscillate sinusoidally and the time-averaged amplitude and/or phase are used as imaging or control signals. Traditionally, the step of converting the rapid motion of the cantilever into an amplitude or phase is performed by phase sensitive homodyne or phase-locked loop detection. The emergence of fast configurable data processing electronics in last several years has allowed the development of non-sinusoidal data acquisition and processing methods. Here, we briefly review the principles and limitations of phase sensitive detectors and discuss some of the emergent technologies based on rapid spectroscopic measurements in frequency- and time domains.

  10. Fabrication of monolithic diamond probes for scanning probe microscopy applications

    NASA Astrophysics Data System (ADS)

    Scholz, Wenzel; Albert, D.; Malave, A.; Werner, Stephfan; Mihalcea, Christopher; Kulisch, Wilhelm; Oesterschulze, Egbert

    1997-04-01

    A process relying on the molding technique for the fabrication of diamond cantilevers with diamond tips integrated on silicon wafers for scanning probe microscopy applications is described. Either hot filament or microwave CVD diamond deposition and standard techniques of silicon micro-machining are employed. The deposition of well- developed tips depends critically on the pretreatment applied to enhance nucleation density; abrasive treatment with diamond powder as well as the bias-enhanced nucleation turned out to be successful. With optimized processes, well- shaped tips with a radius of curvature in the order of 30 nm can be obtained. They consist of high quality diamond according to micro-Raman spectroscopy. The definition of the cantilever area is another critical step which can be solved by proper process design. The fabrication of conductive tips/cantilevers is possible by boron doping. Finally, first performance tests of the diamond tips and cantilevers are presented.

  11. Scanning Josephson spectroscopy on the atomic scale

    NASA Astrophysics Data System (ADS)

    Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali

    2016-04-01

    The Josephson effect provides a direct method to probe the strength of the pairing interaction in superconductors. By measuring the phase fluctuating Josephson current between a superconducting tip of a scanning tunneling microscope and a BCS superconductor with isolated magnetic adatoms on its surface, we demonstrate that the spatial variation of the pairing order parameter can be characterized on the atomic scale. This system provides an example where the local pairing potential suppression is not directly reflected in the spectra measured via quasiparticle tunneling. Spectroscopy with such superconducting tips also shows signatures of previously unexplored Andreev processes through individual impurity-bound Shiba states. The atomic resolution achieved here establishes scanning Josephson spectroscopy as a promising technique for the study of novel superconducting phases.

  12. Studies in Scanning Probe Microscopy.

    DTIC Science & Technology

    2007-11-02

    refereed journals, as well as two books titled Scanning Force Microscopy, With Applications to Electric, Magnetic, and Atomic Forces published by Oxford University Press in 1991 and a revised edition in 1994.

  13. Open Source Scanning Probe Microscopy Control Software Package Gxsm

    SciTech Connect

    Zahl P.; Wagner, T.; Moller, R.; Klust, A.

    2009-08-10

    Gxsm is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected toan instrument, it is operating many different avors of SPM, e.g., scanning tunneling microscopy(STM) and atomic force microscopy (AFM) or in general two-dimensional multi channel data acquisition instruments. The Gxsm core can handle different data types, e.g., integer and oating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor (DSP) subsystem runs the feedback loop, generates the scanning signals and acquires the data during SPM measurements. The programmable Gxsm vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy (STS) or tip formation. The Gxsm software is released under the GNU general public license (GPL) and can be obtained via the Internet.

  14. Open Source Scanning Probe Microscopy Control Software package GXSM

    SciTech Connect

    Zahl, P.; Wagner, T.; Moller, R.; Klust, A.

    2010-05-01

    GXSM is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected to an instrument, it is operating many different flavors of SPM, e.g., scanning tunneling microscopy and atomic force microscopy or, in general, two-dimensional multichannel data acquisition instruments. The GXSM core can handle different data types, e.g., integer and floating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor subsystem runs the feedback loop, generates the scanning signals, and acquires the data during SPM measurements. The programmable GXSM vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy or tip formation. The GXSM software is released under the GNU general public license and can be obtained via the internet.

  15. Creating and Probing Graphene Electron Optics with Local Scanning Probes

    NASA Astrophysics Data System (ADS)

    Stroscio, Joseph

    Ballistic propagation and the light-like dispersion of graphene charge carriers make graphene an attractive platform for optics-inspired graphene electronics where gate tunable potentials can control electron refraction and transmission. In analogy to optical wave propagation in lenses, mirrors and metamaterials, gate potentials can be used to create a negative index of refraction for Veselago lensing and Fabry-Pérot interferometers. In circular geometries, gate potentials can induce whispering gallery modes (WGM), similar to optical and acoustic whispering galleries albeit on a much smaller length scale. Klein scattering of Dirac carriers plays a central role in determining the coherent propagation of electron waves in these resonators. In this talk, I examine the probing of electron resonators in graphene confined by linear and circular gate potentials with the scanning tunneling microscope (STM). The tip in the STM tunnel junction serves both as a tunable local gate potential, and as a probe of the graphene states through tunneling spectroscopy. A combination of a back gate potential, Vg, and tip potential, Vb, creates and controls a circular pn junction that confines the WGM graphene states. The resonances are observed in two separate channels in the tunneling spectroscopy experiment: first, by directly tunneling into the state at the bias energy eVb, and, second, by tunneling from the resonance at the Fermi level as the state is gated by the tip potential. The second channel produces a fan-like set of WGM peaks, reminiscent of the fringes seen in planar geometries by transport measurements. The WGM resonances split in a small applied magnetic field, with a large energy splitting approaching the WGM spacing at 0.5 T. These results agree well with recent theory on Klein scattering in graphene electron resonators. This work is done in collaboration with Y. Zhao, J. Wyrick, F.D. Natterer, J. F. Rodriquez-Nieva, C. Lewandoswski, K. Watanabe, T. Taniguchi, N. B

  16. Probing the structure and nano-scale mechanical properties of polymer surfaces with scanning force microscopy and sum frequency vibrational spectroscopy

    SciTech Connect

    Gracias, David Hugo

    1999-05-01

    Scanning Force Microscopy (SFM) has been used to quantitatively measure the elastic modulus, friction and hardness of polymer surfaces with special emphasis on polyethylene and polypropylene. In the experiments, tips of different radii of curvature ranging from 20 nm to 1000 nm have been used and the high pressure applied by the SFM have been observed to affect the values obtained in the measurements. The contact of the SFM tip with the polymer surface is explained by fitting the experimental curves to theoretical predictions of contact mechanics. Sum Frequency Generation (SFG) Vibrational Spectroscopy has been used to measure vibrational spectra of polymer surfaces in the vibrational range of 2700 to 3100 cm-1. Strong correlations are established between surface chemistry and surface structure as probed by SFG and mechanical properties measured by SFM on the surfaces. In these studies segregation of low surface energy moieties, from the bulk of the polymer to the surface have been studied. It was found that surface segregation occurs in miscible polymer blends and a small concentration of surface active polymer can be used to totally modify the surface properties of the blend. A novel high vacuum SFM was built to do temperature dependent measurements of mechanical changes occurring at the surface of polypropylene during the glass transition of the polymer. Using this instrument the modulus and friction of polypropylene was measured in the range of room temperature to ˜-60°C. An increase in the ordering of the backbone of the polymer chains below the glass transition measured by SFG correlates well with the increase in modulus measured on the same surface with SFM. Friction measurements have been done on polyethylene with three different instruments by applying loads ranging from nN to sub newton i.e. over eight orders of magnitude. Pressure and contact area effects were observed to play a significant role in determining the frictional response of the polymer

  17. Computed tomography scan measurement of abdominal wall thickness for application of near-infrared spectroscopy probes to monitor regional oxygen saturation index of gastrointestinal and renal circulations in children.

    PubMed

    Balaguru, Duraisamy; Bhalala, Utpal; Haghighi, Mohammad; Norton, Karen

    2011-05-01

    To measure abdominal wall thickness to determine the depth at which the renal vascular bed and mesenteric vascular bed are located, and to determine the appropriate site for placement of near-infrared spectroscopy probes for accurate monitoring regional oxygen saturation index in children. Abdominal computerized tomography scans in children were used to measure the abdominal wall thickness and to ascertain the location of kidneys. Tertiary care children's hospital. Children 0-18 yrs of age; n = 38. None. The main mass of the kidneys is located between vertebral levels T12 and L2 on both sides. The left kidney is located about a half-vertebral length higher than the right kidney. Posterior abdominal wall thickness ranged from 6.6 to 115.8 mm (median, 22.1 mm). Posterolateral abdominal wall thickness ranged from 6.7 to 114.5 mm (median, 19.6 mm). Anterior abdominal wall thickness in the supraumbilical level ranged from 3.5 to 62.9 mm (median, 16.0 mm). All abdominal wall thicknesses correlated better with weight of the subjects than their age. Abdominal wall thickness potentially exceeds the sampling depth of currently used near-infrared spectroscopy probes above a certain body size. Application of current near-infrared spectroscopy probes and design of future probes should consider patient size variations in the pediatric population.

  18. Scanned probe microscope for biological applications

    NASA Astrophysics Data System (ADS)

    Baiburin, Vil B.; Konnov, Nikolai P.; Shcherbakov, Anatolyi A.; Malakhaeva, Alina N.; Zadnova, Svetlana P.; Volkov, Yuri P.

    1997-12-01

    In our biophysical laboratory has been developed a new scanned probe microscope (SPM) for biological application. The SPM allows to investigate a biological samples' surface by means of three different near field microscopes: scanning tunneling microscope (STM), atomic force microscope (AFM) and near field scanning optical microscope (NSOM). The SPM is very rigid and can be operated in ordinary laboratory without any vibration isolation. The scanning area of the microscope is about 10 by 10 micrometers. Some different biological objects were visualized by means of the SPM viz. bacteria (E. Coli, plague, cholera, staphylococcus), macromolecules (DNA, plague proteins) and phage (T2).

  19. Development and Application of Multiple-Probe Scanning Probe Microscopes

    SciTech Connect

    Nakayama, T.; Kubo, O.; Shingaya, Y.; Higuchi, S.; Hasegawa, T.; Jiang, C. S.; Okuda, T.; Kuwahara, Y.; Takami, K.; Aono, M.

    2012-04-03

    the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequently modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.

  20. Development and application of multiple-probe scanning probe microscopes.

    PubMed

    Nakayama, Tomonobu; Kubo, Osamu; Shingaya, Yoshitaka; Higuchi, Seiji; Hasegawa, Tsuyoshi; Jiang, Chun-Sheng; Okuda, Taichi; Kuwahara, Yuji; Takami, Kazuhiro; Aono, Masakazu

    2012-04-03

    In the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple-probe scanning probe microscopes (MP-SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP-SPM is used not only for observing high-resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double-probe STM (DP-STM) developed by the authors, which was subsequently modified to a triple-probe STM (TP-STM), has been used to measure the conductivities of one-dimensional metal nanowires and carbon nanotubes and also two-dimensional molecular films. A quadruple-probe STM (QP-STM) has also been developed and used to measure the conductivity of two-dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple-probe AFM (QP-AFM) with four conductive tuning-fork-type self-detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general-purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP-AFM. These developments and applications of MP-SPMs are reviewed in this paper.

  1. An interchangeable scanning Hall probe/scanning SQUID microscope

    SciTech Connect

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  2. Plasmonic interferometry: Probing launching dipoles in scanning-probe plasmonics

    NASA Astrophysics Data System (ADS)

    Mollet, Oriane; Bachelier, Guillaume; Genet, Cyriaque; Huant, Serge; Drezet, Aurélien

    2014-03-01

    We develop a semi-analytical method for analyzing surface plasmon interferometry using scanning-probe tips as SP launchers. We apply our approach to Young double-hole interferometry experiments in a scanning tunneling microscope discussed recently in the literature as well as to new experiments—reported here—with an aperture near-field scanning optical microscope source positioned near a ring-like aperture slit in a thick gold film. In both experimental configurations, the agreement between experiments and model is very good. Our work reveals the role of the launching dipole orientations and magnetic versus electric dipole contributions to the interference imaging process. It also stresses the different orientations of the effective dipoles associated with the two different scanning-probe techniques.

  3. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  4. Multiple-probe scanning probe microscopes for nanoarchitectonic materials science

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomonobu; Shingaya, Yoshitaka; Aono, Masakazu

    2016-11-01

    Nanoarchitectonic systems are of interest for utilizing a vast range of nanoscale materials for future applications requiring a huge number of elemental nanocomponents. To explore the science and technology of nanoarchitectonics, advanced characterization tools that can deal with both nanoscale objects and macroscopically extended nanosystems are demanded. Multiple-probe scanning probe microscopes (MP-SPMs) are powerful tools that meet this demand because they take the advantages of conventional scanning probe microscopes and realize atomically precise electrical measurements, which cannot be done with conventional microprobing systems widely used in characterizing materials and devices. Furthermore, an MP-SPM can be used to operate some nanoarchitectonic systems. In this review, we overview the indispensable features of MP-SPMs together with the past, present and future of MP-SPM technology.

  5. Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging

    NASA Astrophysics Data System (ADS)

    Jesse, S.; Vasudevan, R. K.; Collins, L.; Strelcov, E.; Okatan, M. B.; Belianinov, A.; Baddorf, A. P.; Proksch, R.; Kalinin, S. V.

    2014-04-01

    Field confinement at the junction between a biased scanning probe microscope's tip and solid surface enables local probing of various bias-induced transformations, such as polarization switching, ionic motion, and electrochemical reactions. The nanoscale size of the biased region, smaller or comparable to that of features such as grain boundaries and dislocations, potentially allows for the study of kinetics and thermodynamics at the level of a single defect. In contrast to classical statistically averaged approaches, this approach allows one to link structure to functionality and deterministically decipher associated mesoscopic and atomistic mechanisms. Furthermore, responses measured as a function of frequency and bias can serve as a fingerprint of local material functionality, allowing for local recognition imaging of inorganic and biological systems. This article reviews current progress in multidimensional scanning probe microscopy techniques based on band excitation time and voltage spectroscopies, including discussions on data acquisition, dimensionality reduction, and visualization, along with future challenges and opportunities for the field.

  6. Scanning probe microscopy of biomedical interfaces

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.

    1998-02-01

    The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.

  7. Intermittent contact hydration scanning probe microscopy.

    PubMed

    Aloisi, G; Bacci, F; Carlà, M; Dolci, D

    2010-07-01

    Hydration scanning probe microscopy is a technique similar to scanning tunneling microscopy, in which the probe current, sustained by the slight surface conduction of a thin hydration layer covering an insulating support surface, is essentially electrochemical in nature instead of electronic tunneling. Such a technique allows the imaging of a great variety of samples, including insulators, provided that they are hydrophilic, as well as the study of molecular samples of biological interest (such as DNA) fixed on a suitable supporting surface. The main problem to obtain stable and reproducible images comes from the very critical determination of the operating conditions under which the probe-hydration layer interaction does not lead to the formation of a relatively large water meniscus. It has been suggested that this issue can be removed by adding a high frequency oscillation to the probe movement, as in tapping atomic force microscopy. Meniscus formation and breakup have been investigated in order to determine the best values for the amplitude and the frequency of the oscillation. Results obtained in this mode are discussed in comparison with the usual continuous contact mode.

  8. "Un-annealed and Annealed Pd Ultra-Thin Film on SiC Characterized by Scanning Probe Microscopy and X-ray Photoelectron Spectroscopy"

    NASA Technical Reports Server (NTRS)

    Lu, W. J.; Shi, D. T.; Elshot, K.; Bryant, E.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.

    1998-01-01

    Pd/SiC has been used as a hydrogen and a hydrocarbon gas sensor operated at high temperature. UHV (Ultra High Vacuum)-Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) techniques were applied to study the relationship between the morphology and chemical compositions for Pd ultra-thin films on SiC (less than 30 angstroms) at different annealing temperatures. Pd ultra-thin film on 6H-SiC was prepared by the RF sputtering method. The morphology from UHV-STM and AFM shows that the Pd thin film was well deposited on SiC substrate, and the Pd was partially aggregated to round shaped participates at an annealing temperature of 300 C. At 400 C, the amount of surface participates decreases, and some strap shape participates appear. From XPS, Pd2Si was formed on the surface after annealing at 300 C, and all Pd reacted with SiC to form Pd2Si after annealing at 400 C. The intensity of the XPS Pd peak decreases enormously at 400 C. The Pd film diffused into SiC, and the Schottky barrier height has almost no changes. The work shows the Pd sicilides/SiC have the same electronic properties with Pd/SiC, and explains why the Pd/SiC sensor still responds to hydrogen at high operating temperatures.

  9. Scanning tunneling spectroscopy to probe site-selection in heterovalent doping: Zn(II)-doped Cu(I)In(III)S2 as a case study

    NASA Astrophysics Data System (ADS)

    Kundu, Biswajit; Pal, Amlan J.

    2017-08-01

    We report scanning tunneling spectroscopy (STS) of a heterovalent-doped ternary compound semiconductors and their binary counterparts. The effect of dopants in the semiconductors that yielded a shift in Fermi energy has been found to be manifested in the density of states (DOS) spectrum. The shift infers the nature of doping, which the heterovalent dopants induce, and hence the site of the ternary system that the dopants occupy. For example, in the present case with Zn(II)-doped Cu(I)In(III)S2, the DOS spectra showed a shift in Fermi energy towards the conduction band and hence a n-type doping due to the introduction of electrons. Such a shift inferred that the bivalent dopants occupied the cuprous site. The results have been substantiated by STS studies of doped binary components, namely, Cu2S and In2S3 and shift in Fermi energy thereof. With the tuning in the Fermi energy, the homojunctions between undoped and doped semiconductors have a type-II band-alignment at the interface resulting in current rectification through the junctions. The band-diagram of the homojunctions formed through STS substantiated the direction of current-rectification in the junctions.

  10. Scanning tunneling spectroscopy under large current flow through the sample.

    PubMed

    Maldonado, A; Guillamón, I; Suderow, H; Vieira, S

    2011-07-01

    We describe a method to make scanning tunneling microscopy/spectroscopy imaging at very low temperatures while driving a constant electric current up to some tens of mA through the sample. It gives a new local probe, which we term current driven scanning tunneling microscopy/spectroscopy. We show spectroscopic and topographic measurements under the application of a current in superconducting Al and NbSe(2) at 100 mK. Perspective of applications of this local imaging method includes local vortex motion experiments, and Doppler shift local density of states studies.

  11. Scanned-Probe Measurements of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Wetsel, Grover C.

    1997-03-01

    It is projected that fin de siecle microelectronics manufacturing techniques will be capable of producing integrated circuits with minimal lateral feature sizes of 0.15 μ m. The developing technology of quantum-effect-device-based nanoelectronics will involve lateral feature sizes of tens of nanometers or less. Measurement science is being challenged to develop characterization and metrology appropriate for such nanoscale structures. The challenge is principally being met with a battery of scanned probes: the predecessors and successors of the scanning-tunneling microscope. Scanned probes are widely used for measurement of dimensional and physical properties of component materials and nanoelectronic devices; in the semiconductor industry, they are expanding from research-and-development laboratories to manufacturing floors. In this paper, applications of scanned probes to physical measurements of semiconductor materials and devices will be illustrated. Examples will include: 1) electronic characterization of quantum heterostructures, 2) near-field-optical imaging and spectroscopy, 3) calibrated dynamic lateral-force measurements, and 4) photothermal location of subsurface alignment marks on semiconductor wafers.

  12. Multitip scanning bio-Kelvin probe

    NASA Astrophysics Data System (ADS)

    Baikie, I. D.; Smith, P. J. S.; Porterfield, D. M.; Estrup, P. J.

    1999-03-01

    We have developed a novel multitip scanning Kelvin probe which can measure changes in biological surface potential ΔVs to within 2 mV and, quasisimultaneously monitor displacement to <1 μm. The control and measurement subcomponents are PC based and incorporate a flexible user interface permitting software control of each individual tip, measurement, and scan parameters. We review the mode of operation and design features of the scanning bio-Kelvin probe including tip steering, signal processing, tip calibration, and novel tip tracking/dithering routines. This system uniquely offers both tip-to-sample spacing control (which is essential to avoid spurious changes in ΔVs due to variations in mean spacing) and a dithering routine to maintain tip orientation to the biological specimen, irrespective of the latter's movement. These features permit long term (>48 h) "active" tracking of the displacement and biopotentials developed along and around a plant shoot in response to an environmental stimulus, e.g., differential illumination (phototropism) or changes in orientation (gravitropism).

  13. Exploring Scanning Probe Microscopy with Mathematica

    NASA Astrophysics Data System (ADS)

    Sarid, Dror

    1997-10-01

    This book/software edition provides a complete set of computational models that describe the physical phenomena associated with scanning tunneling microscopy, atomic force microscopy, and related technologies. Its self-contained presentation spares researchers the valuable time spent hunting through the technical literature in search of prior theoretical results required to understand the models presented. Mathematica code for all examples is included both in the book and at the accompanying ftp site, affording the freedom to change, at will, the values and parameters of specific problems or even modify the programs themselves to suit various modeling needs. Exploring Scanning Probe Microscopy with Mathematica is both a solid professional reference and an advanced-level text, beginning with scanning probe microscopy basics and moving on to cutting-edge techniques, experiments, and theory. In the section devoted to atomic force microscopy, Dr. Sarid describes the mechanical properties of cantilevers, atomic force microscope tip-sample interactions, and cantilever vibration characteristics. This is followed by an in-depth treatment of theoretical and practical aspects of tunneling phenomena, including metal-insulator-metal tunneling and Fowler-Nordheim field emission. The final section features chapters covering density of states in arbitrary dimensions, quantum wells and dots, and electrostatics.

  14. Global standardization of scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Fujita, Daisuke; Itoh, Hiroshi; Ichimura, Shingo; Kurosawa, Tomizo

    2007-02-01

    Recent efforts to achieve global standardization of scanning probe microscopy (SPM) including noncontact atomic force microscopy (NC-AFM), especially through the International Organization for Standardization (ISO) and related research, are surveyed. Since the unification of terminology for SPM is a prerequisite for standardization, it should have the first priority, followed by the unification of data management and treatment, which will enable access to and processing of SPM data collected by different types of instrument. Among the various SPM analytical methods, the dimensional metrology of SPM is regarded to be the first priority for standardization. This requires solving two basic problems: calibrating the x, y, and z coordinate axes with traceability to the SI unit of length, and eliminating the morphological artefacts caused by the shape of the probe tip. Pre-standardization efforts on restoring distorted images and characterizing the tip shape during use are discussed.

  15. Theoretical simulation of scanning probe microscopy.

    PubMed

    Tsukada, Masaru

    2011-01-01

    Methods of theoretical simulation of scanning probe microscopy, including scanning tunneling microscopy (STM), atomic force microscopy(AFM) and Kelvin prove force microscopy (KPFM) have been reviewed with recent topics as case studies. For the case of the STM simulation, the importance of the tip electronic states is emphasized and some advanced formalism is presented based on the non-equilibrium Green's function theory beyond Bardeen's perturbation theory. For the simulation of AFM, we show examples of 3D-force map for AFM in water, and theoretical analyses for a nano-mechanical experiment on a protein molecule. An attempt to simulate KPFM images based on the electrostatic multi-pole interaction between a tip and a sample is also introduced.

  16. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  17. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  18. Micromechanical cantilevers and scanning probe microscopes

    NASA Astrophysics Data System (ADS)

    Miller, Scott A.; Xu, Yang; MacDonald, Noel C.

    1995-09-01

    We have fabricated two microelectromechanical scanning tunneling microscopes (Micro- STMs) with 3D (xyz) actuators and integrated high aspects ratio tips. The reduction in the size of scanning probe microscopes allows for faster scanning speeds, array architectures, and massively parallel operation. The two Micro-STMs are fabricated from single crystal silicon using the high-aspect-ratio SCREAM process and are small enough to be used in array architectures. The torsional cantilever design used for out-of-plane (z) motion can be easily be adapted to scanning force microscopy. Typical atomic force microscope cantilevers have spring constants on the order of 0.01 - 10 N/m. To produce cantilevers with lower spring constants, ordinary thin film techniques would require longer (several mm) and thinner (sub- micrometers ) cantilevers. A mechanical analysis of torsional cantilevers reveals that high aspect ratio rectangular beams, such as the ones we fabricate, are easily twisted. By using the torsional design, we can achieve lower spring constants (10-1 - 10-7 N/m) without having to make a very thin film cantilever. We have demonstrated torsional cantilevers with spring constants on the order of 10-2 N/m. These cantilevers can be used as extremely sensitive force sensors for atomic force microscopy.

  19. Correlation of microphotoluminescence spectroscopy, scanning transmission electron microscopy, and atom probe tomography on a single nano-object containing an InGaN/GaN multiquantum well system.

    PubMed

    Rigutti, Lorenzo; Blum, Ivan; Shinde, Deodatta; Hernández-Maldonado, David; Lefebvre, Williams; Houard, Jonathan; Vurpillot, François; Vella, Angela; Tchernycheva, Maria; Durand, Christophe; Eymery, Joël; Deconihout, Bernard

    2014-01-08

    A single nanoscale object containing a set of InGaN/GaN nonpolar multiple-quantum wells has been analyzed by microphotoluminescence spectroscopy (μPL), high-resolution scanning transmission electron microscopy (HR-STEM) and atom probe tomography (APT). The correlated measurements constitute a rich and coherent set of data supporting the interpretation that the observed μPL narrow emission lines, polarized perpendicularly to the crystal c-axis and with energies in the interval 2.9-3.3 eV, are related to exciton states localized in potential minima induced by the irregular 3D In distribution within the quantum well (QW) planes. This novel method opens up interesting perspectives, as it will be possible to apply it on a wide class of quantum confining emitters and nano-objects.

  20. Localized charge imaging with scanning Kelvin probe microscopy

    NASA Astrophysics Data System (ADS)

    Orihuela, M. F.; Somoza, A. M.; Colchero, J.; Ortuño, M.; Palacios-Lidón, E.

    2017-01-01

    In this work, we propose an intuitive and easily implementable approach to model and interpret scanning Kelvin probe microscopy images of insulating samples with localized charges. The method, based on the image charges method, has been validated by a systematic comparison of its predictions with experimental measurements performed on charge domains of different sizes, injected in polymethyl methacrylate discontinuous films. The agreement between predictions and experimental lateral profiles, as well as with spectroscopy tip-sample distance curves, supports its consistency. The proposed procedure allows obtaining quantitative information such as total charge and the size of a charge domain and allows estimating the most adequate measurement parameters.

  1. High-resolution Josephson spectroscopy with a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali

    2015-03-01

    Conventional scanning tunneling microscopy (STM) measurements use a normal metal tip to probe local quasi-particle density of states with atomic resolution. Using a superconducting tip to conduct spectroscopy significantly boosts the energy resolution of the measurements, thus expanding the STM capabilities. Moreover, superconducting tips make it possible to probe superconductivity via the Josephson effect, which provides a direct measure of the local superconducting order parameter. Therefore, scanning Josephson spectroscopy measurements have the potential to characterize of a wide variety of superconducting materials on the atomic scale. I will present superconducting Pb tip measurements performed at temperatures below 250mK in a dilution refrigerator STM. By controlling the junction resistance, we are able to explore a wide range of tunneling regimes. Josephson measurements on Pb samples exhibit features including multiple Andreev reflections, and I will discuss the extension of these techniques to study atomic scale variations in Josephson current.

  2. Scanning Probe Microscopy of Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Reid, Obadiah G.

    Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than tr

  3. Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging

    SciTech Connect

    Jesse, Stephen; Vasudevan, Dr. Rama; Collins, Liam; Strelcov, Evgheni; Okatan, Mahmut B; Belianinov, Alex; Baddorf, Arthur P; Proksch, Roger; Kalinin, Sergei V

    2014-01-01

    Field confinement at the junction between a biased scanning probe microscope s (SPM) tip and solid surface enables local probing of various bias-induced transformations such as polarization switching, ionic motion, or electrochemical reactions to name a few. The nanoscale size of the biased region is smaller or comparable to features like grain boundaries and dislocations, potentially allows for the study of kinetics and thermodynamics at the level of a single defect. In contrast to classical statistically averaged approaches, this allows one to link structure to functionality and deterministically decipher associated mesoscopic and atomistic mechanisms. Furthermore, this type of information can serve as a fingerprint of local material functionality, allowing for local recognition imaging. Here, current progress in multidimensional SPM techniques based on band-excitation time and voltage spectroscopies is illustrated, including discussions on data acquisition, dimensionality reduction, and visualization along with future challenges and opportunities for the field.

  4. Electrostatic Surface Characterization by Scanning Probe Microscopy.

    NASA Astrophysics Data System (ADS)

    Leng, Yaojian

    1995-01-01

    The electrostatic properties of surfaces are important in biological, polymer and semiconductor physics. Several newly developed scanning probe microscopies can provide nanometer scale characterization of these surfaces. In the course of this work, an Electrostatic Force Microscope (EFM) and a Kelvin Probe Force Microscope (KPFM) have been built using interferometric force detection. An EFM is a modified noncontact mode Atomic Force Microscope, capable of simultaneously measuring surface topography, surface charge or surface potential, and capacitance. A KPFM is similar to the classical Kelvin method in measuring surface potential, only in this case, forces are detected instead of currents. A 10^{-4} A/surdHz displacement detection sensitivity has been achieved. A 200 A spatial resolution and a sub-mV electrostatic potential sensitivity have been demonstrated. The capability of the EFM to map charge and dielectric variations on biological and polymeric surfaces has been demonstrated. Studies have been made on red blood cells, modified Teflon FEP films, and contact lens materials. A quantitative method to measure surface charge density on a nanometer scale has been established. The redistribution of mobile surface ions has been visualized for the first time by the EFM on a submicron scale. It has been shown that the drift in the saturation current observed on the open gate field effect transistor is due to the migration of mobile surface ions under lateral fields. Atomic ordering in GaInP, controlled either by growth temperature or by substrate misorientation, has been studied by the KPFM both in cross section and on the growth plane. It is shown that KPFM is capable of distinguishing ordered GaInP from disordered GaInP. The contrast is observed to depend on the applied ac amplitude used in the measurement. The experiments indicate that ordering in GaInP modifies the density and/or lifetime of the surface states.

  5. In-Plane Anisotropy in Mono- and Few-Layer ReS2 Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy.

    PubMed

    Chenet, Daniel A; Aslan, O Burak; Huang, Pinshane Y; Fan, Chris; van der Zande, Arend M; Heinz, Tony F; Hone, James C

    2015-09-09

    Rhenium disulfide (ReS2) is a semiconducting layered transition metal dichalcogenide that exhibits a stable distorted 1T phase. The reduced symmetry of this system leads to in-plane anisotropy in various material properties. Here, we demonstrate the strong anisotropy in the Raman scattering response for linearly polarized excitation. Polarized Raman scattering is shown to permit a determination of the crystallographic orientation of ReS2 through comparison with direct structural analysis by scanning transmission electron microscopy (STEM). Analysis of the frequency difference of appropriate Raman modes is also shown to provide a means of precisely determining layer thickness up to four layers.

  6. Complete information acquisition in scanning probe microscopy

    SciTech Connect

    Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2015-03-13

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  7. Complete information acquisition in scanning probe microscopy

    DOE PAGES

    Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2015-03-13

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer ismore » severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.« less

  8. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    ERIC Educational Resources Information Center

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  9. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    ERIC Educational Resources Information Center

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  10. Scanning probe characterization of novel semiconductor materials and devices

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaotian

    As semiconductor devices shrink in size, it becomes more important to characterize and understand electronic properties of the materials and devices at the nanoscale. Scanning probe techniques offers numerous advantages over traditional tools used for semiconductor materials and devices characterization including high spatial resolution, ease of use and multi-functionality for electrical characterization, such as current, potential and capacitance, etc. In the first chapter, the basic principle of atomic force microscopy (AFM), and its application to characterization of semiconductor materials and devices are discussed. In the second part of the thesis, scanning capacitance microscopy (SCM), spectroscopy (SCS) and scanning Kelvin probe microscopy (SKPM) are used to investigate the structure and electronic properties of nitride based materials and devices, specifically doping in p-type GaN and electronic structure and morphology of InxGa1-xN/GaN quantum wells. In this work, AFM is used to characterize the local electronic structure in nitride thin film and heterostructures devices. In next part the thesis, AFM is used as an active part of the device, in conductive atomic force microscopy (C-AFM) and scanning gate microscopy (SGM), to study the transport properties and gating effect of InAs semiconductor nanowire based field effect transistor. This is made possible because the nanowire, as a potential one-dimension building block for high performance electronics and optoelectronics, has a diameter comparable to the size of AFM tips. In the last part of the thesis (appendix), SKPM is used to characterize semiconductor-like organic thin films, where measurements of the potential profile along the channel of an organic thin film transistor (OTFT) at different gate bias are presented to illustrate the unique transport property of such devices.

  11. Scanning probe and nanopore DNA sequencing: core techniques and possibilities.

    PubMed

    Lund, John; Parviz, Babak A

    2009-01-01

    We provide an overview of the current state of research towards DNA sequencing using nanopore and scanning probe techniques. Additionally, we provide methods for the creation of two key experimental platforms for studies relating to nanopore and scanning probe DNA studies: a synthetic nanopore apparatus and an atomically flat conductive substrate with stretched DNA molecules.

  12. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V.

    2017-01-03

    Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.

  13. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V.

    2015-08-04

    Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.

  14. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers

    SciTech Connect

    Wutscher, T.; Niebauer, J.; Giessibl, F. J.

    2013-07-15

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear—the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory.

  15. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers

    NASA Astrophysics Data System (ADS)

    Wutscher, T.; Niebauer, J.; Giessibl, F. J.

    2013-07-01

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear—the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory.

  16. Position-sensitive scanning fluorescence correlation spectroscopy.

    PubMed

    Skinner, Joseph P; Chen, Yan; Müller, Joachim D

    2005-08-01

    Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.

  17. Theory of Near-Field Scanning with a Probe Array

    DTIC Science & Technology

    2014-01-01

    AFRL-RY-WP-TR-2013-0239 THEORY OF NEAR-FIELD SCANNING WITH A PROBE ARRAY Kristopher T. Kim and Bradley A. Kramer Antennas...Final 15 March 2010 – 30 September 2013 4. TITLE AND SUBTITLE THEORY OF NEAR-FIELD SCANNING WITH A PROBE ARRAY 5a. CONTRACT NUMBER IN-HOUSE 5b...December 2013. Report contains color. 14. ABSTRACT In near-field scanning , as the electrical size of a device under test increases, it becomes

  18. Scanned probe microscopy for thin film superconductor development

    SciTech Connect

    Moreland, J.

    1996-12-31

    Scanned probe microscopy is a general term encompassing the science of imaging based on piezoelectric driven probes for measuring local changes in nanoscale properties of materials and devices. Techniques like scanning tunneling microscopy, atomic force microscopy, and scanning potentiometry are becoming common tools in the production and development labs in the semiconductor industry. The author presents several examples of applications specific to the development of high temperature superconducting thin films and thin-film devices.

  19. Effects of probe geometry on transscleral diffuse optical spectroscopy

    PubMed Central

    Svenmarker, Pontus; Xu, Can T.; Andersson-Engels, Stefan; Krohn, Jørgen

    2011-01-01

    The purpose of this study was to investigate how the geometry of a fiber optic probe affects the transmission and reflection of light through the scleral eye wall. Two geometrical parameters of the fiber probe were investigated: the source-detector distance and the fiber protrusion, i.e. the length of the fiber extending from the flat surface of the fiber probe. For optimization of the fiber optic probe geometry, fluorescence stained choroidal tumor phantoms in ex vivo porcine eyes were measured with both diffuse reflectance- and laser-induced fluorescence spectroscopy. The strength of the fluorescence signal compared to the excitation signal was used as a measure for optimization. Intraocular pressure (IOP) and temperature were monitored to assess the impact of the probe on the eye. For visualizing any possible damage caused by the probe, the scleral surface was imaged with scanning electron microscopy after completion of the spectroscopic measurements. A source-detector distance of 5 mm with zero fiber protrusion was considered optimal in terms of spectroscopic contrast, however, a slight fiber protrusion of 0.5 mm is argued to be advantageous for clinical measurements. The study further indicates that transscleral spectroscopy can be safely performed in human eyes under in vivo conditions, without leading to an unacceptable IOP elevation, a significant rise in tissue temperature, or any visible damage to the scleral surface. PMID:22076267

  20. Remote Adjustable focus Raman Spectroscopy Probe

    SciTech Connect

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1998-07-28

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external to the probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes along working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translate the probe body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  1. Scanning probe microscopy investigation of bilayered manganites

    NASA Astrophysics Data System (ADS)

    Huang, Junwei

    The bilayered manganite La2-2xSr 1+2xMn2O7, with x in the ferromagnetic compositional region, exhibits very interesting electronic and magnetic properties below the Curie temperature, such as a colossal magneto-resistance (CMR) effect. We have studied the microscopic electronic structure in the x = 0.32, 0.4 compounds at 80 K and 20 K by using a home-built low temperature scanning tunneling microscope (STM) and the evolution of the ferromagnetic domains with temperature and magnetic field in the x = 0.32 compound from 30 K to 110 K by using a home-built low temperature magnetic force microscope (MFM). STM topographic images show nano-sized patterns composed of Mn 3+-rich and Mn4+-rich regions in the mixed-valent matrix. Tunneling spectra I(V)& dIdV (V) show a gap and a tunneling asymmetry of the LDOS as a function of the sample bias voltage. By using current-imaging tunneling spectroscopy (CITS), we obtained a series of tunneling conductance maps which show the coexistence of localized electrons and itinerant electrons in this system. In the x = 0.32 compound, we observed a modulation with a wave vector of 16 A propagating along a-axis at 20K. This indicates the formation of a charge density wave as a result of Fermi surface nesting in this system. In MFM images, we observed that below 60 K, the ferromagnetic (FM) domains form stable treelike patterns and the domains are mainly oriented in the out-of-plane direction. As the temperature increases, the FM domains begin to experience a gradual change. This change becomes more and more rapid above 80 K. The FM domains change their magnetization from the out-of-plane direction to in-plane around 88 K. The in-plane FM domains completely disappear near T C. We also observed thermal hysteresis occurring in magnetic structures. We conclude that the formation of FM domains at low temperatures is determined by the energy associated with surface magnetic free poles and domain walls. At high temperatures, the two

  2. EDITORIAL: Scanning probe microscopy: a visionary development Scanning probe microscopy: a visionary development

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-07-01

    The development of scanning probe microscopy repositioned modern physics. When Rohrer and Binnig first used electronic tunnelling effects to image atoms and quantum states they did more than pin down theoretical hypotheses to real-world observables; the scanning tunnelling microscope fed imaginations, prompting researchers to consider new directions and possibilities [1]. As Rohrer once commented, 'We could show that you can easily manipulate or position something small in space with an accuracy of 10 pm.... When you can do that, you simply have ideas of what you can do' [2]. The development heralded a cavalry of scanning probe techniques—such as atomic force microscopy (AFM) [3-5], scanning near-field optical microscopy (SNOM) [6-8] and Kelvin probe force microscopy (KPFM) [9, 10]—that still continue to bring nanomaterials and nanoscale phenomena into fresh focus. Not long after the development of scanning tunnelling microscopy, Binnig, Quate and Gerber collaborating in California in the US published work on a new type of microscope also capable of atomic level resolution [3]. The original concept behind scanning tunnelling microscopy uses electrical conductance, which places substantial limitations on the systems that it can image. Binnig, Quate and Gerber developed the AFM to 'feel' the topology of surfaces like the needle of an old fashioned vinyl player. In this way insulators could be imaged as well. The development of a force modulation mode AFM extended the tool's reach to soft materials making images of biological samples accessible with the technique [4]. There have now been a number of demonstrations of image capture at rates that allow dynamics at the nanoscale to be tracked in real time, opening further possibilities in applications of the AFM as described in a recent review by Toshio Ando at Kanazawa University [5]. Researchers also found a way to retrieve optical information at 'super-resolution' [6, 7]. Optical microscopy provides spectral

  3. The combination of scanning electron and scanning probe microscopy

    SciTech Connect

    Sapozhnikov, I. D.; Gorbenko, O. M. Felshtyn, M. L.; Golubok, A. O.

    2016-06-17

    We suggest the SPM module to combine SEM and SPM methods for studying surfaces. The module is based on the original mechanical moving and scanning system. The examples of studies of the steel surface microstructure in both SEM and SPM modes are presented.

  4. Developments of scanning probe microscopy with stress/strain fields.

    PubMed

    Guo, H X; Fujita, D

    2011-12-01

    An innovative stress/strain fields scanning probe microscopy in ultra high vacuum (UHV) environments is developed for the first time. This system includes scanning tunneling microscope (STM) and noncontact atomic force microscope (NC-AFM). Two piezo-resistive AFM cantilever probes and STM probes used in this system can move freely in XYZ directions. The nonoptical frequency shift detection of the AFM probe makes the system compact enough to be set in the UHV chambers. The samples can be bent by an anvil driven by a step motor to induce stress and strain on their surface. With a direct current (dc) power source, the sample can be observed at room and high temperatures. A long focus microscope and a monitor are used to observe the samples and the operation of STM and AFM. Silicon(111) surface in room temperature and silicon(001) surface in high temperature with stress were investigated to check the performance of the scanning probe microscope.

  5. Remote adjustable focus Raman spectroscopy probe

    DOEpatents

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1999-01-01

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  6. Three-dimensional Analysis of Nanomaterials by Scanning Probe Nanotomography

    NASA Astrophysics Data System (ADS)

    Efimov, Anton E.; Agapova, Olga I.; Mochalov, Konstantin E.; Agapov, Igor I.

    Micro and nanostructure of scaffolds made from fibroin of Bombyx mori silkworm by salt leaching technique was studied by scanning probe nanotomography. Nanopores with dimensions in range from 30 to 180 nm are observed in the scaffold volume. Three - dimensional analysis of obtained data shows that degree of scaffold nanoporosity is 0.5% and nanopores are not interconnected with each other. Usage of scanning probe nanotomography technique enables to obtain unique nanoscale information of 3D structure of biopolymer nanomaterials.

  7. Raman spectroscopy system with hollow fiber probes

    NASA Astrophysics Data System (ADS)

    Liu, Bing-hong; Shi, Yi-Wei

    2012-11-01

    A Raman remote spectroscopy system was realized using flexible hollow optical fiber as laser emittion and signal collection probes. A silver-coated hollow fiber has low-loss property and flat transmission characteristics in the visible wavelength regions. Compared with conventional silica optical fiber, little background fluorescence noise was observed with optical fiber as the probe, which would be of great advantages to the detection in low frequency Raman shift region. The complex filtering and focusing system was thus unnecessary. The Raman spectra of CaCO3 and PE were obtained by using the system and a reasonable signal to noise ratio was attained without any lens. Experiments with probes made of conventional silica optical fibers were also conducted for comparisons. Furthermore, a silver-coated hollow glass waveguide was used as sample cell to detect liquid phase sample. We used a 6 cm-long hollow fiber as the liquid cell and Butt-couplings with emitting and collecting fibers. Experiment results show that the system obtained high signal to noise ratio because of the longer optical length between sample and laser light. We also give the elementary theoretical analysis for the hollow fiber sample cell. The parameters of the fiber which would affect the system were discussed. Hollow fiber has shown to be a potential fiber probe or sample cell for Raman spectroscopy.

  8. Dynamic scanned-probe lateral-force determination

    NASA Astrophysics Data System (ADS)

    Wetsel, G. C., Jr.; Drummond Roby, M. A.

    1995-10-01

    A continuum-mechanical model of the dynamics of a scanned probe is described that includes intrinsic losses as well as the effect of a lateral force on the end of the probe. A method for the determination of calibrated lateral force is experimentally evaluated and the sensitivity of the method is analyzed.

  9. Single-nanoparticle-terminated tips for scanning probe microscopy.

    PubMed

    Vakarelski, Ivan U; Higashitani, Ko

    2006-03-28

    We have developed a wet-chemistry procedure to attach a 10-40 nm colloidal gold nanoparticle to the top of a scanning probe microscopy (SPM) probe tip, making experiments of single nanoparticle interaction possible. This procedure of particle attachment is flexible and can be modified to attach nanoparticles of different kinds and sizes. The single-nanoparticle-terminated tips also have potential in various other applications, such as probes of enhanced sensitivity for optical and magnetic modes SPM.

  10. Advantages of Using Soft Materials in Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Eichelsdoerfer, Daniel J.; Wang, Mary X.; Mirkin, Chad A.

    2014-03-01

    Scanning probes based upon soft materials provide new capabilities and insights into the science of scanning probe lithography. Specifically, we have explored a cantilever-free architecture that consists of an array of sharp probes on an elastomeric film on a glass slide. This architecture allows every probe in an array to be in simultaneous, gentle contact with a surface, allowing one to perform lithography with millions of probes in parallel. Here, we describe three recent developments in cantilever-free scanning probe lithography that were enabled by the elastomeric material. 1) As the mechanical properties of elastomers can be readily tuned, it is possible to tailor the spring constant of the probes.1 2) The high coefficient of thermal expansion of elastomers means that local heating can be used to physically actuate individual probes allowing for arbitrary patterning.2 3) Solvents retained in the elastomer can mediate molecular printing and allow a user to pattern hydrophilic and hydrophobic materials in totally dry environments. 1D. J. Eichelsdoerfer, et al., Nano Lett. 13, 664 (2013). 2K. A. Brown, et al., Proc. Natl. Acad. Sci. USA 110, 12921 (2013).

  11. Is scanning in probed order recall articulatory?

    PubMed

    Farrell, Simon; Lelièvre, Anna

    2009-09-01

    We consider how theories of serial recall might apply to other short-term memory tasks involving recall of order. In particular, we consider the possibility that when participants are cued to recall an item at an arbitrary position in a sequence, they covertly serially recall the list up to the cued position. One question is whether such "scanning" is articulatory in nature. Two experiments are presented in which the syllabic length of words preceding and following target positions were manipulated, to test the prediction of an articulatory-based mechanism that time to recall an item at a particular position will depend on the number of preceding long words. Although latency was dependent on target position, no word length effects on latency were observed. Additionally, the effects of word length on accuracy replicate recent demonstrations in serial recall that recall accuracy is dependent on the word length of all list items, not just that of target items, in line with distinctiveness assumptions. It is concluded that if scanning does occur, it is not carried out by covert or overt articulation.

  12. Carbon nanotube scanning probe for imaging in aqueous environment

    NASA Technical Reports Server (NTRS)

    Stevens, Ramsey M.; Nguyen, Cattien V.; Meyyappan, M.

    2004-01-01

    Carbon nanotubes (CNTs) used as a probe for scanning probe microscopy has become one of the many potential usages of CNTs that is finding real applications in scientific research and industrial communities. It has been proposed that the unique mechanical buckling properties of the CNT would lessen the imaging force exerted on the sample and, thus, make CNT scanning probes ideal for imaging soft materials, including biological samples in liquid environments. The hydrophobic nature of the CNT graphitic sidewall is clearly chemically incompatible with the aqueous solution requirements in some biological imaging applications. In this paper, we present electron micrograph results demonstrating the instability of CNT scanning probes when submerged in aqueous solution. Moreover, we also introduce a novel approach to resolve this chemical incompatibility problem. By coating the CNT probe with ethylenediamine, thus rendering the CNT probe less hydrophobic, we demonstrate the liquid imaging capability of treated CNT probes. Experimental data for imaging in aqueous solutions are presented, which include an ultrathin Ir film and DNA molecules on a mica surface.

  13. Four-probe measurements with a three-probe scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  14. Four-probe measurements with a three-probe scanning tunneling microscope.

    PubMed

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  15. Four-probe measurements with a three-probe scanning tunneling microscope

    SciTech Connect

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  16. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions.

    PubMed

    Ophus, Colin; Ciston, Jim; Nelson, Chris T

    2016-03-01

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions

    DOE PAGES

    Ophus, Colin; Ciston, Jim; Nelson, Chris T.

    2015-12-10

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.

  18. Scanning probe microscopes go video rate and beyond

    NASA Astrophysics Data System (ADS)

    Rost, M. J.; Crama, L.; Schakel, P.; van Tol, E.; van Velzen-Williams, G. B. E. M.; Overgauw, C. F.; ter Horst, H.; Dekker, H.; Okhuijsen, B.; Seynen, M.; Vijftigschild, A.; Han, P.; Katan, A. J.; Schoots, K.; Schumm, R.; van Loo, W.; Oosterkamp, T. H.; Frenken, J. W. M.

    2005-05-01

    In this article we introduce a, video-rate, control system that can be used with any type of scanning probe microscope, and that allows frame rates up to 200images/s. These electronics are capable of measuring in a fast, completely analog mode as well as in the more conventional digital mode. The latter allows measurements at low speeds and options, such as, e.g., atom manipulation, current-voltage spectroscopy, or force-distance curves. For scanning tunneling microscope (STM) application we implemented a hybrid mode between the well-known constant-height and constant-current modes. This hybrid mode not only increases the maximum speed at which the surface can be imaged, but also improves the resolution at lower speeds. Acceptable image quality at high speeds could only be obtained by pushing the performance of each individual part of the electronics to its limit: we developed a preamplifier with a bandwidth of 600kHz, a feedback electronics with a bandwidth of 1MHz, a home-built bus structure for the fast data transfer, fast analog to digital converters, and low-noise drivers. Future improvements and extensions to the control electronics can be realized easily and quickly, because of its open architecture with its modular plug-in units. In the second part of this article we show our high-speed results. The ultrahigh vacuum application of these control electronics on our (UHV)-STM enabled imaging speeds up to 0.3mm/s, while still obtaining atomic step resolution. At high frame rates, the images suffered from noticeable distortions, which we have been able to analyze by virtue of the unique access to the error (dZ) signal. The distortions have all been associated with mechanical resonances in the scan head of the UHV-STM. In order to reduce such resonance effects, we have designed and built a scan head with high resonance frequencies (⩾64kHz), especially for the purpose of testing the fast electronics. Using this scanner we have reached video-rate imaging speeds

  19. Non-Contact Measurement Using A Laser Scanning Probe

    NASA Astrophysics Data System (ADS)

    Modjarrad, Amir

    1989-03-01

    Traditional high accuracy touch-trigger probing can now be complemented by high speed, non-contact, profile scanning to give another "dimension" to the three-dimensional Co-ordinate Measuring Machines (CMMs). Some of the features of a specially developed laser scanning probe together with the trade-offs involved in the design of inspection systems that use triangulation are examined. Applications of such a laser probe on CMMs are numerous since high speed scanning allows inspection of many different components and surfaces. For example, car body panels, tyre moulds, aircraft wing skins, turbine blades, wax and clay models, plastics, etc. Other applications include in-process surveillance in manufacturing and food processing, robotics vision and many others. Some of these applications are discussed and practical examples, case studies and experimental results are given with particular reference to use on CMMs. In conclusion, future developments and market trends in high speed non-contact measurement are discussed.

  20. Catalytic reaction processes revealed by scanning probe microscopy. [corrected].

    PubMed

    Jiang, Peng; Bao, Xinhe; Salmeron, Miquel

    2015-05-19

    Heterogeneous catalysis is of great importance for modern society. About 80% of the chemicals are produced by catalytic reactions. Green energy production and utilization as well as environmental protection also need efficient catalysts. Understanding the reaction mechanisms is crucial to improve the existing catalysts and develop new ones with better activity, selectivity, and stability. Three components are involved in one catalytic reaction: reactant, product, and catalyst. The catalytic reaction process consists of a series of elementary steps: adsorption, diffusion, reaction, and desorption. During reaction, the catalyst surface can change at the atomic level, with roughening, sintering, and segregation processes occurring dynamically in response to the reaction conditions. Therefore, it is imperative to obtain atomic-scale information for understanding catalytic reactions. Scanning probe microscopy (SPM) is a very appropriate tool for catalytic research at the atomic scale because of its unique atomic-resolution capability. A distinguishing feature of SPM, compared to other surface characterization techniques, such as X-ray photoelectron spectroscopy, is that there is no intrinsic limitation for SPM to work under realistic reaction conditions (usually high temperature and high pressure). Therefore, since it was introduced in 1981, scanning tunneling microscopy (STM) has been widely used to investigate the adsorption, diffusion, reaction, and desorption processes on solid catalyst surfaces at the atomic level. STM can also monitor dynamic changes of catalyst surfaces during reactions. These invaluable microscopic insights have not only deepened the understanding of catalytic processes, but also provided important guidance for the development of new catalysts. This Account will focus on elementary reaction processes revealed by SPM. First, we will demonstrate the power of SPM to investigate the adsorption and diffusion process of reactants on catalyst surfaces

  1. Optimization of Designs for Nanotube-based Scanning Probes

    NASA Technical Reports Server (NTRS)

    Harik, V. M.; Gates, T. S.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Optimization of designs for nanotube-based scanning probes, which may be used for high-resolution characterization of nanostructured materials, is examined. Continuum models to analyze the nanotube deformations are proposed to help guide selection of the optimum probe. The limitations on the use of these models that must be accounted for before applying to any design problem are presented. These limitations stem from the underlying assumptions and the expected range of nanotube loading, end conditions, and geometry. Once the limitations are accounted for, the key model parameters along with the appropriate classification of nanotube structures may serve as a basis for the design optimization of nanotube-based probe tips.

  2. Microfluidic push-pull probe for scanning electrochemical microscopy.

    PubMed

    Momotenko, Dmitry; Cortes-Salazar, Fernando; Lesch, Andreas; Wittstock, Gunther; Girault, Hubert H

    2011-07-01

    This paper presents a microfluidic push-pull probe for scanning electrochemical microscopy (SECM) consisting of a working microelectrode, an integrated counter/reference electrode and two microchannels for pushing and pulling an electrolyte solution to and away from a substrate. With such a configuration, a droplet of a permanently renewed redox mediator solution is maintained just at the probe tip to carry out SECM measurements on initially dry substrates or in microenvironments. For SECM imaging purposes, the probe fabricated in a soft polymer material is used in a contact regime. SECM images of various gold-on-glass samples demonstrate the proof-of-concept of a push-pull probe for local surface activity characterization with high spatial resolution even on vertically oriented substrates. Finite element computations were performed to guide the improvement of the probe sensitivity.

  3. Approach interactions of scanned probes in dynamic pecking mode

    NASA Astrophysics Data System (ADS)

    Wetsel, G. C.; Farahi, R. H.; Richardson, C. J. K.; Spicer, J. B.

    2001-10-01

    Sharp, conical, metallic tips oriented perpendicular to the axis of a rod vibrating in bending (pecking mode) are used as force sensors in scanned force probes and as optical scatterers in apertureless near-field optical microscopes. We have measured the displacement of such probes as a function of frequency and tip-sample separation during approach of the probe tip to a solid-sample surface. We have also developed a nonlinear model describing the attenuation of the probe motion during approach that takes into account the variation of the force on the probe during each cycle of vibrational motion. The experimental data and the theory are in good agreement. The results enable proper design of tip-sample-distance control systems, inference of material parameters, and an improved understanding of apertureless-near-field-optical-microscope measurements.

  4. The flexible and modern open source scanning probe microscopy software package GXSM

    NASA Astrophysics Data System (ADS)

    Zahl, Percy; Bierkandt, Markus; Schröder, Stefan; Klust, Andreas

    2003-03-01

    GXSM is a full featured and modern scanning probe microscopy (SPM) software. It can be used both in stand alone mode for powerful image processing and analysis and connected to an instrument operating many different flavors of SPM, e.g., scanning tunneling microscopy and atomic force microscopy or in general two-dimensional multichannel data acquisition instruments. The GXSM core can handle different data types, e.g., integer and floating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor subsystem runs the feedback loop, generates the scanning signals, and acquires the data during SPM measurements. In addition it performs sophisticated spectroscopy tasks such as scanning tunneling spectroscopy. The GXSM software is released under the GNU general public license and can be obtained via the Internet.

  5. Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy

    SciTech Connect

    Dremov, Vyacheslav Fedorov, Pavel; Grebenko, Artem; Fedoseev, Vitaly

    2015-05-15

    We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample. Carbon nanotube attached to cantilever covered with noble metal is suitable for SPM imaging in such modulation regimes as capacitance contrast microscopy, Kelvin probe microscopy, and scanning gate microscopy. The majority of such probes are conductive with conductivity not degrading within hours of SPM imaging.

  6. Handheld probes and galvanometer scanning for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Duma, V.-F.; Dobre, G.; Demian, D.; Cernat, R.; Sinescu, C.; Topala, F. I.; Negrutiu, M. L.; Hutiu, Gh.; Bradu, A.; Rolland, J. P.; Podoleanu, A. G.

    2015-09-01

    As part of the ongoing effort of the biomedical imaging community to move Optical Coherence Tomography (OCT) systems from the lab to the clinical environment and produce OCT systems appropriate for multiple types of investigations in a medical department, handheld probes equipped with different types of scanners need to be developed. These allow different areas of a patient's body to be investigated using OCT with the same system and even without changing the patient's position. This paper reviews first the state of the art regarding OCT handheld probes. Novel probes with a uni-dimensional (1D) galvanometer-based scanner (GS) developed in our groups are presented. Their advantages and limitations are discussed. Aspects regarding the use of galvoscanners with regard to Micro-Electro- Mechanical Systems (MEMS) are pointed out, in relationship with our studies on optimal scanning functions of galvanometer devices in OCT. These scanning functions are briefly discussed with regard to their main parameters: profile, theoretical duty cycle, scan frequency, and scan amplitude. The optical design of the galvoscanner and refractive optics combination in the probe head, optimized for various applications, is considered. Perspectives of the field are pointed out in the final part of the paper.

  7. Massively Multiplexed Cantilever-free Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Eichelsdoerfer, Daniel J.; Shim, Wooyoung; Boya, Radha; Schmucker, Abrin L.; Liu, Guoliang; Mirkin, Chad A.

    2013-03-01

    Cantilever-free scanning probe lithography has emerged as a low-cost technique for rapidly patterning nanoscale materials. In this architecture, an array of probes is fabricated on a soft backing layer that provides mechanical compliance to each probe while an underlying hard surface maintains the structural integrity of the array. One drawback of this technique is that each probe in the array acts simultaneously and thus generates a copy of the same pattern. Here, we discuss recent efforts to incorporate heaters into these probe arrays so that when a given heater is activated, the thermal expansion of the elastomer actuates a single tip. We find thermal actuation to be powerful enough to actuate individual tips over 4 μm with minimal crosstalk, fast enough to actuate on relevant time scales (20 ms), and scalable by virtue of being electrically addressable. Furthermore, tuning the individual heaters allows for variability in the arrays to be compensated for precisely, resulting in high quality nanopatterning. The addition of tunable actuators transforms cantilever-free scanning probe lithography into a technique capable of true desktop nanofabrication.

  8. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  9. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.

    PubMed

    Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S

    2016-09-20

    From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of

  10. Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy.

    PubMed

    Swart, Ingmar; Gross, Leo; Liljeroth, Peter

    2011-08-28

    It is well known that scanning probe techniques such as scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) routinely offer atomic scale information on the geometric and the electronic structure of solids. Recent developments in STM and especially in non-contact AFM have allowed imaging and spectroscopy of individual molecules on surfaces with unprecedented spatial resolution, which makes it possible to study chemistry and physics at the single molecule level. In this feature article, we first review the physical concepts underlying image contrast in STM and AFM. We then focus on the key experimental considerations and use selected examples to demonstrate the capabilities of modern day low-temperature scanning probe microscopy in providing chemical insight at the single molecule level.

  11. Compact piezoelectric transducer fiber scanning probe for optical coherence tomography.

    PubMed

    Zhang, Ning; Tsai, Tsung-Han; Ahsen, Osman O; Liang, Kaicheng; Lee, Hsiang-Chieh; Xue, Ping; Li, Xingde; Fujimoto, James G

    2014-01-15

    We developed a compact, optical fiber scanning piezoelectric transducer (PZT) probe for endoscopic and minimally invasive optical coherence tomography (OCT). Compared with previous forward-mount fiber designs, we present a reverse-mount design that achieves a shorter rigid length. The fiber was mounted at the proximal end of a quadruple PZT tube and scanned inside the hollow PZT tube to reduce the probe length. The fiber resonant frequency was 338 Hz using a 17-mm-long fiber. A 0.9 mm fiber deflection was achieved with a driving amplitude of 35 V. Using a GRIN lens-based optical design with a 1.3× magnification, a ∼6 μm spot was scanned over a 1.2 mm diameter field. The probe was encased in a metal hypodermic tube with a ∼25 mm rigid length and covered with a 3.2 mm outer diameter (OD) plastic sheath. Imaging was performed with a swept source OCT system based on a Fourier domain modelocked laser (FDML) light source at a 240 kHz axial scan rate and 8 μm axial resolution (in air). En face OCT imaging of skin in vivo and human colon ex vivo was demonstrated.

  12. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.

    PubMed

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-26

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  13. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  14. Investigating ultraflexible freestanding graphene by scanning tunneling microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Breitwieser, R.; Hu, Yu-Cheng; Chao, Yen Cheng; Tzeng, Yi Ren; Liou, Sz-Chian; Lin, Keng Ching; Chen, Chih Wei; Pai, Woei Wu

    2017-08-01

    A strictly two-dimensional (2D) material such as freestanding graphene (FSG) is rarely investigated at the atomic scale by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). A basic difficulty in probing FSG by STM and STS is the mechanical instability when a highly compliant 2D atomic layer interacts with a proximal tip. Here we report a detailed method to conduct reliable STM and STS on FSG with atomic precision. We found that FSG is intrinsically rippled and exhibits a nonlinear strain-stress relation under applied normal forces; it shows a very soft region of bending strain and stiffer regions of in-plane tensile strain once the nanoscale ripples of FSG are eliminated. The elimination of the nanoripples can be controlled by tip-induced pulling or pushing force through the so-called closed-loop Z-V STS mode which can monitor the FSG deformation. A key factor for controllable STM and STS measurements is to select tunneling set points to place FSG in metastable configurations, as determined from stress-strain (i.e., Z-V) response. Atomic imaging and electronic states thus measured must be interpreted by considering the dynamical deformation of FSG as tunneling parameters, and therefore tip-FSG forces, are varied.

  15. Note: A scanning thermal probe microscope that operates in liquids

    NASA Astrophysics Data System (ADS)

    Aigouy, Lionel; Lalouat, Loïc; Mortier, Michel; Löw, Peter; Bergaud, Christian

    2011-03-01

    We have developed a scanning thermal probe microscope that operates in liquid environments. The thermal sensor is a fluorescent particle glued at the end of a sharp tungsten tip. Since light emission is a strongly thermally sensitive effect, the measurement of the particle fluorescence variations allows the determination of the temperature. No electrical wiring of the probe is needed. As a demonstrative example, we have measured the temperature map of a Joule-heated microheater immersed in a water/glycerol solution. Both topographical and thermal images are obtained with a good sensitivity.

  16. Laser-Assisted Scanning Probe Alloying Nanolithography (LASPAN)

    NASA Astrophysics Data System (ADS)

    Peng, Luohan; Zhang, Huiliang; Hemmer, Philip; Liang, Hong

    Nanoscale science and technology demands novel approaches and new knowledge for further development. Nanofabrication has been widely employed in modern science and engineering. Probe-based nanolithography is a common technique to manufacture nanostructures. This research contributes fundamental understanding in surface science through development of a new methodology. A delicate hardware system was designed and constructed to realize the nanometer-scale direct writing. A simple and unique process, namely, laser-assisted scanning probe alloying nanolithography (LASPAN), to fabricate well-defined nanostructures has been developed. The LASPAN system, process, and the application in gold-silicon (Au-Si) binary system have been discussed in this chapter.

  17. High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories.

    PubMed

    Tuma, Tomas; Lygeros, John; Kartik, V; Sebastian, Abu; Pantazi, Angeliki

    2012-05-11

    A novel scan trajectory for high-speed scanning probe microscopy is presented in which the probe follows a two-dimensional Lissajous pattern. The Lissajous pattern is generated by actuating the scanner with two single-tone harmonic waveforms of constant frequency and amplitude. Owing to the extremely narrow frequency spectrum, high imaging speeds can be achieved without exciting the unwanted resonant modes of the scanner and without increasing the sensitivity of the feedback loop to the measurement noise. The trajectory also enables rapid multiresolution imaging, providing a preview of the scanned area in a fraction of the overall scan time. We present a procedure for tuning the spatial and the temporal resolution of Lissajous trajectories and show experimental results obtained on a custom-built atomic force microscope (AFM). Real-time AFM imaging with a frame rate of 1 frame s⁻¹ is demonstrated.

  18. MEMS-based high speed scanning probe microscopy.

    PubMed

    Disseldorp, E C M; Tabak, F C; Katan, A J; Hesselberth, M B S; Oosterkamp, T H; Frenken, J W M; van Spengen, W M

    2010-04-01

    The high speed performance of a scanning probe microscope (SPM) is improved if a microelectromechanical systems (MEMS) device is employed for the out-of-plane scanning motion. We have carried out experiments with MEMS high-speed z-scanners (189 kHz fundamental resonance frequency) in both atomic force microscope and scanning tunneling microscope modes. The experiments show that with the current MEMS z-scanner, lateral tip speeds of 5 mm/s can be achieved with full feedback on surfaces with significant roughness. The improvement in scan speed, obtained with MEMS scanners, increases the possibilities for SPM observations of dynamic processes. Even higher speed MEMS scanners with fundamental resonance frequencies in excess of a megahertz are currently under development.

  19. Versatile scanned probe microscope: technical and biological applications

    NASA Astrophysics Data System (ADS)

    Baiburin, Vil B.; Konnov, Nikolai P.; Volkov, Uryi P.

    1999-03-01

    In our biophysical laboratory a new scanned probe microscope (SPM) for technical and biological application has been developed. The SPM allows to investigate sample surface by means of three different near field microscopes: scanning tunneling microscope, atomic force microscope and near field scanning optical microscope. The SPM is very rigid and can be operated in ordinary laboratory without any vibration isolation. The scanning area of the microscope is about 10 X 10 micrometers . Different technical and biological applications of the SPM are demonstrated. Results of the SPM investigations of different carbon, metal and dielectric films are described. The SPM comparison study of electrical breakdown and the conduction bistable switching effect in thin dielectric films of oxides and fluorides of some rare earth metals has been discussed. Some biological applications of the SPM viz. visualization of different bacteria (E.Coli, plague, cholera, staphylococcus), bacteria thin sections, macromolecules (plague proteins) and plague phage has been described.

  20. Adaptive probe trajectory scanning probe microscopy for multiresolution measurements of interface geometry

    SciTech Connect

    Ovchinnikov, Oleg S.; Jesse, Stephen; Kalinin, Sergei V

    2009-01-01

    An adaptive scanning method in scanning probe microscopy (SPM) is developed for studies of surfaces with a highly-non-uniform information density such as nanowires or interfaces in disordered media. In path-engineered SPM, the surface is pre-scanned to locate features, and a secondary scan is acquired with the pixel density concentrated in the vicinity of the objects of interest. Here, we demonstrate this approach for piezoresponse force microscopy, and develop approaches for fractal and self-affine characterization of domain interfaces. The relationship between the variational roughness, structure factor, and correlation functions is established and resolution effects on these parameters are determined

  1. Development of first ever scanning probe microscopy capabilities for plutonium

    DOE PAGES

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; ...

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. In conclusion, these first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  2. Development of first ever scanning probe microscopy capabilities for plutonium

    NASA Astrophysics Data System (ADS)

    Beaux, Miles F.; Cordoba, Miguel Santiago; Zocco, Adam T.; Vodnik, Douglas R.; Ramos, Michael; Richmond, Scott; Moore, David P.; Venhaus, Thomas J.; Joyce, Stephen A.; Usov, Igor O.

    2017-04-01

    Scanning probe microscopy capabilities have been developed for plutonium and its derivative compounds. Specifically, a scanning tunneling microscope and an atomic force microscope housed in an ultra-high vacuum system and an inert atmosphere glove box, respectively, were prepared for the introduction of small non-dispersible δ-Pu coupons. Experimental details, procedures, and preliminary imaging of δ-Pu coupons are presented to demonstrate the functionality of these new capabilities. These first of a kind capabilities for plutonium represent a significant step forward in the ability to characterize and understand plutonium surfaces with high spatial resolution.

  3. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    NASA Astrophysics Data System (ADS)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  4. The use of scanning probe microscopy to characterize polymer blends

    SciTech Connect

    Joseph, T.; Yao, L.; Beatty, C.L.

    1996-12-31

    The use of scanning probe microscopy for the examination of atomic scale phenomena in polymers has been well documented, but the use of scanning probe microscopy to examine submicron scale structures has not been well documented. The purpose of this project was to examine the structure of polymer blends on a submicron scale. Two different systems were studied; a blend of recycled thermoplastics and a blend of ground rubber tire particles in a polystyrene matrix. Topographical images, z modulation plots, internal sensor measurements, and lateral force microscopy images were obtained for both systems. The plots were compared to the structures that we were expected to obtain. A second method of mathematical analysis, fractal dimension measurement, was also performed on the topographical images. Fractal dimension measurement has been correlated to fracture toughness in homopolymers, but the correlation has not been established for polymer blends. Comparison of both methods will be shown.

  5. Electronic band gaps and exciton binding energies in monolayer M oxW1 -xS2 transition metal dichalcogenide alloys probed by scanning tunneling and optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Rigosi, Albert F.; Hill, Heather M.; Rim, Kwang Taeg; Flynn, George W.; Heinz, Tony F.

    2016-08-01

    Using scanning tunneling spectroscopy (STS) and optical reflectance contrast measurements, we examine band-gap properties of single layers of transition metal dichalcogenide (TMDC) alloys: Mo S2 , M o0.5W0.5S2 , M o0.25W0.75S2 , M o0.1W0.9S2 , and W S2 . The quasiparticle band gap, spin-orbit separation of the excitonic transitions at the K /K' point in the Brillouin zone, and binding energies of the A exciton are extracted from STS and optical data. The exciton binding energies change roughly linearly with tungsten concentration. For our samples on an insulating substrate, we report quasiparticle band gaps from 2.17 ± 0.04 eV (Mo S2) to 2.38 ± 0.06 eV (W S2) , with A exciton binding energies ranging from 310 to 420 meV.

  6. Big, Deep, and Smart Data in Scanning Probe Microscopy

    DOE PAGES

    Kalinin, Sergei V.; Strelcov, Evgheni; Belianinov, Alex; ...

    2016-09-27

    Scanning probe microscopy techniques open the door to nanoscience and nanotechnology by enabling imaging and manipulation of structure and functionality of matter on nanometer and atomic scales. We analyze the discovery process by SPM in terms of information flow from tip-surface junction to the knowledge adoption by scientific community. Furthermore, we discuss the challenges and opportunities offered by merging of SPM and advanced data mining, visual analytics, and knowledge discovery technologies.

  7. Big, Deep, and Smart Data in Scanning Probe Microscopy

    SciTech Connect

    Kalinin, Sergei V.; Strelcov, Evgheni; Belianinov, Alex; Somnath, Suhas; Vasudevan, Rama K.; Lingerfelt, Eric J.; Archibald, Richard K.; Chen, Chaomei; Proksch, Roger; Laanait, Nouamane; Jesse, Stephen

    2016-09-27

    Scanning probe microscopy techniques open the door to nanoscience and nanotechnology by enabling imaging and manipulation of structure and functionality of matter on nanometer and atomic scales. We analyze the discovery process by SPM in terms of information flow from tip-surface junction to the knowledge adoption by scientific community. Furthermore, we discuss the challenges and opportunities offered by merging of SPM and advanced data mining, visual analytics, and knowledge discovery technologies.

  8. Scanning photoelectron microscopy using a pointed capillary probe

    NASA Astrophysics Data System (ADS)

    Mironov, B. N.; Cherkun, A. P.; Aseyev, S. A.; Chekalin, S. V.

    2017-08-01

    The possibilities of a new type of scanning probe microscopy (SPM) for two different samples are experimentally demonstrated. The method is based on the use of a pointed capillary, which can simultaneously act as a 'classical' SPM probe and also as a controlled thin channel for transporting charged particles emitted by the surface to the detector. In the experiment, photoelectrons pass through a dielectric hollow cone probe with an aperture radius of 1 μm and detected by microchannel plates at different points of the investigated conducting surface irradiated by the second harmonic of a femtosecond Ti : sapphire laser. As a result, the sample's surface profile is visualised with a subwavelength spatial resolution. This method makes it possible to control spatially localised beams of electrons, ions, neutral atoms (molecules) and soft X-ray radiation, as well as opens a possibility for research in the field of nanoscale photodesorption of molecular ions.

  9. Integrated microfluidic linking chip for scanning probe nanolithography

    NASA Astrophysics Data System (ADS)

    Ryu, Kee Suk; Wang, Xuefeng; Shaikh, Kashan; Bullen, David; Goluch, Edgar; Zou, Jun; Liu, Chang; Mirkin, Chad A.

    2004-07-01

    This letter reports an architecture for a microfluidic chip that dresses (inks) multiple nanolithography tips in a high-density array in a parallel and multiplexed fashion. The microfluidic chip consists of multiple precision patterned thin-film poly(dimethylsiloxane) (PDMS) patches serving as porous inking pads. Inking chemicals are supplied from loading reservoirs to the inking pads through microfluidic channels. The gas-permeable thin PDMS membranes allow ink molecules to diffuse through while preventing bulk liquid from overflowing or evaporating. The inking chip provides high-density inking, easy loading of inks, and reduced evaporation losses. We present the fabrication process and inking of scanning probe contact printing probes and commercial nitride probes.

  10. Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection

    PubMed Central

    Gielen, Ellen; Smisdom, Nick; vandeVen, Martin; De Clercq, Ben; Gratton, Enrico; Digman, Michelle; Rigo, Jean-Michel; Hofkens, Johan; Engelborghs, Yves; Ameloot, Marcel

    2009-01-01

    The heterogeneity in composition and interaction within the cellular membrane translates into a wide range of diffusion coefficients of its constituents. Therefore, several complementary microfluorimetric techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT) have to be applied to explore the dynamics of membrane components. The recently introduced raster image correlation spectroscopy (RICS) offers a much wider dynamic range than each of these methods separately and allows for spatial mapping of the dynamic properties. RICS is implemented on a confocal laser-scanning microscope (CLSM) and the wide dynamic range is achieved by exploiting the inherent time information carried by the scanning laser beam in the generation of the confocal images. The original introduction of RICS used two-photon excitation and photon counting detection. However, most CLSM systems are based on one-photon excitation with analog detection. Here we report on the performance of such a commercial CLSM (Zeiss LSM 510 META) in the study of the diffusion of the fluorescent lipid analog DiI-C18(5) (1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indodicarbocyanine perchlorate) both in giant unilamellar vesicles and in the plasma membrane of living oligodendrocytes, i.e. the myelin-producing cells of the central nervous system. It is shown that RICS on a commercial CLSM with analog detection allows for reliable results in the study of membrane diffusion by removal of unwanted correlations introduced by the analog detection system. The results obtained compare well with those collected by FRAP and FCS.. PMID:19260653

  11. Correlated Raman micro-spectroscopy and scanning electron microscopy analyses of flame retardants in environmental samples: a micro-analytical tool for probing chemical composition, origin and spatial distribution.

    PubMed

    Ghosal, Sutapa; Wagner, Jeff

    2013-07-07

    We present correlated application of two micro-analytical techniques: scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS) for the non-invasive characterization and molecular identification of flame retardants (FRs) in environmental dusts and consumer products. The SEM/EDS-RMS technique offers correlated, morphological, molecular, spatial distribution and semi-quantitative elemental concentration information at the individual particle level with micrometer spatial resolution and minimal sample preparation. The presented methodology uses SEM/EDS analyses for rapid detection of particles containing FR specific elements as potential indicators of FR presence in a sample followed by correlated RMS analyses of the same particles for characterization of the FR sub-regions and surrounding matrices. The spatially resolved characterization enabled by this approach provides insights into the distributional heterogeneity as well as potential transfer and exposure mechanisms for FRs in the environment that is typically not available through traditional FR analysis. We have used this methodology to reveal a heterogeneous distribution of highly concentrated deca-BDE particles in environmental dust, sometimes in association with identifiable consumer materials. The observed coexistence of deca-BDE with consumer material in dust is strongly indicative of its release into the environment via weathering/abrasion of consumer products. Ingestion of such enriched FR particles in dust represents a potential for instantaneous exposure to high FR concentrations. Therefore, correlated SEM/RMS analysis offers a novel investigative tool for addressing an area of important environmental concern.

  12. Potential Applications of Scanning Probe Microscopy in Forensic Science

    NASA Astrophysics Data System (ADS)

    Watson, G. S.; Watson, J. A.

    2007-04-01

    The forensic community utilises a myriad of techniques to investigate a wide range of materials, from paint flakes to DNA. The various microscopic techniques have provided some of the greatest contributions, e.g., FT-IR (Fourier-transform infrared) microspectroscopy utilised in copy toner discrimination, multi-layer automobile paint fragment examination, etc, SEM-EDA (scanning electron microscopy with energy dispersive analysis) used to investigate glass fragments, fibers, and explosives, and SEM in microsampling for elemental analysis, just to name a few. This study demonstrates the ability of the Scanning Probe Microscope (SPM) to analyse human fingerprints on surfaces utilising a step-and-scan feature, enabling analysis of a larger field-of-view. We also extend a line crossings study by incorporating height analysis and surface roughness measurements. The study demonstrates the potential for SPM techniques to be utilised for forensic analysis which could complement the more traditional methodologies used in such investigations.

  13. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.

    PubMed

    Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D

    2008-02-01

    Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.

  14. Combined fiber probe for fluorescence lifetime and Raman spectroscopy

    PubMed Central

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-01-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. PMID:26093843

  15. Terahertz probe for spectroscopy of sub-wavelength objects.

    PubMed

    Mitrofanov, Oleg; Renaud, Cyril C; Seeds, Alwyn J

    2012-03-12

    A system of two probes is designed for terahertz (THz) time-domain spectroscopy of sub-wavelength size objects. A twin-needle probe confines broadband THz pulses spatially by means of surface plasmon waves to a sub-wavelength spot smaller than 10 microns. The confined pulses are detected within the near-field zone of the twin-needle probe by a sub-wavelength aperture probe. The system allows THz spectroscopy to be applied to single micrometer-size objects in the 1-2.5THz region.

  16. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOEpatents

    Kyle, Kevin R.; Brown, Steven B.

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  17. Metallized Capillaries as Probes for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pelletier, Michael

    2003-01-01

    A class of miniature probes has been proposed to supplant the fiber-optic probes used heretofore in some Raman and fluorescence spectroscopic systems. A probe according to the proposal would include a capillary tube coated with metal on its inside to make it reflective. A microlens would be hermetically sealed onto one end of the tube. A spectroscopic probe head would contain a single such probe, which would both deliver laser light to a sample and collect Raman or fluorescent light emitted by the sample.

  18. PROBING STRESS EFFECTS IN SINGLE CRYSTAL ORGANIC TRANSISTORS BY SCANNING KELVIN PROBE MICROSCOPY

    SciTech Connect

    Teague, L

    2010-06-11

    We report scanning Kelvin probe microscopy (SKPM) of single crystal difluoro bis(triethylsilylethynyl) anthradithiophene (diF-TESADT) organic transistors. SKPM provides a direct measurement of the intrinsic charge transport in the crystals independent of contact effects and reveals that degradation of device performance occurs over a time period of minutes as the diF-TESADT crystal becomes charged.

  19. Correlation-steered scanning for scanning probe microscopes to overcome thermal drift for ultra-long time scanning.

    PubMed

    Zhang, Liansheng; Long, Qian; Liu, Yongbin; Zhang, Jie; Feng, Zhihua

    2016-07-01

    The thermal effect is one of the most important factors that influence the accuracy of nanoscale measurement and the surface topography of samples in scanning probe microscopes (SPMs). We propose a method called correlation-steered scanning, which is capable of overcoming three-dimensional thermal drifts in real time for ultra-long time scanned images. The image is scanned band by band with overlapping parts between adjacent bands. The vertical drift can be considered as linear and can thus be eliminated together with the tilt of the sample by applying the flattening method. Each band is artificially divided into several blocks for conveniently calculating lateral drifts on the basis of the overlapping area of adjacent bands through digital image correlation. The calculated lateral drifts are compensated to steer the scanning of the subsequent blocks, thus ensuring that all bands are parallel to one another. Experimental results proved that images scanned by the proposed method exhibited less distortions than those obtained from the traditional raster scanning method. The nanoscale measurement results based on the image obtained by the proposed method also showed high accuracy, with an error of less than 1.5%. By scanning as many bands as needed, the correlation-steered scanning method can obtain a highly precise SPM image of an ultra-large area.

  20. Localized photothermal infrared spectroscopy using a proximal probe

    NASA Astrophysics Data System (ADS)

    Bozec, L.; Hammiche, A.; Pollock, H. M.; Conroy, M.; Chalmers, J. M.; Everall, N. J.; Turin, L.

    2001-11-01

    A near-field thermal probe, as used in scanning thermal microscopy, is used to obtain photothermal Fourier transform infrared (FT-IR) spectra of polymers, as a first step toward developing FT-IR microscopy at a spatial resolution better than the diffraction limit. The signal from the probe after amplification provides an interferogram, and the resultant spectra are consistent with those obtained by means of the established technique of attenuated total reflection FT-IR spectroscopy. We have extended this technique to the analysis of "real-world" industrial samples, both solid (a fungicide in a fine powder form) and liquid (a concentrated surfactant solution). The overall shapes of the main peaks or bands reflect the fact that the spectrum is a convolution of different contributions from both optical and thermal properties. To confirm the feasibility of subsurface detection of polymers, we demonstrate the ability of the technique to perform spectroscopic detection of a model polymeric bilayer system, polyisobutylene on top of polystyrene. A quantitative analysis of the variation of peak height with coating thickness allows values of thermal diffusion length to be derived. This investigation provides a preliminary result for the understanding of the depth sensitivity of the current setup. Relative intensity distortions are seen, and are attributed to photothermal saturation. A complementary technique has been developed that uses tunable monochromatic radiation, using an optical parametric generator as the infrared source. Spectra have successfully been obtained using the same localized photothermal detection principle.

  1. Combined fiber probe for fluorescence lifetime and Raman spectroscopy.

    PubMed

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2015-11-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. Graphical Abstract An image comparison between FLIm and Raman spectroscopy acquired with the bimodal probe onseveral tissue samples.

  2. Mapping the local particle plasmon sensitivity with a scanning probe

    PubMed Central

    Schaffernak, Gernot; Belitsch, Martin; Gašparić, Marija; Leitgeb, Verena; Trügler, Andreas; Hohenester, Ulrich; Krenn, Joachim R.; Hohenau, Andreas

    2016-01-01

    We probe the local sensitivity of an optically excited plasmonic nanoparticle by changing the local dielectric environment through a scanning glass fiber tip. Recording the particle plasmon scattering spectrum for each tip position allows us to observe spectral resonance shifts concurrent with changes in scattering intensity and plasmon damping. For the tip-induced spectral shifts we find the strongest sensitivity at the particle edges, in accordance with the spatial plasmonic field profile. In contrast, the strongest sensitivity occurs at the center of the particle if the scattering intensity is probed at the short wavelength slope of the plasmon resonance instead of the resonance position. This bears important implications for plasmonic sensing, in particular when done at a single light wavelength. PMID:27603414

  3. Recent advances in submolecular resolution with scanning probe microscopy.

    PubMed

    Gross, Leo

    2011-04-01

    Recently scanning probe microscopy has made tremendous progress in imaging organic molecules with high lateral resolution. Atoms and bonds within individual molecules have been clearly resolved, indicating the exciting potential of this technique for studying molecular structures, bonding within and between molecules, molecular conformational changes and chemical reactions at the single-molecule level. It turns out that the key step enabling such studies is an atomically controlled functionalization of the microscope tip. In this Perspective, the different techniques used for high-resolution molecular imaging, their implementations, advantages and limitations are described, and possible scientific areas of applications are discussed.

  4. Integrated micro ring resonator displacement sensor for scanning probe microscopies

    NASA Astrophysics Data System (ADS)

    Kiyat, Isa; Kocabas, Coskun; Aydinli, Atilla

    2004-03-01

    We describe a novel displacement sensor for scanning probe microscopies using an integrated optical micro ring resonator. This device operates by means of monitoring the changes in the transmission spectrum of a high finesse micro ring resonator. Finite element method simulations were carried out to obtain the optimum sensor design and finite difference time domain simulation was used to obtain the transfer characteristics of micro ring resonators. Operation principles and sensitivity calculations are discussed in detail. To achieve high sensitivity, we have studied different types of ring resonator. The highest sensitivity is obtained in a race-track resonator. This new design should provide sensitivities as high as ~10-4 Å-1.

  5. Method for nanoscale spatial registration of scanning probes with substrates and surfaces

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A. (Inventor)

    2010-01-01

    Embodiments in accordance with the present invention relate to methods and apparatuses for aligning a scanning probe used to pattern a substrate, by comparing the position of the probe to a reference location or spot on the substrate. A first light beam is focused on a surface of the substrate as a spatial reference point. A second light beam then illuminates the scanning probe being used for patterning. An optical microscope images both the focused light beam, and a diffraction pattern, shadow, or light backscattered by the illuminated scanning probe tip of a scanning probe microscope (SPM), which is typically the tip of the scanning probe on an atomic force microscope (AFM). Alignment of the scanning probe tip relative to the mark is then determined by visual observation of the microscope image. This alignment process may be repeated to allow for modification or changing of the scanning probe microscope tip.

  6. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    NASA Astrophysics Data System (ADS)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-03-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  7. Manipulations of atoms and molecules by scanning probe microscopy.

    PubMed

    Tseng, Ampere A; Li, Zhuang

    2007-08-01

    Scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), has become a powerful tool in building nanoscale structures required by modern industry. In this article, the use of SPM for the manipulation of atoms and molecules for patterning nanostructures for opt-electronic and biomedical applications is reviewed. The principles and procedures of manipulation using STM and AFM-based technologies are presented with an emphasis on their ability to create a wide variety of nanostructures for different applications. The interaction among the atoms/molecules, surface, and tip are discussed. The approaches for positioning the atom/molecule from and to the desired locations and for precisely controlling its movement are elaborated for each specific manipulation technique. As an AFM-based technique, the dip-pen nanolithography is also included. Finally, concluding remarks on technological improvement and future research is provided.

  8. Developments on the NMi-VSL traceable scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Dirscherl, Kai; Koops, K. R.

    2003-11-01

    We will report on the progress of our project to realize a traceable Scanning Probe Microscope at the Van Swinden Laboratorium of the Nederlands Meetinstituut in the Netherlands. The traceable Atomic Force Microscope (AFM) is constructed from a separate AFM head, a 3D translation stage and an accurate 3D laser interferometer system. Nanometer uncertainty can be maintained in the entire scanning volume of 100 μm × 100 μm × 20 μm. Apart from providing direct traceability to the SI unit of length, the coordinates provided by the laser interferometer are also used in a closed loop position feedback controller to realize accurate positioning at arbitrary locations within the volume provided by the translation stage. In this paper we will emphasize the development of the control system.

  9. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    PubMed Central

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip–sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal–semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  10. Combined fiber probe for fluorescence lifetime and Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Wachsmann-Hogiu, Sebastian; Marple, Eric; Urmey, Kirk; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-03-01

    Raman spectroscopy has been proven to have tremendous potential as biomedical analytical tool for spectroscopic disease diagnostics. The use of fiberoptic coupled Raman spectroscopy systems can enable in-vivo characterization of suspicious lesions. However, Raman spectroscopy has the drawback of rather long acquisition times of several hundreds of milliseconds which makes scanning of larger regions quite challenging. By combining Raman spectroscopy with a fast imaging technique this problem can be alleviate in part. Fluorescence lifetime imaging (FLIm) offers a great potential for such a combination. FLIm can allow for fast tissue area pre-segmentation and location of the points for Raman spectra acquisition. Here, we introduce an optical fiber probe combining FLIm and Raman spectroscopy with an outer diameter of 2 mm. Fluorescence is generated via excitation with a fiber laser at 355 nm. The fluorescence emission is spectrally resolved using a custom-made wavelength-selection module (WSM). The Raman excitation power at 785 nm was set to 50 mW for the in-vivo measurements to prevent sample drying. The lateral probe resolution was determined to be <250 μm for both modalities. This value was taken as step size for several raster scans of different tissue types which were conducted to show the overlap of both modalities under realistic conditions. Finally the probe was used for in vivo raster scans of a rat's brain and subsequently to acquire FLIm guided Raman spectra of several tissues in and around the craniotomy.

  11. Development and demonstration of table-top synchronized fast-scan femtosecond time-resolved spectroscopy system by single-shot scan photo detector array

    NASA Astrophysics Data System (ADS)

    Yabushita, Atsushi; Kao, Chih-Hsien; Lee, Yu-Hsien; Kobayashi, Takayoshi

    2015-07-01

    Ultrafast dynamics is generally studied by pump-probe method with laser pulse, which scans optical delay by motorized stage step by step. Using ultrashort laser pulse shorter than typical molecular vibration periods, the pump-probe measurement can study both of electronic dynamics and vibration dynamics simultaneously. The probe wavelength dependence of the ultrafast electronic and vibration dynamics (UEVD) helps us to distinguish the signal contributions from the dynamics of the electronic ground state and that of the electronic excited states, which elucidates primary reaction mechanism after photoexcitation. Meanwhile, the measurement time of UEVD spectroscopy takes too long time to be used in realistic application. In our previous work, we have developed multi-channel lock-in amplifying (MLA) detectors to study UEVD at all probe wavelengths simultaneously, and synchronized it with laser and fast-scan delay stage to scan the data in five seconds. It enabled us to study UEVD spectroscopy even for photo-fragile materials. However, the home-made MLA detectors required for the measurement is expensive and massive in size and weight, thus not suitable for general researchers in the field of ultrafast time-resolved spectroscopy. In the present work, we have developed a table-top synchronized fast-scan femtosecond time-resolved spectroscopy system using single shot scan line CCD. This system measures time-resolved trace at all probe wavelengths simultaneously in five seconds. The CCD-based fast-scan time-resolved spectroscopy system enables us to study ultrafast dynamics of various materials even biomaterials, which have been thought to be hard or even impossible to be studied in previous methods.

  12. Scanning thermal microscopy with heat conductive nanowire probes.

    PubMed

    Timofeeva, Maria; Bolshakov, Alexey; Tovee, Peter D; Zeze, Dagou A; Dubrovskii, Vladimir G; Kolosov, Oleg V

    2016-03-01

    Scanning thermal microscopy (SThM), which enables measurement of thermal transport and temperature distribution in devices and materials with nanoscale resolution is rapidly becoming a key approach in resolving heat dissipation problems in modern processors and assisting development of new thermoelectric materials. In SThM, the self-heating thermal sensor contacts the sample allowing studying of the temperature distribution and heat transport in nanoscaled materials and devices. The main factors that limit the resolution and sensitivities of SThM measurements are the low efficiency of thermal coupling and the lateral dimensions of the probed area of the surface studied. The thermal conductivity of the sample plays a key role in the sensitivity of SThM measurements. During the SThM measurements of the areas with higher thermal conductivity the heat flux via SThM probe is increased compared to the areas with lower thermal conductivity. For optimal SThM measurements of interfaces between low and high thermal conductivity materials, well defined nanoscale probes with high thermal conductivity at the probe apex are required to achieve a higher quality of the probe-sample thermal contact while preserving the lateral resolution of the system. In this paper, we consider a SThM approach that can help address these complex problems by using high thermal conductivity nanowires (NW) attached to a tip apex. We propose analytical models of such NW-SThM probes and analyse the influence of the contact resistance between the SThM probe and the sample studied. The latter becomes particularly important when both tip and sample surface have high thermal conductivities. These models were complemented by finite element analysis simulations and experimental tests using prototype probe where a multiwall carbon nanotube (MWCNT) is exploited as an excellent example of a high thermal conductivity NW. These results elucidate critical relationships between the performance of the SThM probe on

  13. Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function

    SciTech Connect

    Higuchi, Seiji; Kuramochi, Hiromi; Machida, Shinichi; Aono, Masakazu; Laurent, Olivier; Komatsubara, Takashi; Obori, Kenichi; Nakayama, Tomonobu

    2010-07-15

    Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.

  14. Characterization of probe contact effects on diffuse reflectance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Reistad, Nina; Mayjonade, Mallory; Ahadi, Aylin; Andersson-Engels, Stefan

    2015-06-01

    Diffuse reflectance spectroscopy (DRS) is a rapid, non-invasive optical method widely adopted to gain diagnostic information of tissue. The most flexible approach to this method is a fiber-optic contact-probe used with a spectroscopy system. A challenge of this method is that the external pressure brought by the probe can significantly affect the tissue optical properties as well as the light coupling into the probe, and thus influence the collected DRS-spectrum. In this study we investigate and characterize the effect of probe pressure on DRS-spectra obtained with a calibrated loaded-spring system used with a fiber optic probe in the range (400 - 1600) nm. A multilayer FE-model of the indentation is developed to get a better insight of the distribution of pressure and stresses inside the skin under indentation.

  15. A dark-field scanning spectroscopy platform for localized scatter and fluorescence imaging of tissue

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Venkataramanan; Laughney, Ashley M.; Paulsen, Keith D.; Pogue, Brian W.

    2011-03-01

    Tissue ultra-structure and molecular composition provide native contrast mechanisms for discriminating across pathologically distinct tissue-types. Multi-modality optical probe designs combined with spatially confined sampling techniques have been shown to be sensitive to this type of contrast but their extension to imaging has only been realized recently. A modular scanning spectroscopy platform has been developed to allow imaging localized morphology and molecular contrast measures in breast cancer surgical specimens. A custom designed dark-field telecentric scanning spectroscopy system forms the core of this imaging platform. The system allows imaging localized elastic scatter and fluorescence measures over fields of up to 15 mm x 15 mm at 100 microns resolution in tissue. Results from intralipid and blood phantom measurements demonstrate the ability of the system to quantify localized scatter parameters despite significant changes in local absorption. A co-registered fluorescence spectroscopy mode is also demonstrated in a protophorphyrin-IX phantom.

  16. Scanning gate spectroscopy of a quantum Hall island near a quantum point contact

    NASA Astrophysics Data System (ADS)

    Hackens, Benoit; Martins, Frederico; Faniel, Sebastien; Bayot, Vincent; Rosenow, Bernd; Desplanque, Ludovic; Wallart, Xavier; Pala, Marco; Sellier, Hermann; Huant, Serge

    2013-03-01

    We report on low temperature (100 mK) scanning gate experiments performed at high magnetic field (around 10 T) on a mesoscopic device patterned in an InGaAs/InAlAs heterostructure. Magnetotransport measurements yield signatures of ultra-small Quantum Hall Islands (QHI) formed by closed quantum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to locate and probe a single QHI near a quantum point contact. The presence of Coulomb diamonds in the local spectroscopy confirms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.

  17. XAFS and X-MCD spectroscopies with undulator gap scan.

    PubMed

    Rogalev, A; Gotte, V; Goulon, J; Gauthier, C; Chavanne, J; Elleaume, P

    1998-05-01

    The first experimental applications of the undulator gap-scan technique in X-ray absorption spectroscopy are reported. The key advantage of this method is that during EXAFS scans the undulator is permanently tuned to the maximum of its emission peak in order to maximize the photon statistics. In X-MCD or spin-polarized EXAFS studies with a helical undulator of the Helios type, the polarization rate can also be kept almost constant over a wide energy range.

  18. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect

    Kalinin, Sergei V; Rodriguez, Brian J; Jesse, Stephen; Karapetian, Edgar; Mirman, B; Eliseev, E. A.; Morozovska, A. N.

    2007-01-01

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  19. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei V.; Rodriguez, Brian J.; Jesse, Stephen; Karapetian, Edgar; Mirman, Boris; Eliseev, Eugene A.; Morozovska, Anna N.

    2007-08-01

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  20. Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip

    SciTech Connect

    Ievlev, Anton V.; Morozovska, A. N.; Shur, Vladimir Ya.; Kalinin, Sergei V.

    2015-06-19

    The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction of the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.

  1. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography.

    PubMed

    Albisetti, E; Petti, D; Pancaldi, M; Madami, M; Tacchi, S; Curtis, J; King, W P; Papp, A; Csaba, G; Porod, W; Vavassori, P; Riedo, E; Bertacco, R

    2016-06-01

    The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.

  2. Scanning Hall probe microscopy of a diluted magnetic semiconductor

    SciTech Connect

    Kweon, Seongsoo; Samarth, Nitin; Lozanne, Alex de

    2009-05-01

    We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga{sub 0.94}Mn{sub 0.06}As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 mum wide and fairly stable with temperature. Magnetic clusters are observed above T{sub C}, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

  3. Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip

    DOE PAGES

    Ievlev, Anton V.; Morozovska, A. N.; Shur, Vladimir Ya.; ...

    2015-06-19

    The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction ofmore » the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.« less

  4. Design and manufacturing of scanning probe acoustic microscope test phantom

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohui; Fang, Xiaoyue; Song, Jitao; Ding, Mingyue

    2015-03-01

    Acquiring nondestructive internal structures acoustic image as well as the morphology images using scanning probe acoustic microscope (SPAM) is a challenge and no known metrology tools to identify the ultrasonic internal resolution and detectable depth of SPAM in a nondestructive way. Monitoring these defects necessitates the identification of their technical parameters of SPAM. In this paper, the specific materials (test phantoms) were designed and processed so that the ultrasound internal resolution of SPAM in nondestructive imaging of the embedded or buried substructures as well as the morphology images were measured. Experimental results demonstrated the successful identification of embedded or buried defects under the test phantom with the resolution of 50nm for SPAM as well as the detectable depth of more than 100μm.

  5. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip.

    PubMed

    Hyun, Changbae; Rollings, Ryan; Li, Jiali

    2012-02-06

    An apparatus that integrates solid-state nanopore ionic current measurement with a scanning-probe microscope is developed. When a micrometer-scale scanning-probe tip is near a voltage-biased nanometer-scale pore (10–100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the location of the tip simultaneously. By measuring the current blockage map near a nanopore as a function of the tip position in 3D space in salt solution, the relative pore resistance increases due to the tip and ΔR/R0 is estimated as a function of the tip location, nanopore geometry, and salt concentration. The amplitude of ΔR/R0 also depends on the ratio of the pore length to its radius as Ohm's law predicts. When the tip is very close to the pore surface, ≈10 nm, experiments show that ΔR/R0 depends on salt concentration as predicted by the Poisson and Nernst–Planck equations. Furthermore, the measurements show that ΔR/R0 goes to zero when the tip is about five times the pore diameter away from the center of the pore entrance. The results in this work not only demonstrate a way to probe the access resistance of nanopores experimentally; they also provide a way to locate the nanopore in salt solution, and open the door to future nanopore experiments for detecting single biomolecules attached to a probe tip.

  6. Probing Access Resistance of Solid-state Nanopores with a Scanning Probe Microscope Tip.

    PubMed

    Hyun, Changbae; Rollings, Ryan; Li, Jiali

    2012-02-06

    An apparatus that integrates solid-state nanopore ionic current measurement with a Scanning Probe Microscope has been developed. When a micrometer-scale scanning probe tip is near a voltage biased nanometer-scale pore (10-100 nm), the tip partially blocks the flow of ions to the pore and increases the pore access resistance. The apparatus records the current blockage caused by the probe tip and the location of the tip simultaneously. By measuring the current blockage map near a nanopore as a function of the tip position in 3D space in salt solution, we estimate the relative pore resistance increase due to the tip, ΔR/R(0), as a function of the tip location, nanopore geometry, and salt concentration. The amplitude of ΔR/R(0) also depends on the ratio of the pore length to its radius as Ohm's law predicts. When the tip is very close to the pore surface, ~10 nm, our experiments show that ΔR/R(0) depends on salt concentration as predicted by the Poisson and Nernst-Planck equations. Furthermore, our measurements show that ΔR/R(0) goes to zero when the tip is about five times the pore diameter away from the center of the pore entrance. The results in this work not only demonstrate a way to probe the access resistance of nanopores experimentally, they also provide a way to locate the nanopore in salt solution, and open the door to future nanopore experiments for detecting single biomolecules attached to a probe tip.

  7. 3D scanning Hall probe microscopy with 700 nm resolution

    NASA Astrophysics Data System (ADS)

    Dede, M.; Akram, R.; Oral, A.

    2016-10-01

    In this report, we present a three dimensional (3D) imaging of magnetic field vector B → (x,y,z) emanating from the magnetic material surfaces using a scanning Hall probe microscopy (3D-SHPM) down to a 700 nm spatial resolution. The Hall probe is used to measure Bz(x,y) on the specimen surface at different heights with the step size of Δz = 250 nm, as we move away from the surface in z direction, until the field decays to zero. These set of images are then used to get ∂Bz(x,y)/∂x and ∂Bz(x,y)/∂y at different z by numerical differentiation. Using the Maxwell's equations in the source free region, Bx(x,y) and By(x,y) can be calculated by integrating ∂Bz(x,y)/∂x and ∂Bz(x,y)/∂y in the z direction. Alternatively, the gradients can also be measured in the Hall gradiometer configuration directly. The operation of the 3D-SHPM is demonstrated by imaging Bx(x,y), By(x,y) and Bz(x,y) on a hard disk specimen at a 700 nm resolution, using both of these methods at 77 K. The system is capable of operating from 300 K down to 4 K range.

  8. Cryogenic scanning Hall-probe microscope with centimeter scan range and submicron resolution

    NASA Astrophysics Data System (ADS)

    Dinner, Rafael B.; Beasley, M. R.; Moler, Kathryn A.

    2005-10-01

    We have constructed a scanning Hall-probe microscope that combines a 1×4cm scan range with 200 nm positioning resolution by coupling stepper motors to high-resolution drivers and reducing gears. The instrument is uniquely suited for efficient magnetic imaging of mesoscopic devices, media, and materials, operating from 4 K to room temperature with fast turn-around time. Its potential for studying dissipation in coated conductors—high-Tc superconducting tapes—is demonstrated via model systems. We image an entire sample of YBa2Cu3O7-δ, then zoom in to individual fluxons. Flux penetration into a single artificial grain boundary is imaged with 4×10-3G /√Hz field resolution and 25μs time resolution by averaging over cycles of ac driving current. Using the resulting magnetic movie, we map out ac power losses.

  9. Three axis vector magnet set-up for cryogenic scanning probe microscopy.

    PubMed

    Galvis, J A; Herrera, E; Guillamón, I; Azpeitia, J; Luccas, R F; Munuera, C; Cuenca, M; Higuera, J A; Díaz, N; Pazos, M; García-Hernandez, M; Buendía, A; Vieira, S; Suderow, H

    2015-01-01

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi2Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert.

  10. Three axis vector magnet set-up for cryogenic scanning probe microscopy

    SciTech Connect

    Galvis, J. A.; Herrera, E.; Buendía, A.; Guillamón, I.; Vieira, S.; Suderow, H.; Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M.; and others

    2015-01-15

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi{sub 2}Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert.

  11. Analysis of Scanned Probe Images for Magnetic Focusing in Graphene

    NASA Astrophysics Data System (ADS)

    Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip; Westervelt, Robert M.

    2017-07-01

    We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN-graphene-hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons. The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.

  12. Thermochemical scanning probe lithography of protein gradients at the nanoscale

    NASA Astrophysics Data System (ADS)

    Albisetti, E.; Carroll, K. M.; Lu, X.; Curtis, J. E.; Petti, D.; Bertacco, R.; Riedo, E.

    2016-08-01

    Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro.

  13. Analysis of Scanned Probe Images for Magnetic Focusing in Graphene

    NASA Astrophysics Data System (ADS)

    Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip; Westervelt, Robert M.

    2017-02-01

    We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN-graphene-hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons. The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.

  14. Developing fibre optic Raman probes for applications in clinical spectroscopy.

    PubMed

    Stevens, Oliver; Iping Petterson, Ingeborg E; Day, John C C; Stone, Nick

    2016-04-07

    Raman spectroscopy has been shown by various groups over the last two decades to have significant capability in discriminating disease states in bodily fluids, cells and tissues. Recent development in instrumentation, optics and manufacturing approaches has facilitated the design and demonstration of various novel in vivo probes, which have applicability for myriad of applications. This review focusses on key considerations and recommendations for application specific clinical Raman probe design and construction. Raman probes can be utilised as clinical tools able to provide rapid, non-invasive, real-time molecular analysis of disease specific changes in tissues. Clearly the target tissue location, the significance of spectral changes with disease and the possible access routes to the region of interest will vary for each clinical application considered. This review provides insight into design and construction considerations, including suitable probe designs and manufacturing materials compatible with Raman spectroscopy.

  15. Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.

    2010-01-01

    Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.

  16. Monitoring charge storage processes in nanoscale oxides using electrochemical scanning probe microscopy.

    SciTech Connect

    Zavadil, Kevin Robert; Lu, Ping; Huang, Jian Yu

    2010-11-01

    Advances in electrochemical energy storage science require the development of new or the refinement of existing in situ probes that can be used to establish structure - activity relationships for technologically relevant materials. The drive to develop reversible, high capacity electrodes from nanoscale building blocks creates an additional requirement for high spatial resolution probes to yield information of local structural, compositional, and electronic property changes as a function of the storage state of a material. In this paper, we describe a method for deconstructing a lithium ion battery positive electrode into its basic constituents of ion insertion host particles and a carbon current collector. This model system is then probed in an electrochemical environment using a combination of atomic force microscopy and tunneling spectroscopy to correlate local activity with morphological and electronic configurational changes. Cubic spinel Li{sub 1+x}Mn{sub 2-x}O{sub 4} nanoparticles are grown on graphite surfaces using vacuum deposition methods. The structure and composition of these particles are determined using transmission electron microscopy and Auger microprobe analysis. The response of these particles to initial de-lithiation, along with subsequent electrochemical cycling, is tracked using scanning probe microscopy techniques in polar aprotic electrolytes (lithium hexafluorophosphate in ethylene carbonate:diethylcarbonate). The relationship between nanoparticle size and reversible ion insertion activity will be a specific focus of this paper.

  17. Characteristic evaluation and experimental analysis of the ultrahigh precision three-dimensional scanning probe

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Xue, Zi; Ye, Shu-liang; Hou, Dexin; Wang, He-yan

    2013-01-01

    Probe is the kernel component of the precision measuring instrument for the system accuracy which is determined by the probe characteristic. Three-dimensional scanning probe is an ideal choice for gear helical error measurement because it has both space coordinates points detecting capacity and scan capacity on the space of curves and surfaces. In order to make full use of the probe's capacity and improve the measurement accuracy, characteristic evaluation of the probe is necessary before used. The static calibration equipment for the sensor has been established based on the high precision PZT micro displacement platform. Linear characteristic analysis and compensate of the ultra-high precision three-dimensional scanning probe has been done by this equipment, which greatly improved the accuracy of the probe. Finally, probe characteristic under working status is analyzed and experimentally verified which will be very helpful to compensate the probe errors.

  18. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    DOEpatents

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  19. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    PubMed

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  20. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.

    PubMed

    Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold

    2014-09-26

    We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.

  1. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    SciTech Connect

    Li, Meng; Xu, Chunkai E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun E-mail: xjun@ustc.edu.cn

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  2. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  3. In-situ scanning probe microscopy of electrodeposited nickel.

    SciTech Connect

    Kelly, James J.; Dibble, Dean C.

    2004-10-01

    The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was imaged on Au(l11) terraces as condensed patches without resolved packing structure. AFM measurements of the roughness evolution of nickel films up to 1200 nm thick on polycrystalline gold indicate that saccharin initially increases the roughness and surface skewness of the deposit that at greater thickness becomes smoother than films deposited without saccharin. Faceting of the deposit morphology decreases as saccharin concentration increases even for the thinnest films that have 3-D growth.

  4. Mesoscale scanning probe tips with subnanometer rms roughness

    NASA Astrophysics Data System (ADS)

    Xu, Dewei; Liechti, Kenneth M.; Ravi-Chandar, K.

    2007-07-01

    Surface smoothness of probe tips is critical for applications, such as measuring surface tension of various liquids, oscillatory hydration forces, and interfacial shear strengths from friction experiments. In this study we establish conditions for fabricating tips with smooth surfaces by controlling the electrochemical polishing process throughout the tip evolution rather than following the current practice of producing tips by the drop-off method. Polishing is conducted under a constant voltage, with the wire immersed below the nominal air/electrolyte interface by no more than one-half of the wire diameter and stopping the etching at different current levels. This process provides a tip radius range of approximately 100nmto5μm for a tungsten wire with a 0.2mm diameter. Alternatively, the wire can be placed above the nominal air/electrolyte interface but within the meniscus until the current drops to zero. In this case, the tip radii range from 5to50μm. In both cases, atomic force microscopy scans of these tips show that the surface rms roughness is about 0.3nm.

  5. Laser scanning dental probe for endodontic root canal treatment

    NASA Astrophysics Data System (ADS)

    Blank, Molly A. B.; Friedrich, Michal; Hamilton, Jeffrey D.; Lee, Peggy; Berg, Joel; Seibel, Eric J.

    2011-03-01

    Complications that arise during endodontic procedures pose serious threats to the long-term integrity and health of the tooth. Potential complexities of root canals include residual pulpal tissue, cracks, mesial-buccal 2 and accessory canals. In the case of a failed root canal, a successful apicoectomy can be jeopardized by isthmuses, accessory canals, and root microfracture. Confirming diagnosis using a small imaging probe would allow proper treatment and prevent retreatment of endodontic procedures. An ultrathin and flexible laser scanning endoscope of 1.2 to 1.6mm outer diameter was used in vitro to image extracted teeth with varied root configurations. Teeth were opened using a conventional bur and high speed drill. Imaging within the opened access cavity clarified the location of the roots where canal filing would initiate. Although radiographs are commonly used to determine the root canal size, position, and shape, the limited 2D image perspective leaves ambiguity that could be clarified if used in conjunction with a direct visual imaging tool. Direct visualization may avoid difficulties in locating the root canal and reduce the number of radiographs needed. A transillumination imaging device with the separated illumination and light collection functions rendered cracks visible in the prepared teeth that were otherwise indiscernible using reflected visible light. Our work demonstrates that a small diameter endoscope with high spatial resolution may significantly increase the efficiency and success of endodontic procedures.

  6. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  7. Local tunneling decay length and Kelvin probe force spectroscopy

    NASA Astrophysics Data System (ADS)

    Albrecht, Florian; Fleischmann, Martin; Scheer, Manfred; Gross, Leo; Repp, Jascha

    2015-12-01

    In the past, current-distance spectroscopy has been widely applied to determine variations of the work function at surfaces. While for homogeneous sample areas this technique is commonly accepted to yield at least qualitative results, its applicability to atomic-scale variations has not been proven neither right nor wrong. Here we benchmark measurements of the current-distance decay constant against the well established Kelvin probe force spectroscopy for four distinctly different cases with atomic-scale variations of the local contact potential. The two techniques yield quite different results. Whereas the maps of the current-distance decay constant are consistent with being topographical artifacts, the Kelvin probe force spectroscopy maps show variations of the local contact potential difference in agreement with expected surface dipoles. This comparison clarifies that maps of the current-distance decay constant are not suited to directly characterize contact potential variations at surfaces on atomic length scales.

  8. Probing biomolecules at surfaces by NEXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiaosong

    2009-12-01

    Surface science has made great strides towards tailoring surface properties via self-assembly of nanoscale molecular adsorbates. It is now possible to functionalize surfaces with complex organic molecules and biomolecules. This leads a wide range of technological applications such as molecular electronic devices, biosensors, and bio-inspired photovoltaic devices. However, these macromolecules have complicated chemical sequences and internal structures and can assemble into multihierarchical, complex assemblies on surfaces. On the other hand, surface properties also play an important role because they determine the interaction of adsorbed molecules with the environment. Better understanding of the structural and electrical characteristics of surfaces and adsorbed molecules is therefore crucial and calls for a diversity of analysis methods. This thesis shows how Near Edge X-ray Absorption Fine Structure spectroscopy (NEXAFS), a synchrotron-based spectroscopic technique, can be used to characterize the assembly of molecules at surfaces in atom- and orbital-specific fashion. To illustrate the range of applications I begin with simple self-assembled monolayers (SAMs) with functional groups, proceed to polymer films, and finish with a small protein containing 124 amino acids (Ribonuclease A). NEXAFS provides element-specific and bond-specific information on the attachment of macromolecules to surfaces. In particular, the orientation of adsorbed molecules is revealed from the polarization dependence of the NEXAFS intensity, which can be explained with quantitative models. All these applications demonstrate that NEXAFS is particularly powerful in extracting orientational information in parallel with information on electronic structure of biomolecules at surfaces.

  9. Probing core-electron orbitals by scanning transmission electron microscopy and measuring the delocalization of core-level excitations

    NASA Astrophysics Data System (ADS)

    Jeong, Jong Seok; Odlyzko, Michael L.; Xu, Peng; Jalan, Bharat; Mkhoyan, K. Andre

    2016-04-01

    By recording low-noise energy-dispersive x-ray spectroscopy maps from crystalline specimens using aberration-corrected scanning transmission electron microscopy, it is possible to probe core-level electron orbitals in real space. Both the 1 s and 2 p orbitals of Sr and Ti atoms in SrTi O3 are probed, and their projected excitation potentials are determined. This paper also demonstrates experimental measurement of the electronic excitation impact parameter and the delocalization of an excitation due to Coulombic beam-orbital interaction.

  10. Methods of determining the contact between a probe and a surface under scanning electron microscopy

    SciTech Connect

    Nien, C.-H.; Tsai, C. H.; Shin, K. Y.; Jian, W. B.

    2006-10-15

    Based on the charging effect common to various kinds of electron microscopy, we have developed novel methods of determining 'when' and 'where' a probe starts to contact an electrically isolated surface. The touchdown of an electrically grounded probe leads to an acute change in the imaging contrast of the contacted surface, which also causes a rapid jump (ranging from a few to tens of picoamperes) of the grounding current. Thus, the detection of contact can be carried out in both qualitative and quantitative manners, providing a basis for establishing relevant standard procedures. In addition, we have achieved the spatial mapping of the contact point(s) using a specially designed lithographical pattern with two mutually vertical sets of parallel conductive lines. The precision of this mapping technique is simply determined by the pitch of parallel lines, which can be as small as the capability achievable in e-beam lithography. A possible 'one-probe' version of the electrical characterization is also discussed with the same underlying principle, which may turn out to be indispensable for various studies and applications of nanostructures. Further development along this track is promising to realize an instrumentally simple version of 'scanning electron spectroscopy' with various modes.

  11. Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam

    NASA Astrophysics Data System (ADS)

    Espinoza-Beltran, Francisco; Sanchez, Isaac C.; España-Sánchez, Beatriz L.; Mota-Morales, Josué D.; Carrillo, Salvador; Enríquez-Flores, C. I.; Poncin-Epaillard, Fabienne; Luna-Barcenas, Gabriel

    2015-11-01

    The effect of argon (Ar+) ion beam treatment on the surface of polyethylene terephthalate (PET) samples was studied by scanning probe microscopy (SPM) and the changes in surface topography were assessed by atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) sheds light of adhesion force between treated polymer films and a Pt/Cr probe under dry conditions, obtaining the contact potential difference of material. As a result of Ar+ ion bombardment, important surface chemical changes were detected by X-ray photoelectron spectroscopy (XPS) measurements such as chains scission and incorporation of nitrogen species. Ion beam treatment increases the surface roughness from 0.49 ± 0.1 nm to 7.2 ± 0.1 nm and modify the surface potential of PET samples, decreasing the adhesive forces from 12.041 ± 2.1 nN to 5.782 ± 0.06 nN, and producing a slight increase in the electronic work function (Φe) from 5.1 V (untreated) to 5.2 V (treated). Ar+ ion beam treatment allows to potentially changing the surface properties of PET, modifying surface adhesion, improving surface chemical changes, wetting properties and surface potential of polymers.

  12. PVD prepared molecular glass resists for scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Neuber, Christian; Schmidt, Hans-Werner; Strohriegl, Peter; Wagner, Daniel; Krohn, Felix; Schedl, Andreas; Bonanni, Simon; Holzner, Felix; Rawlings, Colin; Dürig, Urs; Knoll, Armin W.

    2016-03-01

    In the presented work solvent-free film preparation from molecular glass resists, the evaluation of the patterning performance using thermal scanning probe lithography (tSPL) and an efficient etch transfer process are demonstrated. As the presented materials have a high tendency to crystallize and thus form crystalline films of bad quality when processed by solution casting, two component mixtures prepared by coevaporation were investigated. Stable amorphous films were obtained by selecting compatible material pairs for the coevaporation. One optimized material pair is based on trissubstituted, twisted resist materials with a distinct difference in molecular design. Here a high resolution tSPL prepared pattern of 18 nm half pitch in a 10 nm thick film is demonstrated. A further optimization is reported for "small" cubic silsequioxane molecules. Again single component films show independent to applied film preparation techniques bad film forming properties due to the high crystallinity of the symmetric cubic silsequioxane molecules. But coevaporation of the phenyl substituted octaphenylsilsequioxane combined with the fully aromatic 2,2',7,7'-tetraphenyl-9,9'-spirobi[fluorene] results in stable amorphous thin films. tSPL investigations demonstrate the patternability by writing high resolution line features of 20 nm half pitch. An important advantage of such a silicon rich resist material is that it can be directly converted to SiO2, yielding to a patterned hardmask of SiO2. This proof of principle is demonstrated and an efficient pattern transfer of 60 nm half pitch line into the underlying HM8006 is reported.

  13. Miniaturized magnetic-driven scanning probe for endoscopic optical coherence tomography.

    PubMed

    Pang, Ziwei; Wu, Jigang

    2015-06-01

    We designed and implemented a magnetic-driven scanning (MDS) probe for endoscopic optical coherence tomography (OCT). The probe uses an externally-driven tiny magnet in the distal end to achieve unobstructed 360-degree circumferential scanning at the side of the probe. The design simplifies the scanning part inside the probe and thus allows for easy miniaturization and cost reduction. We made a prototype probe with an outer diameter of 1.4 mm and demonstrated its capability by acquiring OCT images of ex vivo trachea and artery samples from a pigeon. We used a spectrometer-based Fourier-domain OCT system and the system sensitivity with our prototype probe was measured to be 91 dB with an illumination power of 850 μW and A-scan exposure time of 1 ms. The axial and lateral resolutions of the system are 6.5 μm and 8.1 μm, respectively.

  14. Coherence specific signal detection via chiral pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Holdaway, David I. H.; Collini, Elisabetta; Olaya-Castro, Alexandra

    2016-05-01

    We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signatures of exciton coherence dynamics under the influence of structured vibrational environments. We consider a pump-probe configuration with a linearly polarized pump and a circularly polarized probe, with a variable angle θ between the two directions of propagation. In our theoretical formalism the signal is decomposed in chiral and achiral doorway and window functions. Using this formalism, we show that the chiral doorway component, which beats during the population time, can be isolated by comparing signals with different values of θ. As in the majority of time-resolved pump-probe spectroscopy, the overall TRCD response shows signatures of both excited and ground state dynamics. However, we demonstrate that the chiral doorway function has only a weak ground state contribution, which can generally be neglected if an impulsive pump pulse is used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive limit has the potential to unambiguously probe quantum coherence beating in the excited state. We present numerical results for theoretical signals in an example dimer system.

  15. Scanning tunneling spectroscopy of the vortex state in NbSe 2 using a superconducting tip

    NASA Astrophysics Data System (ADS)

    Rodrigo, J. G.; Crespo, V.; Vieira, S.

    2008-04-01

    The vortex electronic structure in the multiband superconductor NbSe2 is studied by means of scanning tunneling spectroscopy (STS) using a superconducting tip. The use of a superconducting tip (Pb) as a probe provides an enhancement of the different features related to the DOS of NbSe2 in the tunneling conductance curves. This use allows the observation of rich patterns of electronic states in the conductance images around the vortex cores in a wide range of temperature, as well as the simultaneous acquisition of Josephson current images in the vortex state.

  16. A resonant scanning dipole-antenna probe for enhanced nanoscale imaging.

    PubMed

    Neumann, Lars; van 't Oever, Jorick; van Hulst, Niek F

    2013-11-13

    We present a scanning antenna probe that provides 35 nm optical hotspots with a 16-fold excitation enhancement. A resonant optical antenna, tuned to operation in the visible, is carved into the aluminum-coated scanning probe. The antenna resonances, field localization, excitation, and polarization response are probed in the near-field by scanning over single fluorescent nanobeads. At the same time, the distance-dependent coupling of the emission to the antenna mode is mapped. Good agreement with theory is obtained. The presented scanning antenna approach is useful for both nanoscale plasmonic mode imaging and (bio)imaging.

  17. Scanning probe microscopy studies of dissolution and deposition processes on electrode surfaces

    SciTech Connect

    Cruickshank, B.J.

    1993-01-01

    Recently, it has been shown that scanning probe microscopes, particularly the scanning tunneling microscope (STM) and the atomic force microscope (AFM), are ideal methods for analyzing surface chemistry in situ. Both instruments allow for atomic resolution in many different environments, including electrolyte, air, cryogen, and vacuum. The authors have built a variable temperature STM, capable of operating at liquid helium temperatures. Initial results show the utility of the instrument in imaging inorganic adsorbates on ordered conductive substrates. Further work will focus on using scanning tunneling spectroscopy (STS) to map out the occupied and unoccupied molecular orbitals of the inorganic adsorbates. Atomic Force Microscopy studies have focused on monitoring corrosion and deposition processes on copper surfaces. In one study, the AFM was used to examine the anodic dissolution of polycrystalline copper in acid media with and without a corrosion inhibitor. An amorphous overlayer and preferential grain boundary etching were observed. The addition of benzotriazole formed a protective film that inhibited copper dissolution. In situ Atomic Force Microscopy (AFM) images of Cu(100) single crystals in dilute acid solutions reveals that a ([radical]2 [times] [radical]2)R45[degrees] adlattice is formed on this material. The authors associate the overlayer with adsorbed O or OH[sup [minus

  18. In-situ fabrication of gold nanoparticle functionalized probes for tip-enhanced Raman spectroscopy by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Sweetenham, Claire S.; Woolley, Richard A. J.; Notingher, Ioan

    2016-07-01

    We report the use of dielectrophoresis to fabricate in-situ probes for tip-enhanced Raman spectroscopy (TERS) based on Au nanoparticles. A typical conductive atomic force microscope (AFM) was used to functionalize iridium-coated conductive silicon probes with Au nanoparticles of 10-nm diameter. Suitable TERS probes can be rapidly produced (30 to 120 s) by applying a voltage of 10 Vpp at a frequency of 1 MHz. The technique has the advantage that the Au-based probes are ready for immediate use for TERS measurements, minimizing the risks of tip contamination and damage during handling. Scanning electron microscopy and energy dispersive x-ray spectroscopy were used to confirm the quality of the probes, and used samples of p-ATP monolayers on silver substrates were used to demonstrate experimentally TERS measurements.

  19. Probing the ligand recognition and discrimination environment of the globin-coupled oxygen sensor protein YddV by FTIR and time-resolved step-scan FTIR spectroscopy.

    PubMed

    Pavlou, Andrea; Martínková, Markéta; Shimizu, Toru; Kitanishi, Kenichi; Stranava, Martin; Loullis, Andreas; Pinakoulaki, Eftychia

    2015-07-14

    YddV is a newly discovered signal transducer heme protein that recognizes O2 and CO. Structural differences in the ligand-bound heme complex in YddV reflect variations in catalytic regulation by O2 and CO. Time-resolved step-scan (TRS(2)) FTIR studies of the wild type and of the important in oxygen recognition and stability of the heme Fe(II)-O2 complex L65M, L65T, Y43A, Y43F and Y43W mutants were performed to determine the site-specific protein dynamics following carbon monoxide (CO) photodissociation. These mutations were designed to perturb the electrostatic field near the iron-bound gaseous ligand (CO) and also to allow us to investigate the communication pathway between the distal residues of the protein and heme. TRS(2)-FTIR spectra of YddV-heme-CO show that the heme propionates are in protonated and deprotonated states. Moreover, the rate of decay of the vibrations of amide I is on a time scale that coincides with the rate of rebinding of CO, which suggests that there is coupling between ligation dynamics in the distal heme environment and (i) relaxation of the protein backbone and (ii) the environment sensed by the heme propionates. The fast recombination rates in L65M, L65T and Y43W imply a significant role of L65 and Y43 in controlling the ligand dynamics. The implications of these results with respect to the role of the heme propionates and the charged or proton-donating residues in the distal pocket, which are crucial for stabilizing bound gaseous ligands, are discussed.

  20. Sensing the quantum limit in scanning tunnelling spectroscopy

    PubMed Central

    Ast, Christian R.; Jäck, Berthold; Senkpiel, Jacob; Eltschka, Matthias; Etzkorn, Markus; Ankerhold, Joachim; Kern, Klaus

    2016-01-01

    The tunnelling current in scanning tunnelling spectroscopy (STS) is typically and often implicitly modelled by a continuous and homogeneous charge flow. If the charging energy of a single-charge quantum sufficiently exceeds the thermal energy, however, the granularity of the current becomes non-negligible. In this quantum limit, the capacitance of the tunnel junction mediates an interaction of the tunnelling electrons with the surrounding electromagnetic environment and becomes a source of noise itself, which cannot be neglected in STS. Using a scanning tunnelling microscope operating at 15 mK, we show that we operate in this quantum limit, which determines the ultimate energy resolution in STS. The P(E)-theory describes the probability for a tunnelling electron to exchange energy with the environment and can be regarded as the energy resolution function. We experimentally demonstrate this effect with a superconducting aluminium tip and a superconducting aluminium sample, where it is most pronounced. PMID:27708282

  1. Rapid-scan coherent 2D fluorescence spectroscopy.

    PubMed

    Draeger, Simon; Roeding, Sebastian; Brixner, Tobias

    2017-02-20

    We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.

  2. Scanning probe microscopy investigation of complex-oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Bi, Feng

    Advances in the growth of precisely tailored complex-oxide heterostructures have led to new emergent behavior and associated discoveries. One of the most successful examples consists of an ultrathin layer of LaAlO 3 (LAO) deposited on TiO2-terminated SrTiO3 (STO), where a high mobility quasi-two dimensional electron liquid (2DEL) is formed at the interface. Such 2DEL demonstrates a variety of novel properties, including field tunable metal-insulator transition, superconductivity, strong spin-orbit coupling, magnetic and ferroelectric like behavior. Particularly, for 3-unit-cell (3 u.c.) LAO/STO heterostructures, it was demonstrated that a conductive atomic force microscope (c-AFM) tip can be used to "write" or "erase" nanoscale conducting channels at the interface, making LAO/STO a highly flexible platform to fabricate novel nanoelectronics. This thesis is focused on scanning probe microscopy studies of LAO/STO properties. We investigate the mechanism of c-AFM lithography over 3 u.c. LAO/STO in controlled ambient conditions by using a vacuum AFM, and find that the water molecules dissociated on the LAO surface play a critical role during the c-AFM lithography process. We also perform electro-mechanical response measurements over top-gated LAO/STO devices. Simultaneous piezoresponse force microscopy (PFM) and capacitance measurements reveal a correlation between LAO lattice distortion and interfacial carrier density, which suggests that PFM could not only serve as a powerful tool to map the carrier density at the interface but also provide insight into previously reported frequency dependence of capacitance enhancement of top-gated LAO/STO structures. To study magnetism at the LAO/STO interface, magnetic force microscopy (MFM) and magnetoelectric force microscopy (MeFM) are carried out to search for magnetic signatures that depend on the carrier density at the interface. Results demonstrate an electronicallycontrolled ferromagnetic phase on top-gated LAO

  3. Surface flaw detection in structural ceramics by scanning photoacoustic spectroscopy

    NASA Technical Reports Server (NTRS)

    Khandelwal, P. K.; Heitman, P. W.; Wakefield, T. D.; Silversmith, A. J.

    1980-01-01

    Laser-scanned photoacoustic spectroscopy has been used to detect tightly closed surface cracks in three structural ceramic materials: sintered silicon nitride, reaction-bonded silicon nitride, and sintered silicon carbide. It is found that the amplitude of the photoacoustic signal from the flaws is greater for the silicon nitrides than for silicon carbide, which is attributed to the lower thermal diffusivity of silicon nitride as well as differences in the grain size distribution and chemical composition. Signal amplitude, reproducibility, and signal-to-noise ratio are acceptable for effective flaw detection

  4. Axial scanning laser Doppler velocimeter using wavelength change without moving mechanism in sensor probe.

    PubMed

    Maru, Koichi

    2011-03-28

    A scanning laser Doppler velocimeter (LDV) without any moving mechanism in its sensor probe is proposed. In the proposed scanning LDV, the measurement position is axially scanned by change in the wavelength of the light input to the sensor probe, instead of using a moving mechanism in the sensor probe. For this purpose, a tunable laser and diffraction gratings are used, and the sensor probe including the gratings is separated from the main body including the tunable laser. To demonstrate the scanning function based on the proposed concept, an experiment was conducted using optical fibers, a commercial tunable laser and a setup of the sensor probe consisting of bulk optical components. As the experimental result, it is found that the measurement positions estimated from the measured beat frequencies are in good agreement with the theoretical values. The scan ranges over a wavelength range of 30 nm are estimated to be 29.3 mm when the beam angle to the measurement position at the wavelength of 1540 nm is 10° and 20.8 mm when the beam angle is 15°. The result indicates that the scanning function by means of changing the wavelength input to the sensor probe is successfully demonstrated for the first time. The proposed method has the potential for realizing a scanning LDV with a simple, compact and reliable sensor probe.

  5. Paired-angle-rotation scanning optical coherence tomography forward-imaging probe

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Conry, Michael; Gu, Chunhui; Wang, Fei; Yaqoob, Zahid; Yang, Changhuei

    2006-05-01

    We report a novel forward-imaging optical coherence tomography (OCT), needle-probe paired-angle-rotation scanning OCT (PARS-OCT) probe. The probe uses two rotating angled gradient-index lenses to scan the output OCT probe beam over a wide angular arc (˜19° half-angle) of the region forward of the probe. Among other advantages, this probe design is readily amenable to miniaturization and is capable of a variety of scan modes, including volumetric scans. To demonstrate the advantages of the probe design, we have constructed a prototype probe with an outer diameter of 1.65 mm and employed it to acquire four OCT images, with a 45° angle between adjacent images, of the gill structure of a Xenopus laevis tadpole. The system sensitivity was measured to be 93 dB by using the prototype probe with an illumination power of 450 μW on the sample. Moreover, the axial and the lateral resolutions of the probe are 9.3 and 10.3-12.5 μm, respectively.

  6. Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy.

    PubMed

    Erni, Rolf; Browning, Nigel D

    2005-10-01

    With the development of monochromators for (scanning) transmission electron microscopes, valence electron energy-loss spectroscopy (VEELS) is developing into a unique technique to study the band structure and optical properties of nanoscale materials. This article discusses practical aspects of spatially resolved VEELS performed in scanning transmission mode and the alignments necessary to achieve the current optimum performance of approximately 0.15 eV energy resolution with an electron probe size of approximately 1 nm. In particular, a collection of basic concepts concerning the acquisition process, the optimization of the energy resolution, the spatial resolution and the data processing are provided. A brief study of planar defects in a Y(1)Ba(2)Cu(3)O(7-)(delta) high-temperature superconductor illustrates these concepts and shows what kind of information can be accessed by VEELS.

  7. Scanning Tunnelling Spectroscopy of Vortices with Normal and Superconducting tips

    NASA Astrophysics Data System (ADS)

    Rodrigo, J. G.; Suderow, H.; Vieira, S.

    Scanning tunnelling microscopy and spectroscopy (STM/S) has proved to be a powerful tool to study superconductivity down to atomic level. Vortex lattice studies require characterizing areas of enough size to contain a large number of vortices. On the other hand, it is necessary to combine this capability with high spectroscopic and microscopic resolution. This is a fundamental aspect to measure and detect the subtle changes appearing inside and around a single vortex. We report in this chapter our approach to the use of STM/S, using normal and superconducting tips, to observe the lattice of vortices in several compounds, and the information acquired inside these fascinating entities. The combination of superconducting tips and scanning tunneling spectroscopy, (ST)2S, presents advantages for the study of superconducting samples. It allows to distinguish relevant features of the sample density of states, which manifest itself as small changes in the Josephson coupling between sample and tip condensates, and it has also shown to be very efficient in the study of the ferromagnetic-superconductor transition in the re-entrant superconductor ErRh4B4.

  8. Pump and probe spectroscopy with continuous wave quantum cascade lasers

    SciTech Connect

    Kirkbride, James M. R.; Causier, Sarah K.; Dalton, Andrew R.; Ritchie, Grant A. D.; Weidmann, Damien

    2014-02-07

    This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorption profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.

  9. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    DOE PAGES

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; ...

    2015-01-01

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  10. Principles and Application of Heterodyne Scanning Tunnelling Spectroscopy

    PubMed Central

    Matsuyama, Eiji; Kondo, Takahiro; Oigawa, Haruhiro; Guo, Donghui; Nemoto, Shojiro; Nakamura, Junji

    2014-01-01

    Detection of the extremely weak signals in spectroscopy over an extremely wide frequency region is central to diverse sciences, including materials science, biology, astronomy and chemistry. Here we show a new type of atomic-scale spectroscopy, heterodyne scanning tunnelling spectroscopy (HSTS), which is based on the innovative application of the nonlinear heterodyne-mixing detection at the metal-insulator-metal (MIM) heterojunction of STM tip–vacuum–sample. The principle of HSTS is identical to that of the Atacama Large Millimeter Array (ALMA) space telescope in terms of using heterojunction for detecting extremely weak signals by converting from terahertz region to lower frequency regions. The MIM detector of ALMA, which is composed of niobium–titanium–nitride (NbTiN) tip-insulator-NbTiN, is very similar in shape and size to that of HSTS. We successfully detect a heterodyne beat signal f3 (= |f2 − f1|) and intermodulation distortion via tunnelling current by superimposing two different AC signals, f1 and f2, onto the DC tunnelling current at a highly oriented pyrolytic graphite (HOPG) surface. We then obtain spectra of the localized electronic states of HOPG by using f3. HSTS can be performed with a high resolution and over a wide energy range, including the terahertz range. PMID:25342108

  11. Spatial-scanning hyperspectral imaging probe for bio-imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2016-03-01

    The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.

  12. Line-scanning Raman imaging spectroscopy for detection of fingerprints.

    PubMed

    Deng, Sunan; Liu, Le; Liu, Zhiyi; Shen, Zhiyuan; Li, Guohua; He, Yonghong

    2012-06-10

    Fingerprints are the best form of personal identification for criminal investigation purposes. We present a line-scanning Raman imaging system and use it to detect fingerprints composed of β-carotene and fish oil on different substrates. Although the line-scanning Raman system has been used to map the distribution of materials such as polystyrene spheres and minerals within geological samples, this is the first time to our knowledge that the method is used in imaging fingerprints. Two Raman peaks of β-carotene (501.2, 510.3 nm) are detected and the results demonstrate that both peaks can generate excellent images with little difference between them. The system operates at a spectra resolution of about 0.4 nm and can detect β-carotene signals in petroleum ether solution with the limit of detection of 3.4×10(-9) mol/L. The results show that the line-scanning Raman imaging spectroscopy we have built has a high accuracy and can be used in the detection of latent fingerprints in the future.

  13. Carbon Nanotube Tip Probes: Stability and Lateral Resolution in Scanning Probe Microscopy and Application to Surface Science to Semiconductors

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Chao, Kuo-Jen; Stevens, Ramsey M. D.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, James (Technical Monitor)

    2001-01-01

    In this paper we present results on the stability and lateral resolution capability of carbon nanotube (CNT) scanning probes as applied to atomic force microscopy (AFM). Surface topography images of ultra-thin films (2-5 nm thickness) obtained with AFM are used to illustrate the lateral resolution capability of single-walled carbon nanotube probes. Images of metal films prepared by ion beam sputtering exhibit grain sizes ranging from greater than 10 nm to as small as approximately 2 nm for gold and iridium respectively. In addition, imaging stability and lifetime of multi-walled carbon nanotube scanning probes are studied on a relatively hard surface of silicon nitride (Si3N4). AFM images Of Si3N4 surface collected after more than 15 hrs of continuous scanning show no detectable degradation in lateral resolution. These results indicate the general feasibility of CNT tips and scanning probe microscopy for examining nanometer-scale surface features of deposited metals as well as non-conductive thin films. AFM coupled with CNT tips offers a simple and nondestructive technique for probing a variety of surfaces, and has immense potential as a surface characterization tool in integrated circuit manufacturing.

  14. Invited review article: A 10 mK scanning probe microscopy facility.

    PubMed

    Song, Young Jae; Otte, Alexander F; Shvarts, Vladimir; Zhao, Zuyu; Kuk, Young; Blankenship, Steven R; Band, Alan; Hess, Frank M; Stroscio, Joseph A

    2010-12-01

    We describe the design, development and performance of a scanning probe microscopy (SPM) facility operating at a base temperature of 10 mK in magnetic fields up to 15 T. The microscope is cooled by a custom designed, fully ultra-high vacuum (UHV) compatible dilution refrigerator (DR) and is capable of in situ tip and sample exchange. Subpicometer stability at the tip-sample junction is achieved through three independent vibration isolation stages and careful design of the dilution refrigerator. The system can be connected to, or disconnected from, a network of interconnected auxiliary UHV chambers, which include growth chambers for metal and semiconductor samples, a field-ion microscope for tip characterization, and a fully independent additional quick access low temperature scanning tunneling microscope (STM) and atomic force microscope (AFM) system. To characterize the system, we present the cooling performance of the DR, vibrational, tunneling current, and tip-sample displacement noise measurements. In addition, we show the spectral resolution capabilities with tunneling spectroscopy results obtained on an epitaxial graphene sample resolving the quantum Landau levels in a magnetic field, including the sublevels corresponding to the lifting of the electron spin and valley degeneracies.

  15. Magnetic hydroxyapatite coatings as a new tool in medicine: A scanning probe investigation.

    PubMed

    Gambardella, A; Bianchi, M; Kaciulis, S; Mezzi, A; Brucale, M; Cavallini, M; Herrmannsdoerfer, T; Chanda, G; Uhlarz, M; Cellini, A; Pedna, M F; Sambri, V; Marcacci, M; Russo, A

    2016-05-01

    Hydroxyapatite films enriched with magnetite have been fabricated via a Pulsed Plasma Deposition (PPD) system with the final aim of representing a new platform able to disincentivate bacterial adhesion and biofilm formation. The chemical composition and magnetic properties of films were respectively examined by X-ray photoelectron spectroscopy (XPS) and Superconducting Quantum Interference Device (SQUID) measurements. The morphology and conductive properties of the magnetic films were investigated via a combination of scanning probe technologies including atomic force microscopy (AFM), electrostatic force microscopy (EFM), and scanning tunneling microscopy (STM). Interestingly, the range of adopted techniques allowed determining the preservation of the chemical composition and magnetic properties of the deposition target material while STM analysis provided new insights on the presence of surface inhomogeneities, revealing the presence of magnetite-rich islands over length scales compatible with the applications. Finally, preliminary results of bacterial adhesion tests, indicated a higher ability of magnetic hydroxyapatite films to reduce Escherichia coli adhesion at 4h from seeding compared to control hydroxyapatite films.

  16. Multifunctional cantilever-free scanning probe arrays coated with multilayer graphene

    PubMed Central

    Shim, Wooyoung; Brown, Keith A.; Zhou, Xiaozhu; Rasin, Boris; Liao, Xing; Mirkin, Chad A.

    2012-01-01

    Scanning probe instruments have expanded beyond their traditional role as imaging or “reading” tools and are now routinely used for “writing.” Although a variety of scanning probe lithography techniques are available, each one imposes different requirements on the types of probes that must be used. Additionally, throughput is a major concern for serial writing techniques, so for a scanning probe lithography technique to become widely applied, there needs to be a reasonable path toward a scalable architecture. Here, we use a multilayer graphene coating method to create multifunctional massively parallel probe arrays that have wear-resistant tips of uncompromised sharpness and high electrical and thermal conductivities. The optical transparency and mechanical flexibility of graphene allow this procedure to be used for coating exceptionally large, cantilever-free arrays that can pattern with electrochemical desorption and thermal, in addition to conventional, dip-pen nanolithography. PMID:23086161

  17. Metamaterial-inspired miniaturized microwave edge coupled surface scanning probe

    NASA Astrophysics Data System (ADS)

    Wiwatcharagoses, Nophadon; Park, Kyoung Y.; Chahal, Premjeet; Udpa, Lalita

    2013-01-01

    This paper introduces a new concept on sub-wavelength resolution imaging and surface scanning using metamaterial based near field sensor array. Multiple split ring resonator structures (SRRs), having different band stop frequencies, are implemented in a microstrip transmission line configuration. A mirror image copy of these resonators is also incorporated on the transmission line to achieve built in frequency references. A smart card is scanned to detect buried antenna and Si chip within the plastic card.

  18. A fast scanning probe for DIII-D

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Salmonson, J.; Moyer, R.; Doerner, R.; Lehmer, R.; Schmitz, L.; Hill, D. N.

    1992-10-01

    A fast reciprocating probe has been developed for DIII-D which can penetrate the separatrix during H mode with up to 5 MW of NBI heating. The probe has been designed to carry various sensor tips into the scrape-off layer at a velocity of 3 m/s and dwell motionless for a programmed period of time. The driving force is provided by a pneumatic cylinder charged with helium to facilitate greater mass flow. The first series of experiments have been done using a Langmuir probe head with five graphite tips to measure radial profiles of ne, Te, φf, ñe, and φ˜f. The amplitude and phase of the fluctuating quantities are measured by using specially constructed vacuum compatible 5-kV coaxial transmission lines which allow us to extend the measurements into the MHz range. TTZ ceramic bearings and fast stroke bellows were also specially designed for the DIII-D probe. Initial measurements will be presented.

  19. A fast scanning probe for D3-D

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Salmonson, J.; Doerner, R.; Lehmer, R.; Moyer, R.; Schmitz, L.; Hill, D. N.

    A fast reciprocating probe was developed for D3-D which can penetrate the separatrix during H - mode with up to 5MW of NBI heating. The probe was designed to carry various sensor tips into the scrape-off layer at a velocity of 3 m/sec and dwell motionless for a programmed period of time. The driving force is provided by a pneumatic cylinder charged with helium to facilitate greater mass flow. The first series of experiments were done using a Langmuir probe head with 5 graphite tips to measure radial profiles of n(sub e), T(sub e), phi(sub f), (n tilde)(sub e), and (phi tilde)(sub f). The amplitude and phase of the fluctuating quantities are measured by using specially constructed vacuum compatible 5 kV coaxial transmission lines which allow us to extend the measurements into the MHz range. TTZ ceramic bearings and fast stroke bellows were also specially designed for the D3-D probe. Initial measurements will be presented.

  20. Local magnetism in palladium bionanomaterials probed by muon spectroscopy.

    PubMed

    Creamer, Neil J; Mikheenko, Iryna P; Johnson, Clive; Cottrell, Stephen P; Macaskie, Lynne E

    2011-05-01

    Palladium bionanomaterial was manufactured using the sulfate-reducing bacterium, Desulfovibrio desulfuricansm, to reduce soluble Pd(II) ions to cell-bound Pd(0) in the presence of hydrogen. The biomaterial was examined using a Superconducting Quantum Interference Device (SQUID) to measure bulk magnetisation and by Muon Spin Rotation Spectroscopy (µSR) which is uniquely able to probe the local magnetic environment inside the sample. Results showed behaviour attributable to interaction of muons both with palladium electrons and the nuclei of hydrogen trapped in the particles during manufacture. Electronic magnetism, also suggested by SQUID, is not characteristic of bulk palladium and is consistent with the presence of nanoparticles previously seen in electron micrographs. We show the first use of μSR as a tool to probe the internal magnetic environment of a biologically-derived nanocatalyst material. © Springer Science+Business Media B.V. 2011

  1. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  2. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system

    PubMed Central

    Johansson, Johannes D.; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-01-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma. PMID:26977357

  3. Two Simple Classroom Demonstrations for Scanning Probe Microscopy Based on a Macroscopic Analogy

    ERIC Educational Resources Information Center

    Hajkova, Zdenka; Fejfar, Antonin; Smejkal, Petr

    2013-01-01

    This article describes two simple classroom demonstrations that illustrate the principles of scanning probe microscopy (SPM) based on a macroscopic analogy. The analogy features the bumps in an egg carton to represent the atoms on a chemical surface and a probe that can be represented by a dwarf statue (illustrating an origin of the prefix…

  4. Two Simple Classroom Demonstrations for Scanning Probe Microscopy Based on a Macroscopic Analogy

    ERIC Educational Resources Information Center

    Hajkova, Zdenka; Fejfar, Antonin; Smejkal, Petr

    2013-01-01

    This article describes two simple classroom demonstrations that illustrate the principles of scanning probe microscopy (SPM) based on a macroscopic analogy. The analogy features the bumps in an egg carton to represent the atoms on a chemical surface and a probe that can be represented by a dwarf statue (illustrating an origin of the prefix…

  5. Probing Intermolecular Interaction through Thermal-Lens Spectroscopy

    PubMed Central

    Bhattacharyya, Indrajit; Kumar, Pardeep; Goswami, Debabrata

    2013-01-01

    Binary liquid mixtures are studied using femtosecond pump–probe thermal-lens (TL) spectroscopy. Changes in the measured TL signals as a function of relative concentration of binary mixtures show that these result from a combined effect of physical and molecular properties of the constituent binary liquids. The experimental TL values deviate from the ones calculated from phenomenological equations. These, we argue, are due to an underestimation of the influence of molecular interactions when the TL signals are calculated by using physical parameters only. PMID:21166402

  6. Probing microscopic mechanical properties of hard tissues with Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Yakovlev, Vladislav V.

    2015-02-01

    Mechanical properties of hard tissues play an important role in understanding underlying biological structures, as well as assessing the quality of artificial bone replacement materials. In this study, we employed Brillouin spectroscopy as a non-invasive approach to probe the microscopic elasticity of hard tissues, such as bones. Brillouin spectra were collected using a background free virtually imaged phased array spectrometer. As a reference, Raman spectra were also acquired for each imaging point. Experimental results reveal a positive correlation between the local concentration of the mineral content and the corresponding tissue stiffness, assessed through a Brillouin shift.

  7. Cryogenic Scanning Tunneling Spectroscopy of Superconducting Iron Chalcogenide Single Crystals

    NASA Astrophysics Data System (ADS)

    Wei, J. Y. T.; Fridman, Igor; Yeh, Kuo-Wei; Wu, Maw-Kuen; Hu, Rongwei; Petrovic, C.

    2011-03-01

    We report scanning tunneling spectroscopy measurements on the iron-based superconductors of the ``11'' family including Fe 1-y Te 1-x Se x and Fe 1-y Te 1-x Sx . Conductance spectra and atomically-resolved images are obtained on single crystals down to 300 mK. A gap-like structure is observed, showing an asymmetric spectral background, non-trivial spatial variation and temperature dependence. We discuss our data in terms of possible gap anisotropy and doping inhomogeneities, and in relation to other recent spectroscopic measurements on iron-based superconductors. Work supported by NSERC, CFI/OIT, CIFAR, Taiwan National Science Council, U.S. DOE and Brookhaven Science Associates (No. DE-Ac02-98CH10886), and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center.

  8. Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Brown, Christopher L.; Oliver, Frederick W.; Hammond, Ernest C., Jr.

    1989-01-01

    Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions.

  9. Scanning micro-resonator direct-comb absolute spectroscopy

    NASA Astrophysics Data System (ADS)

    Gambetta, Alessio; Cassinerio, Marco; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-10-01

    Direct optical Frequency Comb Spectroscopy (DFCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DFCS approach based on a scanning Fabry-Pérot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from UV to THz. We present an application to high-precision spectroscopy of acetylene at 1.54 μm, demonstrating performances comparable or even better than current state-of-the-art DFCS systems in terms of sensitivity, optical bandwidth and frequency-resolution.

  10. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization

    NASA Astrophysics Data System (ADS)

    Wagner, Stefan; Dieing, Thomas; Centeno, Alba; Zurutuza, Amaia; Smith, Anderson D.; Östling, Mikael; Kataria, Satender; Lemme, Max C.

    2017-03-01

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between freestanding and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

  11. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization

    PubMed Central

    2017-01-01

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between free-standing and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems. PMID:28140595

  12. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization.

    PubMed

    Wagner, Stefan; Dieing, Thomas; Centeno, Alba; Zurutuza, Amaia; Smith, Anderson D; Östling, Mikael; Kataria, Satender; Lemme, Max C

    2017-03-08

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between free-standing and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

  13. Scanning micro-resonator direct-comb absolute spectroscopy

    PubMed Central

    Gambetta, Alessio; Cassinerio, Marco; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Direct optical Frequency Comb Spectroscopy (DFCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DFCS approach based on a scanning Fabry-Pérot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from UV to THz. We present an application to high-precision spectroscopy of acetylene at 1.54 μm, demonstrating performances comparable or even better than current state-of-the-art DFCS systems in terms of sensitivity, optical bandwidth and frequency-resolution. PMID:27752132

  14. Scanning micro-resonator direct-comb absolute spectroscopy.

    PubMed

    Gambetta, Alessio; Cassinerio, Marco; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-10-18

    Direct optical Frequency Comb Spectroscopy (DFCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DFCS approach based on a scanning Fabry-Pérot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from UV to THz. We present an application to high-precision spectroscopy of acetylene at 1.54 μm, demonstrating performances comparable or even better than current state-of-the-art DFCS systems in terms of sensitivity, optical bandwidth and frequency-resolution.

  15. Fast scanning probe for the NSTX spherical tokamak

    SciTech Connect

    Boedo, J. A.; Crocker, N.; Chousal, L.; Hernandez, R.; Chalfant, J.; Kugel, H.; Roney, P.; Wertenbaker, J.; Collaboration: NSTX Team

    2009-12-15

    We describe a fast reciprocating Langmuir probe and drive system, which has four main new features: (1) use of high-temperature, vacuum, circuit boards instead of cables to reduce weight and increase to 21 the number of possible connections, (2) rotatable and removable shaft, (3) 10 tip construction with designed hardware bandwidth up to 10 MHz, and (4) a detachable and modular tip assembly for easy maintenance. The probe is mounted in a fast pneumatic drive capable of speeds {approx}7 m/s and {approx}20g's acceleration in order to reach the scrape-off layer (SOL) and pedestal regions and remain inserted long enough to obtain good statistics while minimizing the heat deposition to the tips and head in a power density environment of 1-10 MW/m{sup 2}. The National Spherical Torus Experiment SOL features electron temperature, T{sub e}{approx}10-30 eV, and electron density, n{sub e}{approx}0.1-5x10{sup 12} cm{sup -3} while the pedestal features n{sub e}{approx}0.5-1.5x10{sup 13} cm{sup -3} and T{sub e}{approx}30-150 eV. The probe described here has ten tips which obtain a wide spectrum of plasma parameters: electron temperature profile T{sub e}(r), electron density profile n{sub e}(r) and Mach number profile M(r), floating potential V{sub f}(r), poloidal and radial electric field profiles E{sub {theta}}(r) and E{sub {rho}}(r), saturation current profile I{sub sat}(r), and their fluctuations up to 3 MHz. We describe the probe and show representative radial profiles of various parameters.

  16. Fast scanning probe for the NSTX spherical tokamak.

    PubMed

    Boedo, J A; Crocker, N; Chousal, L; Hernandez, R; Chalfant, J; Kugel, H; Roney, P; Wertenbaker, J

    2009-12-01

    We describe a fast reciprocating Langmuir probe and drive system, which has four main new features: (1) use of high-temperature, vacuum, circuit boards instead of cables to reduce weight and increase to 21 the number of possible connections, (2) rotatable and removable shaft, (3) 10 tip construction with designed hardware bandwidth up to 10 MHz, and (4) a detachable and modular tip assembly for easy maintenance. The probe is mounted in a fast pneumatic drive capable of speeds approximately 7 m/s and approximately 20g's acceleration in order to reach the scrape-off layer (SOL) and pedestal regions and remain inserted long enough to obtain good statistics while minimizing the heat deposition to the tips and head in a power density environment of 1-10 MW/m2. The National Spherical Torus Experiment SOL features electron temperature, T(e) approximately 10-30 eV, and electron density, n(e) approximately 0.1-5x10(12) cm(-3) while the pedestal features n(e) approximately 0.5-1.5x10(13) cm(-3) and T(e) approximately 30-150 eV. The probe described here has ten tips which obtain a wide spectrum of plasma parameters: electron temperature profile T(e)(r), electron density profile n(e)(r) and Mach number profile M(r), floating potential V(f)(r), poloidal and radial electric field profiles E(theta)(r) and E(rho)(r), saturation current profile I(sat)(r), and their fluctuations up to 3 MHz. We describe the probe and show representative radial profiles of various parameters.

  17. Fast scanning probe for the NSTX spherical tokamak

    NASA Astrophysics Data System (ADS)

    Boedo, J. A.; Crocker, N.; Chousal, L.; Hernandez, R.; Chalfant, J.; Kugel, H.; Roney, P.; Wertenbaker, J.; NSTX Team

    2009-12-01

    We describe a fast reciprocating Langmuir probe and drive system, which has four main new features: (1) use of high-temperature, vacuum, circuit boards instead of cables to reduce weight and increase to 21 the number of possible connections, (2) rotatable and removable shaft, (3) 10 tip construction with designed hardware bandwidth up to 10 MHz, and (4) a detachable and modular tip assembly for easy maintenance. The probe is mounted in a fast pneumatic drive capable of speeds ˜7 m/s and ˜20g's acceleration in order to reach the scrape-off layer (SOL) and pedestal regions and remain inserted long enough to obtain good statistics while minimizing the heat deposition to the tips and head in a power density environment of 1-10 MW/m2. The National Spherical Torus Experiment SOL features electron temperature, Te˜10-30 eV, and electron density, ne˜0.1-5×1012 cm-3 while the pedestal features ne˜0.5-1.5×1013 cm-3 and Te˜30-150 eV. The probe described here has ten tips which obtain a wide spectrum of plasma parameters: electron temperature profile Te(r), electron density profile ne(r) and Mach number profile M(r ), floating potential Vf(r), poloidal and radial electric field profiles Eθ(r) and Eρ(r), saturation current profile Isat(r), and their fluctuations up to 3 MHz. We describe the probe and show representative radial profiles of various parameters.

  18. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes

    SciTech Connect

    Li, Y.; Zakharov, D.; Zhao, S.; Tappero, R.; Jung, U.; Elsen, A.; Baumann, Ph.; Nuzzo, R. G.; Stach, E. A.; Frenkel, A. I.

    2015-06-29

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction—ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. Lastly, this method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes.

  19. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes

    DOE PAGES

    Li, Y.; Zakharov, D.; Zhao, S.; ...

    2015-06-29

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction—ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. Lastly,more » this method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes.« less

  20. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes

    PubMed Central

    Li, Y.; Zakharov, D.; Zhao, S.; Tappero, R.; Jung, U.; Elsen, A.; Baumann, Ph.; Nuzzo, R.G.; Stach, E.A.; Frenkel, A.I.

    2015-01-01

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction—ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. This method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes. PMID:26119246

  1. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zakharov, D.; Zhao, S.; Tappero, R.; Jung, U.; Elsen, A.; Baumann, Ph.; Nuzzo, R. G.; Stach, E. A.; Frenkel, A. I.

    2015-06-01

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction--ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. This method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes.

  2. Handheld scanning probes for optical coherence tomography: developments, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Duma, V.-F.; Demian, D.; Sinescu, C.; Cernat, R.; Dobre, G.; Negrutiu, M. L.; Topala, F. I.; Hutiu, Gh.; Bradu, A.; Podoleanu, A. G.

    2016-03-01

    We present the handheld scanning probes that we have recently developed in our current project for biomedical imaging in general and for Optical Coherence Tomography (OCT) in particular. OCT is an established, but dynamic imagistic technique based on laser interferometry, which offers micrometer resolutions and millimeters penetration depths. With regard to existing devices, the newly developed handheld probes are simple, light and relatively low cost. Their design is described in detail to allow for the reproduction in any lab, including for educational purposes. Two probes are constructed almost entirely from off-the-shelf components, while a third, final variant is constructed with dedicated components, in an ergonomic design. The handheld probes have uni-dimensional (1D) galvanometer scanners therefore they achieve transversal sections through the biological sample investigated - in contrast to handheld probes equipped with bi-dimensional (2D) scanners that can also achieve volumetric (3D) reconstructions of the samples. These latter handheld probes are therefore also discussed, as well as the possibility to equip them with galvanometer 2D scanners or with Risley prisms. For galvanometer scanners the optimal scanning functions studied in a series of previous works are pointed out; these functions offer a higher temporal efficiency/duty cycle of the scanning process, as well as artifact-free OCT images. The testing of the handheld scanning probes in dental applications is presented, for metal ceramic prosthesis and for teeth.

  3. Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy.

    PubMed

    Chen, Yan; Wei, Li-Na; Müller, Joachim D

    2003-12-23

    Fluorescence fluctuation spectroscopy provides information about protein interactions in the intercellular environment from naturally occurring equilibrium fluctuations. We determine the molecular brightness of fluorescent proteins from the fluctuations by analyzing the photon counting histogram (PCH) or its moments and demonstrate the use of molecular brightness in probing the oligomerization state of proteins. We report fluorescence fluctuation measurements of enhanced GFP (EGFP) in cells up to concentrations of 10 microM by using an improved PCH theory. The molecular brightness of EGFP is constant in the concentration range studied. The brightness of a tandem EGFP construct, which carries two fluorophores, increases by a factor of two compared with EGFP alone, demonstrating the sensitivity of molecular brightness as a probe for protein complex formation. Oligomerization of nuclear receptors plays a crucial role in the regulation of gene expression. We probe the oligomerization state of the testicular receptor 4 and the ligand-binding domains of retinoid X receptor and retinoic acid receptor by observing molecular brightness changes as a function of protein concentration. The large concentration range accessible by experiment allows us to perform titration experiments on EGFP fusion proteins. An increase in the molecular brightness with protein concentration indicates the formation of homocomplexes. We observe the formation of homodimers of retinoid X receptor ligand binding domain upon addition of ligand. Resolving protein interactions in a cell is an important step in understanding cellular function on a molecular level. Brightness analysis promises to develop into an important tool for determining protein complex formation in cells.

  4. Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

    SciTech Connect

    Segre, Gino P.

    2001-01-01

    Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very low energies are visible to a high-energy probe. Also discussed are basic recombination processes which may play a role in the observed decay.

  5. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-01-01

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  6. Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Aguiar, Jeffery A.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  7. Wall scanning probe for high-field side plasma measurements on Alcator C-Mod.

    PubMed

    Smick, Noah; LaBombard, Brian

    2009-02-01

    A new, high-field side scanning probe has been added to Alcator C-Mod's complement of edge diagnostics. The wall scanning probe is designed to provide all the benefits of a linear plunge, multielectrode scanning probe while working from the confined space of the inner tokamak wall. The drive mechanism is an embedded coil which produces a torque with the ambient toroidal magnetic field when energized, thus allowing the probe to plunge to different preprogramed depths at different times during a plasma discharge. The probe tip is designed for easy replacement and is presently configured to operate as a modified, high heat-flux "Gundestrup-type" probe with four tungsten electrodes. The probe has demonstrated the ability to obtain cross-field profiles for electron temperature, density, floating potential, and plasma flow information (parallel and perpendicular to B) up to a depth of a few millimiters inside the last-closed flux surface in standard C-Mod discharges. The tungsten-tipped probe has proved very robust and shows little or no damage though it routinely handles surface heat fluxes on the order of 100 MW/m(2) at peak insertion.

  8. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    USDA-ARS?s Scientific Manuscript database

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  9. Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks.

    PubMed

    Wu, Cheng Hao; Weatherup, Robert S; Salmeron, Miquel B

    2015-11-11

    Electrode/electrolyte interfaces play a vital role in various electrochemical systems, but in situ characterization of such buried interfaces remains a major challenge. Several efforts to develop techniques or to modify existing techniques to study such interfaces are showing great promise to overcome this challenge. Successful examples include electrochemical scanning tunneling microscopy (EC-STM), surface-sensitive vibrational spectroscopies, environmental transmission electron microscopy (E-TEM), and surface X-ray scattering. Other techniques such as X-ray core-level spectroscopies are element-specific and chemical-state-specific, and are being widely applied in materials science research. Herein we showcase four types of newly developed strategies to probe electrode/electrolyte interfaces in situ with X-ray core-level spectroscopies. These include the standing wave approach, the meniscus approach, and two liquid cell approaches based on X-ray photoelectron spectroscopy and soft X-ray absorption spectroscopy. These examples demonstrate that with proper modifications, many ultra-high-vacuum based techniques can be adapted to study buried electrode/electrolyte interfaces and provide interface-sensitive, element- and chemical-state-specific information, such as solute distribution, hydrogen-bonding network, and molecular reorientation. At present, each method has its own specific limitations, but all of them enable in situ and operando characterization of electrode/electrolyte interfaces that can provide important insights into a variety of electrochemical systems.

  10. Raman Spectroscopy as an Accurate Probe of Defects in Graphene

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin; Barros, Eduardo; Saito, Riichiro; Dresselhaus, Mildred

    2014-03-01

    Raman Spectroscopy has proved to be an invaluable non-destructive technique that allows us to obtain intrinsic information about graphene. Furthermore, defect-induced Raman features, namely the D and D' bands, have previously been used to assess the purity of graphitic samples. However, quantitative studies of the signatures of the different types of defects on the Raman spectra is still an open problem. Experimental results already suggest that the Raman intensity ratio ID /ID' may allow us to identify the nature of the defects. We study from a theoretical point of view the power and limitations of Raman spectroscopy in the study of defects in graphene. We derive an analytic model that describes the Double Resonance Raman process of disordered graphene samples, and which explicitly shows the role played by both the defect-dependent parameters as well as the experimentally-controlled variables. We compare our model with previous Raman experiments, and use it to guide new ways in which defects in graphene can be accurately probed with Raman spectroscopy. We acknowledge support from NSF grant DMR1004147.

  11. Scanning Probe Microscopy of DNA with a Quartz Tuning Fork

    NASA Astrophysics Data System (ADS)

    King, G. M.; Nunes, G., Jr.

    2001-03-01

    Quartz tuning-forks have recently been put to use as highly sensitive force detectors in atomic force microscopy (AFM).(F.J.Giessibl et al.), Science 289, 422 (2000). In this study we have applied a home-built, tuning-fork based AFM to the investigation of single and double stranded DNA (ssDNA and dsDNA). We operate the microscope in the non-contact mode (typical tip amplitude ~1 nm) with a variety of tips (e.g. Si, Si_3N_4, W). Here we report on recent results showing that the apparent height of plasmid dsDNA on mica substrates depends on both the tip material and imaging frequency shift. This talk will also review our efforts to probe ssDNA with a chemically functionalized tip. Current and future prospects for this dynamic-mode, chemically-sensitive force microscopy technique will be discussed.

  12. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    NASA Astrophysics Data System (ADS)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  13. Probe compensation in cylindrical near-field scanning: A novel simulation methodology

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Rahmat-Samii, Yahya

    1993-01-01

    Probe pattern compensation is essential in near-field scanning geometry, where there is a great need to accurately know far-field patterns at wide angular range. This paper focuses on a novel formulation and computer simulation to determine the precise need for and effect of probe compensation in cylindrical near-field scanning. The methodology is applied to a linear test array antenna and the NASA scatterometer radar antenna. The formulation is based on representing the probe by its equivalent tangential magnetic currents. The interaction between the probe equivalent aperture currents and the test antenna fields is obtained with the application of a reciprocity theorem. This allows us to obtain the probe vector output pickup integral which is proportional to the amplitude and phase of the electric field induced in the probe aperture with respect to its position to the test antenna. The integral is evaluated for each probe position on the required sampling point on a cylindrical near-field surface enclosing the antenna. The use of a hypothetical circular-aperture probe with a different radius permits us to derive closed-form expressions for its far-field radiation patterns. These results, together with the probe vector output pickup, allow us to perform computer simulated synthetic measurements. The far-field patterns of the test antenna are formulated based on cylindrical wave expansions of both the probe and test antenna fields. In the limit as the probe radius becomes very small, the probe vector output is the direct response of the near-field at a point, and no probe compensation is needed. Useful results are generated to compare the far-field pattern of the test antenna constructed from the knowledge of the simulated near-field with and without probe pattern compensation and the exact results. These results are important since they clearly illustrate the angular range over which probe compensation is needed. It has been found that a probe with an aperture

  14. Development of a scanning touch probe with 5-axis measuring functions

    NASA Astrophysics Data System (ADS)

    Chu, Chih-Liang; Lai, Kuan-Wen; Chen, Hung-Chi

    2015-02-01

    The purpose of this study is to develop a five-axis scanning touch probe with high precision and low contact force. The development of scanning touch probe is consisted of three parts: mechanism design, optical path design, and rotation structure design. The mechanism design contains three parts, Z-axis system, XY-axis system, and probe mechanism. The Z-axis system applies the characteristic of the thin sheet spring to move vertically. In the design of XY-axis system, a micro-beam is employed, through which length, width, and thickness of the micro-beam and corresponding dimensions of the leaf spring are designed according to the selected contact force. The freedom degree is limited to three. And the center of the mechanism is equipped with a stylus to inhibit displacement of the Z-axis. The contact between the probe and the work piece only leads to change in the angles of X- and Y-axes, achieving the feature of 2-degree freedom. To enable rapid change for the probes, this study designs a probe mechanism, reliability of which is analyzed and validated with ANSYS software, so that the design of 3-degree freedom mechanism is completed. The sensor has a laser diode to coordinate with Position Sensor Detector (PSD) which works with the optical path designed to measure placement of Z-axis and angle placement of XY-axis. The rotation structure refers to the principle of 5-axis machining design, and the two rotary axes (A- and C-axis) to join the self-developed scanning probe. This design can achieve independent measurements and eliminate the dynamic measurement error that three-axis scanning systems typically have. By validation through an experiment, the three-dimensional scanning touch probe developed by this study has a measuring range of +/-1mm×+/-1mm×1mm, and unidirectional repeatability of 0.6μm.

  15. Development of a micro-CMM with five-axis scanning touch probe

    NASA Astrophysics Data System (ADS)

    Chu, Chih-Liang; Chen, Hung-Chi

    2016-01-01

    The purpose of this study is to develop with low cost, high precision, low contact force micro-CMM that has fiveaxis scanning touch probe. In this study, the measurement performance of the proposed system is enhanced through the use of a rigid aluminum double-arch-bridge structure to support the five-axis scanning touch probe. Furthermore, the reliability of the scanning probe mechanism of three degrees of freedom was analyzed and validated. in addition two axis (A-axis and C-axis) was added on the scanning probe. This design can be achieved independent of measurement, and minimize the dynamic error. In terms of software, a PC-Based controller was integrates five-axis motion systems with the measurement system through a five-axis control card and a data acquisition card. It also completed the functional modules of Set, Manual and Measurement. In the measurement system, we used our own developed coordinate measurement software, with the XYZ platforms system, rotating mechanism and scanning probe to achieve complex surface measurements. The micro-CMM has a working volume the micro-CMM has a working volume of 80×80×40 mm3 , and the overall dimensions is 486 × 486 × 448 mm.

  16. A scanning Hall probe microscope for high resolution, large area, variable height magnetic field imaging.

    PubMed

    Shaw, Gorky; Kramer, R B G; Dempsey, N M; Hasselbach, K

    2016-11-01

    We present a scanning Hall probe microscope operating in ambient conditions. One of the unique features of this microscope is the use of the same stepper motors for both sample positioning as well as scanning, which makes it possible to have a large scan range (few mm) in the x and y directions, with a scan resolution of 0.1 μm. Protocols have been implemented to enable scanning at different heights from the sample surface. The z range is 35 mm. Microstructured Hall probes of size 1-5 μm have been developed. A minimum probe-sample distance <2 μm has been obtained by the combination of new Hall probes and probe-sample distance regulation using a tuning fork based force detection technique. The system is also capable of recording local B(z) profiles. We discuss the application of the microscope for the study of micro-magnet arrays being developed for applications in micro-systems.

  17. A scanning Hall probe microscope for high resolution, large area, variable height magnetic field imaging

    NASA Astrophysics Data System (ADS)

    Shaw, Gorky; Kramer, R. B. G.; Dempsey, N. M.; Hasselbach, K.

    2016-11-01

    We present a scanning Hall probe microscope operating in ambient conditions. One of the unique features of this microscope is the use of the same stepper motors for both sample positioning as well as scanning, which makes it possible to have a large scan range (few mm) in the x and y directions, with a scan resolution of 0.1 μm. Protocols have been implemented to enable scanning at different heights from the sample surface. The z range is 35 mm. Microstructured Hall probes of size 1-5 μm have been developed. A minimum probe-sample distance <2 μm has been obtained by the combination of new Hall probes and probe-sample distance regulation using a tuning fork based force detection technique. The system is also capable of recording local B(z) profiles. We discuss the application of the microscope for the study of micro-magnet arrays being developed for applications in micro-systems.

  18. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy

    DOE PAGES

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; ...

    2015-06-02

    Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through chargemore » injection and electrostatic forces on the tip. In this paper, we will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In conclusion, we apply the developed measurement protocols to an unknown ferroelectric material.« less

  19. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy

    SciTech Connect

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; Herklotz, Andreas; Tselev, Alexander; Eom, Chang-Beom; Kravchenko, Ivan I.; Yu, Pu; Kalinin, Sergei V.

    2015-06-02

    Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through charge injection and electrostatic forces on the tip. In this paper, we will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In conclusion, we apply the developed measurement protocols to an unknown ferroelectric material.

  20. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy.

    PubMed

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; Herklotz, Andreas; Tselev, Alexander; Eom, Chang-Beom; Kravchenko, Ivan I; Yu, Pu; Kalinin, Sergei V

    2015-06-23

    Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through charge injection and electrostatic forces on the tip. We will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In the end, we apply the developed measurement protocols to an unknown ferroelectric material.

  1. Implementation of atomically defined field ion microscopy tips in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Paul, William; Miyahara, Yoichi; Grütter, Peter

    2012-08-01

    The field ion microscope (FIM) can be used to characterize the atomic configuration of the apices of sharp tips. These tips are well suited for scanning probe microscope (SPM) use since they predetermine the SPM resolution and the electronic structure for spectroscopy. A protocol is proposed for preserving the atomic structure of the tip apex from etching due to gas impurities during the period of transfer from the FIM to the SPM, and estimations are made regarding the time limitations of such an experiment due to contamination with ultra-high vacuum rest gases. While avoiding any current setpoint overshoot to preserve the tip integrity, we present results from approaches of atomically defined tungsten tips to the tunneling regime with Au(111), HOPG (highly oriented pyrolytic graphite) and Si(111) surfaces at room temperature. We conclude from these experiments that adatom mobility and physisorbed gas on the sample surface limit the choice of surfaces for which the tip integrity is preserved in tunneling experiments at room temperature. The atomic structure of FIM tip apices is unchanged only after tunneling to the highly reactive Si(111) surface.

  2. Application of Scanning Probe Microscopy to Genetic Analysis

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shigeru; Yoshino, Tomoyuki; Tsukamoto, Kazumi; Sasou, Megumi; Kuwazaki, Seigo; Takahashi, Hirokazu; Suetsugu, Yoshitaka; Narukawa, Junko; Yamamoto, Kimiko; Ohtani, Toshio

    2006-03-01

    We are developing an integrated technique involving of nanometer-size dissection of chromosome fragments by atomic force microscopy (AFM) and direct detection of the location of genome library clones by scanning near-field optical/atomic force microscopy (SNOM/AFM). The locations of nucleus organizer regions (NORs) on barley chromosomes and a bacterial artificial chromosome (BAC) clone were successfully detected by SNOM/AFM. Nanometer-scale dissection of silkworm pachytene chromosomes was also performed by AFM, and we succeeded in three successive dissection events of the chromosome region approximately 250 nm apart from each other. If this type of integrated method can be established in the near future, we will easily obtain the nucleotide sequences with positional information on chromosomes, which lead to a time- and cost-saving genome analysis technique.

  3. Characterization of carbon nanotubes by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Gallagher, Mark J.; Chen, Dong; Jacobsen, Bruce P.; Sarid, Dror; Lamb, Lowell D.; Tinker, Frank A.; Jiao, Jun; Huffman, Donald R.; Seraphin, Supapan; Zhou, Dan

    Carbon nanotubes, fabricated by the Ebbesen-Ajayan method, were imaged using scanning tunneling microscopy (STM) and atomic force microscopy (AFM) in air and were compared to images obtained with high-resolution transmission electron microscopy (HRTEM). The HRTEM images revealed an abundance of elongated structures ranging in diameter from 3.0 to 30 nm, and with lengths of up to 0.8 μm. Many of the structures possessed several graphitic shells as if the tubes were nested one in the other. Reproducible images of the tubular structures, typically 20 nm in diameter and with a large variation in length, were obtained with both STM and AFM when the nanotubes were deposited on hydrogen-terminated Si(111), confirming that the nested structures observed with HRTEM do indeed have a tubular morphology. No single-walled, bare nanotubes or spherical fullerenes (typical of the Krätschmer-Huffman process) were observed.

  4. Characterization of carbon nanotubes by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Gallagher, Mark J.; Chen, Dong; Jacobsen, Bruce P.; Sarid, Dror; Lamb, Lowell D.; Tinker, Frank A.; Jiao, Jun; Huffman, Donald R.; Seraphin, Supapan; Zhou, Dan

    1993-02-01

    Carbon nanotubes, fabricated by the Ebbesen-Ajayan method, were imaged using scanning tunneling microscopy (STM) and atomic force microscopy (AFM) in air and were compared to images obtained with high-resolution transmission electron microscopy (HRTEM). The HRTEM images revealed an abundance of elongated structures ranging in diameter from 3.0 to 30 nm, and with lengths of up to 0.8 μm. Many of the structures possessed several graphitic shells as if the tubes were nested one in the other. Reproducible images of the tubular structures, typically 20 nm in diameter and with a large variation in length, were obtained with both STM and AFM when the nanotubes were deposited on hydrogen-terminated Si(111), confirming that the nested structures observed with HRTEM do indeed have a tubular morphology. No single-walled, bare nanotubes or spherical fullerenes (typical of the Krätschmer-Huffman process) were observed.

  5. Microbial Nanowire Electronic Structure Probed by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Veazey, Joshua P.; Lampa-Pastirk, Sanela; Reguera, Gemma; Tessmer, Stuart H.

    2010-03-01

    Complex molecules produced by living organisms provide laboratories for interesting physical properties. The study of such interesting physics, likewise, gives new insight into intriguing biological processes. We have studied the pilus nanowires expressed by the bacterium, Geobacter sulfurreducens, using high resolution scanning tunneling microscopy (STM). G. sulfurreducens is a metal reducing bacterium that has evolved electrically conductive pili to efficiently transfer electrons across large distances.footnotetextG. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, and D.R. Lovley, Nature 435, 1098 (2005) Here we employ the electronic sensitivity of STM to resolve the molecular substructure and the local electronic density of states (LDOS) along the nanowire, in an effort to elucidate the mechanism of conduction. We observe LDOS dependent upon the location of the tip above the nanowire.

  6. Piezoelectric tuning fork probe for atomic force microscopy imaging and specific recognition force spectroscopy of an enzyme and its ligand.

    PubMed

    Makky, Ali; Viel, Pascal; Chen, Shu-wen Wendy; Berthelot, Thomas; Pellequer, Jean-Luc; Polesel-Maris, Jérôme

    2013-11-01

    Piezoelectric quartz tuning fork has drawn the attention of many researchers for the development of new atomic force microscopy (AFM) self-sensing probes. However, only few works have been done for soft biological materials imaging in air or aqueous conditions. The aim of this work was to demonstrate the efficiency of the AFM tuning fork probe to perform high-resolution imaging of proteins and to study the specific interaction between a ligand and its receptor in aqueous media. Thus, a new kind of self-sensing AFM sensor was introduced to realize imaging and biochemical specific recognition spectroscopy of glucose oxidase enzyme using a new chemical functionalization procedure of the metallic tips based on the electrochemical reduction of diazonium salt. This scanning probe as well as the functionalization strategy proved to be efficient respectively for the topography and force spectroscopy of soft biological materials in buffer conditions.

  7. Nondestructive evaluation of composite materials via scanning laser ultrasound spectroscopy

    NASA Astrophysics Data System (ADS)

    Koskelo, Elise Anne C.; Flynn, Eric B.

    2017-04-01

    Composite materials pose a complex problem for ultrasonic nondestructive evaluation due to their unique material properties, greater damping, and often complicated geometry. In this study, we explored acoustic wavenumber spectroscopy (AWS) as a means of rapid inspection of laminate and honeycomb composites. Each aerospace sample was tested at different ultrasonic frequencies using steady-state excitation via a piezo electric actuator. We measured the velocity response of the composite at each pixel via a raster scan using a laser Doppler vibrometer. We were able to detect radial inserts along corners, delamination, and facing-core separation by analyzing local amplitude and wavenumber responses. For each honeycomb composite, we excited the sample at the first resonant frequency of the individual cells. The local mode shape for each cell was extracted from the local amplitude response. Analyzing local amplitude and phase responses for each cell provided an accurate indication as to the presence, size, shape, and type of defect present in the composite. We detected both delamination and deformation of cells within a honeycomb composite. For the laminar composites, we analyzed the non-resonance steady-state response at several excitation frequencies.

  8. Spin excitations and correlations in scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Ternes, Markus

    2015-06-01

    In recent years inelastic spin-flip spectroscopy using a low-temperature scanning tunneling microscope has been a very successful tool for studying not only individual spins but also complex coupled systems. When these systems interact with the electrons of the supporting substrate correlated many-particle states can emerge, making them ideal prototypical quantum systems. The spin systems, which can be constructed by arranging individual atoms on appropriate surfaces or embedded in synthesized molecular structures, can reveal very rich spectral features. Up to now the spectral complexity has only been partly described. This manuscript shows that perturbation theory enables one to describe the tunneling transport, reproducing the differential conductance with surprisingly high accuracy. Well established scattering models, which include Kondo-like spin-spin and potential interactions, are expanded to enable calculation of arbitrary complex spin systems in reasonable time scale and the extraction of important physical properties. The emergence of correlations between spins and, in particular, between the localized spins and the supporting bath electrons are discussed and related to experimentally tunable parameters. These results might stimulate new experiments by providing experimentalists with an easily applicable modeling tool.

  9. The Scanning Mass Spectrometry Probe: A Scanning Probe Electrospray Ion Source for Imaging Mass Spectrometry of Submerged Interfaces and Transient Events in Solution

    PubMed Central

    Kottke, Peter A.; Degertekin, F. Levent; Fedorov, Andrei G.

    2009-01-01

    The scanning mass spectrometry (SMS) probe is new electrospray ion source. Motivated by the need for untargeted chemical imaging of dynamic events in solution, we have exploited an approach to electrospray ionization (ESI) that allows continuous sampling from a highly localized volume (~picoliters) in a liquid environment, softly ionizes molecules in the sample to render them amenable for mass spectrometric analysis, and sends the ions to the mass spectrometer. The key underlying concepts for our approach are1)Treating the electrospray capillary inlet as a chemical scanning probe, and2)Locating the electrospray point as close as possible to the sampling point, thus providing the shortest response time possible. This approach enables chemical monitoring or imaging of submerged interfaces, providing access to details of spatial heterogeneity and temporal changes within liquid samples. It also permits direct access to liquid/ liquid interfaces for ESI-MS analysis. In this Letter we report the first demonstrations of these capabilities of the SMS probe, and describe some of the probe's basic characteristics. PMID:19904914

  10. pn-Junction Delineation in Si Devices Using Scanning Capacitance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwards, Hal

    2000-03-01

    The scanning capacitance microscope (SCM) is a carrier-sensitive imaging tool based upon the well-known scanning-probe microscope (SPM). Scanning capacitance spectroscopy (SCS) is a new way to utilize an SCM to delineate pn junctions in Si devices. SCS produces two-dimensional pn-junction maps that show features as small as 10 nm. SCS also provides an estimate of the pn-junction depletion width and hence the doping level near the pn junction. We report SCS measurements of deep-submicron field-effect transistors, showing the source-drain extender profile. We show SCM and SCS data in a failure-analysis application, in which we determined the cause of a leaky field-effect transistor. SCM and SCS are powerful tools for Si bipolar transistors, in which the doping-related structures are quite complex. We show microscopic evidence of the narrow-emitter effect, and image the width of the pn junction to explain an electric field-induced hot-carrier reliability issue. We show a comparison of top-view and cross-sectional SCS measurements of nwell-nwell shallow-trench isolation structures, to reveal the effects of photoresist scumming in sub-design-rule isolation widths. We show initial results on a method to delineate constant-potential contours within the depletion region. We discuss the limits to our present understanding of SCM and SCS and some potential sources of error.

  11. pn-junction delineation in Si devices using scanning capacitance spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwards, Hal; Ukraintsev, Vladimir A.; San Martin, Richard; Johnson, F. Scott; Menz, Philip; Walsh, Shawn; Ashburn, Stan; Wills, K. Scott; Harvey, Ken; Chang, Mi-Chang

    2000-02-01

    The scanning capacitance microscope (SCM) is a carrier-sensitive imaging tool based upon the well-known scanning-probe microscope (SPM). As reported in Edwards et al. [Appl. Phys. Lett. 72, 698 (1998)], scanning capacitance spectroscopy (SCS) is a new data-taking method employing an SCM. SCS produces a two-dimensional map of the electrical pn junctions in a Si device and also provides an estimate of the depletion width. In this article, we report a series of microelectronics applications of SCS in which we image submicron transistors, Si bipolar transistors, and shallow-trench isolation structures. We describe two failure-analysis applications involving submicron transistors and shallow-trench isolation. We show a process-development application in which SCS provides microscopic evidence of the physical origins of the narrow-emitter effect in Si bipolar transistors. We image the depletion width in a Si bipolar transistor to explain an electric field-induced hot-carrier reliability failure. We show two sample geometries that can be used to examine different device properties.

  12. Electrically induced microflows probed by fluorescence correlation spectroscopy.

    PubMed

    Ybert, C; Nadal, F; Salomé, R; Argoul, F; Bourdieu, L

    2005-03-01

    We report on the experimental characterisation of electrically induced flows at the micrometer scale through Fluorescence Correlation Spectroscopy (FCS) measurements. We stress the potential of FCS as a useful characterisation technique in microfluidics devices for transport properties cartography. The experimental results obtained in a model situation are in agreement with previous calculations (F. Nadal, F. Argoul, P. Kestener, B. Pouligny, C. Ybert, A. Ajdari, Eur. Phys. J. E 9, 387 (2002)) predicting the structure and electric-field dependency of the induced flow. Additionally, the present study evidences a complex behaviour of the probe nanobeads under electric field whose precise understanding might prove relevant for situations where nano-objects interact with an external electric field.

  13. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    SciTech Connect

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet

    2014-02-18

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing.

  14. Artifact mitigation of ptychography integrated with on-the-fly scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojing; Yan, Hanfei; Ge, Mingyuan; Öztürk, Hande; Nazaretski, Evgeny; Robinson, Ian K.; Chu, Yong S.

    2017-07-01

    We report our experiences with conducting ptychography simultaneously with the X-ray fluorescence measurement using the on-the-fly mode for efficient multi-modality imaging. We demonstrate that the periodic artifact inherent to the raster scan pattern can be mitigated using a sufficiently fine scan step size to provide an overlap ratio of >70%. This allows us to obtain transmitted phase contrast images with enhanced spatial resolution from ptychography while maintaining the fluorescence imaging with continuous-motion scans on pixelated grids. This capability will greatly improve the competence and throughput of scanning probe X-ray microscopy.

  15. Artifact mitigation of ptychography integrated with on-the-fly scanning probe microscopy

    DOE PAGES

    Huang, Xiaojing; Yan, Hanfei; Ge, Mingyuan; ...

    2017-07-11

    In this paper, we report our experiences with conducting ptychography simultaneously with the X-ray fluorescence measurement using the on-the-fly mode for efficient multi-modality imaging. We demonstrate that the periodic artifact inherent to the raster scan pattern can be mitigated using a sufficiently fine scan step size to provide an overlap ratio of >70%. This allows us to obtain transmitted phase contrast images with enhanced spatial resolution from ptychography while maintaining the fluorescence imaging with continuous-motion scans on pixelated grids. Lastly, this capability will greatly improve the competence and throughput of scanning probe X-ray microscopy.

  16. Hollow Cathode and Keeper-region Plasma Measurements Using Ultra-fast Miniature Scanning Probes

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Jameson, Kristina K.; Watkins, Ron M.; Katz, Ira

    2004-01-01

    In order to support the development of comprehensive performance and life models for future deep space missions that will utilize ion thrusters, we have undertaken a study of the plasma structure in hollow cathodes using an new pneumatic scanning probe diagnostic. This device is designed to insert a miniature probe directly into the hollow cathode orifice from either the upstream insert region in the interior of the hollow cathode, or from the downstream keeper-plasma region at the exit of the hollow cathode, to provide complete axial profiles of the discharge plasma parameters. Previous attempts to diagnose this region with probes was Limited by the melting of small probes in the intense discharge near the orifice, or caused significant perturbation of the plasma by probes large enough to survive. Our new probe is extremely compact, and when configured as a single Langmuir probe, the ceramic tube insulator is only 0.5mm in diameter and the current collecting conductor has a total area of 0.002 cm2. A series of current-voltage characteristics are obtained by applying a rapid sawtooth voltage waveform to the probe as it is scanned by the pneumatic actuator into and out of the plasma region, The bellow-sealed pneumatic drive scans the probe 4 cm in the cathode insert region and 10 cm in the anode/keeper plasmas region at average speeds of about 1 mm/msec, and the residence time at the end of the insertion stroke in the densest part of the plasma near the orifice is measured to be only 10 msec. Since the voltage sweep time is fast compared to the motion of the probe, axial profiles of the plasma density, temperature and potential with reasonable spatial resolution are obtained. Measurements of the internal cathode pressures and the axial plasma-parameter profiles for a hollow cathode operating at discharge currents of up to 35 A in xenon will be presented.

  17. Nanoelectrical probing with multiprobe SPM Systems compatible with scanning electron microscopes

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Ignatov, Andrey; Taha, Hesham; Zhinoviev, Oleg; Komissar, Anatoly; Krol, Alexander; Lewis, David

    2011-03-01

    A scanning electron microscope compatible platform that permits multiprobe atomic force microscopy based nanoelectrical characterization will be described. To achieve such multiple parameter nanocharacterization with scanning electron microscope compatibility involves a number of innovations both in instrument and probe design. This presentation will focus on how these advances were achieved and the results obtained with such instrumentation on electrical nano-characterization and electrical nano-manipulation. The advances include: 1. Specialized scanners; 2. An ultrasensitive feedback mechanism based on tuning forks with no optical feedback interference that can induce carriers in semiconductor devices; and 3. Unique probes compatible with multiprobe geometries in which the probe tips can be brought into physical contact with one another. Experiments will be described with such systems that will include multiprobe electrical measurements with metal and glass coated coaxial nanowires of platinum. This combination of scanning electron microscopes integrated with multiprobe instrumentation allows for important applications not available today in the field of semiconductor processing technology.

  18. Multi-scale Imaging of Cellular and Sub-cellular Structures using Scanning Probe Recognition Microscopy.

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Rice, A. F.

    2005-03-01

    Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).

  19. Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies.

    PubMed

    Ryu, Yu Kyoung; Chiesa, Marco; Garcia, Ricardo

    2013-08-09

    Silicon nanowire (SiNW) field-effect transistors have been fabricated by oxidation scanning probes and electron beam lithographies. The analysis and comparison of the electron mobility and subthreshold swing shows that the device performance is not affected by the top-down fabrication method. The two methods produce silicon nanowire transistors with similar electrical features, although oxidation scanning probe lithography generates nanowires with smaller channel widths. The values of the electron mobility and the subthreshold swing, 200 cm(2) V(-1) s(-1) and 500 mV dec(-1), respectively, are similar to those obtained from bottom-up methods. The compatibility of top-down methods with CMOS (complementary metal-oxide-semiconductor) procedures, the good electrical properties of the nanowire devices and the potential for making sub-10 nanowires, in particular by using oxidation scanning probe lithography, make those methods attractive for device fabrication.

  20. Electromechanical Detection in Scanning Probe Microscopy: Tip Models and Materials Contrast

    SciTech Connect

    Eliseev, E. A.; Kalinin, Sergei V; Jesse, Stephen; Bravina, S. L.; Morozovska, A. N.

    2007-01-01

    The rapid development of nanoscience and nanotechnology in the last two decades was stimulated by the emergence of scanning probe microscopy techniques capable of accessing local material properties, including transport, mechanical, and electromechanical behaviors, on the nanoscale. Here, we analyze the general principles of electromechanical probing by piezoresponse force microscopy (PFM), a scanning probe technique applicable to a broad range of piezoelectric and ferroelectric materials. The relationship between vertical and lateral PFM signals and material properties is derived analytically for two cases: transversally isotropic piezoelectric materials in the limit of weak elastic anisotropy, and anisotropic piezoelectric materials in the limit of weak elastic and dielectric anisotropies. The integral representations for PFM response for fully anisotropic material are also obtained. The image formation mechanism for conventional (e.g., sphere and cone) and multipole tips corresponding to emerging shielded and strip-line-type probes is analyzed. Possible applications for orientation imaging on the nanoscale and molecular resolution imaging are discussed.

  1. Resolving 2D Amorphous Materials with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim

    Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.

  2. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  3. Steady-state spectroscopy of new biological probes

    NASA Astrophysics Data System (ADS)

    Abou-Zied, Osama K.

    2007-02-01

    The steady state absorption and fluorescence spectroscopy of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and (2,2'-bipyridine)-3,3'-diol (BP(OH) II) were studied here free in solution and in human serum albumin (HSA) in order to test their applicability as new biological probes. HBO and BP(OH) II are known to undergo intramolecular proton transfers in the excited state. Their absorption and fluorescence spectra are sensitive to environmental change from hydrophilic to hydrophobic, thus allowing the opportunity to use them as environment-sensitive probes. The effect of water on the steady state spectra of the two molecules also shows unique features which may position them as water sensors in biological systems. For HBO in buffer, fluorescence is only due to the syn-keto tautomer, whereas in HSA the fluorescence is due to four species in equilibrium in the excited state (the syn-keto tautomer, the anti-enol tautomer, the solvated syn-enol tautomer, and the anion species of HBO). Analysis of the fluorescence spectra of HBO in HSA indicates that HBO is exposed to less water in the HBO:HSA complex. For the BP(OH) II molecule, unique absorption due to water was observed in the spectral region of 400-450 nm. This absorption decreases in the presence of HSA due to less accessibility to water as a result of binding to HSA. Fluorescence of BP(OH) II is due solely to the di-keto tautomer after double proton transfer in the excited state. The fluorescence peak of BP(OH) II shows a red-shift upon HSA recognition which is attributed to the hydrophobic environment inside the binding site of HSA. We discuss also the effect of probe-inclusion inside well-defined hydrophobic cavities of cyclodextrins.

  4. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    DOE PAGES

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; ...

    2016-04-21

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. Our short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. In this discussion we present the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  5. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    SciTech Connect

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-04-21

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. Our short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. In this discussion we present the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  6. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    PubMed Central

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-01-01

    Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  7. Aqueous hydrogen bonding probed with polarization and matrix isolation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shultz, Mary Jane; Bisson, Patrick; Buch, Victoria; Groenzin, Henning; Li, Irene

    2010-05-01

    A major challenge in hydrogen-bond research is interpreting the vibrational spectrum of water, arguably the most fundamental hydrogen bonding system. This challenge remains despite over a half century of progress in vibrational spectroscopy, largely due to a combination of the huge oscillator strength and the enormous width of the hydrogen-bond region. Lack of assignment of the resonances in the hydrogen-bond region hinders investigation of interactions between water and solutes. This lack-of-interpretation issue is an even more significant problem for studies of the aqueous interface. Numerous solutes are known to have an effect, some very dramatic, on the shape of the surface spectrum. These effects, however, are but tantalizing teasers because lack of interpretation means that the changes cannot be used to diagnose the effect of solutes or impinging gas-phase molecules on the surface. In the reported work two techniques are used to probe the origin of vibrational resonances in the H-bonded region: the surface sensitive technique sum frequency generation (SFG) and room-temperature matrix isolation spectroscopy (RT-MIS). A polarization technique called polarization angle null (PAN) has been developed that extends SFG and enables identification of resonances. The result of applying PAN-SFG to single crystal, I h ice is identification of at least nine underlying resonances and assignment of two of these. One resonance is correlated with the crystal temperature and is a sensitive probe for interactions that disrupt long range order on the surface - it is a morphology reporter. The second is associated with weakly bonded, double-donor water molecules. This resonance is sensitive to interaction of hydrogen bond donors, i.e. acids, with the surface. Both modes are more correctly pictured as collective modes. These two assignments are the first definitive assignments in the hydrogen-bond region for the aqueous surface. The effect of salts on the vibrational spectrum of

  8. Efficient electrochemical etching method to fabricate sharp metallic tips for scanning probe microscopes

    SciTech Connect

    Kim, Pilkyu; Kim, Jun Ho; Jeong, Mun Seok; Ko, Do-Kyeong; Lee, Jongmin; Jeong, Sungho

    2006-10-15

    A new technique based on electrochemical etching for the fabrication of sharp metallic tips for scanning probe microscopes is introduced. In the proposed method, a small Teflon mass is attached to the end of an immersed tungsten wire using an aluminum tape, which leads to a significant enhancement of yield rate of sharp tungsten tips with an apex size below 100 nm to over 60%. The functionality of the tungsten tips fabricated by the proposed method is verified by measuring the topography of a standard sample using a shear-force scanning probe microscope.

  9. Development of a scanning surface probe for nanoscale tip-enhanced desorption/ablation

    NASA Astrophysics Data System (ADS)

    Meyer, Kent A.; Ovchinnikova, Olga; Ng, Kin; Goeringer, Douglas E.

    2008-12-01

    We report on the development of a versatile scanning apparatus for nanoscale surface sampling that utilizes the interaction of laser radiation at a sharp probe tip to effect desorption/ablation on opaque substrates. The process, which currently yields surface craters as small as ˜50 nm diameter×5 nm deep, has been demonstrated with both metal-coated and bare silicon tips. Desorption/ablation under the tip occurs at illumination intensities below the corresponding optical far-field threshold, suggesting that the latter process should not degrade the spatial resolution attainable for proposed chemical imaging methods based on the scanning surface probe.

  10. Detection of Luminescent Nanodiamonds Using a Scanning Near-Field Optical Microscope with an Aperture Probe

    NASA Astrophysics Data System (ADS)

    Shershulin, V. A.; Samoylenko, S. R.; Shenderova, O. A.; Vlasov, I. I.; Konov, V. I.

    2016-09-01

    Scanning near-fi eld optical microscopy (SNOM) with an aperture probe has been used to map the luminescence of isolated submicron diamond crystallites. 532-nm laser light was used to excite luminescence of nitrogen-vacancy (NV) centers. The sizes of the analyzed diamond crystallites were determined with an atomic-force microscope. The optical resolution for the lateral dimensions of the luminescing diamond crystallites was doubled on going from confocal luminescence microscopy to scanning near-fi eld optical microscopy with a 290-nm probe aperture diameter.

  11. WSXM: a software for scanning probe microscopy and a tool for nanotechnology.

    PubMed

    Horcas, I; Fernández, R; Gómez-Rodríguez, J M; Colchero, J; Gómez-Herrero, J; Baro, A M

    2007-01-01

    In this work we briefly describe the most relevant features of WSXM, a freeware scanning probe microscopy software based on MS-Windows. The article is structured in three different sections: The introduction is a perspective on the importance of software on scanning probe microscopy. The second section is devoted to describe the general structure of the application; in this section the capabilities of WSXM to read third party files are stressed. Finally, a detailed discussion of some relevant procedures of the software is carried out.

  12. Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter.

    PubMed

    Munce, Nigel R; Mariampillai, Adrian; Standish, Beau A; Pop, Mihaela; Anderson, Kevan J; Liu, George Y; Luk, Tim; Courtney, Brian K; Wright, Graham A; Vitkin, I Alex; Yang, Victor X D

    2008-04-01

    A novel flexible scanning optical probe is constructed with a finely etched optical fiber strung through a platinum coil in the lumen of a dissipative polymer. The packaged probe is 2.2 mm in diameter with a rigid length of 6mm when using a ball lens or 12 mm when scanning the fiber proximal to a gradient-index (GRIN) lens. Driven by constant high voltage (1-3 kV) at low current (< 5 microA), the probe oscillates to provide wide forward-viewing angle (13 degrees and 33 degrees with ball and GRIN lens designs, respectively) and high-frame-rate (10-140 fps) operation. Motion of the probe tip is observed with a high-speed camera and compared with theory. Optical coherence tomography (OCT) imaging with the probe is demonstrated with a wavelength-swept source laser. Images of an IR card as well as in vivo Doppler OCT images of a tadpole heart are presented. This optomechanical design offers a simple, inexpensive method to obtain a high-frame-rate forward-viewing scanning probe.

  13. RTSPM: real-time Linux control software for scanning probe microscopy.

    PubMed

    Chandrasekhar, V; Mehta, M M

    2013-01-01

    Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.

  14. Apertureless scanning microscope probe as a detector of semiconductor laser emission

    SciTech Connect

    Dunaevskiy, Mikhail; Dontsov, Anton; Monakhov, Andrei; Alekseev, Prokhor; Titkov, Alexander; Baranov, Alexei; Girard, Paul; Arinero, Richard; Teissier, Roland

    2015-04-27

    An operating semiconductor laser has been studied using a scanning probe microscope. A shift of the resonance frequency of probe that is due to its heating by laser radiation has been analyzed. The observed shift is proportional to the absorbed radiation and can be used to measure the laser near field or its output power. A periodical dependence of the measured signal has been observed as a function of distance between the probe and the surface of the laser due to the interference of the outgoing and cantilever-reflected waves. Due to the multiple reflections resulting in the interference, the light absorption by the probe cantilever is greatly enhanced compared with a single pass case. Interaction of infrared emission of a diode laser with different probes has been studied.

  15. Study on the SPR responses of various DNA probe concentrations by parallel scan spectral SPR imaging

    NASA Astrophysics Data System (ADS)

    Ma, Suihua; Liu, Le; Lu, Weiping; Zhang, Yaou; He, Yonghong; Guo, Jihua

    2008-12-01

    SPR sensors have become a high sensitive and label free method for characterizing and quantifying chemical and biochemical interactions. However, the relations between the SPR refractive index response and the property (such as concentrations) of biochemical probes are still lacking. In this paper, an experimental study on the SPR responses of varies concentrations of Legionella pneumophila mip DNA probes is presented. We developed a novel two-dimensional SPR sensing technique-parallel scan spectral SPR imaging-to detect an array of mip gene probes. This technique offers quantitative refractive index information with a high sensing throughput. By detecting mip DNA probes with different concentrations, we obtained the relations between the SPR refractive index response and the concentrations of mip DNA probes. These results are valuable for design and developing SPR based mip gene biochips.

  16. High-spatial-resolution scanning capacitance microscope using all-metal probe with quartz tuning fork

    NASA Astrophysics Data System (ADS)

    Naitou, Yuichi; Ookubo, Norio

    2004-09-01

    The scanning capacitance microscope (SCM) reported here uses a frequency modulation (FM) technique to control the distance between the sample and an all-metal probe. The probe was attached to a quartz tuning fork in a configuration minimizing the perturbation due to the probe. The FM-SCM yields two images of ∂C/∂V and ∂C/∂Z signals, where C is capacitance sensed by the probe, Z the probe-sample distance, and V a bias voltage, respectively. On a cross section of a field effect transistor, the two-dimensional p -n junction locus was observed with a spatial resolution better than 5nm in the ∂C/∂V image. The ∂C/∂Z images of polysilicon gate electrodes and highly doped source/drain regions have higher contrast than the ∂C/∂V images.

  17. Scanning Probe Surface Modification: Chemical Conversion of Terminal Functional Groups on Organosilane Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Sugimura, Hiroyuki; Saito, Nagahiro; Hayashi, Kazuyuki; Maeda, Noriya; Takai, Osamu

    2003-12-01

    Minute patterns have been fabricated on organosilane self-assembled monolayers (SAMs) based on scanning probe surface modification. An SAM was prepared on Si substrates from an organosilane precursor. First, using an atomic force microscope (AFM) with a conductive probe, current was injected from the probe into the SAM-covered Si substrate so that the SAM was locally degraded at the probe-contacting point. The patterning could be conducted in air while, in vacuum at the order of 10-6 Torr, or in an atmosphere purged with nitrogen, no detectable patterns were fabricated. The presence of adsorbed water at the probe/sample junction was confirmed to be crucial for the patterning of the SAM/Si. Its mechanism was, thus, ascribed to electrochemical reactions of the SAM with adsorbed water. Furthermore, we demonstrated the chemical conversion of terminal functional groups on the SAM by the current injecting AFM. The results were confirmed through surface potential imaging by Kelvin probe force microscopy and a chemical labeling method. An SAM terminated with -CH3 groups was found to be converted to a COOH-terminated SAM due to anodic oxidation. The tip-induced electrochemical reduction from -NO to -NH2 was successfully conducted as well. Both the oxidation and reduction reactions have been shown applicable to scanning probe surface modification.

  18. Gwyscan: a library to support non-equidistant scanning probe microscope measurements

    NASA Astrophysics Data System (ADS)

    Klapetek, Petr; Yacoot, Andrew; Grolich, Petr; Valtr, Miroslav; Nečas, David

    2017-03-01

    We present a software library and related methodology for enabling easy integration of adaptive step (non-equidistant) scanning techniques into metrological scanning probe microscopes or scanning probe microscopes where individual x, y position data are recorded during measurements. Scanning with adaptive steps can reduce the amount of data collected in SPM measurements thereby leading to faster data acquisition, a smaller amount of data collection required for a specific analytical task and less sensitivity to mechanical and thermal drift. Implementation of adaptive scanning routines into a custom built microscope is not normally an easy task: regular data are much easier to handle for previewing (e.g. levelling) and storage. We present an environment to make implementation of adaptive scanning easier for an instrument developer, specifically taking into account data acquisition approaches that are used in high accuracy microscopes as those developed by National Metrology Institutes. This includes a library with algorithms written in C and LabVIEW for handling data storage, regular mesh preview generation and planning the scan path on basis of different assumptions. A set of modules for Gwyddion open source software for handling these data and for their further analysis is presented. Using this combination of data acquisition and processing tools one can implement adaptive scanning in a relatively easy way into an instrument that was previously measuring on a regular grid. The performance of the presented approach is shown and general non-equidistant data processing steps are discussed.

  19. Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.

    PubMed

    Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro

    2014-12-01

    We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature.

  20. Cyclic Voltammetry Probe Approach Curves with Alkali Amalgams at Mercury Sphere-Cap Scanning Electrochemical Microscopy Probes.

    PubMed

    Barton, Zachary J; Rodríguez-López, Joaquín

    2017-03-07

    We report a method of precisely positioning a Hg-based ultramicroelectrode (UME) for scanning electrochemical microscopy (SECM) investigations of any substrate. Hg-based probes are capable of performing amalgamation reactions with metal cations, which avoid unwanted side reactions and positive feedback mechanisms that can prove problematic for traditional probe positioning methods. However, prolonged collection of ions eventually leads to saturation of the amalgam accompanied by irreversible loss of Hg. In order to obtain negative feedback positioning control without risking damage to the SECM probe, we implement cyclic voltammetry probe approach surfaces (CV-PASs), consisting of CVs performed between incremental motor movements. The amalgamation current, peak stripping current, and integrated stripping charge extracted from a shared CV-PAS give three distinct probe approach curves (CV-PACs), which can be used to determine the tip-substrate gap to within 1% of the probe radius. Using finite element simulations, we establish a new protocol for fitting any CV-PAC and demonstrate its validity with experimental results for sodium and potassium ions in propylene carbonate by obtaining over 3 orders of magnitude greater accuracy and more than 20-fold greater precision than existing methods. Considering the timescales of diffusion and amalgam saturation, we also present limiting conditions for obtaining and fitting CV-PAC data. The ion-specific signals isolated in CV-PACs allow precise and accurate positioning of Hg-based SECM probes over any sample and enable the deployment of CV-PAS SECM as an analytical tool for traditionally challenging conditions.

  1. Differentiation of surface and bulk conductivities in topological insulator via four-probe spectroscopy

    SciTech Connect

    Zhang, Xiaoguang; McGuire, Michael A.; Chen, Yong P.; Li, An -Ping; Durand, Corentin; Hus, Saban M.; Ma, Chuanxu; Hu, Yang; Cao, Helin; Miotkowski, Ireneusz

    2016-03-08

    Topological insulators, with characteristic topological surface states, have emerged as a new state of matter with rich potentials for both fundamental physics and device applications. However, the experimental detection of the surface transport has been hampered by the unavoidable extrinsic conductivity associated with the bulk crystals. Here we show that a four-probe transport spectroscopy in a multi-probe scanning tunneling microscopy system can be used to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators. We derive a scaling relation of measured resistance with respect to varying inter-probe spacing for two interconnected conduction channels, which allows quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi2Se3, Bi2Te2Se, and Sb-doped Bi2Se3 with that of a pure 2D conductance of graphene on SiC substrate. We also report the 2D conductance enhancement due to the surface doping effect in topological insulators. This technique can be applied to reveal 2D to 3D crossover of conductance in other complex systems.

  2. Differentiation of surface and bulk conductivities in topological insulator via four-probe spectroscopy

    DOE PAGES

    Zhang, Xiaoguang; McGuire, Michael A.; Chen, Yong P.; ...

    2016-03-08

    Topological insulators, with characteristic topological surface states, have emerged as a new state of matter with rich potentials for both fundamental physics and device applications. However, the experimental detection of the surface transport has been hampered by the unavoidable extrinsic conductivity associated with the bulk crystals. Here we show that a four-probe transport spectroscopy in a multi-probe scanning tunneling microscopy system can be used to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators. We derive a scaling relation of measured resistance with respect to varying inter-probe spacing for two interconnected conduction channels, which allowsmore » quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi2Se3, Bi2Te2Se, and Sb-doped Bi2Se3 with that of a pure 2D conductance of graphene on SiC substrate. We also report the 2D conductance enhancement due to the surface doping effect in topological insulators. This technique can be applied to reveal 2D to 3D crossover of conductance in other complex systems.« less

  3. Differentiation of surface and bulk conductivities in topological insulator via four-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, An-Ping; Durand, Corentin; Hus, Saban; Zhang, Xiaoguang; McGuire, Michael; Chen, Yong

    The direct measurement of the topological surface states (TSS) conductivity is often hard to achieve due to the pronounced contribution from the bulk conduction channel. Here, we show a new method to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators (TI) using a four-probe transport spectroscopy in a multi-probe scanning tunneling microscopy system. In contrast to conventional models that assume two resistors in parallel to count for both the TSS and bulk conductance channels, we derive a scaling relation of measured resistance with respect to varying inter-probe spacing for two interconnected conduction channels, which allows quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in TI by comparing the conductance scaling of Bi2Se3, Bi2Te2Se, and Sb-doped Bi2Se3 with that of a pure 2D conductance of graphene on SiC substrate. We also quantitatively show the effect of surface doping carriers on the 2D conductance enhancement in TI. The method offers an approach to understanding not just the topological insulators but also the 2D to 3D crossover of conductance in other complex systems. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  4. Interactions between two C60 molecules measured by scanning probe microscopies

    NASA Astrophysics Data System (ADS)

    Hauptmann, Nadine; González, César; Mohn, Fabian; Gross, Leo; Meyer, Gerhard; Berndt, Richard

    2015-11-01

    {{{C}}}60-functionalized tips are used to probe {{{C}}}60 molecules on Cu(111) with scanning tunneling and atomic force microscopy. Distinct and complex intramolecular contrasts are found. Maximal attractive forces are observed when for both molecules a [6,6] bond faces a hexagon of the other molecule. Density functional theory calculations including parameterized van der Waals interactions corroborate the observations.

  5. Multi-objective optimal design of high frequency probe for scanning ion conductance microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Renfei; Zhuang, Jian; Ma, Li; Li, Fei; Yu, Dehong

    2016-01-01

    Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based hopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To further improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.

  6. Scanning hall probe microscopy of AC losses in YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Dinner, Rafael; Daniels, George; Larbalestier, David; Gibbons, Brady; Matias, Vladimir; Moler, Kathryn; Beasley, Malcolm

    2005-03-01

    Magnetic imaging of current-induced vortex movement in superconducting films yields detailed information about dissipation and the path of an applied current. In our large-area scanning hall probe microscope, a flow cryostat cools a sample while a micro-Hall probe is rastered near its surface using a 3-axis stepper-motor-based stage with submicron resolution and centimeter scan range. Hall probe time traces taken at each point are assembled into movies of the flux penetration as a function of time over a cycle of AC sample current. YBCO films grown on several substrates are examined, including bicrystal substrates that induce a single grain boundary across the current path and metal tapes that give rise to a grain boundary network. An extended Bean model allows us to extract pinning forces and critical currents of the intragrain film and its grain boundaries.

  7. Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes

    NASA Astrophysics Data System (ADS)

    Austwick, Martin R.; Clark, Benjamin; Mosse, Charles A.; Johnson, Kristie; Chicken, D. Wayne; Somasundaram, Santosh K.; Calabro, Katherine W.; Zhu, Ying; Falzon, Mary; Kocjan, Gabrijela; Fearn, Tom; Bown, Stephen G.; Bigio, Irving J.; Keshtgar, Mohammed R. S.

    2010-07-01

    A novel method for rapidly detecting metastatic breast cancer within excised sentinel lymph node(s) of the axilla is presented. Elastic scattering spectroscopy (ESS) is a point-contact technique that collects broadband optical spectra sensitive to absorption and scattering within the tissue. A statistical discrimination algorithm was generated from a training set of nearly 3000 clinical spectra and used to test clinical spectra collected from an independent set of nodes. Freshly excised nodes were bivalved and mounted under a fiber-optic plate. Stepper motors raster-scanned a fiber-optic probe over the plate to interrogate the node's cut surface, creating a 20×20 grid of spectra. These spectra were analyzed to create a map of cancer risk across the node surface. Rules were developed to convert these maps to a prediction for the presence of cancer in the node. Using these analyses, a leave-one-out cross-validation to optimize discrimination parameters on 128 scanned nodes gave a sensitivity of 69% for detection of clinically relevant metastases (71% for macrometastases) and a specificity of 96%, comparable to literature results for touch imprint cytology, a standard technique for intraoperative diagnosis. ESS has the advantage of not requiring a pathologist to review the tissue sample.

  8. Scanning Tunneling Spectroscopy on InAs–GaSb Esaki Diode Nanowire Devices during Operation

    PubMed Central

    2015-01-01

    Using a scanning tunneling and atomic force microscope combined with in-vacuum atomic hydrogen cleaning we demonstrate stable scanning tunneling spectroscopy (STS) with nanoscale resolution on electrically active nanowire devices in the common lateral configuration. We use this method to map out the surface density of states on both the GaSb and InAs segments of GaSb–InAs Esaki diodes as well as the transition region between the two segments. Generally the surface shows small bandgaps centered around the Fermi level, which is attributed to a thin multielement surface layer, except in the diode transition region where we observe a sudden broadening of the bandgap. By applying a bias to the nanowire we find that the STS spectra shift according to the local nanoscale potential drop inside the wire. Importantly, this shows that we have a nanoscale probe with which we can infer both surface electronic structure and the local potential inside the nanowire and we can connect this information directly to the performance of the imaged device. PMID:25927249

  9. Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation.

    PubMed

    Persson, Olof; Webb, James L; Dick, Kimberly A; Thelander, Claes; Mikkelsen, Anders; Timm, Rainer

    2015-06-10

    Using a scanning tunneling and atomic force microscope combined with in-vacuum atomic hydrogen cleaning we demonstrate stable scanning tunneling spectroscopy (STS) with nanoscale resolution on electrically active nanowire devices in the common lateral configuration. We use this method to map out the surface density of states on both the GaSb and InAs segments of GaSb-InAs Esaki diodes as well as the transition region between the two segments. Generally the surface shows small bandgaps centered around the Fermi level, which is attributed to a thin multielement surface layer, except in the diode transition region where we observe a sudden broadening of the bandgap. By applying a bias to the nanowire we find that the STS spectra shift according to the local nanoscale potential drop inside the wire. Importantly, this shows that we have a nanoscale probe with which we can infer both surface electronic structure and the local potential inside the nanowire and we can connect this information directly to the performance of the imaged device.

  10. Combining scanning haptic microscopy and fibre optic Raman spectroscopy for tissue characterization.

    PubMed

    Candefjord, S; Murayama, Y; Nyberg, M; Hallberg, J; Ramser, K; Ljungberg, B; Bergh, A; Lindahl, O A

    2012-08-01

    The tactile resonance method (TRM) and Raman spectroscopy (RS) are promising for tissue characterization in vivo. Our goal is to combine these techniques into one instrument, to use TRM for swift scanning, and RS for increasing the diagnostic power. The aim of this study was to determine the classification accuracy, using support vector machines, for measurements on porcine tissue and also produce preliminary data on human prostate tissue. This was done by developing a new experimental set-up combining micro-scale TRM-scanning haptic microscopy (SHM)-for assessing stiffness on a micro-scale, with fibre optic RS measurements for assessing biochemical content. We compared the accuracy using SHM alone versus SHM combined with RS, for different degrees of tissue homogeneity. The cross-validation classification accuracy for healthy porcine tissue types using SHM alone was 65-81%, and when RS was added it increased to 81-87%. The accuracy for healthy and cancerous human tissue was 67-70% when only SHM was used, and increased to 72-77% for the combined measurements. This shows that the potential for swift and accurate classification of healthy and cancerous prostate tissue is high. This is promising for developing a tool for probing the surgical margins during prostate cancer surgery.

  11. Scanning Tunneling Microscopy and Spectroscopy of Silicon and Carbon Surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Shenda Mary

    1992-01-01

    Scanning Tunneling Microscopy (STM) investigations and additional surface analyses were performed on carbon and silicon surfaces. A number of anomalies have been observed on highly oriented pyrolytic graphite (HOPG), including large corrugations, distorted images, large range of tip motion and the absence of defects. A mechanism involving direct contact between tip and sample or contact through a contamination layer to provide an additional conducting pathway is proposed. This model of point-contact imaging provides an explanation for added stability of the STM system, a mechanism for producing multiple tips or sliding graphite planes and an explanation for the observed anomalies. These observations indicate that the use of HOPG for testing and calibration of STM instrumentation may be misleading. Designs for the atmospheric STM used in this study are also presented. The conditions necessary for preparing a clean silicon(111) (7x7) surface are discussed. The design and analysis of heaters necessary to prepare the silicon reconstructed surface at ultrahigh vacuum (UHV) are described. Results from both radiatively and resistively heated samples are shown in addition to a comparison of topographic and barrier height images of the boron (surd 3 times surd 3) reconstructed surfaces. A spectroscopic distinction between sites of boron, silicon or contaminants is demonstrated. A synthetic boron-doped diamond was examined by a number of analytical techniques in order to determine its composition and surface morphology. Current-voltage spectroscopy taken with the STM indicates that the diamond Fermi level can be pinned in atmospheric conditions. In ultrahigh vacuum, band bending is observed, but the strength of the electric field experienced by the diamond semiconductor is less than expected; introduction of surface charges is shown to account for the field screening. Presentation of an STM study of a protein-antibody complex on a gold surface illustrates the requirements

  12. Differentiation of Surface and Bulk Conductivities in Topological Insulators via Four-Probe Spectroscopy.

    PubMed

    Durand, Corentin; Zhang, X-G; Hus, Saban M; Ma, Chuanxu; McGuire, Michael A; Xu, Yang; Cao, Helin; Miotkowski, Ireneusz; Chen, Yong P; Li, An-Ping

    2016-04-13

    We show a new method to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators using a four-probe transport spectroscopy in a multiprobe scanning tunneling microscopy system. We derive a scaling relation of measured resistance with respect to varying interprobe spacing for two interconnected conduction channels to allow quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi2Se3, Bi2Te2Se, and Sb-doped Bi2Se3 against a pure 2D conductance of graphene on SiC substrate. We also quantitatively show the effect of surface doping carriers on the 2D conductance enhancement in topological insulators. The method offers a means to understanding not just the topological insulators but also the 2D to 3D crossover of conductance in other complex systems.

  13. Characterization of the electronic properties of magnetic and semiconductor devices using scanning probe techniques

    NASA Astrophysics Data System (ADS)

    Schaadt, Daniel Maria

    In the first part of this dissertation, scanning probe techniques are used in the study of localized charge deposition and subsequent transport in Co nanoclusters embedded in a SiO2 matrix are presented, and the application of this material in a hybrid magneto-electronic device for magnetic field sensing is described. Co nanoclusters are charged by applying a bias voltage pulse between a conductive tip and the sample, and electrostatic force microscopy is used to image charged areas. An exponential decay in the peak charge density is observed with decay times dependent on the nominal Co film thickness and on the sign of the deposited charge. The results are interpreted as a consequence of Coulomb-blockade effects. This study leads to the design of a hybrid magneto-electronic device, in which Co nanoclusters embedded in SiO2 are incorporated into the gate of a Si metal-oxide-semiconductor field-effect transistor. Current flow through the Co nanoclusters leads to a buildup of electronic charge within the gate, and consequently to a transistor threshold voltage shift that varies with applied external magnetic field. The shift in threshold voltage results in an exponential change in subthreshold current and a quadratic change in saturation current. A detailed analysis of the device operation is presented. The second part of this dissertation focuses on the characterization of electronic properties of GaN-based heterostructure devices. Scanning capacitance microscopy (SCM) and spectroscopy (SCS) are used to investigate lateral variations in the transistor threshold voltage and the frequency-dependent response of surface charges and of charge in the two-dimensional electron gas (2DEG). The technique is described in detail, electrostatic simulations performed to study the influence of the probe tip geometry on the measured dC/dV spectra are presented, and the limitations of the SCS technique in a variety of applications are evaluated. Features in SCM images and maps of

  14. Probing Spin Excitations Using Magneto-Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thirunavukkuarasu, K.; Lu, Z.; Simpson, J.; Walker, A.; Sears, J.; Kim, Y.-J.; Burch, K.; Smirnov, D.

    The presence of a 2D quantum spin liquid state was recently suggested for the spin-orbit coupled Mott insulator α-RuCl3 with a honeycomb lattice.[Phys. Rev. 90, 041112 (2014)] Optical spectroscopy, Raman scattering, specific heat as well as magnetic susceptibility measurements on α-RuCl3 identified elementary excitations due to electronic correlations and spin-orbit coupling.[arXiv:1503.07593, Phys. Rev. Letters 114, 147201 (2015), and Phys. Rev. 91, 144420 (2015)] These observations appear to be consistent with theoretical expectations for Heisenberg-Kitaev model for QSL.[Phys. Rev. 91, 241110 (2015)] The underlying mechanism for the unconventional magnetism in α-RuCl3 was further investigated by probing the effect of external magnetic field on the Raman spectroscopic signatures. Raman scattering experiments were performed at temperatures down to 5 K and magnetic fields up to 10 T. The intensity of strongest A1g phonon was found to decrease with increasing magnetic field strength suggesting the presence of strong magnetic interactions. The experimental observations and its implications will be presented. Current Affiliation: Florida A and M University.

  15. Inference of protein diffusion probed via fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsekouras, Konstantinos

    2015-03-01

    Fluctuations are an inherent part of single molecule or few particle biophysical data sets. Traditionally, ``noise'' fluctuations have been viewed as a nuisance, to be eliminated or minimized. Here we look on how statistical inference methods - that take explicit advantage of fluctuations - have allowed us to draw an unexpected picture of single molecule diffusional dynamics. Our focus is on the diffusion of proteins probed using fluorescence correlation spectroscopy (FCS). First, we discuss how - in collaboration with the Bustamante and Marqusee labs at UC Berkeley - we determined using FCS data that individual enzymes are perturbed by self-generated catalytic heat (Riedel et al, Nature, 2014). Using the tools of inference, we found how distributions of enzyme diffusion coefficients shift in the presence of substrate revealing that enzymes performing highly exothermic reactions dissipate heat by transiently accelerating their center of mass following a catalytic reaction. Next, when molecules diffuse in the cell nucleus they often appear to diffuse anomalously. We analyze FCS data - in collaboration with Rich Day at the IU Med School - to propose a simple model for transcription factor binding-unbinding in the nucleus to show that it may give rise to apparent anomalous diffusion. Here inference methods extract entire binding affinity distributions for the diffusing transcription factors, allowing us to precisely characterize their interactions with different components of the nuclear environment. From this analysis, we draw key mechanistic insight that goes beyond what is possible by simply fitting data to ``anomalous diffusion'' models.

  16. Sub-10 nm lateral spatial resolution in scanning capacitance microscopy achieved with solid platinum probes

    NASA Astrophysics Data System (ADS)

    Bussmann, E.; Williams, C. C.

    2004-02-01

    Sub-10 nm resolution can be obtained in scanning capacitance microscopy (SCM) if the probe tip is approximately of the same size. Such resolution is observed, although infrequently, with present commercially available probes. To acquire routine sub-10 nm resolution, a solid Pt metal probe has been developed with a sub-10 nm tip radius. The probe is demonstrated by SCM imaging on a cross-sectioned 70 nm gatelength field-effect transistor (FET), a shallow implant (n+/p, 24 nm junction depth), and an epitaxial staircase (p, ˜75 nm steps). Sub-10 nm resolution is demonstrated on the FET device over the abrupt meeting between a silicon-on-insulator oxide layer and a neighboring Si region. Comparable resolution is observed on the implant structure, and quantitative SCM dopant profiling is performed on it with sub-10 nm accuracy. Finally, the epitaxial staircase structure is quantitatively profiled demonstrating the accuracy obtained in quantitative profiling with the tips.

  17. Influence of probe-sample temperature difference on thermal mapping contrast in scanning thermal microscopy imaging

    NASA Astrophysics Data System (ADS)

    Kaźmierczak-Bałata, Anna; Juszczyk, Justyna; Trefon-Radziejewska, Dominika; Bodzenta, Jerzy

    2017-03-01

    The purpose of this work is to investigate the influence of a temperature difference through a probe-sample contact on thermal contrast in Scanning Thermal Microscopy imaging. A variety of combinations of temperature differences in the probe-sample system were first analyzed based on an electro-thermal finite element model. The numerical analysis included cooling the sample, as well as heating the sample and the probe. Due to the simplicity in the implementation, experimental verification involved modifying the standard imaging technique by heating the sample. Experiments were carried out in the temperature range between 298 K and 328 K. Contrast in thermal mapping was improved for a low probe current with a heated sample.

  18. Electromechanical response of amorphous LaAlO{sub 3} thin film probed by scanning probe microscopies

    SciTech Connect

    Borowiak, Alexis S.; Baboux, Nicolas; Albertini, David; Gautier, Brice; Vilquin, Bertrand; Saint Girons, Guillaume; Pelloquin, Sylvain

    2014-07-07

    The electromechanical response of a 3 nm thick amorphous LaAlO{sub 3} layer obtained by molecular beam epitaxy has been studied using scanning probe microscopies. Although this kind of sample is not ferroelectric due to its amorphous nature, the resulting images are identical to what is generally obtained on truly ferroelectric samples probed by piezoresponse force microscopy: domains of apparently opposite polarisation are detected, and perfect, square shaped hysteresis loops are recorded. Moreover, written patterns are stable within 72 h. We discuss in the general case the possible origins of this behaviour in terms of charge injection, ionic conduction and motion of oxygen vacancies. In the case presented in this paper, since the writing process has been conducted with applied voltages lower than the injection threshold measured by conductive atomic force Microscopy, allowing to withdraw the hypothesis of charge injection in the sample, we propose that a bistable distribution of oxygen vacancies is responsible for this contrast.

  19. A study of the glass transition of polypropylene surfaces by sum-frequency vibrational spectroscopy and scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Gracias, D. H.; Zhang, D.; Lianos, L.; Ibach, W.; Shen, Y. R.; Somorjai, G. A.

    1999-07-01

    Sum-frequency generation (SFG) vibrational spectroscopy and scanning force microscopy (SFM) were used to probe structural changes of atactic polypropylene (APP) and isotactic polypropylene (IPP) surfaces in the glass transition. The results indicate that below the glass transition, the surface polymer chains are better oriented with the CH 2 groups pointing outward and the surface elastic modulus is higher. The SFG and SFM results correlate well in the transition towards the glass phase. No discernible difference between the glass transition temperatures of the bulk and surface was observed.

  20. Bases for time-resolved probing of transient carrier dynamics by optical pump-probe scanning tunneling microscopy.

    PubMed

    Yokota, Munenori; Yoshida, Shoji; Mera, Yutaka; Takeuchi, Osamu; Oigawa, Haruhiro; Shigekawa, Hidemi

    2013-10-07

    The tangled mechanism that produces optical pump-probe scanning tunneling microscopy spectra from semiconductors was analyzed by comparing model simulation data with experimental data. The nonlinearities reflected in the spectra, namely, the excitations generated by paired laser pulses with a delay time, the logarithmic relationship between carrier density and surface photovoltage (SPV), and the effect of the change in tunneling barrier height depending on SPV, were examined along with the delay-time-dependent integration process used in measurement. The optimum conditions required to realize reliable measurement, as well as the validity of the microscopy technique, were demonstrated for the first time.

  1. Batch-fabrication of cantilevered magnets on attonewton-sensitivity mechanical oscillators for scanned-probe nanoscale magnetic resonance imaging

    PubMed Central

    Hickman, Steven A.; Moore, Eric W.; Lee, SangGap; Longenecker, Jonilyn G.; Wright, Sarah J.; Harrell, Lee E.; Marohn, John A.

    2015-01-01

    We have batch-fabricated cantilevers with ~100 nm diameter nickel nanorod tips and force sensitivities of a few attonewtons at 4.2 kelvin. The magnetic nanorods were engineered to overhang the leading edge of the cantilever and, consequently, the cantilevers experience what we believe is the lowest surface noise ever achieved in a scanned probe experiment. Cantilever magnetometry indicated that the tips were well magnetized, with a ≤ 20 nm dead layer; the composition of the dead layer was studied by electron microscopy and electron energy loss spectroscopy. In what we believe is the first demonstration of scanned probe detection of electron-spin resonance from a batch fabricated tip, the cantilevers were used to observe electron-spin resonance from nitroxide spin labels in a film via force-gradient-induced shifts in cantilever resonance frequency. The magnetic field dependence of the magnetic resonance signal suggests a non-uniform tip magnetization at an applied field near 0.6 T. PMID:21082863

  2. Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy.

    PubMed

    Veazey, Joshua P; Reguera, Gemma; Tessmer, Stuart H

    2011-12-01

    The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as "pilus nanowires" to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.

  3. Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Veazey, Joshua P.; Reguera, Gemma; Tessmer, Stuart H.

    2011-12-01

    The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as “pilus nanowires” to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.

  4. Batch-fabrication of cantilevered magnets on attonewton-sensitivity mechanical oscillators for scanned-probe nanoscale magnetic resonance imaging.

    PubMed

    Hickman, Steven A; Moore, Eric W; Lee, SangGap; Longenecker, Jonilyn G; Wright, Sarah J; Harrell, Lee E; Marohn, John A

    2010-12-28

    We have batch-fabricated cantilevers with ∼100 nm diameter nickel nanorod tips and force sensitivities of a few attonewtons at 4.2 K. The magnetic nanorods were engineered to overhang the leading edge of the cantilever, and consequently the cantilevers experience what we believe is the lowest surface noise ever achieved in a scanned probe experiment. Cantilever magnetometry indicated that the tips were well magnetized, with a ≤ 20 nm dead layer; the composition of the dead layer was studied by electron microscopy and electron energy loss spectroscopy. In what we believe is the first demonstration of scanned probe detection of electron-spin resonance from a batch-fabricated tip, the cantilevers were used to observe electron-spin resonance from nitroxide spin labels in a film via force-gradient-induced shifts in cantilever resonance frequency. The magnetic field dependence of the magnetic resonance signal suggests a nonuniform tip magnetization at an applied field near 0.6 T.

  5. 0.1-nanometer resolution positioning stage for sub-10 nm scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Vorbringer-Doroshovets, Nataliya; Balzer, Felix; Fuessl, Roland; Manske, Eberhard; Kaestner, Marcus; Schuh, Andreas; Zoellner, Jens-Peter; Hofer, Manuel; Guliyev, Elshad; Ahmad, Ahmad; Ivanov, Tzvetan; Rangelow, Ivo W.

    2013-03-01

    High Performance Single Nanometer Lithography (SNL) is an enabling technology for beyond CMOS and future nanoelectronics. To keep on with scaling down nanoelectronic components, novel instrumentation for nanometer precise placement, overlay alignment and measurement are an essential pre-requirement to realize Next Generation Lithography (NGL) systems. In particular, scanning probe based methods for surface modification and lithography are an emerging method for producing sub-10 nm features. In this study, we demonstrate nano-scale lithography using a scanning probe based method in combination with a Nanopositioning and Nanomeasuring Machine. The latter one has a measuring range of 25 mm x 25 mm x 5 mm, 0.1 nanometer resolution and outstanding nanometer accuracy. The basic concept consists of a special arrangement allowing Abbe error free measurements in all axes over the total scan range. Furthermore, the Nanopositioning and Nanomeasuring Machine is able to store the exact location that can be found again with an accuracy of less than 2.5 nanometers. This system is also predestinated for critical dimension, quality and overlay control. The integrated scanning probe lithography is based on electric-field-induced patterning of calixarene. As a result, repeated step response tests are presented in this paper.

  6. A detailed guideline for the fabrication of single bacterial probes used for atomic force spectroscopy.

    PubMed

    Thewes, Nicolas; Loskill, Peter; Spengler, Christian; Hümbert, Sebastian; Bischoff, Markus; Jacobs, Karin

    2015-12-01

    The atomic force microscope (AFM) evolved as a standard device in modern microbiological research. However, its capability as a sophisticated force sensor is not used to its full capacity. The AFM turns into a unique tool for quantitative adhesion research in bacteriology by using "bacterial probes". Thereby, bacterial probes are AFM cantilevers that provide a single bacterium or a cluster of bacteria as the contact-forming object. We present a step-by-step protocol for preparing bacterial probes, performing force spectroscopy experiments and processing force spectroscopy data. Additionally, we provide a general insight into the field of bacterial cell force spectroscopy.

  7. Scanning electron microscopy and electron probe X-ray microanalysis (SEM-EPMA) of pink teeth

    SciTech Connect

    Ikeda, N.; Watanabe, G.; Harada, A.; Suzuki, T.

    1988-11-01

    Samples of postmortem pink teeth were investigated by scanning electron microscopy and electron probe X-ray microanalysis. Fracture surfaces of the dentin in pink teeth were noticeably rough and revealed many more smaller dentinal tubules than those of the control white teeth. Electron probe X-ray microanalysis showed that the pink teeth contained iron which seemed to be derived from blood hemoglobin. The present study confirms that under the same circumstance red coloration of teeth may occur more easily in the teeth in which the dentin is less compact and contains more dentinal tubules.

  8. Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics.

    PubMed

    Cabanillas-Gonzalez, Juan; Grancini, Giulia; Lanzani, Guglielmo

    2011-12-08

    In this review we highlight the contribution of pump-probe spectroscopy to understand elementary processes taking place in organic based optoelectronic devices. The techniques described in this article span from conventional pump-probe spectroscopy to electromodulated pump-probe and the state-of-the-art confocal pump-probe microscopy. The article is structured according to three fundamental processes (optical gain, charge photogeneration and charge transport) and the contribution of these techniques on them. The combination of these tools opens up new perspectives for assessing the role of short-lived excited states on processes lying underneath organic device operation.

  9. Frequency-scanned ultrafast spectroscopic techniques applied to infrared four-wave mixing spectroscopy

    NASA Astrophysics Data System (ADS)

    Meyer, Kent Albert

    Frequency-scanned techniques of ultrafast spectroscopy were applied to infrared four-wave mixing (IRFWM) in order to determine their effectiveness in the detection and quantification of vibrationally coupled modes. Frequency-scanned ultrafast techniques are a mixed version of frequency and time domain approaches with some advantages of each domain. The frequency domain advantages include the ability to select individual components from a mixture; time domain advantages include the ability to temporally discriminate many non-linear pathways that can congest spectra and interpretation. These advantages have been experimentally verified with doubly vibrationally enhanced (DOVE) and triply vibrationally enhanced (TRIVE) FWM using dilute carbon disulfide as a model system. DOVE and TRIVE are multi-dimensional vibrational coupling techniques analogous to multi-dimensional NMR spin coupling techniques. They differ from NMR in that DOVE and TRIVE spectroscopy occur on the ultrafast (<1 ps) timescale and can provide new chemical dynamics information. Quantification of DOVE signal has been performed computationally of dilute carbon disulfide and agrees with values extracted from linear infrared spectra. Additional parameters from computational models show population dephasing contributions of dilute carbon disulfide's major combination band and strongly absorbing fundamental to be values not far from expected ones. An advantage of TRIVE over the standard IR-IR pump-probe methods is in the possible reduction of the total number of interfering pathways. Pathways not typically explored in the pump-probe paths may be useful in their line narrowing of correlated vibrational modes. The issue of broadening of spectral lines in mixed domain spectra due to the breadth of the electric fields has been addressed with the concept of gated line narrowing. Shaped input pulses can narrow homogeneously broadened lines when gated at a far time. In TRIVE, gating can take place in the form of

  10. A reverse pendulum bath cryostat design suitable for low temperature scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Heyde, M.; Thielsch, G.; Rust, H.-P.; Freund, H.-J.

    2005-03-01

    A new low temperature, ultrahigh vacuum cryostat design has been developed for atomic force and scanning tunnelling microscopy measurements. A microscope can be operated at 5 K in ultrahigh vacuum. The microscope body is thermally connected to a reverse pendulum and completely surrounded by a radiation shield. The design allows in situ dosing and irradiation of the sample as well as for easy access of tip and sample. The temperature performance and the vibrational properties of the reverse pendulum design are demonstrated in detail. A brief overview of low temperature instrumentation in scanning probe microscopy is given.

  11. Upgrade of a commercial four-probe scanning tunneling microscopy system

    NASA Astrophysics Data System (ADS)

    Ma, Ruisong; Huan, Qing; Wu, Liangmei; Yan, Jiahao; Zou, Qiang; Wang, Aiwei; Bobisch, Christian A.; Bao, Lihong; Gao, Hong-Jun

    2017-06-01

    Upgrade of a commercial ultra-high vacuum four-probe scanning tunneling microscopy system for atomic resolution capability and thermal stability is reported. To improve the mechanical and thermal performance of the system, we introduced extra vibration isolation, magnetic damping, and double thermal shielding, and we redesigned the scanning structure and thermal links. The success of the upgrade is characterized by its atomically resolved imaging, steady cooling down cycles with high efficiency, and standard transport measurement capability. Our design may provide a feasible way for the upgrade of similar commercial systems.

  12. Upgrade of a commercial four-probe scanning tunneling microscopy system.

    PubMed

    Ma, Ruisong; Huan, Qing; Wu, Liangmei; Yan, Jiahao; Zou, Qiang; Wang, Aiwei; Bobisch, Christian A; Bao, Lihong; Gao, Hong-Jun

    2017-06-01

    Upgrade of a commercial ultra-high vacuum four-probe scanning tunneling microscopy system for atomic resolution capability and thermal stability is reported. To improve the mechanical and thermal performance of the system, we introduced extra vibration isolation, magnetic damping, and double thermal shielding, and we redesigned the scanning structure and thermal links. The success of the upgrade is characterized by its atomically resolved imaging, steady cooling down cycles with high efficiency, and standard transport measurement capability. Our design may provide a feasible way for the upgrade of similar commercial systems.

  13. Long range electronic transport in microbial nanowires bridging an electrode and scanned probe

    NASA Astrophysics Data System (ADS)

    Veazey, Joshua; Lampa-Pastirk, Sanela; Walsh, Kathy; Sun, Jiebing; Zhang, Pengpeng; Reguera, Gemma; Tessmer, Stuart

    2011-03-01

    The filament-like appendages known as pili, expressed by the bacterium Geobacter sulfurreducens, are believed to act as electrically conductive nanowires. Previously, we used scanning tunneling microscopy to study the local density of states at different positions along the wire. However, the long range electron transfer believed to occur in this protein has not been directly observed. Here we discuss a system for verifying long range transport using a scanning probe technique. Transport at distances of more than a few nanometers would require a novel biological electron transfer process. The authors gratefully acknowledge support from the National Science Foundation (MCB-1021948) and the Michigan State University Foundation (Strategic Partnership Grant).

  14. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials.

    PubMed

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-07-15

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  15. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    NASA Astrophysics Data System (ADS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-07-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  16. Probing quasiparticle states in strongly interacting atomic gases by momentum-resolved Raman photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dao, Tung-Lam; Carusotto, Iacopo; Georges, Antoine

    2009-08-01

    We investigate a momentum-resolved Raman spectroscopy technique which is able to probe the one-body spectral function and the quasiparticle states of a gas of strongly interacting ultracold atoms. This technique is inspired by angle-resolved photoemission spectroscopy, a powerful experimental probe of electronic states in solid-state systems. Quantitative examples of experimentally accessible spectra are given for the most significant regimes along the BEC-BCS crossover. When the theory is specialized to rf spectroscopy, agreement is found with recent experimental data. The main advantages of this Raman spectroscopy over existing techniques are pointed out.

  17. Carbon Nanotube Scanning Probe for Surface Profiling of DUV and 193 nm Photoresist Pattern

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Stevens, Ramsey M. D.; Barber, Jabulani; Han, Jie; Meyyappan, M.; Sanchez, Martha I.; Larson, Carl; Hinsberg, William D.; Arnold, Jim (Technical Monitor)

    2001-01-01

    The continual scaling down of semiconductors to 100 nm and below necessitates a characterization technique to resolve high aspect ratio features in the nanoscale regime. This paper reports the use of atomic force microscope coupled with high aspect ratio multi-walled carbon nanotube scanning probe tip for the purpose of imaging surface profile of photoresists. Multi-walled carbon nanotube tips used in this work are 5-10 nm in diameter and about a micron long. Their exceptional mechanical strength and ability to reversibly buckle enable to resolve steep, deep nanometer-scale features. Images of photoresist patterns generated by 257 nm interference lithography as well as 193 nm lithography are presented to demonstrate multi-walled carbon nanotube scanning probe tip for applications in metrology.

  18. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: status and perspectives.

    PubMed

    Kalinin, Sergei V; Balke, Nina

    2010-09-15

    Energy storage and conversion systems are an integral component of emerging green technologies, including mobile electronic devices, automotive, and storage components of solar and wind energy economics. Despite the rapidly expanding manufacturing capabilities and wealth of phenomenological information on the macroscopic device behaviors, the microscopic mechanisms underpinning battery and fuel cell operations in the nanometer-micrometer range are virtually unknown. This lack of information is due to the dearth of experimental techniques capable of addressing elementary mechanisms involved in battery operation, including electronic and ion transport, vacancy injection, and interfacial reactions, on the nanometer scale. In this article, a brief overview of scanning probe microscopy (SPM) methods addressing nanoscale electrochemical functionalities is provided and compared with macroscopic electrochemical methods. Future applications of emergent SPM methods, including near field optical, electromechanical, microwave, and thermal probes and combined SPM-(S)TEM (scanning transmission electron microscopy) methods in energy storage and conversion materials are discussed.

  19. Carbon Nanotube Scanning Probe for Surface Profiling of DUV and 193 nm Photoresist Pattern

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Stevens, Ramsey M. D.; Barber, Jabulani; Han, Jie; Meyyappan, M.; Sanchez, Martha I.; Larson, Carl; Hinsberg, William D.; Arnold, Jim (Technical Monitor)

    2001-01-01

    The continual scaling down of semiconductors to 100 nm and below necessitates a characterization technique to resolve high aspect ratio features in the nanoscale regime. This paper reports the use of atomic force microscope coupled with high aspect ratio multi-walled carbon nanotube scanning probe tip for the purpose of imaging surface profile of photoresists. Multi-walled carbon nanotube tips used in this work are 5-10 nm in diameter and about a micron long. Their exceptional mechanical strength and ability to reversibly buckle enable to resolve steep, deep nanometer-scale features. Images of photoresist patterns generated by 257 nm interference lithography as well as 193 nm lithography are presented to demonstrate multi-walled carbon nanotube scanning probe tip for applications in metrology.

  20. Sub-20 nm patterning of thin layer WSe2 by scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Dago, Arancha I.; Ryu, Yu K.; Garcia, Ricardo

    2016-10-01

    The electronic properties of thin layer transition metal dichalcogenides have raised considerable interest in the fabrication of advanced field-effect transistors and ultrasensitive sensors. Downscaling those devices to the nanoscale depends on the development of cost-effective and robust alternative nanolithographies. Here we demonstrate the direct, resist-less and reproducible nanopatterning of tungsten diselenide thin layers. By using oxidation scanning probe lithography (o-SPL) we have generated arrays of dots with a width of 13 nm and periodicity of 40 nm. We have also patterned a point contact of 35 nm and a nanoscale field-effect transistor. The direct and resistless fabrication of WSe2 nanoscale devices by oxidation scanning probe lithography opens a straightforward and reliable method for processing transition metal dichalcogenides materials.

  1. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    PubMed

    Nishikawa, Osamu; Taniguchi, Masahiro

    2016-12-22

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  2. Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: Status and perspectives

    SciTech Connect

    Kalinin, S. V.; Balke, N.

    2010-01-01

    Energy storage and conversion systems are an integral component of emerging green technologies, including mobile electronic devices, automotive, and storage components of solar and wind energy economics. Despite the rapidly expanding manufacturing capabilities and wealth of phenomenological information on the macroscopic device behaviors, the microscopic mechanisms underpinning battery and fuel cell operations in the nanometer–micrometer range are virtually unknown. This lack of information is due to the dearth of experimental techniques capable of addressing elementary mechanisms involved in battery operation, including electronic and ion transport, vacancy injection, and interfacial reactions, on the nanometer scale. In this article, a brief overview of scanning probe microscopy (SPM) methods addressing nanoscale electrochemical functionalities is provided and compared with macroscopic electrochemical methods. Future applications of emergent SPM methods, including near field optical, electromechanical, microwave, and thermal probes and combined SPM-(S)TEM (scanning transmission electron microscopy) methods in energy storage and conversion materials are discussed.

  3. "Multipoint Force Feedback" Leveling of Massively Parallel Tip Arrays in Scanning Probe Lithography.

    PubMed

    Noh, Hanaul; Jung, Goo-Eun; Kim, Sukhyun; Yun, Seong-Hun; Jo, Ahjin; Kahng, Se-Jong; Cho, Nam-Joon; Cho, Sang-Joon

    2015-09-16

    Nanoscale patterning with massively parallel 2D array tips is of significant interest in scanning probe lithography. A challenging task for tip-based large area nanolithography is maintaining parallel tip arrays at the same contact point with a sample substrate in order to pattern a uniform array. Here, polymer pen lithography is demonstrated with a novel leveling method to account for the magnitude and direction of the total applied force of tip arrays by a multipoint force sensing structure integrated into the tip holder. This high-precision approach results in a 0.001° slope of feature edge length variation over 1 cm wide tip arrays. The position sensitive leveling operates in a fully automated manner and is applicable to recently developed scanning probe lithography techniques of various kinds which can enable "desktop nanofabrication."

  4. Nanomechanical Study of Model Pressure Sensitive Adhesives by Scanning Probe Microscopy

    DTIC Science & Technology

    2002-06-20

    September 1, 2000. 5.) Mark D. Foster, ""Studying Pressure Sensitive Adhesives by Scanning Probe Microscopy," Avery Dennison , Painesville, OH, May 12, 2000... Adhesives and Coatings dept. Dr. Hubertus von Voithenberg, Vice President, Research and Development tesa Dr. Yuan Yuan Zhang, Avery Dennison Dr...academics, or industry to whom at least one annual report was sent and/or this year’s report will be sent: Dr. Ken Chuang, Research Associate, Avery Dennison

  5. An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography.

    PubMed

    Mochalov, Konstantin E; Chistyakov, Anton A; Solovyeva, Daria O; Mezin, Alexey V; Oleinikov, Vladimir A; Vaskan, Ivan S; Molinari, Michael; Agapov, Igor I; Nabiev, Igor; Efimov, Anton E

    2017-06-21

    In the past decade correlative microscopy, which combines the potentials of different types of high-resolution microscopies with a variety of optical microspectroscopy techniques, has been attracting increasing attention in material science and biological research. One of outstanding solutions in this area is the combination of scanning probe microscopy (SPM), which provides data on not only the topography, but also the spatial distribution of a wide range of physical properties (elasticity, conductivity, etc.), with ultramicrotomy, allowing 3D multiparametric examination of materials. The combination of SPM and ultramicrotomy (scanning probe nanotomography) is very appropriate for characterization of soft multicompound nanostructurized materials, such as polymer matrices and microstructures doped with different types of nanoparticles (magnetic nanoparticles, quantum dots, nanotubes, etc.), and biological materials. A serious problem of this technique is a lack of chemical and optical characterization tools, which may be solved by using optical microspectroscopy. Here, we report the development of an instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography in a single apparatus. This approach retains all the advantages of SPM and upright optical microspectroscopy and allows 3D multiparametric characterization using both techniques. As the first test of the system developed, we have performed correlative characterization of the morphology and the magnetic and fluorescent properties of fluorescent magnetic microspheres doped with a fluorescent dye and magnetic nanoparticles. The results of this study can be used to obtain 3D volume images of a specimen for most high-resolution near-field scanning probe microscopies: SNOM, TERS, AFM-IR, etc. This approach will result in development of unique techniques combining the advantages of SPM (nanoscale morphology and a wide range of physical parameters) and high-resolution optical

  6. Nematicity in FeSe single crystals probed by pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, C. W.; Cheng, P. C.; Wu, K. H.; Juang, J. Y.; Wang, S.-H.; Chiang, J.-C.; Lin, J.-Y.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.

    The anisotropic quasiparticle dynamics in FeSe single crystals have been studied by polarized pump-probe spectroscopy. Two distinguishable relaxation components were unambiguously observed in transient reflectivity changes (ΔR / R) . The orientation-dependent fast component with the timescale of 0.1-1.5 ps associated with the electronic structure clearly shows two-fold symmetry, which further reveals the gap opening along ky below the temperature of structure phase transition (Ts) and the electronic nematicity can persist up to 200 K. For the slow component with the timescale of 8-25 ps, it is assigned to the energy relaxation through spin sub-system and also shows a two-fold symmetry below Ts. However, this two-fold symmetry is dramatically weakened above Ts and surprisingly persists up to at least 200 K. Consequently, the high-temperature nematic fluctuations in FeSe may be driven by the order parameters which associated with both charge (orbital) and spin sub-systems. This project is financially sponsored by the MOST, Taiwan, (Grants No. 103-2923-M-009-001-MY3) and the MOE-ATU plan at NCTU.

  7. Theoretical Analysis of a Dual-Probe Scanning Tunneling Microscope Setup on Graphene

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Power, Stephen R.; Petersen, Dirch H.; Jauho, Antti-Pekka

    2014-03-01

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.

  8. Ultrasound probe and needle-guide calibration for robotic ultrasound scanning and needle targeting.

    PubMed

    Kim, Chunwoo; Chang, Doyoung; Petrisor, Doru; Chirikjian, Gregory; Han, Misop; Stoianovici, Dan

    2013-06-01

    Image-to-robot registration is a typical step for robotic image-guided interventions. If the imaging device uses a portable imaging probe that is held by a robot, this registration is constant and has been commonly named probe calibration. The same applies to probes tracked by a position measurement device. We report a calibration method for 2-D ultrasound probes using robotic manipulation and a planar calibration rig. Moreover, a needle guide that is attached to the probe is also calibrated for ultrasound-guided needle targeting. The method is applied to a transrectal ultrasound (TRUS) probe for robot-assisted prostate biopsy. Validation experiments include TRUS-guided needle targeting accuracy tests. This paper outlines the entire process from the calibration to image-guided targeting. Freehand TRUS-guided prostate biopsy is the primary method of diagnosing prostate cancer, with over 1.2 million procedures performed annually in the U.S. alone. However, freehand biopsy is a highly challenging procedure with subjective quality control. As such, biopsy devices are emerging to assist the physician. Here, we present a method that uses robotic TRUS manipulation. A 2-D TRUS probe is supported by a 4-degree-of-freedom robot. The robot performs ultrasound scanning, enabling 3-D reconstructions. Based on the images, the robot orients a needle guide on target for biopsy. The biopsy is acquired manually through the guide. In vitro tests showed that the 3-D images were geometrically accurate, and an image-based needle targeting accuracy was 1.55 mm. These validate the probe calibration presented and the overall robotic system for needle targeting. Targeting accuracy is sufficient for targeting small, clinically significant prostatic cancer lesions, but actual in vivo targeting will include additional error components that will have to be determined.

  9. Latent fingerprint visualization using a scanning Kelvin probe in conjunction with vacuum metal deposition.

    PubMed

    Dafydd, Hefin; Williams, Geraint; Bleay, Stephen

    2014-01-01

    The application of vacuum metal deposition before scanning Kelvin probe visualization of fingerprints is investigated. The potential contrast between fingerprint ridges and furrows is maximized by the use of silver deposition for non-noble metals and gold-zinc deposition for noble metals. The higher susceptibility of eccrine fingerprints to vacuum metal overdeposition is confirmed. Additionally, fingerprints are best developed individually and by building the metal deposition slowly to protect against overdevelopment and variation in the rate of metal condensation. The progress of the metal deposition can be monitored using the scanning Kelvin probe by reference to the change in potential and continuity of the new potential on the surface. The use of acetic acid solution for the recovery of overVMD-developed samples is shown not to be useful. Applying the metal deposition has the additional prospect of increasing surface conductivity and homogeneity and both can aid fingerprint visualization using the scanning Kelvin probe. © 2013 American Academy of Forensic Sciences.

  10. Nanocarbon-scanning probe microscopy synergy: fundamental aspects to nanoscale devices.

    PubMed

    Kurra, Narendra; Reifenberger, Ronald G; Kulkarni, Giridhar U

    2014-05-14

    Scanning probe techniques scanning tunneling microscopy (STM) and atomic force microscopy (AFM) have emerged as unique local probes for imaging, manipulation, and modification of surfaces at the nanoscale. Exercising the fabrication of atomic and nansocale devices with desired properties have demanded rapid development of scanning probe based nanolithographies. Dip pen nanolithography (DPN) and local anodic oxidation (LAO) have been widely employed for fabricating functional patterns and prototype devices at nanoscale. This review discusses the progress in AFM bias lithography with focus on nanocarbon species on which many functional quantum device structures have been realized using local electrochemical and electrostatic processes. As water meniscus is central to AFM bias lithography, the meniscus formation, estimation and visualization is discussed briefly. A number of graphene-based nanodevices have been realized on the basis AFM bias lithography in the form of nanoribbons, nanorings and quantum dots with sufficiently small dimensions to show quantum phenomena such as conductance fluctuations. Several studies involving graphitic surfaces and carbon nanotubes are also covered. AFM based scratching technique is another promising approach for the fabrication of nanogap electrodes, important in molecular electronics.

  11. The Probe Profile and Lateral Resolution of Scanning Transmission Electron Microscopy of Thick Specimens

    PubMed Central

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-01-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in the CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile, and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens. PMID:22564444

  12. Probe Scanning Support System by a Parallel Mechanism for Robotic Echography

    NASA Astrophysics Data System (ADS)

    Aoki, Yusuke; Kaneko, Kenta; Oyamada, Masami; Takachi, Yuuki; Masuda, Kohji

    We propose a probe scanning support system based on force/visual servoing control for robotic echography. First, we have designed and formulated its inverse kinematics the construction of mechanism. Next, we have developed a scanning method of the ultrasound probe on body surface to construct visual servo system based on acquired echogram by the standalone medical robot to move the ultrasound probe on patient abdomen in three-dimension. The visual servo system detects local change of brightness in time series echogram, which is stabilized the position of the probe by conventional force servo system in the robot, to compensate not only periodical respiration motion but also body motion. Then we integrated control method of the visual servo with the force servo as a hybrid control in both of position and force. To confirm the ability to apply for actual abdomen, we experimented the total system to follow the gallbladder as a moving target to keep its position in the echogram by minimizing variation of reaction force on abdomen. As the result, the system has a potential to be applied to automatic detection of human internal organ.

  13. The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens.

    PubMed

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-06-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as a function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as a function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens.

  14. Quantitative rapid scan EPR spectroscopy at 258 MHz.

    PubMed

    Quine, Richard W; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2010-07-01

    Experimental data obtained with an electron paramagnetic resonance (EPR) rapid scan spectrometer were translated through the reverse transfer functions of the spectrometer hardware to the sample position. Separately, theoretical calculations were performed to predict signal and noise amplitudes at the sample position for specified experimental conditions. A comparison was then made between the translated experimental values and the calculated values. Excellent agreement was obtained.

  15. Probing Nitrosyl Ligation of Surface-Confined Metalloporphyrins by Inelastic Electron Tunneling Spectroscopy

    PubMed Central

    2013-01-01

    Complexes obtained by the ligation of nitric oxide (NO) to metalloporphyrins represent important model systems with biological relevance. Herein we report a molecular-level investigation of surface-confined cobalt tetraphenyl porphyrin (Co-TPP) species and their interaction with NO under ultrahigh vacuum conditions. It is demonstrated that individual NO adducts can be desorbed using the atomically sharp tip of a scanning tunneling microscope, whereby a writing process is implemented for fully saturated regular metalloporphyrin arrays. The low-energy vibrational characteristics of individual Co-TPP-nitrosyl complexes probed by inelastic electron tunneling spectroscopy (IETS) reveal a prominent signature at an energy of ≃31 meV. Using density functional theory-based IETS simulations—the first to be performed on such an extensive interfacial nanosystem—we succeed to reproduce the low-frequency spectrum for the NO-ligated complex and explain the absence of IETS activity for bare Co-TPP. Moreover, we can conclusively assign the IETS peak of NO-Co-TPP to a unique vibration mode involving the NO complexation site, namely, the in-plane Co–N–O rocking mode. In addition, we verify that the propensity rules previously designed on small aromatic systems and molecular fragments hold true for a metal–organic entity. This work notably permits one to envisage IETS spectroscopy as a sensitive tool to chemically characterize hybrid interfaces formed by complex metal–organic units and gaseous adducts. PMID:23718257

  16. Investigation of the contrast inversion effect on hydrophilic surfaces using Pt/C whisker probes in a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Mukhin, I. S.; Levichev, V. V.; Golubok, A. O.

    2015-02-01

    We compare the spatial resolution and image contrast of an erythrocyte surface obtained by means of scanning force microscopy (SFM) with conventional hydrophobic Si probes and probes modified by hydrophilic Pt/C whisker probes. It is shown that probes with Pt/C nanowhiskers provide a higher spatial resolution and contrast when imaging relief on the surface of erythrocytes. The contrast inversion is revealed in some areas of the SFM images when replacing Si probes by probes with Pt/C nanowhiskers. The origin of this inversion in the tapping and contact modes is discussed.

  17. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.

    PubMed

    Shah, A B; Ramasse, Q M; Wen, J G; Bhattacharya, A; Zuo, J M

    2011-08-01

    The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110)

    SciTech Connect

    Henderson, Michael A.; Lyubinetsky, Igor

    2013-06-12

    The field of heterogeneous photocatalysis has grown considerably in the decades since Fujishima and Honda's ground-breaking publications of photoelectrochemistry on TiO2. Numerous review articles continue to point to both progress made in the use of heterogeneous materials (such as TiO2) to perform photoconversion processes, and the many opportunities and challenges in heterogeneous photocatalysis research such as solar energy conversion and environmental remediation. The past decade has also seen an increase in the use of molecular-level approaches applied to model single crystal surfaces in an effort to obtain new insights into photocatalytic phenomena. In particular, scanning probe techniques (SPM) have enabled researchers to take a ‘nanoscale’ approach to photocatalysis that includes interrogation of the reactivities of specific sites and adsorbates on a model photocatalyst surface. The rutile TiO2(110) surface has become the prototypical oxide single crystal surface for fundamental studies of many interfacial phenomena. In particular, TiO2(110) has become an excellent model surface for probing photochemical and photocatalytic reactions at the molecular level. A variety of experimental approaches have emerged as being ideally suited for studying photochemical reactions on TiO2(110), including desorption-oriented approaches and electronic spectroscopies, but perhaps the most promising techniques for evaluating site-specific properties are those of SPM. In this review, we highlight the growing use of SPM techniques in providing molecular-level insights into surface photochemistry on the model photocatalyst surface of rutile TiO2(110). Our objective is to both illustrate the unique knowledge that scanning probe techniques have already provided the field of photocatalysis, and also to motivate a new generation of effort into the use of such approaches to obtain new insights into the molecular level details of photochemical events occurring at interfaces

  19. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  20. Novel control scheme for a high-speed metrological scanning probe microscope

    NASA Astrophysics Data System (ADS)

    Vorbringer-Dorozhovets, N.; Hausotte, T.; Manske, E.; Shen, J. C.; Jäger, G.

    2011-09-01

    Some time ago, an interferometer-based metrological scanning probe microscope (SPM) was developed at the Institute of Process Measurement and Sensor Technology of the Ilmenau University of Technology, Germany. The specialty of this SPM is the combined deflection detection system that comprises an interferometer and a beam deflection. Due to this system it is possible to simultaneously measure the displacement, bending and torsion of the probe (cantilever). The SPM is integrated into a nanopositioning and nanomeasuring machine (NPM machine) and allows measurements with a resolution of 0.1 nm over a range of 25 mm × 25 mm × 5 mm. Excellent results were achieved for measurements of calibrated step height and lateral standards and these results are comparable to the calibration values from the Physikalisch-Technische Bundesanstalt (PTB) (Dorozhovets N et al 2007 Proc. SPIE 6616 661624-1-7). The disadvantage was a low attainable scanning speed and accordingly large expenditure of time. Control dynamics and scanning speed are limited because of the high masses of the stage and corner mirror of the machine. For the vertical axis an additional high-speed piezoelectric drive is integrated in the SPM in order to increase the measuring dynamics. The movement of the piezoelectric drive is controlled and traceable measured by the interferometer. Hence, nonlinearity and hysteresis in the actuator do not affect the measurement. The outcome of this is an improvement of the bending control of the cantilever and much higher scan speeds of up to 200 µm s-1.

  1. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tong, Yongpeng; Li, Changming; Liang, Feng; Chen, Jianmin; Zhang, Hong; Liu, Guoqing; Sun, Huibin; Luong, John H. T.

    2008-12-01

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al 2O 3 and TiO 2) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl 2) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al 2O 3 and TiO 2 nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe 2O 3 nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  2. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy.

    PubMed

    Hennessy, Ricky; Goth, Will; Sharma, Manu; Markey, Mia K; Tunnell, James W

    2014-01-01

    The sampling depth of light for diffuse reflectance spectroscopy is analyzed both experimentally and computationally. A Monte Carlo (MC) model was used to investigate the effect of optical properties and probe geometry on sampling depth. MC model estimates of sampling depth show an excellent agreement with experimental measurements over a wide range of optical properties and probe geometries. The MC data are used to define a mathematical expression for sampling depth that is expressed in terms of optical properties and probe geometry parameters.

  3. Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé

    2016-01-01

    We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

  4. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  5. Tracing the Electronic Pairing Glue in Unconventional Superconductors via Inelastic Scanning Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hlobil, Patrik; Jandke, Jasmin; Wulfhekel, Wulf; Schmalian, Jörg

    2017-04-01

    Scanning tunneling microscopy has been shown to be a powerful experimental probe to detect electronic excitations and further allows us to deduce fingerprints of bosonic collective modes in superconductors. Here, we demonstrate that the inclusion of inelastic tunnel events is crucial for the interpretation of tunneling spectra of unconventional superconductors and allows us to directly probe electronic and bosonic excitations via scanning tunneling microscopy. We apply the formalism to the iron based superconductor LiFeAs. With the inclusion of inelastic contributions, we find strong evidence for a nonconventional pairing mechanism, likely via magnetic excitations.

  6. A sensitive charge scanning probe based on silicon single electron transistor

    NASA Astrophysics Data System (ADS)

    Lina, Su; Xinxing, Li; Hua, Qin; Xiaofeng, Gu

    2016-04-01

    Single electron transistors (SETs) are known to be extremely sensitive electrometers owing to their high charge sensitivity. In this work, we report the design, fabrication, and characterization of a silicon-on-insulator-based SET scanning probe. The fabricated SET is located about 10 μm away from the probe tip. The SET with a quantum dot of about 70 nm in diameter exhibits an obvious Coulomb blockade effect measured at 4.1 K. The Coulomb blockade energy is about 18 meV, and the charge sensitivity is in the order of 10-5-10-3 e/Hz1/2. This SET scanning probe can be used to map charge distribution and sense dynamic charge fluctuation in nanodevices or circuits under test, realizing high sensitivity and high spatial resolution charge detection. Project supported by the Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201152), the National Natural Science Foundation of China (No. 11403084), the Fundamental Research Funds for Central Universities (Nos. JUSRP51510, JUDCF12032), and the Graduate Student Innovation Program for Universities of Jiangsu Province (No. CXLX12_0724).

  7. Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Yankowitz, Matthew Abraham

    A large family of materials, collectively known as "van der Waals materials", have attracted enormous research attention over the past decade following the realization that they could be isolated into individual crystalline monolayers, with charge carriers behaving effectively two-dimensionally. More recently, an even larger class of composite materials has been realized, made possible by combining the isolated atomic layers of different materials into "van der Waals heterostructures", which can exhibit electronic and optical behaviors not observed in the parent materials alone. This thesis describes efforts to characterize the atomic-scale structural and electronic properties of these van der Waals materials and heterostructures through scanning tunneling microscopy measurements. The majority of this work addresses the properties of monolayer and few-layer graphene, whose charge carriers are described by massless and massive chiral Dirac Hamiltonians, respectively. In heterostructures with hexagonal boron nitride, an insulating isomorph of graphene, we observe electronic interference patterns between the two materials which depend on their relative rotation. As a result, replica Dirac cones are formed in the valence and conduction bands of graphene, with their energy tuned by the rotation. Further, we are able to dynamically drag the graphene lattice in these heterostructures, owing to an interaction between the scanning probe tip and the domain walls formed by the electronic interference pattern. Similar dragging is observed in domain walls of trilayer graphene, whose electronic properties are found to depend on the stacking configuration of the three layers. Scanning tunneling spectroscopy provides a direct method for visualizing the scattering pathways of electrons in these materials. By analyzing the scattering, we can directly infer properties of the band structures and local environments of these heterostructures. In bilayer graphene, we map the electrically

  8. Hot-spot detection and calibration of a scanning thermal probe with a noise thermometry gold wire sample

    NASA Astrophysics Data System (ADS)

    Gaitas, Angelo; Wolgast, Steven; Covington, Elizabeth; Kurdak, Cagliyan

    2013-02-01

    Measuring the temperature profile of a nanoscale sample using scanning thermal microscopy is challenging due to a scanning probe's non-uniform heating. In order to address this challenge, we have developed a calibration sample consisting of a 1-μm wide gold wire, which can be heated electrically by a small bias current. The Joule heating in the calibration sample wire is characterized using noise thermometry. A thermal probe was scanned in contact over the gold wire and measured temperature changes as small as 0.4 K, corresponding to 17 ppm changes in probe resistance. The non-uniformity of the probe's temperature profile during a typical scan necessitated the introduction of a temperature conversion factor, η, which is defined as the ratio of the average temperature change of the probe with respect to the temperature change of the substrate. The conversion factor was calculated to be 0.035 ± 0.007. Finite element analysis simulations indicate a strong correlation between thermal probe sensitivity and probe tip curvature, suggesting that the sensitivity of the thermal probe can be improved by increasing the probe tip curvature, though at the expense of the spatial resolution provided by sharper tips. Simulations also indicate that a bow-tie metallization design could yield an additional 5- to 7-fold increase in sensitivity.

  9. The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces

    SciTech Connect

    Orme, C A; Giocondi, J L

    2007-04-16

    Over the past decade there has been a natural drive to extend the investigation of dynamic surfaces in fluid environments to higher resolution characterization tools. Various aspects of solution crystal growth have been directly visualized for the first time. These include island nucleation and growth using transmission electron microscopy and scanning tunneling microscopy; elemental step motion using scanning probe microscopy; and the time evolution of interfacial atomic structure using various diffraction techniques. In this lecture we will discuss the use of one such in situ method, scanning probe microscopy, as a means of measuring surface dynamics during crystal growth and dissolution. We will cover both practical aspects of imaging such as environmental control, fluid flow, and electrochemical manipulation, as well as the types of physical measurements that can be made. Measurements such as step motion, critical lengths, nucleation density, and step fluctuations, will be put in context of the information they provide about mechanistic processes at surfaces using examples from metal and mineral crystal growth.

  10. Tunnelling junctions with additional degrees of freedom: An extended toolbox of scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Temirov, Ruslan

    2015-05-01

    Considering studies of molecular adsorption we review recent developments in the field of scanning probe microscopy and in particular in scanning tunnelling microscopy, concentrating on the progress that has been achieved by controlled decoration of the microscope tip. A view is presented according to which the tip decoration generally introduces additional degrees of freedom into the scanning junction and thus extends its functionality. In particular tips decorated with atomic point-like particles may attain the additional function of a force sensor which is realized through the degrees of freedom associated with the relative position of the decorating probe-particle with respect to the tip. It is shown how the force sensor function of such tips helps when studying large molecular adsorbates. Further prospects of more complex junctions equipped with numerous internal degrees of freedom are discussed. It is argued that the main problem impeding the utilization of such junctions is related to their control. An approach towards a higher degree of control is presented that is based on the analysis of single molecule manipulation experiments.

  11. Scanning probe microscopy: instrumentation and applications on thin films and magnetic multilayers.

    PubMed

    Karoutsos, Vagelis

    2009-12-01

    In this article we present a review on instrumentation and the modes of operation of a scanning probe microscope. In detail, we review the main techniques of Scanning Probe Microscopy (SPM), which are Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM), focusing our attention on the latter one. The AFM instrument provides information on the roughness and grain size of thin films. As an example we review recent results on two metallic thin film systems: thin Ag films deposited on glass, and Ni/Pt compositionally modulated multilayers deposited on glass, Si, and polyimide substrates. To show the validity of the grain size measurements, we compare the data with the ones resulting from X-ray diffraction (XRD) measurements. We show that the AFM results are reliable for grain diameters as small as 14 nm, which is approximately comparable to the tip radius. Finally, we deal with Magnetic Force Microscopy (MFM) results on Co/Pt and Co/Au multilayers. We observe perpendicularly magnetized domains. The domain configurations are correlated to the magnetization hysteresis curves.

  12. A Mythical History of the Scanning Probe Microscope - How it Could Have Been

    NASA Astrophysics Data System (ADS)

    Elings, Virgil

    2007-03-01

    The path from the ground breaking Topografiner by Young et. al. in 1972 to the current Atomic Force Microscopes was tortuous, to say the least. Now as an entrepreneur, they say that you should study the problem, work out a plan, and then execute the plan. Since this rarely works for me in real life, let's follow the mythical history of Phil the physics student whose simple approach to scanning probe microscopes during his summer job may explain life better than real life did. Comparisons between Phil's experience and real life will be made along the way to show how random real life was compared to Phil's straightforward approach. We will follow Phil as he goes from the Scanning Touching Microscope (STM) to the All Fancy Microscope (AFM) and ends up with a current scanning probe microscope. The ``lesson'' in this story is that when you are doing something new, you learn so much while you are doing it that what you thought at the beginning (the plan) is rarely the best way to go. It is more important, I believe, for entrepreneurs to explore possibilities and keep their eyes open along the way rather than pretend the path they are on is the right one. Phil is mythical because he always knew where he was headed and it was always the right direction. So how does Phil's story end? I'm working on it and will tell you at the March Meeting.

  13. A servomechanism for a micro-electro-mechanical-system-based scanning-probe data storage device

    NASA Astrophysics Data System (ADS)

    Pantazi, A.; Lantz, M. A.; Cherubini, G.; Pozidis, H.; Eleftheriou, E.

    2004-10-01

    Micro-electro-mechanical-system (MEMS)-based scanning-probe data storage devices are emerging as potential ultra-high-density, low-access-time, and low-power alternatives to conventional data storage. One implementation of probe-based storage uses thermomechanical means to store and retrieve information in thin polymer films. One of the challenges in building such devices is the extreme accuracy and the short latency required in the navigation of the probes over the polymer medium. This paper focuses on the design and characterization of a servomechanism to achieve such accurate positioning in a probe-based storage prototype. In our device, the polymer medium is positioned on a MEMS scanner with x/y-motion capabilities of about 100 µm. The device also includes thermal position sensors that provide x/y-position information to the servo controller. Based on a discrete state-space model of the scanner dynamics, a controller is designed using the linear quadratic Gaussian approach with state estimation. The random seek performance of this approach is evaluated and compared with that of the conventional proportional, integrator, and derivative (PID) approach. The results demonstrate the superiority of the state-space approach, which achieves seek times of about 4 ms in a ± 50 µm range. Finally, the experimental results show that closed-loop track following using the thermal position-sensor signals is feasible and yields a position-error standard deviation of approximately 2 nm.

  14. Probing the limits of the Derjaguin approximation with scanning force microscopy.

    PubMed

    Todd, Brian A; Eppell, Steven J

    2004-06-08

    We have measured the interaction force between a silicon nitride scanning force microscopy (SFM) probe and the basal plane of highly oriented pyrolitic graphite as a function of pH and ionic concentration in aqueous solutions. Forces in the range +/- 50 pN were reconstructed from measured signals using dynamical analysis of the cantilever. We modeled the force-separation data using a flat plate electric double-layer interaction and assumed the Derjaguin approximation to adapt the flat plate geometry for the SFM probe shape. Measured forces were well modeled by the theory at high ionic concentrations (10 and 100 mM), where Debye lengths were 3.0 and 0.96 nm, respectively. The theory failed to model forces at a lower ionic concentration (1 mM), where the Debye length was 9.6 nm. To investigate this, we calibrated the SFM probe geometry using blind reconstruction and obtained an apex radius of 7 nm. This value suggested that failure of the theory was due to an invalidation of the Derjaguin approximation at long Debye lengths, where the characteristic length scale for the interaction was larger than the size of the SFM probe. The errors were reduced by replacing the Derjaguin approximation with a surface element integration. The result experimentally demonstrates the limitations of the Derjaguin approximation for predicting interactions of nanoscale colloids.

  15. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    SciTech Connect

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with the theory. Chapter

  16. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    EPA Science Inventory

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  17. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    EPA Science Inventory

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  18. Chemical and Crystallographic Characterization of the Tip Apex in Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Hofmann, Thomas; Pielmeier, Florian; Giessibl, Franz J.

    2014-02-01

    The apex atom of a W scanning probe tip reveals a nonspherical charge distribution as probed by a CO molecule bonded to a Cu(111) surface [Welker et al., Science 336, 444 (2012).]. Three high-symmetry images were observed and related to three low-index crystallographic directions of the W bcc crystal. Open questions remained, such as the detectability of a contamination of W tips by sample material (here Cu), and the applicability of the method to distinguish other atomic species. In this work, we investigate bulk Cu and Fe tips. In both cases, we can associate our data with the fcc (Cu) and bcc (Fe) crystal structures using a simple electrostatic model that is based on the partial filling of d orbitals.

  19. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOEpatents

    DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

    2013-02-12

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  20. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOEpatents

    DiMambro, Joseph [Placitas, NM; Roach, Dennis P [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Nelson, Ciji L [Albuquerque, NM; Dasch, Cameron J [Boomfield Hills, MI; Moore, David G [Albuquerque, NM

    2012-01-03

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  1. Thymine Dimer Formation probed by Time-Resolved Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schreier, Wolfgang J.; Schrader, Tobias E.; Roller, Florian O.; Gilch, Peter; Zinth, Wolfgang; Kohler, Bern

    Cyclobutane pyrimidine dimers are the major photoproducts formed when DNA is exposed to UV light. Femtosecond time-resolved vibrational spectroscopy reveals that thymine dimers are formed in thymidine oligonucleotides in an ultrafast photoreaction.

  2. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection

    NASA Astrophysics Data System (ADS)

    Sadeghian, Hamed; Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; van den Dool, Teun; van Es, Maarten H.

    2015-11-01

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm3. It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz1/2. A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm2 to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.

  3. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection.

    PubMed

    Sadeghian, Hamed; Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; van den Dool, Teun; van Es, Maarten H

    2015-11-01

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm(3). It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz(1/2). A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm(2) to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.

  4. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection

    SciTech Connect

    Sadeghian, Hamed E-mail: h.sadeghianmarnani@tudelft.nl; Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; Dool, Teun van den; Es, Maarten H. van

    2015-11-15

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm{sup 3}. It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz{sup 1/2}. A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm{sup 2} to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.

  5. A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Conventional methods of spatially offset Raman spectroscopy (SORS) typically use single-fiber optical measurement probes to slowly and incrementally collect a series of spatially offset point measurements moving away from the laser excitation point on the sample surface, or arrays of multiple fiber ...

  6. Scanning Hall probe microscopy of magnetic vortices in very underdoped yttrium-barium-copper-oxide

    NASA Astrophysics Data System (ADS)

    Guikema, Janice Wynn

    Since their discovery by Bednorz and Muller in 1986, high-temperature cuprate superconductors have been the subject of intense research. Despite this effort, agreement on the mechanism of high- Tc has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density ns/m*. I implemented a scanning Hall probe microscope (SHPM) and used it to study magnetic vortices in newly available single crystals of very underdoped YBa2Cu3O6+x . These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth lambda ab), and revealed an intriguing phenomenon of "split" vortices. SHPM is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-phi0 (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail SHPM (and SQUID) studies of very underdoped YBa2Cu3O6+x crystals with T c ≤ 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher. We searched for predicted hc/ e vortices and a vortex memory effect with null results, placing upper bounds on the vison energy inconsistent with the theory. Chapter 5 discusses imaging of isolated vortices as a function of Tc. Vortex images were fit with theoretical magnetic field profiles in order to extract the apparent vortex size. The data for the lowest Tc 's (5 and 6.5 K) show some inhomogeneity and suggest that

  7. Teaching Plasmonics, Scanning Probe Microscopy and Other Useful Experiments at the Upper Level

    NASA Astrophysics Data System (ADS)

    Sanchez, Erik

    2012-10-01

    It is important to teach students concepts and experimental skills relating to modern research being performed today. Experiments that help educate students about the latest research helps them get jobs and into the doors at many great academic institutions. PSU's Advanced Experimental Class for physics undergraduates offers many novel experiments to help the students accomplish this task. Labs involving Plasmonics, thin film deposition, scanning probe microscopy (SPM) and more will be discussed. In addition, a new NSF funded project involving the building of a Do-It-Yourself (DIY) SPM will be discussed.

  8. What is Scanning Probe Microscopy? And How Can It Be Used In Failure Analysis?

    SciTech Connect

    Campbell, A.; Tangyunyong, P.

    1999-03-26

    Scanning probe microscopy (SPM) techniques are not suitable as global defect-localization tools. They can, however, pinpoint the exact location of the defects once the approximate locations of the defects have been identified by other failure analysis techniques. SPM techniques also provide information such as 3-D topology, current, surface potential, and 2-D dopant profile that may not be readily obtainable with other techniques. This information, coupled with the unparalleled spatial resolution and high detection sensitivity can be used by failure analysts for root cause analysis.

  9. Asymmetric actuating structure generates negligible influence on the supporting base for high performance scanning probe microscopies

    NASA Astrophysics Data System (ADS)

    Yi Yan, Gang; Bin Liu, Yong; Hua Feng, Zhi

    2014-02-01

    An asymmetric actuating structure generating negligible influence on the supporting base for high performance scanning probe microscopies is proposed in this paper. The actuator structure consists of two piezostacks, one is used for actuating while the other is for counterbalancing. In contrast with balanced structure, the two piezostacks are installed at the same side of the supporting base. The effectiveness of the structure is proved by some experiments with the actuators fixed to the free end of a cantilever. Experimental results show that almost all of the vibration modes of the cantilever are suppressed effectively at a wide frequency range of 90 Hz-10 kHz.

  10. Adsorption of biological molecules to a solid support for scanning probe microscopy.

    PubMed

    Müller, D J; Amrein, M; Engel, A

    1997-07-01

    Scanning probe microscopes are now established tools to study the surface structure of biological macromolecules under physiological conditions. Sample preparation methods for this microscopy all have the objective to attach the specimen firmly to a support. Here we analyse the commonly used method of adsorbing biological specimens to freshly cleaved mica. This is facilitated by adjusting the electrolyte concentration and the pH of the buffer solution. Native macromolecular systems absorbed to mica in this way can be reproducibly imaged at submolecular resolution.

  11. Probing the Superconducting Proximity Effect in a Topological Insultor using Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Dayton, Ian; Chung, Duck-Young; Chasapis, Thomas; Goodwin, Eric; Loloee, Reza; Kanatzidis, Mercouri; Tessmer, Stuart

    2015-03-01

    Topological insulators (TI) embody a new state of quantum matter characterized by topological invariants; this contrasts with superconductors (S), as superconductivity arises from a spontaneously broken symmetry of the underlying electron system. When a superconductor is placed on the surface of a topological insulator, the behavior of the superconducting condensate across the S/TI interface offers the opportunity to study the interplay between these two distinct quantum states. In this talk, we present our progress in applying cryogenic Scanning Tunneling Microscopy measurements to probe the local density of states in proximity to Pb/Bi2Se3 interfaces.

  12. Scanning probe microscopy of atoms and molecules on insulating films: from imaging to molecular manipulation.

    PubMed

    Meyer, Gerhard; Gross, Leo; Mohn, Fabian; Repp, Jascha

    2012-01-01

    Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) of single atoms and molecules on ultrathin insulating films have led to a wealth of novel observations and insights. Based on the reduced electronic coupling to the metallic substrate, these techniques allow the charge state of individual atoms to be controlled, orbitals of individual molecules to be imaged and metal-molecule complexes to be built up. Near-contact AFM adds the unique capabilities of imaging and probing the chemical structure of single molecules with atomic resolution. With the help of atomic/molecular manipulation techniques, chemical binding processes and molecular switches can be studied in detail.

  13. Scanning probe microscopy study of microcells from the organ surface Bonghan corpuscle

    NASA Astrophysics Data System (ADS)

    Kwon, Joonhyung; Baik, Ku Youn; Lee, Byung-Cheon; Soh, Kwang-Sup; Lee, Nam Joo; Kang, Chi Jung

    2007-04-01

    Microcells from organ surface Bonghan corpuscles [B. H. Kim, J. Acad. Med. Sci. DPR Kor. 90, 1 (1963)] of mammals have been studied by using optical microscopy, transmission electron microscopy and immunohistochemistry. In order to further investigate their physical and electrical properties at better resolution, many different modes of scanning probe microscopy were used in this research. Their surface morphology was studied by topography imaging and error-signal imaging of atomic force microscopy and their mechanical properties were investigated by force modulation microscopy. Electrostatic force microscopy was also used for their electrical characterization.

  14. Scanning Kelvin probe microscopy on organic field-effect transistors during gate bias stress

    NASA Astrophysics Data System (ADS)

    Mathijssen, S. G. J.; Cölle, M.; Mank, A. J. G.; Kemerink, M.; Bobbert, P. A.; de Leeuw, D. M.

    2007-05-01

    The reliability of organic field-effect transistors is studied using both transport and scanning Kelvin probe microscopy measurements. A direct correlation between the current and potential of a p-type transistor is demonstrated. During gate bias stress, a decrease in current is observed, that is correlated with the increased curvature of the potential profile. After gate bias stress, the potential changes consistently in all operating regimes: the potential profile gets more convex, in accordance with the simultaneously observed shift in threshold voltage. The changes of the potential are attributed to positive immobile charges, which contribute to the potential, but not to the current.

  15. Bioelectromechanical Imaging by Scanning Probe Microscopy: Galvani's Experiment at the Nanoscale

    SciTech Connect

    Kalinin, Sergei V; Rodriguez, Brian J; Shin, Junsoo; Jesse, Stephen; Grichko, V.; Thundat, Thomas George; Baddorf, Arthur P; Gruverman, A.

    2006-01-01

    Since the discovery in the late 18th century of electrically induced mechanical response in muscle tissue, coupling between electrical and mechanical phenomena has been shown to be a near-universal feature of biological systems. Here, we employ scanning probe microscopy (SPM) to measure the sub-Angstrom mechanical response of a biological system induced by an electric bias applied to a conductive SPM tip. Visualization of the spiral shape and orientation of protein fibrils with 5 nm spatial resolution in a human tooth and chitin molecular bundle orientation in a butterfly wing is demonstrated. In particular, the applicability of SPM-based techniques for the determination of molecular orientation is discussed.

  16. Probing photonic and optoelectronic structures by apertureless scanning near-field optical microscopy.

    PubMed

    Bachelot, Renaud; Lerondel, Gilles; Blaize, Sylvain; Aubert, Sebastien; Bruyant, Aurelien; Royer, Pascal

    2004-08-01

    This report presents the Apertureless Scanning Optical Near-Field Microscope as a powerful tool for the characterization of modern optoelectronic and photonic components with sub-wavelength resolution. We present an overview of the results we obtained in our laboratory over the past few years. By significant examples, it is shown that this specific probe microscopy allows for in situ local quantitative study of semiconductor lasers in operation, integrated optical waveguides produced by ion exchange (single channel or Y junction), and photonic structures. 2004 Wiley-Liss, Inc.

  17. Material Transport and Synthesis by Cantilever-free Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Liao, Xing

    Reliably synthesizing and transporting materials in nanoscale is the key question in many fields of nanotechnology. Cantilever-free scanning probe lithography, by replacing fragile and costly cantilevers with a robust and low cost elastomeric structure, fundamentally solved the low-throughput nature of scanning probe lithography, which has great potential to be a powerful and point-of-use tool for high throughput synthesis of various kinds of nanomaterials. Two nanolithographic methods, polymer pen lithography (PPL) and beam pen lithography (BPL), have been developed based on the cantilever-free architecture to directly deliver materials and transfer energy to substrates, respectively. The first portion of my thesis, including chapter two and chapter three, addresses major challenges remaining in the cantilever-free scanning probe lithographic techniques. Chapter two details the role of contact force in polymer pen lithography. A geometric model was developed to quantitatively explain the relationship between the z-piezo extension, the contact force and the resulted feature size. With such a model, force can be used as the in-situ feedback during the patterning and a new method for leveling the pen arrays was developed, which utilizes the total force between the pen arrays and the surface to achieve leveling with a tilt of less than 0.004°. In chapter three, massively multiplexed near-field photolithography has been demonstrated by combining BPL with a batch method to fabricate nanometer scale apertures in parallel fashion and a strategy to individually actuation of each pen in the pen array are discussed. This transformative combination enables one to writing arbitrary patterns composed of diffraction-unlimited features over square centimeter areas that are in registry with existing patterns and nanostructures, creating a unified tool for constructing and studying nanomaterials. The second portion of this thesis focuses on applications of cantilever-free scanning

  18. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    DOEpatents

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  19. Visualizing Topological Surface States using Scanning Tunneling Microscopy and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yazdani, Ali

    2010-03-01

    Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated by strong spin-orbit coupling. These novel materials are distinguished from ordinary insulators by the presence of gapless metallic boundary states, akin to the chiral edge modes in quantum Hall systems, but with unconventional spin textures. Angle resolved photoemission experiments and theoretical efforts have provided strong evidence for bulk topological insulators and their spin-chiral surface states in several Bi-based compounds. We have performed scanning tunneling microscopy and spectroscopic studies of topological surface states on a range of different compounds. I will describe how these experiments illustrate the importance of the spin-texture of these novel states on their scattering and quantum confinement. Experiments demonstrate that these states are protected from backscattering between opposite spin states due to their chiral spin textures. [1]. More recently, our studies were extended to determine the interplay between the influence of spin symmetry on scattering and the possibility of energy level quantization due to geometric confinement for topological surface states. [2] Work was done in collaboration with P. Roushan, J. Seo, H. Beidenkopf, Y.-S. Hor, C. Parker, D. Hsieh, D. Qian, and A. Richardella, M. Z. Hasan, R. Cava. Supported by ARO, ONR, and MRSEC through PCCM. [4pt] [1] P. Roushan et al. Nature 460, 1106 (2009). [0pt] [2] J. Seo et al. submitted (2009).

  20. Orthogonal Supramolecular Polymer Formation on Highly Oriented Pyrolytic Graphite (HOPG) Surfaces Characterized by Scanning Probe Microscopy.

    PubMed

    Gong, Yongxiang; Zhang, Siqi; Geng, Yanfang; Niu, Chunmei; Yin, Shouchun; Zeng, Qingdao; Li, Min

    2015-10-27

    Formation of an orthogonal supramolecular polymer on a highly oriented pyrolytic graphite (HOPG) surface was demonstrated for the first time by means of scanning probe microscopy (SPM). Atomic force microscopy (AFM) was employed to characterize the variation of both the thickness and the topography of the film formed from (1) monomer 1, (2) monomer 1/Zn(2+), and (3) monomer 1/Zn(2+)/cross-linker 2, respectively. Scanning tunneling microscopy (STM) was used to monitor the self-assembly behavior of monomer 1 itself, as well as 1/Zn(2+) ions binary system on graphite surface, further testifying for the formation of linear polymer via coordination interaction at the single molecule level. These results, given by the strong surface characterization tool of SPM, confirm the formation of the orthogonal polymer on the surface of graphite, which has great significance in regard to fabricating a complex superstructure on surfaces.

  1. MRT letter: An extended scanning probe microscopy system for macroscopic topography imaging.

    PubMed

    Fu, Ji; Li, Faxin

    2014-10-01

    Enlightened by the principle of scanning probe microscopy or atomic force microscope (AFM), we proposed a novel surface topography imaging system based on the scanning of a piezoelectric unimorph cantilever. The height of sample surface can be obtained by recording the cantilever's strain using an ultra-sensitive strain gauge and the Z-axis movement is realized by electric bending of the cantilever. This system can be operated in the way similar to the contact mode in AFM, with the practical height detection resolution better than 100 nm. Imaging of the inner surface of a steel tube and on a transparent wing of a honey bee were conducted and the obtained results showed that this proposed system is a very promising solution for in situ topography mapping.

  2. Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system

    PubMed Central

    Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.

    2012-01-01

    We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429

  3. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  4. A review of scanning probe microscopy investigations of liposome-DNA complexes.

    PubMed

    Mozafari, M R; Reed, C J; Rostron, C; Hasirci, V

    2005-01-01

    Liposome-DNA complexes are one of the most promising systems for the protection and delivery of nucleic acids to combat neoplastic, viral, and genetic diseases. In addition, they are being used as models in the elucidation of many biological phenomena such as viral infection and transduction. In order to understand these phenomena and to realize the mechanism of nucleic acid transfer by liposome-DNA complexes, studies at the molecular level are required. To this end, scanning probe microscopy (SPM) is increasingly being used in the characterization of lipid layers, lipid aggregates, liposomes, and their complexes with nucleic acid molecules. The most attractive attributes of SPM are the potential to image samples with subnanometer spatial resolution under physiological conditions and provide information on their physical and mechanical properties. This review describes the application of scanning tunneling microscopy and atomic force microscopy, the two most commonly applied SPM techniques, in the characterisation of liposome-DNA complexes.

  5. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor

    NASA Astrophysics Data System (ADS)

    Pelliccione, Matthew; Jenkins, Alec; Ovartchaiyapong, Preeti; Reetz, Christopher; Emmanuelidu, Eve; Ni, Ni; Bleszynski Jayich, Ania

    The nitrogen vacancy (NV) defect in diamond has emerged as a promising candidate for high resolution magnetic imaging based on its atomic size and quantum-limited sensing capabilities afforded by long spin coherence times. Although the NV center has been successfully implemented as a nanoscale scanning magnetic probe at room temperature, it has remained an outstanding challenge to extend this capability to cryogenic temperatures, where many solid-state systems exhibit non-trivial magnetic order. In this talk, we present NV magnetic imaging at T = 6 K, first benchmarking the technique with a magnetic hard disk sample, then utilizing the technique to image vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 with Tc = 30 K. In addition, we discuss other candidate solid-state systems that can benefit from the high spatial resolution and field sensitivity of the scanning NV magnetometer.

  6. Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong

    2015-03-01

    We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.

  7. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    NASA Astrophysics Data System (ADS)

    Haemmerli, Alexandre J.; Harjee, Nahid; Koenig, Markus; Garcia, Andrei G. F.; Goldhaber-Gordon, David; Pruitt, Beth L.

    2015-07-01

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design, fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz-10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.

  8. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    SciTech Connect

    Haemmerli, Alexandre J.; Pruitt, Beth L.; Harjee, Nahid; Koenig, Markus; Garcia, Andrei G. F.; Goldhaber-Gordon, David

    2015-07-21

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design, fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.

  9. Waveguide analysis of heat-drawn and chemically etched probe tips for scanning near-field optical microscopy.

    PubMed

    Moar, Peter N; Love, John D; Ladouceur, François; Cahill, Laurence W

    2006-09-01

    We analyze two basic aspects of a scanning near-field optical microscope (SNOM) probe's operation: (i) spot-size evolution of the electric field along the probe with and without a metal layer, and (ii) a modal analysis of the SNOM probe, particularly in close proximity to the aperture. A slab waveguide model is utilized to minimize the analytical complexity, yet provides useful quantitative results--including losses associated with the metal coating--which can then be used as design rules.

  10. Note: Fabrication and characterization of molybdenum tips for scanning tunneling microscopy and spectroscopy

    SciTech Connect

    Carrozzo, P.; Tumino, F.; Facibeni, A.; Passoni, M.; Casari, C. S.; Li Bassi, A.

    2015-01-15

    We present a method for the preparation of bulk molybdenum tips for Scanning Tunneling Microscopy and Spectroscopy and we assess their potential in performing high resolution imaging and local spectroscopy by measurements on different single crystal surfaces in UHV, namely, Au(111), Si(111)-7 × 7, and titanium oxide 2D ordered nanostructures supported on Au(111). The fabrication method is versatile and can be extended to other metals, e.g., cobalt.

  11. Automatic transperineal ultrasound probe positioning based on CT scan for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Camps, S. M.; Verhaegen, F.; Paiva Fonesca, G.; de With, P. H. N.; Fontanarosa, D.

    2017-03-01

    Image interpretation is crucial during ultrasound image acquisition. A skilled operator is typically needed to verify if the correct anatomical structures are all visualized and with sufficient quality. The need for this operator is one of the major reasons why presently ultrasound is not widely used in radiotherapy workflows. To solve this issue, we introduce an algorithm that uses anatomical information derived from a CT scan to automatically provide the operator with a patient-specific ultrasound probe setup. The first application we investigated, for its relevance to radiotherapy, is 4D transperineal ultrasound image acquisition for prostate cancer patients. As initial test, the algorithm was applied on a CIRS multi-modality pelvic phantom. Probe setups were calculated in order to allow visualization of the prostate and adjacent edges of bladder and rectum, as clinically required. Five of the proposed setups were reproduced using a precision robotic arm and ultrasound volumes were acquired. A gel-filled probe cover was used to ensure proper acoustic coupling, while taking into account possible tilted positions of the probe with respect to the flat phantom surface. Visual inspection of the acquired volumes revealed that clinical requirements were fulfilled. Preliminary quantitative evaluation was also performed. The mean absolute distance (MAD) was calculated between actual anatomical structure positions and positions predicted by the CT-based algorithm. This resulted in a MAD of (2.8±0.4) mm for prostate, (2.5±0.6) mm for bladder and (2.8±0.6) mm for rectum. These results show that no significant systematic errors due to e.g. probe misplacement were introduced.

  12. Improved scanning range for coherent anti-stokes Raman spectroscopy using a tunable optical parametric oscillator.

    PubMed

    Chen, P C

    1996-09-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is a well-known form of nonlinear spectroscopy that has been used for a wide range of specialized quantitative applications. From an analytical chemist's point of view, however, conventional CARS is impractical as a tool for qualitative and quantitative analyses because the scan range is too short to produce complete vibrational spectra. This paper introduces a new technique, synchronously scanned optical parametric oscillator (OPO) CARS, that improves the potential for using nonlinear spectroscopy as an analytical technique in both gas- and condensed-phase samples. First, it uses a broadly tunable OPO to increase the scan range. Second, phase matching problems that limit scans in condensed-phase CARS are reduced by using both the signal and the idler beams in a synchronous scanning manner. Finally, this synchronous scanning method generates an output signal that remains fixed at a single wavelength (single-wavelength detection). Advantages of single-wavelength detection include reduction of stray light, simplicity, and elimination of the need for wavelength calibration of the detection optics. Results are presented on neat and mixed samples in gas and condensed phases.

  13. Probing deeper by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Risterucci, P.; Renault, O. Martinez, E.; Delaye, V.; Detlefs, B.; Zegenhagen, J.; Gaumer, C.; Grenet, G.; Tougaard, S.

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15 keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-κ/metal gate stack capped with 50 nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50 nm.

  14. Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography

    NASA Astrophysics Data System (ADS)

    Kaestner, Marcus; Hofer, Manuel; Rangelow, Ivo W.

    2013-07-01

    Going "beyond the CMOS information-processing era," taking advantage of quantum effects occurring at sub-10-nm level, requires novel device concepts and associated fabrication technologies able to produce promising features at acceptable cost levels. Herein, the challenge affecting the lithographic technologies comprises the marriage of down-scaling the device-relevant feature size towards single-nanometer resolution with a simultaneous increase of the throughput capabilities. Mix-and-match lithographic strategies are one promising path to break through this trade-off. Proof-of-concept combining electron beam lithography (EBL) with the outstanding capabilities of closed-loop electric field current-controlled scanning probe nanolithography (SPL) is demonstrated. This combination, whereby also extreme ultraviolet lithography (EUVL) is possible instead of EBL, enables more: improved patterning resolution and reproducibility in combination with excellent overlay and placement accuracy. Furthermore, the symbiosis between EBL (EUVL) and SPL expands the process window of EBL (EUVL) beyond the state of the art, allowing SPL-based pre- and post-patterning of EBL (EUVL) written features at critical dimension levels with scanning probe microscopy-based pattern overlay alignment capability. Moreover, we are able to modify the EBL (EUVL) pattern even after the development step. The ultra-high resolution mix-and-match lithography experiments are performed on the molecular glass resist calixarene using a Gaussian e-beam lithography system operating at 10 keV and a home-developed SPL setup.

  15. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania.

    PubMed

    Prauzner-Bechcicki, Jakub S; Zajac, Lukasz; Olszowski, Piotr; Jöhr, Res; Hinaut, Antoine; Glatzel, Thilo; Such, Bartosz; Meyer, Ernst; Szymonski, Marek

    2016-01-01

    Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania-sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania-sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well.

  16. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

    PubMed Central

    Zajac, Lukasz; Olszowski, Piotr; Jöhr, Res; Hinaut, Antoine; Glatzel, Thilo; Such, Bartosz; Meyer, Ernst; Szymonski, Marek

    2016-01-01

    Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania–sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania–sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well. PMID:28144513

  17. Facile Preparation of a Platinum Silicide Nanoparticle-Modified Tip Apex for Scanning Kelvin Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ting; Chen, Yu-Wei; Su, James; Wu, Chien-Ting; Hsiao, Chien-Nan; Shiao, Ming-Hua; Chang, Mao-Nan

    2015-10-01

    In this study, we propose an ultra-facile approach to prepare a platinum silicide nanoparticle-modified tip apex (PSM tip) used for scanning Kelvin probe microscopy (SKPM). We combined a localized fluoride-assisted galvanic replacement reaction (LFAGRR) and atmospheric microwave annealing (AMA) to deposit a single platinum silicide nanoparticle with a diameter of 32 nm on the apex of a bare silicon tip of atomic force microscopy (AFM). The total process was completed in an ambient environment in less than 3 min. The improved potential resolution in the SKPM measurement was verified. Moreover, the resolution of the topography is comparable to that of a bare silicon tip. In addition, the negative charges found on the PSM tips suggest the possibility of exploring the use of current PSM tips to sense electric fields more precisely. The ultra-fast and cost-effective preparation of the PSM tips provides a new direction for the preparation of functional tips for scanning probe microscopy.

  18. Novel failure analysis techniques using photon probing with a scanning optical microscope

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.; Rife, J.L.; Barton, D.L.; Henderson, C.L.

    1993-12-31

    Three new failure analysis techniques for integrated circuits (ICs) have been developed using localized photon probing with a scanning optical microscope (SOM). The first two are light-induced voltage alteration (LIVA) imaging techniques that (1) localize open-circuited and damaged junctions and (2) image transistor logic states. The third technique uses the SOM to control logic states optically from the IC backside. LIVA images are produced by monitoring the voltage fluctuations of a constant current power supply as a laser beam is scanned over the IC. High selectivity for localizing defects has been demonstrated using the LIVA approach. Logic state mapping results, similar to previous work using biased optical beam induced current (OBIC) and laser probing approaches have also been produced using LIVA. Application of the two LIVA based techniques to backside failure analysis has been demonstrated using an infrared laser source. Optical logic state control is based upon earlier work examining transistor response to photon injection. The physics of each method and their applications for failure analysis are described.

  19. Triboelectric sensor as self-powered signal reader for scanning probe surface topography imaging

    NASA Astrophysics Data System (ADS)

    Yu, Aifang; Chen, Libo; Chen, Xiangyu; Zhang, Aihua; Fan, Fengru; Zhan, Yan; Wang, Zhong Lin

    2015-04-01

    We report a self-powered signal reading mechanism for imaging surface topography using a triboelectric sensor (TES) without supplying an external power or light source. A membrane-structured triboelectric nanogenerator (TENG) is designed at the root of a whisker (probe); the deflection of the whisker causes the two contacting surfaces of the TENG to give an electric output current/voltage that responds to the bending degree of the whisker when it scans over a rough surface. A series of studies were carried out to characterize the performance of the TES, such as high sensitivity of 0.45 V mm-1, favorable repeating of standard deviation 8 mV, high Z-direction resolution of 18 μm, as well as lateral resolution of 250 μm by using a probe of size 11 mm in the length and 120 μm in radius. It not only can recognize the surface feature and size but also can perform a surface topography imaging in scanning mode. This work shows the potential of a TES as a self-powered tactile sensor for applications at relatively low spatial resolution.

  20. Laser-based technology of scanning near-field optical probes fabrication: study of kinetics and progress of measuring

    NASA Astrophysics Data System (ADS)

    Veiko, Vadim P.; Kalachev, Alexey I.; Kaporsky, Lev N.; Volkov, Sergey A.; Voznesensky, Nikolay B.

    2003-02-01

    Basic principles of laser assisted process of fiber etching for scanning near-field optical (SNO) probes formation and control technique are presented. The thermal and temporal regimes are considered in order to provide stable reproducibility and high quality of a tapered end of the optical fiber. Problems of adequate definition of the scanning imaging properties of a SNO probe are discussed. Thus an optical method of far-field registration and processing together with a new autoelectronic emission method are considered for solution of the task of a subwavelength SNO probe aperture measurement and estimation of its apparatus function.

  1. Nanometer-scale variations in interface potential by scanning probe microscopy

    SciTech Connect

    Huey, B.D.; Lisjak, D.; Bonnell, D.A. . Dept. of Materials Science)

    1999-07-01

    The local electrical potential at individual grain boundaries and the potential distributions across polycrystalline samples have been measured by using scanning surface potential imaging with an atomic force microscope. Individual grain boundaries are isolated for measurement by micropatterning an array of contacts onto the surface of a ZnO-based varistor material. Quantification of the voltage dependence of the local voltage decrease and resistivity is illustrated. Comparisons are made by using optical and electron microscopy and spectroscopy. On a larger scale, potential distributions are mapped in a polycrystalline ZnO-NiO system that exhibits positive temperature coefficient of resistivity behavior.

  2. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    SciTech Connect

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  3. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy.

    PubMed

    Albers, Boris J; Liebmann, Marcus; Schwendemann, Todd C; Baykara, Mehmet Z; Heyde, Markus; Salmeron, Miquel; Altman, Eric I; Schwarz, Udo D

    2008-03-01

    We present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  4. STM Spectroscopy Probe of Field Depairing and Vortex Lattice Transition in a Multiband Superconductor

    NASA Astrophysics Data System (ADS)

    Fridman, I.; Lukic, V.; Kloc, C.; Petrovic, C.; Wei, J. Y. T.

    2014-03-01

    The Cooper pairing in a variety of superconductors involves carriers from multiple bands, which can optimize the pairing phase space and provide novel pairing interactions. We have developed a novel technique to probe multiband pairing, using a directional diamagnetic supercurrent to perturb the quasiparticle density-of-states spectrum, and measuring the spectral evolution due to pair breaking by finite superfluid momentum. This technique is demonstrated on the layered superconductor 2H-NbSe2, using a scanning tunneling microscope (STM) at 300 mK with an in-plane magnetic field up to 9 T. The STM spectroscopy measurements revealed unambiguous evidence for multiband pairing, as well as a novel reorientation transition of the in-plane vortex lattice. We will discuss the first-order and quantum-critical characteristics of this transition, in terms of the geometric frustration of a distorted hexagonal vortex lattice, and show that this transition is intimately related to the multiband pairing. Work supported by NSERC, CFI/OIT, CIFAR, U.S. DOE and Brookhaven Science Associates (No. DE-Ac02-98CH10886).

  5. Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy.

    PubMed

    Rodriguez, R D; Sheremet, E; Müller, S; Gordan, O D; Villabona, A; Schulze, S; Hietschold, M; Zahn, D R T

    2012-12-01

    There are many challenges in accomplishing tip-enhanced Raman spectroscopy (TERS) and obtaining a proper tip is probably the greatest one. Since tip size, composition, and geometry are the ultimate parameters that determine enhancement of intensity and lateral resolution, the tip becomes the most critical component in a TERS experiment. However, since the discovery of TERS the cantilevers used in atomic force microscopy (AFM) have remained basically the same: commercial silicon (or silicon nitride) tips covered by a metallic coating. The main issues of using metal-coated silicon cantilevers, such as wearing off of the metal layer or increased tip radius, can be completely overcome by using all-metal cantilevers. Until now in TERS experiments such probes have only been used in a scanning tunneling microscope or in a tuning fork-based shear force microscope but not in AFM. In this work for the first time, we show the use of compact silver cantilevers that are fully compatible with contact and tapping modes in AFM demonstrating their superb performance in TERS experiments.

  6. Probing vibrational anisotropy with nuclear resonance vibrational spectroscopy.

    SciTech Connect

    Pavlik, J. W.; Barabanschikov, A.; Oliver, A. G.; Alp, E. E.; Sturhahn, W.; Zhao, J.; Sage, J. T.; Scheidt, W. R.

    2010-06-14

    A NRVS single-crystal study (NRVS=nuclear resonance vibrational spectroscopy) has provided detailed information on the in-plane modes of nitrosyl iron porphyrinate [Fe(oep)(NO)] (see picture; oep=octaethylporphyrin). The axial nitrosyl ligand controls the direction of the in-plane iron motion.

  7. Scanning thermo-ionic microscopy for probing local electrochemistry at the nanoscale

    NASA Astrophysics Data System (ADS)

    Eshghinejad, Ahmadreza; Nasr Esfahani, Ehsan; Wang, Peiqi; Xie, Shuhong; Geary, Timothy C.; Adler, Stuart B.; Li, Jiangyu

    2016-05-01

    Conventional electrochemical characterization techniques based on voltage and current measurements only probe faradaic and capacitive rates in aggregate. In this work we develop a scanning thermo-ionic microscopy (STIM) to probe local electrochemistry at the nanoscale, based on imaging of Vegard strain induced by thermal oscillation. It is demonstrated from both theoretical analysis and experimental validation that the second harmonic response of thermally induced cantilever vibration, associated with thermal expansion, is present in all solids, whereas the fourth harmonic response, caused by local transport of mobile species, is only present in ionic materials. The origin of STIM response is further confirmed by its reduced amplitude with respect to increased contact force, due to the coupling of stress to concentration of ionic species and/or electronic defects. The technique has been applied to probe Sm-doped Ceria and LiFePO4, both of which exhibit higher concentrations of mobile species near grain boundaries. The STIM gives us a powerful method to study local electrochemistry with high sensitivity and spatial resolution for a wide range of ionic systems, as well as ability to map local thermomechanical response.

  8. Design and testing of prototype handheld scanning probes for optical coherence tomography

    PubMed Central

    Demian, Dorin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-01-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic—for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat—in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. PMID:25107512

  9. Scanning thermo-ionic microscopy for probing local electrochemistry at the nanoscale

    SciTech Connect

    Eshghinejad, Ahmadreza; Nasr Esfahani, Ehsan; Wang, Peiqi; Li, Jiangyu; Xie, Shuhong; Geary, Timothy C.; Adler, Stuart B.

    2016-05-28

    Conventional electrochemical characterization techniques based on voltage and current measurements only probe faradaic and capacitive rates in aggregate. In this work we develop a scanning thermo-ionic microscopy (STIM) to probe local electrochemistry at the nanoscale, based on imaging of Vegard strain induced by thermal oscillation. It is demonstrated from both theoretical analysis and experimental validation that the second harmonic response of thermally induced cantilever vibration, associated with thermal expansion, is present in all solids, whereas the fourth harmonic response, caused by local transport of mobile species, is only present in ionic materials. The origin of STIM response is further confirmed by its reduced amplitude with respect to increased contact force, due to the coupling of stress to concentration of ionic species and/or electronic defects. The technique has been applied to probe Sm-doped Ceria and LiFePO{sub 4}, both of which exhibit higher concentrations of mobile species near grain boundaries. The STIM gives us a powerful method to study local electrochemistry with high sensitivity and spatial resolution for a wide range of ionic systems, as well as ability to map local thermomechanical response.

  10. Design and testing of prototype handheld scanning probes for optical coherence tomography.

    PubMed

    Demian, Dorin; Duma, Virgil-Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-08-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic-for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat-in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated.

  11. Near-Field Optical Microscopy and Spectroscopy with Pointed Probes

    DTIC Science & Technology

    2006-01-01

    metal nanostructure can be viewed as an optical antenna . Of course, the efficiency depends on the material composition and the geometry of the...nanostructure. A simple form of optical antenna is a single ellipsoidal particle. This particle ex- hibits a distinct resonance for which the field...Grober RD, Schoelkopf RJ, Prober DE. 1997. Optical antenna : towards a unity efficiency near-field optical probe. Appl. Phys. Lett. 70:1354 54. Farahani

  12. Pump-Probe Spectroscopy of Two-Body Correlations in Ultracold Gases

    SciTech Connect

    Koch, Christiane P.; Kosloff, Ronnie

    2009-12-31

    We suggest pump-probe spectroscopy to study pair correlations that determine the many-body dynamics in weakly interacting, dilute ultracold gases. A suitably chosen, short laser pulse depletes the pair density locally, creating a 'hole' in the electronic ground state. The dynamics of this nonstationary pair density is monitored by a time-delayed probe pulse. The resulting transient signal allows us to spectrally decompose the hole and to map out the pair correlation function.

  13. Pump-probe photoelectron spectroscopy by a high-power 90 nm vacuum-ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Sato, Motoki; Suzuki, Yoshi-ichi; Suzuki, Toshinori; Adachi, Shunsuke

    2016-02-01

    We present pump-probe photoelectron spectroscopy of Kr and NO using a high-power vacuum-ultraviolet (VUV) laser at a wavelength of 90 nm. Clear quantum beats are observed in the photoelectron angular distributions as well as in the photoelectron yields, resulting from the coherent excitation of two Kr Rydberg states by the VUV pump. The entire Franck-Condon envelope of the NO A(2Σ+) excited state is also successfully captured by the VUV probe.

  14. Scanned-probe lateral-force determination of fluid-dynamic effects near a solid surface in air

    NASA Astrophysics Data System (ADS)

    Drummond Roby, M. A.; Wetsel, G. C., Jr.; Wang, C.-Y.

    1996-07-01

    A calibrated method for the experimental determination of dynamic lateral force using a scanned probe in air has been applied to the measurement of force vs distance as the probe tip approaches a solid surface. The probe is a fused silica fiber vibrated with its axis perpendicular to the surface in a configuration commonly used for distance regulation in near-field scanned optical microscopes. Quantitative agreement of a fluid-dynamic model with the approach data demonstrates that the effects of fluids between the probe and the surface dominate the force on the probe in the optical far field. A two-layer fluid model indicates that fluid-dynamic effects must also be considered in lateral-force determination in the optical near field.

  15. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    USDA-ARS?s Scientific Manuscript database

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0–2815 cm-1 using a detection mod...

  16. Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-TRFS)

    PubMed Central

    Ma, Dinglong; Bec, Julien; Gorpas, Dimitris; Yankelevich, Diego; Marcu, Laura

    2015-01-01

    We report a novel technique for continuous acquisition, processing and display of fluorescence lifetimes enabling real-time tissue diagnosis through a single hand held or biopsy fiber-optic probe. A scanning multispectral time-resolved fluorescence spectroscopy (ms-TRFS) with self-adjustable photon detection range was developed to account for the dynamic changes of fluorescence intensity typically encountered in clinical application. A fast algorithm was implemented in the ms-TRFS software platform, providing up to 15 Hz continuous display of fluorescence lifetime values. Potential applications of this technique, including biopsy guidance, and surgical margins delineation were demonstrated in proof-of-concept experiments. Current results showed accurate display of fluorescence lifetimes values and discrimination of distinct fluorescence markers and tissue types in real-time (< 100 ms per data point). PMID:25798320

  17. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.

    PubMed

    Krivanek, Ondrej L; Ursin, Jonathan P; Bacon, Neil J; Corbin, George J; Dellby, Niklas; Hrncirik, Petr; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S

    2009-09-28

    An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

  18. Extending the scope of NMR spectroscopy with microcoil probes.

    PubMed

    Schroeder, Frank C; Gronquist, Matthew

    2006-11-06

    Capillary NMR (CapNMR) spectroscopy has emerged as a major breakthrough for increasing the mass-sensitivity of NMR spectroscopic analysis and enabling the combination of NMR spectroscopy with other analytical techniques. Not only is the acquisition of high-sensitivity spectra getting easier but the quality of CapNMR spectra obtained in many small-molecule applications exceeds what can be accomplished with conventional designs. This Minireview discusses current CapNMR technology and its applications for the characterization of mass-limited, small-molecule and protein samples, the rapid screening of small-molecule or protein libraries, as well as hyphenated techniques that combine CapNMR with other analytical methods.

  19. Physics of drug delivery: dielectric spectroscopy to probe mucoadhesion

    NASA Astrophysics Data System (ADS)

    Stromme, Maria

    2003-04-01

    This work presents how dielectric spectroscopy can be used as a tool to obtain insight about properties on the nano-scale of interfaces of pharmaceutical interest. An outline for studying the adhesion in terms of a compatibility factor between pharmaceutical gels and biological tissue is put forward. The proposed compatibility factor is calculated from the high frequency response (kHz region) of the gel and porcine nasal mucosa separately, and from that of the combined system. It gives an assessment of the possibilities of intimate surface contact, which is generally considered to be the first step in the mucoadhesion process. The results from dielectric spectroscopy were compared to measurements using a tensile strength method and it was found that the gels with the highest compatibility factors were the same as those pointed out as having the highest mucoadhesion using the tensile strength method.

  20. Surface Raman spectroscopy as a probe of surface chemistry

    NASA Astrophysics Data System (ADS)

    Child, Craig M.; Foster, Michelle; Ivanecky, J. E., III; Perry, Scott S.; Campion, Alan

    1995-09-01

    Unenhanced surface Raman spectroscopy has been used to study the chemistry of polymers adsorbed on solid surfaces and the chemical enhancement mechanism of surface-enhanced Raman scattering. The adsorption and reactions of the polyimide monomers pyromellitic dianhydride (PMDA) and oxydianiline on silver, copper and silicon surfaces under ultrahigh vacuum have been investigated. These include both nondissociative physisorption and dissociative chemisorption of the monomers, and the condensation polymerization to form adsorbed polyimide. The intermediate polyamic acid is detected for the first time in a surface experiment. PMDA adsorbed on Cu(111) shows chemical enhancement in the absence of electromagnetic enhancement. High resolution electron energy loss spectroscopy has revealed a strong charge transfer absorption near the Raman excitation frequency. This observation provides strong support for a proposed resonance Raman chemical enhancement mechanism.

  1. An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts.

    PubMed

    Rus, Eric D; Wang, Hongsen; Legard, Anna E; Ritzert, Nicole L; Van Dover, Robert Bruce; Abruña, Héctor D

    2013-02-01

    A combined scanning differential electrochemical mass spectrometer (SDEMS)-scanning electrochemical microscope (SECM) apparatus is described. The SDEMS is used to detect and spatially resolve volatile electrochemically generated species at the surface of a substrate electrode. The SECM can electrochemically probe the reactivity of the surface and also offers a convenient means of leveling the sample. It is possible to switch between these two different scanning tips and techniques without moving the sample and while maintaining potential control of the substrate electrode. A procedure for calibration of the SDEMS tip-substrate separation, based upon the transit time of electrogenerated species from the substrate to the tip is also described. This instrument can be used in the characterization of combinatorial libraries of direct alcohol fuel cell anode catalysts. The apparatus was used to analyze the products of methanol oxidation at a Pt substrate, with the SDEMS detecting carbon dioxide and methyl formate, and a PtPb-modified Pt SECM tip used for the selective detection of formic acid. As an example system, the electrocatalytic methanol oxidation activity of a sputter-deposited binary PtRu composition spread in acidic media was analyzed using the SDEMS. These results are compared with those obtained from a pH-sensitive fluorescence assay.

  2. Ultra-Compact Multitip Scanning Probe Microscope with an Outer Diameter of 50 mm

    NASA Astrophysics Data System (ADS)

    Cherepanov, Vasily; Zubkov, Evgeny; Junker, Hubertus; Korte, Stefan; Blab, Marcus; Coenen, Peter; Voigtländer, Bert

    We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or an SEM in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called Koala Drive which can have a diameter greater than 2.5 mm and a length smaller than 10 mm. Alternating movements of springs move a central tube which holds the STM tip or AFM sensor. This new operating principle provides a smooth travel sequence and avoids shaking which is intrinsically present for nanopositioners based on inertial motion with saw tooth driving signals. Inserting the Koala Drive in a piezo tube for xyz-scanning integrates a complete STM inside a 4 mm outer diameter piezo tube of <10 mm length. The use of the Koala Drive makes the scanning probe microscopy design ultra-compact and accordingly leads to a high mechanical stability. The drive is UHV, low temperature, and magnetic field compatible. The compactness of the Koala Drive allows building a four-tip STM as small as a single-tip STM with a drift of <0.2 nm/min and lowest resonance frequencies of 2.5 (xy) and 5.5 kHz (z). We present examples of the performance of the multitip STM designed using the Koala Drive.

  3. An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts

    NASA Astrophysics Data System (ADS)

    Rus, Eric D.; Wang, Hongsen; Legard, Anna E.; Ritzert, Nicole L.; Bruce Van Dover, Robert; Abruña, Héctor D.

    2013-02-01

    A combined scanning differential electrochemical mass spectrometer (SDEMS)-scanning electrochemical microscope (SECM) apparatus is described. The SDEMS is used to detect and spatially resolve volatile electrochemically generated species at the surface of a substrate electrode. The SECM can electrochemically probe the reactivity of the surface and also offers a convenient means of leveling the sample. It is possible to switch between these two different scanning tips and techniques without moving the sample and while maintaining potential control of the substrate electrode. A procedure for calibration of the SDEMS tip-substrate separation, based upon the transit time of electrogenerated species from the substrate to the tip is also described. This instrument can be used in the characterization of combinatorial libraries of direct alcohol fuel cell anode catalysts. The apparatus was used to analyze the products of methanol oxidation at a Pt substrate, with the SDEMS detecting carbon dioxide and methyl formate, and a PtPb-modified Pt SECM tip used for the selective detection of formic acid. As an example system, the electrocatalytic methanol oxidation activity of a sputter-deposited binary PtRu composition spread in acidic media was analyzed using the SDEMS. These results are compared with those obtained from a pH-sensitive fluorescence assay.

  4. Characterization of High Resolution Resists and Metal Shims by Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Sexton, B. A.; Marnock, R. J.

    2000-03-01

    Technologies such as compact disc (CD) manufacturing, hologram embossing, and security printing rely on the reproduction of micro-patterns generated on surfaces by optical or electron-beam lithographic writing onto electron-beam or photoresists. The periodicity of such patterns varies from sub-micron to several microns, with depths up to 0.5 [mu]m. The scanning probe microscope (SPM) is becoming a routine tool for analysis of these micro-patterns, to check on depths and lateral dimensions of features. Direct scanning of resist-covered plates is now possible, without damage, using resonant low-contact force SPM with etched silicon cantilevers. Metal shims produced from the master resist plates can also be scanned and checked for defects prior to production of embossed foils. The present article discusses examples of the use of a Digital Instruments 3100 microscope in analysis of production electron-beam lithography plates with a 0.5 [mu]m resist thickness. We also examine features of nickel replicas (father and mother shims) produced by electroforming from the original plate. With SPM measurements of the development profile of a particular plate, corrections can be made to exposures and development times during production to correct errors. An example is given of such a feedback process.

  5. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  6. Aberrated electron probes for magnetic spectroscopy with atomic resolution: Theory and practical aspects

    DOE PAGES

    Rusz, Ján; Idrobo, Juan Carlos

    2016-03-24

    It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. Here we present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  7. Aberrated electron probes for magnetic spectroscopy with atomic resolution: Theory and practical aspects

    SciTech Connect

    Rusz, Ján; Idrobo, Juan Carlos

    2016-03-24

    It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. Here we present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  8. Time-resolved pump-probe spectroscopy of intraband absorption by a semiconductor nanorod

    NASA Astrophysics Data System (ADS)

    Leonov, Mikhail Y.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory of time-resolved pump-probe optical spectroscopy of intraband absorption of a probe pulse inside an anisotropic semiconductor nanorod. The absorption is preceded by the absorption of the pump pulse resonant to an interband transition. It is assumed that the resonantly exited states of the nanorod are interrelated via the relaxation induced by their interaction with a bath. We reveal the conditions for which the absorption of the probe's pulse is governed by a simple formula regardless of the pulse's shape. This formula is useful for the analysis of the experimental data containing information on the relaxation parameters of the nanorod's electronic subsystem.

  9. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy

    PubMed Central

    Hennessy, Ricky; Goth, Will; Sharma, Manu; Markey, Mia K.; Tunnell, James W.

    2014-01-01

    Abstract. The sampling depth of light for diffuse reflectance spectroscopy is analyzed both experimentally and computationally. A Monte Carlo (MC) model was used to investigate the effect of optical properties and probe geometry on sampling depth. MC model estimates of sampling depth show an excellent agreement with experimental measurements over a wide range of optical properties and probe geometries. The MC data are used to define a mathematical expression for sampling depth that is expressed in terms of optical properties and probe geometry parameters. PMID:25349033

  10. Chemical-contrast imaging with pulse-shaping based pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Flynn, Daniel C.; Bhagwat, Amar R.; Ogilvie, Jennifer P.

    2013-02-01

    Ultrafast pump-probe spectroscopy and pulse-shaping techniques are providing new modes of contrast for the field of multiphoton microscopy. Endogenous species such as heme proteins show rich nonlinear spectroscopic signatures of excited state absorption, stimulated emission and ground-state bleaching. Commercially available octave-spanning Ti:sapphire oscillators offer new opportunities for imaging based on pump-probe contrast. Spatial light modulators take advantage of this large bandwidth, shaping pulses of light to selectively excite molecular structures with similar spectral properties. We present two-color pump-probe imaging of heme proteins solutions and red blood cells.

  11. Probing DNA hybridization efficiency and single base mismatch by X-ray photoelectron spectroscopy.

    PubMed

    Liu, Zheng-Chun; Zhang, Xin; He, Nong-Yue; Lu, Zu-Hong; Chen, Zhen-Cheng

    2009-07-01

    We demonstrated the use of X-ray photoelectron spectroscopy (XPS) to study DNA hybridization. Target DNA labeled with hexachloro-fluorescein (HEX) was hybridized to DNA arrays with four different probes. Each probe dot of the hybridized arrays was detected with XPS. The XPS Cl2p peak areas were found to decrease with an increase in mismatched bases in DNA probes. The Cl2p core-level peak area ratio of a probe perfectly matched to one, two and three base-mismatched probes accorded well with the results of conventional fluorescent imaging, which shows that XPS is a potential tool for analyzing DNA arrays. The DNA arrays' hybridization efficiency was assessed by the molar ratio of chlorine to phosphorus in a DNA strand, which was determined from the relevant XPS Cl2p and P2p core-level peak areas after hybridization. This could provide a new method to detect DNA hybridization efficiency.

  12. Permeability of anti-fouling PEGylated surfaces probed by fluorescence correlation spectroscopy.

    PubMed

    Daniels, Charlisa R; Reznik, Carmen; Kilmer, Rachel; Felipe, Mary Jane; Tria, Maria Celeste R; Kourentzi, Katerina; Chen, Wen-Hsiang; Advincula, Rigoberto C; Willson, Richard C; Landes, Christy F

    2011-11-01

    The present work reports on in situ observations of the interaction of organic dye probe molecules and dye-labeled protein with different poly(ethylene glycol) (PEG) architectures (linear, dendron, and bottle brush). Fluorescence correlation spectroscopy (FCS) and single molecule event analysis were used to examine the nature and extent of probe-PEG interactions. The data support a sieve-like model in which size-exclusion principles determine the extent of probe-PEG interactions. Small probes are trapped by more dense PEG architectures and large probes interact more with less dense PEG surfaces. These results, and the tunable pore structure of the PEG dendrons employed in this work, suggest the viability of electrochemically-active materials for tunable surfaces.

  13. Boria modified alumina probed by methanol dehydration and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    de Farias, Andréa M. Duarte; Esteves, Angela M. Lavogade; Ziarelli, Fabio; Caldarelli, Stefano; Fraga, Marco A.; Appel, Lucia G.

    2004-04-01

    Al 2O 3·B 2O 3 catalysts were synthesized by co-precipitation and impregnation methods applying two calcination temperatures and boria loadings. Catalysts were analyzed by IR spectroscopy of pyridine and CO 2 adsorption and were evaluated in methanol dehydration. Results showed that boron addition to alumina causes a decrease of the number of basic and Lewis acid sites on alumina surface. It could also be observed an enhancement in acid strength of Lewis sites for impregnated samples. The results of methanol dehydration show that strong Brönsted sites are not formed on borate alumina.

  14. Fluctuation spectroscopy as a probe of granular superconducting diamond films

    NASA Astrophysics Data System (ADS)

    Klemencic, G. M.; Fellows, J. M.; Werrell, J. M.; Mandal, S.; Giblin, S. R.; Smith, R. A.; Williams, O. A.

    2017-09-01

    We present resistance versus temperature data for a series of boron-doped nanocrystalline diamond films. Upon extracting the fluctuation conductivity near the critical temperature we observe three distinct scaling regions—three-dimensional (3D) intragrain, quasi-0D, and 3D intergrain—in confirmation of the prediction of Lerner, Varlamov, and Vinokur. The location of the dimensional crossovers between these scaling regions allows us to determine the tunneling energy and the Thouless energy directly. This is a demonstration of the use of fluctuation spectroscopy to determine the properties of a superconducting granular system.

  15. Broadband Plasmon Waveguide Resonance Spectroscopy for Probing Biological Thin Films

    PubMed Central

    ZHANG, HAN; OROSZ, KRISTINA S.; TAKAHASHI, HIROMI; SAAVEDRA, S. SCOTT

    2010-01-01

    A commercially available spectrometer has been modified to perform plasmon waveguide resonance (PWR) spectroscopy over a broad spectral bandwidth. When compared to surface plasmon resonance (SPR), PWR has the advantage of allowing measurements in both s- and p-polarizations on a waveguide surface that is silica or glass rather than a noble metal. Here the waveguide is a BK7 glass slide coated with silver and silica layers. The resonance wavelength is sensitive to the optical thickness of the medium adjacent to the silica layer. The sensitivity of this technique is characterized and compared with broadband SPR both experimentally and theoretically. The sensitivity of spectral PWR is comparable to that of spectral SPR for samples with refractive indices close to that of water. The hydrophilic surface of the waveguide allows supported lipid bilayers to be formed spontaneously by vesicle fusion; in contrast, the surface of an SPR chip requires chemical modification to create a supported lipid membrane. Broadband PWR spectroscopy should be a useful technique to study biointerfaces, including ligand binding to transmembrane receptors and adsorption of peripheral proteins on ligand-bearing membranes. PMID:19796490

  16. Scanning probe microscopy induced surface modifications of the topological insulator Bi2Te3 in different environments

    NASA Astrophysics Data System (ADS)

    Netsou, Asteriona-Maria; Thupakula, Umamahesh; Debehets, Jolien; Chen, Taishi; Hirsch, Brandon; Volodin, Alexander; Li, Zhe; Song, Fengqi; Seo, Jin Won; De Feyter, Steven; Schouteden, Koen; Van Haesendonck, Chris

    2017-08-01

    We investigated the topological insulator (TI) Bi2Te3 in four different environments (ambient, ultra-high vacuum (UHV), nitrogen gas and organic solvent environment) using scanning probe microscopy (SPM) techniques. Upon prolonged exposure to ambient conditions and organic solvent environments the cleaved surface of the pristine Bi2Te3 is observed to be strongly modified during SPM measurements, while imaging of freshly cleaved Bi2Te3 in UHV and nitrogen gas shows considerably less changes of the Bi2Te3 surface. We conclude that the reduced surface stability upon exposure to ambient conditions is triggered by adsorption of molecular species from ambient, including H2O, CO2, etc which is verified by Auger electron spectroscopy. Our findings of the drastic impact of exposure to ambient on the Bi2Te3 surface are crucial for further in-depth studies of the intrinsic properties of the TI Bi2Te3 and for potential applications that include room temperature TI based devices operated under ambient conditions.

  17. Probing wavepacket dynamics using ultrafast x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Capano, G.; Milne, C. J.; Chergui, M.; Rothlisberger, U.; Tavernelli, I.; Penfold, T. J.

    2015-11-01

    The advent of x-ray free electron lasers is providing new opportunities for probing the ultrafast excited state dynamics using structurally sensitive techniques. Herein we use excited state wavepacket dynamics of a prototypical Cu(I)-phenanthroline complex, [Cu(dmp)2]+ (dmp = 2, 9-dimethyl-1, 10-phenanthroline) to investigate how femtosecond vibrational and electronic relaxation is translated into transient x-ray absorption and emission. Using realistic experimental parameters we also derive the anticipated signal strengths for these transient features. This indicates that although recording a signal capturing the strongest transient (i.e. excited state-ground state) changes will be possible for all cases, only with x-ray absorption near-edge structure and extended x-ray absorption fine structure will it be possible to resolve the fine details associated with the wavepacket dynamics within realistic experimental acquisition times.

  18. Fluorescent probes for shock compression spectroscopy of microstructured materials

    NASA Astrophysics Data System (ADS)

    Christensen, James M.; Banishev, Alexandr A.; Dlott, Dana D.

    2017-01-01

    We are developing fluorescent probes to obtain dynamic two-dimensional pressure maps of shocked microstructured materials. We have fabricated silica nano-or micro-spheres doped with rhodamine 6G dye (R6G) which fluoresce strongly, and which may be dispersed throughout a microstructured sample. Alternatively we can grow thin skin layers of dye-doped silica on the surface of particles. The emissive microspheres were embedded in poly-methyl methacrylate (PMMA) and were excited by a quasi-continuous laser. When the samples were shocked to 3-8.4 GPa using laser-driven flyer plates, the emission redshifted and lost intensity. When encapsulating the dye in silica, the emission became brighter and the intensity-loss response became fast enough to monitor nanosecond shock effects. Preliminary data are reported showing the intensity loss in a shocked microstructured medium, an artificial sand, consisting of dye-coated silica microspheres.

  19. Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations

    SciTech Connect

    Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.

    2016-10-13

    The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ). To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.

  20. Precision Nuclear Beta Spectroscopy as a Probe for BSM Physics

    NASA Astrophysics Data System (ADS)

    Sprow, Aaron

    2017-01-01

    The shape of nuclear beta decay spectra is sensitive to new physics such as scalar and tensor currents, and weak magnetism. By selecting an appropriate nuclear species, it is possible to disentangle these effects. 45Ca, which undergoes a predominantly Gamow-Teller transition with an end-point energy of 256 keV, is an excellent probe for tensor couplings. Recently, the 45Ca beta decay spectrum was measured in the Caltech/UCNA 4 π magnetic spectrometer instrumented with large, highly-pixelated Si detectors at the Los Alamos National Laboratory UCN facility. This detection system, in conjunction with an extremely thin foil source preparation, allows for a full reconstruction of events to build a precise spectrum. Preliminary results of the analysis of this data will be presented.

  1. Friedel oscillations in graphene-based systems probed by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Mallet, Pierre; Brihuega, Iván; Cherkez, Vladimir; Gómez-Rodríguez, Jose Marìa; Veuillen, Jean-Yves

    2016-03-01

    For the last 25 years, scientists have demonstrated the capabilities of Scanning Tunneling Microscopy (STM) to visualize in real space the response of a two-dimensional electron gas to atomic-scale impurities. The analysis of the Friedel oscillations surrounding the impurities yields valuable information regarding the elastic scattering properties, the band structure, the doping level and the symmetry of the electronic states in the two-dimensional host system. We will address in this article the use of this technique for probing the electronic properties of graphene, the star two-dimensional compound of the last decade. In particular, we will emphasize how this technique can be pushed up to unravel the electronic pseudospin, a distinctive degree of freedom of graphene's Dirac fermions.

  2. Mapping degenerate vortex states in a kagome lattice of elongated antidots via scanning Hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Xue, C.; Ge, J.-Y.; He, A.; Zharinov, V. S.; Moshchalkov, V. V.; Zhou, Y. H.; Silhanek, A. V.; Van de Vondel, J.

    2017-07-01

    We investigate the degeneracy of the superconducting vortex matter ground state by directly visualizing the vortex configurations in a kagome lattice of elongated antidots via scanning Hall probe microscopy. The observed vortex patterns, at specific applied magnetic fields, are in good agreement with the configurations obtained using time-dependent Ginzburg-Landau simulations. Both results indicate that the long-range interaction in this nanostructured superconductor is unable to lift the degeneracy between different vortex states and the pattern formation is mainly ruled by the nearest-neighbor interaction. This simplification makes it possible to identify a set of simple rules characterizing the vortex configurations. We demonstrate that these rules can explain both the observed vortex distributions and the magnetic-field-dependent degree of degeneracy.

  3. Simple electronics for inertial and Pan-type piezoelectric positioners used in scanning probe microscopes.

    PubMed

    Chen, LeuJen; Kim, Seong Heon; Lee, Alfred K H; de Lozanne, Alex

    2012-01-01

    We describe a new type of circuit designed for driving piezoelectric positioners that rely on the stick-slip phenomenon. The circuit can be used for inertial positioners that have only one piezoelectric element (or multiple elements that are moved simultaneously) or for designs using a sequential movement of independent piezoelectric elements. A relay switches the piezoelectric elements between a high voltage source and ground, thus creating a fast voltage step followed by a slow ramp produced by the exponential discharging of the piezoelectric elements through a series resistor. A timing cascade is generated by having each relay power the next relay in the sequence. This design is simple and inexpensive. While it was developed for scanning probe microscopes, it may be useful for any piezoelectric motor based on a fast jump followed by a slow relaxation.

  4. Mechanical Response to Isotropic Shrinkage of Fibroblasts Measured by Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Kawamoto, Taisuke; Haga, Hisashi; Tamura, Kazushi; Mizutani, Takeomi; Kawabata, Kazushige

    2008-07-01

    Mechanical stimuli such as cyclic stretch and fluid stress affect various cellular physiologies, including proliferation, morphology, and differentiation. We investigated cellular response to shrinking stimuli by developing an isotropic deformation device and observing cellular elasticity with mechanical scanning probe microscopy (M-SPM). The isotropic deformation device consists of a steel ring and a deformable elastic culture dish made of transparent silicone rubber. The M-SPM can visualize topography and spatial distribution of local elasticity of biomaterials in solution. Fibroblasts became softer in response to 6% shrinkage. Cell elasticity did not increase for 1 h after the shrinking stimulus. Inhibitory studies using lysophosphatidic acid and calyculin-A revealed that myosin light chain phosphatase leading to dephospholylation of myosin II regulatory light chain is involved in cell softening.

  5. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks

    SciTech Connect

    Kyoung Ryu, Yu; Garcia, Ricardo; Aitor Postigo, Pablo; Garcia, Fernando

    2014-06-02

    Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained with a top-down lithography method.

  6. Reduced Sampling Size with Nanopipette for Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    PubMed Central

    Kohigashi, Tsuyoshi; Otsuka, Yoichi; Shimazu, Ryo; Matsumoto, Takuya; Iwata, Futoshi; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Mass spectrometry imaging (MSI) with ambient sampling and ionization can rapidly and easily capture the distribution of chemical components in a solid sample. Because the spatial resolution of MSI is limited by the size of the sampling area, reducing sampling size is an important goal for high resolution MSI. Here, we report the first use of a nanopipette for sampling and ionization by tapping-mode scanning probe electrospray ionization (t-SPESI). The spot size of the sampling area of a dye molecular film on a glass substrate was decreased to 6 μm on average by using a nanopipette. On the other hand, ionization efficiency increased with decreasing solvent flow rate. Our results indicate the compatibility between a reduced sampling area and the ionization efficiency using a nanopipette. MSI of micropatterns of ink on a glass and a polymer substrate were also demonstrated. PMID:28101441

  7. Scanning probe acoustic microscopy of extruded starch materials: direct visual evidence of starch crystal.

    PubMed

    Liu, Zhongdong; Liu, Boxiang; Li, Mengxing; Wei, Min; Li, Hua; Liu, Peng; Wan, Tuo

    2013-10-15

    Scanning probe acoustic microscopy (SPAM) has been successfully used to study inorganic and keratin biomaterials. However, few studies have attempted to apply SPAM to structural study of non-keratin organic materials such as starch based materials. This study investigated hardness and surface finish to establish sample preparation method suitable for SPAM imaging and acquired clear acoustic images of extruded starch materials. Acquired acoustic images directly exhibited certain structure of starch materials and provided visual evidence of starch material components and aggregates. In addition, through correlating acoustic images with X-ray diffraction data, crystal-structural information in nano-scale was obtained and acoustic image contrast showed a linear relationship with starch amylose content in extruded starch materials.

  8. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope

    NASA Astrophysics Data System (ADS)

    Zhao, Ya-Jun; Cheng, Qian; Qian, Meng-Lu

    2010-05-01

    Based on the interaction mechanism between tip and sample in the contact mode of a scanning probe acoustic microscope (SPAM), an active mass of the sample is introduced in the mass-spring model. The tip motion and frequency response of the sample vibration mode in the SPAM are calculated by the Lagrange equation with dissipation function. For the silicon tip and glass assemblage in the SPAM the frequency response is simulated and it is in agreement with the experimental result. The living myoblast cells on the glass slide are imaged at resonance frequencies of the SPAM system, which are 20kHz, 30kHz and 120kHz. It is shown that good contrast of SPAM images could be obtained when the system is operated at the resonance frequencies of the system in high and low-frequency regions.

  9. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.

    PubMed

    Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo

    2014-07-11

    Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.

  10. Visualization of Elasticity Distribution of Single Human Chromosomes by Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Nomura, Keisuke; Hoshi, Osamu; Fukushi, Daisuke; Ushiki, Tatsuo; Haga, Hisashi; Kawabata, Kazushige

    2005-07-01

    We succeeded in visualizing the spatial distribution of the local elasticity of mitotic human chromosomes in a liquid environment using scanning probe microscopy (SPM). Force-versus-indentation curves (force curves) were collected over an entire single chromosome. To estimate the local elasticity of thin chromosomes from the force curves, we examined the validity of a previously proposed model that takes into account the effect of the finite thickness of samples on the estimation of the local elasticity. The force curves obtained are well represented by the model within a small indentation range. The elasticity obtained is independent of the indentation within an indentation range of 100 nm. Such fitting procedures for the force curves collected are carried out over the entire chromosome, and the elasticity distribution of a single chromosome is visualized.

  11. High-precision calibration of a Scanning-Probe Microscope (SPM) for manufacturing applications

    SciTech Connect

    Chernoff, D.A.; Lohr, J.D.; Hansen, D.; Lines, M.

    1996-12-31

    For ordinary SPM (Scanning Probe Microscope) work, accuracy of XYZ length measurements of about 5% is acceptable. This is accomplished by periodic calibration checks (and adjustments, if required). Measurement of critical dimensions such as feature width and spacing on integrated circuits of compact discs requires much higher accuracy. For example, the new DVD (digital video disc) standard calls for a mean track pitch of 740 nm with a maximum allowable jitter (range) of 30 nm. To achieve a range of 30 nm, the standard deviation should be 10 nm or less. According to the gage-maker`s rule, the measurement tool should be 4x more precise than the object being measured, so we need a standard deviation of 2.5 nm. This report describes the combined use of a new type of calibration standard and new software to meet these requirements.

  12. Simple electronics for inertial and Pan-type piezoelectric positioners used in scanning probe microscopes

    NASA Astrophysics Data System (ADS)

    Chen, LeuJen; Kim, Seong Heon; Lee, Alfred K. H.; de Lozanne, Alex

    2012-01-01

    We describe a new type of circuit designed for driving piezoelectric positioners that rely on the stick-slip phenomenon. The circuit can be used for inertial positioners that have only one piezoelectric element (or multiple elements that are moved simultaneously) or for designs using a sequential movement of independent piezoelectric elements. A relay switches the piezoelectric elements between a high voltage source and ground, thus creating a fast voltage step followed by a slow ramp produced by the exponential discharging of the piezoelectric elements through a series resistor. A timing cascade is generated by having each relay power the next relay in the sequence. This design is simple and inexpensive. While it was developed for scanning probe microscopes, it may be useful for any piezoelectric motor based on a fast jump followed by a slow relaxation.

  13. An evaluation of a combined scanning probe and optical microscope for lunar regolith studies

    NASA Astrophysics Data System (ADS)

    Yang, S.; Pike, W. T.; Staufer, U.; Claus, D.; Rodenburg, J. M.

    2011-12-01

    The microscopic properties of the lunar regolith such as the shape, the surface texture and the size distribution are required for an understanding of both past surface processes and potential hazards for future human exploration [1]. To reveal the particle morphology at the sub micrometer scale, scanning-probe microscopy (SPM), first used on the 2008 Phoenix mission [1], is a proven approach; however, there are two main challenges for the measurement of lunar particles. Firstly, the SPM tip is liable to move particles during scanning, even when using the lower contact forces of the dynamic-mode imaging. Hence the particles need to be stabilised during imaging. Secondly, typically the AFM tip extends about 10 μm from its cantilever, so larger particles protruding more than this height above their substrates cannot be scanned completely. To immobilize particles and eliminate large particles during SPM scanning, micromachined Si substrates, which have been successfully applied in the Phoenix project for Mars investigation in 2008 [2], have been investigated for lunar analogue material. On these substrates micrometer pits are patterned and serve as traps to enhance the stability of the AFM scanning by grasping the particles. In addition, the diameter of pits can determine the size of dusts to be captured and reduce the adhesion for the larger dust and so eliminate the oversized particles. To extend the imaging range and assist in selecting scan areas for the SPM, we use a type of lensless optical imaging (LOM) which uses ptychographic diffractive imaging [3] to eliminate the restrictions and performance limitations of conventional focusing devices. As a reference, scanning electron microscopy (SEM) which minimizes particle-probe interactions and has the advantage of an extended depth of field, is employed to image the same particle fields at resolutions covering both the SPM and LOM. By comparing the differences and the similarities between SEM and LOM images, the

  14. Surface characterization of InP trenches embedded in oxide using scanning probe microscopy

    SciTech Connect

    Mannarino, Manuel E-mail: manuelmannarino@gmail.com; Chintala, Ravi; Vandervorst, Wilfried; Moussa, Alain; Merckling, Clement; Eyben, Pierre; Paredis, Kristof

    2015-12-14

    Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III–V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III–V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of different chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.

  15. Surface characterization of InP trenches embedded in oxide using scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Mannarino, Manuel; Chintala, Ravi; Moussa, Alain; Merckling, Clement; Eyben, Pierre; Paredis, Kristof; Vandervorst, Wilfried

    2015-12-01

    Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III-V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III-V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of different chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.

  16. Light Driven Energy Research at LCLS: Planned Pump-Probe X-ray Spectroscopy Studies on Photosynthetic Water Splitting

    NASA Astrophysics Data System (ADS)

    Bergmann, Uwe

    2010-02-01

    Arguably the most important chemical reaction on earth is the photosynthetic splitting of water to molecular oxygen by the Mn-containing oxygen-evolving complex (Mn-OEC) in the protein known as photosystem II (PSII). It is this reaction which has, over the course of some 3.8 billion years, gradually filled our atmosphere with O2 and consequently enabled and sustained the evolution of complex aerobic life. Coupled to the reduction of carbon dioxide, biological photosynthesis contributes foodstuffs for nutrition while recycling CO2 from the atmosphere and replacing it with O2. By utilizing sunlight to power these energy-requiring reactions, photosynthesis also serves as a model for addressing societal energy needs as we enter an era of diminishing fossil hydrocarbon resources. Understanding, at the molecular level, the dynamics and mechanism of how nature has solved this problem is of fundamental importance and could be critical to aid in the design of manufactured devices to accomplish the conversion of sunlight into useful electrochemical energy and transportable fuel in the foreseeable future. In order to understand the photosynthetic splitting of water by the Mn-OEC we need to be able to follow the reaction in real time at an atomic level. A powerful probe to study the electronic and molecular structure of the Mn-OEC is x-ray spectroscopy. Here, in particular x-ray emission spectroscopy (XES) has two crucial qualities for LCLS based time-dependent pump-probe studies of the Mn-OEC: a) it directly probes the Mn oxidation state and ligation, b) it can be performed with wavelength dispersive optics to avoid the necessity of scanning in pump probe experiments. Recent results and the planned time dependent experiments at LCLS will be discussed. )

  17. Probing Spatial Spin Correlations of Ultracold Gases by Quantum Noise Spectroscopy

    SciTech Connect

    Bruun, G. M.; Andersen, Brian M.; Demler, Eugene; Soerensen, Anders S.

    2009-01-23

    Spin noise spectroscopy with a single laser beam is demonstrated theoretically to provide a direct probe of the spatial correlations of cold fermionic gases. We show how the generic many-body phenomena of antibunching, pairing, antiferromagnetic, and algebraic spin liquid correlations can be revealed by measuring the spin noise as a function of laser width, temperature, and frequency.

  18. Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale

    PubMed Central

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-01-01

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip–sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip–sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by “comb” filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach. PMID:16551751

  19. Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy

    PubMed Central

    Maragliano, C.; Lilliu, S.; Dahlem, M. S.; Chiesa, M.; Souier, T.; Stefancich, M.

    2014-01-01

    In the last years there has been a renewed interest for zinc oxide semiconductor, mainly triggered by its prospects in optoelectronic applications. In particular, zinc oxide thin films are being widely used for photovoltaic applications, in which the determination of the electrical conductivity is of great importance. Being an intrinsically doped material, the quantification of its doping concentration has always been challenging. Here we show how to probe the charge carrier density of zinc oxide thin films by Scanning Kelvin Probe Microscopy, a technique that allows measuring the contact potential difference between the tip and the sample surface with high spatial resolution. A simple electronic energy model is used for correlating the contact potential difference with the doping concentration in the material. Limitations of this technique are discussed in details and some experimental solutions are proposed. Two-dimensional doping concentration images acquired on radio frequency-sputtered intrinsic zinc oxide thin films with different thickness and deposited under different conditions are reported. We show that results inferred with this technique are in accordance with carrier concentration expected for zinc oxide thin films deposited under different conditions and obtained from resistivity and mobility measurements. PMID:24569599

  20. Functional Properties of Chondrocytes and Articular Cartilage using Optical Imaging to Scanning Probe Microscopy.

    PubMed

    Xia, Yang; Darling, Eric M; Herzog, Walter

    2017-10-03

    Mature chondrocytes in adult articular cartilage vary in number, size, and shape, depending on their depth in the tissue, location in the joint, and source species. Chondrocytes are the primary structural, functional, and metabolic unit in articular cartilage, the loss of which will induce fatigue to the extracellular matrix (ECM), eventually leading to failure of the cartilage and impairment of the joint as a whole. This brief review focuses on the functional and biomechanical studies of chondrocytes and articular cartilage, using microscopic imaging from optical microscopies to scanning probe microscopy. Three topics are covered in this review, including the functional studies of chondrons by optical imaging (unpolarized and polarized light and infrared light, two-photon excitation microscopy), the probing of chondrocytes and cartilage directly using microscale measurement techniques, and different imaging approaches that can measure chondrocyte mechanics and chondrocyte biological signaling under in situ and in vivo environments. Technical advancement in chondrocyte research during recent years has enabled new ways to study the biomechanical and functional properties of these cells and cartilage. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.