NASA Astrophysics Data System (ADS)
Thapa, Shailaja; Chatterjee, R. S.; Kumar, Dheeraj; Singh, K. B.; Sengar, Vivek
2017-10-01
This paper presents a spatiotemporal study of surface subsidence over urban area due to coal mining using Persistent scatterer interferometry. In the past few years Differential Interferometric Synthetic Aperture Radar has emerged as a very useful remote sensing technique for measuring land subsidence. It plays a vital role in insitu subsidence prediction of coal mining area. However there are some limitation viz. atmospheric decorrelation, temporal decorrelation and spatial decorrelation with conventional D-InSAR techniques, which can be overcome up to certain extent by using multiinterferogram framework approach. The Persistent Scatterer interferometry technique comprises of more number of SAR datasets, it only concentrates over the pixel which remain coherent over long time period. Persistent Scatterer interferometry makes deformation measurement on permanent scattering location for the targeted ground surface. Mainly, these permanent scatterer are manmade features like metallic bridges, dams, antennae roof of buildings etc. apart that some permanent scatterer may comprise of prominent stable natural targets. The results obtained from PS-InSAR gives more precised measurement of surface deformation. Total eight ALOS PALSAR scenes covering the time period from 2007 to 2010 have been utilized to produce ground deformation map using PSInSAR techniques for Jharia Coal field, Dhanbad. This is proven technique, which helps to identify the persistent land surface movement .The results were analyzed Sijua area in Jharia coalfield. The subsidence fringes were demarcated over the entire study area. The PSInSAR results were validated using precision leveling data provided by mining authorities. The results demonstrates that PSInSAR can be used as potential tool to highlight the subsidence prone area depending upon the spatial and temporal coherency of SAR data.
NASA Astrophysics Data System (ADS)
Crosetto, M.; Budillon, A.; Johnsy, A.; Schirinzi, G.; Devanthéry, N.; Monserrat, O.; Cuevas-González, M.
2018-04-01
A lot of research and development has been devoted to the exploitation of satellite SAR images for deformation measurement and monitoring purposes since Differential Interferometric Synthetic Apertura Radar (InSAR) was first described in 1989. In this work, we consider two main classes of advanced DInSAR techniques: Persistent Scatterer Interferometry and Tomographic SAR. Both techniques make use of multiple SAR images acquired over the same site and advanced procedures to separate the deformation component from the other phase components, such as the residual topographic component, the atmospheric component, the thermal expansion component and the phase noise. TomoSAR offers the advantage of detecting either single scatterers presenting stable proprieties over time (Persistent Scatterers) and multiple scatterers interfering within the same range-azimuth resolution cell, a significant improvement for urban areas monitoring. This paper addresses a preliminary inter-comparison of the results of both techniques, for a test site located in the metropolitan area of Barcelona (Spain), where interferometric Sentinel-1 data were analysed.
Polarimetry and Interferometry Applications
2005-02-01
contribution of the backscattering is occurring in the crown. Since for the traditional SAR interferometry only the total phase center of all scattering...double bounce scattering mechanism between the tree trunks and ground level. This contribution has its scattering phase center on the ground and is not...polarizations shows several differences. But addi- tionally to these amplitude images also the phase relations between the polarizations contain
NASA Astrophysics Data System (ADS)
Ghulam, A.
2011-12-01
DInSAR is a solid technique to estimate land subsidence and rebound using phase information from multiple SAR acquisitions over the same location from the same orbits, but from a slightly different observing geometry. However, temporal decorrelation and atmospheric effects are often a challenge to the accuracy of the DInSAR measurements. Such uncertainties may be overcome using time series interferogram stacking, e.g., permanent scatterer interferometry (Ferretti, et al., 2000, 2001). However, it requires large number of image collections. In this paper, interferometric synthetic aperture radar (InSAR) data pairs from the Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor onboard Advanced Land Observing Satellite (ALOS) are used to measure seasonal and annual land surface deformation over Saint Louis, Missouri. The datasets cover four years of time period spanning from 2006 to 2010. With the limited data coverage that is not suitable for permanent scatterer interferometry, the paper demonstrates the efficacy of dual pair interferometry from both fine-beam single polarization mode and dual-pol polarimetric images and short baseline interferometry (SBAS) approach (Berardino, et al., 2002) with an estimation accuracy comparable to differential global position systems (DGPS). We also present the impact of using assumed phase-stable ground control points versus GPS base stations for orbital refinement and phase unwrapping on overall measurement accuracy by comparing the deformation results from DInSAR and Polarimetric InSAR with DGPS base stations and ground truthing.
NASA Astrophysics Data System (ADS)
Delgado, Manuel J.; Cuccu, Roberto; Rivolta, Giancarlo
2015-05-01
This work is focused on the infrastructure monitoring of areas which had experienced significant urbanization and therefore, also an increase of the exploitation of natural resources. Persistent Scatters Interferometry (PS-InSAR) and Small Baselines (SBAS) approaches are applied to three study areas for which large datasets of SAR images are available in ascending and descending modes to finally deploy deformation maps of different buildings and infrastructures. Valencia, Rome and South Sardinia areas have been selected for this study, having experienced an increase of the exploitation of natural resources in parallel with their urban expansion. Moreover, Rome is a very special case, where Cultural Heritage permeating the city and its surroundings would suggest the necessity of a tool for monitoring the stability of the different sites. This work wants to analyse the potential deformation that had occurred in these areas during the period 1992 to 2010, by applying Persistent Scatters Interferometry to ESA ERS SAR and Envisat ASAR data.
Polarimetry and Interferometry Applications
2007-02-01
crown. Since for the traditional SAR interferometry only the total phase center of all scattering effects is relevant, the estimated height would be...the tree trunks and ground level. This contribution has its scattering phase center on the ground and is not present in the cross-polar channels...also the phase relations between the polarizations contain valuable information about the backscattering process. From the azimuth slices presented
Galloway, D.L.; Hoffmann, J.
2007-01-01
The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions. ?? Springer-Verlag 2006.
Analysis on Vertical Scattering Signatures in Forestry with PolInSAR
NASA Astrophysics Data System (ADS)
Guo, Shenglong; Li, Yang; Zhang, Jingjing; Hong, Wen
2014-11-01
We apply accurate topographic phase to the Freeman-Durden decomposition for polarimetric SAR interferometry (PolInSAR) data. The cross correlation matrix obtained from PolInSAR observations can be decomposed into three scattering mechanisms matrices accounting for the odd-bounce, double-bounce and volume scattering. We estimate the phase based on the Random volume over Ground (RVoG) model, and as the initial input parameter of the numerical method which is used to solve the parameters of decomposition. In addition, the modified volume scattering model introduced by Y. Yamaguchi is applied to the PolInSAR target decomposition in forest areas rather than the pure random volume scattering as proposed by Freeman-Durden to make best fit to the actual measured data. This method can accurately retrieve the magnitude associated with each mechanism and their vertical location along the vertical dimension. We test the algorithms with L- and P- band simulated data.
NASA Astrophysics Data System (ADS)
Mirzaee, S.; Motagh, M.; Akbari, B.; Wetzel, H. U.; Roessner, S.
2017-05-01
Masouleh is one of the ancient cities located in a high mountainous area in Gilan province of northern Iran. The region is threatened by a hazardous landslide, which was last activated in 1998, causing 32 dead and 45 injured. Significant temporal decorrelation caused by dense vegetation coverage within the landslide area makes the use of Synthetic Aperture Radar Interferometry (InSAR) for monitoring landslide movement very challenging. In this paper, we investigate the capability of three InSAR time-series techniques for evaluating creep motion on Masouleh landslide. The techniques are Persistent Scatterer Interferometry (PSI), Small BAseline Subset (SBAS) and SqueeSAR. The analysis is done using a dataset of 33 TerraSAR-X images in SpotLight (SL) mode covering a period of 15 months between June 2015 and September 2016. Results show the distinguished capability of SqueeSAR method in comparison to 2 other techniques for assessing landslide movement. The final number of scatterers in the landslide body detected by PSI and SBAS are about 70 and 120 respectively while this increases to about 345 in SqueeSAR. The coherence of interferograms improved by about 37% for SqueeSAR as compared to SBAS. The same rate of displacement was observed in those regions where all the methods were able to detect scatterers. Maximum rates of displacement detected by SqueeSAR technique in the northern edge, older and younger part of the landslide body are about -39, -65 and -22 mm/y, respectively.
Operational Monitoring of Mines by COSMO-SkyMed PSP SAR Interferometry
NASA Astrophysics Data System (ADS)
Costantini, Mario; Malvarosa, Fabio; Miniati, Federico; de Assis, Luciano Mozer
2016-08-01
Synthetic aperture radar (SAR) interferometry is a powerful technology for detection and monitoring of slow ground surface movements. Monitoring of ground deformations in mining structures is an important application, particularly difficult because the scene changes with time. The persistent scatterer pair (PSP) approach, recently proposed to overcome some limitations of standard persistent scatter interferometry, proved to be effective also for mine monitoring. In this work, after resuming the main ideas of the PSP method, we describe the PSP measurements obtained from high- resolution X-band COSMO-SkyMed data over a large mining area in Minas Gerais state, Brazil. The outcomes demonstrate that dense and accurate ground deformation measurements can be obtained on the mining area and its structures (such as open pits, waste dumps, conveyor belts, water and tailings dams, etc.), achieving a consistent global view including also areas where field instruments are not installed.
Margarit, Gerard; Mallorqui, Jordi J.
2008-01-01
This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR) in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels' geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS) and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA) working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions. PMID:27873954
Generation of Classical DInSAR and PSI Ground Motion Maps on a Cloud Thematic Platform
NASA Astrophysics Data System (ADS)
Mora, Oscar; Ordoqui, Patrick; Romero, Laia
2016-08-01
This paper presents the experience of ALTAMIRA INFORMATION uploading InSAR (Synthetic Aperture Radar Interferometry) services in the Geohazard Exploitation Platform (GEP), supported by ESA. Two different processing chains are presented jointly with ground motion maps obtained from the cloud computing, one being DIAPASON for classical DInSAR and SPN (Stable Point Network) for PSI (Persistent Scatterer Interferometry) processing. The product obtained from DIAPASON is the interferometric phase related to ground motion (phase fringes from a SAR pair). SPN provides motion data (mean velocity and time series) on high-quality pixels from a stack of SAR images. DIAPASON is already implemented, and SPN is under development to be exploited with historical data coming from ERS-1/2 and ENVISAT satellites, and current acquisitions of SENTINEL-1 in SLC and TOPSAR modes.
2014-06-12
interferometry and polarimetry . In the paper, the model was used to simulate SAR data for Mangrove (tropical) and Nezer (temperate) forests for P-band and...Scattering Model Applied to Radiometry, Interferometry, and Polarimetry at P- and L-Band. IEEE Transactions on Geoscience and Remote Sensing 44(4): 849
NASA Astrophysics Data System (ADS)
Tomas, R.; Herrera, G.; Cooksley, G.; Mulas, J.
2011-04-01
SummaryThe aim of this paper is to analyze the subsidence affecting the Vega Media of the Segura River Basin, using a Persistent Scatterers Interferometry technique (PSI) named Stable Point Network (SPN). This technique is capable of estimating mean deformation velocity maps of the ground surface and displacement time series from Synthetic Aperture Radar (SAR) images. A dataset acquired between January 2004 and December 2008 from ERS-2 and ENVISAT sensors has been processed measuring maximum subsidence and uplift rates of -25.6 and 7.54 mm/year respectively for the whole area. These data have been validated against ground subsidence measurements and compared with subsidence triggering and conditioning factors by means of a Geographical Information System (GIS). The spatial analysis shows a good relationship between subsidence and piezometric level evolution, pumping wells location, river distance, geology, the Arab wall, previously proposed subsidence predictive model and soil thickness. As a consequence, the paper shows the usefulness and the potential of combining Differential SAR Interferometry (DInSAR) and spatial analysis techniques in order to improve the knowledge of this kind of phenomenon.
NASA Technical Reports Server (NTRS)
Jung, Hahn Chul; Jasinski, Michael; Kim, Jin-Woo; Shum, C. K.; Bates, Paul; Neal, Jeffrey; Lee, Hyongki; Alsdorf, Doug
2011-01-01
This study focuses on the feasibility of using SAR interferometry to support 2D hydrodynamic model calibration and provide water storage change in the floodplain. Two-dimensional (2D) flood inundation modeling has been widely studied using storage cell approaches with the availability of high resolution, remotely sensed floodplain topography. The development of coupled 1D/2D flood modeling has shown improved calculation of 2D floodplain inundation as well as channel water elevation. Most floodplain model results have been validated using remote sensing methods for inundation extent. However, few studies show the quantitative validation of spatial variations in floodplain water elevations in the 2D modeling since most of the gauges are located along main river channels and traditional single track satellite altimetry over the floodplain are limited. Synthetic Aperture Radar (SAR) interferometry recently has been proven to be useful for measuring centimeter-scale water elevation changes over the floodplain. In the current study, we apply the LISFLOOD hydrodynamic model to the central Atchafalaya River Basin, Louisiana, during a 62 day period from 1 April to 1 June 2008 using two different calibration schemes for Manning's n. First, the model is calibrated in terms of water elevations from a single in situ gauge that represents a more traditional approach. Due to the gauge location in the channel, the calibration shows more sensitivity to channel roughness relative to floodplain roughness. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR interferometry during 46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. Since SAR interferometry receives strongly scatters in floodplain due to double bounce effect as compared to specular scattering of open water, the calibration shows more dependency to floodplain roughness. An iterative approach is used to determine the best-fit Manning's n for the two different calibration approaches. Results suggest similar floodplain roughness but slightly different channel roughness. However, application of SAR interferometry provides a unique view of the floodplain flow gradients, not possible with a single gauge calibration. These gradients, allow improved computation of water storage change over the 46-day simulation period. Overall, the results suggest that the use of 2D SAR water elevation changes in the Atchafalaya basin offers improved understanding and modeling of floodplain hydrodynamics.
Research on Inversion Models for Forest Height Estimation Using Polarimetric SAR Interferometry
NASA Astrophysics Data System (ADS)
Zhang, L.; Duan, B.; Zou, B.
2017-09-01
The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can't estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.
Evolutions Of Diff-Tomo For Sensing Subcanopy Deformations And Height-Varying Temporal Coherence
NASA Astrophysics Data System (ADS)
Lombardini, Fabrizio; Cai, Francesco
2012-01-01
Interest is continuing to grow in advanced interferometric SAR methods for sensing complex scenarios with multiple (layover or volumetric) scatterers mapped in the SAR cell. Multibaseline SAR tomographic (3D) elevation beam forming is a promising technique in this field. Recently, the Tomo concept has been integrated with the differential interferometry concept, producing the advanced “differential tomography” (Diff-Tomo, “4D”) processing mode which furnishes “space-time” signatures of multiple scatterer dynamics in the SAR cell. Advances in the application of this new framework are investigated for complex volume scattering scenarios including temporal signal variations, both from scatterer temporal decorrelation and deformation motions. In particular, new results are reported concerning the potentials of Diff-Tomo for the analysis of forest scenarios, based on the original concept of the space-time signatures of temporal decorrelation. E-SAR P-band data results are expanded of tomography robust to temporal decorrelation, and first trials are reported of separation of different temporal decorrelation mechanisms of canopy and ground, and of sensing possible sub-canopy subsidences.
Stochastic modeling for time series InSAR: with emphasis on atmospheric effects
NASA Astrophysics Data System (ADS)
Cao, Yunmeng; Li, Zhiwei; Wei, Jianchao; Hu, Jun; Duan, Meng; Feng, Guangcai
2018-02-01
Despite the many applications of time series interferometric synthetic aperture radar (TS-InSAR) techniques in geophysical problems, error analysis and assessment have been largely overlooked. Tropospheric propagation error is still the dominant error source of InSAR observations. However, the spatiotemporal variation of atmospheric effects is seldom considered in the present standard TS-InSAR techniques, such as persistent scatterer interferometry and small baseline subset interferometry. The failure to consider the stochastic properties of atmospheric effects not only affects the accuracy of the estimators, but also makes it difficult to assess the uncertainty of the final geophysical results. To address this issue, this paper proposes a network-based variance-covariance estimation method to model the spatiotemporal variation of tropospheric signals, and to estimate the temporal variance-covariance matrix of TS-InSAR observations. The constructed stochastic model is then incorporated into the TS-InSAR estimators both for parameters (e.g., deformation velocity, topography residual) estimation and uncertainty assessment. It is an incremental and positive improvement to the traditional weighted least squares methods to solve the multitemporal InSAR time series. The performance of the proposed method is validated by using both simulated and real datasets.
NASA Astrophysics Data System (ADS)
Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.
2018-05-01
This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.
NASA Astrophysics Data System (ADS)
Bardi, Federica; Frodella, William; Ciampalini, Andrea; Bianchini, Silvia; Del Ventisette, Chiara; Gigli, Giovanni; Fanti, Riccardo; Moretti, Sandro; Basile, Giuseppe; Casagli, Nicola
2014-10-01
The potential use of the integration of PSI (Persistent Scatterer Interferometry) and GB-InSAR (Ground-based Synthetic Aperture Radar Interferometry) for landslide hazard mitigation was evaluated for mapping and monitoring activities of the San Fratello landslide (Sicily, Italy). Intense and exceptional rainfall events are the main factors that triggered several slope movements in the study area, which is susceptible to landslides, because of its steep slopes and silty-clayey sedimentary cover. In the last three centuries, the town of San Fratello was affected by three large landslides, developed in different periods: the oldest one occurred in 1754, damaging the northeastern sector of the town; in 1922 a large landslide completely destroyed a wide area in the western hillside of the town. In this paper, the attention is focussed on the most recent landslide that occurred on 14 February 2010: in this case, the phenomenon produced the failure of a large sector of the eastern hillside, causing severe damages to buildings and infrastructures. In particular, several slow-moving rotational and translational slides occurred in the area, making it suitable to monitor ground instability through different InSAR techniques. PS-InSAR™ (permanent scatterers SAR interferometry) techniques, using ERS-1/ERS-2, ENVISAT, RADARSAT-1, and COSMO-SkyMed SAR images, were applied to analyze ground displacements during pre- and post-event phases. Moreover, during the post-event phase in March 2010, a GB-InSAR system, able to acquire data continuously every 14 min, was installed collecting ground displacement maps for a period of about three years, until March 2013. Through the integration of space-borne and ground-based data sets, ground deformation velocity maps were obtained, providing a more accurate delimitation of the February 2010 landslide boundary, with respect to the carried out traditional geomorphological field survey. The integration of GB-InSAR and PSI techniques proved to be very effective in landslide mapping in the San Fratello test site, representing a valid scientific support for local authorities and decision makers during the post-emergency management.
Forest canopy height estimation using double-frequency repeat pass interferometry
NASA Astrophysics Data System (ADS)
Karamvasis, Kleanthis; Karathanassi, Vassilia
2015-06-01
In recent years, many efforts have been made in order to assess forest stand parameters from remote sensing data, as a mean to estimate the above-ground carbon stock of forests in the context of the Kyoto protocol. Synthetic aperture radar interferometry (InSAR) techniques have gained traction in last decade as a viable technology for vegetation parameter estimation. Many works have shown that forest canopy height, which is a critical parameter for quantifying the terrestrial carbon cycle, can be estimated with InSAR. However, research is still needed to understand further the interaction of SAR signals with forest canopy and to develop an operational method for forestry applications. This work discusses the use of repeat pass interferometry with ALOS PALSAR (L band) HH polarized and COSMO Skymed (X band) HH polarized acquisitions over the Taxiarchis forest (Chalkidiki, Greece), in order to produce accurate digital elevation models (DEMs) and estimate canopy height with interferometric processing. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to forest canopy height mapping using dual-wavelength SAR interferometry at X- and L-band. The method is based on scattering phase center separation at different wavelengths. It involves the generation of a terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data as well as the generation of a canopy surface elevation model from repeat pass X-band InSAR data. The terrain model is then used to remove the terrain component from the repeat pass interferometric X-band elevation model, so as to enable the forest canopy height estimation. The canopy height results were compared to a field survey with 6.9 m root mean square error (RMSE). The effects of vegetation characteristics, SAR incidence angle and view geometry, and terrain slope on the accuracy of the results have also been studied in this work.
Fusion of Cross-Track TerraSAR-X PS Point Clouds over Las Vegas
NASA Astrophysics Data System (ADS)
Wang, Ziyun; Balz, Timo; Wei, Lianhuan; Liao, Mingsheng
2014-11-01
Persistent scatterer interferometry (PS-InSAR) is widely used in radar remote sensing. However, because the surface motion is estimated in the line-of-sight (LOS) direction, it is not possible to differentiate between vertical and horizontal surface motions from a single stack. Cross-track data, i.e. the combination of data from ascending and descending orbits, allows us to better analyze the deformation and to obtain 3d motion information. We implemented a cross-track fusion of PS-InSAR point cloud data, making it possible to separate the vertical and horizontal components of the surface motion.
Polarimetric SAR Interferometry to Monitor Land Subsidence in Tehran
NASA Astrophysics Data System (ADS)
Sadeghi, Zahra; Valadan Zoej, Mohammad Javad; Muller, Jan-Peter
2016-08-01
This letter uses a combination of ADInSAR with a coherence optimization method. Polarimetric DInSAR is able to enhance pixel phase quality and thus coherent pixel density. The coherence optimization method is a search-based approach to find the optimized scattering mechanism introduced by Navarro-Sanchez [1]. The case study is southwest of Tehran basin located in the North of Iran. It suffers from a high-rate of land subsidence and is covered by agricultural fields. Usually such an area would significantly decorrelate but applying polarimetric ADInSAR it is possible to obtain a more coherent pixel coverage. A set of dual-pol TerraSAR-X images was ordered for polarimetric ADInSAR procedure. The coherence optimization method is shown to have increased the density and phase quality of coherent pixels significantly.
Armaş, Iuliana; Mendes, Diana A.; Popa, Răzvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana
2017-01-01
The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992–2010 from ERS-1/-2 and ENVISAT, and 2011–2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scatterers (PS) high-resolution multi-temporal interferometry (InSAR) techniques to provide maps of line-of-sight displacements. The satellite-based remote sensing results were combined with results derived from classical methodologies (i.e., diachronic cartography) and field research to study possible trends in developments over former clay pits, landfill excavation sites, and industrial parks. The ground displacement trend patterns were analysed using several linear and nonlinear models, and techniques. Trends based on the estimated ground displacement are characterised by long-term memory, indicated by low noise Hurst exponents, which in the long-term form interesting attractors. We hypothesize these attractors to be tectonic stress fields generated by transpressional movements. PMID:28252103
Armaş, Iuliana; Mendes, Diana A; Popa, Răzvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana
2017-03-02
The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992-2010 from ERS-1/-2 and ENVISAT, and 2011-2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scatterers (PS) high-resolution multi-temporal interferometry (InSAR) techniques to provide maps of line-of-sight displacements. The satellite-based remote sensing results were combined with results derived from classical methodologies (i.e., diachronic cartography) and field research to study possible trends in developments over former clay pits, landfill excavation sites, and industrial parks. The ground displacement trend patterns were analysed using several linear and nonlinear models, and techniques. Trends based on the estimated ground displacement are characterised by long-term memory, indicated by low noise Hurst exponents, which in the long-term form interesting attractors. We hypothesize these attractors to be tectonic stress fields generated by transpressional movements.
NASA Astrophysics Data System (ADS)
Esmaeili, Mostafa; Motagh, Mahdi
2016-07-01
Time-series analysis of Synthetic Aperture Radar (SAR) data using the two techniques of Small BAseline Subset (SBAS) and Persistent Scatterer Interferometric SAR (PSInSAR) extends the capability of conventional interferometry technique for deformation monitoring and mitigating many of its limitations. Using dual/quad polarized data provides us with an additional source of information to improve further the capability of InSAR time-series analysis. In this paper we use dual-polarized data and combine the Amplitude Dispersion Index (ADI) optimization of pixels with phase stability criterion for PSInSAR analysis. ADI optimization is performed by using Simulated Annealing algorithm to increase the number of Persistent Scatterer Candidate (PSC). The phase stability of PSCs is then measured using their temporal coherence to select the final sets of pixels for deformation analysis. We evaluate the method for a dataset comprising of 17 dual polarization SAR data (HH/VV) acquired by TerraSAR-X data from July 2013 to January 2014 over a subsidence area in Iran and compare the effectiveness of the method for both agricultural and urban regions. The results reveal that using optimum scattering mechanism decreases the ADI values in urban and non-urban regions. As compared to single-pol data the use of optimized polarization increases initially the number of PSCs by about three times and improves the final PS density by about 50%, in particular in regions with high rate of deformation which suffer from losing phase stability over the time. The classification of PS pixels based on their optimum scattering mechanism revealed that the dominant scattering mechanism of the PS pixels in the urban area is double-bounce while for the non-urban regions (ground surfaces and farmlands) it is mostly single-bounce mechanism.
Spaceborne radar interferometry for coastal DEM construction
Hong, S.-H.; Lee, C.-W.; Won, J.-S.; Kwoun, Oh-Ig; Lu, Z.
2005-01-01
Topographic features in coastal regions including tidal flats change more significantly than landmass, and are characterized by extremely low slopes. High precision DEMs are required to monitor dynamic changes in coastal topography. It is difficult to obtain coherent interferometric SAR pairs especially over tidal flats mainly because of variation of tidal conditions. Here we focus on i) coherence of multi-pass ERS SAR interferometric pairs and ii) DEM construction from ERS-ENVISAT pairs. Coherences of multi-pass ERS interferograms were good enough to construct DEM under favorable tidal conditions. Coherence in sand dominant area was generally higher than that in muddy surface. The coarse grained coastal areas are favorable for multi-pass interferometry. Utilization of ERS-ENVISAT interferometric pairs is taken a growing interest. We carried out investigation using a cross-interferometric pair with a normal baseline of about 1.3 km, a 30 minutes temporal separation and the height sensitivity of about 6 meters. Preliminary results of ERS-ENVISAT interferometry were not successful due to baseline and unfavorable scattering conditions. ?? 2005 IEEE.
Qin, Xiaoqiong; Yang, Tianliang; Yang, Mengshi; Zhang, Lu; Liao, Mingsheng
2017-01-01
Since the Persistent Scatterer Synthetic Aperture Radar (SAR) Interferometry (PSI) technology allows the detection of ground subsidence with millimeter accuracy, it is becoming one of the most powerful and economical means for health diagnosis of major transportation infrastructures. However, structures of different types may suffer from various levels of localized subsidence due to the different structural characteristics and subsidence mechanisms. Moreover, in the complex urban scenery, some segments of these infrastructures may be sheltered by surrounding buildings in SAR images, obscuring the desirable signals. Therefore, the subsidence characteristics on different types of structures should be discussed separately and the accuracy of persistent scatterers (PSs) should be optimized. In this study, the PSI-based subsidence mapping over the entire transportation network of Shanghai (more than 10,000 km) is illustrated, achieving the city-wide monitoring specifically along the elevated roads, ground highways and underground subways. The precise geolocation and structural characteristics of infrastructures were combined to effectively guide more accurate identification and separation of PSs along the structures. The experimental results from two neighboring TerraSAR-X stacks from 2013 to 2016 were integrated by joint estimating the measurements in the overlapping area, performing large-scale subsidence mapping and were validated by leveling data, showing highly consistent in terms of subsidence velocities and time-series displacements. Spatial-temporal subsidence patterns on each type of infrastructures are strongly dependent on the operational durations and structural characteristics, as well as the variation of the foundation soil layers. PMID:29186039
Qin, Xiaoqiong; Yang, Tianliang; Yang, Mengshi; Zhang, Lu; Liao, Mingsheng
2017-11-29
Since the Persistent Scatterer Synthetic Aperture Radar (SAR) Interferometry (PSI) technology allows the detection of ground subsidence with millimeter accuracy, it is becoming one of the most powerful and economical means for health diagnosis of major transportation infrastructures. However, structures of different types may suffer from various levels of localized subsidence due to the different structural characteristics and subsidence mechanisms. Moreover, in the complex urban scenery, some segments of these infrastructures may be sheltered by surrounding buildings in SAR images, obscuring the desirable signals. Therefore, the subsidence characteristics on different types of structures should be discussed separately and the accuracy of persistent scatterers (PSs) should be optimized. In this study, the PSI-based subsidence mapping over the entire transportation network of Shanghai (more than 10,000 km) is illustrated, achieving the city-wide monitoring specifically along the elevated roads, ground highways and underground subways. The precise geolocation and structural characteristics of infrastructures were combined to effectively guide more accurate identification and separation of PSs along the structures. The experimental results from two neighboring TerraSAR-X stacks from 2013 to 2016 were integrated by joint estimating the measurements in the overlapping area, performing large-scale subsidence mapping and were validated by leveling data, showing highly consistent in terms of subsidence velocities and time-series displacements. Spatial-temporal subsidence patterns on each type of infrastructures are strongly dependent on the operational durations and structural characteristics, as well as the variation of the foundation soil layers.
NASA Astrophysics Data System (ADS)
Yu, Bing; Liu, Guoxiang; Li, Zhilin; Zhang, Rui; Jia, Hongguo; Wang, Xiaowen; Cai, Guolin
2013-08-01
The German satellite TerraSAR-X (TSX) is able to provide high-resolution synthetic aperture radar (SAR) images for mapping surface deformation by the persistent scatterer interferometry (PSI) technique. To extend the application of PSI in detecting subsidence in areas with frequent surface changes, this paper presents a method of TSX PSI on a network of natural persistent scatterers (NPSs) and artificial corner reflectors (CRs) deployed on site. We select a suburban area of southwest Tianjin (China) as the testing site where 16 CRs and 10 leveling points (LPs) are deployed, and utilize 13 TSX images collected over this area between 2009 and 2010 to extract subsidence by the method proposed. Two types of CRs are set around the fishponds and crop parcels. 6 CRs are the conventional ones, i.e., fixed CRs (FCRs), while 10 CRs are the newly-designed ones, i.e., so-called portable CRs (PCRs) with capability of repeatable installation. The numerical analysis shows that the PCRs have the higher temporal stability of radar backscattering than the FCRs, and both of them are better than the NPSs in performance of radar reflectivity. The comparison with the leveling data at the CRs and LPs indicates that the subsidence measurements derived by the TSX PSI method can reach up to a millimeter level accuracy. This demonstrates that the TSX PSI method based on a network of NPSs and CRs is useful for detecting land subsidence in cultivated lands.
Resolving land subsidence within the Venice Lagoon by persistent scatterer SAR interferometry
NASA Astrophysics Data System (ADS)
Teatini, P.; Tosi, L.; Strozzi, T.; Carbognin, L.; Cecconi, G.; Rosselli, R.; Libardo, S.
Land subsidence is a severe geologic hazard threatening the lowlying transitional coastal areas worldwide. Monitoring land subsidence has been significantly improved over the last decade by space borne earth observation techniques based on Synthetic Aperture Radar (SAR) interferometry. Within the INLET Project, funded by Magistrato alle Acque di Venezia - Venice Water Authority (VWA) and Consorzio Venezia Nuova (CVN), we use Interferometric Point Target Analysis (IPTA) to characterize the ground displacements within the Venice Lagoon. IPTA measures the movement of backscattering point targets (PTs) at the ground surface that persistently reflect radar signals emitted by the SAR system at different passes. For this study 80 ERS-1/2 and 44 ENVISAT SAR scenes recorded from 1992 to 2005 and from 2003 to 2007, respectively, have been processed. Highly reliable displacement measurements have been detected for thousands of PTs located on the lagoon margins, along the littorals, in major and small islands, and on single structures scattered within the lagoon. On the average, land subsidence ranges from less than 1 mm/year to 5 mm/year, with some PTs that exhibit values also larger than 10 mm/year depending on both the local geologic conditions and the anthropic activities. A network of a few tens of artificial square trihedral corner reflectors (TCRs) has been established before summer 2007 in order to monitor land subsidence in the inner lagoon areas where “natural” reflectors completely lack (e.g., on the salt marshes). The first interferometric results on the TCRs appear very promising.
3D Tomographic SAR Imaging in Densely Vegetated Mountainous Rural Areas in China and Sweden
NASA Astrophysics Data System (ADS)
Feng, L.; Muller, J. P., , Prof
2017-12-01
3D SAR Tomography (TomoSAR) and 4D SAR Differential Tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to create an important new innovation of SAR Interferometry, to unscramble complex scenes with multiple scatterers mapped into the same SAR cell. In addition to this 3-D shape reconstruction and deformation solution in complex urban/infrastructure areas, and recent cryospheric ice investigations, emerging tomographic remote sensing applications include forest applications, e.g. tree height and biomass estimation, sub-canopy topographic mapping, and even search, rescue and surveillance. However, these scenes are characterized by temporal decorrelation of scatterers, orbital, tropospheric and ionospheric phase distortion and an open issue regarding possible height blurring and accuracy losses for TomoSAR applications particularly in densely vegetated mountainous rural areas. Thus, it is important to develop solutions for temporal decorrelation, orbital, tropospheric and ionospheric phase distortion.We report here on 3D imaging (especially in vertical layers) over densely vegetated mountainous rural areas using 3-D SAR imaging (SAR tomography) derived from data stacks of X-band COSMO-SkyMed Spotlight and L band ALOS-1 PALSAR data stacks over Dujiangyan Dam, Sichuan, China and L and P band airborne SAR data (BioSAR 2008 - ESA) in the Krycklan river catchment, Northern Sweden. The new TanDEM-X 12m DEM is used to assist co - registration of all the data stacks over China first. Then, atmospheric correction is being assessed using weather model data such as ERA-I, MERRA, MERRA-2, WRF; linear phase-topography correction and MODIS spectrometer correction will be compared and ionospheric correction methods are discussed to remove tropospheric and ionospheric delay. Then the new TomoSAR method with the TanDEM-X 12m DEM is described to obtain the number of scatterers inside each pixel, the scattering amplitude and phase of each scatterer and finally extract tomograms (imaging), their 3D positions and motion parameters (deformation). A progress report will be shown on these different aspects.This work is partially supported by the CSC and UCL MAPS Dean prize through a PhD studentship at UCL-MSSL.
The Theoretical Problem of Partial Coherence and Partial Polarization in PolSAR and PolInSAR
NASA Astrophysics Data System (ADS)
Alvarez-Perez, J. L.
2013-08-01
Coherence is a key concept in all aspects related to SAR, and it is also an essential ingredient not only of its signal processing and image formation but also of the data postprocessing stages of SAR data. Coherence is however a non-trivial concept that has been the subject of much debate in the last sixty years, even if its definition in the context of PolInSAR has been almost univocal. Nevertheless, the mutual relationships between coherence, polarization and statistical independence in PolSAR has recently been the subject of discussion in [1]. Some of these questions affect the eigenanalysis-based approach to PolInSAR, as developed by Cloude and Papathanassiou's foundational work. Coherence involves the behaviour of electromagnetic waves in at least a pair of points and in this sense it plays an important role in interferometry that is not present in non-interferometric radar polarimetry. PolInSAR inherits some of the difficulties found in [1], which stem from the controversial confusion between coherence and polarization as present in PolSAR, as well as the ability of separating different physical contributors to the scattering phenomenon through the use of eigenvalues and eigenvectors. Although these are also issues present in eigenanalysis-based PolInSAR, it is still possible to analyze a scene in terms of coherence and this very concept of coherence is the subject of this paper. A new analysis of the concept of coherence for interferometry is proposed, including multiple observation point configurations that bring about statistical moments whose order is higher than two.
NASA Astrophysics Data System (ADS)
de Michele, M.; Raucoules, D.; Rohmer, J.; Loschetter, A.; Raffard, D.; Le Gallo, Y.
2013-12-01
A prerequisite to the large scale industrial development of CO2 Capture and geological Storage is the demonstration that the storage is both efficient and safe. In this context, precise uplift/subsidence monitoring techniques constitute a key component of any CO2 storage risk management. Space-borne Differential SAR (Synthetic Aperture Radar) interferometry is a promising monitoring technique. It can provide valuable information on vertical positions of a set of scatterer undergoing surface deformation induced by volumetric changes through time and space caused by CO2 injection in deep aquifers. To what extent ? To date, InSAR techniques have been successfully used in a variety of case-studies involving the measure of surface deformation caused by subsurface fluid withdrawal / injection. For instance, groundwater flow characterization in complex aquifers systems, oil / gas field characterization, verification of enhanced oil recovery efficiency, monitoring of seasonal gas storage. The successful use of InSAR is strictly related to the favourable scattering conditions in terms of spatial distribution of targets and their temporal stability. In arid regions, natural radar scatterers density can be very high, exceeding 1,000 per square km. But future onshore industrial-scale CO2 storage sites are planned in more complex land-covers such as agricultural or vegetated terrains. Those terrains are characterized by poor to moderate radar scatterers density, which decrease the detection limits of the space-borne interferometric technique. The present study discusses the limits and constraints of advanced InSAR techniques applied to deformation measurements associated with CO2 injection/storage into deep aquifers in the presence of agricultural and vegetated land-covers. We explore different options to enhance the measurement performances of InSAR techniques. As a first option, we propose to optimize the deployment of a network of 'artificial' scatterers, i.e. corner reflectors (artificial devices installed on ground to provide high backscatter to the radar signal) to complement the existing 'natural' network. The methodology is iterative and adaptive to the spatial and temporal extent of the detectable deforming region. We take into account the need of a change in sensors characteristics (for a very long term monitoring 10-50 years) that could result in a need of re-organisation of the network. Our discussion is supported by the estimates of the expected spatio-temporal evolution of surface vertical displacements caused by CO2 injection at depth by combining the approximate analytical solutions for pressure build-up during CO2 injection in deep aquifers and the poro-elastic behaviour of the reservoir under injection. As second option, we then review different advanced InSAR algorithms that could improve the displacement measurements using natural scatterers over vegetated areas.
Interferometric synthetic aperture radar imagery of the Gulf Stream
NASA Technical Reports Server (NTRS)
Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.
1993-01-01
The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.
NASA Astrophysics Data System (ADS)
Bianchini, S.; Cigna, F.; Del Ventisette, C.; Moretti, S.; Casagli, N.
2012-04-01
Landslide phenomena represent a major geological hazard worldwide, threatening human lives and settlements, especially in urban areas where the potential socio-economic losses and damages are stronger because of the higher value of the element at risk exposure and vulnerability. The impact of these natural disasters in highly populated and vulnerable areas can be reduced or prevented by performing a proper detection of such ground movements, in order to support an appropriate urban planning. Mapping and monitoring of active landslides and vulnerable slopes can greatly benefit from radar satellite data analysis, due to the great cost-benefits ratio, non-invasiveness and high precision of remote sensing techniques. This work illustrates the potential of Persistent Scatterer Interferometry (PSI) using X-band SAR (Synthetic Aperture Radar) data for a detailed detection and characterization of landslide ground displacements at local scale. PSI analysis is a powerful tool for mapping and monitoring slow surface displacements, just particularly in built-up and urbanized areas where many radar benchmarks (the PS, Persistent Scatterers) are retrieved. We exploit X-band radar data acquired from the German satellite TerraSAR-X on Gimigliano site located in Calabria Region (Italy). The use of TerraSAR-X imagery significantly improves the level of detail of the analysis and extends the applicability of space-borne SAR interferometry to faster ground movements, due to higher spatial resolutions (up to 1 m), higher PS targets density and shorter repeat cycles (11 days) of X-band satellites with respect to the medium resolution SAR sensors, such as ERS1/2, ENVISAT and RADARSAT1/2. 27 SAR scenes were acquired over a 116.9 Km2 extended area from the satellite TerraSAR-X in Spotlight mode, along descending orbits, with a look angle of 34°, from November 2010 to October 2011. The images were processed by e-GEOS with the Persistent Scatterers Pairs (PSP) technique, providing the estimation of annual velocities of LOS (Line Of Sight) ground displacements and related deformation time series for the whole acquisition period. The methodology performed is based on the integration of recent radar PS data in X-band with historical SAR archives derived from ERS1/2 and ENVISAT data in C-band, and with geological and geomorphological evidences resulting from the existing auxiliary data (e.g. landslide databases, thematic maps and aerial orthophotos), finally validated with field checks and in situ observations in the study area. This operative procedure led to the detailed study of the spatial distribution and temporal evolution of ground movements phenomena in Gimigliano site. The outcomes of this work represent a valuable example of detection and characterization of landslide-induced phenomena identified in detail by PSI analysis in X-band at local scale. This approach showed that PSI technique has the potential to improve the quality and timeliness of landslide inventories and consequently help for the implementation of best strategies for risk mitigation and urban-environmental design. This work was carried out within the SAFER (Services and Applications For Emergency Response) project, funded by the European Commission within the 7th Framework Programme under the Global Monitoring for Environment and Security (EC GMES FP7) initiative.
NASA Astrophysics Data System (ADS)
Oliveira, Sérgio C.; Zêzere, José L.; Catalão, João; Nico, Giovanni
2015-04-01
In the Grande da Pipa river basin (north of Lisbon, Portugal), 64% of the landslides inventoried occur on a particular weak rock lithological unit composed by clay and with sandstone intercalations, that is present in 58% of the study (Oliveira et al., 2014). Deep-seated slow moving rotational slides occur essentially on this lithological unit and are responsible for the major damages verified along roads and buildings in the study area. Within this context, landslide hazard assessment, is limited by two major constrains: (i) the slope instability signs may not be sufficiently clear and observable and consequently may not be correctly identifiable through traditional geomorphologic survey techniques and (ii) the non-timely recognition of precursor signs of instability both in landslides activated for the first time and in previously landslide-affected areas (landslide reactivation). To encompass these limitations, the Persistent Scatterer synthetic aperture radar interferometry technique is applied to a data set of 16 TerraSAR-X SAR images, from April of 2010 to March of 2011, available for a small test site of 12.5 square kilometers (Laje-Salema) located on south-central part of the study area. This work's specific objectives are the following: (i) to evaluate the capacity of the Persistent Scatterer displacement maps in assessing landslide susceptibility at the regional scale, and (ii) to assess the capacity of landslide susceptibility maps based on historical landslide inventories to predict the location of actual terrain displacement measured by the Persistent Scatterers technique. Landslide susceptibility was assessed for the test site using the Information Value bivariate statistical method and the susceptibility scores were exported to the Grande da Pipa river basin. The independent validation of the landslide susceptibility maps was made using the historical landslide inventory and the Persistent Scatterer displacement map. Results are compared by computing the respective Receiver Operator Characteristic curves and calculating the corresponding Area Under the Curve. Reference: Oliveira, S.C.; Zêzere, J.L.; Catalão, J.; Nico, G. (2014) - The contribution of PSInSAR interferometry to landslide hazard in weak rock-dominated areas. Landslides, DOI 10.1007/s10346-014-0522-9 This work was supported by the FCT - Portuguese Foundation for Science and Technology and is within the framework of the Project Pan-European and nation-wide landslide susceptibility assessment, European and Mediterranean Major Hazards Agreement (EUR-OPA). The first author was funded by a postdoctoral grant (SFRH/BPD/85827/2012) from the Portuguese Foundation for Science and Technology (FCT).
Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry
Belmonte, Antonella; Nutricato, Raffaele; Nitti, Davide O.; Chiaradia, Maria T.
2018-01-01
Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period. PMID:29702588
Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry.
Bovenga, Fabio; Belmonte, Antonella; Refice, Alberto; Pasquariello, Guido; Nutricato, Raffaele; Nitti, Davide O; Chiaradia, Maria T
2018-04-27
Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period.
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Motagh, Mahdi
2018-04-01
Interferometric wide-swath mode of Sentinel-1, which is implemented by Terrain Observation by Progressive Scan (TOPS) technique, is the main mode of SAR data acquisition in this mission. It aims at global monitoring of large areas with enhanced revisit frequency of 6 days at the expense of reduced azimuth resolution, compared to classical ScanSAR mode. TOPS technique is equipped by steering the beam from backward to forward along the heading direction for each burst, in addition to the steering along the range direction, which is the only sweeping direction in standard ScanSAR mode. This leads to difficulty in measuring along-track displacement by applying the conventional method of multi-aperture interferometry (MAI), which exploits a double difference interferometry to estimate azimuth offset. There is a possibility to solve this issue by a technique called "Burst Overlap Interferometry" which focuses on the region of burst overlap. Taking advantage of large squint angle diversity of 1° in burst overlapped area leads to improve the accuracy of ground motion measurement especially in along-track direction. We investigate the advantage of SAR Interferometry (InSAR), burst overlap interferometry and offset tracking to investigate coseismic deformation and coseismic-induced landslide related to 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake in Iran.
NASA Astrophysics Data System (ADS)
Lavalle, M.; Ahmed, R.
2014-12-01
Mapping forest structure and aboveground biomass globally is a major challenge that the remote sensing community has been facing for decades. Radar backscatter is sensitive to biomass only up to a certain amount (about 150 tons/ha at L-band and 300 tons/ha at P-band), whereas lidar remote sensing is strongly limited by poor spatial coverage. In recent years radar interferometry, including its extension to polarimetric radar interferometry (PolInSAR), has emerged as a new technique to overcome the limitations of radar backscatter. The idea of PolInSAR is to use jointly interferometric and polarimetric radar techniques to separate different scattering mechanisms and retrieve the vertical structure of forests. The advantage is to map ecosystem structure continuously over large areas and independently of cloud coverage. Experiments have shown that forest height - an important proxy for biomass - can be estimated using PolInSAR with accuracy between 15% and 20% at plot level. At AGU we will review the state-of-art of repeat-pass PolInSAR for biomass mapping, including its potential and limitations, and discuss how merging lidar data with PolInSAR data can be beneficial not only for product cross-validation but also for achieving better estimation of ecosystem properties over large areas. In particular, lidar data are expected to aid the inversion of PolInSAR models by providing (1) better identification of ground under the canopy, (2) approximate information of canopy structure in limited areas, and (3) maximum tree height useful for mapping PolInSAR temporal decorrelation. We will show our tree height and biomass maps using PolInSAR L-band JPL/UAVSAR data collected in tropical and temperate forests, and P-band ONERA/TROPISAR data acquired in French Guiana. LVIS lidar data will be used, as well as SRTM data, field measurements and inventory data to support our study. The use of two different radar frequencies and repeat-pass JPL UAVSAR data will offer also the opportunity to compare our results with the new airborne P-band ECOSAR and L-band DBSAR instruments developed at the NASA Goddard Space Flight Center.
Potential for Application of PSInSAR Data for Tectonic Modelling in Subduction Areas
NASA Astrophysics Data System (ADS)
Musson, R. M.; Julian, B.; Mark, H.; Alessandro, F.
2002-12-01
Interest has been increasing over the last few years in the use of satellite radar interferometry data (InSAR) for applications in seismology and tectonics. We report here on a new technique, PSInSAR, which relies on permanent scatterers and offers the possibility of measurements of ground displacements to a degree of accuracy, and over periods of time, previously unobtainable from conventional interferometry. This technique has been developed by TeleRilevamento Europa of the Politecnico di Milano in Italy. A permanent scatterer is any large, permanent angular object, such as building roofs, metallic structures, and even large boulders. Using these data, very accurate displacement histories can be obtained for the period 1991 to the present. Calibration with GPS data show good agreement, but the PSInSAR data are less noisy. The effect is akin to suddenly having a very dense GPS network retrospectively available for the last ten years in any moderately urbanised area in a region for which a satellite data archive exists (about 50 per cent of the globe). Data have been gathered for the area around Suruga Bay, Japan, which is expected to be the locus of a future great Tokai earthquake. Previous studies have used levelling or GPS data to model the locked part of the subduction plane in this area, using the Akaike Bayesian Information Criterion (ABIC) method. This method could be used with PSInSAR data, which would be likely to yield a better result on account of the greater density of data. Furthermore, there is now the potential to use the ABIC method in any subduction area, whether there exist GPS/levelling data or not, provided only that the area is sufficiently urbanised to yield adequate permanent scatterers as data points. This work results from a European Space Agency (ESA) 'Earth Observation Market Development' project entitled 'Developing markets for EO-derived land motion measurement products', involving, NPA (lead), the British Geological Survey (UK), Imperial College (UK), TeleRilevamento Europa (Italy), ImageONE (Japan), the Geographic Survey Institute (Japan), Oyo Corporation (Japan), Fugro (Netherlands) and SARCOM (ESA data distributing entity).
Investigating the creeping section of the San Andreas Fault using ALOS PALSAR interferometry
NASA Astrophysics Data System (ADS)
Agram, P. S.; Wortham, C.; Zebker, H. A.
2010-12-01
In recent years, time-series InSAR techniques have been used to study the temporal characteristics of various geophysical phenomena that produce surface deformation including earthquakes and magma migration in volcanoes. Conventional InSAR and time-series InSAR techniques have also been successfully used to study aseismic creep across faults in urban areas like the Northern Hayward Fault in California [1-3]. However, application of these methods to studying the time-dependent creep across the Central San Andreas Fault using C-band ERS and Envisat radar satellites has resulted in limited success. While these techniques estimate the average long-term far-field deformation rates reliably, creep measurement close to the fault (< 3-4 Km) is virtually impossible due to heavy decorrelation at C-band (6cm wavelength). Shanker and Zebker (2009) [4] used the Persistent Scatterer (PS) time-series InSAR technique to estimate a time-dependent non-uniform creep signal across a section of the creeping segment of the San Andreas Fault. However, the identified PS network was spatially very sparse (1 per sq. km) to study temporal characteristics of deformation of areas close to the fault. In this work, we use L-band (24cm wavelength) SAR data from the PALSAR instrument on-board the ALOS satellite, launched by Japanese Aerospace Exploration Agency (JAXA) in 2006, to study the temporal characteristics of creep across the Central San Andreas Fault. The longer wavelength at L-band improves observed correlation over the entire scene which significantly increased the ground area coverage of estimated deformation in each interferogram but at the cost of decreased sensitivity of interferometric phase to surface deformation. However, noise levels in our deformation estimates can be decreased by combining information from multiple SAR acquisitions using time-series InSAR techniques. We analyze 13 SAR acquisitions spanning the time-period from March 2007 to Dec 2009 using the Short Baseline Subset Analysis (SBAS) time-series InSAR technique [3]. We present detailed comparisons of estimated time-series of fault creep as a function of position along the fault including the locked section around Parkfield, CA. We also present comparisons between the InSAR time-series and GPS network observations in the Parkfield region. During these three years of observation, the average fault creep is estimated to be 35 mm/yr. References [1] Bürgmann,R., E. Fielding and, J. Sukhatme, Slip along the Hayward fault, California, estimated from space-based synthetic aperture radar interferometry, Geology,26, 559-562, 1998. [2] Ferretti, A., C. Prati and F. Rocca, Permanent Scatterers in SAR Interferometry, IEEE Trans. Geosci. Remote Sens., 39, 8-20, 2001. [3] Lanari, R.,F. Casu, M. Manzo, and P. Lundgren, Application of SBAS D- InSAR technique to fault creep: A case study of the Hayward Fault, California. Remote Sensing of Environment, 109(1), 20-28, 2007. [4] Shanker, A. P., and H. Zebker, Edgelist phase unwrapping algorithm for time-series InSAR. J. Opt. Soc. Am. A, 37(4), 2010.
NASA Astrophysics Data System (ADS)
Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno
2016-04-01
The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the period from 2010 to 2014 was initially performed. Moreover, the deformation monitoring is continuing with monthly updates of the PSP analysis with new COSMO-SkyMed acquisitions both in ascending and descending geometry. The first results of the preliminary analysis over the archaeological site of Pompeii did not show large areas affected by deformations. However, the COSMO-SkyMed PSP SAR interferometry analysis proved to be very efficient due to its capability of providing a large number of deformation measurements over the archaeological site and structures with relatively small impact and cost. Moreover, in areas affected by collapses in the recent past, deformations were detected. Recent instability processes, both for the unexcavated slopes and for the archaeological structures, have promoted this low-impact analysis, aimed at identifying deformation paths and to prevent sudden collapses. Finally, the results obtained from the satellite techniques, will be also used to implement and improve the ground based geotechnical monitoring and warning system recently installed in selected case studies. Cross analysis between interferometric results, meteorological data and historical data of the site (e.g. collapses, works, etc.) are in progress in order to define provisional model aiming at an early identification of areas subjected to potential instability.
NASA Astrophysics Data System (ADS)
Bonì, Roberta; Herrera, Gerardo; Meisina, Claudia; Notti, Davide; Zucca, Francesco; Bejar, Marta; González, Pablo; Palano, Mimmo; Tomás, Roberto; Fernandez, José; Fernández-Merodo, José; Mulas, Joaquín; Aragón, Ramón; Mora, Oscar
2014-05-01
Subsidence related to fluid withdrawal has occurred in numerous regions of the world. The phenomena is an important hazard closely related to the development of urban areas. The analysis of the deformations requires an extensive and continuous spatial and temporal monitoring to prevent the negative effects of such risks on structures and infrastructures. Deformation measurements are fundamental in order to identify the affected area extension, to evaluate the temporal evolution of deformation velocities and to identify the main control mechanisms. Differential SAR interferometry represents an advanced remote sensing tool, which can map displacements at very high spatial resolution. The Persistent Scatterer Interferometry (PSI) technique is a class of SAR interferometry that uses point-wise radar targets (PS) on the ground whose phase is not interested by temporal and geometrical decorrelation. This technique generates starting from a set of images two main products: the displacement rate along line of sight (LOS) of single PS; and the LOS displacement time series of individual PS. In this work SAR data with different spatio-temporal resolution were used to study the displacements that occur from 1992 to 2012 in the Alto Guadalentin Basin (southern Spain), where is located the city of Lorca The area is affected by the highest rate of subsidence measured in Europe (>10 cm/yr-1) related to long-term exploitation of the aquifer (González et al. 2011). The objectives of the work were 1) to analyse land subsidence evolution over a 20-year period with PSI technique; 2) to compare the spatial and temporal resolution of SAR data acquired by different sensors, 3) to investigate the causes that could explain this land motion. The SAR data have been obtained with ERS-1/2 & ENVISAT (1992-2007), ALOS PALSAR (2007-2010) and COSMO-SkyMed (2011-2012) images, processed with the Stable Point Network (SPN) technique. The PSI data obtained from different satellite from 1992 to 2012 were compared with some predisposing and trigger factors as geological units, isobaths of Plio-Quaternary filling, soft soil thickness and piezometric level. The PSI data were compared with measurement obtained by two GPS station located near the Lorca city: the value of deformation detected by satellites and ground-based tools are well correlated. The results are the following: a) the subsidence processes are related to soft soil thickness distribution; b) land subsidence rates shows that the area interested by the higher value is the same over the monitored period, a deceleration rate of subsidence has been recorded during the period 2011- 2012; c) the deformation rates are not correlated with the piezometric level trend, a delay time between piezometric level variations and ground deformations is evident. References González, P. J. & Fernández, J.,(2011) Drought-driven transient aquifer compaction imaged using multitemporal satellite radar interferometry. Geology 39, pp. 551-554.
SAR and LIDAR fusion: experiments and applications
NASA Astrophysics Data System (ADS)
Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.
2013-05-01
In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.
Improved characterization of slow-moving landslides by means of adaptive NL-InSAR filtering
NASA Astrophysics Data System (ADS)
Albiol, David; Iglesias, Rubén.; Sánchez, Francisco; Duro, Javier
2014-10-01
Advanced remote sensing techniques based on space-borne Synthetic Aperture Radar (SAR) have been developed during the last decade showing their applicability for the monitoring of surface displacements in landslide areas. This paper presents an advanced Persistent Scatterer Interferometry (PSI) processing based on the Stable Point Network (SPN) technique, developed by the company Altamira-Information, for the monitoring of an active slowmoving landslide in the mountainous environment of El Portalet, Central Spanish Pyrenees. For this purpose, two TerraSAR-X data sets acquired in ascending mode corresponding to the period from April to November 2011, and from August to November 2013, respectively, are employed. The objective of this work is twofold. On the one hand, the benefits of employing Nonlocal Interferomtric SAR (NL-InSAR) adaptive filtering techniques over vegetated scenarios to maximize the chances of detecting natural distributed scatterers, such as bare or rocky areas, and deterministic point-like scatterers, such as man-made structures or poles, is put forward. In this context, the final PSI displacement maps retrieved with the proposed filtering technique are compared in terms of pixels' density and quality with classical PSI, showing a significant improvement. On the other hand, since SAR systems are only sensitive to detect displacements in the line-of-sight (LOS) direction, the importance of projecting the PSI displacement results retrieved along the steepest gradient of the terrain slope is discussed. The improvements presented in this paper are particularly interesting in these type of applications since they clearly allow to better determine the extension and dynamics of complex landslide phenomena.
Comparative analysis of recent satellite missions for multi-temporal SAR interferometry
NASA Astrophysics Data System (ADS)
Bovenga, Fabio; Refice, Alberto; Belmonte, Antonella; Pasquariello, Guido
2016-10-01
Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, the atmospheric artifacts, the visibility problems related to the ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new interesting opportunity is provided by Sentinel-1 mission, which has a spatial resolution comparable to previous ESA C-band missions, and revisit times reduced to up to 6 days. It is envisioned that, by offering regular, global-scale coverage, improved temporal resolution and freely available imagery, Sentinel-1 will guarantee an increasing use of MTI for ground displacement investigations. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications to ground instability monitoring. Issues related to coherent target detection and mean velocity precision will be addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of multi-sensor ground instability investigation over the site of Marina di Lesina, Southern Italy, a village lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift pattern affecting the entire village area, and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been used, coming from both legacy ERS and ENVISAT missions, and last-generation Radarsat-2, COSMO-SkyMed, and Sentinel-1A sensors.
Polarimetric Interferometry - Remote Sensing Applications
2007-02-01
This lecture is mainly based on the work of S.R. Cloude and presents examples for remote sensing applications Polarimetric SAR Interferometry...PolInSAR). PolInSAR has its origins in remote sensing and was first developed for applications in 1997 using SIRC L-Band data [1,2]. In its original form it
a Hybrid Method in Vegetation Height Estimation Using Polinsar Images of Campaign Biosar
NASA Astrophysics Data System (ADS)
Dehnavi, S.; Maghsoudi, Y.
2015-12-01
Recently, there have been plenty of researches on the retrieval of forest height by PolInSAR data. This paper aims at the evaluation of a hybrid method in vegetation height estimation based on L-band multi-polarized air-borne SAR images. The SAR data used in this paper were collected by the airborne E-SAR system. The objective of this research is firstly to describe each interferometry cross correlation as a sum of contributions corresponding to single bounce, double bounce and volume scattering processes. Then, an ESPIRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm is implemented, to determine the interferometric phase of each local scatterer (ground and canopy). Secondly, the canopy height is estimated by phase differencing method, according to the RVOG (Random Volume Over Ground) concept. The applied model-based decomposition method is unrivaled, as it is not limited to specific type of vegetation, unlike the previous decomposition techniques. In fact, the usage of generalized probability density function based on the nth power of a cosine-squared function, which is characterized by two parameters, makes this method useful for different vegetation types. Experimental results show the efficiency of the approach for vegetation height estimation in the test site.
Satellite SAR interferometric techniques applied to emergency mapping
NASA Astrophysics Data System (ADS)
Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene
2017-04-01
This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce monitoring maps for risk prevention and mitigation purposes. Nevertheless, multi-temporal techniques require large SAR temporal datasets, i.e. 20 and more images. Being the Sentinel-1 missions operational only since April 2014, multi-mission SAR datasets should be therefore exploited to carry out historical analysis.
Multi Temporal Interferometry as Tool for Urban Landslide Hazard Assessment
NASA Astrophysics Data System (ADS)
Vicari, A.; Colangelo, G.; Famiglietti, N.; Cecere, G.; Stramondo, S.; Viggiano, D.
2017-12-01
Advanced Synthetic Aperture Radar Differential Interferometry (A-DInSAR) are Multi Temporal Interferometry(MTI) techniques suitable for the monitoring of deformation phenomena in slow kinematics. A-DInSAR methodologies include both Coherence-based type, as well as Small Baseline Subset (SBAS) (Berardino et al., 2002, Lanari et al., 2004) and Persistent/Permanent Scatterers (PS), (Ferretti et al., 2001). Such techniques are capable to provide wide-area coverage (thousands of km2) and precise (mm-cm resolution), spatially dense information (from hundreds to thousands of measurementpoints/km2) on groundsurfacedeformations. SBAS and PShavebeenapplied to the town of Stigliano (MT) in Basilicata Region (Southern Italy), where the social center has been destroyed after the reactivation of a known landslide. The comparison of results has shown that these techniques are equivalent in terms of obtained coherent areas and displacement patterns, although lightly different velocity values for individual points (-5/-25 mm/y for PS vs. -5/-15 mm/y for SBAS) have been pointed out. Differences are probably due to scattering properties of the ground surface (e.g. Lauknes et al., 2010). Furthermore, on the crown of the landslide body, a Robotics Explorer Total Monitoring Station (Leica Nova TM50) that measures distance values with 0.6 mm of resolution has been installed. In particular, 20 different points corresponding to that identified through satellite techniques have been chosen, and a sampling time of 15 minutes has been fixed. The displacement values obtained are in agreement with the results of the MTI analysis, showing as these techniques could be a useful tool in the case of early - warning situations.
TerraSAR-X InSAR multipass analysis on Venice, Italy)
NASA Astrophysics Data System (ADS)
Nitti, D. O.; Nutricato, R.; Bovenga, F.; Refice, A.; Chiaradia, M. T.; Guerriero, L.
2009-09-01
The TerraSAR-X (copyright) mission, launched in 2007, carries a new X-band Synthetic Aperture Radar (SAR) sensor optimally suited for SAR interferometry (InSAR), thus allowing very promising application of InSAR techniques for the risk assessment on areas with hydrogeological instability and especially for multi-temporal analysis, such as Persistent Scatterer Interferometry (PSI) techniques, originally developed at Politecnico di Milano. The SPINUA (Stable Point INterferometry over Unurbanised Areas) technique is a PSI processing methodology which has originally been developed with the aim of detection and monitoring of coherent PS targets in non or scarcely-urbanized areas. The main goal of the present work is to describe successful applications of the SPINUA PSI technique in processing X-band data. Venice has been selected as test site since it is in favorable settings for PSI investigations (urban area containing many potential coherent targets such as buildings) and in view of the availability of a long temporal series of TerraSAR-X stripmap acquisitions (27 scenes in all). The Venice Lagoon is affected by land sinking phenomena, whose origins are both natural and man-induced. The subsidence of Venice has been intensively studied for decades by determining land displacements through traditional monitoring techniques (leveling and GPS) and, recently, by processing stacks of ERS/ENVISAT SAR data. The present work is focused on an independent assessment of application of PSI techniques to TerraSAR-X stripmap data for monitoring the stability of the Venice area. Thanks to its orbital repeat cycle of only 11 days, less than a third of ERS/ENVISAT C-band missions, the maximum displacement rate that can be unambiguously detected along the Line-of-Sight (LOS) with TerraSAR-X SAR data through PSI techniques is expected to be about twice the corresponding value of ESA C-band missions, being directly proportional to the sensor wavelength and inversely proportional to the revisit time. When monitoring displacement phenomena which are known to be within the C-band rate limits, the increased repeat cycle of TerraSAR-X offers the opportunity to decimate the stack of TerraSAR-X data, e.g. by doubling the temporal baseline between subsequent acquisitions. This strategy can be adopted for reducing both economic and computational processing costs. In the present work, the displacement rate maps obtained through SPINUA with and without decimation of the number of Single Look Complex (SLC) acquisitions are compared. In particular, it is shown that with high spatial resolution SAR data, reliable displacement maps could be estimated through PSI techniques with a number of SLCs much lower than in C-band.
Workshop on Radar Investigations of Planetary and Terrestrial Environments
NASA Technical Reports Server (NTRS)
2005-01-01
Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.
NASA Astrophysics Data System (ADS)
Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla
2017-04-01
Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs to use a stack of SAR images to separate the deformation phase contributions from other spurious components (atmospheric, orbital, etc.). Historical/reference analyses of the period 2011-2014 have been performed to obtain such deformations and to have a start point for the next updates. In fact, starting from the reference analyses the deformation monitoring has then continued with monthly updates of the PSP analysis with new COSMO-SkyMed acquisitions both in ascending and descending geometry. In addition to this traditional monitoring service, the satellite interferometry analysis has been realized over specific time frame that have been selected on the bases of some important events (damages to structures, collapses, works etc.) and the analysis have been correlated with additional site information as weather conditions, critical meteorological events, historical information of the site, etc. The objective is to find a nominal behaviour of the site in response to critical events and/or related to natural degradation of infrastructures in order to prevent damages and guide maintenance activities. The first results of this cross correlated analysis showed that some deformation phenomena are identifiable by SAR satellite interferometric analysis and it has also been possible to validate them on field through a direct survey.
Extracting DEM from airborne X-band data based on PolInSAR
NASA Astrophysics Data System (ADS)
Hou, X. X.; Huang, G. M.; Zhao, Z.
2015-06-01
Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.
Dikes under Pressure - Monitoring the Vulnerability of Dikes by Means of SAR Interferometry
NASA Astrophysics Data System (ADS)
Marzahn, Philip; Seidel, Moritz; Ludwig, Ralf
2016-04-01
Dikes are the main man made structures in flood protection systems for the protection of humans and economic values. Usually dikes are built with a sandy core and clay or concrete layer covering the core. Thus, dikes are prone to a vertical shrinkage due to soil physical processes such as reduction of pore space and gravity increasing the risk of a crevasse during floods. In addition, this vulnerability is amplified by a sea level rise due to climate change. To guarantee the stability of dikes, a labourer intensive program is carried out by national authorities monitoring the dikes by visual inspection. In the presented study, a quantitative approach is presented using SAR Interferometry for the monitoring of the stability of dikes from space. In particular, the vertical movement of dikes due to shrinkage is monitored using persistent scatterer interferometry. Therefore three different types of dikes have been investigated: a sea coast dike with a concrete cover, a sea coast dike with short grass cover and a smaller river dike with grass cover. All dikes are located in Germany. Results show the potential of the monitoring technique as well as spatial differences in the stability of dikes with subsidence rates in parts of a dike up to 7 mm/a.
Mapping slope movements in Alpine environments using TerraSAR-X interferometric methods
NASA Astrophysics Data System (ADS)
Barboux, Chloé; Strozzi, Tazio; Delaloye, Reynald; Wegmüller, Urs; Collet, Claude
2015-11-01
Mapping slope movements in Alpine environments is an increasingly important task in the context of climate change and natural hazard management. We propose the detection, mapping and inventorying of slope movements using different interferometric methods based on TerraSAR-X satellite images. Differential SAR interferograms (DInSAR), Persistent Scatterer Interferometry (PSI), Short-Baseline Interferometry (SBAS) and a semi-automated texture image analysis are presented and compared in order to determine their contribution for the automatic detection and mapping of slope movements of various velocity rates encountered in Alpine environments. Investigations are conducted in a study region of about 6 km × 6 km located in the Western Swiss Alps using a unique large data set of 140 DInSAR scenes computed from 51 summer TerraSAR-X (TSX) acquisitions from 2008 to 2012. We found that PSI is able to precisely detect only points moving with velocities below 3.5 cm/yr in the LOS, with a root mean squared error of about 0.58 cm/yr compared to DGPS records. SBAS employed with 11 days summer interferograms increases the range of detectable movements to rates up to 35 cm/yr in the LOS with a root mean squared error of 6.36 cm/yr, but inaccurate measurements due to phase unwrapping are already possible for velocity rates larger than 20 cm/year. With the semi-automated texture image analysis the rough estimation of the velocity rates over an outlined moving zone is accurate for rates of "cm/day", "dm/month" and "cm/month", but due to the decorrelation of yearly TSX interferograms this method fails for the observation of slow movements in the "cm/yr" range.
NASA Astrophysics Data System (ADS)
Seleem, Tarek A.; Parcharidis, Issaak; Foumelis, Michael; Kourkouli, Penelope
2011-03-01
The investigation area is located in the most southern part of Sinai Peninsula boarded from the west by the Gulf of Suez and from the east by the Gulf of Aqaba. The present study concerns the application of stacking and persistent scattering of SAR interferometry in order to monitor ground deformation in the southern part of Sharm El-Shiekh area. The specific techniques were applied in order to reduce the influence of atmospheric effects on the ground deformation estimates. For this purpose a total number of 26 ENVISAT ASAR scenes covering the period between 2003 and 2009 were processed and analyzed. Interferometric processing results show both patterns of uplift and downlift in the study area. Specifically an area along the coastline with a N-S direction, corresponding to the build up zone of Sharm El-Sheikh, shows annual average subsidence rates between 5 and 7 mm/yr along the line of sight (LOS). On the contrary, Sharm El-Maya, an inner zone, parallel to the above subsided area; shows maximum slant range uplift of 5 mm/yr. The obtained results of both stacking and persistent scattering indicate that the ground deformation in Sharm El-Sheikh-Ras Nasrani coastal zone is attributed to several effecting factors compromising water pumping, lithology, seismicity, and possible active fracture. The contribution of all these factors is discussed in the context.
NASA Astrophysics Data System (ADS)
Costantini, Mario; Malvarosa, Fabio; Minati, Federico
2010-03-01
Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.
Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height
NASA Astrophysics Data System (ADS)
Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong
2013-08-01
The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.
Atmospheric Phase Delay in Sentinel SAR Interferometry
NASA Astrophysics Data System (ADS)
Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.
2018-04-01
The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation measurements.
Monitoring Building Deformation with InSAR: Experiments and Validation.
Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng
2016-12-20
Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated.
Methodology for heritage conservation in Belgium based on multi-temporal interferometry
NASA Astrophysics Data System (ADS)
Bejarano-Urrego, L.; Verstrynge, E.; Shimoni, M.; Lopez, J.; Walstra, J.; Declercq, P.-Y.; Derauw, D.; Hayen, R.; Van Balen, K.
2017-09-01
Soil differential settlements that cause structural damage to heritage buildings are precipitating cultural and economic value losses. Adequate damage assessment as well as protection and preservation of the built patrimony are priorities at national and local levels, so they require advanced integration and analysis of environmental, architectural and historical parameters. The GEPATAR project (GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium) aims to create an online interactive geo-information tool that allows the user to view and to be informed about the Belgian heritage buildings at risk due to differential soil settlements. Multi-temporal interferometry techniques (MTI) have been proven to be a powerful technique for analyzing earth surface deformation patterns through time series of Synthetic Aperture Radar (SAR) images. These techniques allow to measure ground movements over wide areas at high precision and relatively low cost. In this project, Persistent Scatterer Synthetic Aperture Radar Interferometry (PS-InSAR) and Multidimensional Small Baseline Subsets (MSBAS) are used to measure and monitor the temporal evolution of surface deformations across Belgium. This information is integrated with the Belgian heritage data by means of an interactive toolbox in a GIS environment in order to identify the level of risk. At country scale, the toolbox includes ground deformation hazard maps, geological information, location of patrimony buildings and land use; while at local scale, it includes settlement rates, photographic and historical surveys as well as architectural and geotechnical information. Some case studies are investigated by means of on-site monitoring techniques and stability analysis to evaluate the applied approaches. This paper presents a description of the methodology being implemented in the project together with the case study of the Saint Vincent's church which is located on a former colliery zone. For this building, damage is assessed by means of PSInSAR.
Persistent Scatterer InSAR monitoring of Bratislava urban area
NASA Astrophysics Data System (ADS)
Bakon, Matus; Perissin, Daniele; Papco, Juraj; Lazecky, Milan
2014-05-01
The main purpose of this research is to monitor the ground stability of Bratislava urban area by application of the satellite radar interferometry. Bratislava, the capital city of Slovakia, is situated in its south-west on the borders with Austria and Hungary and only 62 kilometers from the border with Czech Republic. With an exclusive location and good infrastructure, the city attracts foreign investors and developers, what has resulted in unprecedented boom in construction in recent years. Another thing is that Danube River in the last five hundred years caused a hundred of devastating floods, so therefore flood occurs every five years, on average. From geological point of view, the Little Carpathians covers the main part of study area and are geologically and tectonically interesting. The current state of relief and spatial distribution of individual geological forms is the result of vertical geodynamic movements of tectonic blocks, e.g., subsiding parts of Vienna Basin and Danubian Basin or uplifting mountains. The Little Carpathians horst and the area of Vienna Basin contains a number of tectonic faults, where ground motions as a result of geodynamic processes are mostly expected. It is assumed that all the phenomena stated above has an impact on the spatial composition of the Earth's surface in Bratislava urban area. As nowadays surface of the Little Carpathians is heavily eroded and morphology smoothed, question of this impact cannot be answered only by interpreting geological tectonic maps. Furthermore, expected changes have never been revealed by any geodetic measurements which would offer advantages of satellite radar interferometry concerning temporal coverage, spatial resolution and accuracy. Thus the generation of ground deformation maps using satellite radar interferometry could gather valuable information. The work aims to perform a series of differential interferograms and PSInSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) technique, covering the target area with 57 Envisat ASAR images from Ascending Track No. 229 (32) and Descending Track No. 265 (25) captured between years 2002 and 2010. Processing involves Sarproz (Copyright (c) 2009 Daniele Perissin) a powerful software solution for obtaining differential interferograms and performing PSInSAR methodology. The area of interest to investigate the deformation phenomena is covering approximately 16 by 16 kilometers (256 sqkm). For evaluation of PSInSAR potential to detect and monitor ground displacements, PS derived time series of deformation signal were compared to the field GNSS data from three GNSS stations coded PIL1, BRAT and GKU4. By the detailed look on the deformation maps the investigated urban area of Bratislava is relatively stable with the deformation rates within the few (±5) millimeters. The comparison of PSInSAR derived time series with GNSS data indicates good correlation and confirms achievable precision and applicability of InSAR measurements for ground stability monitoring purposes. Data for this work were provided by European Space Agency within the Category-1 project ID 9981: "Detection of ground deformation using radar interferometry techniques". The authors are grateful to the Tatrabanka Foundation and The National Scholarship Programme of the Slovak Republic for the opportunity to work together. Data have been processed by the Sarproz (Copyright (c) 2009 Daniele Perissin) and visualised in Google Earth. This paper is also the result of the implementation of the project: the National Centre of Earth's Surface Deformation Diagnostic in the area of Slovakia, ITMS 26220220108 supported by the Research and Development Operational Programme funded by the ERDF and the grant No. 1/0642/13 of the Slovak Grant Agency VEGA.
Dynamic Deformation of ETNA Volcano Observed by GPS and SAR Interferometry
NASA Technical Reports Server (NTRS)
Lundgren, P.; Rosen, P.; Webb, F.; Tesauro, M.; Lanari, R.; Sansosi, E.; Puglisi, G.; Bonforte, A.; Coltelli, M.
1999-01-01
Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.
NASA Astrophysics Data System (ADS)
Massironi, Matteo; Zampieri, Dario; Schiavo, Alessio; Bianchi, Marco; Franceschini, Andrea
2010-05-01
The Permanent Scatterers Synthetic Aperture Radar INterferometry (PSInSAR) methodology provides high resolution assessment of surface deformations (precision ranging from 0.8 to 0.1 mm/year) over long periods of observation. Hence, it is particularly suitable to analyze surface motion over wide regions associated to a weak tectonic activity. For this reason we have adopted the PSInSAR technique to study regional movement across the Giudicarie belt, a NNE-trending trust belt oblique to the Southern Alpine chain and presently characterized by a low to moderate seismicity. Over 11,000 PS velocities along the satellite Line Of Sight (LOS) were calculated using images acquired in descending orbit during the 1992-1996 time span. The PSInSAR data show a differential uplift of around 1.4-1.7 mm/year across the most external WNW-dipping thrusts of the Giudicarie belt (Mt. Baldo, Mt. Stivo and Mt. Grattacul thrusts alignment). This corresponds to a horizontal contraction across the external part of the Giudicarie belt of about 1.3-1.5 mm/year.
Monitoring Building Deformation with InSAR: Experiments and Validation
Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng
2016-01-01
Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated. PMID:27999403
Jung, Hyung-Sup; Hong, Soo-Min
2017-01-01
Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.
Jung, Hyung-Sup; Hong, Soo-Min
2017-01-01
Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake. PMID:29145475
UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area
NASA Astrophysics Data System (ADS)
Blom, R. G.; An, K.; Jones, C. E.; Latini, D.
2014-12-01
Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water pumping to post recent construction ground compaction. Our overall goal is to enable incorporation of InSAR into the decision making process via identification and delineation of areas of persistent subsidence, and provide input to improve monitoring and planning in flood risk areas.
NASA Technical Reports Server (NTRS)
Fielding, Eric; Sladen, Anthony; Avouac, Jean-Philippe; Li, Zhenhong; Ryder, Isabelle; Burgmann, Roland
2008-01-01
The presentations explores kinematics of the Wenchaun-Beichuan earthquake using data from ALOS, Envisat, and teleseismic recordings. Topics include geomorphic mapping, ALOS PALSAR range offsets, ALOS PALSAR interferometry, Envisat IM interferometry, Envisat ScanSAR, Joint GPS-InSAR inversion, and joint GPS-teleseismic inversion (static and kinematic).
Mayer, Larry; Lu, Zhong
2001-01-01
A basic model incorporating satellite synthetic aperture radar (SAR) interferometry of the fault rupture zone that formed during the Kocaeli earthquake of August 17, 1999, documents the elastic rebound that resulted from the concomitant elastic strain release along the North Anatolian fault. For pure strike-slip faults, the elastic rebound function derived from SAR interferometry is directly invertible from the distribution of elastic strain on the fault at criticality, just before the critical shear stress was exceeded and the fault ruptured. The Kocaeli earthquake, which was accompanied by as much as ∼5 m of surface displacement, distributed strain ∼110 km around the fault prior to faulting, although most of it was concentrated in a narrower and asymmetric 10-km-wide zone on either side of the fault. The use of SAR interferometry to document the distribution of elastic strain at the critical condition for faulting is clearly a valuable tool, both for scientific investigation and for the effective management of earthquake hazard.
Methodology for locale-scale monitoring for the PROTHEGO project: the Choirokoitia case study
NASA Astrophysics Data System (ADS)
Themistocleous, Kyriacos; Agapiou, Athos; Cuca, Branka; Danezis, Chris; Cigna, Francesca; Margottini, Claudio; Spizzichino, Daniele
2016-10-01
PROTHEGO (PROTection of European Cultural HEritage from GeO-hazards) is a collaborative research project funded in the framework of the Joint Programming Initiative on Cultural Heritage and Global Change (JPICH) - Heritage Plus in 2015-2018 (www.prothego.eu). PROTHEGO aims to make an innovative contribution towards the analysis of geohazards in areas of cultural heritage, and uses novel space technology based on radar interferometry (InSAR) to retrieve information on ground stability and motion in the 400+ UNESCO's World Heritage List monuments and sites of Europe. InSAR can be used to measure micro-movements to identify geo-hazards. In order to verify the InSAR image data, field and close range measurements are necessary. This paper presents the methodology for local-scale monitoring of the Choirokoitia study site in Cyprus, inscribed in the UNESCO World Heritage List, and part of the demonstration sites of PROTHEGO. Various field and remote sensing methods will be exploited for the local-scale monitoring, static GNSS, total station, leveling, laser scanning and UAV and compared with the Persistent Scatterer Interferometry results. The in-situ measurements will be taken systematically in order to document any changes and geo-hazards that affect standing archaeological remains. In addition, ground truth from in-situ visits will provide feedback related to the classification results of urban expansion and land use change maps. Available archival and current optical satellite images will be used to calibrate and identify the level of risk at the Cyprus case study site. The ground based geotechnical monitoring will be compared and validated with InSAR data to evaluate cultural heritage sites deformation trend and to understand its behaviour over the last two decades.
NASA Astrophysics Data System (ADS)
Silva, Guilherme Gregório; Mura, José Claudio; Paradella, Waldir Renato; Gama, Fabio Furlan; Temporim, Filipe Altoé
2017-04-01
Persistent scatterer interferometry (PSI) analysis of a large area is always a challenging task regarding the removal of the atmospheric phase component. This work presents an investigation of ground movement measurements based on a combination of differential SAR interferometry time-series (DTS) and PSI techniques, applied on a large area of extent with open pit iron mines located in Carajás (Brazilian Amazon Region), aiming at detecting linear and nonlinear ground movement. These mines have presented a history of instability, and surface monitoring measurements over sectors of the mines (pit walls) have been carried out based on ground-based radar and total station (prisms). Using a priori information regarding the topographic phase error and a phase displacement model derived from DTS, temporal phase unwrapping in the PSI processing and the removal of the atmospheric phases can be performed more efficiently. A set of 33 TerraSAR-X (TSX-1) images, acquired during the period from March 2012 to April 2013, was used to perform this investigation. The DTS analysis was carried out on a stack of multilook unwrapped interferograms using an extension of SVD to obtain the least-square solution. The height errors and deformation rates provided by the DTS approach were subtracted from the stack of interferograms to perform the PSI analysis. This procedure improved the capability of the PSI analysis for detecting high rates of deformation, as well as increased the numbers of point density of the final results. The proposed methodology showed good results for monitoring surface displacement in a large mining area, which is located in a rain forest environment, providing very useful information about the ground movement for planning and risk control.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
NASA Astrophysics Data System (ADS)
Strozzi, Tazio; Caduff, Rafael; Kääb, Andreas; Bolch, Tobias
2017-04-01
The best visual expression of mountain permafrost are rockglaciers, which, in contrast to the permafrost itself, can be mapped and monitored directly using remotely sensed data. Studies carried out in various parts of the European Alps have shown surface acceleration of rockglaciers and even destabilization of several such landforms over the two last decades, potentially related to the changing permafrost creep conditions. Changes in rockglacier motion are therefore believed to be the most indicative short- to medium-term response of rockglaciers to environmental changes and thus an indicator of mountain permafrost conditions in general. The ESA DUE GlobPermafrost project develops, validates and implements EO products to support research communities and international organizations in their work on better understanding permafrost characteristics and dynamics. Within this project we are building up a worldwide long-term monitoring network of active rockglacier motion investigated using remote sensing techniques. All sites are analysed through a uniform set of data and methods, and results are thus comparable. In order to quantify the rate of movement and the relative changes over time we consider two remote sensing methods: (i) matching of repeat optical data and (ii) satellite radar interferometry. In this contribution, we focus on the potential of recent high spatial resolution SAR data for the analysis of periglacial processes in mountain environments with special attention to the Ile and Kungöy Ranges of Northern Tien Shan at the border between Kazakhstan and Kyrgyzstan, an area which contains a high number of large and comparably fast (> 1m/yr) rockglaciers and is of interest as dry-season water resource and source of natural hazards. As demonstrated in the past with investigations conducted in the Swiss Alps, the visual analysis of differential SAR interferograms can be employed for the rough estimation of the surface deformation rates of rockglaciers and other slope instabilities into different classes (e.g. cm/day, dm/month, cm/month and cm/yr). More sophisticated SAR interferometric approaches like Persistent Scatterer Interferometry (PSI) or Short Baseline Interferometry (SBAS) are only able to detect points moving with velocities below a few cm/yr respectively several dm/yr in the Line-Of-Sight (LOS) direction, because of phase unwrapping issues. For our analysis in the Tien Shan we considered SAR interferograms with short baselines and acquisition time intervals between 1 day and approximately one year. Satellite images from the ERS-1/2 tandem mission in 1998-1999, ALOS-1 PALSAR-1 between 2006-2010 (46 days nominal repeat cycle), ALOS-2 PALSAR-2 between 2014 and 2016 (14 days nominal repeat cycle), and Sentinel-1 between 2015 and 2016 (12 days nominal repeat cycle) were used. Images acquired along both ascending and descending geometries and during summer (snow-free) and winter (frozen snow) conditions were employed. For topographic reference and orthorectification we computed in-house a Digital Elevation Model from TanDEM-X acquisitions of ascending and descending orbits. Phase unwrapping to derive the LOS displacement was attempted only locally for selected landforms with a moderate (e.g. < 50 cm/yr) rate of motion. Our inventory of rockglaciers and other periglacial processes in the Northern Tien Shan includes so far more than 500 objects over an area of more than 3000 km2. In future, our inventory will be compared to other existing inventories compiled in field or with air photos. In addition, the long-term monitoring of rockglacier motion will be performed taking advantage of the synergies between repeat optical and radar satellite data. The combined approach is useful for the confirmation of the activity, filling spatial and/or temporal gaps, computing the historical fast motion of rockglaciers from optical data and the slow motion from SAR interferometry, and to compare multi-annual rates of motion (optical data) with seasonal activities (SAR interferometry).
Improved Topographic Mapping Through Multi-Baseline SAR Interferometry with MAP Estimation
NASA Astrophysics Data System (ADS)
Dong, Yuting; Jiang, Houjun; Zhang, Lu; Liao, Mingsheng; Shi, Xuguo
2015-05-01
There is an inherent contradiction between the sensitivity of height measurement and the accuracy of phase unwrapping for SAR interferometry (InSAR) over rough terrain. This contradiction can be resolved by multi-baseline InSAR analysis, which exploits multiple phase observations with different normal baselines to improve phase unwrapping accuracy, or even avoid phase unwrapping. In this paper we propose a maximum a posteriori (MAP) estimation method assisted by SRTM DEM data for multi-baseline InSAR topographic mapping. Based on our method, a data processing flow is established and applied in processing multi-baseline ALOS/PALSAR dataset. The accuracy of resultant DEMs is evaluated by using a standard Chinese national DEM of scale 1:10,000 as reference. The results show that multi-baseline InSAR can improve DEM accuracy compared with single-baseline case. It is noteworthy that phase unwrapping is avoided and the quality of multi-baseline InSAR DEM can meet the DTED-2 standard.
A prototype of an automated high resolution InSAR volcano-monitoring system in the MED-SUV project
NASA Astrophysics Data System (ADS)
Chowdhury, Tanvir A.; Minet, Christian; Fritz, Thomas
2016-04-01
Volcanic processes which produce a variety of geological and hydrological hazards are difficult to predict and capable of triggering natural disasters on regional to global scales. Therefore it is important to monitor volcano continuously and with a high spatial and temporal sampling rate. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities and it helps for the better understanding and modelling of the involved geophysical processes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide a powerful tool for observing the eruptive activities and measuring the surface changes of millimetre accuracy. All the mentioned techniques with deformation time series extraction address the challenges by exploiting medium to large SAR image stacks. The process of selecting, ordering, downloading, storing, logging, extracting and preparing the data for processing is very time consuming has to be done manually for every single data-stack. In many cases it is even an iterative process which has to be done regularly and continuously. Therefore, data processing becomes slow which causes significant delays in data delivery. The SAR Satellite based High Resolution Data Acquisition System, which will be developed at DLR, will automate this entire time consuming tasks and allows an operational volcano monitoring system. Every 24 hours the system runs for searching new acquired scene over the volcanoes and keeps track of the data orders, log the status and download the provided data via ftp-transfer including E-Mail alert. Furthermore, the system will deliver specified reports and maps to a database for review and use by specialists. The user interaction will be minimized and iterative processes will be totally avoided. In this presentation, a prototype of SAR Satellite based High Resolution Data Acquisition System, which is developed and operated by DLR, will be described in detail. The workflow of the developed system is described which allow a meaningful contribution of SAR for monitoring volcanic eruptive activities. A more robust and efficient InSAR data processing in IWAP processor will be introduced in the framework of a remote sensing task of MED-SUV project. An application of the developed prototype system to a historic eruption of Mount Etna and Piton de la Fournaise will be depicted in the last part of the presentation.
NASA Technical Reports Server (NTRS)
Fielding, Eric J.; Wright, Tim J.; Muller, Jordan; Parsons, Barry E.; Walker, Richard
2004-01-01
At depth, many fold-and-thrust belts are composed of a gently dipping, basal thrust fault and steeply dipping, shallower splay faults that terminate beneath folds at the surface. Movement on these buried faults is difficult to observe, but synthetic aperture radar (SAR) interferometry has imaged slip on at least 600 square kilometers of the Shahdad basal-thrust and splay-fault network in southeast Iran.
NASA Astrophysics Data System (ADS)
Francesca, Cigna; Lasaponara, Rosa; Nicola, Masini; Pietro, Milillo; Deodato, Tapete
2015-04-01
Ground stability of the built environment of the city of Rome in central Italy has been extensively investigated in the last years by using Interferometric Synthetic Aperture Radar (InSAR), with focus on deformation of both the monuments of the historic centre (e.g., [1-2]) and the southern residential quarters (e.g., [3]). C-band ERS-1/2 and ENVISAT ASAR time series deformation analyses brought evidence of overall stability across the town centre, except for localized deformation concentrated in areas geologically susceptible to instability (e.g. western slope of the Palatine Hill), whereas clear subsidence patterns were detected over the compressible alluvial deposits lying in proximity of the Tiber River. To retrieve an updated picture of stability and subsidence across the city, we analysed a time series of 32 COSMO-SkyMed StripMap HIMAGE, right-looking, ascending mode scenes with an image swath of 40 km, 3-m resolution and HH polarization, acquired between 21 March 2011 and 10 June 2013, with repeat cycle mostly equal to 16 days. Persistent Scatterer Interferometry (PSI) processing was undertaken by using the Stanford Method for Persistent Scatterers (StaMPS) as detailed in [4], and more than 310,000 radar targets (i.e. PS) were identified, with an average target density of over 2,800 PS/km2. The performance of StaMPS to retrieve satisfactory PS coverage over the urban features of interest was assessed against their orientation and visibility to the satellite Line-Of-Sight, as well as their conservation history throughout the biennial investigated (2011-2013). In this work we discuss effects due to local land cover and land use by exploiting the Global Monitoring for Environment and Security (GMES) European Urban Atlas (IT001L) of Rome at 1:10,000 scale, thereby also evaluating the capability of the X-band to spatially resolve targets coinciding with man-made structures in vegetated areas. Based on this assessment, our PSI results highlight those environmental constraints that can prevent, even at such high spatial resolution, obtaining satisfactory PS densities in peri-urban areas with high vegetation coverage. With regard to recent deformation patterns, COSMO-SkyMed time series confirm the persistence of subsidence processes in southern Rome. In areas of recent urbanization, such as that surrounding the Basilica of St Paul Outside-the-Walls, the estimated vertical motion velocity reaches values higher than -7.0 mm/yr. Further proof of the potentiality of COSMO-SkyMed constellation to extend almost seamlessly ground motion time series from previous SAR missions is offered by the deformation detected at the single-monument scale over the archaeological ruins of the Oppian Hill, the monuments and historical building in the riverside quarter of Trastevere, and the Basilica di San Saba within the Aurelian Walls. References [1] Tapete, D.; Fanti, R.; Cecchi, R.; Petrangeli, P.; Casagli, N. Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites. J. Geophys. Eng. 2012, 9 S10-S25. [2] Tapete, D.; Casagli, N.; Fanti, R. Radar interferometry for early stage warning on monuments at risk. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 1, pp. 619-625. [3] Stramondo, S.; Bozzano, F.; Marra, F.; Wegmuller, U.; Cinti, F.R.; Moro, M.; Saroli, M. Subsidence induced by urbanisation in the city of Rome detected by advanced InSAR technique and geotechnical investigations. Remote Sens. Environ. 2008, 112, 3160-3172. [4] Cigna, F.; Lasaponara, R.; Masini, N.; Milillo, P.; Tapete, D. Persistent Scatterer Interferometry Processing of COSMO-SkyMed StripMap HIMAGE Time Series to Depict Deformation of the Historic Centre of Rome, Italy. Remote Sens. 2014, 6, 12593-12618.
NASA Astrophysics Data System (ADS)
Jones, Cathleen; Blom, Ronald; Latini, Daniele
2014-05-01
The vulnerability of the United States Gulf of Mexico coast to inundation has received increasing attention in the years since hurricanes Katrina and Rita. Flood protection is a challenge throughout the area, but the population density and cumulative effect of historic subsidence makes it particularly difficult in the New Orleans area. Analysis of historical and continuing geodetic measurements identifies a surprising degree of complexity in subsidence (Dokka 2011), including regions that are subsiding at rates faster than those considered during planning for hurricane protection and for coastal restoration projects. Improved measurements are possible through combining traditional single point, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations for to obtain geographically dense constraints on surface deformation. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. We are applying pair-wise InSAR to longer wavelength (L-band, 24 cm) synthetic aperture radar data acquired with the airborne UAVSAR instrument (http://uavsar.jpl.nasa.gov/) to detect localized change impacting flood protection infrastructure in the New Orleans area during the period from 2009 - 2013. Because aircraft motion creates large-scale image artifacts across the scene, we focus on localized areas on and near flood protection infrastructure to identify anomalous change relative to the surrounding area indicative of subsidence, structural deformation, and/or seepage (Jones et al., 2011) to identify areas where problems exist. C-band and particularly X-band radar returns decorrelate over short time periods in rural or less urbanized areas and are more sensitive to atmospheric affects, necessitating more elaborate analysis techniques or, at least, a strict limit on the temporal baseline. The new generation of spaceborne X-band SAR acquisitions ensure relatively high frequency of acquisition, a dramatic increase of persistent scatter density in urban areas, and improved measurement of very small displacements (Crosetto et al., 2010). We compare the L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period, to determine the influence of different radar frequencies and analyses techniques. Our applications goal is to demonstrate a technique to inform targeted ground surveys, identify areas of persistent subsidence, and improve overall monitoring and planning in flood risk areas. Dokka, 2011, The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi: J. Geophys. Res., 116, B06403, doi:10.1029/2010JB008008. Jones, C. E., G. Bawden, S. Deverel, J. Dudas, S. Hensley, Study of movement and seepage along levees using DINSAR and the airborne UAVSAR instrument, Proc. SPIE 8536, SAR Image Analysis, Modeling, and Techniques XII, 85360E (November 21, 2012); doi:10.1117/12.976885. Crosetto, M., Monserrat, O., Iglesias, R., & Crippa, B. (2010). Persistent Scatterer Interferometry: Potential, limits and initial C-and X-band comparison. Photogrammetric engineering and remote sensing, 76(9), 1061-1069. Acknowledgments: This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Regional and local land subsidence at the Venice coastland by TerraSAR-X PSI
NASA Astrophysics Data System (ADS)
Tosi, L.; Strozzi, T.; Da Lio, C.; Teatini, P.
2015-11-01
Land subsidence occurred at the Venice coastland over the 2008-2011 period has been investigated by Persistent Scatterer Interferometry (PSI) using a stack of 90 TerraSAR-X stripmap images with a 3 m resolution and a 11-day revisiting time. The regular X-band SAR acquisitions over more than three years coupled with the very-high image resolution has significantly improved the monitoring of ground displacements at regional and local scales, e.g., the entire lagoon, especially the historical palaces, the MoSE large structures under construction at the lagoon inlets to disconnect the lagoon from the Adriatic Sea during high tides, and single small structures scattered within the lagoon environments. Our results show that subsidence is characterized by a certain variability at the regional scale with superimposed important local displacements. The movements range from a gentle uplift to subsidence rates of up to 35 mm yr-1. For instance, settlements of 30-35 mm yr-1 have been detected at the three lagoon inlets in correspondence of the MoSE works, and local sinking bowls up to 10 mm yr-1 connected with the construction of new large buildings or restoration works have been measured in the Venice and Chioggia historical centers. Focusing on the city of Venice, the mean subsidence of 1.1 ± 1.0 mm yr-1 confirms the general stability of the historical center.
NASA Astrophysics Data System (ADS)
Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.
2009-04-01
Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.
Zhang, L.; Lu, Zhong; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.
2012-01-01
Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach – temporarily coherent point (TCP) InSAR (TCPInSAR) – to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6 mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms.
Applications and development of new algorithms for displacement analysis using InSAR time series
NASA Astrophysics Data System (ADS)
Osmanoglu, Batuhan
Time series analysis of Synthetic Aperture Radar Interferometry (InSAR) data has become an important scientific tool for monitoring and measuring the displacement of Earth's surface due to a wide range of phenomena, including earthquakes, volcanoes, landslides, changes in ground water levels, and wetlands. Time series analysis is a product of interferometric phase measurements, which become ambiguous when the observed motion is larger than half of the radar wavelength. Thus, phase observations must first be unwrapped in order to obtain physically meaningful results. Persistent Scatterer Interferometry (PSI), Stanford Method for Persistent Scatterers (StaMPS), Short Baselines Interferometry (SBAS) and Small Temporal Baseline Subset (STBAS) algorithms solve for this ambiguity using a series of spatio-temporal unwrapping algorithms and filters. In this dissertation, I improve upon current phase unwrapping algorithms, and apply the PSI method to study subsidence in Mexico City. PSI was used to obtain unwrapped deformation rates in Mexico City (Chapter 3),where ground water withdrawal in excess of natural recharge causes subsurface, clay-rich sediments to compact. This study is based on 23 satellite SAR scenes acquired between January 2004 and July 2006. Time series analysis of the data reveals a maximum line-of-sight subsidence rate of 300mm/yr at a high enough resolution that individual subsidence rates for large buildings can be determined. Differential motion and related structural damage along an elevated metro rail was evident from the results. Comparison of PSI subsidence rates with data from permanent GPS stations indicate root mean square (RMS) agreement of 6.9 mm/yr, about the level expected based on joint data uncertainty. The Mexico City results suggest negligible recharge, implying continuing degradation and loss of the aquifer in the third largest metropolitan area in the world. Chapters 4 and 5 illustrate the link between time series analysis and three-dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform solution, which is becoming an important feature with continuously growing datasets.
Satellite radar interferometry measures deformation at Okmok Volcano
Lu, Zhong; Mann, Dorte; Freymueller, Jeff
1998-01-01
The center of the Okmok caldera in Alaska subsided 140 cm as a result of its February– April 1997 eruption, according to satellite data from ERS-1 and ERS-2 synthetic aperture radar (SAR) interferometry. The inferred deflationary source was located 2.7 km beneath the approximate center of the caldera using a point source deflation model. Researchers believe this source is a magma chamber about 5 km from the eruptive source vent. During the 3 years before the eruption, the center of the caldera uplifted by about 23 cm, which researchers believe was a pre-emptive inflation of the magma chamber. Scientists say such measurements demonstrate that radar interferometry is a promising spaceborne technique for monitoring remote volcanoes. Frequent, routine acquisition of images with SAR interferometry could make near realtime monitoring at such volcanoes the rule, aiding in eruption forecasting.
NASA Astrophysics Data System (ADS)
Tosi, L.; Strozzi, T.; Teatini, P.
2012-12-01
The subsidence of Venice, one of the most beautiful and famous cities in the world, is well known not by reason of the magnitude of the ground movement, which amounts to less than 15 cm over the last century, but because it has seriously compromised the ground safety level of the city in relation of its small elevation above the sea. The lowering of Venice is still today a subject of debates with large rumours on press releases every time a scientific paper is published on the topic. Over the last two decades, satellites instrumented with SAR sensors provided excellent data for detecting land displacements by inteferometric processing. In particular, the accuracy achieved by Persistent Scatterer Interferometry (PSI) and the impressive number of detected measurement points have progressively reduced the use of in situ traditional measurements, i.e. leveling survey, for monitoring land displacements of Venice. In fact, the intensive urban development makes the historical center an optimal site for PSI. On the other hand, the correct interpretation of the PSI outcomes, which provide the relative movement of single churches, palaces, bridges with millimetric precision and metric spatial resolution, require a deep knowledge of the city and its subsoil due to the peculiarity of this urban area developed over the centuries within the sea. We investigate the movements of Venice by Interferometric Point Target Analysis (IPTA) over the last 20 years using SAR acquisitions of the ERS-1/2, ENVISAT, TerraSAR-X, and Cosmo-SkyMed satellites. The density of detected scatterers is one order of magnitude larger with the newest very high resolution X-band sensors from TerraSAR-X and Cosmo-SkyMed, but by reason of the larger observation period the accuracy of the mean displacement rate of the C-band ERS and ENVISAT is higher. IPTA results have been calibrated using leveling and permanent GPS stations to correct the so-called flattening problem, i.e. the slight phase tilt resulting by the inaccuracy in estimation of the orbital baseline due to the not perfect knowledge of the satellite positions. The comparison between the measurements covering the period from 1992 to 2011 confirms the substantial stability of the city in its whole, with a subsidence rate averaging 1 mm/yr. However, the PSI measurements also provide evidence of local zones and single structures that are subsiding at faster rates due to the heterogeneous nature of the of the upper Holocene lagoon subsoil, different load and foundation of the historical palaces, and restoration works along the canals.
Influence of the external DEM on PS-InSAR processing and results on Northern Appennine slopes
NASA Astrophysics Data System (ADS)
Bayer, B.; Schmidt, D. A.; Simoni, A.
2014-12-01
We present an InSAR analysis of slow moving landslide in the Northern Appennines, Italy, and assess the dependencies on the choice of DEM. In recent years, advanced processing techniques for synthetic aperture radar interferometry (InSAR) have been applied to measure slope movements. The persistent scatterers (PS-InSAR) approach is probably the most widely used and some codes are now available in the public domain. The Stanford method of Persistent Scatterers (StamPS) has been successfully used to analyze landslide areas. One problematic step in the processing chain is the choice of an external DEM that is used to model and remove the topographic phase in a series of interferograms in order to obtain the phase contribution caused by surface deformation. The choice is not trivial, because the PS InSAR results differ significantly in terms of PS identification, positioning, and the resulting deformation signal. We use four different DEMs to process a set of 18 ASAR (Envisat) scenes over a mountain area (~350 km2) of the Northern Appennines of Italy, using StamPS. Slow-moving landslides control the evolution of the landscape and cover approximately 30% of the territory. Our focus in this presentation is to evaluate the influence of DEM resolution and accuracy by comparing PS-InSAR results. On an areal basis, we perform a statistical analysis of displacement time-series to make the comparison. We also consider two case studies to illustrate the differences in terms of PS identification, number and estimated displacements. It is clearly shown that DEM accuracy positively influences the number of PS, while line-of-sight rates differ from case to case and can result in deformation signals that are difficult to interpret. We also take advantage of statistical tools to analyze the obtained time-series datasets for the whole study area. Results indicate differences in the style and amount of displacement that can be related to the accuracy of the employed DEM.
Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska
Biggs, Juliet; Wright, Tim; Lu, Zhong; Parsons, Barry
2007-01-01
Studies of interseismic strain accumulation are crucial to our understanding of continental deformation, the earthquake cycle and seismic hazard. By mapping small amounts of ground deformation over large spatial areas, InSAR has the potential to produce continental-scale maps of strain accumulation on active faults. However, most InSAR studies to date have focused on areas where the coherence is relatively good (e.g. California, Tibet and Turkey) and most analysis techniques (stacking, small baseline subset algorithm, permanent scatterers, etc.) only include information from pixels which are coherent throughout the time-span of the study. In some areas, such as Alaska, where the deformation rate is small and coherence very variable, it is necessary to include information from pixels which are coherent in some but not all interferograms. We use a three-stage iterative algorithm based on distributed scatterer interferometry. We validate our method using synthetic data created using realistic parameters from a test site on the Denali Fault, Alaska, and present a preliminary result of 10.5 ?? 5.0 mm yr-1 for the slip rate on the Denali Fault based on a single track of radar data from ERS1/2. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
Geodetic integration of Sentinel-1A IW data using PSInSAR in Hungary
NASA Astrophysics Data System (ADS)
Farkas, Péter; Hevér, Renáta; Grenerczy, Gyula
2015-04-01
ESA's latest Synthetic Aperture Radar (SAR) mission Sentinel-1 is a huge step forward in SAR interferometry. With its default acquisition mode called the Interferometric Wide Swath Mode (IW) areas through all scales can be mapped with an excellent return time of 12 days (while only the Sentinel-1A is in orbit). Its operational data policy is also a novelty, it allows scientific users free and unlimited access to data. It implements a new type of ScanSAR mode called Terrain Observation with Progressive Scan (TOPS) SAR. It has the same resolution as ScanSAR but with better signal-to-noise ratio distribution. The bigger coverage is achieved by rotation of the antenna in the azimuth direction, therefore it requires very precise co-registration because even errors under a pixel accuracy can introduce azimuth phase variations caused by differences in Doppler-centroids. In our work we will summarize the benefits and the drawbacks of the IW mode. We would like to implement the processing chain of GAMMA Remote Sensing of such data for mapping surface motion with special attention to the co-registration step. Not only traditional InSAR but the advanced method of Persistent Scatterer InSAR (PSInSAR) will be performed and presented as well. PS coverage, along with coherence, is expected to be good due to the small perpendicular and temporal baselines. We would also like to integrate these measurements into national geodetic networks using common reference points. We have installed trihedral corner reflectors at some selected sites to aid precise collocation. Thus, we aim to demonstrate that Sentinel-1 can be effectively used for surface movement detection and monitoring and it can also provide valuable information for the improvement of our networks.
Land movement monitoring at the Mavropigi lignite mine using spaceborne D-InSAR
NASA Astrophysics Data System (ADS)
Papadaki, Eirini; Tripolitsiotis, Achilleas; Steiakakis, Chrysanthos; Agioutantis, Zacharias; Mertikas, Stelios; Partsinevelos, Panagiotis; Schilizzi, Pavlos
2013-08-01
This paper examines the capability of remote sensing radar interferometry to monitor land movements, as it varies with time, in areas close to open pit lignite mines. The study area is the "Mavropigi" lignite mine in Ptolemais, Northern Greece; whose continuous operation is of vital importance to the electric power supply of Greece. The mine is presently 100-120m deep while horizontal and vertical movements have been measured in the vicinity of the pit. Within the mine, ground geodetic monitoring has revealed an average rate of movement amounting to 10-20mm/day at the southeast slopes. In this work, differential interferometry (DInSAR), using 19 Synthetic Aperture Radar (SAR) images of ALOS satellite, has been applied to monitor progression of land movement caused my mining within the greater area of "Mavropigi" region. The results of this work show that DInSAR can be used effectively to capture ground movement information, well before signs of movements can be observed visually in the form of imminent fissures and tension cracks. The advantage of remote sensing interferometry is that it can be applied even in inaccessible areas where monitoring with ground equipment is either impossible or of high-cost (large areas).
Monitoring The Stability Of Levees With Time-Series ENVISAT ASAR Images
NASA Astrophysics Data System (ADS)
Pei, Yuanyuan; Liao, Mingsheng; Wang, Teng; Zhang, Lu
2012-01-01
Levees are constructed to protect coastal cities from typhoon, flood, and sea tide. Since the stability of levees is important, it is necessary to monitor their deformation regularly. Repeat-track space-borne SAR images are useful for environment monitoring, especially for ground deformation monitoring. Shanghai resides on the Yangtze River Delta on China’s eastern coast. Each year, the city is hit by typhoons from the Pacific Ocean and threatened by the flood of the Yangtze River. We used Persistent Scatterer Interferometry to monitor the deformation of the levees. Our experiments show that the levees around Pudong airport and Lingang town suffer from serious deformation.
NASA Astrophysics Data System (ADS)
Ahmad, Waqas; Kim, Soohyun; Kim, Dongkyun
2017-04-01
Land subsidence and crustal deformation associated with groundwater abstraction is a gradually instigating phenomenon. The exploitation of Interferometric Synthetic Aperture Radar (InSAR) for land subsidence velocity and the Gravity Recovery and Climate Experiment (GRACE) for change in groundwater storage have great potential besides other applications to address this problem. In this paper we used an integrated approach to combine InSAR and GRACE solutions to show that land subsidence velocity in a rapidly urbanizing and groundwater dependent basin in Pakistan is largely attributed to over exploitation of groundwater aquifer. We analyzed a total of 28 Sentinel-1 based interferograms generated for the period October 2014 to November 2016 to quantify the level of land subsidence in the study area. To increase the accuracy of our interferometry results we then applied a filter of Amplitude Dispersion Index (ADI) to confine the spatial extent of land subsidence to persistently scattering pixels. For the GRACE experiment we take the average of change in Total Water Storage (TWS) solutions provided by the Center for Space Research (CSR), the German Research Centre for Geosciences (GFZ), and the Jet Propulsion Laboratory (JPL) and validate this mean TWS for the study area using a network of observed time series groundwater levels. The validation result of GRACE TWS field shows that although the GRACE foot print is spatially larger than the extent of the study area but significant change in water storage can contribute to the overall trend of declining water storage. Finally we compared our results of InSAR land subsidence velocities and GRACE TWS change field. A strong dependence of the land subsidence on the temporal change in TWS suggests that most of the land subsidence could be attributed to the unchecked exploitation of groundwater aquifer.
SAR Interferometry: On the Coherence Estimation in non Stationary Scenes
NASA Astrophysics Data System (ADS)
Ballatore, P.
2005-05-01
The possibility of producing good quality satellite SAR interferometry allows observations of terrain mass movement as small as millimetric scales, with applicability in researches about landslides, volcanoes, seismology and others. SAR interferometric images is characterized by the presence of random speckle, whose pattern does not correspond to the underlying image structure. However the local brightness of speckle reflects the local echogenicity of the underlying scatters. Specifically, the coherence between interferometric pair is generally considered as an indicator of interferogram quality. Moreover, it leads to useful image segmentations and it can be employed in data mining and database browsing algorithms. SAR coherence is generally computed by substituting the ensemble averages with the spatial averages, by assuming ergodicity in the estimation window sub-areas. Nevertheless, the actual results may depend on the spatial size scale of the sampling window used for the computation. This is especially true in the cases of fast coherence estimator algorithms, which make use of the correlation coefficient's square root (Rignon and van Zyl, IEEE Trans. Geosci.Remote Sensing, vol. 31, n. 4, pp. 896-906, 1993; Guarnieri and Prati, IEEE Trans. Geosci. Remote Sensing, vol. 35, n. 3, pp. 660-669, 1997). In fact, the correlation coefficient is increased by image texture, due to non stationary absolute values within single sample estimation windows. For example, this can happen in the case of mountainous lands, and, specifically, in the case of the Italian Southern Appennini region around Benevento city, which is of specific geophysical attention for its numerous seismic and landslide terrain movements. In these cases, dedicated techniques are applied for compensating texture effects. This presentation shows an example of interferometric coherence image depending on the spatial size of sampling window. Moreover, the different methodologies present in literature for texture effect control are briefly summarized and applied to our specific exemplary case. A quantitative comparison among resulting coherences is illustrated and discussed in terms of different experimental applicability.
Subsidence monitoring within the Athens Basin (Greece) using space radar interferometric techniques
NASA Astrophysics Data System (ADS)
Parcharidis, I.; Lagios, E.; Sakkas, V.; Raucoules, D.; Feurer, D.; Mouelic, S. L.; King, C.; Carnec, C.; Novali, F.; Ferretti, A.; Capes, R.; Cooksley, G.
2006-05-01
The application of conventional SAR Interferometry (InSAR) together with the two techniques of sub-centimeteraccuracy, the Stacking and the Permanent Scatterers (PS) Interferometry, were used to study the ground deformation in the broader area of Athens for the period 1992 to 2002. Using the Stacking interfero-metricmethod, 55 ERS-1&2 SAR scenes, between 1992 and 2002, were acquired producing 264 differential interferograms. Among these only 60 were finally selected as fulfilling certain criteria. The co-seismic deforma-tionassociated with the Athens Earthquake (Mw = 5 9, September 7, 1999) was excluded from the analytical procedure in an attempt to present results of only aseismic character. In total ground subsidence results of about12 mm in the southern suburbs of Athens, but higher value of about 40 mm in the northern ones for the period 1992-2002. Based on the PS technique, a precise average annual deformation rate-map was generated for the period 1992-1999, ending just before the Athens earthquake event. Both circular and elongated-shape areas of subsidence are recognizable especially in the northern part of the Athens Basin (3-4 mm/yr), as well as at its southern part (1-3 mm/yr). In addition, a rate of 2-3 mm/yr is also yielded for some part of the Athens city center. Subsidence rates of 1-2 mm/yr are measured at the western part of the basin over an area of old mining activities, and around the newly built Syntagma Metro Station. The correlation of the observed deformation pat-ternswith respect to the spatial distribution of water pumping, older mining activities, metro line tunneling and other local geological parameters is examined and discussed.
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn;
2014-01-01
EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).
NASA Astrophysics Data System (ADS)
Wang, C.; Chang, W.; Chang, C.
2013-12-01
The Taipei basin, triangular in shape and located in the northern Taiwan, is now developed into the most densely populated area and also the capital of politics and economics in Taiwan. North of the Taipei basin, the Tatun volcano group was proposed to be the cause of extensional collapse during the Pleistocene following the collision between the Luzon volcanic arc and the Eurasian continental margin at about 5 Ma. We investigated the contemporary surface deformation of the northern Taiwan using ALOS images that cover the Taipei basin and its surrounding mountainous area. The Differential Interferometric Synthetic Aperture Radar (DInSAR) technique has been widely used in the past ten years. However, the mountainous areas surrounding the basin are mostly covered with densely various vegetations that reduce signal-to-noise ratio in the interferograms. Therefore, the DInSAR technique is not effective for measuring the surface deformation in and around the Taipei basin, including the Tatun volcano area, and consequently the Persistent Scatterer (PS) and small baseline (SB) InSAR techniques have been employed to extract phase signals of the chosen PS points. In this study, we aim to measure the ground deformation of northern Taiwan by processing the spaceborne radar interferometry data of ALOS acquired from 2007 to 2011 using PSInSAR and SBInSAR techniques. Compared with the Envisat and ERS images used by previous studies, L-band PALSAR images can produce more PS points in the region covered by dense vegetation so that our results reveal a higher resolution of ground deformation. The mean Line of Sight (LOS) velocity field of up to 8 mm/yr in the central Tatun volcanic area, and up to 5 mm/yr in the Taipei basin with higher rate at the hanging wall of the Sanchiao fault than the footwall. (See the Figure.) While previous studies indicated that the Taipei basin had experienced ground uplift from 1993 to 2001 and subsidence from 2003 to 2008, our results show a return to ground uplift from 2007 to 2011. Re-examining earlier InSAR and integrating other geodetic data is under progress for further examination on this transient deformation.
Investigation of ionospheric effects on SAR Interferometry (InSAR): A case study of Hong Kong
NASA Astrophysics Data System (ADS)
Zhu, Wu; Ding, Xiao-Li; Jung, Hyung-Sup; Zhang, Qin; Zhang, Bo-Chen; Qu, Wei
2016-08-01
Synthetic Aperture Radar Interferometry (InSAR) has demonstrated its potential for high-density spatial mapping of ground displacement associated with earthquakes, volcanoes, and other geologic processes. However, this technique may be affected by the ionosphere, which can result in the distortions of Synthetic Aperture Radar (SAR) images, phases, and polarization. Moreover, ionospheric effect has become and is becoming further significant with the increasing interest in low-frequency SAR systems, limiting the further development of InSAR technique. Although some research has been carried out, thorough analysis of ionospheric influence on true SAR imagery is still limited. Based on this background, this study performs a thorough investigation of ionospheric effect on InSAR through processing L-band ALOS-1/PALSAR-1 images and dual-frequency Global Positioning System (GPS) data over Hong Kong, where the phenomenon of ionospheric irregularities often occurs. The result shows that the small-scale ionospheric irregularities can cause the azimuth pixel shifts and phase advance errors on interferograms. Meanwhile, it is found that these two effects result in the stripe-shaped features in InSAR images. The direction of the stripe-shaped effects keep approximately constant in space for our InSAR dataset. Moreover, the GPS-derived rate of total electron content change index (ROTI), an index to reflect the level of ionospheric disturbances, may be a useful indicator for predicting the ionospheric effect for SAR images. This finding can help us evaluate the quality of SAR images when considering the ionospheric effect.
Sulzberger Ice Shelf Tidal Signal Reconstruction Using InSAR
NASA Astrophysics Data System (ADS)
Baek, S.; Shum, C.; Yi, Y.; Kwoun, O.; Lu, Z.; Braun, A.
2005-12-01
Synthetic Aperture Radar Interferometry (InSAR) and Differential InSAR (DInSAR) have been demonstrated as useful techniques to detect surface deformation over ice sheet and ice shelves over Antarctica. In this study, we use multiple-pass InSAR from the ERS-1 and ERS-2 data to detect ocean tidal deformation with an attempt towards modeling of tides underneath an ice shelf. High resolution Digital Elevation Model (DEM) from repeat-pass interferometry and ICESat profiles as ground control points is used for topographic correction over the study region in Sulzberger Ice Shelf, West Antarctica. Tidal differences measured by InSAR are obtained by the phase difference between a point on the grounded ice and a point on ice shelf. Comparison with global or regional tide models (including NAO, TPXO, GOT, and CATS) of a selected point shows that the tidal amplitude is consistent with the values predicted from tide models to within 4 cm RMS. Even though the lack of data hinders the effort to readily develop a tide model using longer term data (time series span over years), we suggest a method to reconstruction selected tidal constituents using both vertical deformation from InSAR and the knowledge on aliased tidal frequencies from ERS satellites. Finally, we report the comparison results of tidal deformation observed by InSAR and ICESat altimetry.
Applications of SAR Interferometry in Earth and Environmental Science Research
Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun
2009-01-01
This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992
Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Rincon, Rafael; Lee, Seung Kuk; Fatoyinbo, Temilola; Bollian, Tobias
2017-01-01
EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques.
Applications of SAR Interferometry in Earth and Environmental Science Research.
Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun
2009-01-01
This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.
NASA Astrophysics Data System (ADS)
Pinel, V.; Hooper, A.; De la Cruz-Reyna, S.; Reyes-Davila, G.; Doin, M. P.; Bascou, P.
2011-02-01
Despite the ability of synthetic aperture radar (SAR) interferometry to measure ground motion with high-resolution, application of this remote sensing technique to monitor andesitic stratovolcanoes remains limited. Specific acquisition conditions characterizing andesitic stratovolcanoes, mainly vegetated areas with large elevation ranges, induce low signal coherence as well as strong tropospheric artefacts that result in small signal-to-noise ratio. We propose here a way to mitigate these difficulties and improve the SAR measurements. We derive ground motions for two of the most active Mexican stratovolcanoes: Popocatepetl and Colima Volcano, from the time series of SAR data acquired from December 2002 to August 2006. The SAR data are processed using a method that combines both persistent scatterers and small baseline approaches. Stratified tropospheric delays are estimated for each interferogram using inputs from the global atmospheric model NARR, up to a maximum of 10 rad/km. These delays are validated using spectrometer data, as well as the correlation between the wrapped phase and the elevation. The tropospheric effect is removed from the wrapped phase in order to improve the unwrapping process. On Popocatepetl, we observe no significant deformation. The Colima summit area exhibits a constant subsidence rate of more than 1 cm/year centered on the summit but enhanced (reaching more than 2 cm/year) around the 1998 lava flow. We model this subsidence considering both a deflating magma source at depth and the effect of the eruptive deposits load.
2006-10-05
the likely existence of a small foreshock . 2. BACKGROUND 2.1. InSAR The most well-known examples of InSAR used as a geodetic tool involve...the event. We have used the seismic waveforms in the Sultan Dag event to identify a small foreshock preceding the main shock by about 3 seconds
Physical and non-physical energy in scattered wave source-receiver interferometry.
Meles, Giovanni Angelo; Curtis, Andrew
2013-06-01
Source-receiver interferometry allows Green's functions between sources and receivers to be estimated by means of convolution and cross-correlation of other wavefields. Source-receiver interferometry has been observed to work surprisingly well in practical applications when theoretical requirements (e.g., complete enclosing boundaries of other sources and receivers) are contravened: this paper contributes to explain why this may be true. Commonly used inter-receiver interferometry requires wavefields to be generated around specific stationary points in space which are controlled purely by medium heterogeneity and receiver locations. By contrast, application of source-receiver interferometry constructs at least kinematic information about physically scattered waves between a source and a receiver by cross-convolution of scattered waves propagating from and to any points on the boundary. This reduces the ambiguity in interpreting wavefields generated using source-receiver interferometry with only partial boundaries (as is standard in practical applications), as it allows spurious or non-physical energy in the constructed Green's function to be identified and ignored. Further, source-receiver interferometry (which includes a step of inter-receiver interferometry) turns all types of non-physical or spurious energy deriving from inter-receiver interferometry into what appears to be physical energy. This explains in part why source-receiver interferometry may perform relatively well compared to inter-receiver interferometry when constructing scattered wavefields.
NASA Astrophysics Data System (ADS)
Krawczyk, Artur; Grzybek, Radosław
2018-01-01
The Satellite Radar Interferometry is one of the common methods that allow to measure the land subsidence caused by the underground black coal excavation. The interferometry images processed from the repeat-pass Synthetic Aperture Radar (SAR) systems give the spatial image of the terrain subjected to the surface subsidence over mining areas. Until now, the InSAR methods using data from the SAR Systems like ERS-1/ERS-2 and Envisat-1 were limited to a repeat-pass cycle of 35-day only. Recently, the ESA launched Sentinel-1A and 1B, and together they can provide the InSAR coverage in a 6-day repeat cycle. The studied area was the Upper Silesian Coal Basin in Poland, where the underground coal mining causes continuous subsidence of terrain surface and mining tremors (mine-induced seismicity). The main problem was with overlapping the subsidence caused by the mining exploitation with the epicentre tremors. Based on the Sentinel SAR images, research was done in regard to the correlation between the short term ground subsidence range border and the mine-induced seismicity epicentres localisation.
Mapping small elevation changes over large areas - Differential radar interferometry
NASA Technical Reports Server (NTRS)
Gabriel, Andrew K.; Goldstein, Richard M.; Zebker, Howard A.
1989-01-01
A technique is described, based on synthetic aperture radar (SAR) interferometry, which uses SAR images for measuring very small (1 cm or less) surface motions with good resolution (10 m) over swaths of up to 50 km. The method was applied to a Seasat data set of an imaging site in Imperial Valley, California, where motion effects were observed that were identified with movements due to the expansion of water-absorbing clays. The technique can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual displacements from seismic events, and prevolcanic swelling.
COSMO-SkyMed Spotlight interometry over rural areas: the Slumgullion landslide in Colorado, USA
Milillo, Pietro; Fielding, Eric J.; Schulz, William H.; Delbridge, Brent; Burgmann, Roland
2014-01-01
In the last 7 years, spaceborne synthetic aperture radar (SAR) data with resolution of better than a meter acquired by satellites in spotlight mode offered an unprecedented improvement in SAR interferometry (InSAR). Most attention has been focused on monitoring urban areas and man-made infrastructure exploiting geometric accuracy, stability, and phase fidelity of the spotlight mode. In this paper, we explore the potential application of the COSMO-SkyMed® Spotlight mode to rural areas where decorrelation is substantial and rapidly increases with time. We focus on the rapid repeat times of as short as one day possible with the COSMO-SkyMed® constellation. We further present a qualitative analysis of spotlight interferometry over the Slumgullion landslide in southwest Colorado, which moves at rates of more than 1 cm/day.
Baek, S.; Kwoun, Oh-Ig; Bassler, M.; Lu, Z.; Shum, C.K.; Dietrich, R.
2004-01-01
In this study we generated a relative Digital Elevation Model (DEM) over the Sulzberger Ice Shelf, West Antarctica using ERS1/2 synthetic aperture radar (SAR) interferometry data. Four repeat pass differential interferograms are used to find the grounding zone and to classify the study area. An interferometrically derived DEM is compared with laser altimetry profile from ICESat. Standard deviation of the relative height difference is 5.12 m and 1.34 m in total length of the profile and at the center of the profile respectively. The magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7 cm and it agrees well within 3 cm with predicted ones from tide models.
NASA Astrophysics Data System (ADS)
Sterzai, P.; Mancini, F.; Corazzato, C.; D Agata, C.; Diolaiuti, G.
2003-04-01
Aiming at reconstructing superficial velocity and volumetric variations of alpine glaciers, SAR interferometry (InSAR) technique is, for the first time in Italy, applied jointly with the glaciological classic field methods. This methodology with its quantitative results provides, together with other space geodesy techniques like GPS, some fundamental elements for the estimation of the climate forcing and the evaluation of the future glacier trend. InSAR is usually applied to antarctic glaciers and to other wide extralpine glaciers, detectable by the SAR orbits; in the Italian Alps, the limited surface area of the glaciers and the deformation of radar images due to strong relief effect, reduce the applicability of this tecnique. The chosen glacier is suitable for this kind of study both for its large size and for the many field data collected and available for the interferometric results validation. Forni Glacier is the largest valley glacier in the Italian Alps and represents a good example of long term monitoring of a valley glacier in the Central Alps. It is a north facing valley glacier formed by 3 ice streams, located in Italian Lombardy Alps (46 23 50 N, 10 35 00 E). In 2002 its area was approximately 13 km2, extending from 2500 to 3684 m a.s.l., with a maximum width of approximately 7500 m and a maximum length of about 5000 m. Available data include mass-balance measurements on the glacier tongue (from the hydrological year 1992-1993 up to now), frontal variations data from 1925 up to now, topographical profiling by means of GPS techniques and profiles of the glacier bed by geoelectrical surveys (VES) (Guglielmin et alii, 1995) and by seismic surveys (Merlanti et alii, 2001). In order to apply radar interferometry on this glacier eight ERS SAR RAW images have been purchased, in addition to the Digital Elevation Model from IGM (Geographic Military Institute), and repeat pass interferometry used. Combining the different passes, differential interferograms are computed and velocity map obtained. The validation of interferometric data was possible comparing them with the field glaciological data obtained by GPS velocity surveys in the years 1992-1993 (Vittuari and Smiraglia, unpublished) and 1996-1997, which resulted of about 20m/y. The InSAR results give further contributions in the estimation of the velocity field of Forni Glacier for a deeper understanding of the different flow lines of the glacier. Problems related to relief effect, loss of coherence, geometry of satellite imagery and geocoding, are also discussed.
Measurement of Seaward Ground Displacements on Coastal Landfill Area Using Radar Interferometry
NASA Astrophysics Data System (ADS)
Baek, W.-K.; Jung, H.-S.
2018-04-01
In order to understand the mechanism of subsidence and help reducing damage, researchers has been observed the line-of-sight subsidence on the Noksan industrial complex using SAR Interferometry(InSAR) and suggested subsidence prediction models. Although these researches explained a spatially uneven ground subsidence near the seaside, they could not have been explained the occurrence of the newly proposed seaward horizontal, especially nearly north-ward, displacement because of the geometric limitation of InSAR measurements. In this study, we measured the seaward ground displacements trend on the coastal landfill area, Noksan Industrial Complex. We set the interferometric pairs from an ascending and a descending orbits strip map data of ALOS PALSAR2. We employed InSAR and MAI stacking approaches for the both orbits respectively in order to improve the measurement. Finally, seaward deformation was estimated by retrieving three-dimensional displacements from multi-geometric displacements. As a results, maximally 3.3 and 0.7 cm/year of ground displacements for the vertical and seaward directions. In further study, we plan to generate InSAR and MAI stacking measurements with additional SAR data to mitigate tropospheric effect and noise well. Such a seaward observation approach using spaceborne radar is expected to be effective in observing the long-term movements on coastal landfill area.
Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V. Jr.
1996-02-01
In this report, we employ an approach quite different from any previous work; we show that a new methodology leads to a simpler and clearer understanding of the fundamental principles of SAR interferometry. This methodology also allows implementation of an important collection mode that has not been demonstrated to date. Specifically, we introduce the following six new concepts for the processing of interferometric SAR (INSAR) data: (1) processing using spotlight mode SAR imaging (allowing ultra-high resolution), as opposed to conventional strip-mapping techniques; (2) derivation of the collection geometry constraints required to avoid decorrelation effects in two-pass INSAR; (3) derivation ofmore » maximum likelihood estimators for phase difference and the change parameter employed in interferometric change detection (ICD); (4) processing for the two-pass case wherein the platform ground tracks make a large crossing angle; (5) a robust least-squares method for two-dimensional phase unwrapping formulated as a solution to Poisson`s equation, instead of using traditional path-following techniques; and (6) the existence of a simple linear scale factor that relates phase differences between two SAR images to terrain height. We show both theoretical analysis, as well as numerous examples that employ real SAR collections to demonstrate the innovations listed above.« less
NASA Technical Reports Server (NTRS)
Rignot, E.; MacAyeal, D. R.
1998-01-01
Fifteen synthetic-aperture radar (SAR) images of the Ronne Ice Shelf, Antarctica, obtained by the European Space Agency (ESA)'s Earth Remote Sensing satellites (ERS) 1 & 2 are used to study ice-shelf dynamics near two ends of the iceberg-calving front.
Scattering property based contextual PolSAR speckle filter
NASA Astrophysics Data System (ADS)
Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred
2017-12-01
Reliability of the scattering model based polarimetric SAR (PolSAR) speckle filter depends upon the accurate decomposition and classification of the scattering mechanisms. This paper presents an improved scattering property based contextual speckle filter based upon an iterative classification of the scattering mechanisms. It applies a Cloude-Pottier eigenvalue-eigenvector decomposition and a fuzzy H/α classification to determine the scattering mechanisms on a pre-estimate of the coherency matrix. The H/α classification identifies pixels with homogeneous scattering properties. A coarse pixel selection rule groups pixels that are either single bounce, double bounce or volume scatterers. A fine pixel selection rule is applied to pixels within each canonical scattering mechanism. We filter the PolSAR data and depending on the type of image scene (urban or rural) use either the coarse or fine pixel selection rule. Iterative refinement of the Wishart H/α classification reduces the speckle in the PolSAR data. Effectiveness of this new filter is demonstrated by using both simulated and real PolSAR data. It is compared with the refined Lee filter, the scattering model based filter and the non-local means filter. The study concludes that the proposed filter compares favorably with other polarimetric speckle filters in preserving polarimetric information, point scatterers and subtle features in PolSAR data.
NASA Astrophysics Data System (ADS)
Tai, YuHeng; Chang, ChungPai
2015-04-01
Taiwan is one of the most active landslide areas in the world because of its high precipitation and active tectonic. Landslide, which destroys buildings and human lives, causes a lot of hazard and economical loss in the recent years. Jiufen, which have been determined as a creeping area with previous studies, is one of the famous tourist place in northern Taiwan. Therefore, detection and monitoring of landslide and creeping thus play an important role in risk management and help us decrease the damage from such mass movement. In this study, we apply Interferometric Synthetic Aperture Radar (InSAR) techniques at Jiufen area to monitor the creeping of slope. InSAR observations are obtained from ERS and ENVISAT, which were launched by European Space Agency, spaning from 1994 to 2008. Persistent Scatterer InSAR (PSInSAR) method is also applied to reduce the phase contributed from atmosphere and topography and help us get more precise measurement. We compare the result with previous studies carried out by fieldwork to confirm the possibility of InSAR techniques applying on landslide monitoring. Moreover, the time-series analysis helps us to understand the motion of the creeping along with time. After completion of some amelioration measures, time-series can illustrate the effect of these structures. Then, the result combining with fieldwork survey will give good suggestion of future remediation works. Furthermore, we estimate the measuring error and possible factors, such as slope direction, dip angle, etc., affecting InSAR result and. The result helps us to verify the reliability of this method and gives us more clear deformation pattern of the creeping area.
NASA Technical Reports Server (NTRS)
Rignot, Eric
1997-01-01
Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.
Angular-domain scattering interferometry.
Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J
2013-11-15
We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.
NASA Astrophysics Data System (ADS)
Mayorga Torres, T. M.; Mohseni Aref, M.
2015-12-01
Tannia Mayorga Torres1,21 Universidad Central del Ecuador. Faculty of Geology, Mining, Oil, and Environment 2 Hubert H. Humphrey Fellowship 2015-16 IntroductionLandslides lead to human and economic losses across the country, mainly in the winter season. On the other hand, satellite radar data has cost-effective benefits due to open-source software and free availability of data. With the purpose of establishing an early warning system of landslide-related surface deformation, three case studies were designed in the Coast, Sierra (Andean), and Oriente (jungle) regions. The objective of this work was to assess the capability of L-band InSAR to get phase information. For the calculation of the interferograms in Repeat Orbit Interferometry PACkage, the displacement was detected as the error and was corrected. The coherence images (Figure 1) determined that L-band is suitable for InSAR processing. Under this frame, as a first approach, the stacking DInSAR technique [1] was applied in the case studies [2]; however, due to lush vegetation and steep topography, it is necessary to apply advanced InSAR techniques [3]. The purpose of the research is to determine a pattern of data acquisition and successful results to understand the spatial and temporal ground movements associated with landslides. The further work consists of establishing landslide inventories to combine phases of SAR images to generate maps of surface deformation in Tumba-San Francisco and Guarumales to compare the results with ground-based measurements to determine the maps' accuracy. References[1] Sandwell D., Price E. (1998). Phase gradient approach to stacking interferograms. Journal of Geophysical Research, Vol. 103, N. B12, pp. 30,183-30,204. [2] Mayorga T., Platzeck G. (2014). Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador. NH3.5-Blue Poster B298, Vol. 16, EGU2014-16203. Austria. [3] Wasowski J., Bovenga F. (2014). Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology, Vol. 174, pp. 103-138.
Massonnet, D.; Holzer, T.; Vadon, H.
1997-01-01
Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping
2016-10-01
The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.
PIXEL: Japanese InSAR community for crustal deformation research
NASA Astrophysics Data System (ADS)
Furuya, M.; Shimada, M.; Ozawa, T.; Fukushima, Y.; Aoki, Y.; Miyagi, Y.; Kitagawa, S.
2007-12-01
In anticipation of the launch of ALOS (Advanced Land Observation Satellite) by JAXA (Japan Aerospace eXploration Agency), and in order to expand and bolster the InSAR community for crustal deformation research in Japan, a couple of scientists established a consortium, PIXEL, in November 2005 in a completely bottom-up fashion. PIXEL stands for Palsar Interferometry Consortium to Study our Evolving Land. Formally, it is a research contract between JAXA and Earthquake Research Institute (ERI), University of Tokyo. As ERI is a shared institute of the Japanese universities and research institutes, every scientist at all Japanese universities and institutes can participate in this consortium. The activity of PIXEL includes information exchange by mailing list, tutorial workshop for InSAR software, research workshop, and PALSAR data sharing. After the launch of ALOS, we have already witnessed several earthquakes and volcanic activities using PALSAR interferometry. We will briefly show and digest some of those observation results.
NASA Astrophysics Data System (ADS)
Righini, Gaia; Del Conte, Sara; Cigna, Francesca; Casagli, Nicola
2010-05-01
In the last decade Persistent Scatterers Interferometry (PSI) was used in natural hazards investigations with significant results and it is considered a helpful tool in ground deformations detection and mapping (Berardino et. al., 2003; Colesanti et al., 2003; Colesanti & Wasowski, 2006; Hilley et al., 2004). In this work results of PSI processing were interpreted after the main seismic shock that affected the Abruzzo region (Central Italy) on 6th of April 2009, in order to carry out a slope instability mapping according to the requirement of National Department of Civil Protection and in the framework of the Landslides thematic services of the EU FP7 project ‘SAFER' (Services and Applications For Emergency Response - Grant Agreement n° 218802). The area of interest was chosen in almost 460 km2 around L'Aquila according the highest probability of reactivations of landslides which depends on the local geological conditions, on the epicenter location and on other seismic parameters (Keefer, 1984). The radar images datasets were collected in order to provide estimates of the mean yearly velocity referred to two distinct time intervals: historic ERS (1992-2000) and recent ENVISAT (2002-2009), RADARSAT (2003-2009); the ERS and RADARSAT images were processed by Tele-Rilevamento Europa (TRE) using PS-InSAR(TM) technique, while the ENVISAT images were processed by e-GEOS using PSP-DIFSAR technique. A pre-existing landslide inventory map was updated through the integration of conventional photo interpretation and the radar-interpretation chain, as defined by Farina et al. (2008) and reported in literature (Farina et al. 2006, Meisina et al. 2007, Pancioli et al., 2008; Righini et al., 2008, Casagli et al., 2008, Herrera et al., 2009). The data were analyzed and interpreted in Geographic Information System (GIS) environment. Main updates of the pre-existing landslides are focusing on the identification of new landslides, modification of boundaries through the spatial radar interpretation and the assessment of the state of activity, intended as defined by Cruden and Varnes (1996). The information coming from the radar interpretation is the basis to evaluate the state of activity and the intensity of slow landslides. Two main situations can occur: the presence of PS within the already mapped landslides, and the presence of PS outside the previous mapped area resulting often in new landslides. The analysis of PSI data allowed to map 57 new landslides and gave information on 203 (39%) landslides mapped of the pre-existed PAI while the updated Landslide Inventory Map has 579 landslides totally: thus EO data did not give any additional information on 319 landslides of the pre-existing inventory map. Considering the 203 updated landslides, the modifications concern 155 phenomena while 48 are confirmed: the modifications are related to the boundary and/or the state of activity and the typology. All the new landslides added are considered active. It is worth noting that almost all the landslides where the state of activity is changed from dormant (or stabilized) to active involve urban areas and the road network where the reliability of radar benchmarks is higher. Radar satellite data were in particular very useful to map slow superficial movements named as "creep" that are widespread in the slopes around L'Aquila: the typical velocity is few centimeters per year which is perfectly suited to the capability of multi-interferometric techniques for ground deformation detection. References: Berardino, P., Costantini, M., Franceschetti, G., Iodice, A., Pietranera, L., Rizzo, V. (2003). use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Engineering Geology, 68 (1-2), 31 - 51. Casagli N., Colombo D., Ferretti A., Guerri L., Righini G. (2008)- Case Study on Local Landslide Risk Management During Crisis by Means of Remote Sensing Data. Proceedings of the First World Landslide Forum. 16-19 November 2008 Tokyo Japan, 125-128. Colesanti, C., Ferretti, A., Prati, C., Rocca, F. (2003). Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, 68, 3 - 14. Colesanti, C., Wasowski, J., (2006). Investigating landslides with satellite Synthetic Aperture Radar (SAR) interferometry. Engineering Geology, 88 (3 - 4), 173 - 199. Cruden, D.M., Varnes, D.J. (1996). Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation, Special Report 247. Transportation Research Board, National Research Council, Washington, DC, 36 - 75. Farina P., Colombo D., Fumagalli A., Marks F., Moretti S. (2006) - Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Engineering Geology, v. 88, p.200-217. Farina P., Casagli N., Ferretti A. (2008) - Radar-interpretation of InSAR measurements for landslide investigations in civil protection practices. First North American Landslide Conference, June 3-8, 2007.Vail, Colorado, pp. 272-283. Hilley, G.E, Burgmann, R., Ferretti, A., Novali, F., Rocca, F. (2004). Dynamics of slow-moving landslides from Permanent Scatterer analysis. Science, 304 (5679), 1952 - 1955. Herrera G., Davalillo J.C., Mulas J., Cooksley G., Monserrat O., Pancioli V. (2009) - Mapping and monitoring geomorphological processes in mountainous areas using PSI data: Central Pyrenees case study Nat. Hazards Earth Syst. Sci., 9, 1587-1598, Meisina C., Zucca F., Fossati D., Ceriani M, Allievi J. (2006) - Ground deformations monitoring by using the Permanent Scatterers Technique: the example of the Oltrepo Pavese (Lombardia, Italy), Engineering Geology, 88, 240-259. Pancioli V., Farina P., (2007) - Analisi dei fenomeni franosi con dati InSAR satellitari: primi risultati del progetto ESA-Terrafirma. Giornale di Geologia Applicata 6-A: 101-102. Righini, G., Del Ventisette, C., Costantini, M., Malvarosa, F., Minati, F. (2008). Space-borne SAR Analysis for Landslides Mapping in the Framework of the PREVIEW Project. Proceedings of the First World Landslide Forum, Tokyo Japan, 505-506.
NASA Astrophysics Data System (ADS)
Caro Cuenca, Miguel; Esfahany, Sami Samiei; Hanssen, Ramon F.
2010-12-01
Persistent scatterer Radar Interferometry (PSI) can provide with a wealth of information on surface motion. These methods overcome the major limitations of the antecessor technique, interferometric SAR (InSAR), such as atmospheric disturbances, by detecting the scatterers which are slightly affected by noise. The time span that surface deformation processes are observed is limited by the satellite lifetime, which is usually less than 10 years. However most of deformation phenomena last longer. In order to fully monitor and comprehend the observed signal, acquisitions from different sensors can be merged. This is a complex task for one main reason. PSI methods provide with estimations that are relative in time to one of the acquisitions which is referred to as master or reference image. Therefore, time series acquired by different sensors will have different reference images and cannot be directly compared or joint unless they are set to the same time reference system. In global terms, the operation of translating from one to another reference systems consist of calculating a vertical offset, which is the total deformation that occurs between the two master times. To estimate this offset, different strategies can be applied, for example, using additional data such as leveling or GPS measurements. In this contribution we propose to use a least squares to merge PSI time series without any ancillary information. This method treats the time series individually, i.e. per PS, and requires some knowledge of the deformation signal, for example, if a polynomial would fairly describe the expected behavior. To test the proposed approach, we applied it to the southern Netherlands, where the surface is affected by ground water processes in abandoned mines. The time series were obtained after processing images provided by ERS1/2 and Envisat. The results were validated using in-situ water measurements, which show very high correlation with deformation time series.
NASA Astrophysics Data System (ADS)
De Agostini, A.; Floris, M.; Pasquali, P.; Barbieri, M.; Cantone, A.; Riccardi, P.; Stevan, G.; Genevois, R.
2012-04-01
In the last twenty years, Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques have been widely used to investigate geological processes, such as subsidence, earthquakes and landslides, through the evaluation of earth surface displacements caused by these processes. In the study of mass movements, contribution of interferometry can be limited due to the acquisition geometry of RADAR images and the rough morphology of mountain and hilly regions which represent typical landslide-prone areas. In this study, the advanced DInSAR techniques (i.e. Small Baseline Subset and Persistent Scatterers techniques), available in SARscape software, are used. These methods involve the use of multiple acquisitions stacks (large SAR temporal series) allowing improvements and refinements in landslide identification, characterization and hazard evaluation at the basin scale. Potential and limits of above mentioned techniques are outlined and discussed. The study area is the Agno Valley, located in the North-Eastern sector of Italian Alps and included in the Vicenza Province (Veneto Region, Italy). This area and the entire Vicenza Province were hit by an exceptional rainfall event on November 2010 that triggered more than 500 slope instabilities. The main aim of the work is to verify if spatial information available before the rainfall event, including ERS and ENVISAT RADAR data from 1992 to 2010, were able to predict the landslides occurred in the study area, in order to implement an effectiveness forecasting model. In the first step of the work a susceptibility analysis is carried out using landslide dataset from the IFFI project (Inventario Fenomeni Franosi in Italia, Landslide Italian Inventory) and related predisposing factors, which consist of morphometric (elevation, slope, aspect and curvature) and non-morphometric (land use, distance of roads and distance of river) factors available from the Veneto Region spatial database. Then, to test the prediction, the results of susceptibility analysis are compared with the location of landslides occurred in the study area during the November 2010 rainfall event. In the second step, results of DInSAR analysis (displacement maps over the time) are added on the prediction analysis to build up a map containing both spatial and temporal information on landslides and, as in the previous case, the prediction is tested by using November 2010 instabilities dataset. Comparison of the two tests allows to evaluate the contribution of interferometric techniques. Finally, morphometric factors and interferometric RADAR data are combined to design a preliminary analysis scheme that provide information on possible use of DInSAR techniques in landslide hazard evaluation of a given area.
2006-08-01
constellation, SAR Bistatic for interferometry, L-band SAR data from Argentinean SAOCOM satellites, and optical imaging data from the French ‘ Pleiades ...a services federation (e.g. COSMO-SkyMed (SAR) and Pleiades (optical) constellation). Its main purpose is the elaboration of Programming Requests...on catalogue interoperability or on a federation of services (i.e. with French Pleiades optical satellites). The multi-mission objectives are
NASA Technical Reports Server (NTRS)
Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.
1994-01-01
Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.
NASA Astrophysics Data System (ADS)
Massironi, M.; Zampieri, D.; Bianchi, M.; Schiavo, A.; Franceschini, A.
2009-10-01
The Permanent Scatterers Synthetic Aperture Radar INterferometry (PSInSAR™) methodology provides high-resolution assessment of surface deformations (precision ranging from 0.8 to 0.1 mm/year) over long periods of observation. Hence, it is particularly suitable to analyze surface motion over wide regions associated to a weak tectonic activity. For this reason we have adopted the PSInSAR technique to study regional movement across the Giudicarie belt, a NNE-trending trust belt oblique to the Southern Alpine chain and presently characterized by a low to moderate seismicity. Over 11,000 PS velocities along the satellite Line Of Sight (LOS) were calculated using images acquired in descending orbit during the 1992-1996 time span. The PSInSAR data show a differential uplift of around 1.4-1.7 mm/year across the most external WNW-dipping thrusts of the Giudicarie belt (Mt. Baldo, Mt. Stivo and Mt. Grattacul thrusts alignment). This corresponds to a horizontal contraction across the external part of the Giudicarie belt of about 1.3-1.5 mm/year.
Edgelist phase unwrapping algorithm for time series InSAR analysis.
Shanker, A Piyush; Zebker, Howard
2010-03-01
We present here a new integer programming formulation for phase unwrapping of multidimensional data. Phase unwrapping is a key problem in many coherent imaging systems, including time series synthetic aperture radar interferometry (InSAR), with two spatial and one temporal data dimensions. The minimum cost flow (MCF) [IEEE Trans. Geosci. Remote Sens. 36, 813 (1998)] phase unwrapping algorithm describes a global cost minimization problem involving flow between phase residues computed over closed loops. Here we replace closed loops by reliable edges as the basic construct, thus leading to the name "edgelist." Our algorithm has several advantages over current methods-it simplifies the representation of multidimensional phase unwrapping, it incorporates data from external sources, such as GPS, where available to better constrain the unwrapped solution, and it treats regularly sampled or sparsely sampled data alike. It thus is particularly applicable to time series InSAR, where data are often irregularly spaced in time and individual interferograms can be corrupted with large decorrelated regions. We show that, similar to the MCF network problem, the edgelist formulation also exhibits total unimodularity, which enables us to solve the integer program problem by using efficient linear programming tools. We apply our method to a persistent scatterer-InSAR data set from the creeping section of the Central San Andreas Fault and find that the average creep rate of 22 mm/Yr is constant within 3 mm/Yr over 1992-2004 but varies systematically with ground location, with a slightly higher rate in 1992-1998 than in 1999-2003.
Preliminary investigation of Zagros thrust-fold-belt deformation using SAR interferometry
NASA Technical Reports Server (NTRS)
Nilforoushan, Faramarz; Talbot, Christopher J.; Fielding, Eric J.
2005-01-01
Most of the Zagros deformation resulting from the convergence of Arabia and Eurasia takes place in the Southeast Zagros. To apply the SAR interferometry geodetic technique, a few ERS 1 & 2 satellite images were used to map this continuing deformation proven by GPS. Interferograms over 7 years show surprisingly high coherence. The unwrapped phases display a high correlation with topography reflecting atmospheric noise in addition to the desired tectonic signal. We estimate two simple linear trends and remove them from interferograms. The preliminary results show local uplift rates with a likely minimum of 1-2 mm/yr. These early crude results will be tested by more data in project No. 3174.
Di Pasquale, Andrea; Nico, Giovanni; Pitullo, Alfredo; Prezioso, Giuseppina
2018-01-16
The aim of this paper is to describe how ground-based radar interferometry can provide displacement measurements of earth dam surfaces and of vibration frequencies of its main concrete infrastructures. In many cases, dams were built many decades ago and, at that time, were not equipped with in situ sensors embedded in the structure when they were built. Earth dams have scattering properties similar to landslides for which the Ground-Based Synthetic Aperture Radar (GBSAR) technique has been so far extensively applied to study ground displacements. In this work, SAR and Real Aperture Radar (RAR) configurations are used for the measurement of earth dam surface displacements and vibration frequencies of concrete structures, respectively. A methodology for the acquisition of SAR data and the rendering of results is described. The geometrical correction factor, needed to transform the Line-of-Sight (LoS) displacement measurements of GBSAR into an estimate of the horizontal displacement vector of the dam surface, is derived. Furthermore, a methodology for the acquisition of RAR data and the representation of displacement temporal profiles and vibration frequency spectra of dam concrete structures is presented. For this study a Ku-band ground-based radar, equipped with horn antennas having different radiation patterns, has been used. Four case studies, using different radar acquisition strategies specifically developed for the monitoring of earth dams, are examined. The results of this work show the information that a Ku-band ground-based radar can provide to structural engineers for a non-destructive seismic assessment of earth dams.
NASA Astrophysics Data System (ADS)
Richter, Nicole; Salzer, Jacqueline Tema; de Zeeuw-van Dalfsen, Elske; Perissin, Daniele; Walter, Thomas R.
2018-03-01
Small-scale geomorphological changes that are associated with the formation, development, and activity of volcanic craters and eruptive vents are often challenging to characterize, as they may occur slowly over time, can be spatially localized, and difficult, or dangerous, to access. Using high-spatial and high-temporal resolution synthetic aperture radar (SAR) imagery collected by the German TerraSAR-X (TSX) satellite in SpotLight mode in combination with precise topographic data as derived from Pléiades-1A satellite data, we investigate the surface deformation within the nested summit crater system of Láscar volcano, Chile, the most active volcano of the central Andes. Our aim is to better understand the structural evolution of the three craters that comprise this system, to assess their physical state and dynamic behavior, and to link this to eruptive activity and associated hazards. Using multi-temporal SAR interferometry (MT-InSAR) from ascending and descending orbital geometries, we retrieve the vertical and east-west components of the displacement field. This time series indicates constant rates of subsidence and asymmetric horizontal displacements of all summit craters between June 2012 and July 2014, as well as between January 2015 and March 2017. The vertical and horizontal movements that we observe in the central crater are particularly complex and cannot be explained by any single crater formation mechanism; rather, we suggest that short-term activities superimposed on a combination of ongoing crater evolution processes, including gravitational slumping, cooling and compaction of eruption products, as well as possible piston-like subsidence, are responsible for the small-scale geomorphological changes apparent in our data. Our results demonstrate how high-temporal resolution synthetic aperture radar interferometry (InSAR) time series can add constraints on the geomorphological evolution and structural dynamics of active crater and vent systems at volcanoes worldwide.
NASA Technical Reports Server (NTRS)
Jung, Hahn Chul; Jasinski, Michael; Kim, Jin-Woo; Shum, C. K.; Bates, Paul; Lee, Hgongki; Neal, Jeffrey; Alsdorf, Doug
2012-01-01
Two-dimensional (2D) satellite imagery has been increasingly employed to improve prediction of floodplain inundation models. However, most focus has been on validation of inundation extent, with little attention on the 2D spatial variations of water elevation and slope. The availability of high resolution Interferometric Synthetic Aperture Radar (InSAR) imagery offers unprecedented opportunity for quantitative validation of surface water heights and slopes derived from 2D hydrodynamic models. In this study, the LISFLOOD-ACC hydrodynamic model is applied to the central Atchafalaya River Basin, Louisiana, during high flows typical of spring floods in the Mississippi Delta region, for the purpose of demonstrating the utility of InSAR in coupled 1D/2D model calibration. Two calibration schemes focusing on Manning s roughness are compared. First, the model is calibrated in terms of water elevations at a single in situ gage during a 62 day simulation period from 1 April 2008 to 1 June 2008. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR interferometry during 46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. The best-fit models show that the mean absolute errors are 3.8 cm for a single in situ gage calibration and 5.7 cm/46 days for InSAR water level calibration. The optimum values of Manning's roughness coefficients are 0.024/0.10 for the channel/floodplain, respectively, using a single in situ gage, and 0.028/0.10 for channel/floodplain the using SAR. Based on the calibrated water elevation changes, daily storage changes within the size of approx 230 sq km of the model area are also calculated to be of the order of 107 cubic m/day during high water of the modeled period. This study demonstrates the feasibility of SAR interferometry to support 2D hydrodynamic model calibration and as a tool for improved understanding of complex floodplain hydrodynamics
NASA Astrophysics Data System (ADS)
Cao, N.; Lee, H.; Zaugg, E.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Wang, G.; Lu, Z.; Diaz, J. C. F.
2016-12-01
Synthetic aperture radar (SAR) interferometry (InSAR) is a technique which uses two or more SAR images of the same area to estimate landscape topography or ground surface displacement. Differential InSAR (DInSAR) is capable of measuring ground displacements at the millimeter level, but a major drawback of traditional DInSAR is that only the deformation along the line-of-sight direction can be detected. Because most of the current spaceborne SAR systems have near-polar, sun-synchronous orbits, deformation measurements in the South-North direction are limited (except for polar regions). Compared with spaceborne SAR, airborne SAR systems have the advantages of flexible scanning geometry and revisit time, high spatial resolution, and no ionospheric distortion. In this study, we present a case study of the Slumgullion landslide conducted in July 2015 to assess an airborne SAR system known as ARTEMIS SlimSAR, which is a compact, modular, and multi-frequency radar system. The Slumgullion landslide, located in the San Juan Mountains near Lake City, Colorado is a long-term slow moving landslide that moves downhill continuously. For this study, the L-band SlimSAR was installed and data were collected on July 3, 7, and 10 and processed using the time-domain backprojection algorithm. GPS surveys and spaceborne DInSAR analysis using COSMO-SkyMed images were also conducted to verify the performance of the airborne SAR system. The airborne DInSAR results showed satisfying agreement with the GPS and spaceborne DInSAR results. The root mean square of the differences between the SlimSAR, and GPS and satellite derived velocities, were 0.6 mm/day, and 0.9 mm/day, respectively. A 3-D deformation map over Slumgullion landslide was generated, which displayed distinct correlation between the landslide motion and topography. This study also indicated that the primary source of the error for the SlimSAR system is the trajectory turbulences of the aircraft. The effect of the trajectory turbulences is analyzed and several possible solutions are proposed to improve the airborne SAR performance. In the long run, an improved airborne SAR system will open avenues for differential interferometry to be used in scientific studies and commercial applications previously prohibited by orbital constraints of spaceborne SAR.
NASA Astrophysics Data System (ADS)
Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.
2016-12-01
Arctic landfast sea ice provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea ice by all stakeholders is increasingly limited by reduced stability of the ice cover, which results in more deformation and rougher ice conditions as well as reduced extent and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea ice use, in particular ice stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast ice displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of ice pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the extent of landfast ice and regions of deformation within, quantitative analysis of small-scale ice motion has yet to be thoroughly validated and its potential remains largely underutilized in sea ice science. Using TanDEM-X interferometry, we derive surface displacements of landfast ice within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast ice deformation in other regions of landfast ice using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea ice patterns and local in-situ observations. The utility of InSAR to quantify sea ice roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the ice cover. The InSAR-derived DEM shows good correlation with a high-resolution Structure from Motion DEM and laser surveys collected during a field campaign utilizing unmanned aircraft.
Studies of volcanoes of Alaska by satellite radar interferometry
Lu, Z.; Wicks, C.; Dzurisin, D.; Thatcher, W.; Power, J.; ,
2000-01-01
Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes. This paper summarizes our recent: InSAR studies over the Alaska-Aleutian volcanoes, which include New Trident, Okmok, Akutan, Augustine, Shishaldin, and Westdahl volcanoes. The first InSAR surface deformation over the Alaska volcanoes was applied to New Trident. Preliminary InSAR study suggested that New Trident volcano experienced several centimeters inflation from 1993 to 1995. Using the InSAR technique, we studied the 1997 eruption of Okmok. We have measured ???1.4 m deflation during the eruption, ???20 cm pre-eruptive inflation during 1992 to 1995, and >10 cm post-eruptive inflation within a year after the eruption, and modeled the deformations using Mogi sources. We imaged the ground surface deformation associated with the 1996 seismic crisis over Akutan volcano. Although seismic swarm did not result in an eruption, we found that the western part of the volcano uplifted ???60 cm while the eastern part of the island subsided. The majority of the complex deformation field at the Akutan volcano was modeled by dike intrusion and Mogi inflation sources. Our InSAR results also indicate that the pyroclastic flows from last the last eruption have been undergoing contraction/subsidence at a rate of about 3 cm per year since 1992. InSAR measured no surface deformation before and during the 1999 eruption of Shishaldin and suggested the eruption may be a type of open system. Finally, we applied satellite radar interferometry to Westdahl volcano which erupted 1991 and has been quiet since. We discovered this volcano had inflated about 15 cm from 1993 to 1998. In summary, satellite radar interferometry can not only be used to study a volcanic eruption, but also to detect aseismic deformation at quiescent volcanoes preceding a seismic swarm; it is a useful technique to study volcanic eruptions as well as to guide scientists to better focus their monitoring efforts.
NASA Technical Reports Server (NTRS)
Hulbe, C. L.; Rignot, E.; MacAyeal, D. R.
1998-01-01
Comparison between numerical model ice-shelf flow simulations and synthetic aperture radar (SAR) interferograms is used to study the dynamics at the Hemmen Ice Rise (HIR) and Lassiter Coast (LC) corners of the iceberg-calving front of the Filchner-Ronne Ice Shelf (FRIS).
2007-02-01
frequency radio wave propagation through the ionosphere , where the earths magnetic field lines break this reciprocity symmetry and as a result the cross...polarisation terms are no longer equal. This observation can be used to calibrate the effects of Faraday rotation due to trans- ionospheric ...currently under investigation is polarimetric SAR tomography , which is the extension of conventional two-dimensional SAR imaging principle to three
From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services
NASA Astrophysics Data System (ADS)
Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.
2016-12-01
There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even further to secure better societal information needs.
NASA Astrophysics Data System (ADS)
Castellazzi, Pascal; Garfias, Jaime; Martel, Richard; Brouard, Charles; Rivera, Alfonso
2017-12-01
This paper illustrates how InSAR alone can be used to delineate potential ground fractures related to aquifer system compaction. An InSAR-derived ground fracturing map of the Toluca Valley, Mexico, is produced and validated through a field campaign. The results are of great interest to support sustainable urbanization and show that InSAR processing of open-access Synthetic Aperture Radar (SAR) data from the Sentinel-1 satellites can lead to reliable and cost-effective products directly usable by cities to help decision-making. The Toluca Valley Aquifer (TVA) sustains the water needs of two million inhabitants living within the valley, a growing industry, an intensively irrigated agricultural area, and 38% of the water needs of the megalopolis of Mexico City, located 40 km east of the valley. Ensuring water sustainability, infrastructure integrity, along with supporting the important economic and demographic growth of the region, is a major challenge for water managers and urban developers. This paper presents a long-term analysis of ground fracturing by interpreting 13 years of InSAR-derived ground displacement measurements. Small Baseline Subset (SBAS) and Persistent Scatterer Interferometry (PSI) techniques are applied over three SAR datasets totalling 93 acquisitions from Envisat, Radarsat-2, and Sentinel-1A satellites and covering the period from 2003 to 2016. From 2003 to 2016, groundwater level declines of up to 1.6 m/yr, land subsidence up to 77 mm/yr, and major infrastructure damages are observed. Groundwater level data show highly variable seasonal responses according to their connectivity to recharge areas. However, the trend of groundwater levels consistently range from -0.5 to -1.5 m/yr regardless of the well location and depth. By analysing the horizontal gradients of vertical land subsidence, we provide a potential ground fracture map to assist in future urban development planning in the Toluca Valley.
Jo, Min-Jeong; Jung, Hyung-Sup; Yun, Sang-Ho
2017-07-14
We reconstructed the three-dimensional (3D) surface displacement field of the 24 August 2014 M6.0 South Napa earthquake using SAR data from the Italian Space Agency's COSMO-SkyMed and the European Space Agency's Sentinel-1A satellites. Along-track and cross-track displacements produced with conventional SAR interferometry (InSAR) and multiple-aperture SAR interferometry (MAI) techniques were integrated to retrieve the east, north, and up components of surface deformation. The resulting 3D displacement maps clearly delineated the right-lateral shear motion of the fault rupture with a maximum surface displacement of approximately 45 cm along the fault's strike, showing the east and north components of the trace particularly clearly. These maps also suggested a better-constrained model for the South Napa earthquake. We determined a strike of approximately 338° and dip of 85° by applying the Okada dislocation model considering a single patch with a homogeneous slip motion. Using the distributed slip model obtained by a linear solution, we estimated that a peak slip of approximately 1.7 m occurred around 4 km depth from the surface. 3D modelling using the retrieved 3D maps helps clarify the fault's nature and thus characterize its behaviour.
NASA Astrophysics Data System (ADS)
Tsai, M. C.
2017-12-01
High strain accumulation across the fold-and-thrust belt in Southwestern Taiwan are revealed by the Continuous GPS (cGPS) and SAR interferometry. This high strain is generally accommodated by the major active structures in fold-and-thrust belt of western Foothills in SW Taiwan connected to the accretionary wedge in the incipient are-continent collision zone. The active structures across the high strain accumulation include the deformation front around the Tainan Tableland, the Hochiali, Hsiaokangshan, Fangshan and Chishan faults. Among these active structures, the deformation pattern revealed from cGPS and SAR interferometry suggest that the Fangshan transfer fault may be a left-lateral fault zone with thrust component accommodating the westward differential motion of thrust sheets on both side of the fault. In addition, the Chishan fault connected to the splay fault bordering the lower-slope and upper-slope of the accretionary wedge which could be the major seismogenic fault and an out-of-sequence thrust fault in SW Taiwan. The big earthquakes resulted from the reactivation of out-of-sequence thrusts have been observed along the Nankai accretionary wedge, thus the assessment of the major seismogenic structures by strain accumulation between the frontal décollement and out-of-sequence thrusts is a crucial topic. According to the background seismicity, the low seismicity and mid-crust to mantle events are observed inland and the lower- and upper- slope domain offshore SW Taiwan, which rheologically implies the upper crust of the accretionary wedge is more or less aseimic. This result may suggest that the excess fluid pressure from the accretionary wedge not only has significantly weakened the prism materials as well as major fault zone, but also makes the accretionary wedge landward extension, which is why the low seismicity is observed in SW Taiwan area. Key words: Continuous GPS, SAR interferometry, strain rate, out-of-sequence thrust.
Present and Future Airborne and Space-borne Systems
2007-02-01
Present and Future Airborne and Space-borne Systems Wolfgang Keydel Microwaves and Radar Institute German Aerospace Research Centre (DLR...airborne and space-borne SAR systems with polarimetric interferometry capability, their technological, system technical and application related...interferometry accuracies in the cm range have been obtained. In order to reach these values an exact system calibration is indispensable. The calibration of
Ground settlement monitoring from temporarily persistent scatterers between two SAR acquisitions
Lei, Z.; Xiaoli, D.; Guangcai, F.; Zhong, L.
2009-01-01
We present an improved differential interferometric synthetic aperture radar (DInSAR) analysis method that measures motions of scatterers whose phases are stable between two SAR acquisitions. Such scatterers are referred to as temporarily persistent scatterers (TPS) for simplicity. Unlike the persistent scatterer InSAR (PS-InSAR) method that relies on a time-series of interferograms, the new algorithm needs only one interferogram. TPS are identified based on pixel offsets between two SAR images, and are specially coregistered based on their estimated offsets instead of a global polynomial for the whole image. Phase unwrapping is carried out based on an algorithm for sparse data points. The method is successfully applied to measure the settlement in the Hong Kong Airport area. The buildings surrounded by vegetation were successfully selected as TPS and the tiny deformation signal over the area was detected. ??2009 IEEE.
SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt
NASA Technical Reports Server (NTRS)
Aly, Mohamed H.; Klein, Andrew G.; Giardino, John R.
2005-01-01
The Nile River Delta is experiencing rapid rates of coastal change. The rate of both coastal retreat and accretion in the Eastern Nile Delta requires regular, accurate detection and measurement. Current techniques used to monitor coastal changes in the delta are point measurements and, thus, they provide a spatially limited view of the ongoing coastal changes. SAR interferometry can provide measurements of subtle coastal change at a significantly improved spatial resolution and over large areas (100 sq km). Using data provided by the ERS-1&2 satellites, monitoring can be accomplished as frequently as every 35 days when needed. Radar interferometry is employed in this study to detect segments of erosion and accretion during the 1993-2000 period. The average rates of erosion and accretion in the Eastern Nile Delta are measured to be -11.64 m/yr and +5.12 m/yr, respectively. The results of this interferometric study can be used effectively for coastal zone management and integrated sustainable development for the Nile River Delta.
Remote monitoring of the earthquake cycle using satellite radar interferometry.
Wright, Tim J
2002-12-15
The earthquake cycle is poorly understood. Earthquakes continue to occur on previously unrecognized faults. Earthquake prediction seems impossible. These remain the facts despite nearly 100 years of intensive study since the earthquake cycle was first conceptualized. Using data acquired from satellites in orbit 800 km above the Earth, a new technique, radar interferometry (InSAR), has the potential to solve these problems. For the first time, detailed maps of the warping of the Earth's surface during the earthquake cycle can be obtained with a spatial resolution of a few tens of metres and a precision of a few millimetres. InSAR does not need equipment on the ground or expensive field campaigns, so it can gather crucial data on earthquakes and the seismic cycle from some of the remotest areas of the planet. In this article, I review some of the remarkable observations of the earthquake cycle already made using radar interferometry and speculate on breakthroughs that are tantalizingly close.
NASA Astrophysics Data System (ADS)
Yang, C. H.; Kenduiywo, B. K.; Soergel, U.
2016-06-01
Persistent Scatterer Interferometry (PSI) is a technique to detect a network of extracted persistent scatterer (PS) points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC) points. On the other hand, incoherent change detection (ICD) relies on local comparison of multi-temporal images (e.g. image difference, image ratio) to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.
On the COSMO-SkyMed Exploitation for Interferometric DEM Generation
NASA Astrophysics Data System (ADS)
Teresa, C. M.; Raffaele, N.; Oscar, N. D.; Fabio, B.
2011-12-01
DEM products for Earth observation space-borne applications are being to play a role of increasing importance due to the new generation of high resolution sensors (both optical and SAR). These new sensors demand elevation data for processing and, on the other hand, they provide new possibilities for DEM generation. Till now, for what concerns interferometric DEM, the Shuttle Radar Topography Mission (SRTM) has been the reference product for scientific applications all over the world. SRTM mission [1] had the challenging goal to meet the requirements for a homogeneous and reliable DEM fulfilling the DTED-2 specifications. However, new generation of high resolution sensors (including SAR) pose new requirements for elevation data in terms of vertical precision and spatial resolution. DEM are usually used as ancillary input in different processing steps as for instance geocoding and Differential SAR Interferometry. In this context, the recent SAR missions of DLR (TerraSAR-X and TanDEM-X) and ASI (COSMO-SkyMed) can play a promising role thanks to their high resolution both in space and time. In particular, the present work investigates the potentialities of the COSMO/SkyMed (CSK) constellation for ground elevation measurement with particular attention devoted to the impact of the improved spatial resolution wrt the previous SAR sensors. The recent scientific works, [2] and [3], have shown the advantages of using CSK in the monitoring of terrain deformations caused by landslides, earthquakes, etc. On the other hand, thanks to the high spatial resolution, CSK appears to be very promising in monitoring man-made structures, such as buildings, bridges, railways and highways, thus enabling new potential applications (urban applications, precise DEM, etc.). We present results obtained by processing both SPOTLIGHT and STRIPMAP acquisitions through standard SAR Interferometry as well as multi-pass interferometry [4] with the aim of measuring ground elevation. Acknowledgments Work supported by ASI (Agenzia Spaziale Italiana) in the framework of the project "AO-COSMO Project ID-1462 - Feasibility of possible use of COSMO/SkyMed in bistatic SAR Earth observation - ASI Contract I/063/09/0". References [1] B. Rabus, M. Eineder, A. Roth, and R. Bamler, "The Shuttle Radar Topography Mission-A new class of digital elevation models acquired by spaceborne radar," ISPRS J. Photogramm. Remote Sens., vol. 57, no. 4, pp. 241-262, Feb. 2003. [2] F. BOVENGA, D. O. NITTI, R. NUTRICATO, M. T. CHIARADIA, "C- and X-band multi-pass InSAR analysis over Alpine and Apennine regions". In Proceedings of the European Space Agency Living Planet Symposium, June 28 - July 2, 2010, Bergen, Norway. [3] D. REALE, D. O. NITTI, D. PEDUTO, R. NUTRICATO, F. BOVENGA, G. FORNARO, "Postseismic Deformation Monitoring With The COSMO/SKYMED Constellation". IEEE Geoscience Remote Sensing Letters, 2011. DOI: 10.1109/LGRS.2010.2100364 [4] Nitti, D.O., Nutricato, R., Bovenga, F., Conte, D., Guerriero, L. & Milillo, G., "Quantitative Analysis of Stripmap And Spotlight SAR Interferometry with CosmoSkyMed constellation.", Proceedings if IEEE IGARSS 2009, July 13-17, 2009. Cape Town, South Africa.
Geocoding of AIRSAR/TOPSAR SAR Data
NASA Technical Reports Server (NTRS)
Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob
1996-01-01
It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to geocode the new AIRSAR/TOPSAR data is presented. As an example an AIRSAR/TOPSAR image acquired in 1994 is geocoded and evaluated in terms of geometric accuracy.
NASA Astrophysics Data System (ADS)
Declercq, Pierre-Yves; Gerard, Pierre; Pirard, Eric; Perissin, Daniele; Walstra, Jan; Devleeschouwer, Xavier
2017-12-01
ERS, ENVISAT and TerraSAR-X Synthetic Aperture Radar scenes covering the time span 1992-2014 were processed using a Persistent Scatterer technique to study the ground movements in Merchtem (25 km NW of Brussels, Belgium). The processed datasets, covering three consecutive time intervals, reveal that the investigated area is affected by a global subsidence trend related to the extraction of groundwater in the deeper Cambro-Silurian aquifer. Through time the subsidence pattern is reduced and replaced by an uplift related to the rising water table attested by piezometers located in this aquifer. The subsidence is finally reduced to a zone where currently three breweries are very active and pump groundwater in the Ledo-Paniselian aquifer and in the Cambro-Silurian for process water for the production.
Jung, H.-S.; Lu, Z.; Won, J.-S.; Poland, Michael P.; Miklius, Asta
2011-01-01
Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.
SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005
Lee, C.-W.; Lu, Z.; Kwoun, Oh-Ig
2007-01-01
Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.
SAR measurements of surface displacements at Augustine Volcano, Alaska from 1992 to 2005
Lee, C.-W.; Lu, Z.; Kwoun, Oh-Ig
2008-01-01
Augustine volcano is an active stratovolcano located at the southwest of Anchorage, Alaska. Augustine volcano had experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. We measured the surface displacements of the volcano by radar interferometry and GPS before and after the eruption in 2006. ERS-1/2, RADARSAT-1 and ENVISAT SAR data were used for the study. Multiple interferograms were stacked to reduce artifacts caused by different atmospheric conditions. Least square (LS) method was used to reduce atmospheric artifacts. Singular value decomposition (SVD) method was applied for retrieval of time sequential deformations. Satellite radar interferometry helps to understand the surface displacements system of Augustine volcano. ?? 2007 IEEE.
Recent Advances on INSAR Temporal Decorrelation: Theory and Observations Using UAVSAR
NASA Technical Reports Server (NTRS)
Lavalle, M.; Hensley, S.; Simard, M.
2011-01-01
We review our recent advances in understanding the role of temporal decorrelation in SAR interferometry and polarimetric SAR interferometry. We developed a physical model of temporal decorrelation based on Gaussian-statistic motion that varies along the vertical direction in forest canopies. Temporal decorrelation depends on structural parameters such as forest height, is sensitive to polarization and affects coherence amplitude and phase. A model of temporal-volume decorrelation valid for arbitrary spatial baseline is discussed. We tested the inversion of this model to estimate forest height from model simulations supported by JPL/UAVSAR data and lidar LVIS data. We found a general good agreement between forest height estimated from radar data and forest height estimated from lidar data.
Potentials and Limits of Sar Permanent Scatterers In Ground Deformation Monitoring
NASA Astrophysics Data System (ADS)
Rocca, F.; Colesanti, C.; Ferretti, A.; Prati, C.
The Permanent Scatterers (PS) technique allows the identification of individual radar targets particularly suitable for SAR interferometric measurements. In fact, despite its remarkable potential, spaceborne SAR Differential Interferometry (DInSAR) has not been fully exploited as a reference tool for ground deformation mapping, due to the presence of atmospheric artefacts as well as geometrical and temporal phase decorrelation. Both drawbacks are overcome in a multi-image framework of interfer- ometric data (>25-30 images) jointly used in order to properly identify and exploit the subset of image pixels corresponding to privileged reflectors, the so-called Per- manent Scatterers. Provided that at least 3-4 PS/sqkm are available, accurate phase measurements carried out on the sparse PS grid allow one to compensate data for the atmospheric phase contributions. Average ground deformation rate as well as full dis- placement time series (both along the satellite Line of Sight, LOS) are estimated with millimetric accuracy on individual PS locations. The PS subset of image pixels can be thought of as a high density (100-400 PS/sqkm, in urban areas) "natural" geode- tic network. This study aims at discussing in detail potentials and limits of the PS approach in monitoring ground deformation phenomena characterised by a complex time non-uniform evolution (Non-Linear Motion, NLM). PS results highlighting sea- sonal displacement effects beneath San Jose (Santa Clara Valley, California) are going to be discussed. The deformation occurring there is related to the seasonal variation of the ground water level in the area delimited by the Silver Creek and the San Jose fault. The San Jose PS analysis is exploited as a significant case study to assess the main requirements for a successful detection of NLM phenomena (by means of PS), and to analyse their impact on the quality of results. Particular attention will be de- voted to the effect of irregularly sampled data and missing acquisitions. The strategies used in order to isolate the phase contribution relative to time non-uniform displace- ment phenomena from other phase terms (mainly atmospheric artefacts and residual topography) are going to be illustrated. Moreover, the main aspects to be considered envisaging a synergistic use of PS results and both GPS and optical levelling data are going to be outlined. Finally, attention will be paid to key issues to be taken into account for designing future SAR missions dedicated to detection and monitoring of ground deformation phenomena.
Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry
NASA Technical Reports Server (NTRS)
Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto
2006-01-01
We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.
Polarimetric SAR Interferometry Evaluation in Mangroves
NASA Technical Reports Server (NTRS)
Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing
2014-01-01
TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).
NASA Technical Reports Server (NTRS)
MacAyeal, D. R.; Rignot, E.; Hulbe, C. L.
1998-01-01
We compare Earth Remote Sensing (ERS) satellite synthetic-aperture radar (SAR) interferograms with artificial interferograms constructed using output of a finite-element ice-shelf flow model to study the dynamics of Filchner-Ronne Ice Shelf (FRIS) near Hemmen Ice Rise (HIR) where the iceberg-calving front itersects Berkener Island (BI).
Zhao, C.Y.; Zhang, Q.; Ding, X.-L.; Lu, Z.; Yang, C.S.; Qi, X.M.
2009-01-01
The City of Xian, China, has been experiencing significant land subsidence and ground fissure activities since 1960s, which have brought various severe geohazards including damages to buildings, bridges and other facilities. Monitoring of land subsidence and ground fissure activities can provide useful information for assessing the extent of, and mitigating such geohazards. In order to achieve robust Synthetic Aperture Radar Interferometry (InSAR) results, six interferometric pairs of Envisat ASAR data covering 2005–2006 are collected to analyze the InSAR processing errors firstly, such as temporal and spatial decorrelation error, external DEM error, atmospheric error and unwrapping error. Then the annual subsidence rate during 2005–2006 is calculated by weighted averaging two pairs of D-InSAR results with similar time spanning. Lastly, GPS measurements are applied to calibrate the InSAR results and centimeter precision is achieved. As for the ground fissure monitoring, five InSAR cross-sections are designed to demonstrate the relative subsidence difference across ground fissures. In conclusion, the final InSAR subsidence map during 2005–2006 shows four large subsidence zones in Xian hi-tech zones in western, eastern and southern suburbs of Xian City, among which two subsidence cones are newly detected and two ground fissures are deduced to be extended westward in Yuhuazhai subsidence cone. This study shows that the land subsidence and ground fissures are highly correlated spatially and temporally and both are correlated with hi-tech zone construction in Xian during the year of 2005–2006.
NASA Astrophysics Data System (ADS)
Liang, Cunren; Zeng, Qiming; Jia, Jianying; Jiao, Jian; Cui, Xi'ai
2013-02-01
Scanning synthetic aperture radar (ScanSAR) mode is an efficient way to map large scale geophysical phenomena at low cost. The work presented in this paper is dedicated to ScanSAR interferometric processing and its implementation by making full use of existing standard interferometric synthetic aperture radar (InSAR) software. We first discuss the properties of the ScanSAR signal and its phase-preserved focusing using the full aperture algorithm in terms of interferometry. Then a complete interferometric processing flow is proposed. The standard ScanSAR product is decoded subswath by subswath with burst gaps padded with zero-pulses, followed by a Doppler centroid frequency estimation for each subswath and a polynomial fit of all of the subswaths for the whole scene. The burst synchronization of the interferometric pair is then calculated, and only the synchronized pulses are kept for further interferometric processing. After the complex conjugate multiplication of the interferometric pair, the residual non-integer pulse repetition interval (PRI) part between adjacent bursts caused by zero padding is compensated by resampling using a sinc kernel. The subswath interferograms are then mosaicked, in which a method is proposed to remove the subswath discontinuities in the overlap area. Then the following interferometric processing goes back to the traditional stripmap processing flow. A processor written with C and Fortran languages and controlled by Perl scripts is developed to implement these algorithms and processing flow based on the JPL/Caltech Repeat Orbit Interferometry PACkage (ROI_PAC). Finally, we use the processor to process ScanSAR data from the Envisat and ALOS satellites and obtain large scale deformation maps in the radar line-of-sight (LOS) direction.
ALOS2-Indonesia REDD+ Experiment (AIREX): Soil Pool Carbon Application
NASA Astrophysics Data System (ADS)
Raimadoya, M.; Kristijono, A.; Sudiana, N.; Sumawinata, B.; Suwardi; Santoso, E.; Mahargo, D.; Sudarman, S.; Mattikainen, M.
2015-04-01
The bilateral REDD+ agreement between Indonesia and Norway [1] has scheduled that performance based result phase will be started in 2014. Therefore, a transparent and reliable Monitoring, Reporting and V erification (MRV) system for the following carbon pools: (1) biomass, (2) dead organic matter (DOM), and (3) soil, is required to be ready prior to the performance based phase. While the biomass pool could be acquired by space-borne radar (SAR) application i.e. SAR Interferometry (In-SAR) and Polarimetric SAR Interferometry (Pol-InSAR), the method for soil pool is still needed to be developed.A study was implemented in a test site located in the pulp plantation concession of Teluk Meranti Estate, Riau Andalan Pulp and Paper (RAPP), Pelalawan District, Riau Province, Indonesia. The study was intended to evaluate the possibility to estimate soil pool carbon with radar technology. For this purpose, a combination of spaceborne SAR (ALOS/PALSAR) and Ground Penetrating Radar (200 MHz IDS 200 MHz IDS GPR) were used in this exercise.The initial result this study provides a promising outcome for improved soil pool carbon estimation in tropical peat forest condition. The volume estimation of peat soil could be measured from the combination of spaceborne SAR and GPR. Based on this volume, total carbon content can be generated. However, the application of this approach has several limitation such as: (1) GPR survey can only be implemented during the dry season, (2) Rugged Terrain Antenna (RTA) type of GPR should be used for smooth GPR survey in the surface of peat soil which covered by DOM, and (3) the map of peat soil extent by spaceborne SAR need to be improved.
Present day vertical deformation of Pico and Faial islands revealed by merged INSAR and GPS data
NASA Astrophysics Data System (ADS)
Catalao, Joao; Nico, Giovanni; Catita, Cristina
2010-05-01
In this paper we investigate the problem of the integration of repeated GPS geodetic measurements and interferometric Synthetic Aperture Radar (SAR) observations for the determination of high resolution vertical deformation maps. The Faial and Pico islands in the Azores archipelago were chosen as study area. These islands are characterized by a intense volcanic and seismic activity. Both islands are covered by huge vegetation and have very unstable atmospheric conditions which negatively influence the interferometric processing. In this work, we apply the advanced interferometric SAR processing based on Persistent Scatterers. However, the small number of man made structures reduces the density of Persistent Scatterers. Furthermore, the different ascending and descending acquisition geometries give different sets of Persistent Scatterers, with complementary spatial coverage, and different line-of-sight velocities. The estimated velocities are relative to the master image (different from ascending and descending) and must be referred to an absolute velocity (in the sense of referred to a geodetic reference frame). The strategy used to overcome the aforementioned problems is based on the combination of sparse GPS 3D-velocities with two sets of Persistent Scatterers determined from ascending and descending passes. The input data are: a set of GPS - 3D velocities relative to ITRF05 (18 Stations) and two sets of Persistent Scatterers corresponding to the descending and ascending orbits. A dataset of 60 interferometric repeat-pass ASAR/ENVISAT images were acquired over the Faial and Pico islands, from 2006 to 2008, along ascending and descending passes. Each interferogram obtained by this dataset was corrected for atmospheric artefacts using a Weather Forecasting model. Initially, the horizontal velocity component (east and north) is assigned to each PS from interpolation of available GPS observations. Then, the vertical component of the velocity is determined from the SAR line-of-sight velocity and the GPS horizontal velocity component. Later, the vertical velocity offsets are numerically determined by comparison between GPS (ITRF velocities) and PS (the two ascending and descending sets) measurements. These values are then used to create the vertical deformation map of Faial and Pico islands with considerably better resolution and accuracy than using a single set of observations. The vertical deformation map has identified a large continuous area of subsidence on the west of Faial island, on the flank of Capelinhos eruption cone, with a maximum subsidence range of 10 mm/yr. It has also revealed the subsidence of the summit crater of Pico island (9 mm/yr) and a large area of subsidence on the west of the island, corresponding mostly to creep movement. Key words: SAR Interferometry, GPS-INSAR integration, Volcano, subsidence
Dynamics of Kilauea's Magmatic System Imaged Using a Joint Analysis of Geodetic and Seismic Data
NASA Astrophysics Data System (ADS)
Wauthier, C.; Roman, D. C.; Poland, M. P.; Fukushima, Y.; Hooper, A. J.
2012-12-01
Nowadays, Interferometric Synthetic Aperture Radar (InSAR) is commonly used to study a wide range of active volcanic areas. InSAR provides high-spatial-resolution measurements of surface deformation with centimeter-scale accuracy. At Kilauea Volcano, Hawai'i, InSAR shows complex processes that are not well constrained by GPS data (which have relatively poor spatial resolution). However, GPS data have higher temporal resolution than InSAR data. Both datasets are thus complementary. To overcome some of the limitations of conventional InSAR, which are mainly induced by temporal decorrelation, topographic, orbital and atmospheric delays, a Multi-Temporal InSAR (MT-InSAR) approach can be used. MT-InSAR techniques involve the processing of multiple SAR acquisitions over the same area. Two classes of MT-InSAR algorithms are defined: the persistent scatterers (PS) and small baseline (SBAS) methods. Each method is designed for a specific type of scattering mechanism. A PS pixel is a pixel in which a single scatterer dominates, while the contributions from other scatterers are negligible. A SBAS pixel is a pixel that includes distributed scatterers, which have a phase with little decorrelation over short time periods. Here, we apply the "StaMPS" ("Stanford Method for Permanent Scatterers") technique, which incorporates both a PS and SBAS approach, on ENVISAT and ALOS datasets acquired from 2003 to 2010 at Kilauea. In particular, we focus our InSAR analysis on the time period before the June 2007 "Father's Day" dike intrusion and eruption, and also incorporate seismic and GPS data in our models. Our goal is to identify any precursors to the Father's Day event within Kilauea's summit magma system, east rift zone, and/or southwest rift zone.
Space-Based Detection of Sinkhole Activity in Central Florida
NASA Astrophysics Data System (ADS)
Oliver-Cabrera, T.; Kruse, S.; Wdowinski, S.
2015-12-01
Central Florida's thick carbonate deposits and hydrological conditions have made the area prone to sinkhole development. Sinkhole collapse is a major geologic hazard in central Florida threatening human life and causing substantial damage to property. According to the Florida Senate report in 2010, between 2006-2010 total insurance claims due to sinkhole activity were around $200 million per year. Detecting sinkhole deformation before a collapse is a very difficult task, due to small or sometimes unnoticeable surface changes. Most techniques used to monitor sinkholes provide very localized information and cannot be implemented to study broad areas. This is the case of central Florida, where the active zone spans over hundreds of square-kilometers. In this study we use Interferometric Synthetic Aperture Radar (InSAR) observations acquired over several locations in central Florida to detect possible pre-collapse deformation. The study areas were selected because they have shown suspicious sinkhole behavior. One of the sites collapsed on March 2013 destroying a property and killing a man. To generate the InSAR results we use six datasets acquired by the TerraSAR-X and Cosmo-SkyMed satellites with various acquisition modes reflecting pixel resolutions between 25cm and 2m. Preliminary InSAR results show good coherence over constructed areas and low coherence in vegetated zones, justifying our analysis that focuses on the man-made structures. After full datasets will be acquired, a Persistent Scatterer Interferometry (PSI) time series analysis will be performed for detecting localized deformation at spatial scale of 1-5 meters. The project results will be verified using Ground Penetrating Radar.
Monitoring of Building Construction by 4D Change Detection Using Multi-temporal SAR Images
NASA Astrophysics Data System (ADS)
Yang, C. H.; Pang, Y.; Soergel, U.
2017-05-01
Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.
NASA Astrophysics Data System (ADS)
Tomar, Kiledar S.; Kumar, Shashi; Tolpekin, Valentyn A.; Joshi, Sushil K.
2016-05-01
Forests act as sink of carbon and as a result maintains carbon cycle in atmosphere. Deforestation leads to imbalance in global carbon cycle and changes in climate. Hence estimation of forest biophysical parameter like biomass becomes a necessity. PolSAR has the ability to discriminate the share of scattering element like surface, double bounce and volume scattering in a single SAR resolution cell. Studies have shown that volume scattering is a significant parameter for forest biophysical characterization which mainly occurred from vegetation due to randomly oriented structures. This random orientation of forest structure causes shift in orientation angle of polarization ellipse which ultimately disturbs the radar signature and shows overestimation of volume scattering and underestimation of double bounce scattering after decomposition of fully PolSAR data. Hybrid polarimetry has the advantage of zero POA shift due to rotational symmetry followed by the circular transmission of electromagnetic waves. The prime objective of this study was to extract the potential of Hybrid PolSAR and fully PolSAR data for AGB estimation using Extended Water Cloud model. Validation was performed using field biomass. The study site chosen was Barkot Forest, Uttarakhand, India. To obtain the decomposition components, m-alpha and Yamaguchi decomposition modelling for Hybrid and fully PolSAR data were implied respectively. The RGB composite image for both the decomposition techniques has generated. The contribution of all scattering from each plot for m-alpha and Yamaguchi decomposition modelling were extracted. The R2 value for modelled AGB and field biomass from Hybrid PolSAR and fully PolSAR data were found 0.5127 and 0.4625 respectively. The RMSE for Hybrid and fully PolSAR between modelled AGB and field biomass were 63.156 (t ha-1) and 73.424 (t ha-1) respectively. On the basis of RMSE and R2 value, this study suggests Hybrid PolSAR decomposition modelling to retrieve scattering element for AGB estimation from forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Jie; Department of Automation, Nanjing Polytechnic Institute, 210048 Nanjing; Tao, Chao, E-mail: taochao@nju.edu.cn
2015-06-08
Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried outmore » to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.« less
NASA Astrophysics Data System (ADS)
Tung, Hsin; Chen, Horng-Yue; Hu, Jyr-Ching; Ching, Kuo-En; Chen, Hongey; Yang, Kuo-Hsin
2016-12-01
We present precise deformation velocity maps for the two year period from September 2011 to July 2013 of the northern Taiwan area, Taipei, by using persistent scatterer interferometry (PSI) technique for processing 18 high resolution X-band synthetic aperture radar (SAR) images archived from COSMO-SkyMed (CSK) constellation. According to the result, the highest subsidence rates are found in Luzou and Wuku area in which the rate is about 15 mm/yr and 10 mm/yr respectively in the whole dataset. However, dramatic change from serve subsidence to uplift in surface deformation was revealed in the Taipei Basin in two different time spans: 2011/09-2012/09 and 2012/09-2013/07. This result shows good agreement with robust continuous GPS measurement and precise leveling survey data across the central Taipei Basin. Moreover, it also represents high correlation with groundwater table. From 8 well data in the Taipei basin, the storativity is roughly constant across most of the aquifer with values between 0.5 × 10- 4 and 1.6 × 10- 3 in Jingmei Formation and 0.8 × 10- 4 and 1.4 × 10- 3 in Wuku Formation. This high correlation indicated that one meter groundwater level change could induce about 9 and 16 mm surface deformation change in Luzou and Wuku area respectively, which is about eight times faster the long-term tectonic deformation rate in this area. Thus, to access the activity of the Shanchiao Fault, it is important to discriminate tectonic movement from anthropogenic or seasonal effect in the Taipei Basin to better understand the geohazards and mitigation in the Taipei metropolitan area.
Wave propagation, scattering and emission in complex media
NASA Astrophysics Data System (ADS)
Jin, Ya-Qiu
I. Polarimetric scattering and SAR imagery. EM wave propagation and scattering in polarimetric SAR interferometry / S. R. Cloude. Terrain topographic inversion from single-pass polarimetric SAR image data by using polarimetric stokes parameters and morphological algorithm / Y. Q. Jin, L. Luo. Road detection in forested area using polarimetric SAR / G. W. Dong ... [et al.]. Research on some problems about SAR radiometric resolution / G. Dong ... [et al.]. A fast image matching algorithm for remote sensing applications / Z. Q. Hou ... [et al.]. A new algorithm of noised remote sensing image fusion based on steerable filters / X. Kang ... [et al.]. Adaptive noise reduction of InSAR data based on anisotropic diffusion models and their applications to phase unwrapping / C. Wang, X. Gao, H. Zhang -- II. Scattering from randomly rough surfaces. Modeling tools for backscattering from rough surfaces / A. K. Fung, K. S. Chen. Pseudo-nondiffracting beams from rough surface scattering / E. R. Méndez, T. A. Leskova, A. A. Maradudin. Surface roughness clutter effects in GPR modeling and detection / C. Rappaport. Scattering from rough surfaces with small slopes / M. Saillard, G. Soriano. Polarization and spectral characteristics of radar signals reflected by sea-surface / V. A. Butko, V. A. Khlusov, L. I. Sharygina. Simulation of microwave scattering from wind-driven ocean surfaces / M. Y. Xia ... [et al.]. HF surface wave radar tests at the Eastern China Sea / X. B. Wu ... [et al.] -- III. Electromagnetics of complex materials. Wave propagation in plane-parallel metamaterial and constitutive relations / A. Ishimaru ... [et al.]. Two dimensional periodic approach for the study of left-handed metamaterials / T. M. Grzegorczyk ... [et al.]. Numerical analysis of the effective constitutive parameters of a random medium containing small chiral spheres / Y. Nanbu, T. Matsuoka, M. Tateiba. Wave propagation in inhomogeneous media: from the Helmholtz to the Ginzburg -Landau equation / M. Gitterman. Transformation of the spectrum of scattered radiation in randomly inhomogeneous absorptive plasma layer / G. V. Jandieri, G. D. Aburjunia, V. G. Jandieri. Numerical analysis of microwave heating on saponification reaction / K. Huang, K. Jia -- IV. Scattering from complex targets. Analysis of electromagnetic scattering from layered crossed-gratings of circular cylinders using lattice sums technique / K. Yasumoto, H. T. Jia. Scattering by a body in a random medium / M. Tateiba, Z. Q. Meng, H. El-Ocla. A rigorous analysis of electromagnetic scattering from multilayered crossed-arrays of metallic cylinders / H. T. Jia, K. Yasumoto. Vector models of non-stable and spatially-distributed radar objects / A. Surkov ... [et al.]. Simulation of algorithm of orthogonal signals forming and processing used to estimate back scattering matrix of non-stable radar objects / D. Nosov ... [et al.]. New features of scattering from a dielectric film on a reflecting metal substrate / Z. H. Gu, I. M. Fuks, M. Ciftan. A higher order FDTD method for EM wave propagation in collision plasmas / S. B. Liu, J. J. Mo, N. C. Yuan -- V. Radiative transfer and remote sensing. Simulating microwave emission from Antarctica ice sheet with a coherent model / M. Tedesco, P. Pampaloni. Scattering and emission from inhomogeneous vegetation canopy and alien target by using three-dimensional Vector Radiative Transfer (3D-VRT) equation / Y. Q. Jin, Z. C. Liang. Analysis of land types using high-resolution satellite images and fractal approach / H. G. Zhang ... [et al.]. Data fusion of RADARSAT SAR and DMSP SSM/I for monitoring sea ice of China's Bohai Sea / Y. Q. Jin. Retrieving atmospheric temperature profiles from simulated microwave radiometer data with artificial neural networks / Z. G. Yao, H. B. Chen -- VI. Wave propagation and wireless communication. Wireless propagation in urban environments: modeling and experimental verification / D. Erricolo ... [et al.]. An overview of physics-based wave propagation in forested environment / K. Sarabandi, I. Koh. Angle-of-arrival fluctuations due to meteorological conditions in the diffraction zone of C-band radio waves, propagated over the ground surface / T. A. Tyufilina, A. A. Meschelyakov, M. V. Krutikov. Simulating radio channel statistics using ray based prediction codes / H. L. Bertoni. Measurement and simulation of ultra wideband antenna elements / W. Sörgel, W. Wiesbeck. The experimental investigation of a ground-placed radio complex synchronization system / V. P. Denisov ... [et al.] -- VII. Computational electromagnetics. Analysis of 3-D electromagnetic wave scattering with the Krylov subspace FFT iterative methods / R. S. Chen ... [et al.]. Sparse approximate inverse preconditioned iterative algorithm with block toeplitz matrix for fast analysis of microstrip circuits / L. Mo, R. S. Chen, E. K. N. Yung. An Efficient modified interpolation technique for the translation operators in MLFMA / J. Hu, Z. P. Nie, G. X. Zou. Efficient solution of 3-D vector electromagnetic scattering by CG-MLFMA with partly approximate iteration / J. Hu, Z. P. Nie. The effective constitution at interface of different media / L. G. Zheng, W. X. Zhang. Novel basis functions for quadratic hexahedral edge element / P. Liu ... [et al.]. A higher order FDTD method for EM wave propagation in collision plasmas / S. B. Liu, J. J. Mo, N. C. Yuan. Attenuation of electric field eradiated by underground source / J. P. Dong, Y. G. Gao.
Normal and Differential SAR Interferometry
2005-02-01
incorporating the use of a rough DEM. [ Adragna 1995]. The same technique is also used for flat Earth removal, and for differential interferometry (Cap.5...and F. Adragna , 1994. Radar Interferometric Mapping of Deformation in the Year After the Landers Earthquake, Nature, Vol. 369, pp. 227-230 Massonnet...D., M. Rossi, C. Carmona, F. Adragna , G. Peltzer, K. Feigi, and T. Rabaute, 1993. The Displacement Field of the Landers Earthquake Mapped by Radar
2007-02-01
January 2003. [69] EUSAR 2000 Proceedings, VDE Verlag, Offenbach, ISBN: 3-8007-2544-4, Munich, Germany, May 2000. [70] EUSAR 2002 Proceedings... VDE Verlag, Offenbach, ISBN: 3-8007-2697-1, Cologne, Germany, June 2002. [71] Ferro-Famil, L. and E. Pottier, 2000, "Description of Dual Frequency
The use of the DInSAR method in the monitoring of road damage caused by mining activities
NASA Astrophysics Data System (ADS)
Murdzek, Radosław; Malik, Hubert; Leśniak, Andrzej
2018-04-01
This paper reviews existing remote sensing methods of road damage detection and demonstrates the possibility of using DInSAR (Differential Interferometry SAR) method to identify endangered road sections. In this study two radar images collected by Sentinel-1 satellite have been used. Images were acquired with 24 days interval in 2015. The analysis allowed to estimate the scale of the post-mining deformation that occurred in Upper Silesia and to indicate areas where road infrastructure is particularly vulnerable to damage.
[Research on monitoring land subsidence in Beijing plain area using PS-InSAR technology].
Gu, Zhao-Qin; Gong, Hui-Li; Zhang, You-Quan; Lu, Xue-Hui; Wang, Sa; Wang, Rong; Liu, Huan-Huan
2014-07-01
In the present paper, the authors use permanent scatterers synthetic aperture radar interferometry (PS-InSAR) technique and 29 acquisitions by Envisat during 2003 to 2009 to monitor and analyze the spatial-temporal distribution and mechanism characterize of land subsidence in Beijing plain area. The results show that subsidence bowls have been bounded together in Beijing plain area, which covers Chaoyang, Changping, Shunyi and Tongzhou area, and the range of subsidence has an eastward trend. The most serious regional subsidence is mainly distributed by the quaternary depression in Beijing plain area. PS-Insar results also show a new subsidence bowl in Pinggu. What's more, the spatial and temporal distribution of deformation is controlled mainly by faults, such as Liangxiang-Shunyi fault, Huangzhuang-Gaoliying fault, and Nankou-Sunhe fault. The subsidence and level of groundwater in study area shows a good correlation, and the subsidence shows seasonal ups trend during November to March and seasonal downs trend during March to June along with changes in groundwater levels. The contribution of land subsidence is also influenced by stress-strain behavior of aquitards. The compaction of aquitards shows an elastic, plastic, viscoelastic pattern.
NASA Astrophysics Data System (ADS)
Werninghaus, Rolf
2004-01-01
The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the project organisation and major milestones. Then an overview on the satellite as well as the SAR instrument is given followed by a description of the system design. Finally the principle layout of the TerraSAR-X Ground Segment and some remarks on the European context are presented.
Application of Radar Data to Remote Sensing and Geographical Information Systems
NASA Technical Reports Server (NTRS)
vanZyl, Jakob J.
2000-01-01
The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.
NASA Astrophysics Data System (ADS)
Cooksley, Geraint; Arnaud, Alain; Banwell, Marie-Josée
2013-04-01
Increasingly, geohazard risk managers are looking to satellite observations as a promising option for supporting their risk management and mitigation strategies. The Terrafirma project, aimed at supporting civil protection agencies, local authorities in charge of risk assessment and mitigation is a pan-European ground motion information service funded by the European Space Agency's Global Monitoring for Environment and Security initiative. Over 100 services were delivered to organizations over the last ten years. Terrafirma promotes the use of Synthetic Aperture Radar Interferometry (InSAR) and Persistent Scatterer InSAR (PSI) within three thematic areas for terrain motion analysis: Tectonics, Flooding and Hydrogeology (ground water, landslides and inactive mines), as well as the innovative Wide Area mapping service, aimed at measuring land deformation over very large areas. Terrafirma's thematic services are based on advanced satellite interferometry products; however they exploit additional data sources, including non-EO, coupled with expert interpretation specific to each thematic line. Based on the combination of satellite-derived ground-motion information products with expert motion interpretation, a portfolio of services addressing geo-hazard land motion issues was made available to users. Although not a thematic in itself, the Wide Area mapping product constitutes the fourth quarter of the Terrafirma activities. The wide area processing chain is nearly fully automatic and requires only a little operator interaction. The service offers an operational PSI processing for wide-area mapping with mm accuracy of ground-deformation measurement at a scale of 1:250,000 (i.e. one cm in the map corresponds to 2.5 Km on the ground) on a country or continent level. The WAP was demonstrated using stripmap ERS data however it is foreseen to be a standard for the upcoming Sentinel-1 mission that will be operated in Terrain Observation by Progressive Scan (TOPS) mode. Within each theme, a series of products are offered. The Hydrogeology service delivers geo-information for hydrogeological hazards affecting urban areas, mountainous zones and infra-structures. Areas where groundwater has been severely exploited often experience subsidence as a result. Likewise, many European towns and cities built above abandoned and inactive mines experience strong ground deformation. The hydrogeology theme products study these phenomenon as well as slope instability in mountainous areas. The Tectonics service presents information on seismic hazards. The crustal block boundaries service provides users with information on terrain motion related to major and local faults, earthquake cycles, and vertical deformation sources. The vulnerability map service combines radar satellite date with in situ measurements to identify regions that may be vulnerable in the case of an earthquake. Within the Coastal Lowland and Flood Risk service, the flood plain hazard product assesses flood risk in coastal lowland areas and flood-prone river basins. The advanced subsidence mapping service combines PSI with levelling data and GPS to enable users to interpret subsidence maps within their geodetic reference systems. The flood defence monitoring service focuses on flood protection systems such as dykes and dams. Between 2003 and 2013, Terrafirma delivered services to 51 user organizations in over 25 countries. The archive of datasets is available to organisations involved in geohazard risk management and mitigation. Keywords: Persistent Scatterer Interferometry, Synthetic Aperture Radar, ground motion monitoring, Terrafirma project, multi-hazard analysis
Evaluation of the wave measurement in a stormy sea by the Along-Track interferometry SAR
NASA Astrophysics Data System (ADS)
Kojima, S.
2015-12-01
NICT developed the along-track interferometry SAR (AT-InSAR) system to detect the running cars and ships and measure sea surface velocity in 2011. The preliminary experiments for the running truck and ship were performed and it confirmed that the system performance was satisfactory to its specifications. In addition, a method to estimate the wave height from the sea surface velocity measured by the AT-InSAR was developed. The preliminary wave height observation was performed in a calm sea, and it was confirmed that the wave height could be estimated from the measured sea surface velocity. The purpose of this study is to check the capability of the ocean waves observation in a stormy sea by the AT-InSAR. Therefore, the ocean wave observation was performed under the low atmospheric pressure. The observation area is the sea surface at 10 km off the coast of Kushiro, south-east to Hokaido, JAPAN on the 4th of March 2015. The wind speed was 8〜10m/s during the observation, and the significant wave height and period were 1.5m and 6.0s. The observation was performed in 2 directions and the accuracy of the estimation results were checked. The significant wave height and period measured by the AT-InSAR agreed with it measured by the wave gage located close to this observation area. In addition, it was confirmed that there were no irregular wave heights in the distribution of the estimated wave height. As a result, it became clear that the AT-InSAR could observe the wave height in a stormy sea.
Spaceborne SAR Imaging Algorithm for Coherence Optimized.
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.
Spaceborne SAR Imaging Algorithm for Coherence Optimized
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446
NASA Astrophysics Data System (ADS)
Simard, M.; Denbina, M. W.
2017-12-01
Using data collected by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Land, Vegetation, and Ice Sensor (LVIS) lidar, we have estimated forest canopy height for a number of study areas in the country of Gabon using a new machine learning data fusion approach. Using multi-baseline polarimetric synthetic aperture radar interferometry (PolInSAR) data collected by UAVSAR, forest heights can be estimated using the random volume over ground model. In the case of multi-baseline UAVSAR data consisting of many repeat passes with spatially separated flight tracks, we can estimate different forest height values for each different image pair, or baseline. In order to choose the best forest height estimate for each pixel, the baselines must be selected or ranked, taking care to avoid baselines with unsuitable spatial separation, or severe temporal decorrelation effects. The current baseline selection algorithms in the literature use basic quality metrics derived from the PolInSAR data which are not necessarily indicative of the true height accuracy in all cases. We have developed a new data fusion technique which treats PolInSAR baseline selection as a supervised classification problem, where the classifier is trained using a sparse sampling of lidar data within the PolInSAR coverage area. The classifier uses a large variety of PolInSAR-derived features as input, including radar backscatter as well as features based on the PolInSAR coherence region shape and the PolInSAR complex coherences. The resulting data fusion method produces forest height estimates which are more accurate than a purely radar-based approach, while having a larger coverage area than the input lidar training data, combining some of the strengths of each sensor. The technique demonstrates the strong potential for forest canopy height and above-ground biomass mapping using fusion of PolInSAR with data from future spaceborne lidar missions such as the upcoming Global Ecosystems Dynamics Investigation (GEDI) lidar.
NASA Astrophysics Data System (ADS)
Raspini, Federico; Bardi, Federica; Bianchini, Silvia; Ciampalini, Andrea; Del Ventisette, Chiara; Farina, Paolo; Ferrigno, Federica; Solari, Lorenzo; Casagli, Nicola
2017-04-01
Landslides are common phenomena that occur worldwide and are a main cause of loss of life and damage to property. The hazards associated with landslides are a challenging concern in many countries, including Italy. With 13% of the territory prone to landslides, Italy is one of the European countries with the highest landslide hazard, and on a worldwide scale, it is second only to Japan among the technologically advanced countries. Over the last 15 years, an increasing number of applications have aimed to demonstrate the applicability of images captured by space-borne Synthetic Aperture Radar (SAR) sensors in slope instability investigations. InSAR (SAR Interferometry) is currently one of the most exploited techniques for the assessment of ground displacements, and it is becoming a consolidated tool for Civil Protection institutions in addressing landslide risk. We present a subset of the results obtained in Italy within the framework of SAR-based programmes and applications intended to test the potential application of C- and X-band satellite interferometry during different Civil Protection activities (namely, prevention, prevision, emergency response and post-emergency phases) performed to manage landslide risk. In all phases, different benefits can be derived from the use of SAR-based measurements, which were demonstrated to be effective in the field of landslide analysis. Analysis of satellite-SAR data is demonstrated to play a major role in the investigation of landslide-related events at different stages, including detection, mapping, monitoring, characterization and prediction. Interferometric approaches are widely consolidated for analysis of slow-moving slope deformations in a variety of environments, and exploitation of the amplitude data in SAR images is a somewhat natural complement for rapid-moving landslides. In addition, we discuss the limitations that still exist and must be overcome in the coming years to manage the transition of satellite SAR systems towards complete operational use in landslide risk management practices.
Integration of ERS and ASAR Time Series for Differential Interferometric SAR Analysis
NASA Astrophysics Data System (ADS)
Werner, C. L.; Wegmüller, U.; Strozzi, T.; Wiesmann, A.
2005-12-01
Time series SAR interferometric analysis requires SAR data with good temporal sampling covering the time period of interest. The ERS satellites operated by ESA have acquired a large global archive of C-Band SAR data since 1991. The ASAR C-Band instrument aboard the ENVISAT platform launched in 2002 operates in the same orbit as ERS-1 and ERS-2 and has largely replaced the remaining operational ERS-2 satellite. However, interferometry between data acquired by ERS and ASAR is complicated by a 31 MHz offset in the radar center frequency between the instruments leading to decorrelation over distributed targets. Only in rare instances, when the baseline exceeds 1 km, can the spectral shift compensate for the difference in the frequencies of the SAR instruments to produce visible fringes. Conversely, point targets do not decorrelate due to the frequency offset making it possible to incorporate the ERS-ASAR phase information and obtain improved temporal coverage. We present an algorithm for interferometric point target analysis that integrates ERS-ERS, ASAR-ASAR and ERS-ASAR data. Initial analysis using the ERS-ERS data is used to identify the phase stable point-like scatterers within the scene. Height corrections relative to the initial DEM are derived by regression of the residual interferometric phases with respect to perpendicular baseline for a set of ERS-ERS interferograms. The ASAR images are coregistered with the ERS scenes and the point phase values are extracted. The different system pixel spacing values between ERS and ASAR requires additional refinement in the offset estimation and resampling procedure. Calculation of the ERS-ASAR simulated phase used to derive the differential interferometric phase must take into account the slightly different carrrier frequencies. Differential ERS-ASAR point phases contain an additional phase component related to the scatterer location within the resolution element. This additional phase varies over several cycles making the differential interferogram appear as uniform phase noise. We present how this point phase difference can be determined and used to correct the ERS-ASAR interferograms. Further processing proceeds as with standard ERS-ERS interferogram stacks utilizing the unwrapped point phases to obtain estimates of the deformation history, and path delay due to variations in tropospheric water vapor. We show and discuss examples demonstrating the success of this approach.
SAR Product Improvements and Enhancements - SARprises
2013-09-30
paper on current fields at Orkney, Scotland, was accepted for publication in IEEE - TGARS and is currently in press (available on IEEE Xplore as Early...Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration, IEEE TGARS, 43, 2494- 2502, 2005. [2] Chapron, B., F...Bight by airborne along-track interferometric SAR, Proc. IGARSS 2002, 1822-1824, IEEE , 2002. [4] Bjerklie, D.M., S.L. Dingman, C.J. Vorosmarty, C.H
NASA Astrophysics Data System (ADS)
Seleem, Tarek A.; Foumelis, Michael; Parcharidis, Issaak
2009-09-01
Sharm El-Shiekh area is located in the most southern part of Sinai Peninsula boarded by the Gulf of Suez to the west and by the Gulf of Aqaba to the east. The present study concerns the application of Multibaseline/Stacking Differential SAR Interferometry (DInSAR) in order to monitor ground deformation rates in the southern part of Sharm El-Shiekh area. The specific technique was applied in order to reduce the influence of atmospheric effects on ground deformation estimates. For this purpose a total number of 24 ENVISAT ASAR scenes covering the period between 2002 and 2008 were processed and analysed. Interferometric results show both patterns of uplift and downlift in the study area. Specifically an area along the coastline with a N-S direction, corresponding to the build up zone of Sharm El-Shiekh, shows average annual subsidence rates between -5 and -7 mm/yr along the line of sight (LOS). On the contrary, Sharm El Maya, an inner zone parallel to the above subsided area, shows slant range uplift of around 5 mm/yr. The obtained results of SAR inteferometry probably indicate the presence of an active fault that affects the coastal zones of Sharm El-Shiekh area.
Normal and Differential SAR Interferometry
2007-02-01
incorporating the use of a rough DEM. [ Adragna 1995]. The same technique is also used for flat Earth removal, and for differential Interferometry (Chap..5...available at http://www.estec.esa.nl/confannoun/99b02/index.html Massonnet, D., K. Feigi, M. Rossi, and F. Adragna , 1994. Radar Interferometric Mapping...of Deformation in the Year After the Landers Earthquake, Nature, Vol. 369, pp. 227-230 Massonnet, D., M. Rossi, C. Carmona, F. Adragna , G. Peltzer
NASA Astrophysics Data System (ADS)
Chiaradia, M. T.; Samarelli, S.; Massimi, V.; Nutricato, R.; Nitti, D. O.; Morea, A.; Tijani, K.
2017-12-01
Geospatial information is today essential for organizations and professionals working in several industries. More and more, huge information is collected from multiple data sources and is freely available to anyone as open data. Rheticus® is an innovative cloud-based data and services hub able to deliver Earth Observation added-value products through automatic complex processes and, if appropriate, a minimum interaction with human operators. This target is achieved by means of programmable components working as different software layers in a modern enterprise system which relies on SOA (Service-Oriented-Architecture) model. Due to its spread architecture, where every functionality is defined and encapsulated in a standalone component, Rheticus is potentially highly scalable and distributable allowing different configurations depending on the user needs. This approach makes the system very flexible with respect to the services implementation, ensuring the ability to rethink and redesign the whole process with little effort. In this work, we outline the overall cloud-based platform and focus on the "Rheticus Displacement" service, aimed at providing accurate information to monitor movements occurring across landslide features or structural instabilities that could affect buildings or infrastructures. Using Sentinel-1 (S1) open data images and Multi-Temporal SAR Interferometry techniques (MTInSAR), the service is complementary to traditional survey methods, providing a long-term solution to slope instability monitoring. Rheticus automatically browses and accesses (on a weekly basis) the products of the rolling archive of ESA S1 Scientific Data Hub. S1 data are then processed by SPINUA (Stable Point Interferometry even in Unurbanized Areas), a robust MTInSAR algorithm, which is responsible of producing displacement maps immediately usable to measure movements of point and distributed scatterers, with sub-centimetric precision. We outline the automatic generation process of displacement maps and we provide examples of the detection and monitoring of geohazard and infrastructure instabilities. ACK: Rheticus® is a registered trademark of Planetek Italia srl. Study carried out in the framework of the FAST4MAP project (ASI Contract n. 2015-020-R.0). Sentinel-1A products provided by ESA.
Multi-static MIMO along track interferometry (ATI)
NASA Astrophysics Data System (ADS)
Knight, Chad; Deming, Ross; Gunther, Jake
2016-05-01
Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.
The Effect of Sub-Aperture in DRIA Framework Applied on Multi-Aspect PolSAR Data
NASA Astrophysics Data System (ADS)
Xue, Feiteng; Yin, Qiang; Lin, Yun; Hong, Wen
2016-08-01
Multi-aspect SAR is a new remote sensing technology, achieves consecutive data in large look angle as platform moves. Multi- aspect observation brings higher resolution and SNR to SAR picture. Multi-aspect PolSAR data can increase the accuracy of target identify and classification because it contains the 3-D polarimetric scattering properties.DRIA(detecting-removing-incoherent-adding)framework is a multi-aspect PolSAR data processing method. In this method, the anisotropic and isotropic scattering is separated by maximum- likelihood ratio test. The anisotropic scattering is removed to gain a removal series. The isotropic scattering is incoherent added to gain a high resolution picture. The removal series describes the anisotropic scattering property and is used in features extraction and classification.This article focuses on the effect brought by difference of sub-aperture numbers in anisotropic scattering detection and removal. The more sub-apertures are, the less look angle is. Artificial target has anisotropic scattering because of Bragg resonances. The increase of sub-aperture number brings more accurate observation in azimuth though the quality of each single image may loss. The accuracy of classification in agricultural fields is affected by the anisotropic scattering brought by Bragg resonances. The size of the sub-aperture has a significant effect in the removal result of Bragg resonances.
An advanced algorithm for deformation estimation in non-urban areas
NASA Astrophysics Data System (ADS)
Goel, Kanika; Adam, Nico
2012-09-01
This paper presents an advanced differential SAR interferometry stacking algorithm for high resolution deformation monitoring in non-urban areas with a focus on distributed scatterers (DSs). Techniques such as the Small Baseline Subset Algorithm (SBAS) have been proposed for processing DSs. SBAS makes use of small baseline differential interferogram subsets. Singular value decomposition (SVD), i.e. L2 norm minimization is applied to link independent subsets separated by large baselines. However, the interferograms used in SBAS are multilooked using a rectangular window to reduce phase noise caused for instance by temporal decorrelation, resulting in a loss of resolution and the superposition of topography and deformation signals from different objects. Moreover, these have to be individually phase unwrapped and this can be especially difficult in natural terrains. An improved deformation estimation technique is presented here which exploits high resolution SAR data and is suitable for rural areas. The implemented method makes use of small baseline differential interferograms and incorporates an object adaptive spatial phase filtering and residual topography removal for an accurate phase and coherence estimation, while preserving the high resolution provided by modern satellites. This is followed by retrieval of deformation via the SBAS approach, wherein, the phase inversion is performed using an L1 norm minimization which is more robust to the typical phase unwrapping errors encountered in non-urban areas. Meter resolution TerraSAR-X data of an underground gas storage reservoir in Germany is used for demonstrating the effectiveness of this newly developed technique in rural areas.
NASA Astrophysics Data System (ADS)
Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Silva, Guilherme G.
2016-10-01
PSI (Persistent Scatterer Interferometry) analysis of large area is always a challenging task regarding the removal of the atmospheric phase component. This work presents an investigation of ground deformation measurements based on a combination of DInSAR Time-Series (DTS) and PSI techniques, applied in a large area of open pit iron mines located in Carajás (Brazilian Amazon Region), aiming at detect high rates of linear and nonlinear ground deformation. These mines have presented a historical of instability and surface monitoring measurements over sectors of the mines (pit walls) have been carried out based on ground based radar and total station (prisms). By using a priori information regarding the topographic phase error and phase displacement model derived from DTS, temporal phase unwrapping in the PSI processing and the removal of the atmospheric phases can be performed more efficiently. A set of 33 TerraSAR-X-1 images, acquired during the period from March 2012 to April 2013, was used to perform this investigation. The DTS analysis was carried out on a stack of multi-look unwrapped interferogram using an extension of SVD to obtain the Least-Square solution. The height errors and deformation rates provided by the DTS approach were subtracted from the stack of interferogram to perform the PSI analysis. This procedure improved the capability of the PSI analysis to detect high rates of deformation as well as increased the numbers of point density of the final results. The proposed methodology showed good results for monitoring surface displacement in a large mining area, which is located in a rain forest environment, providing very useful information about the ground movement for planning and risks control.
Fabrication and testing of scatter plates for interferometry
NASA Technical Reports Server (NTRS)
Pour, J. J., Sr.; Pitts, J. R.
1972-01-01
Scatter plate interferometry has become a reliable method of measuring surface configurations of telescope mirrors and other optical components. The scatter plate used in an instrument should be of optimum quality if the surface it is being used to measure is to be of high accuracy. Tests were performed and results show that, although many scatter plates would function, few were of the optimum quality necessary. These few were of the 180 grit group, using 35- and 30-s exposures, which are figures derived from calculations.
Deorientation of PolSAR coherency matrix for volume scattering retrieval
NASA Astrophysics Data System (ADS)
Kumar, Shashi; Garg, R. D.; Kushwaha, S. P. S.
2016-05-01
Polarimetric SAR data has proven its potential to extract scattering information for different features appearing in single resolution cell. Several decomposition modelling approaches have been developed to retrieve scattering information from PolSAR data. During scattering power decomposition based on physical scattering models it becomes very difficult to distinguish volume scattering as a result from randomly oriented vegetation from scattering nature of oblique structures which are responsible for double-bounce and volume scattering , because both are decomposed in same scattering mechanism. The polarization orientation angle (POA) of an electromagnetic wave is one of the most important character which gets changed due to scattering from geometrical structure of topographic slopes, oriented urban area and randomly oriented features like vegetation cover. The shift in POA affects the polarimetric radar signatures. So, for accurate estimation of scattering nature of feature compensation in polarization orientation shift becomes an essential procedure. The prime objective of this work was to investigate the effect of shift in POA in scattering information retrieval and to explore the effect of deorientation on regression between field-estimated aboveground biomass (AGB) and volume scattering. For this study Dudhwa National Park, U.P., India was selected as study area and fully polarimetric ALOS PALSAR data was used to retrieve scattering information from the forest area of Dudhwa National Park. Field data for DBH and tree height was collect for AGB estimation using stratified random sampling. AGB was estimated for 170 plots for different locations of the forest area. Yamaguchi four component decomposition modelling approach was utilized to retrieve surface, double-bounce, helix and volume scattering information. Shift in polarization orientation angle was estimated and deorientation of coherency matrix for compensation of POA shift was performed. Effect of deorientation on RGB color composite for the forest area can be easily seen. Overestimation of volume scattering and under estimation of double bounce scattering was recorded for PolSAR decomposition without deorientation and increase in double bounce scattering and decrease in volume scattering was noticed after deorientation. This study was mainly focused on volume scattering retrieval and its relation with field estimated AGB. Change in volume scattering after POA compensation of PolSAR data was recorded and a comparison was performed on volume scattering values for all the 170 forest plots for which field data were collected. Decrease in volume scattering after deorientation was noted for all the plots. Regression between PolSAR decomposition based volume scattering and AGB was performed. Before deorientation, coefficient determination (R2) between volume scattering and AGB was 0.225. After deorientation an improvement in coefficient of determination was found and the obtained value was 0.613. This study recommends deorientation of PolSAR data for decomposition modelling to retrieve reliable volume scattering information from forest area.
Wide-area mapping of snow water equivalent by Sentinel-1&2 data
NASA Astrophysics Data System (ADS)
Conde, Vasco; Nico, Giovanni; Catalao, Joao; Kontu, Anna; Gritsevich, Maria
2017-04-01
The mapping of snow physical properties over large mountain areas of remote areas is an important topic in both climatological studies and hydrological models where the effects of snow melting are modeled and used to forecast extreme flood events. Usually, these models are run using in-situ measurements of snow which are expensive and statistically not representative of the spatial distribution of snow properties due to slope orientation of terrain, local terrain morphology and height as well as vegetation cover. In this work we investigate the use of data acquired by Sentinel-1 and 2 missions using a C-band SAR and multispectral sensor, respectively. The Sentinel-1 SAR data are processed to estimate the Snow Water Equivalent (SWE) using both the radar amplitude and the output of the SAR interferometry processing. Both approaches need in-situ data to process SAR data and calibrate SWE estimates. The use of SAR amplitude to estimate the SWE is well established and the basic idea is that the radar signal backscattered by snow is related to the SWE so, after modeling the relationship between these two quantities at the site of in-situ measurements this relationship can be used to map the SWE at all site where the SAR amplitude information is available. The physical principle used by SAR interferometry is that of phase delay due to propagation in a non-dispersive medium. This implies that the snow is supposed to be dry in order to allow the propagation of the SAR signal. Sentinel-2 images have been used to get land-use maps and identify areas covered by vegetation. Finland has been chosen as a study region with in-situ measurements acquired thanks to the availability of rich database of in-situ measurements of SWE. Sentinel data used in this work have been acquired starting from November 2015. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.
NASA Astrophysics Data System (ADS)
Fatland, Dennis Robert
1998-12-01
This thesis presents studies of two temperate valley glaciers---Bering Glacier in the Chugach-St.Elias Mountains, South Central Alaska, and Black Rapids Glacier in the Alaska Range, Interior Alaska---using differential spaceborne radar interferometry. The first study was centered on the 1993--95 surge of Bering Glacier and the resultant ice dynamics on its accumulation area, the Bagley Icefield. The second study site was chosen for purposes of comparison of the interferometry results with conventional field measurements, particularly camera survey data and airborne laser altimetry. A comprehensive suite of software was written to interferometrically process synthetic aperture radar (SAR) data in order to derive estimates of surface elevation and surface velocity on these subject glaciers. In addition to these results, the data revealed unexpected but fairly common concentric rings called 'phase bull's-eyes', image features typically 0.5 to 4 km in diameter located over the central part of various glaciers. These bull's-eyes led to a hypothetical model in which they were interpreted to indicate transitory instances of high subglacial water pressure that locally lift the glacier from its bed by several centimeters. This model is associated with previous findings about the nature of glacier bed hydrology and glacier surging. In addition to the dynamical analysis presented herein, this work is submitted as a contribution to the ongoing development of spaceborne radar interferometry as a glaciological tool.
NASA Technical Reports Server (NTRS)
1990-01-01
Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.
NASA Astrophysics Data System (ADS)
Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.
2017-08-01
The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest AGB retrieval showed R2 value of 0.5, RMSE of 62.73 (t ha-1) and a percent accuracy of 51%. TSI based PolInSAR inversion modeling showed the most accurate result for forest height estimation. The correlation between the field measured forest height and the estimated tree height using TSI technique is 62% with an average accuracy of 91.56% and RMSE of 2.28 m. The study suggested that PolInSAR coherence based modeling approach has significant potential for retrieval of forest biophysical parameters.
NASA Astrophysics Data System (ADS)
Pichierri, Manuele; Hajnsek, Irena
2015-04-01
In this work, the potential of multi-baseline Pol-InSAR for crop parameter estimation (e.g. crop height and extinction coefficients) is explored. For this reason, a novel Oriented Volume over Ground (OVoG) inversion scheme is developed, which makes use of multi-baseline observables to estimate the whole stack of model parameters. The proposed algorithm has been initially validated on a set of randomly-generated OVoG scenarios, to assess its stability over crop structure changes and its robustness against volume decorrelation and other decorrelation sources. Then, it has been applied to a collection of multi-baseline repeat-pass SAR data, acquired over a rural area in Germany by DLR's F-SAR.
NASA Astrophysics Data System (ADS)
Gebremichael, E.; Sultan, M.; Becker, R.; Emil, M.; Ahmed, M.; Chouinard, K.
2015-12-01
We applied Persistent scatterer interferometry (PSInSAR) to assess land deformation (subsidence and uplift) across the entire Nile delta and its surroundings and to identify possible causes of the observed deformation. For the purpose of the present study, 100 Envisat Advanced Synthetic Aperture Radar (ASAR; level 0) scenes that were acquired along four tracks and covering a time span of seven years (2004 to 2010) were used. The scenes extend from the Mediterranean coast in the north to Cairo city in the south. These scenes were focused using Repeat Orbit Interferometry PACkage (ROI_PAC) software and the subsequent PSI processing was done using the Stanford Method for Persistent Scatterers (StaMPS) method. A low coherence threshold (0.2) was used to decrease the impact of vegetation-related poor coherence and decorrelation of the scenes over the investigated time span. Subsidence was observed over: (1) the Demietta Nile River branch (3 to 14 mm/yr) where it intersects the Mediterranean coastline, (2) thick (~ 40 m) Holocene sediments in lake Manzala (up to 9 mm/yr), (3) reclaimed desert areas (west of Nile Delta; up to 12 mm/yr) of high groundwater extraction, (4) along parts of a previously proposed flexure line (up to 10 mm/yr), and (5) along the eastern sections of the Mediterranean coastline (up to 15.7 mm/yr). The city of Alexandria (underlain by carbonate platform) and the terminus of the Rosetta branch of the Nile River seem to experience almost no ground movement (mean subsidence of 0.28 mm/yr and 0.74 mm/yr respectively) while the cities of Ras Elbar and Port Said (underlain by thick Holocene sediment) exhibit the highest subsidence values (up to 14 mm/yr and 8.5 mm/yr respectively). The city of Cairo has also experienced subsidence in limited areas of up to 7.8 mm/yr. High spatial correlation was also observed between the subsiding areas and the Abu Madi incised valley; the largest gas field in the Nile Delta. Most of the area undergoing subsidence in the Nile Delta is related to sediment compaction and/or groundwater extraction, with other factors such as gas extraction and tectonic drivers correlating with smaller areas.
SBAS-InSAR analysis of surface deformation at Mauna Loa and Kilauea volcanoes in Hawaii
Casu, F.; Lanari, Riccardo; Sansosti, E.; Solaro, G.; Tizzani, Pietro; Poland, M.; Miklius, Asta
2009-01-01
We investigate the deformation of Mauna Loa and K??lauea volcanoes, Hawai'i, by exploiting the advanced differential Synthetic Aperture Radar Interferometry (InSAR) technique referred to as the Small BAseline Subset (SBAS) algorithm. In particular, we present time series of line-of-sight (LOS) displacements derived from SAR data acquired by the ASAR instrument, on board the ENVISAT satellite, from the ascending (track 93) and descending (track 429) orbits between 2003 and 2008. For each coherent pixel of the radar images we compute time-dependent surface displacements as well as the average LOS deformation rate. Our results quantify, in space and time, the complex deformation of Mauna Loa and K??lauea volcanoes. The derived InSAR measurements are compared to continuous GPS data to asses the quality of the SBAS-InSAR products. ??2009 IEEE.
Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth.
Elias, Panagiotis; Kontoes, Charalabos; Papoutsis, Ioannis; Kotsis, Ioannis; Marinou, Aggeliki; Paradissis, Dimitris; Sakellariou, Dimitris
2009-01-01
The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year(-1), overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs) and Permanent Scatterers (PSs) selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ∼2.5 mm year(-1) occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique.
Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth
Elias, Panagiotis; Kontoes, Charalabos; Papoutsis, Ioannis; Kotsis, Ioannis; Marinou, Aggeliki; Paradissis, Dimitris; Sakellariou, Dimitris
2009-01-01
The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year-1, overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs) and Permanent Scatterers (PSs) selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ∼2.5 mm year-1 occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique. PMID:22389587
NASA Technical Reports Server (NTRS)
Barton, Jonathan S.; Hall, Dorothy K.; Sigurosson, Oddur; Williams, Richard S., Jr.; Smith, Laurence C.; Garvin, James B.
1999-01-01
Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.
Barton, Jonathan S.; Hall, Dorothy K.; Sigurðsson, Oddur; Williams, Richard S.; Smith, Laurence C.; Garvin, James B.; Taylor, Susan; Hardy, Janet
1999-01-01
Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.
Development of the ECOSAR P-Band Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, R. F.; Fatoyinbo, T.; Ranson, K. J.; Sun, G.; Deshpande, M.; Hale, R. D.; Bhat, A.; Perrine, M.; DuToit, C. F.; Bonds, Q.;
2012-01-01
This paper describes objectives and recent progress on the development of the EcoSAR, a new P-band airborne radar instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. These measurements support science requirements for the study of the carbon cycle and its relationship to climate change. The instrument is scheduled to be completed and flight tested in 2013. Index Terms SAR, Digital Beamforming, Interferometry.
Phase unwrapping in three dimensions with application to InSAR time series.
Hooper, Andrew; Zebker, Howard A
2007-09-01
The problem of phase unwrapping in two dimensions has been studied extensively in the past two decades, but the three-dimensional (3D) problem has so far received relatively little attention. We develop here a theoretical framework for 3D phase unwrapping and also describe two algorithms for implementation, both of which can be applied to synthetic aperture radar interferometry (InSAR) time series. We test the algorithms on simulated data and find both give more accurate results than a two-dimensional algorithm. When applied to actual InSAR time series, we find good agreement both between the algorithms and with ground truth.
NASA Astrophysics Data System (ADS)
Monsieurs, E.; Dille, A.; Nobile, A.; d'Oreye, N.; Kervyn, F.; Dewitte, O.
2017-12-01
Landslides can lead to high impacts in less developed countries, particularly in some urban tropical environments where a combination of intense rainfall, active tectonics, steep topography and high population density can be found. However, the processes controlling landslides initiation and their evolution through time remains poorly understood. Here we show the relevance of the use of multi-temporal differential SAR interferometry (DInSAR) to characterize ground deformations associated to landslides in the rapidly expanding city of Bukavu (DR Congo). A series of 70 COSMO-SkyMed SAR images acquired between March 2015 and April 2016 with a mean revisiting time of 8 days were used to produce displacement rate maps and ground deformation time series using the Small Baseline Subset approach. Results show that various landslide processes of different ages, mechanisms and state of activity can be identified across Bukavu city. InSAR ground deformation maps reveal for instance the complexity of a large (1.5 km²) active slide affecting a densely inhabited slum neighbourhood and characterized by the presence of sectors moving at different rates (ranging from 10 mm/yr up to 75 mm/yr in LOS direction). The evaluation of the ground deformations captured by DInSAR through a two-step validation procedure combining Differential GPS measurements and field observations attested the reliability of the measurements as well as the capability of the technique to grasp the deformation pattern affecting this complex tropical-urban environment. However, longer time series will be needed to infer landside response to climate, seismic and anthropogenic activities.
Enhancing the Accessibility and Utility of UAVSAR L-band SAR Data
NASA Astrophysics Data System (ADS)
Atwood, D.; Arko, S. A.; Gens, R.; Sanches, R. R.
2011-12-01
The UAVSAR instrument, developed at NASA Jet Propulsion Lab, is a reconfigurable L-band, quad-polarimetric Synthetic Aperture Radar (SAR) developed specifically for repeat-track differential interferometry (InSAR). It offers resolution of approximately 5m and swaths greater than 16 km. Although designed to be flown aboard a UAV (Uninhabited Aerial Vehicle), it is currently being flown aboard a Gulfstream III in an ambitious set of campaigns around the world. The current archive from 2009 contains data from more than 100 missions from North America, Central America, the Caribbean, and Greenland. Compared with most SAR data from satellites, UAVSAR offers higher resolution, full-polarimetry, and an impressive noise floor. For scientists, these datasets present wonderful opportunities for understanding Earth processes and developing new algorithms for information extraction. Yet despite the diverse range of coverage, UAVSAR is still relatively under-utilized. In its capacity as the NASA SAR DAAC, the Alaska Satellite Facility (ASF) is interested in expanding recognition of this data and serving data products that can be readily downloaded into a Geographic Information System (GIS) environment. Two hurdles exist: one is the large size of the data products and the second is the format of the data. The data volumes are in excess of several GB; presenting slow downloads and overwhelming many software programs. Secondly, while the data is appropriately formatted for expert users, it may prove challenging for scientists who have not previously worked with SAR. This paper will address ways that ASF is working to reduce data volume while maintaining the integrity of the data. At the same time, the creation of value-added products that permit immediate visualization in a GIS environment will be described. Conversion of the UAVSAR polarimetric data to radiometrically terrain-corrected Pauli images in a GeoTIFF format will permit researchers to understand the scattering mechanisms that characterize various land cover classes in their study areas. Specific examples of UAVSAR polarimetric classifications will be used to demonstrate the benefit of the UAVSAR products for Earth science projects.
NASA Astrophysics Data System (ADS)
Yhokha, A.; Chang, C.; Yen, J.; Goswami, P. K.; Ching, K.
2013-12-01
Persistent Scatterer Interferometry (PSI) is a useful tool in gathering the first basic information about the surface deformation, despite of different natural terrains, forested or mountainous region. This technique has been applied successfully by various worker in different field in extracting surface information in variety of terranes. The advantage of this techniques is that it has the ability of taking into account of only those return radar signal which are the brightest or the strongest in the surrounding background signal. Moreover, PS algorithms operate on a time series of interferograms all formed with respect to a single master SAR image that the noise terms of displacement for each PS pixel are much reduced. Keeping all these points in mind, we applied this technique in the Himalayan mountain, covering the south eastern part of the Uttarakhand state of India. So far lots of different work has been carried out in the Himalayan region, but less work has been done in regards to its surface deformation. The Himalayan mountain are well know for its segmented nature, different region undergoing different tectonic activity. In the similar manner, our PSI result in our study area also reveal two different set of deformation, with its eastern part revealing subsidence and the western part undergoing uplift, these two set of deformation is separated by a right later strike slip fault called, the Garampani-Kathgodam fault (G-KF). Apart from this obvious deformation, the western part also reveal differential deformation. Based on our result we have also tried to create a deformation model, to understand and to get better knowledge of the tectonic deformation setting.
NASA Astrophysics Data System (ADS)
Galve, J. P.; Castañeda, C.; Gutiérrez, F.
2015-11-01
Subsidence was measured for the first time on railway tracks in the central sector of Ebro Valley (NE Spain) using Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques. This area is affected by evaporite karst and the analysed railway corridors traverse active sinkholes that produce deformations in these infrastructures. One of the railway tracks affected by slight settlements is the Madrid-Barcelona high-speed line, a form of transport infrastructure highly vulnerable to ground deformation processes. Our analysis based on DInSAR measurements and geomorphological surveys indicates that this line shows dissolution-induced subsidence and compaction of anthropogenic deposits (infills and embankments). Significant sinkhole-related subsidence was also measured by DInSAR techniques on the Castejón-Zaragoza conventional railway line. This study demonstrates that DInSAR velocity maps, coupled with detailed geomorphological surveys, may help in the identification of the railway track sections that are affected by active subsidence.
Investigation of Potential Landsubsidence using GNSS CORS UDIP and DinSAR, Sayung, Demak, Indonesia
NASA Astrophysics Data System (ADS)
Yuwono, B. D.; Prasetyo, Y.; Islama, L. J. F.
2018-02-01
The coastal flooding induced by land subsidence is one of major social problems in the coastal area of Central Java, especially North Demak. Recent advance technology Global Navigation Satellite System Continuously Operating System (GNSS) and Differential Synthetic Aperture Radar Interferometry ( DInSAR) is already increased our capability to identify of land subsidence processes. DInSAR required not only availability of good quality input data but also rigorous approaches. In this research we used DInSAR analysis with focusing on landsubsidence phenomena. Tests were done with geodetic GPS survey with GNSS CORS UDIP as base station. Performance assessment of development method was conducted on study area affected by land subsidence. The results of this study indicate land subsidence spreads in study area with varying degrees of subsidence.
NASA Astrophysics Data System (ADS)
Rabalais, J. W.; Bu, H.; Roux, C.
1992-02-01
The methods of obtaining surface structural information from low energy ion scattering spectrometry are described. These methods include measurements of backscattering, forwardscattering, and recoiling intensities vs beam incident α, beam exit β, crystal azimuthal δ, and scattering Θ angles. References are provided which give examples of each different kind of measurement. The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS), which collects both scattered.and recoiled neutrals and ions simultaneously, is described. TOF-SARS data for the three surface phases, clean Ni{110}-(1 × 1), Ni{110}-(1 × 2)-H missing row, and Ni{110}-(2 × 1)-O missing row, are used to illustrate some of the structural measurements.
Precision measurement of the n-3He incoherent scattering length using neutron interferometry.
Huber, M G; Arif, M; Black, T C; Chen, W C; Gentile, T R; Hussey, D S; Pushin, D A; Wietfeldt, F E; Yang, L
2009-05-22
We report the first measurement of the low-energy neutron-(3)He incoherent scattering length using neutron interferometry: b_{i};{'} = (-2.512 +/- 0.012 stat +/- 0.014 syst) fm. This is in good agreement with a recent calculation using the AV18 + 3N potential. The neutron-(3)He scattering lengths are important for testing and developing nuclear potential models that include three-nucleon forces, effective field theories for few-body nuclear systems, and neutron scattering measurements of quantum excitations in liquid helium. This work demonstrates the first use of a polarized nuclear target in a neutron interferometer.
Three-Component Decomposition of Polarimetric SAR Data Integrating Eigen-Decomposition Results
NASA Astrophysics Data System (ADS)
Lu, Da; He, Zhihua; Zhang, Huan
2018-01-01
This paper presents a novel three-component scattering power decomposition of polarimetric SAR data. There are two problems in three-component decomposition method: volume scattering component overestimation in urban areas and artificially set parameter to be a fixed value. Though volume scattering component overestimation can be partly solved by deorientation process, volume scattering still dominants some oriented urban areas. The speckle-like decomposition results introduced by artificially setting value are not conducive to further image interpretation. This paper integrates the results of eigen-decomposition to solve the aforementioned problems. Two principal eigenvectors are used to substitute the surface scattering model and the double bounce scattering model. The decomposed scattering powers are obtained using a constrained linear least-squares method. The proposed method has been verified using an ESAR PolSAR image, and the results show that the proposed method has better performance in urban area.
NASA Astrophysics Data System (ADS)
Mangla, Rohit; Kumar, Shashi; Nandy, Subrata
2016-05-01
SAR and LiDAR remote sensing have already shown the potential of active sensors for forest parameter retrieval. SAR sensor in its fully polarimetric mode has an advantage to retrieve scattering property of different component of forest structure and LiDAR has the capability to measure structural information with very high accuracy. This study was focused on retrieval of forest aboveground biomass (AGB) using Terrestrial Laser Scanner (TLS) based point clouds and scattering property of forest vegetation obtained from decomposition modelling of RISAT-1 fully polarimetric SAR data. TLS data was acquired for 14 plots of Timli forest range, Uttarakhand, India. The forest area is dominated by Sal trees and random sampling with plot size of 0.1 ha (31.62m*31.62m) was adopted for TLS and field data collection. RISAT-1 data was processed to retrieve SAR data based variables and TLS point clouds based 3D imaging was done to retrieve LiDAR based variables. Surface scattering, double-bounce scattering, volume scattering, helix and wire scattering were the SAR based variables retrieved from polarimetric decomposition. Tree heights and stem diameters were used as LiDAR based variables retrieved from single tree vertical height and least square circle fit methods respectively. All the variables obtained for forest plots were used as an input in a machine learning based Random Forest Regression Model, which was developed in this study for forest AGB estimation. Modelled output for forest AGB showed reliable accuracy (RMSE = 27.68 t/ha) and a good coefficient of determination (0.63) was obtained through the linear regression between modelled AGB and field-estimated AGB. The sensitivity analysis showed that the model was more sensitive for the major contributed variables (stem diameter and volume scattering) and these variables were measured from two different remote sensing techniques. This study strongly recommends the integration of SAR and LiDAR data for forest AGB estimation.
NASA Astrophysics Data System (ADS)
Montazeri, Sina; Gisinger, Christoph; Eineder, Michael; Zhu, Xiao xiang
2018-05-01
Geodetic stereo Synthetic Aperture Radar (SAR) is capable of absolute three-dimensional localization of natural Persistent Scatterer (PS)s which allows for Ground Control Point (GCP) generation using only SAR data. The prerequisite for the method to achieve high precision results is the correct detection of common scatterers in SAR images acquired from different viewing geometries. In this contribution, we describe three strategies for automatic detection of identical targets in SAR images of urban areas taken from different orbit tracks. Moreover, a complete work-flow for automatic generation of large number of GCPs using SAR data is presented and its applicability is shown by exploiting TerraSAR-X (TS-X) high resolution spotlight images over the city of Oulu, Finland and a test site in Berlin, Germany.
Double Bounce Component in Cross-Polarimetric SAR from a New Scattering Target Decomposition
NASA Astrophysics Data System (ADS)
Hong, Sang-Hoon; Wdowinski, Shimon
2013-08-01
Common vegetation scattering theories assume that the Synthetic Aperture Radar (SAR) cross-polarization (cross-pol) signal represents solely volume scattering. We found this assumption incorrect based on SAR phase measurements acquired over the south Florida Everglades wetlands indicating that the cross-pol radar signal often samples the water surface beneath the vegetation. Based on these new observations, we propose that the cross-pol measurement consists of both volume scattering and double bounce components. The simplest multi-bounce scattering mechanism that generates cross-pol signal occurs by rotated dihedrals. Thus, we use the rotated dihedral mechanism with probability density function to revise some of the vegetation scattering theories and develop a three- component decomposition algorithm with single bounce, double bounce from both co-pol and cross-pol, and volume scattering components. We applied the new decomposition analysis to both urban and rural environments using Radarsat-2 quad-pol datasets. The decomposition of the San Francisco's urban area shows higher double bounce scattering and reduced volume scattering compared to other common three-component decomposition. The decomposition of the rural Everglades area shows that the relations between volume and cross-pol double bounce depend on the vegetation density. The new decomposition can be useful to better understand vegetation scattering behavior over the various surfaces and the estimation of above ground biomass using SAR observations.
Scanning fiber angle-resolved low coherence interferometry
Zhu, Yizheng; Terry, Neil G.; Wax, Adam
2010-01-01
We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271
Sciammarella, C A; Gilbert, J A
1976-09-01
Utilizing the light scattering property of transparent media, holographic interferometry is applied to the measurement of displacement at the interior planes of three dimensional bodies. The use of a double beam illumination and the introduction of a fictitious displacement make it feasible to obtain information corresponding to components of displacement projected on the scattering plane. When the proposed techniques are invoked, it is possible to eliminate the use of a matching index of refraction fluid in many problems involving symmetrically loaded prismatic bodies. Scattered light holographic interferometry is limited in its use to small changes in the index of refraction and to low values of relative retardation. In spite of these restrictions, a large number of technical problems in both statics and dynamics can be solved.
Utilization of Envisat/ers SAR Data Over the Jharia Coalfield, India for Subsidence Monitoring
NASA Astrophysics Data System (ADS)
Srivastava, Vinay Kumar
2012-07-01
Extended abstract Jharia coalfield the prime coking coal-producing belt in India, started commercial production in 1894. Mining in Jharia coalfield (JCF) is in form of both opencast and underground mining. The area is affected by various environmental hazards such as, coal fire, subsidence, land degradation and toxic gas emissions. Currently, coal fire and subsidence are the major problems in the coalfield and causes continuous changes in topography. Monitoring of such dynamic topographic changes in a hazard-prone mining belt is a critical input for land environmental management. Such temporal topographic changes over span of the time and even short term mining activity within a year could be done from Digital Elevation Model (DEM) generated using various space-borne techniques.. Among all techniques available for generating DEM, SAR Interferometry technique has been successful and effective which offers high resolution spatial detail to a level of few cm. DEM obtained from processing of SAR Interferometry (InSAR) technique using ERS SAR data of April 12 and 13, 1995 provides high spatial resolution images which is useful for monitoring and measuring dynamic changes in land topography. Several workers have successfully InSAR this technique for mapping and monitoring of changes in land surface due to various causes. Using ERS tandem data sets of 16 and 17 May 1996 passes, DInSAR map over the Jharia coal field has been obtained from the interferogram generated by integrating information from ground control points and precise high coherence orbital parameters. Further, using ENVISAT/ ASAR data of June 5 and 6, 2007 and integrating GPS measurements at 4 ground points where corner reflectors were preinstalled for getting bright spots on images and using orbital parameters, a slant range corrected image over the study area has been obtained. shows the plot of differential phases along a particular profile l over a subsidence region in Jharia coal field and the corresponding correlation coefficients. . Further an attempt has been made to delineate subsidence area in Jharia coal field using SAR Interoferometry technique..
Jung, H.-S.; Lu, Z.; Lee, C.-W.
2011-01-01
Interferometric synthetic aperture radar (InSAR) technique has been successfully used for mapping surface deformations [1-2], but it has been normally limited to a measurement along the radar line-of-sight (LOS) direction. For this reason, it is impossible to determine the north (N-S) component of surface deformation because of using data from near-polar orbiting satellites, and it is not sufficient to resolve the parameters of models for earthquakes and volcanic activities because there is a marked trade-off among model parameters [3]. ?? 2011 KIEES.
Relevant Scatterers Characterization in SAR Images
NASA Astrophysics Data System (ADS)
Chaabouni, Houda; Datcu, Mihai
2006-11-01
Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.
Ionospheric Specifications for SAR Interferometry (ISSI)
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco
2013-01-01
The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.
Application of Persistent Scatterer Radar Interferometry to the New Orleans delta region
NASA Astrophysics Data System (ADS)
Lohman, R.; Fielding, E.; Blom, R.
2007-12-01
Subsidence in New Orleans and along the Gulf Coast is currently monitored using a variety of ground- and satellite-based methods, and extensive geophysical modeling of the area seeks to understand the inputs to subsidence rates from sediment compaction, salt evacuation, oxidation and anthropogenic forcings such as the withdrawal or injection of subsurface fluids. Better understanding of the temporal and spatial variability of these subsidence rates can help us improve civic planning and disaster mitigation efforts with the goal of protecting lives and property over the long term. Existing ground-based surveys indicate that subsidence gradients of up to 1 cm/yr or more over length scales of several 10's of km exist in the region, especially in the vicinity of the city of New Orleans. Modeling results based on sediment inputs and post-glacial sea level change tend to predict lower gradients, presumably because there is a large input from unmodeled crustal faults and anthropogenic activity. The broad spatial coverage of InSAR can both add to the existing network of ground-based geodetic surveys, and can help to identify areas that are deforming anomalously with respect to surrounding areas. Here we present the use of a modified point scatterer method applied to radar data from the Radarsat satellite for New Orleans and the Gulf Coast. Point target analysis of InSAR data has already been successfully applied to the New Orleans area by Dixon et al (2006). Our method is similar to the Stanford Method for PS (StaMPS) developed by Andy Hooper, adapted to rely on combinations of small orbital baselines and the inclusion of coherent regions from the time span of each interferogram during phase unwrapping rather than only using points that are stable within all interferograms.
SAR investigations of glaciers in northwestern North America
NASA Technical Reports Server (NTRS)
Lingle, Craig S.; Harrison, William D.
1995-01-01
The objective of this project was to investigate the utility of satellite synthetic aperture radar (SAR) imagery for measurement of geophysical parameters on Alaskan glaciers relevant to their mass balance and dynamics, including: (1) the positions of firn lines (late-summer snow lines); (2) surface velocities on fast-flowing (surging) glaciers, and also on slower steady-flow glaciers; and (3) the positions and changes in the positions of glacier termini. Preliminary studies of topography and glacier surface velocity with SAR interferometry have also been carried out. This project was motivated by the relationships of multi-year to decadal changes in glacier geometry to changing climate, and the probable significant contribution of Alaskan glaciers to rising sea level.
NASA Technical Reports Server (NTRS)
Lingle, Craig S.; Fatland, Dennis R.; Voronina, Vera A.; Ahlnaes, Kristina; Troshina, Elena N.
1997-01-01
ERS-1 synthetic aperture radar (SAR) imagery was employed for the measurement of the dynamics of the Bagley icefield during a major surge in 1993-1994, the measurement of ice velocities on the Malaspina piedmont glacier during a quiescent phase between surges, and for mapping the snow lines and the position of the terminus of Nabesna glacier on Mount Wrangell (a 4317 m andesitic shield volcano) in the heavily glacierized Saint Elias and Wrangell Mountains of Alaska. An overview and summary of results is given. The methods used include interferometry, cross-correlation of sequential images, and digitization of boundaries using terrain-corrected SAR imagery.
NASA Astrophysics Data System (ADS)
Castaldo, R.; Tizzani, P.; Lollino, P.; Calò, F.; Ardizzone, F.; Lanari, R.; Guzzetti, F.; Manunta, M.
2015-11-01
The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.
Contribution to the glaciology of northern Greenland from satellite radar interferometry
NASA Technical Reports Server (NTRS)
Rignot, E.; Gogineni, S.; Joughin, I.; Krabill, W.
2001-01-01
Interferometric synthetic aperture radar (InSAR) data from the ERS-1 and ERS-2 satellites are used to measure the surface velocity, topography, and grounding line position of the major outletglaciers in the northern sector of the Greenland ice sheet.
NASA Astrophysics Data System (ADS)
Lee, Won-Jin; Jung, Hyung-Sup; Park, Sun-Cheon; Lee, Duk Kee
2016-04-01
Mt. Baekdu (Changbaishan in Chinese) is located on the border between China and North Korea. It has recently attracted the attention of volcanic unrest during 2002-2005. Many researchers have applied geophysical approaches to detect magma system of beneath Mt.Baekdu such as leveling, Global Positioning System (GPS), gases analysis, seismic analysis, etc. Among them, deformation measuring instruments are important tool to evaluate for volcanism. In contrast to GPS or other deformation measuring instruments, Synthetic Aperture Radar Interferometry (InSAR) has provided high resolution of 2-D surface displacement from remote sensed data. However, Mt. Baekdu area has disturbed by decorrelation on interferogram because of wide vegetation coverage. To overcome this limitation, L-band system of long wavelength is more effective to detect surface deformation. In spite of this advantage, L-band can surfer from more severe ionospheric phase distortions than X- or C- band system because ionospheric phase distortions are inverse proportion to the radar frequency. Recently, Multiple Aperture Interferometry (MAI) based ionospheric phase distortions mitigation method have proposed and investigated. We have applied this technique to the Mt.Baekdu area to measure surface deformation precisely using L-band Advanced Land Observing Satellite-1(ALOS-1) Phased Array type L-band Synthetic Aperture Radar(PALSAR) data acquiring from 2006 to 2011.
Observation of Drifting Icebergs and Sea Ice from Space by TerraSAR-X and TanDEM-X
NASA Astrophysics Data System (ADS)
Won, Joong-Sun
2017-04-01
Detection and monitoring drifting icebergs and sea ice is of interest across wide range of Arctic and Antarctic coastal studies such as security of navigation, climatic impact, geological impact, etc. It is not easy to discriminate drifting ices from stationary ones, and to measure their drifting speeds. There is a potential to use space-borne SAR for this purpose, but it is difficult to precisely measure because the drift velocity is usually very slow. In this study, we investigate two approaches for discriminating drifting ices on the sea from surrounding static ones and for measuring their range velocity. The first method is to utilize the quad-pol TerraSAR-X which adopts dual receive antenna (DRA), and the second one is to examine the potential use of TanDEM-X bistatic along-track interferometry (ATI). To utilize DRA mode quad-pol SAR as ATI, it is necessary to remove the phase difference of scattering centers between transmitted H- and V-pol signals. By assume that the individual scattering center of returned signal does not change for a few inter-pulse periods, it is possible to measure the Doppler frequency induced by motion through measuring slow-time (or azimuth time) Doppler phase derivative of co-pol or cross-pol pairs. Results applied to TerraSAR-X quad-pol data over the Cape Columbia in the Arctic Ocean are to be presented and discussed. It was successful to detect and measure drift sea ice that was flowing away from the antenna with a velocity of about 0.37 m/s (or 1.4 km/h) to 0.67 m/s (or 2.4 km/h) while neighboring ones were static. A more sophisticated approach would be a bistatic ATI which exploits a long along-track baseline for observation of slowly moving ground objects. TanDEM-X bistatic ATI pairs are examined, which were acquired at an Antarctic coast. The ATI interferograms show an innovative capability of TanDEM-X/TerraSAR-X constellation. An along-track baseline of a few hundred meters is superior to a few meter baseline of DRA mode ATI system. However, topographic phase is inevitably mixed with Doppler phase associated with target motion because of a non-zero perpendicular baseline (or effective baseline). Thus it is necessary to separate target motion components from topographic components that are unknown for icebergs. Here we examine characteristics of the topographic phase of drift sea ice in the bistatic ATI interferograms, and discuss a detouring approach to quick detection of drifting icebergs by TanDEM-X bistatic ATI. The results demonstrate that it would be efficient to detect drifting icebergs and sea ice from space by utilizing high resolution SAR systems while the precise measurement of the drifting speeds requires further studies.
Hazards of Gulf Coast Subsidence: Crustal Loading, Geodesy, InSAR and UAVSAR Observations
NASA Astrophysics Data System (ADS)
Blom, R. G.; Chapman, B. D.; Dokka, R. K.; Fielding, E. J.; Hensley, S.; Ivins, E. R.; Lohman, R. B.
2009-12-01
Hurricanes Katrina and Rita focused attention on the vulnerability of the U.S. Gulf Coast. Significant improvement in geophysical understanding of subsidence rates, temporal variability, and geographic distribution is not only an interesting scientific challenge, it is necessary for long term protection of lives and property. An integrated geophysical approach using precise and accurate geodetic measurements is the only way to gain physical insight into the myriad of possible processes at work and provide accurate predictions of future subsidence rates. In particular, southeast Louisiana is a Holocene landscape built on a coastal delta created by the Mississippi River during the past ~8,000 years as sea level rise slowed. Prior to human intervention natural subsidence was offset by sediment deposition by the Mississippi River during floods, and in situ organic sediment production in marshes. Currently, several processes have been documented to contribute to subsidence, including wetland loss due to lack of present day sediment flux, land subsidence due to sediment compaction, sediment oxidation, fluid withdrawal, salt evacuation, tectonics, and also crustal loading. One of the least studied subsidence driving phenomena is the effect of crustal loading due to Mississippi River sediments, and the geologically recent ~130 m (427 ft.) rise in sea level. We model subsidence rates expected from these loads using geophysical methods developed for post-glacial rebound. Our model predicted, and geodetically observed, vertical subsidence rates vary between 2 - 8 mm per year over areas of 30,000 to 750 square kilometers, respectively. This viscoelastic flexure is the background crustal deformation field, upon which larger amplitude, but smaller spatial scale, subsidence occurs due to other factors. We are extending subsidence measurements from traditional geodetic techniques (including GPS), to geographically comprehensive measurements derived from synthetic aperture radar interferometry (InSAR) using both satellite and airborne radars. The Gulf Coast is a very challenging environment for InSAR techniques and we are developing new persistent scatterer methods to apply to available C-band satellite radar data. More recent L-Band PALSAR satellite data are suitable for conventional interferometry. We are also making new observations with NASA/JPL’s new airborne interferometer system UAVSAR (http://uavsar.jpl.nasa.gov/). The high spatial resolution UAVSAR data has the potential to monitor levees and other critical infrastructure better than satellites. We review work to date and present newly acquired UAVSAR data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxall, W; Vincent, P; Walter, W
1999-07-23
We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested thatmore » InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.« less
DEM generation in cloudy-rainy mountainous area with multi-baseline SAR interferometry
NASA Astrophysics Data System (ADS)
Wu, Hong'an; Zhang, Yonghong; Jiang, Decai; Kang, Yonghui
2018-03-01
Conventional singe baseline InSAR is easily affected by atmospheric artifacts, making it difficult to generate highprecision DEM. To solve this problem, in this paper, a multi-baseline interferometric phase accumulation method with weights fixed by coherence is proposed to generate higher accuracy DEM. The mountainous area in Kunming, Yunnan Province, China is selected as study area, which is characterized by cloudy weather, rugged terrain and dense vegetation. The multi-baseline InSAR experiments are carried out by use of four ALOS-2 PALSAR-2 images. The generated DEM is evaluated by Chinese Digital Products of Fundamental Geographic Information 1:50000 DEM. The results demonstrate that: 1) the proposed method can reduce atmospheric artifacts significantly; 2) the accuracy of InSAR DEM generated by six interferograms satisfies the standard of 1:50000 DEM Level Three and American DTED-1.
Direct modeling of coda wave interferometry: comparison of numerical and experimental approaches
NASA Astrophysics Data System (ADS)
Azzola, Jérôme; Masson, Frédéric; Schmittbuhl, Jean
2017-04-01
The sensitivity of coda waves to small changes of the propagation medium is the principle of the coda waves interferometry, a technique which has been found to have a large range of applications over the past years. It exploits the evolution of strongly scattered waves in a limited region of space, to estimate slight changes like the wave velocity of the medium but also the location of scatterer positions or the stress field. Because of the sensitivity of the method, it is of a great value for the monitoring of geothermal EGS reservoir in order to detect fine changes. The aim of this work is thus to monitor the impact of different scatterer distributions and of the loading condition evolution using coda wave interferometry in the laboratory and numerically by modelling the scatter wavefield. In the laboratory, we analyze the scattering of an acoustic wave through a perforated loaded plate of DURAL. Indeed, the localized damages introduced behave as a scatter source. Coda wave interferometry is performed computing correlations of waveforms under different loading conditions, for different scatter distributions. Numerically, we used SPECFEM2D (a 2D spectral element code, (Komatitsch and Vilotte (1998)) to perform 2D simulations of acoustic and elastic seismic wave propagation and enables a direct comparison with laboratory and field results. An unstructured mesh is thus used to simulate the propagation of a wavelet in a loaded plate, before and after introduction of localized damages. The linear elastic deformation of the plate is simulated using Code Aster. The coda wave interferometry is performed similarly to experimental measurements. The accuracy of the comparison of the numerically and laboratory obtained results is strongly depending on the capacity to adapt the laboratory and numerical simulation conditions. In laboratory, the capacity to illuminate the medium in a similar way to that used in the numerical simulation deeply conditions among others the comparison. In the simulation, the gesture of the mesh and its dispersion also influences the rightness of the comparison and interpretation. Moreover, the spectral elements distribution of the mesh and its relative refinement could also be considered as an interesting scatter source.
Forward scattering in two-beam laser interferometry
NASA Astrophysics Data System (ADS)
Mana, G.; Massa, E.; Sasso, C. P.
2018-04-01
A fractional error as large as 25 pm mm-1 at the zero optical-path difference has been observed in an optical interferometer measuring the displacement of an x-ray interferometer used to determine the lattice parameter of silicon. Detailed investigations have brought to light that the error was caused by light forward-scattered from the beam feeding the interferometer. This paper reports on the impact of forward-scattered light on the accuracy of two-beam optical interferometry applied to length metrology, and supplies a model capable of explaining the observed error.
Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation
Nitti, Davide O.; Bovenga, Fabio; Chiaradia, Maria T.; Greco, Mario; Pinelli, Gianpaolo
2015-01-01
This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimate UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system. PMID:26225977
Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.
Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo
2015-07-28
This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.
NASA Astrophysics Data System (ADS)
LI, G.; Lin, H.
2014-12-01
From 2000 till present, most endorheic lakes in Tibetan plateau experienced quick increasing. Several largest lakes, gathered several meters depth water during one decade. Such massive mass increasing will lead to elastic and visco-elastic deformation of the ground. Qinghai-Tibetan Plateau is one the most active tectonic places in the world; monitoring its ground deformation is essential, when loading effect is a nuisance item. Due to the sparse distribution of GPS sites and most are roving sites, it is hard to distinguish tectonic component from mass loading effect. In this research we took Selin Co Lake located at Nujiang-Bangoin suture zone and evaluated long time ground deformation at hundred kilometers scale by multi-temporal SAR interferometry and simulate the ground deformation by loading history evaluated by multi mission satellite altimetry and optical images observation. At Nujiang-Bangoin suture zone, where GPS presented the maximum ground subsidence in Qinghai-Tibetan Plateau of 3.6mm/a which was found at the shore of Selin Co Lake from 1999 to 2011, when it experienced water level increasing of 0.7m/a. A model of elastic plate lying over Newtonian viscous half-space matches well with the results of multi-temporal SAR interferometry and GPS observations. We concluded that near Selin Co Lake area, ground deformation is composed by both tectonic and hydrological loading part. As SAR image coverage is much smaller than tectonic scale, we contribute the deformation detected by InSAR to loading effect. After evaluating and removing the hydrological loading effect, we founds that Nujiang-Bangoin suture zone did not experience quick subsidence, but only limited to 0.5mm/a. Selin Co Lake's quick volume increasing caused 3mm/a subsidence rate to the nearest GPS site. The Second nearest site showed the 1.4mm/a subsidence totally, which were composed by 1.05mm/a hydrological loading effect and the rest was tectonic. We also found that Young's Modulus is the most essential parameter for loading effect simulation, and our simulation gave the similar Young's Modulus as the previous seismic tomographic INDEPTH III program did. Therefore with accurate seismic tomographic results and loading history detected by remote sensing could accurately simulate ground deformation caused by hydrological loading.
Jo, Min-Jeong; Jung, Hyung-Sup; Won, Joong-Sun; Poland, Michael; Miklius, Asta; Lu, Zhong
2015-01-01
Multiple-aperture SAR interferometry (MAI) has demonstrated outstanding measurement accuracy of along-track displacement when compared to pixel-offset-tracking methods; however, measuring slow-moving (cm/year) surface displacement remains a challenge. Stacking of multi-temporal observations is a potential approach to reducing noise and increasing measurement accuracy, but it is difficult to achieve a significant improvement by applying traditional stacking methods to multi-temporal MAI interferograms. This paper proposes an efficient MAI stacking method, where multi-temporal forward- and backward-looking residual interferograms are individually stacked before the MAI interferogram is generated. We tested the performance of this method using ENVISAT data from Kīlauea Volcano, Hawai‘i, where displacement on the order of several centimeters per year is common. By comparing results from the proposed stacking methods with displacements from GPS data, we documented measurement accuracies of about 1.03 and 1.07 cm/year for the descending and ascending tracks, respectively—an improvement of about a factor of two when compared with that from the conventional stacking approach. Three-dimensional surface-displacement maps can be constructed by combining stacked InSAR and MAI observations, which will contribute to a better understanding of a variety of geological phenomena.
NASA Astrophysics Data System (ADS)
Redavid, Antonio; Bovenga, Fabio
2010-03-01
In the present work we describe a new and alternative repeat-pass interferometry algorithm designed and developed with the aim to: i) increase the robustness wrt to noise by increasing the number of differential interferograms and consequently the information redundancy; ii) guarantee high performances in the detection of non linear deformation without the need of specifying in input a particular cinematic model.The starting point is a previous paper [4] dedicated to the optimization of the InSAR coregistration by finding an ad hoc path between the images which minimizes the expected total decorrelation as in the SABS-like approaches [3]. The main difference wrt the PS-like algorithms [1],[2] is the use of couples of images which potentially can show high spatial coherence and, which are neglected by the standard PSI processing.The present work presents a detailed description of the algorithm processing steps as well as the results obtained by processing simulated InSAR data with the aim to evaluate the algorithm performances. Moreover, the algorithm has been also applied on a real test case in Poland, to study the subsidence affecting the Wieliczka Salt Mine. A cross validation wrt SPINUA PSI-like algorithm [5] has been carried out by comparing the resultant displacement fields.
Jung, Hyung-Sup; Lee, Won-Jin; Zhang, Lei
2014-01-01
The measurement of precise along-track displacements has been made with the multiple-aperture interferometry (MAI). The empirical accuracies of the MAI measurements are about 6.3 and 3.57 cm for ERS and ALOS data, respectively. However, the estimated empirical accuracies cannot be generalized to any interferometric pair because they largely depend on the processing parameters and coherence of the used SAR data. A theoretical formula is given to calculate an expected MAI measurement accuracy according to the system and processing parameters and interferometric coherence. In this paper, we have investigated the expected MAI measurement accuracy on the basis of the theoretical formula for the existing X-, C- and L-band satellite SAR systems. The similarity between the expected and empirical MAI measurement accuracies has been tested as well. The expected accuracies of about 2–3 cm and 3–4 cm (γ = 0.8) are calculated for the X- and L-band SAR systems, respectively. For the C-band systems, the expected accuracy of Radarsat-2 ultra-fine is about 3–4 cm and that of Sentinel-1 IW is about 27 cm (γ = 0.8). The results indicate that the expected MAI measurement accuracy of a given interferometric pair can be easily calculated by using the theoretical formula. PMID:25251408
NASA Astrophysics Data System (ADS)
Wadge, G.; Mattioli, G. S.; Herd, R. A.
2006-04-01
We examine the motion of the ground surface on the Soufrière Hills Volcano, Montserrat between 1998 and 2000 using radar interferometry (InSAR). To minimise the effects of variable atmospheric water vapour on the InSAR measurements we use independently-derived measurements of the radar path delay from six continuous GPS receivers. The surfaces providing a measurable interferometric signal are those on pyroclastic flow deposits, mainly emplaced in 1997. Three types of surface motion can be discriminated. Firstly, the surfaces of thick, valley-filling deposits subsided at rates of 150-120 mm/year in the year after emplacement to 50-30 mm/year two years later. This must be due to contraction and settling effects during cooling. The second type is the near-field motion localised within about one kilometre of the dome. Both subsidence and uplift events are seen and though the former could be due to surface gravitational effects, the latter may reflect shallow (< 1 km) pressurisation effects within the conduit/dome. Far-field motions of the surface away from the deeply buried valleys are interpreted as crustal strains. Because the flux of magma to the surface stopped from March 1998 to November 1999 and then resumed from November 1999 through 2000, we use InSAR data from these two periods to test the crustal strain behaviour of three models of magma supply: open, depleting and unbalanced. The InSAR observations of strain gradients of 75-80 mm/year/km uplift during the period of quiescence on the western side of the volcano are consistent with an unbalanced model in which magma supply into a crustal magma chamber continues during quiescence, raising chamber pressure that is then released upon resumption of effusion. GPS motion vectors agree qualitatively with the InSAR displacements but are of smaller magnitude. The discrepancy may be due to inaccurate compensation for atmospheric delays in the InSAR data.
NASA Astrophysics Data System (ADS)
Durham, M. C.; Milewski, A.; El Kadiri, R.
2013-12-01
The combination of natural, anthropogenic, and climate change impacts on the water resources of the Middle East and North Africa (MENA) region has devastated its water resources well beyond its current and projected populations. The increased exploitation of groundwater resources in the past half-century coupled with successive droughts has resulted in the acceleration of subsidence rates in the Souss and Massa basins in Morocco. We have completed a preliminary investigation of these impacts on the Souss and Massa basins (~27,000 km2) in the southwestern part of Morocco. This area is characterized by a semi-arid climate (annual precipitation 70-250 mm/year) with agriculture, tourism, and commercial fishing as the primary economic activities, all of which require availability of adequate freshwater resources. Additionally the primary groundwater aquifer (Plio-Quaternary Plain Aquifer), an unconfined aquifer formed mostly of sand and gravel, is being harvested by >20,000 wells at a rate of 650 MCM/yr., exceeding the rate of recharge by 260 MCM/year. Intense development over the past 50 years has exposed the aquifer to a serious risk of groundwater table drawdown (0.5m-2.5m/yr.), land subsidence, loss of artesian pressure, salinization, salt water intrusions along the coast, and deterioration of water quality across the watershed. Differential Interferometry Synthetique Aperture Radar (DInSAR) was utilized to measure ground subsidence induced by groundwater withdrawal. Land subsidence caused by excessive groundwater extraction was determined using a threefold methodology: (1) extraction of subsidence and land deformation patterns using radar interferometry, (2) correlation of the high subsidence areas within the basins to possible natural and anthropogenic factors (e.g. sea level rise, unconsolidated lithological formations distribution, urbanization, excessive groundwater extraction), and (3) forecasting the future of the Souss and Massa basins over the next century if both subsidence and groundwater extraction continue at present rates. Interferometric processing (persistent scatter and small baseline subset) was conducted using ENVI's SARscape program with 168 archived ENVISAT SLC images and 350 ERS1/2 SLC images acquired through the European Space Agency. Radar interferometry results are spatially and temporally consistent with groundwater extraction rates. This analysis has provided insight into the impacts that land subsidence will have on the infrastructure, the population, and the economy of the Souss and Massa basins. Our results could be used to develop management plans for modulating these adverse effects and could be vital to the Moroccan economy and the livelihood of the citizens that inhabit the basins. More broadly, this approach could be applied to other areas within the MENA region facing similar impacts.
Digital Beamforming Interferometry
NASA Technical Reports Server (NTRS)
Rincon, Rafael F. (Inventor)
2016-01-01
Airborne or spaceborne Syntheic Aperture Radar (SAR) can be used in a variety of ways, and is often used to generate two dimensional images of a surface. SAR involves the use of radio waves to determine presence, properties, and features of extended areas. Specifically, radio waves are 10 transmitted in the presence of a ground surface. A portion of the radio wave's energy is reflected back to the radar system, which allows the radar system to detect and image the surface. Such radar systems may be used in science applications, military contexts, and other commercial applications.
Holographic interferometry of transparent media using light scattered by embedded test objects
NASA Technical Reports Server (NTRS)
Prikryl, I.; Vest, C. M.
1982-01-01
Fringe formation and localization in holographic interferometry of transparent media are discussed for configurations in which light enters the medium and is scattered back through it by an embedded diffuse object. Fringe order numbers are doubled, and the fringe localization region is translated and compressed by a factor of two. The results are applicable to tomographic reconstruction of aerodynamic density fields around opaque test objects.
Sentinel-1 TOPS interferometry for along-track displacement measurement
NASA Astrophysics Data System (ADS)
Jiang, H. J.; Pei, Y. Y.; Li, J.
2017-02-01
The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.
NASA Technical Reports Server (NTRS)
Moghaddam, Mahta
2000-01-01
The addition of interferometric backscattering pairs to the conventional polarimetric SAR data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of vegetation parameters. Without regard to the sensitivity of these data to vegetation scattering parameters, this paper poses the question: Will increasing the data channels as such result in a one-to-one increase in the number of parameters that can be estimated, or do vegetation and data properties inherently limit that number otherwise? In this paper, the complete polarimetric interferometric covariance matrix is considered and various symmetry properties of the scattering medium are used to study whether any of the correlation pairs can be eliminated. The number of independent pairs has direct consequences in their utility in parameter estimation schemes, since the maximum number of parameters that can be estimated cannot exceed the number of unique measurements. The independent components of the polarimetric interferometric SAR (POL/INSAR) data are derived for media with reflection, rotation, and azimuth symmetries, which are often encountered in vegetated surfaces. Similar derivations have been carried out before for simple polarimetry, i.e., zero baseline. This paper extends those to the interferometric case of general nonzero baselines. It is shown that depending on the type of symmetries present, the number of independent available measurements that can be used to estimate medium parameters will vary. In particular, whereas in the general case there are 27 mathematically independent measurements possible from a polarimetric interferometer, this number can be reduced to 15, 9, and 6 if the medium has reflection, rotation, or azimuthal symmetries, respectively. The results can be used in several ways in the interpretation of SAR data and the development of parameter estimation schemes, which will be discussed at the presentation. Recent POL/INSAR data from the JPL AIRSAR over a forested area will be used to demonstrate the results of this derivation. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, under contract from the National Aeronautics and Space Administration.
Newly Formed Sea Ice in Arctic Leads Monitored by C- and L-Band SAR
NASA Astrophysics Data System (ADS)
Johansson, A. Malin; Brekke, Camilla; Spreen, Gunnar; King, Jennifer A.; Gerland, Sebastian
2016-08-01
We investigate the scattering entropy and co-polarization ratio for Arctic lead ice using C- and L-band synthetic aperture radar (SAR) satellite scenes. During the Norwegian Young sea ICE (N-ICE2015) cruise campaign overlapping SAR scenes, helicopter borne sea ice thickness measurements and photographs were collected. We can therefore relate the SAR signal to sea ice thickness measurements as well as photographs taken of the sea ice. We show that a combination of scattering and co-polarization ratio values can be used to distinguish young ice from open water and surrounding sea ice.
Use of multitemporal InSAR data to develop geohazard scenarios for Bandung, Western Java, Indonesia
NASA Astrophysics Data System (ADS)
Salvi, Stefano; Tolomei, Cristiano; Duro, Javier; Pezzo, Giuseppe; Koudogbo, Fifamè
2015-04-01
The Greater Bandung metropolitan area is the second largest urban area in Indonesia, with a population of 8.6 million. It is subject to a variety of geohazards: volcanic hazards from seven active volcanoes within a radius of 50 km; high flood hazards, seismic hazard due to crustal active faults, the best known being the 30-km long Lembang fault, 10 km North of the city centre; subsidence hazards due to strong aquifer depletion; landslide hazard in the surrounding high country. In the framework of the FP7 RASOR project, multitemporal satellite SAR data have been processed over Bandung, Western Java. We used the SBAS InSAR technique (Berardino et al., 2002) to process two ALOS-1 datasets, to investigate the various sources of surface deformation acting in the area in the period 2008-2011. Persistent Scatterer Interferometry (PSI) has also been applied to achieve ground motion measurements with millimetric precision and high accuracy. The PSI processing technique considers a system of points that reflect the radar signal from the satellite continuously through the time. It makes use of differential interferometric phase measurements to generate long term terrain deformation and digital surface model maps. The GlobalSARTM algorithms developed by Altamira Information are applied to COSMO-SkyMed data acquired to measure ground motion over the area of interest. Strong ground displacements (up to 7 cm/yr) due to groundwater abstraction have been measured in the Bandung basin. The identification of long wavelength signals from tectonic sources is difficult due to the limited InSAR coherence outside of the urban environment. Limited deformation is observed also in the Tangkuban Perahu volcano to the north. The spatial and temporal distribution of the ground motion is important supporting information for the generation of long term subsidence and flood hazard scenarios.
Introduction - Background, Goal and Content of the Lecture Series on Polarimetric SAR Interferometry
2007-02-01
Information on EUSAR is available under: www.vde.de/ VDE /Fachgesellschaften/ITG/Publikationen/KonferenzUndFachberichte There are for each EUSAR...in 2003.Memberships: IEEE-GRSS (Fellow) Awards Committee; VDE /ITG; DGON; Electromagnetic Academy (US); Consultant for several EU –Projects; Guest
Lundgren, Paul; Lu, Zhong
2006-01-01
We analyzed RADARSAT-1 synthetic aperture radar (SAR) data to compute interferometric SAR (InSAR) images of surface deformation at Uzon caldera, Kamchatka, Russia. From 2000 to 2003 approximately 0.15 m of inflation occurred at Uzon caldera, extending beneath adjacent Kikhpinych volcano. This contrasts with InSAR data showing no significant deformation during either the 1999 to 2000, or 2003 to 2004, time periods. We performed three sets of numerical source inversions to fit InSAR data from three different swaths spanning 2000 to 2003. The preferred source model is an irregularly shaped, pressurized crack, dipping ∼20° to the NW, 4 km below the surface. The geometry of this solution is similar to the upper boundary of the geologically inferred magma chamber. Extension of the surface deformation and source to adjacent Kikhpinych volcano, without an eruption, suggests that the deformation is more likely of hydrothermal origin, possibly driven by recharge of the magma chamber.
Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks
NASA Astrophysics Data System (ADS)
Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.
2012-04-01
The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster incorporates around 150 wireless measuring devices on a grid of approximately 30ha for distributed soil moisture sensing. Finally, the comparison of both distributed soil moisture products results in a discussion on potentials and limitations for obtaining soil moisture under vegetation cover with high resolution fully polarimetric SAR. [1] S.R. Cloude, Polarisation: applications in remote sensing. Oxford, Oxford University Press, 2010. [2] Jagdhuber, T., Hajnsek, I., Papathanassiou, K.P. and Bronstert, A.: A Hybrid Decomposition for Soil Moisture Estimation under Vegetation Cover Using Polarimetric SAR. Proc. of the 5th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, ESA-ESRIN, Frascati, Italy, January 24-28, 2011, p.1-6.
NASA Astrophysics Data System (ADS)
Tao, Gang; Wei, Guohua; Wang, Xu; Kong, Ming
2018-03-01
There has been increased interest over several decades for applying ground-based synthetic aperture radar (GB-SAR) for monitoring terrain displacement. GB-SAR can achieve multitemporal surface deformation maps of the entire terrain with high spatial resolution and submilimetric accuracy due to the ability of continuous monitoring a certain area day and night regardless of the weather condition. The accuracy of the interferometric measurement result is very important. In this paper, the basic principle of InSAR is expounded, the influence of the platform's instability on the interferometric measurement results are analyzed. The error sources of deformation detection estimation are analyzed using precise geometry of imaging model. Finally, simulation results demonstrates the validity of our analysis.
NASA Astrophysics Data System (ADS)
Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.
2017-12-01
The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground subsidence in the SJV due to over-exploitation of groundwater. InSAR time series are compared to GPS and well-water hydraulic head in-situ time series to understand water storage processes and mass loading changes. We present model results to assess the influence of anthropogenic processes on surface deformation and fault mechanics.
NASA Astrophysics Data System (ADS)
Cigna, Francesca; Bateson, Luke; Dashwood, Claire; Jordan, Colm
2013-04-01
Following the success of its predecessors ERS-1/2 and ENVISAT, ESA's Sentinel-1 constellation will provide routine, free of charge and globally-available Synthetic Aperture Radar (SAR) observations of the Earth's surface starting in 2013, with 12day repeat cycle and up to 5m spatial resolution. The upcoming availability of this unprecedented and long-term radar-based observation capacity is stimulating new scientific and operational perspectives within the geohazards and land monitoring community, who initiated and is being working on target preparatory studies to exploit this attractive and rich reservoir of SAR data for, among others, interferometric applications. The Earth and Planetary Observation and Monitoring, and the Shallow Geohazards and Risks Teams of the British Geological Survey (BGS) are routinely assessing new technologies for geohazard mapping, and carrying out innovative research to improve the understanding of landslide processes and their dynamics. Building upon the successful achievements of recent applications of Persistent Scatterer Interferometry (PSI) to geohazards mapping and monitoring in Europe, and with the aim of enhancing further the research on radar EO for landslide management in Britain, since the beginning of 2012 the BGS has been carrying out a research project funded by internal NERC grants aimed at evaluating the potential of these techniques to better understand landslide processes over Great Britain. We mapped the PSI feasibility over the entire landmass, based on the combination of topographic and landuse effects which were modelled by using medium to high resolution DEMs, land cover information from the EEA CORINE Land Cover map 2006, and six PSI datasets over London, Stoke-on-Trent, Bristol/Bath, and the Northumberland-Durham region, made available to BGS through the projects ESA-GMES Terrafirma and EC-FP7 PanGeo. The feasibility maps for the ERS-1/2 and ENVISAT ascending and descending modes showed that topography is not the major limitation over most of Britain, and areas of layover and shadow for each satellite mode do not exceed 1% of the entire landmass. Although the results from the landuse feasibility mapping confirm that landcover has stronger control on the potential of these technologies over Britain, the overall number of monitoring targets that might be identified over the entire landmass for each acquisition mode exceeds 12.8M. Based on the results of the feasibility mapping, we identified three categories of landsliding in Britain, over which we will carry out SAR-based ground motions studies with ERS-1/2 SAR and ENVISAT ASAR data covering the past 20 years, based on combination of change detection, SAR Interferometry (InSAR), PSI and Small Baseline (SBAS) approaches. Selected test sites include South Wales Coalfield, the Cotswold Escarpment, the Pennines, the North York Moors, as well as landsliding affecting transport/infrastructure and coastal sites in eastern and southern England. The results of our study act as milestones for future SAR applications and operational uses for a wide range of geohazards in Britain, including landslides, land subsidence/uplift due to groundwater abstraction/recharge, shrink-swell clays, as well as structural deformation of critical infrastructure, and show the potential of future nationwide monitoring of the entire landmass with the new Earth explorers of the Sentinel-1 constellation. Reference: Cigna F., Bateson L., Jordan C., Dashwood C. (2012), Feasibility of InSAR technologies for nationwide monitoring of geohazards in Great Britain. Remote Sensing and Photogrammetry Society Annual Conference, RSPSoc 2012, Greenwich (UK), 12-14 September 2012. Available at: http://nora.nerc.ac.uk/19876/
Polarimetric SAR Models for Oil Fields Monitoring in China Seas
NASA Astrophysics Data System (ADS)
Buono, A.; Nunziata, F.; Li, X.; Wei, Y.; Ding, X.
2014-11-01
In this study, physical-based models for polarimetric Synthetic Aperture Radar (SAR) oil fields monitoring are proposed. They all share a physical rationale relying on the different scattering mechanisms that characterize a free sea surface, an oil slick-covered sea surface, and a metallic target. In fact, sea surface scattering is well modeled by a Bragg-like behaviour, while a strong departure from Bragg scattering is in place when dealing with oil slicks and targets. Furthermore, the proposed polarimetric models aim at addressing simultaneously target and oil slick detection, providing useful extra information with respect to single-pol SAR data in order to approach oil discrimination and classification. Experiments undertaken over East and South China Sea from actual C-band RadarSAT-2 full-pol SAR data witness the soundness of the proposed rationale.
Polarimetric SAR Models for Oil Fields Monitoring in China Seas
NASA Astrophysics Data System (ADS)
Buono, A.; Nunziata, F.; Li, X.; Wei, Y.; Ding, X.
2014-11-01
In this study, physical-based models for polarimetric Synthetic Aperture Radar (SAR) oil fields monitoring are proposed. They all share a physical rationale relying on the different scattering mechanisms that characterize a free sea surface, an oil slick-covered sea surface, and a metallic target. In fact, sea surface scattering is well modeled by a Bragg-like behaviour, while a strong departure from Bragg scattering is in place when dealing with oil slicks and targets. Furthermore, the proposed polarimetric models aim at addressing simultaneously target and oil slick detection, providing useful extra information with respect to single-pol SAR data in order to approach oil discrimination and classification.Experiments undertaken over East and South China Sea from actual C-band RadarSAT-2 full-pol SAR data witness the soundness of the proposed rationale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graziano,V.; McGrath, W.; Yang, L.
The SARS coronavirus main proteinase (SARS CoV main proteinase) is required for the replication of the severe acute respiratory syndrome coronavirus (SARS CoV), the virus that causes SARS. One function of the enzyme is to process viral polyproteins. The active form of the SARS CoV main proteinase is a homodimer. In the literature, estimates of the monomer-dimer equilibrium dissociation constant, K{sub D}, have varied more than 650000-fold, from <1 nM to more than 200 {mu}M. Because of these discrepancies and because compounds that interfere with activation of the enzyme by dimerization may be potential antiviral agents, we investigated the monomer-dimermore » equilibrium by three different techniques: small-angle X-ray scattering, chemical cross-linking, and enzyme kinetics. Analysis of small-angle X-ray scattering data from a series of measurements at different SARS CoV main proteinase concentrations yielded K{sub D} values of 5.8 {+-} 0.8 {mu}M (obtained from the entire scattering curve), 6.5 {+-} 2.2 {mu}M (obtained from the radii of gyration), and 6.8 {+-} 1.5 {mu}M (obtained from the forward scattering). The K{sub D} from chemical cross-linking was 12.7 {+-} 1.1 {mu}M, and from enzyme kinetics, it was 5.2 {+-} 0.4 {mu}M. While each of these three techniques can present different, potential limitations, they all yielded similar K{sub D} values.« less
Evaluation of Data Applicability for D-Insar in Areas Covered by Abundant Vegetation
NASA Astrophysics Data System (ADS)
Zhang, P.; Zhao, Z.
2018-04-01
In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar) has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR) datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2), and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.
Polinsar Experiments of Multi-Mode X-Band Data Over South Area of China
NASA Astrophysics Data System (ADS)
Lu, L.; Yan, Q.; Duan, M.; Zhang, Y.
2012-08-01
This paper makes the polarimetric and polarimetric interferometric synthetic aperture radar (PolInSAR) experiments with the high-resolution X-band data acquired by Multi-mode airborne SAR system over an area around Linshui, south of China containing tropic vegetation and urban areas. Polarimetric analysis for typical tropic vegetations and man-made objects are presented, some polarimetric descriptors sensitive to vegetations and man-made objects are selected. Then, the PolInSAR information contained in the data is investigated, considering characteristics of the Multi-mode-XSAR dataset, a dual-baseline polarimetric interferometry method is proposed in this paper. The method both guarantees the high coherence on fully polarimetric data and combines the benefits of short and long baseline that helpful to the phase unwrapping and height sensitivity promotion. PolInSAR experiment results displayed demonstrates Multi-mode-XSAR datasets have intuitive capabilities for amount of application of land classification, objects detection and DSM mapping.
Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter
Kim, Jin-Woo; Lu, Zhong; Jones, John W.; Shum, C.K.; Lee, Hyongki; Jia, Yuanyuan
2014-01-01
The Florida Everglades plays a significant role in controlling floods, improving water quality, supporting ecosystems, and maintaining biodiversity in south Florida. Adaptive restoration and management of the Everglades requires the best information possible regarding wetland hydrology. We developed a new and innovative approach to quantify spatial and temporal variations in wetland water levels within the Everglades, Florida. We observed high correlations between water level measured at in situ gages and L-band SAR backscatter coefficients in the freshwater marsh, though C-band SAR backscatter has no close relationship with water level. Here we illustrate the complementarity of SAR backscatter coefficient differencing and interferometry (InSAR) for improved estimation of high spatial resolution water level variations in the Everglades. This technique has a certain limitation in applying to swamp forests with dense vegetation cover, but we conclude that this new method is promising in future applications to wetland hydrology research.
Natural versus anthropogenic subsidence of Venice.
Tosi, Luigi; Teatini, Pietro; Strozzi, Tazio
2013-09-26
We detected land displacements of Venice by Persistent Scatterer Interferometry using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992-2010 and 2008-2011, respectively. By reason of the larger observation period, the C-band sensors was used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. Interpolation of the two datasets and removal of the C-band from the X-band map allows discriminating between the natural and anthropogenic components of the subsidence. A certain variability characterizes the natural subsidence (0.9 ± 0.7 mm/yr), mainly because of the heterogeneous nature and age of the lagoon subsoil. The 2008 displacements show that man interventions are responsible for movements ranging from -10 to 2 mm/yr. These displacements are generally local and distributed along the margins of the city islands.
The Born approximation, multiple scattering, and the butterfly algorithm
NASA Astrophysics Data System (ADS)
Martinez, Alejandro F.
Radar works by focusing a beam of light and seeing how long it takes to reflect. To see a large region the beam is pointed in different directions. The focus of the beam depends on the size of the antenna (called an aperture). Synthetic aperture radar (SAR) works by moving the antenna through some region of space. A fundamental assumption in SAR is that waves only bounce once. Several imaging algorithms have been designed using that assumption. The scattering process can be described by iterations of a badly behaving integral. Recently a method for efficiently evaluating these types of integrals has been developed. We will give a detailed implementation of this algorithm and apply it to study the multiple scattering effects in SAR using target estimates from single scattering algorithms.
A time series deformation estimation in the NW Himalayas using SBAS InSAR technique
NASA Astrophysics Data System (ADS)
Kumar, V.; Venkataraman, G.
2012-12-01
A time series land deformation studies in north western Himalayan region has been presented in this study. Synthetic aperture radar (SAR) interferometry (InSAR) is an important tool for measuring the land displacement caused by different geological processes [1]. Frequent spatial and temporal decorrelation in the Himalayan region is a strong impediment in precise deformation estimation using conventional interferometric SAR approach. In such cases, advanced DInSAR approaches PSInSAR as well as Small base line subset (SBAS) can be used to estimate earth surface deformation. The SBAS technique [2] is a DInSAR approach which uses a twelve or more number of repeat SAR acquisitions in different combinations of a properly chosen data (subsets) for generation of DInSAR interferograms using two pass interferometric approach. Finally it leads to the generation of mean deformation velocity maps and displacement time series. Herein, SBAS algorithm has been used for time series deformation estimation in the NW Himalayan region. ENVISAT ASAR IS2 swath data from 2003 to 2008 have been used for quantifying slow deformation. Himalayan region is a very active tectonic belt and active orogeny play a significant role in land deformation process [3]. Geomorphology in the region is unique and reacts to the climate change adversely bringing with land slides and subsidence. Settlements on the hill slopes are prone to land slides, landslips, rockslides and soil creep. These hazardous features have hampered the over all progress of the region as they obstruct the roads and flow of traffic, break communication, block flowing water in stream and create temporary reservoirs and also bring down lot of soil cover and thus add enormous silt and gravel to the streams. It has been observed that average deformation varies from -30.0 mm/year to 10 mm/year in the NW Himalayan region . References [1] Massonnet, D., Feigl, K.L.,Rossi, M. and Adragna, F. (1994) Radar interferometry mapping of deformation in the year after the Landers earthquake. Nature 1994, 369, 227-230. [2] Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. (2002). A new algorithm for surface deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40 (11), 2375-2383. [3] GEOLOGICAL SURVEY OF INDIA (GSI), (1999) Inventory of the Himalayan glaciers. Special publication, vol. 34, pp. 165-168. [4] Chen, C.W., and Zebker, H. A., (2000). Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. Journal of the Optical Society of America, A, 17, 401-414.
On safe ground? Analysis of European urban geohazards using satellite radar interferometry
NASA Astrophysics Data System (ADS)
Capes, Renalt; Teeuw, Richard
2017-06-01
Urban geological hazards involving ground instability can be costly, dangerous, and affect many people, yet there is little information about the extent or distribution of geohazards within Europe's urban areas. A reason for this is the impracticality of measuring ground instability associated with the many geohazard processes that are often hidden beneath buildings and are imperceptible to conventional geological survey detection techniques. Satellite radar interferometry, or InSAR, offers a remote sensing technique to map mm-scale ground deformation over wide areas given an archive of suitable multi-temporal data. The EC FP7 Space project named PanGeo (2011-2014), used InSAR to map areas of unstable ground in 52 of Europe's cities, representing ∼15% of the EU population. In partnership with Europe's national geological surveys, the PanGeo project developed a standardised geohazard-mapping methodology and recorded 1286 instances of 19 types of geohazard covering 18,000 km2. Presented here is an analysis of the results of the PanGeo-project output data, which provides insights into the distribution of European urban geohazards, their frequency and probability of occurrence. Merging PanGeo data with Eurostat's GeoStat data provides a systematic estimate of population exposures. Satellite radar interferometry is shown to be as a valuable tool for the systematic detection and mapping of urban geohazard phenomena.
Radar interferometry offers new insights into threats to the Angkor site.
Chen, Fulong; Guo, Huadong; Ma, Peifeng; Lin, Hui; Wang, Cheng; Ishwaran, Natarajan; Hang, Peou
2017-03-01
The conservation of World Heritage is critical to the cultural and social sustainability of regions and nations. Risk monitoring and preventive diagnosis of threats to heritage sites in any given ecosystem are a complex and challenging task. Taking advantage of the performance of Earth Observation technologies, we measured the impacts of hitherto imperceptible and poorly understood factors of groundwater and temperature variations on the monuments in the Angkor World Heritage site (400 km 2 ). We developed a two-scale synthetic aperture radar interferometry (InSAR) approach. We describe spatial-temporal displacements (at millimeter-level accuracy), as measured by high-resolution TerraSAR/TanDEM-X satellite images, to provide a new solution to resolve the current controversy surrounding the potential structural collapse of monuments in Angkor. Multidisciplinary analysis in conjunction with a deterioration kinetics model offers new insights into the causes that trigger the potential decline of Angkor monuments. Our results show that pumping groundwater for residential and touristic establishments did not threaten the sustainability of monuments during 2011 to 2013; however, seasonal variations of the groundwater table and the thermodynamics of stone materials are factors that could trigger and/or aggravate the deterioration of monuments. These factors amplify known impacts of chemical weathering and biological alteration of temple materials. The InSAR solution reported in this study could have implications for monitoring and sustainable conservation of monuments in World Heritage sites elsewhere.
Radar interferometry offers new insights into threats to the Angkor site
Chen, Fulong; Guo, Huadong; Ma, Peifeng; Lin, Hui; Wang, Cheng; Ishwaran, Natarajan; Hang, Peou
2017-01-01
The conservation of World Heritage is critical to the cultural and social sustainability of regions and nations. Risk monitoring and preventive diagnosis of threats to heritage sites in any given ecosystem are a complex and challenging task. Taking advantage of the performance of Earth Observation technologies, we measured the impacts of hitherto imperceptible and poorly understood factors of groundwater and temperature variations on the monuments in the Angkor World Heritage site (400 km2). We developed a two-scale synthetic aperture radar interferometry (InSAR) approach. We describe spatial-temporal displacements (at millimeter-level accuracy), as measured by high-resolution TerraSAR/TanDEM-X satellite images, to provide a new solution to resolve the current controversy surrounding the potential structural collapse of monuments in Angkor. Multidisciplinary analysis in conjunction with a deterioration kinetics model offers new insights into the causes that trigger the potential decline of Angkor monuments. Our results show that pumping groundwater for residential and touristic establishments did not threaten the sustainability of monuments during 2011 to 2013; however, seasonal variations of the groundwater table and the thermodynamics of stone materials are factors that could trigger and/or aggravate the deterioration of monuments. These factors amplify known impacts of chemical weathering and biological alteration of temple materials. The InSAR solution reported in this study could have implications for monitoring and sustainable conservation of monuments in World Heritage sites elsewhere. PMID:28275729
A New Approach to Estimate Forest Parameters Using Dual-Baseline Pol-InSAR Data
NASA Astrophysics Data System (ADS)
Bai, L.; Hong, W.; Cao, F.; Zhou, Y.
2009-04-01
In POL-InSAR applications using ESPRIT technique, it is assumed that there exist stable scattering centres in the forest. However, the observations in forest severely suffer from volume and temporal decorrelation. The forest scatters are not stable as assumed. The obtained interferometric information is not accurate as expected. Besides, ESPRIT techniques could not identify the interferometric phases corresponding to the ground and the canopy. It provides multiple estimations for the height between two scattering centers due to phase unwrapping. Therefore, estimation errors are introduced to the forest height results. To suppress the two types of errors, we use the dual-baseline POL-InSAR data to estimate forest height. Dual-baseline coherence optimization is applied to obtain interferometric information of stable scattering centers in the forest. From the interferometric phases for different baselines, estimation errors caused by phase unwrapping is solved. Other estimation errors can be suppressed, too. Experiments are done to the ESAR L band POL-InSAR data. Experimental results show the proposed methods provide more accurate forest height than ESPRIT technique.
Improved Small Baseline processing by means of CAESAR eigen-interferograms decomposition
NASA Astrophysics Data System (ADS)
Verde, Simona; Reale, Diego; Pauciullo, Antonio; Fornaro, Gianfranco
2018-05-01
The Component extrAction and sElection SAR (CAESAR) is a method for the selection and filtering of scattering mechanisms recently proposed in the multibaseline interferometric SAR framework. Its strength is related to the possibility to select and extract multiple dominant scattering mechanisms, even interfering in the same pixel, since the stage of the interferograms generation, and to carry out a decorrelation noise phase filtering. Up to now, the validation of CAESAR has been addressed in the framework of SAR Tomography for the model-based detection of Persistent Scatterers (PSs). In this paper we investigate the effectiveness related to the use of CAESAR eigen-interferograms in classical multi-baseline DInSAR processing, based on the Small BAseline Subset (SBAS) strategy, typically adopted to extract large scale distributed deformation and atmospheric phase screen. Such components are also exploited for the calibration of the full resolution data for PS or tomographic analysis. By using COSMO-SKyMed (CSK) SAR data, it is demonstrated that dominant scattering component filtering effectively improves the monitoring of distributed spatially decorrelated areas (f.i. bare soil, rocks, etc.) and allows bringing to light man-made structures with dominant backscattering characteristics embedded in highly temporally decorrelated scenario, as isolated asphalt roads and block of buildings in non-urban areas. Moreover it is shown that, thanks to the CAESAR multiple scattering components separation, the layover mitigation in low-topography eigen-interferograms relieves Phase Unwrapping (PhU) errors in urban areas due to abrupt height variations.
Simulation Studies of the Effect of Forest Spatial Structure on InSAR Signature
NASA Technical Reports Server (NTRS)
Sun, Guoqing; Liu, Dawei; Ranson, K. Jon; Koetz, Benjamin
2007-01-01
The height of scattering phase retrieved from InSAR data is considered being correlated with the tree height and the spatial structure of the forest stand. Though some researchers have used simple backscattering models to estimate tree height from the height of scattering center, the effect of forest spatial structure on InSAR data is not well understood yet. A three-dimensional coherent radar backscattering model for forest canopies based on realistic three-dimensional scene was used to investigate the effect in this paper. The realistic spatial structure of forest canopies was established either by field measurements (stem map) or through use of forest growth model. Field measurements or a forest growth model parameterized using local environmental parameters provides information of forest species composition and tree sizes in certain growth phases. A fractal tree model (L-system) was used to simulate individual 3- D tree structure of different ages or heights. Trees were positioned in a stand in certain patterns resulting in a 3-D medium of discrete scatterers. The radar coherent backscatter model took the 3-D forest scene as input and simulates the coherent radar backscattering signature. Interferometric SAR images of 3D scenes were simulated and heights of scattering phase centers were estimated from the simulated InSAR data. The effects of tree height, crown cover, crown depth, and the spatial distribution patterns of trees on the scattering phase center were analyzed. The results will be presented in the paper.
Recent Advances In Radar Polarimetry And Polarimetric SAR Interferometry
2007-02-01
Workshop, ESA SERRÍN, Frascati, Italy, January 2003. [69] EUSAR 2000 Procs, VDE Verlag, Offenbach, ISBN: 3-8007-2544-4, Munich, Germany, May 2000. [70...EUSAR 2002 Procs, VDE Verlag, Offenbach, ISBN: 3-8007-2697-1, Cologne, Germany, June 2002. [71] Ferro-Famil, L. and E. Pottier, 2000, "Description of
Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc
2009-01-01
Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C–band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr-1 was measured. PMID:22389620
Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc
2009-01-01
Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured.
NASA Astrophysics Data System (ADS)
Jiang, Houjun; Feng, Guangcai; Wang, Teng; Bürgmann, Roland
2017-02-01
Sentinel-1's continuous observation program over all major plate boundary regions makes it well suited for earthquake studies. However, decorrelation due to large displacement gradients and limited azimuth resolution of the Terrain Observation by Progressive Scan (TOPS) data challenge acquiring measurements in the near field of many earthquake ruptures and prevent measurements of displacements in the along-track direction. Here we propose to fully exploit the coherent and incoherent information of TOPS data by using standard interferometric synthetic aperture radar (InSAR), split-bandwidth interferometry in range and azimuth, swath/burst-overlap interferometry, and amplitude cross correlation to map displacements in both the line-of-sight and the along-track directions. Application to the 2016 Kumamoto earthquake sequence reveals the coseismic displacements from the far field to the near field. By adding near-field constraints, the derived slip model reveals more shallow slip than obtained when only using far-field data from InSAR, highlighting the importance of exploiting all coherent and incoherent information in TOPS data.
Curvelet-based compressive sensing for InSAR raw data
NASA Astrophysics Data System (ADS)
Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David
2015-10-01
The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications, therefore, providing a feasibility for compressive sensing application.
Aseismic fold growth in southwestern Taiwan detected by InSAR and GNSS
NASA Astrophysics Data System (ADS)
Tsukahara, Kotaro; Takada, Youichiro
2018-03-01
We report very rapid and aseismic fold growth detected by L-band InSAR images and GNSS data in southwestern Taiwan where is characterized by high convergence rate and low seismicity. Six independent interferograms acquired from ascending orbit during 2007-2011 commonly indicate large line-of-sight (LOS) shortening. For descending orbit, one interferogram spanning 21 months also indicates the LOS shortening at the same location. After removing long-wavelength noise and height-dependent phase component from these interferograms using GNSS velocity field and DEM, we obtained the quasi-vertical and the quasi-east velocity fields. We found very rapid uplift (quasi-vertical movement) in the fold and thrust belt to the east of the Tainan city. The uplifted area stretches about 25 km in the N-S direction and about 5 km in the E-W direction. At the southern part of the uplifted area, the uplift rate obtained by InSAR is consistent with that measured by the leveling survey, which takes 18 mm/year at a maximum. On the other hand, at the northern part, the maximum uplift rate detected by InSAR reaches up to 37 mm/year, more than twice as large as the rate along the levelling route. Judging from very low seismicity in this region, the severe crustal deformation we detected with InSAR is aseismic. At the eastern flank of the uplifted area, we found a sharp discontinuity in the uplift rate from the ALOS/PALSAR interferometry, and a sharp discontinuity in the amount of uplift in response to the 2016 Meinong earthquake (M6.4) from ALOS-2/PALSAR2 interferometry, which implies the existence of a shallow active fault. The stable slip of this active fault would be due to the high pore fluid pressure reported in this region. The aseismic uplift before the Meinong earthquake would be mainly due to the mud diapirs at the depth, which is perturbed by the aseismic movement of the shallow active fault.
NASA Astrophysics Data System (ADS)
Buono, Andrea; Nunziata, Ferdinando; Migliaccio, Maurizio
2016-08-01
In this paper, microwave sea surface scattering with and without oil slicks is investigated using synthetic aperture radar (SAR) fully-polarimetric (FP) and compact- polarimetric (CP) data. They show similar trends but subtle differences apply over sea surface that are here analyzed by a new physically-based approach. The model predicts that differences between FP and CP architectures, and among CP modes, are due to the different mapping between polarimetric observables and eigenvalues. This theoretical rationale is verified using actual FP SAR data and emulated CP SAR measurements.
Moon-Based INSAR Geolocation and Baseline Analysis
NASA Astrophysics Data System (ADS)
Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Ruan, Zhixing; Lv, Mingyang; Dou, Changyong; Chen, Zhaoning
2016-07-01
Earth observation platform is a host, the characteristics of the platform in some extent determines the ability for earth observation. Currently most developing platforms are satellite, in contrast carry out systematic observations with moon based Earth observation platform is still a new concept. The Moon is Earth's only natural satellite and is the only one which human has reached, it will give people different perspectives when observe the earth with sensors from the moon. Moon-based InSAR (SAR Interferometry), one of the important earth observation technology, has all-day, all-weather observation ability, but its uniqueness is still a need for analysis. This article will discuss key issues of geometric positioning and baseline parameters of moon-based InSAR. Based on the ephemeris data, the position, liberation and attitude of earth and moon will be obtained, and the position of the moon-base SAR sensor can be obtained by coordinate transformation from fixed seleno-centric coordinate systems to terrestrial coordinate systems, together with the Distance-Doppler equation, the positioning model will be analyzed; after establish of moon-based InSAR baseline equation, the different baseline error will be analyzed, the influence of the moon-based InSAR baseline to earth observation application will be obtained.
High-Level Performance Modeling of SAR Systems
NASA Technical Reports Server (NTRS)
Chen, Curtis
2006-01-01
SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.
Using Lattice Topology Information to Investigate Persistent Scatterers at Facades in Urban Areas
NASA Astrophysics Data System (ADS)
Schack, L.; Soergel, U.
2013-05-01
Modern spaceborne SAR sensors like TerraSAR-X offer ground resolution of up to one meter in range and azimuth direction. Buildings, roads, bridges, and other man-made structures appear in such data often as regular patterns of strong and temporally stable points (Persistent Scatterer, PS). As one step in the process of unveiling what object structure actually causes the PS (i.e., physical nature) we compare those regular structures in SAR data to their correspondences in optical imagery. We use lattices as a common data representation for visible facades. By exploiting the topology information given by the lattices we can complete gaps in the structures which is one step towards the understanding of the complex scattering characteristics of distinct facade objects.
Identification of ex-sand mining area using optical and SAR imagery
NASA Astrophysics Data System (ADS)
Indriasari, Novie; Kusratmoko, Eko; Indra, Tito Latif; Julzarika, Atriyon
2018-05-01
Open mining activities in Sumedang Regency has been operated since 1984 impacted to degradation of environment due to large area of ex-mining. Therefore, identification of ex-mining area which generally been used for sand mining is crucial and important to detect and monitor recent environmental degradation impacted from the ex-mining activities. In this research, identification ex-sand mining area using optical and SAR data in Sumedang Regency will be discussed. We use Landsat 5 TM acquisition date August 01, 2009 and Landsat 8 OLI acquired on June 24, 2016 to identify location of sand mining area, processed using Tasselled Cap Trasformation (TCT), while the landform deformation approached using ALOS PALSAR in 2009 and ALOS PALSAR 2 in 2016 processed using SAR interferometry (InSAR) method. The results show that TCT and InSAR method can can be used to identify the areas of ex-sand mining clearly. In 2016 the total area of ex-mining were 352.92 Ha. The land deformation show that during 7 years period since 2009 has impacted to the deformation at 7 meters.
NASA Astrophysics Data System (ADS)
Ng, Alex Hay-Man; Ge, Linlin; Du, Zheyuan; Wang, Shuren; Ma, Chao
2017-09-01
This paper describes the simulation and real data analysis results from the recently launched SAR satellites, ALOS-2, Sentinel-1 and Radarsat-2 for the purpose of monitoring subsidence induced by longwall mining activity using satellite synthetic aperture radar interferometry (InSAR). Because of the enhancement of orbit control (pairs with shorter perpendicular baseline) from the new satellite SAR systems, the mine subsidence detection is now mainly constrained by the phase discontinuities due to large deformation and temporal decorrelation noise. This paper investigates the performance of the three satellite missions with different imaging modes for mapping longwall mine subsidence. The results show that the three satellites perform better than their predecessors. The simulation results show that the Sentinel-1A/B constellation is capable of mapping rapid mine subsidence, especially the Sentinel-1A/B constellation with stripmap (SM) mode. Unfortunately, the Sentinel-1A/B SM data are not available in most cases and hence real data analysis cannot be conducted in this study. Despite the Sentinel-1A/B SM data, the simulation and real data analysis suggest that ALOS-2 is best suited for mapping mine subsidence amongst the three missions. Although not investigated in this study, the X-band satellites TerraSAR-X and COSMO-SkyMed with short temporal baseline and high spatial resolution can be comparable with the performance of the Radarsat-2 and Sentinel-1 C-band data over the dry surface with sparse vegetation. The potential of the recently launched satellites (e.g. ALOS-2 and Sentinel-1A/B) for mapping longwall mine subsidence is expected to be better than the results of this study, if the data acquired from the ideal acquisition modes are available.
Sources of Artefacts in Synthetic Aperture Radar Interferometry Data Sets
NASA Astrophysics Data System (ADS)
Becek, K.; Borkowski, A.
2012-07-01
In recent years, much attention has been devoted to digital elevation models (DEMs) produced using Synthetic Aperture Radar Interferometry (InSAR). This has been triggered by the relative novelty of the InSAR method and its world-famous product—the Shuttle Radar Topography Mission (SRTM) DEM. However, much less attention, if at all, has been paid to sources of artefacts in SRTM. In this work, we focus not on the missing pixels (null pixels) due to shadows or the layover effect, but rather on outliers that were undetected by the SRTM validation process. The aim of this study is to identify some of the causes of the elevation outliers in SRTM. Such knowledge may be helpful to mitigate similar problems in future InSAR DEMs, notably the ones currently being developed from data acquired by the TanDEM-X mission. We analysed many cross-sections derived from SRTM. These cross-sections were extracted over the elevation test areas, which are available from the Global Elevation Data Testing Facility (GEDTF) whose database contains about 8,500 runways with known vertical profiles. Whenever a significant discrepancy between the known runway profile and the SRTM cross-section was detected, a visual interpretation of the high-resolution satellite image was carried out to identify the objects causing the irregularities. A distance and a bearing from the outlier to the object were recorded. Moreover, we considered the SRTM look direction parameter. A comprehensive analysis of the acquired data allows us to establish that large metallic structures, such as hangars or car parking lots, are causing the outliers. Water areas or plain wet terrains may also cause an InSAR outlier. The look direction and the depression angle of the InSAR system in relation to the suspected objects influence the magnitude of the outliers. We hope that these findings will be helpful in designing the error detection routines of future InSAR or, in fact, any microwave aerial- or space-based survey. The presence of outliers in SRTM was first reported in Becek, K. (2008). Investigating error structure of shuttle radar topography mission elevation data product, Geophys. Res. Lett., 35, L15403.
Monitoring the englacial fracture state using virtual-reflector seismology
NASA Astrophysics Data System (ADS)
Lindner, F.; Weemstra, C.; Walter, F.; Hadziioannou, C.
2017-12-01
Fracturing and changes in the englacial macroscopic water content change the elastic bulk properties of ice bodies. Small seismic velocity variations, resulting from such changes, can be measured using a technique called coda-wave interferometry. Here, coda refers to the later-arriving, multiply scattered waves. Often, this technique is applied to so-called virtual-source responses, which can be obtained using seismic interferometry (a simple crosscorrelation process). Compared to other media (e.g., the Earth's crust), however, ice bodies exhibit relatively little scattering. This complicates the application of coda-wave interferometry to the retrieved virtual-source responses. In this work, we therefore investigate the applicability of coda-wave interferometry to virtual-source responses obtained using two alternative seismic interferometric techniques, namely, seismic interferometry by multidimensional deconvolution (SI by MDD), and virtual-reflector seismology (VRS). To that end, we use synthetic data, as well as active-source glacier data acquired on Glacier de la Plaine Morte, Switzerland. Both SI by MDD and VRS allow the retrieval of more accurate virtual-source responses. In particular, the dependence of the retrieved virtual-source responses on the illumination pattern is reduced. We find that this results in more accurate glacial phase-velocity estimates. In addition, VRS introduces virtual reflections from a receiver contour (partly) enclosing the medium of interest. By acting as a sort of virtual reverberation, the coda resulting from the application of VRS significantly increases seismic monitoring capabilities, in particular in cases where natural scattering coda is not available.
Performance of Scattering Matrix Decomposition and Color Spaces for Synthetic Aperture Radar Imagery
2010-03-01
Color Spaces and Synthetic Aperture Radar (SAR) Multicolor Imaging. 15 2.3.1 Colorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2...III. Decomposition Techniques on SAR Polarimetry and Colorimetry applied to SAR Imagery...space polarimetric SAR systems. Colorimetry is also introduced in this chapter, presenting the fundamentals of the RGB and CMY color spaces, defined for
First Image Products from EcoSAR - Osa Peninsula, Costa Rica
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon
2016-01-01
Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.
NASA Astrophysics Data System (ADS)
Xue, Tengfei; Chang, Zhanqiang; Zhang, Jingfa
2016-08-01
Interferometry Synthetic Aperture Radar (InSAR)can only measure one component of the surface deformation in the satellite's line of sight (LOS) instead of that in vertical and horizontal directions, i.e. LOS Amphibious. In view of this problem, we analyzed and summarized some methods that can measure the three-dimensional deformation of ground surface by using D-InSAR, developed the calculation model of measuring the three-dimensional co-seismic deformation filed by using the ascending and descending orbit SAR data. The Formula of left-looking (both ascending and descending orbit data), right-looking (both ascending and descending orbit data) and general expression were proposed. The model was applied on L'Aquila earthquake, and the results reveal that the earthquake has caused displacement in both vertical and horizontal directions, and the earthquake made the area down lift 16.8cm along the vertical direction. The characters of the surface reflected by the results are very consistent with the geological exploration.
An Evaluation of ALOS Data in Disaster Applications
NASA Astrophysics Data System (ADS)
Igarashi, Tamotsu; Igarashi, Tamotsu; Furuta, Ryoich; Ono, Makoto
ALOS is the advanced land observing satellite, providing image data from onboard sensors; PRISM, AVNIR-2 and PALSAR. PRISM is the sensor of panchromatic stereo, high resolution three-line-scanner to characterize the earth surface. The accuracy of position in image and height of Digital Surface Model (DSM) are high, therefore the geographic information extraction is improved in the field of disaster applications with providing images of disaster area. Especially pan-sharpened 3D image composed with PRISM and the four-band visible near-infrared radiometer AVNIR-2 data is expected to provide information to understand the geographic and topographic feature. PALSAR is the advanced multi-functional synthetic aperture radar (SAR) operated in L-band, appropriate for the use of land surface feature characterization. PALSAR has many improvements from JERS-1/SAR, such as high sensitivity, having high resolution, polarimetric and scan SAR observation modes. PALSAR is also applicable for SAR interferometry processing. This paper describes the evaluation of ALOS data characteristic from the view point of disaster applications, through some exercise applications.
A three-image algorithm for hard x-ray grating interferometry.
Pelliccia, Daniele; Rigon, Luigi; Arfelli, Fulvia; Menk, Ralf-Hendrik; Bukreeva, Inna; Cedola, Alessia
2013-08-12
A three-image method to extract absorption, refraction and scattering information for hard x-ray grating interferometry is presented. The method comprises a post-processing approach alternative to the conventional phase stepping procedure and is inspired by a similar three-image technique developed for analyzer-based x-ray imaging. Results obtained with this algorithm are quantitatively comparable with phase-stepping. This method can be further extended to samples with negligible scattering, where only two images are needed to separate absorption and refraction signal. Thanks to the limited number of images required, this technique is a viable route to bio-compatible imaging with x-ray grating interferometer. In addition our method elucidates and strengthens the formal and practical analogies between grating interferometry and the (non-interferometric) diffraction enhanced imaging technique.
Generalized ISAR--part II: interferometric techniques for three-dimensional location of scatterers.
Given, James A; Schmidt, William R
2005-11-01
This paper is the second part of a study dedicated to optimizing diagnostic inverse synthetic aperture radar (ISAR) studies of large naval vessels. The method developed here provides accurate determination of the position of important radio-frequency scatterers by combining accurate knowledge of ship position and orientation with specialized signal processing. The method allows for the simultaneous presence of substantial Doppler returns from both change of roll angle and change of aspect angle by introducing generalized ISAR ates. The first paper provides two modes of interpreting ISAR plots, one valid when roll Doppler is dominant, the other valid when the aspect angle Doppler is dominant. Here, we provide, for each type of ISAR plot technique, a corresponding interferometric ISAR (InSAR) technique. The former, aspect-angle dominated InSAR, is a generalization of standard InSAR; the latter, roll-angle dominated InSAR, seems to be new to this work. Both methods are shown to be efficient at identifying localized scatterers under simulation conditions.
Robust adaptive multichannel SAR processing based on covariance matrix reconstruction
NASA Astrophysics Data System (ADS)
Tan, Zhen-ya; He, Feng
2018-04-01
With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.
NASA Astrophysics Data System (ADS)
Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo
An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.
Monitoring Of Landslide Hazard In Selected Areas Of Uzbekistan
NASA Astrophysics Data System (ADS)
Lazecky, Milan; Balaha, Pavel; Khasankhanova, Gulchekhra; Minchenko, Venscelas
2013-12-01
Republic of Uzbekistan is situated in the heart of Central Asia. Dangerous phenomena such as drought, flooding, mud flows, landslides and others, that are becoming frequent in conditions of climate changes, increase instability of an agricultural production, and threaten rural livelihoods. In connection with weather and climate natural disasters, these phenomena become reasons of declining food production, water contamination, and economical damages. Within the Project granted by NATO: Science for Peace and Security programme, modern advanced remote sensing technologies will be applied to perform large scale monitoring of (early) slope deformations, including Satellite SAR Interferometry (InSAR) techniques, Ground Laser Scanning for in-situ refinement of detected movements or Multibeam Echosounding for monitoring slope deformation advancement into water objects. First results involving InSAR processing of selected sites in Uzbekistan are presented within this contribution.
Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests
NASA Technical Reports Server (NTRS)
Freeman, Anthony
2007-01-01
Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the attenuation coefficient of the canopy can be obtained directly from the multi-incidence-angle polarimetric observations. This attenuation coefficient is another key variable in forward models and is generally related to the canopy density.
NASA Technical Reports Server (NTRS)
Peltzer, G.; Crampe, F.; King, G.
1999-01-01
Satellite synthetic aperture radar (SAR) interferometry shows that the magnitude 7.6 Manyi earthquake of 8 November 1997 produces a 170 km-long surface break with up to 7m of left-lateral slip, reactivating a North 76 degrees East quaternary fault in western Tibet.
InSAR observations of low slip rates on the major faults of western Tibet.
Wright, Tim J; Parsons, Barry; England, Philip C; Fielding, Eric J
2004-07-09
Two contrasting views of the active deformation of Asia dominate the debate about how continents deform: (i) The deformation is primarily localized on major faults separating crustal blocks or (ii) deformation is distributed throughout the continental lithosphere. In the first model, western Tibet is being extruded eastward between the major faults bounding the region. Surface displacement measurements across the western Tibetan plateau using satellite radar interferometry (InSAR) indicate that slip rates on the Karakoram and Altyn Tagh faults are lower than would be expected for the extrusion model and suggest a significant amount of internal deformation in Tibet.
Di Martire, Diego; Novellino, Alessandro; Ramondini, Massimo; Calcaterra, Domenico
2016-04-15
This paper presents the results of an investigation on a Deep Seated Gravitational Slope Deformation (DSGSD), previously only hypothesized by some authors, affecting Bisaccia, a small town located in Campania region, Italy. The study was conducted through the integration of conventional methods (geological-geomorphological field survey, air-photo interpretation) and an Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) technique. The DSGSD involves a brittle lithotype (conglomerates of the Ariano Irpino Supersynthem) resting over a Structurally Complex Formation (Varycoloured Clays of Calaggio Formation). At Bisaccia, probably as a consequence of post-cyclic recompression phenomena triggered by reiterated seismic actions, the rigid plate made up of conglomeratic sediments resulted to be split in five portions, showing different rates of displacements, whose deformations are in the order of some centimeter/year, thus inducing severe damage to the urban settlement. A-DInSAR techniques confirmed to be a reliable tool in monitoring slow-moving landslides. In this case 96 ENVIronmental SATellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR) images, in ascending and descending orbits, have been processed using SUBSOFT software, developed by the Remote Sensing Laboratory (RSLab) group from the Universitat Politècnica de Catalunya (UPC). The DInSAR results, coupled with field survey, supported the analysis of the instability mechanism and confirmed the historical record of the movements already available for the town. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Y.; Teplov, S. V.; Rabalais, J. W.
1994-05-01
It is demonstrated that both surface and subsurface structural information can be obtained from Si{100}-(2 × 1) and Si{100}-(1 × 1)-H by coupling coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS) with three-dimensional trajectory simulations. Experimentally, backscattering intensity versus incident α angle scans at a scattering angle of ˜ 180° have been measured for 2 keV He + incident on both the (2 × 1) and (1 × 1)-H surfaces. Computationally, an efficient three-dimensional version of the Monte Carlo computer code RECAD has been developed and applied to simulation of the TOF-SARS results. An R (reliability) factor has been introduced for quantitative evaluation of the agreement between experimental and simulated scans. For the case of 2 keV He + scattering from Si{100}, scattering features can be observed and delineated from as many as 14 atomic layers ( ˜ 18 Å) below the surface. The intradimer spacing D is determined as 2.2 Å from the minimum in the R-factor versus D plot.
On Sea Ice Characterisation By Multi-Frequency SAR
NASA Astrophysics Data System (ADS)
Grahn, Jakob; Brekke, Camilla; Eltoft, Torbjorn; Holt, Benjamin
2013-12-01
By means of polarimetric target decomposition, quad-pol SAR data of sea ice is analysed at two frequency bands. In particular, the non negative eigenvalue decomposition (NNED) is applied on L- and C-band NASA/JPL AIR- SAR data acquired over the Beaufort sea in 2004. The de- composition separates the scattered radar signal into three types, dominated by double, volume and single bounce scattering respectively. Using ground truth derived from RADARSAT-1 and meteorological data, we investigate how the different frequency bands compare in terms of these scattering types. The ground truth contains multi year ice and three types of first year ice of different age and thickness. We find that C-band yields a higher scattered intensity in most ice and scattering types, as well as a more homogeneous intensity. L-band on the other hand yields more pronounced deformation features, such as ridges. The mean intensity contrast between the two thinnest ice types is highest in the double scattering component of C- band, although the contrast of the total signal is greater in L-band. This may indicate that the choice of polarimetric parameters is important for discriminating thin ice types.
Monitoring the Deformation of High-Rise Buildings in Shanghai Luijiazui Zone by Tomo-Psinsar
NASA Astrophysics Data System (ADS)
Zhou, L. F.; Ma, P. F.; Xia, Y.; Xie, C. H.
2018-05-01
In this study, we utilize a Tomography-based Persistent Scatterers Interferometry (Tomo-PSInSAR) approach for monitoring the deformation performances of high-rise buildings, i.e. SWFC and Jin Mao Tower, in Shanghai Lujiazui Zone. For the purpose of this study, we use 31 Stripmap acquisitions from TerraSAR-X missions, spanning from December 2009 to February 2013. Considering thermal expansion, creep and shrinkage are two long-term movements that occur in high-rise buildings with concrete structures, we use an extended 4-D SAR phase model, and three parameters (height, deformation velocity, and thermal amplitude) are estimated simultaneously. Moreover, we apply a two-tier network strategy to detect single and double PSs with no need for preliminary removal of the atmospheric phase screen (APS) in the study area, avoiding possible error caused by the uncertainty in spatiotemporal filtering. Thermal expansion is illustrated in the thermal amplitude map, and deformation due to creep and shrinkage is revealed in the linear deformation velocity map. The thermal amplitude map demonstrates that the derived thermal amplitude of the two high-rise buildings both dilate and contract periodically, which is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that SWFC is subject to deformation during the new built period due to creep and shrinkage, which is height-dependent movements in the linear velocity map. It is worth mention that creep and shrinkage induces movements that increase with the increasing height in the downward direction. In addition, the deformation rates caused by creep and shrinkage are largest at the beginning and gradually decrease, and at last achieve a steady state as time goes infinity. On the contrary, the linear deformation velocity map shows that Jin Mao Tower is almost stable, and the reason is that it is an old built building, which is not influenced by creep and shrinkage as the load is relaxed and dehydration proceeds. This study underlines the potential of the Tomo-PSInSAR solution for the monitoring deformation performance of high-rise buildings, which offers a quantitative indicator to local authorities and planners for assessing potential damages.
Speckle Filtering of GF-3 Polarimetric SAR Data with Joint Restriction Principle.
Xie, Jinwei; Li, Zhenfang; Zhou, Chaowei; Fang, Yuyuan; Zhang, Qingjun
2018-05-12
Polarimetric SAR (PolSAR) scattering characteristics of imagery are always obtained from the second order moments estimation of multi-polarization data, that is, the estimation of covariance or coherency matrices. Due to the extra-paths that signal reflected from separate scatterers within the resolution cell has to travel, speckle noise always exists in SAR images and has a severe impact on the scattering performance, especially on single look complex images. In order to achieve high accuracy in estimating covariance or coherency matrices, three aspects are taken into consideration: (1) the edges and texture of the scene are distinct after speckle filtering; (2) the statistical characteristic should be similar to the object pixel; and (3) the polarimetric scattering signature should be preserved, in addition to speckle reduction. In this paper, a joint restriction principle is proposed to meet the requirement. Three different restriction principles are introduced to the processing of speckle filtering. First, a new template, which is more suitable for the point or line targets, is designed to ensure the morphological consistency. Then, the extent sigma filter is used to restrict the pixels in the template aforementioned to have an identical statistic characteristic. At last, a polarimetric similarity factor is applied to the same pixels above, to guarantee the similar polarimetric features amongst the optional pixels. This processing procedure is named as speckle filtering with joint restriction principle and the approach is applied to GF-3 polarimetric SAR data acquired in San Francisco, CA, USA. Its effectiveness of keeping the image sharpness and preserving the scattering mechanism as well as speckle reduction is validated by the comparison with boxcar filters and refined Lee filter.
Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J
2014-11-01
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.
NASA Astrophysics Data System (ADS)
Xue, D.; Yu, X.; Jia, S.; Chen, F.; Li, X.
2018-04-01
In this paper, sequence ALOS PALSAR data and airborne SAR data of L-band from June 5, 2008 to September 8, 2015 are used. Based on the research of SAR data preprocessing and core algorithms, such as geocode, registration, filtering, unwrapping and baseline estimation, the improved Goldstein filtering algorithm and the branch-cut path tracking algorithm are used to unwrap the phase. The DEM and surface deformation information of the experimental area were extracted. Combining SAR-specific geometry and differential interferometry, on the basis of composite analysis of multi-source images, a method of detecting landslide disaster combining coherence of SAR image is developed, which makes up for the deficiency of single SAR and optical remote sensing acquisition ability. Especially in bad weather and abnormal climate areas, the speed of disaster emergency and the accuracy of extraction are improved. It is found that the deformation in this area is greatly affected by faults, and there is a tendency of uplift in the southeast plain and western mountainous area, while in the southwest part of the mountain area there is a tendency to sink. This research result provides a basis for decision-making for local disaster prevention and control.
Water vapor retrieval by LEO and GEO SAR: techniques and performance evaluation.
NASA Astrophysics Data System (ADS)
Fermi, Alessandro; Silvio Marzano, Frank; Monti Guarnieri, Andrea; Pierdicca, Nazzareno; Realini, Eugenio; Venuti, Giovanna
2016-04-01
The millimetric sensitivity of SAR interferometry has been proved fruitful in estimating water-vapor maps, that can then be processed into higher level ZWD and PWV products. In the paper, we consider two different SAR surveys: Low Earth Orbiting (LEO) SAR, like ESA Sentinel-1, and Geosynchronous Earth Orbiting SAR. The two system are complementary, where LEO coverage is world-wide, while GEO is regional. On the other hand, LEO revisit is daily-to weekly, whereas GEO provides images in minutes to hours. Finally, LEO synthetic aperture is so short, less than a second, that the water-vapor is mostly frozen, whereas in the long GEO aperture the atmospheric phase screen would introduce a total decorrelation, if not compensated for. In the paper, we first review the Differential Interferometric techniques to get differential delay maps - to be then converted into water-vapor products, and then evaluate the quality in terms of geometric resolution, sensitivity, percentage of scene coverage, revisit, by referring to L and C band system, for both LEO and GEO. Finally, we discuss an empirical model for time-space variogram, and show a preliminary validation by campaign conducted with Ground Based Radar, as a proxy of GEO-SAR, capable of continuous scanning wide areas (up to 15 km) with metric resolution.
NASA Astrophysics Data System (ADS)
Ishitsuka, Kazuya; Matsuoka, Toshifumi; Nishimura, Takuya; Tsuji, Takeshi; ElGharbawi, Tamer
2017-06-01
We investigated the post-seismic surface displacement of the 2011 Tohoku earthquake around the Kanto Plain (including the capital area of Japan), which is located approximately 400 km from the epicenter, using a global positioning system network during 2005-2015 and persistent scatterer interferometry of TerraSAR-X data from March 2011 to November 2012. Uniform uplift owing to viscoelastic relaxation and afterslip on the plain has been reported previously. In addition to the general trend, we identified areas where the surface displacement velocity was faster than the surrounding areas, as much as 7 mm/year for 3 years after the earthquake and with a velocity decay over time. Local uplift areas were 30 × 50 km2 and showed a complex spatial distribution with an irregular shape. Based on an observed groundwater level increase, we deduce that the local ground uplift was induced by a permeability enhancement and a pore pressure increase in the aquifer system, which is attributable to mainshock vibration.[Figure not available: see fulltext.
Natural versus anthropogenic subsidence of Venice
Tosi, Luigi; Teatini, Pietro; Strozzi, Tazio
2013-01-01
We detected land displacements of Venice by Persistent Scatterer Interferometry using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992–2010 and 2008–2011, respectively. By reason of the larger observation period, the C-band sensors was used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. Interpolation of the two datasets and removal of the C-band from the X-band map allows discriminating between the natural and anthropogenic components of the subsidence. A certain variability characterizes the natural subsidence (0.9 ± 0.7 mm/yr), mainly because of the heterogeneous nature and age of the lagoon subsoil. The 2008 displacements show that man interventions are responsible for movements ranging from −10 to 2 mm/yr. These displacements are generally local and distributed along the margins of the city islands. PMID:24067871
Merging of an EET CInSAR DEM with the SRTM DEM
NASA Astrophysics Data System (ADS)
Wegmuller, Urs; Wiesmann, Andreas; Santoro, Maurizio
2010-03-01
Cross-interferometry (CInSAR) using ERS-2 and ENVISAT ASAR SAR data acquired in the ERS like mode IS2 at VV-polarization with perpendicular baselines of approximately 2 kilometers permits generation of digital elevation models (DEMs). Thanks to the long perpendicular baselines CInSAR has a good potential to generate accurate DEMs over relatively flat terrain. Over sloped terrain the topographic phase gradients get very high and the signals decorrelate if the carrier frequency difference and the baseline effects do not compensate any more. As a result phase unwrapping gets very difficult so that often no reliable solution is obtained for hilly terrain, resulting in DEMs with significant spatial gaps.Spatial gaps in ERS-2 ENVISAT Tandem (EET) CInSAR DEMs over hilly terrain are clearly an important limitation to the utility of these DEMs. On the other hand the high quality achieved over relatively flat terrain is of high interest. As an attempt to significantly improve the utility of the "good information" contained in the CInSAR DEM we developed a methodology to merge a CInSAR DEM with another available DEM, e.g. the SRTM DEM.The methodology was applied to an area in California, USA, including relatively flat terrain belonging to the Mohave desert as well as hilly to mountainous terrain of the San Gabriel and Tehachapi Mountains.
NASA Astrophysics Data System (ADS)
Nguyen, Duy
2012-07-01
Digital Elevation Models (DEMs) are used in many applications in the context of earth sciences such as in topographic mapping, environmental modeling, rainfall-runoff studies, landslide hazard zonation, seismic source modeling, etc. During the last years multitude of scientific applications of Synthetic Aperture Radar Interferometry (InSAR) techniques have evolved. It has been shown that InSAR is an established technique of generating high quality DEMs from space borne and airborne data, and that it has advantages over other methods for the generation of large area DEM. However, the processing of InSAR data is still a challenging task. This paper describes InSAR operational steps and processing chain for DEM generation from Single Look Complex (SLC) SAR data and compare a satellite SAR estimate of surface elevation with a digital elevation model (DEM) from Topography map. The operational steps are performed in three major stages: Data Search, Data Processing, and product Validation. The Data processing stage is further divided into five steps of Data Pre-Processing, Co-registration, Interferogram generation, Phase unwrapping, and Geocoding. The Data processing steps have been tested with ERS 1/2 data using Delft Object-oriented Interferometric (DORIS) InSAR processing software. Results of the outcome of the application of the described processing steps to real data set are presented.
Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry
Walker, Peter
2017-01-01
Abstract The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. PMID:28108663
NASA Astrophysics Data System (ADS)
Ratha, Debanshu; Bhattacharya, Avik; Frery, Alejandro C.
2018-01-01
In this letter, we propose a novel technique for obtaining scattering components from Polarimetric Synthetic Aperture Radar (PolSAR) data using the geodesic distance on the unit sphere. This geodesic distance is obtained between an elementary target and the observed Kennaugh matrix, and it is further utilized to compute a similarity measure between scattering mechanisms. The normalized similarity measure for each elementary target is then modulated with the total scattering power (Span). This measure is used to categorize pixels into three categories i.e. odd-bounce, double-bounce and volume, depending on which of the above scattering mechanisms dominate. Then the maximum likelihood classifier of [J.-S. Lee, M. R. Grunes, E. Pottier, and L. Ferro-Famil, Unsupervised terrain classification preserving polarimetric scattering characteristics, IEEE Trans. Geos. Rem. Sens., vol. 42, no. 4, pp. 722731, April 2004.] based on the complex Wishart distribution is iteratively used for each category. Dominant scattering mechanisms are thus preserved in this classification scheme. We show results for L-band AIRSAR and ALOS-2 datasets acquired over San Francisco and Mumbai, respectively. The scattering mechanisms are better preserved using the proposed methodology than the unsupervised classification results using the Freeman-Durden scattering powers on an orientation angle (OA) corrected PolSAR image. Furthermore, (1) the scattering similarity is a completely non-negative quantity unlike the negative powers that might occur in double- bounce and odd-bounce scattering component under Freeman Durden decomposition (FDD), and (2) the methodology can be extended to more canonical targets as well as for bistatic scattering.
High-Speed Digital Interferometry
NASA Technical Reports Server (NTRS)
De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk
2012-01-01
Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.
NASA Astrophysics Data System (ADS)
Polcari, Marco; Fernández, José; Albano, Matteo; Bignami, Christian; Palano, Mimmo; Stramondo, Salvatore
2017-12-01
In this work, we propose an improved algorithm to constrain the 3D ground displacement field induced by fast surface deformations due to earthquakes or landslides. Based on the integration of different data, we estimate the three displacement components by solving a function minimization problem from the Bayes theory. We exploit the outcomes from SAR Interferometry (InSAR), Global Positioning System (GNSS) and Multiple Aperture Interferometry (MAI) to retrieve the 3D surface displacement field. Any other source of information can be added to the processing chain in a simple way, being the algorithm computationally efficient. Furthermore, we use the intensity Pixel Offset Tracking (POT) to locate the discontinuity produced on the surface by a sudden deformation phenomenon and then improve the GNSS data interpolation. This approach allows to be independent from other information such as in-situ investigations, tectonic studies or knowledge of the data covariance matrix. We applied such a method to investigate the ground deformation field related to the 2014 Mw 6.0 Napa Valley earthquake, occurred few kilometers from the San Andreas fault system.
UAVSAR Instrument: Current Operations and Planned Upgrades
NASA Technical Reports Server (NTRS)
Lou, Yunling; Hensley, Scott; Chao, Roger; Chapin, Elaine; Heavy, Brandon; Jones, Cathleen; Miller, Timothy; Naftel, Chris; Fratello, David
2011-01-01
The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument is a pod-based Lband polarimetric synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. This instrument is currently installed on the NASA Gulfstream- III (G-III) aircraft with precision real-time Global Positioning System (GPS) and a sensor-controlled flight management system for precision repeat-pass data acquisitions. UAVSAR has conducted engineering and preliminary science data flights since October 2007 on the G-III. We are porting the radar to the Global Hawk Unmanned Airborne Vehicle (UAV) to enable long duration/long range data campaigns. We plan to install two radar pods (each with its own active array antenna) under the wings of the Global Hawk to enable the generation of precision topographic maps and single pass polarimetric-interferometry (SPI) providing vertical structure of ice and vegetation. Global Hawk's range of 8000 nm will enable regional surveys with far fewer sorties as well as measurements of remote locations without the need for long and complicated deployments. We are also developing P-band polarimetry and Ka-band single-pass interferometry capabilities on UAVSAR by replacing the radar antenna and front-end electronics to operate at these
NASA Astrophysics Data System (ADS)
Wang, Xiaochen; Shao, Yun; Tian, Wei; Li, Kun
2018-06-01
This study explored different methodologies using a C-band RADARSAT-2 quad-polarized Synthetic Aperture Radar (SAR) image located over China's Yellow Sea to investigate polarization decomposition parameters for identifying mixed floating pollutants from a complex ocean background. It was found that solitary polarization decomposition did not meet the demand for detecting and classifying multiple floating pollutants, even after applying a polarized SAR image. Furthermore, considering that Yamaguchi decomposition is sensitive to vegetation and the algal variety Enteromorpha prolifera, while H/A/alpha decomposition is sensitive to oil spills, a combination of parameters which was deduced from these two decompositions was proposed for marine environmental monitoring of mixed floating sea surface pollutants. A combination of volume scattering, surface scattering, and scattering entropy was the best indicator for classifying mixed floating pollutants from a complex ocean background. The Kappa coefficients for Enteromorpha prolifera and oil spills were 0.7514 and 0.8470, respectively, evidence that the composite polarized parameters based on quad-polarized SAR imagery proposed in this research is an effective monitoring method for complex marine pollution.
Sparsity-driven coupled imaging and autofocusing for interferometric SAR
NASA Astrophysics Data System (ADS)
Zengin, Oǧuzcan; Khwaja, Ahmed Shaharyar; ćetin, Müjdat
2018-04-01
We propose a sparsity-driven method for coupled image formation and autofocusing based on multi-channel data collected in interferometric synthetic aperture radar (IfSAR). Relative phase between SAR images contains valuable information. For example, it can be used to estimate the height of the scene in SAR interferometry. However, this relative phase could be degraded when independent enhancement methods are used over SAR image pairs. Previously, Ramakrishnan et al. proposed a coupled multi-channel image enhancement technique, based on a dual descent method, which exhibits better performance in phase preservation compared to independent enhancement methods. Their work involves a coupled optimization formulation that uses a sparsity enforcing penalty term as well as a constraint tying the multichannel images together to preserve the cross-channel information. In addition to independent enhancement, the relative phase between the acquisitions can be degraded due to other factors as well, such as platform location uncertainties, leading to phase errors in the data and defocusing in the formed imagery. The performance of airborne SAR systems can be affected severely by such errors. We propose an optimization formulation that combines Ramakrishnan et al.'s coupled IfSAR enhancement method with the sparsity-driven autofocus (SDA) approach of Önhon and Çetin to alleviate the effects of phase errors due to motion errors in the context of IfSAR imaging. Our method solves the joint optimization problem with a Lagrangian optimization method iteratively. In our preliminary experimental analysis, we have obtained results of our method on synthetic SAR images and compared its performance to existing methods.
Theory and measure of certain image norms in SAR
NASA Technical Reports Server (NTRS)
Raney, R. K.
1984-01-01
The principal properties of synthetic aperture radar SAR imagery of point and distributed objects are summarized. Against this background, the response of a SAR (Synthetic Aperture Radar) to the moving surface of the sea is considered. Certain conclusions are drawn as to the mechanism of interaction between microwaves and the sea surface. Focus and speckle spectral tests may be used on selected SAR imagery for areas of the ocean. The fine structure of the sea imagery is sensitive to processor focus and adjustment. The ocean reflectivity mechanism must include point like scatterers of sufficient radar cross section to dominate the return from certain individual resolution elements. Both specular and diffuse scattering mechanisms are observed together, to varying degree. The effect is sea state dependent. Several experiments are proposed based on imaging theory that could assist in the investigation of reflectivity mechanisms.
An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; LV, M.
2017-12-01
Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS/PALSAR data. The results show that the strategy can effectively improve the accuracy of velocity estimation by reducing the mean and standard deviation values from 0.32 m and 0.4 m to 0.16 m. It is proved to be highly appropriate for monitoring glacier motion over a widely varying range of ice velocities with a relatively high accuracy.
Space Radar Image of Kilauea, Hawaii - interferometry 1
NASA Technical Reports Server (NTRS)
1994-01-01
This X-band image of the volcano Kilauea was taken on October 4, 1994, by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The area shown is about 9 kilometers by 13 kilometers (5.5 miles by 8 miles) and is centered at about 19.58 degrees north latitude and 155.55 degrees west longitude. This image and a similar image taken during the first flight of the radar instrument on April 13, 1994 were combined to produce the topographic information by means of an interferometric process. This is a process by which radar data acquired on different passes of the space shuttle is overlaid to obtain elevation information. Three additional images are provided showing an overlay of radar data with interferometric fringes; a three-dimensional image based on altitude lines; and, finally, a topographic view of the region. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.
NASA Astrophysics Data System (ADS)
Graniczny, Marek; Przylucka, Maria; Kowalski, Zbigniew
2016-08-01
Subsidence hazard and risk within the USCB are usually connected with the deep coal mining. In such cases, the surface becomes pitted with numerous collapse cavities or basins which depth may even reach tens of meters. The subsidence is particularly dangerous because of causing severe damage to gas and water pipelines, electric cables, and to sewage disposal systems. The PGI has performed various analysis of InSAR data in this area, including all three SAR bands (X, C and L) processed by DInSAR, PSInSAR and SqueeSAR techniques. These analyses of both conventional and advanced DInSAR approaches have proven to be effective to detect the extent and the magnitude of mining subsidence impact on urban areas. In this study an analysis of two series of subsequent differential interferograms obtained in the DInSAR technique are presented. SAR scenes are covering two periods and were acquired by two different satellites: ALOS-P ALSAR data from 22/02/2007- 27/05/2008 and TerraSAR-X data from 05/07/2011-21/06/2012. The analysis included determination of the direction and development of subsidence movement in relation to the mining front and statistic comparison between range and value of maximum subsidence detected for each mining area. Detailed studies were performed for Bobrek-Centrum mining area. They included comparison of mining fronts and location of the extracted coal seams with the observed subsidence on ALOS-P ALSAR InSAR interferograms. The data can help in estimation not only the range of the subsidence events, but also its value, direction of changes and character of the motion.
Renga, Alfredo; Moccia, Antonio
2009-01-01
During the last decade a methodology for the reconstruction of surface relief by Synthetic Aperture Radar (SAR) measurements – SAR interferometry – has become a standard. Different techniques developed before, such as stereo-radargrammetry, have been experienced from space only in very limiting geometries and time series, and, hence, branded as less accurate. However, novel formation flying configurations achievable by modern spacecraft allow fulfillment of SAR missions able to produce pairs of monostatic-bistatic images gathered simultaneously, with programmed looking angles. Hence it is possible to achieve large antenna separations, adequate for exploiting to the utmost the stereoscopic effect, and to make negligible time decorrelation, a strong liming factor for repeat-pass stereo-radargrammetric techniques. This paper reports on design of a monostatic-bistatic mission, in terms of orbit and pointing geometry, and taking into account present generation SAR and technology for accurate relative navigation. Performances of different methods for monostatic-bistatic stereo-radargrammetry are then evaluated, showing the possibility to determine the local surface relief with a metric accuracy over a wide range of Earth latitudes. PMID:22389594
Bacques, Guillaume; de Michele, Marcello; Raucoules, Daniel; Aochi, Hideo; Rolandone, Frédérique
2018-04-16
This study focuses on the shallow deformation that occurred during the 5 years following the Parkfield earthquake (28/09/2004, Mw 6, San Andreas Fault, California). We use Synthetic Aperture Radar interferometry (InSAR) to provide precise measurements of transient deformations after the Parkfield earthquake between 2005 and 2010. We propose a method to combine both ERS2 and ENVISAT interferograms to increase the temporal data sampling. Firstly, we combine 5 years of available Synthetic Aperture Radar (SAR) acquisitions including both ERS-2 and Envisat. Secondly, we stack selected interferograms (both from ERS2 and Envisat) for measuring the temporal evolution of the ground velocities at given time intervals. Thanks to its high spatial resolution, InSAR could provide new insights on the surface fault motion behavior over the 5 years following the Parkfield earthquake. As a complement to previous studies in this area, our results suggest that shallow transient deformations affected the Creeping-Parkfield-Cholame sections of the San Andreas Fault after the 2004 Mw6 Parkfield earthquake.
NASA Astrophysics Data System (ADS)
Mayorga Torres, Tannia
2014-05-01
Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador (South America) 1. INTRODUCTION Monitoring landslides is a mandatory task in charge on the National Institute of Geological Research (INIGEMM) in Ecuador. It is a small country, supposedly will be faster doing monitoring, but what about its geographic characteristics? Lamentably, due to human and financial resources is not possible to put monitoring systems in unstable terrain areas. However, getting ALOS data to accessible price and using open source software to produce interferograms, could be a first step to know steep areas covered by vegetation and where mass movements are not visible. Under this statement, this study is part of the final research in a master study developed at CONAE during 2009-2011, with oral defense in August 2013. As a new technique used in Ecuador, the study processed radar data from ERS-1/2 and ALOS sensor PALSAR for getting differential interferograms, using ROI_PAC software. Stacking DInSAR is applied to get an average of displacement that indicates uplift and subsidence in the whole radar scene that covers two provinces in the Andes region. 2. PROBLEM Mass movements are present in the whole territory, independently of their magnitude and dynamic (slow or fast), they are a latent threat in winter season specially. There are registers of monitoring, such as two GPS's campaigns and artisanal extensometers, which are used to contrast with DInSAR results. However, the campaigns are shorter and extensometers are no trust on all. 3. METHODOLOGY Methodology has four phases of development: (1) Pre-processing of RAW data; (2) Processing of RAW data in ROI_PAC; (3) Post-processing for getting interferograms in units of cm per year; (4) Analysis of the results and comparison with ground truth. Sandwell & Price (1998) proposed Stacking technique to increase the fringes and decrease errors due to the atmosphere, to average several interferograms. L band penetrates deeper into vegetation cover than C band (Raucoules et al., 2007). The study processed ERS with descending orbit and ALOS with ascending orbit, due to the availability of data. Ferretti et al. (2007) said that ERS looks to the right and a slope mainly oriented to the west could have foreshortening effect in ascending orbit. Wei & Sandwell (2010) mention that ALOS in ascending orbit identifies vertical mass movements along fault systems; however, descending data has better geometry to measure mass movements. The study has fewer scenes in descending orbit. For further work, ALOS 2 will let to have more data in descending orbit. 4. CENTRAL CONCLUSIONS For mass movement having high-resolution radar is the best option; however, this data is not useful on all due to cover vegetation. Characterizing mass movements in Ecuador in necessary to put monitoring systems to avoid economic and human lost. Processing ERS and ALOS data was very useful because penetration band results were clearly identified in coherence masks. The result of Stacking DInSAR did not show clearly fringes, indeed the amount of interferograms were no enough for this technique. Researching other DInSAR techniques is necessary due to the singular characteristics of Ecuador. 5. REFERENCES Ferretti Alessandro, Monti-Guarnieri Andrea, Prati Claudio, Rocca Fabio, Massonnet Didier (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (TM-19, Febrero 2007). K. Fletcher, Agencia Espacial Europea Publicaciones. ESTEC. Postbus 2009. 2200 AG Noordwijk. The Netherlands. Raucoules Daniel, Colesanti Carlo, Carnec Claudie (2007). "Use of SAR interferometry for detecting and assessing ground subsidence." C. R. Geoscience 339(289-302): 14. Sandwell David T., Price Evelyn J. (1998). "Phase gradient approach to stacking interferograms." Journal of Geophysical Research 103(N. B12): 30, 183-30, 204. Wei Meng, Sandwell David T (2010). "Decorrelation of L-Band and C-Band Interferometry Over Vegetated Areas in California." Geoscience and Remote Sensing 48(7): 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.
2014-11-15
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnosticsmore » are used to constrain analysis, increasing the accuracy of interpretation.« less
Motion of David Glacier in East Antarctica Observed by COSMO-SkyMed Differential SAR Interferometry
NASA Astrophysics Data System (ADS)
Han, H.; Lee, H.
2011-12-01
David glacier, located in Victoria Land, East Antarctica (75°20'S, 161°15'E), is an outlet glacier of 13 km width near the grounding line and 50 km long from the source to the grounding line. David glacier flows into Ross Sea forming Drygalski Ice Tongue, 100 km long and 23 km wide. In this study, we extracted a surface displacement map of David by applying differential SAR interferometry (DInSAR) to one-day tandem pairs obtained from COSMO-SkyMed satellites on April 28-29 (descending orbit) and May 5-6 (ascending orbit), 2011, respectively. Terra ASTER global digital elevation model (GDEM) is used to remove the topographic effect from the COSMO-SkyMed interferograms. David glacier showed maximum displacement of 35 cm during April 28-29 and 20 cm during May 5-6 in the direction of radar line of sight. The glacier can be divided into several blocks by the disparities of displacement between the different sliding zone. Surface displacement map contains errors originated from orbit data, atmospheric conditions, DEM error. GDEM is generated from the ASTER optical images acquired from 2000 to 2008. It has the vertical accuracy of about 20 m at 95% confidence with the 30 m of horizontal posting. The accuracy of GDEM reduces when cloud cover is included in the ASTER image. Particularly in the snow and ice area, GDEM is inaccurate due to whiteout effect during stereo matching. The inaccuracy of GDEM could be a reason of the observed glacier motion in the opposite direction of gravity. This problem can be solved by using TanDEM-X DEM. Bistatic acquisition of SAR images from the constellation of TerraSAR-X and TanDEM-X will generate a global DEM with the vertical accuracy better than 2 m and the horizontal posting of 12 m. We plan to perform DInSAR of COSMO-SkyMed one-day tandem pairs again when the high-accuracy TanDEM-X DEM is available in the near future. As a conclusion, we could analyze the displacement of David glacier in East Antarctica. The glacier showed very fast motion forming a block of streamlines with different flow velocity. For more accurate analysis, we will use TanDEM-X DEM to perform the DInSAR. The flow characteristics, ice mass balance, ice discharge rate of David glacier remains as an ongoing research.
Schatten Matrix Norm Based Polarimetric SAR Data Regularization Application over Chamonix Mont-Blanc
NASA Astrophysics Data System (ADS)
Le, Thu Trang; Atto, Abdourrahmane M.; Trouve, Emmanuel
2013-08-01
The paper addresses the filtering of Polarimetry Synthetic Aperture Radar (PolSAR) images. The filtering strategy is based on a regularizing cost function associated with matrix norms called the Schatten p-norms. These norms apply on matrix singular values. The proposed approach is illustrated upon scattering and coherency matrices on RADARSAT-2 PolSAR images over the Chamonix Mont-Blanc site. Several p values of Schatten p-norms are surveyed and their capabilities on filtering PolSAR images is provided in comparison with conventional strategies for filtering PolSAR data.
NASA Astrophysics Data System (ADS)
Chen, R. F.; Lin, C. W.; Hsu, Y. J.; Zhang, L.; Liang, H. Y.
2017-12-01
The February 6 Meinong Earthquake of 2016 (ML=6.4; at 23.85ºN, 120.81ºE), with a focal depth of 16.7 km, was triggered by an unknown blind thrust in southern Taiwan. The earthquake not only induced coseismic crustal deformation, but also triggered slow-moving landslides nearby the Longchuan active fault. In this study, high-resolution LiDAR derived DEM of 2010 is used to recognize locations of previous slow-moving landslides according to their topographic signatures, such as main escarpment, trench, double ridge, and crown cracks. Within an area of 4.5 km x 1.8 km along Longchuan fault near the ridge of Longchuan mountain, over 50 sites with landslide signatures are recognized, and three of them are over 10 ha. These earthquake-induced landslide deformations are detected from InSAR (synthetic aperture radar interferometry) images using Advanced Land Observing Satellite ALOS2/Phased-array L band and Sentinel 1 C-band SAR (PALSAR) data taken before and after the earthquake; some significant landslide deformation are even overlapped with areas where previous slow moving landslides were identified on the LiDAR DEM. Additionally, field investigation right after the earthquake in the study area also support that these previously identified landslides reactivated in the earthquake. Although these landslides do not cause serious damage due to their minor displacement in the Meinong Earthquake, the study results prove that LiDAR DEM is a powerful tool to identify and continuously monitor slow-motion landslides for preventing catastrophic failures that may be caused by hazardous earthquake or heavy rainfall.
NASA Astrophysics Data System (ADS)
Aly, M. H.; Hughes, S. S.; Rodgers, D. W.; Glenn, N. F.; Thackray, G. D.
2007-12-01
The Snake River Plain-Yellowstone tectono-volcanic province was created when North America migrated over a fixed hotspot in the mantle. Synthetic Aperture Radar Interferometry (InSAR) has been applied in this study to address the recent tectono-volcanic activity in the Eastern Snake River Plain (ESRP) and the southwestern part of Yellowstone Plateau. InSAR results show that crustal deformation across the tectono-volcanic province is episodic. An episode of uplift (about 1 cm/yr) along the ESRP axial volcanic zone, directly southwest of Island Park, has been detected from a time-series of independent differential interferograms created for the 1993-2000 period. Episodes of subsidence (1 cm/yr) during 1997-2000 and uplift (3 cm/yr) during 2004-2006 have been also detected in the active Yellowstone caldera, just northeast of Island Park. The detected interferometric signals indicate that deformation across the axial volcanic zone near Island Park is inversely linked to deformation in the active Yellowstone caldera. One explanation is that the inverse motions reflect a flexure response of the ESRP crust to magma chamber activity beneath the active caldera, although other interpretations are possible. The time-series of differential interferograms shows that no regional deformation has occurred across the central part of ESRP during the periods of observations, but local surface displacements of 1-3 cm magnitude have been detected in the adjacent Basin-Range province. Differential surface movements of varying rates have been also detected along Centennial, Madison, and Hebgen faults between 1993 and 2006.
Ka-band SAR interferometry studies for the SWOT mission
NASA Astrophysics Data System (ADS)
Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.
2008-12-01
The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.
Initial assessment of an airborne Ku-band polarimetric SAR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, Ann Marie; Doerry, Armin Walter
2013-02-01
Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band formore » airborne or unmanned aerial systems.« less
Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska
Lu, Z.; Freymueller, J.T.
1998-01-01
The feasibility of measuring volcanic deformation or monitoring deformation of active volcanoes using space-borne synthetic aperture radar (SAR) interferometry depends on the ability to maintain phase coherence over appropriate time intervals. Using ERS 1 C band (λ=5.66 cm) SAR imagery, we studied the seasonal and temporal changes of the interferometric SAR coherence for fresh lava, weathered lava, tephra with weak water reworking, tephra with strong water reworking, and fluvial deposits representing the range of typical volcanic surface materials in the Katmai volcano group, Alaska. For interferograms based on two passes with 35 days separation taken during the same summer season, we found that coherence increases after early June, reaches a peak between the middle of July and the middle of September, and finally decreases until the middle of November when coherence is completely lost for all five sites. Fresh lava has the highest coherence, followed by either weathered lava or fluvial deposits. These surfaces maintain relatively high levels of coherence for periods up to the length of the summer season. Coherence degrades more rapidly with time for surfaces covered with tephra. For images taken in different summers, only the lavas maintained coherence well enough to provide useful interferometric images, but we found only a small reduction in coherence after the first year for surfaces with lava. Measurement of volcanic deformation is possible using summer images spaced a few years apart, as long as the surface is dominated by lavas. Our studies suggest that in order to make volcanic monitoring feasible along the Aleutian arc or other regions with similar climatic conditions, observation intervals of the satellite with C band SAR should be at least every month from July through September, every week during the late spring/early summer or late fall, and every 2–3 days during the winter.
NASA Technical Reports Server (NTRS)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.
Surface periodicity of Ir(110) from time-of-flight scattering and recoiling spectrometry (TOF-SARS)
NASA Astrophysics Data System (ADS)
Bu, H.; Shi, M.; Rabalais, J. W.
1991-03-01
The surface periodicity of the Ir(110) surface in both the clean reconstructed (1×3) and oxygen stabilized unreconstructed (1×1) phases have been investigated using time-of-flight scattering and recoiling spectrometry (TOF-SARS). A pulsed 4 keV Ar + ion beam is directed at a grazing incident angle to the surface and the scattered neutral plus ion flux is monitored as a function of beam exit angle and crystal azimuthal angle. It is demonstrated that either maxima or minima are obtained in the scattered flux along the low-index crystallographic directions depending on whether near-specular or off-specular scattering conditions, respectively, are used. These scattering intensity patterns as a function of crystal azimuthal angle provide a direct measure of the surface periodicity. These intensity variations are explained in terms of the Lindhard critical angle, semichannel focusing effects, and trajectory simulations.
NASA Astrophysics Data System (ADS)
Mateos, Rosa Maria; Bianchini, Silvia; Herrera, Gerardo; Garcia, Inmaculada; Sanabria, Margarita
2016-04-01
The Serra de Tramuntana, which forms the backbone of the north-west of Mallorca (Spain), was declared in 2011 World Heritage Site by UNESCO under the cultural landscape category. The particular landscape of this range is the fruit of the exchange of knowledge between cultures, with small-scale works performed collectively for a productive aim, conditioned by the limitations imposed by the physical medium. The steep topography of the chain, highly related to its geological complexity, and the Mediterranean climate, influence intense slope dynamics with the consequent multiple types of slope failures: rock slides, earth landslides and rockfalls, which cause significant damage and specifically to the road network (Mateos, 2013a). The human landscape marked by agricultural terraces (dry stone constructions) has significantly contributed to the slope stability in the range for centuries. In the present work, a landslide inventory map with 918 events has been updated and the landslides state of activity was analyzed exploiting 14 ALOS PALSAR satellite SAR (Synthetic Aperture Radar) images acquired during the period 2007-2010. Landslide activity maps were elaborated through the use of PSI (Persistent Scatterers Interferometry) technique (Bianchini et al., 2013). Besides assessing the PS visibility of the study area according to the relief, land use and satellite acquisition parameters, these maps evaluate, for every monitored landslide, the average velocities along the satellite Line Of Sight (VLOS) and along the maximum local steepest slope (VSLOPE), providing an estimate of their state of activity and their potential to cause damages. Additionally, a ground motion activity map is also generated, based on active PS clusters not included within any mapped landslide phenomenon. A confidence degree evaluation is carried out to attest the reliability of measured displacements to represent landslide dynamics. Results show that 42 landslides were identified as active (VSLOPE < -5mm/yr) and seven of them with a potential to produce moderate damage (VSLOPE < -10mm/yr). One of the largest landslides in the range is the Bàlitx landslide (50 million m3 in volume), located on the steep coastal side (Mateos et al., 2013b). Within the landslide body, Roman cistern and old terrace walls have been identified. Numerous geomorphological features identified in its displaced mass (cracks, shallow slides and rockfalls) reveal that the landslide has not yet reached a state of equilibrium. Additionally, field observations determine that the northeastern sector of Bàlitx shows major activity signs. DInSAR results reveal that the rate of movement for the Bàlitx landslide is extremely low (- 5mm /yr on average) that could be interpreted as the residual displacement of the deep-seated rockslide. A major activity has also been detected in the northeastern sector of Bàlitx with the PSI technique, where velocities rates are slightly over -5 mm/yr. The outcomes of this work reveal the usefulness of landslide activity maps for environmental planning activities in cultural heritage sites. References: Bianchini S, Herrera G, Mateos RM, Notti D, García-Moreno I, Mora O, Moretti S (2013). Landslide Activity Maps Generation by means of Persistent Scattered Interferometry. Remote Sensing 5:6198-6222. Mateos R.M., García-Moreno I., Herrera G., Mulas J (2013) a. Damage caused by recent mass-movements in Majorca (Spain), a region with a high risk due to tourism. Landslide Science and Practice. Claudio Margottini, Paolo Canuti and Kyoji Sassa (Editors). Volume 7: Social and Economic Impact and Policies. 105-113. Mateos RM, Rodríguez-Peces M, Azañón JM, Rodríguez-Fernández FJ, Roldán FJ, García-Moreno I, Gelabert B, García-Mayordomo J (2013)b. El deslizamiento de Bàlitx (Mallorca) y su posible origen sísmico. Procesos activos desde el Pleistoceno superior. Boletín Geológico y Minero, 124 (1): 41-61
NASA Astrophysics Data System (ADS)
Zhang, Siqian; Kuang, Gangyao
2014-10-01
In this paper, a novel three-dimensional imaging algorithm of downward-looking linear array SAR is presented. To improve the resolution, multiple signal classification (MUSIC) algorithm has been used. However, since the scattering centers are always correlated in real SAR system, the estimated covariance matrix becomes singular. To address the problem, a three-dimensional spatial smoothing method is proposed in this paper to restore the singular covariance matrix to a full-rank one. The three-dimensional signal matrix can be divided into a set of orthogonal three-dimensional subspaces. The main idea of the method is based on extracting the array correlation matrix as the average of all correlation matrices from the subspaces. In addition, the spectral height of the peaks contains no information with regard to the scattering intensity of the different scattering centers, thus it is difficulty to reconstruct the backscattering information. The least square strategy is used to estimate the amplitude of the scattering center in this paper. The above results of the theoretical analysis are verified by 3-D scene simulations and experiments on real data.
High Resolution Rapid Revisits Insar Monitoring of Surface Deformation
NASA Astrophysics Data System (ADS)
Singhroy, V.; Li, J.; Charbonneau, F.
2014-12-01
Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.
Hall, D.K.; Williams, R.S.; Barton, J.S.; Sigurdsson, O.; Smith, L.C.; Garvin, J.B.
2000-01-01
Dynamic surficial changes and changes in the position of the firn line and the areal extent of Hofsjökull ice cap, Iceland, were studied through analysis of a time series (1973–98) of synthetic-aperture radar (SAR) and Landsat data. A digital elevation model of Hofsjökull, which was constructed using SAR interferometry, was used to plot the SAR backscatter coefficient (σ°) vs elevation and air temperature along transects across the ice cap. Seasonal and daily σ° patterns are caused by freezing or thawing of the ice-cap surface, and abrupt changes in σ° are noted when the air temperature ranges from ∼−5° to 0°C. Late-summer 1997 σ° (SAR) and reflectance (Landsat) boundaries agree and appear to be coincident with the firn line and a SAR σ° boundary that can be seen in the January 1998 SAR image. In January 1994 through 1998, the elevation of this σ° boundary on the ice capwas quite stable, ranging from 1000 to 1300 m, while the equilibrium-line altitude, as measured on the ground, varied considerably. Thus the equilibrium line may be obscured by firn from previous years. Techniques are established to measure long-term changes in the elevation of the firn line and changes in the position of the ice margin.
A learning tool for optical and microwave satellite image processing and analysis
NASA Astrophysics Data System (ADS)
Dashondhi, Gaurav K.; Mohanty, Jyotirmoy; Eeti, Laxmi N.; Bhattacharya, Avik; De, Shaunak; Buddhiraju, Krishna M.
2016-04-01
This paper presents a self-learning tool, which contains a number of virtual experiments for processing and analysis of Optical/Infrared and Synthetic Aperture Radar (SAR) images. The tool is named Virtual Satellite Image Processing and Analysis Lab (v-SIPLAB) Experiments that are included in Learning Tool are related to: Optical/Infrared - Image and Edge enhancement, smoothing, PCT, vegetation indices, Mathematical Morphology, Accuracy Assessment, Supervised/Unsupervised classification etc.; Basic SAR - Parameter extraction and range spectrum estimation, Range compression, Doppler centroid estimation, Azimuth reference function generation and compression, Multilooking, image enhancement, texture analysis, edge and detection. etc.; SAR Interferometry - BaseLine Calculation, Extraction of single look SAR images, Registration, Resampling, and Interferogram generation; SAR Polarimetry - Conversion of AirSAR or Radarsat data to S2/C3/T3 matrix, Speckle Filtering, Power/Intensity image generation, Decomposition of S2/C3/T3, Classification of S2/C3/T3 using Wishart Classifier [3]. A professional quality polarimetric SAR software can be found at [8], a part of whose functionality can be found in our system. The learning tool also contains other modules, besides executable software experiments, such as aim, theory, procedure, interpretation, quizzes, link to additional reading material and user feedback. Students can have understanding of Optical and SAR remotely sensed images through discussion of basic principles and supported by structured procedure for running and interpreting the experiments. Quizzes for self-assessment and a provision for online feedback are also being provided to make this Learning tool self-contained. One can download results after performing experiments.
NASA Astrophysics Data System (ADS)
Alzeyadi, Ahmed; Yu, Tzuyang
2018-03-01
Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.
Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry.
Shi, Xuesong; Walker, Peter; Harbury, Pehr B; Herschlag, Daniel
2017-05-05
The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
A general rough-surface inversion algorithm: Theory and application to SAR data
NASA Technical Reports Server (NTRS)
Moghaddam, M.
1993-01-01
Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.
NASA Astrophysics Data System (ADS)
Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Santos, Athos R.; Galo, Mauricio; Camargo, Paulo O.; Silva, Arnaldo Q.; Silva, Guilherme G.
2014-10-01
We present an investigation of surface deformation using Differential SAR Interferometry (DInSAR) time-series carried out in an active open pit iron mine, the N5W, located in the Carajás Mineral Province (Brazilian Amazon region), using 33 TerraSAR-X (TSX-1) scenes. This mine has presented a historical of instability and surface monitoring measurements over sectors of the mine (pit walls) have been done based on ground based radar. Two complementary approaches were used: the standard DInSAR configuration, as an early warning of the slope instability conditions, and the DInSAR timeseries analysis. In order to decrease the topographic phase error a high resolution DEM was generated based on a stereo GeoEye-1 pair. Despite the fact that a DinSAR contains atmospheric and topographic phase artifacts and noise, it was possible to detect deformation in some interferometric pairs, covering pit benches, road ramps and waste piles. The timeseries analysis was performed using the 31 interferometric pairs, which were selected based on the highest mean coherence of a stack of 107 interferograms, presenting less phase unwrapping errors. The time-series deformation was retrieved by the Least-Squares (LS) solution using an extension of the Singular Value Decomposition (SVD), with a set of additional weighted constrain on the acceleration deformation. The atmospheric phase artifacts were filtered in the space-time domain and the DEM height errors were estimated based on the normal baseline diversity. The DInSAR time-series investigation showed good results for monitoring surface displacement in the N5W mine located in a tropical rainforest environment, providing very useful information about the ground movement for alarm, planning and risk assessment.
NASA Astrophysics Data System (ADS)
Bonforte, A.; Casu, F.; de Martino, P.; Guglielmino, F.; Lanari, R.; Manzo, M.; Obrizzo, F.; Puglisi, G.; Sansosti, E.; Tammaro, U.
2009-04-01
Differential Synthetic Aperture Radar Interferometry (DInSAR) is a methodology able to measure ground deformation rates and time series of relatively large areas. Several different approaches have been developed over the past few years: they all have in common the capability to measure deformations on a relatively wide area (say 100 km by 100 km) with a high density of the measuring points. For these reasons, DInSAR represents a very useful tool for investigating geophysical phenomena, with particular reference to volcanic areas. As for any measuring technique, the knowledge of the attainable accuracy is of fundamental importance. In the case of DInSAR technology, we have several error sources, such as orbital inaccuracies, phase unwrapping errors, atmospheric artifacts, effects related to the reference point selection, thus making very difficult to define a theoretical error model. A practical way to obtain assess the accuracy is to compare DInSAR results with independent measurements, such as GPS or levelling. Here we present an in-deep comparison between the deformation measurement obtained by exploiting the DInSAR technique referred to as Small BAseline Subset (SBAS) algorithm and by continuous GPS stations. The selected volcanic test-sites are Etna, Vesuvio and Campi Flegrei, in Italy. From continuous GPS data, solutions are computed at the same days SAR data are acquired for direct comparison. Moreover, three dimensional GPS displacement vectors are projected along the radar line of sight of both ascending and descending acquisition orbits. GPS data are then compared with the coherent DInSAR pixels closest to the GPS station. Relevant statistics of the differences between the two measurements are computed and correlated to some scene parameter that may affect DInSAR accuracy (altitude, terrain slope, etc.).
Third order nonlinear phenomena in silica solid and hollow whispering gallery mode resonators
NASA Astrophysics Data System (ADS)
Farnesi, D.; Barucci, A.; Berneschi, S.; Cosi, F.; Righini, G. C.; Nunzi Conti, G.; Soria, Silvia
2016-03-01
We report efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility χ(3) interactions in resonant silica microspheres and microbubbles in the regime of normal dispersion. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS) and comb generation. Unusually strong anti-Stokes components and extraordinarily symmetric spectra have been observed. Resonant SARS and SRS corresponding to different Raman bands were also observed. The lack of correlation between stimulated anti-stokes and stokes scattering spectra indicates that the signal has to be resonant with the cavity.
PolSAR-Ap: Exploitation of Fully Polarimetric SAR Data for Sea Oil Slick Monitoring
NASA Astrophysics Data System (ADS)
Migliaccio, M.; Nunziata, F.
2013-08-01
In this study, some of the most up-to-dated polarimetric approaches for sea oil slick observation are reviewed and their performance is discussed using actual C-band RadarSAT-2 SAR data where both oil slicks, related to the Deepwater Horizon accident, and oil seeps are present.Results demonstrate the unique benefits of polarimetric SAR data in: a) characterizing the scattering mechanism of sea surface with and without surfactants; b) providing information on the damping properties of the surfactant.
Earth's surface loading study using InSAR
NASA Astrophysics Data System (ADS)
Amelung, F.; Zhao, W.; Doin, M. P.
2014-12-01
Earth's surface loading/unloading such as glacier retreat, lake water level change, ocean tide, cause measurable (centimeter to millimeter) surface deformation from Synthetic Aperture Radar Interferometry (InSAR). Such seasonal or decadal deformation signals are useful for the estimation of the amount of load and the parameterization of crust and upper mantle - typically under an elastic or a visco-elastic mechanism. Since 2010, we established a study of surface loading using small baseline InSAR time-series analysis. Four sites are included in this study, which are Vatnajokull ice cap, Lake Yamzho Yumco, Petermann glacier, and Barnes ice cap using different satellites such as ERS1/2, Envisat, Radarsat-2, TerraSAR-X. We present results that mainly answer three questions: 1) Is InSAR time-series capable for the detection of millimeter level deformation due to surface loading; 2) When the Earth's rheology is known, how much load change occured; 3) When the surface loading is known, what are the Earth's parameters such as Young's modulus, viscosity. For glacier retreat problem, we introduce a new model for the ice mass loss estimation considering the spatial distribution of ice loss. For lake unloading problem, modeled elastic parameters are useful for the comparison to other 1-D models, e.g. the model based on seismic data.
Railway infrastructure monitoring with COSMO/SkyMed imagery and multi-temporal SAR interferometry
NASA Astrophysics Data System (ADS)
Chiaradia, M.; Nutricato, R.; Nitti, D. O.; Bovenga, F.; Guerriero, L.
2012-12-01
For all the European Countries, the rail network represents a key critical infrastructure, deserving protection in view of its continuous structure spread over the whole territory, of the high number of European citizens using it for personal and professional reasons, and of the large volume of freight moving through it. Railway system traverses a wide variety of terrains and encounters a range of geo-technical conditions. The interaction of these factors together with climatic and seismic forcing, may produce ground instabilities that impact on the safety and efficiency of rail operations. In such context, a particular interest is directed to the development of technologies regarding both the prevention of mishaps of infrastructures and the fast recovery of their normal working conditions after the occurrence of accidents (disaster managing). Both these issues are of strategic interest for EU Countries, and in particular for Italy, since, more than other countries, it is characterized by a geo-morphological and hydro-geological structure complexity that increases the risk of natural catastrophes due to landslides, overflowings and floods. The present study has been carried out in the framework of a scientific project aimed at producing a diagnostic system, capable to foresee and monitor landslide events along railway networks by integrating in situ data, detected from on board sophisticated innovative measuring systems, with Earth Observation (EO) techniques. Particular importance is devoted to the use of advanced SAR interferometry, thanks to their all-weather, day-night capability to detect and measure with sub-centimeter accuracy ground surface displacements that, in such context, can occur before a landslide event or after that movements . Special attention is directed to the use of SAR images acquired by COSMO/SkyMed (ASI) constellation capable to achieve very high spatial resolution and very short revisit and response time. In this context, a stack of 57 CSK stripmap images (pol.: HH; look side: right; pass direction: ascending; beam: H4-03; resolution: 3x3 m2) have been acquired from October 2009 to April 2012, covering the Calabria's Tyrrhenian coast, between the towns of Palmi and Reggio Calabria. The imaged area is of strategic importance since the two towns are connected by a stretch of the Tyrrhenian railway line, a fundamental line (as classified by RFI, the Italian Rail Network) belonging to the TEN-T network, i.e. the trans-european transport network defined since early '90 by the European Commission. Moreover, Calabria region is a challenging area where carrying on an analysis on weathering-related slope movements . In Calabria, on 2009the geo-hydrological crisis was so severe that the Italian Government had to declare the "state of emergency ". This paper concerns the processing of the CSK dataset performed through the SPINUA algorithm a Persistent Scatterers Interferometry technique originally developed with the aim of detection and monitoring of coherent targets in non- or scarcely urbanized areas. The displacement maps derived on the area of interest will be presented and commented with particular attention to the potential impact that such EO-based product can have on the railway networks monitoring. Acknowledgments CSK data provided by ASI in the framework of the project CAR-SLIDE, funded by MIUR (PON01_00536)
NASA Astrophysics Data System (ADS)
Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.
2014-12-01
This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A quicklook of the wrapped differential TerraSAR-X ScanSAR co-seismic interferogram is provided in the attachment (range coverage is 100 km by using 4 subswaths).
NASA Astrophysics Data System (ADS)
Triggiani, M.; Refice, A.; Capolongo, D.; Bovenga, F.; Caldara, M.
2009-04-01
We present results of an experiment aimed at detecting possible displacements due to subsidence in the coastal area of the Tavoliere plain, Puglia Region, in Southern Italy, through analysis of remotely sensed data. The Tavoliere is the second largest Italian plain. Its coastal area, between the urban centers of Manfredonia and Barletta, is composed of a 50 km long sandy beach (Manfredonia gulf), linking the Gargano massif at north with the Murge plateau in the south-east. Both areas belong to the carbonate Mesozoic Apulian platform. The current configuration of the Gulf was reached recently, as a consequence of the Holocene sea level rise. During the Neolithic age the plain was occupied by an elongated lagoon (Salpi Lagoon) [1]. During the 2nd century B.C., alluvial deposition caused the lagoon to be separated into two basins: the so-called Salpi lake at south and the Salso lake at north. To cope with the increasing demand of arable lands and with the necessity to make unhealthy areas accessible to humans, some reclaims were accomplished by diverting and channelling the rivers crossing the Tavoliere plain, and by levelling dune belts. At present, the beach is separated by low artificial dunes from the areas already reclaimed and intensely cultivated or exploited as evaporation basin for salt production. In the last decades, the coastal area has been retreating due to a reduction in sediment input necessary for coastal equilibrium. The levelling of dunes and the decrease of fluvial turbid discharge due to dam constructions are probably the cause of this deficit in sediment supply. During highly intense hydrodynamic and meteorological events, sea waters often penetrate deeply inland, flooding intensively cultivated areas. These events are occurring with growing frequency and rates. They are an indication of the possibility that those areas are subject to subsidence at a faster rate in comparison to the surroundings. An example is the salt marsh located inland of the tourist sea village "Ippocampo". Here, unpublished studies based on ground data indicate average subsidence rates of the order of 0.20 mm/y in the last 125 ka for the inland area next to the village. More recently, height maps issued by the Italian Military Geographic Institute (IGM) in the 1950s report heights a.s.l. of the order of a few m. Observing that today the area is practically at sea level, an average subsidence of the order of tens of mm/y can be inferred for the last 50 years. To gain insight into the recent evolution of these phenomena, we investigate vertical movements on the coastal Tavoliere area through multitemporal differential Interferometric synthetic aperture radar (DInSAR) techniques. We use a persistent scatterers interferometry (PSI) processing methodology [2] to estimate subsidence displacement rates from long temporal series of SAR acquisitions. PSI techniques, first developed at POLIMI [3], allow to retrieve phase information from stacks of co-registered SAR interferograms spanning many years and taken from different directions with large baselines, by restricting the analysis to selected image pixels containing single objects with strong radar backscatter returns. Exploiting the high temporal stability of radar returns from these targets, it is possible to correct the images from spurious phase contributions such as atmospheric phase artefacts and errors in the digital elevation models used to account for topographic InSAR phase. Such stable objects typically coincide with man-made features, so successful applications of PSI techniques are mainly reported over urban centers. We processed a total of 105 SAR images acquired from the ERS-1/2 and ENVISAT satellites, organized in 3 stacks related to both descending (50 ERS-1/2 scenes) and ascending (25 ERS-1/2 and 30 ENVISAT scenes) acquisition geometries. The acquisitions refer to the temporal periods from 1995 to 2000 (ERS) and 2003 to 2008 (ENVISAT), respectively, with a temporal repetition frequency of roughly 1 acquisition every 35 days. The 3 stacks, covering approximately the same ground area centred on the Tavoliere coastal plain, were processed independently. Reliable phase measurements were obtained over small urban centers and anthropogenic features scattered along the coast. Results from all 3 stacks indicate the presence of displacements occurring through the entire temporal interval of observation. In particular, displacements appear spatially organized as a subsidence "bowl" centered approximately around the area of Zapponeta, with maximum subsidence rates exceeding 20 mm/y. The detected displacements appear consistent with the average rates deduced heuristically from analysis of the environmental settings as exposed above. Moreover, they also qualitatively agree with other investigations performed using analogous techniques and data over the region (e.g. [4]). Possible interpretation of these results can be attempted by considering that the area has been repeatedly subject to reclaiming through filling, and that the deposited sediments are most exposed to compaction. Moreover, the area is subject to intense water extraction, which further enhances the effects of sediment compaction. Validation of the obtained measurements is in progress through extended data analysis and in situ activities. However, these preliminary analyses and comparisons between InSAR and ground data hint to the possible presence of two co-existing subsidence phenomena in the area: a natural subsidence due to tectonics or isostatic rebound, with slow subsidence effects occurring over geologic time scales, with an additional, more pronounced subsidence phenomenon on the recent sediment deposits due to sediment compaction under lithostatic loading, and an anthropogenic local, accelerated subsidence on the lowest areas, due to intensive draining mostly for irrigation purposes, which adds to recent land remediation actions to cause a worrisome lowering of the water table in the area. References [1] F. Boenzi, M. Caldara, M. Moresi, L. Pennetta 2002, "History of the Salpi lagoon-sabhka (Manfredonia Gulf, Italy)". Il Quaternario, 14, 93-104. 2001 [2] F. Bovenga, A. Refice, R. Nutricato, L. Guerriero, M.T. Chiaradia, "SPINUA: a flexible processing chain for ERS / ENVISAT long term interferometry", Proceedings of ESA-ENVISAT Symposium, Salzburg, Austria, 6-10 September, 2004. [3] Ferretti, A., Prati, C., Rocca, F. "Permanent Scatterers in SAR Interferometry". IEEE Transactions on Geoscience and Remote Sensing 39, 8-20, 2001. [4] S. Salvi, S. Atzori, C.A. Brunori, F. Doumaz, G.P. Ricciardi, G. Solaro, S. Stramondo, C. Tolomei, R. Lanari, A. Pepe, A. Ferretti, S. Cespa, "The VELISAR initiative for the measurement of ground velocity in italian seismogenic areas", EGU General Assembly, Wien, Austria, 15-20 April, 2007.
NASA Astrophysics Data System (ADS)
Jiang, Wang-Qiang; Zhang, Min; Nie, Ding; Jiao, Yong-Chang
2018-04-01
To simulate the multiple scattering effect of target in synthetic aperture radar (SAR) image, the hybrid method GO/PO method, which combines the geometrical optics (GO) and physical optics (PO), is employed to simulate the scattering field of target. For ray tracing is time-consuming, the Open Graphics Library (OpenGL) is usually employed to accelerate the process of ray tracing. Furthermore, the GO/PO method is improved for the simulation in low pixel situation. For the improved GO/PO method, the pixels are arranged corresponding to the rectangular wave beams one by one, and the GO/PO result is the sum of the contribution values of all the rectangular wave beams. To get high-resolution SAR image, the wideband echo signal is simulated which includes information of many electromagnetic (EM) waves with different frequencies. Finally, the improved GO/PO method is used to simulate the SAR image of targets above rough surface. And the effects of reflected rays and the size of pixel matrix on the SAR image are also discussed.
Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry
2005-02-01
Hensley, H. A. Zebker, F. H. Webb, and E. Fielding, 1996, "Surface deformation and coherence measurements of Kilauea Volcano , Hawaii from SIR-C radar...topography, tectonic surface deformation, bulging and subsidence (earthquakes, volcanoes , geo-thermal fields and artesian irrigation, ice fields), glacial...J.J. and Y-J. Kim, 2000, "The relationship between radar polarimetric and interferometric phase," Presented at IGARSS, Honolulu, Hawaii , July
Lee, Chang-Wook; Lu, Zhong; Kwoun, Oh-Ig; Won, Joong-Sun
2008-01-01
The Augustine Volcano is a conical-shaped, active stratovolcano located on an island of the same name in Cook Inlet, about 290 km southwest of Anchorage, Alaska. Augustine has experienced seven significant explosive eruptions - in 1812, 1883, 1908, 1935, 1963, 1976, 1986, and in January 2006. To measure the ground surface deformation of the Augustine Volcano before the 2006 eruption, we applied satellite radar interferometry using Synthetic Aperture Radar (SAR) images from three descending and three ascending satellite tracks acquired by European Remote Sensing Satellite (ERS) 1 and 2 and the Environment Satellite (ENVISAT). Multiple interferograms were stacked to reduce artifacts caused by atmospheric conditions, and we used a singular value decomposition method to retrieve the temporal deformation history from several points on the island. Interferograms during 1992 and 2005 show a subsidence of about 1-3 cm/year, caused by the contraction of pyroclastic flow deposits from the 1986 eruption. Subsidence has decreased exponentially with time. Multiple interferograms between 1992 and 2005 show no significant inflation around the volcano before the 2006 eruption. The lack of a pre-eruption deformation signal suggests that the deformation signal from 1992 to August 2005 must have been very small and may have been obscured by atmospheric delay artifacts.
Water induced geohazards measured with spaceborne interferometry techniques
NASA Astrophysics Data System (ADS)
Poncos, V.; Serban, F.; Teleaga, D.; Ciocan, V.; Sorin, M.; Caranda, D.; Zamfirescu, F.; Andrei, M.; Copaescu, S.; Radu, M.; Raduca, V.
2012-04-01
Natural and anthropogenic occurrence of groundwater is inducing surficial crustal deformation processes that can be accurately measured with high spatial density from space, regardless of the ground access conditions. The detection of the surface deformation allows uncovering spatial and temporal patterns of subsurface processes such as land subsidence, cave-ins and differential ground settlement related to water content. InSAR measurements combined with ground truth data permit estimation of the mechanical properties of the rocks and the development of models and scenarios to predict disaster events such as cave-ins, landslides and soil liquefaction in the case of an Earthquake. A number of three sites in Romania that suffer of ground instability because of the water component will be presented. The DInSAR, Interferograms Stacking and Persistent Scatterers Interferometry techniques were applied to retrieve as accurate as possible the displacement information. The first studied site is the city of Bucharest; using 7 years of ERS data ground instability was detected on a large area that represents the historical watershed of the Dambovita river. A network of water wells shows that the ground instability is directly proportional to the groundwater depth. The second site is the Ocnele Mari brine extraction area. The exploitation of the Ocnele Mari salt deposit started from the Roman Empire time using the mining technology and from 1954 the salt dissolution technology which involves injecting water into the ground using a well and extracting the brine (water and salt) through another well. The extraction of salt through dissolution led to slow ground subsidence but the flooding and dissolution of the Roman caves led to catastrophic cave-ins and the relocation of an entire village. The water injection technique is still applied and the Roman cave system is an unknown, therefore further catastrophic events are expected. The existing theoretical simulations of the subsidence process are performed using a Finite Element Method (FEM), which calculates the distribution of the state of strains and stresses in the rock masses, in an elasto-plastic behavior. The ground deformation is presently measured with leveling instrumentation and an effort is being made to adopt the InSAR results for a better spatial and temporal coverage that should refine the existing model. The third site is a number of 4 tailing retention ponds at different stages of their life. The tailing ponds are hydrotechnical structures of permeable type designed for the safe storage of mining detritus byproducts and disposal of the water contained in these byproducts. Starting in 1998 approximately 550 mines have been closed and introduced in a conservation process. In order to prevent ecological and human damage, all these mines and storage ponds for mining tailings are required to be under continuous monitoring. Using 15 high-resolution Spotlight TerraSAR-X images, the stability of the storage pond was monitored over a period of 5 months during 2011. Interferometric stacking techniques and PSI analysis were applied in order to generate deformation maps and deformation profiles. In the same time, GPS measurements and Electrical Tomography for water content were used as independent measurements.
Automatic Coregistration for Multiview SAR Images in Urban Areas
NASA Astrophysics Data System (ADS)
Xiang, Y.; Kang, W.; Wang, F.; You, H.
2017-09-01
Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.
NASA Astrophysics Data System (ADS)
Li, Mingjia; Sun, Jianbao; Shen, Zheng-Kang
2016-08-01
Boosted by the launch of Sentinel-1A radar satellite from the European Space Agency (ESA), we now have the opportunity of fast, full and multiple coverage of the land based deformation field of earthquakes. Here we use the data to investigate a strong earthquake struck Pishan, western China on July 3, 2015. The earthquake fault is blind and no ground break features are found on-site, thus Synthetic Aperture Radar (SAR) data give full play to its technical advantage for the recovery of coseismic deformation field. By using the Sentinel-1A radar data in the Interferometric Wide Swath mode, we obtain 1 track of InSAR data over the struck region, and resolve the 3D ground deformation generated by the earthquake. Then the Line-of-Sight (LOS) InSAR data are inverted for the slip-distribution of the seismogenic fault.
NASA Technical Reports Server (NTRS)
Lee, Seung-Kuk; Fatoyinbo, Temilola; Lagomasino, David; Osmanoglu, Batuhan; Feliciano, Emanuelle
2016-01-01
The ground-level digital elevation model (DEM) or digital terrain model (DTM) information are invaluable for environmental modeling, such as water dynamics in forests, canopy height, forest biomass, carbon estimation, etc. We propose to extract the DTM over forested areas from the combination of interferometric complex coherence from single-pass TanDEM-X (TDX) data at HH polarization and Digital Surface Model (DSM) derived from high-resolution WorldView (WV) image pair by means of random volume over ground (RVoG) model. The RVoG model is a widely and successfully used model for polarimetric SAR interferometry (Pol-InSAR) technique for vertical forest structure parameter retrieval [1][2][3][4]. The ground-level DEM have been obtained by complex volume decorrelation in the RVoG model with the DSM using stereo-photogrammetric technique. Finally, the airborne lidar data were used to validate the ground-level DEM and forest canopy height results.
Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements
Tizzani, Pietro; Battaglia, Maurizio; Zeni, Giovanni; Atzori, Simone; Berardino, Paolo; Lanari, Riccardo
2009-01-01
The Long Valley caldera (California) formed ~760,000 yr ago following the massive eruption of the Bishop Tuff. Postcaldera volcanism in the Long Valley volcanic field includes lava domes as young as 650 yr. The recent geological unrest is characterized by uplift of the resurgent dome in the central section of the caldera (75 cm in the past 33 yr) and earthquake activity followed by periods of relative quiescence. Since the spring of 1998, the caldera has been in a state of low activity. The cause of unrest is still debated, and hypotheses range from hybrid sources (e.g., magma with a high percentage of volatiles) to hydrothermal fluid intrusion. Here, we present observations of surface deformation in the Long Valley region based on differential synthetic aperture radar interferometry (InSAR), leveling, global positioning system (GPS), two-color electronic distance meter (EDM), and microgravity data. Thanks to the joint application of InSAR and microgravity data, we are able to unambiguously determine that magma is the cause of unrest.
Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data
Negro, Ciro Del; Currenti, Gilda; Solaro, Giuseppe; Greco, Filippo; Pepe, Antonio; Napoli, Rosalba; Pepe, Susi; Casu, Francesco; Sansosti, Eugenio
2013-01-01
Long-term and high temporal resolution gravity and deformation data move us toward a better understanding of the behavior of Mt Etna during the June 1995 – December 2011 period in which the volcano exhibited magma charging phases, flank eruptions and summit crater activity. Monthly repeated gravity measurements were coupled with deformation time series using the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique on two sequences of interferograms from ERS/ENVISAT and COSMO-SkyMed satellites. Combining spatiotemporal gravity and DInSAR observations provides the signature of three underlying processes at Etna: (i) magma accumulation in intermediate storage zones, (ii) magmatic intrusions at shallow depth in the South Rift area, and (iii) the seaward sliding of the volcano's eastern flank. Here we demonstrate the strength of the complementary gravity and DInSAR analysis in discerning among different processes and, thus, in detecting deep magma uprising in months to years before the onset of a new Etna eruption. PMID:24169569
NASA Technical Reports Server (NTRS)
Fielding, E. J.; Fujiwara, Satoshi; Hensley, S.; Rosen, P. A.; Tobita, Mikio; Shimada, Masanobu
1996-01-01
A large (M&subw;=7.0) earthquake on May 27, 1995 completely destroyed the town of Neftegorsk in the northern part of Sakhalin Island and caused more than 2000 human deaths. The shallow, right-lateral, strick-slip earthquake resulted in extensive surface ruptures and up to 7 m of horizontal displacement as reported by field workers. The sourthern part of the mainshock epicenter zone was imaged by the JERS-1 SAR (synthetic aperature radar) one month (April 28) before and two weeks after (June 11) the mainshock. Despite drastically changed surface conditions in the 44 days between the two images, due primarily to spring thaw, we obtained reasonably good interferometric correlation with the L-band (24 cm) SAR pair. The interoferogram records the distribution of deformation reflecting displacement during both the mainshock and aftershocks. The ability to map the deformation pattern can aid the assessment and mitigation of damage.
NASA Astrophysics Data System (ADS)
Notti, Davide; Calò, Fabiana; Cigna, Francesca; Manunta, Michele; Herrera, Gerardo; Berti, Matteo; Meisina, Claudia; Tapete, Deodato; Zucca, Francesco
2015-11-01
Recent advances in multi-temporal Differential Synthetic Aperture Radar (SAR) Interferometry (DInSAR) have greatly improved our capability to monitor geological processes. Ground motion studies using DInSAR require both the availability of good quality input data and rigorous approaches to exploit the retrieved Time Series (TS) at their full potential. In this work we present a methodology for DInSAR TS analysis, with particular focus on landslides and subsidence phenomena. The proposed methodology consists of three main steps: (1) pre-processing, i.e., assessment of a SAR Dataset Quality Index (SDQI) (2) post-processing, i.e., application of empirical/stochastic methods to improve the TS quality, and (3) trend analysis, i.e., comparative implementation of methodologies for automatic TS analysis. Tests were carried out on TS datasets retrieved from processing of SAR imagery acquired by different radar sensors (i.e., ERS-1/2 SAR, RADARSAT-1, ENVISAT ASAR, ALOS PALSAR, TerraSAR-X, COSMO-SkyMed) using advanced DInSAR techniques (i.e., SqueeSAR™, PSInSAR™, SPN and SBAS). The obtained values of SDQI are discussed against the technical parameters of each data stack (e.g., radar band, number of SAR scenes, temporal coverage, revisiting time), the retrieved coverage of the DInSAR results, and the constraints related to the characterization of the investigated geological processes. Empirical and stochastic approaches were used to demonstrate how the quality of the TS can be improved after the SAR processing, and examples are discussed to mitigate phase unwrapping errors, and remove regional trends, noise and anomalies. Performance assessment of recently developed methods of trend analysis (i.e., PS-Time, Deviation Index and velocity TS) was conducted on two selected study areas in Northern Italy affected by land subsidence and landslides. Results show that the automatic detection of motion trends enhances the interpretation of DInSAR data, since it provides an objective picture of the deformation behaviour recorded through TS and therefore contributes to the understanding of the on-going geological processes.
Multi-Hazard Analysis for the Estimation of Ground Motion Induced by Landslides and Tectonics
NASA Astrophysics Data System (ADS)
Iglesias, Rubén; Koudogbo, Fifame; Ardizzone, Francesca; Mondini, Alessandro; Bignami, Christian
2016-04-01
Space-borne synthetic aperture radar (SAR) sensors allow obtaining all-day all-weather terrain complex reflectivity images which can be processed by means of Persistent Scatterer Interferometry (PSI) for the monitoring of displacement episodes with extremely high accuracy. In the work presented, different PSI strategies to measure ground surface displacements for multi-scale multi-hazard mapping are proposed in the context of landslides and tectonic applications. This work is developed in the framework of ESA General Studies Programme (GSP). The present project, called Multi Scale and Multi Hazard Mapping Space based Solutions (MEMpHIS), investigates new Earth Observation (EO) methods and new Information and Communications Technology (ICT) solutions to improve the understanding and management of disasters, with special focus on Disaster Risk Reduction rather than Rapid Mapping. In this paper, the results of the investigation on the key processing steps for measuring large-scale ground surface displacements (like the ones originated by plate tectonics or active faults) as well as local displacements at high resolution (like the ones related with active slopes) will be presented. The core of the proposed approaches is based on the Stable Point Network (SPN) algorithm, which is the advanced PSI processing chain developed by ALTAMIRA INFORMATION. Regarding tectonic applications, the accurate displacement estimation over large-scale areas characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. In this context, a low-resolution approach based in the integration of differential phase increments of velocity and topographic error (obtained through the fitting of a linear model adjustment function to data) will be evaluated. Data from the default mode of Sentinel-1, the Interferometric Wide Swath Mode, will be considered for this application. Regarding landslides applications, which typically occur over vegetated scenarios largely affected by temporal and geometrical phenomena, the number of persistent scatterers (PSs) available is crucial. The better the density and reliability of PSs, the better the delineation and characterization of landslides. In this context, an advanced high-resolution processing based on the use of the Non-Local Interferometric SAR (NL-InSAR) filtering will be evaluated. Finally, since SAR systems are only sensitive to the detection of displacements in the line-of-sight (LOS) direction, the importance of projecting final PSI displacement products along the steepest gradient of the terrain slope will be put forward. The high-resolution COSMO-SkyMed sensor will be used for this application. The test site selected to evaluate the performance of the techniques proposed corresponds to the region of Northern Apennines (Italy), which is affected by both landslides and tectonics displacement phenomena. Sentinel-1 (for tectonics) and COSMO-SkyMed (for landslides) SAR data will be employed for the monitoring of the activity within the area of interest. Users of the DRM (Disaster Risk Management) community have been associated to the project, in order to, once validated the algorithms, further evaluate the proposed solution considering selected trial cases.
NASA Astrophysics Data System (ADS)
Milillo, P.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.; Morlighem, M.; Li, X.; Salzer, J. T.
2016-12-01
We employ data from the second generation of SAR systems e.g. the Italian COSMO-SkyMed constellation and the German TanDEM-X formation to monitor the characteristics of grounding line migration using short repeat-time interferometry and accurate InSAR DEM in the Amundsen Sea Embayment (ASE), West Antarctica. The ASE is a marine-based ice sheet with a retrograde bed containing enough ice to raise global sea level by 120 cm. Several studies have inferred the mechanical properties of portions of ASE using observationally constrained numerical models, but these studies offer only temporal snapshots of basal mechanics owing to a dearth of observational time series. Using 1-day CSK repeat pass data and TanDEM-X DEMs, we collected frequent, high-resolution grounding line measurements of Pine Island (PIG), Thwaites, Kohler and Smith glaciers spanning 2015-2016. We compare the results with ERS data spanning 1996-2011, and Sentinel-1a 2014-2015 data. We observe an ongoing, rapid 2km/yr grounding line retreat on Smith, 0.5 km/yr retreat on Pope, ongoing 1 km/yr retreat on Thwaites and PIG and a slight re-advance on Kohler since 2011. On PIG, the data reveal seawater infiltration at high tides over many km along the glacier flanks, significantly more than in 1996/2000. We attribute these infiltrations to the fast retreat of PIG over a rough bed. Such intrusion of warm water fuel the melting of basal ice at the grounding line, which provides an additional positive feedback to the glacier retreat not accounted for in models. We do not observe similar patterns on the other glaciers.
NASA Astrophysics Data System (ADS)
Schiek, C. G.; Hurtado, J. M.; Velasco, A. A.; Buckley, S. M.; Escobar, D.
2008-12-01
From the early 1900's to the present day, San Miguel volcano has experienced many small eruptions and several periods of heightened seismic activity, making it one of the most active volcanoes in the El Salvadoran volcanic chain. Prior to 1969, the volcano experienced many explosive eruptions with Volcano Explosivity Indices (VEI) of 2. Since then, eruptions have decreased in intensity to an average VEI of 1. Eruptions mostly consist of phreatic explosions and central vent eruptions. Due to the explosive nature of this volcano, it is important to study the origins of the volcanism and its relationship to surface deformation and earthquake activity. We analyze these interactions by integrating interferometric synthetic aperture radar (InSAR) results with earthquake source location data from a ten-month (March 2007-January 2008) seismic deployment. The InSAR results show a maximum of 7 cm of volcanic inflation from March 2007 to mid-October 2007. During this time, seismic activity increased to a Real-time Seismic-Amplitude Measurement (RSAM) value of >400. Normal RSAM values for this volcano are <50. A period of quiescence began in mid-October 2007, and a maximum of 6 cm of deflation was observed in the interferometry results from 19 October 2007 to 19 January 2008. A clustering of at least 25 earthquakes that occurred between March 2007 and January 2008 suggests a fault zone through the center of the San Miguel volcanic cone. This fault zone is most likely where dyke propagation is occurring. Source mechanisms will be determined for the earthquakes associated with this fault zone, and they will be compared to the InSAR deformation field to determine if the mid-October seismic activity and observed surface deformation are compatible.
Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging
Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew
2014-01-01
Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot-Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence (r2 > 0.99) with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2 to 8 cm thick adipose breasts and from 0.12 to 0.28 for 2 to 8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ~18% for 2 cm thick adipose breast and by ~35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2 to 8 cm thick adipose breasts and from 2.7 to 3.4 for 2 to 8 cm thick fibroglandular breasts. PMID:25295630
Scattering angle resolved optical coherence tomography for in vivo murine retinal imaging
NASA Astrophysics Data System (ADS)
Gardner, Michael R.; Katta, Nitesh; McElroy, Austin; Baruah, Vikram; Rylander, H. G.; Milner, Thomas E.
2017-02-01
Optical coherence tomography (OCT) retinal imaging contributes to understanding central nervous system (CNS) diseases because the eye is an anatomical "window to the brain" with direct optical access to nonmylenated retinal ganglion cells. However, many CNS diseases are associated with neuronal changes beyond the resolution of standard OCT retinal imaging systems. Though studies have shown the utility of scattering angle resolved (SAR) OCT for particle sizing and detecting disease states ex vivo, a compact SAR-OCT system for in vivo rodent retinal imaging has not previously been reported. We report a fiber-based SAR-OCT system (swept source at 1310 nm +/- 65 nm, 100 kHz scan rate) for mouse retinal imaging with a partial glass window (center aperture) for angular discrimination of backscattered light. This design incorporates a dual-axis MEMS mirror conjugate to the ocular pupil plane and a high collection efficiency objective. A muring retina is imaged during euthanasia, and the proposed SAR-index is examined versus time. Results show a positive correlation between the SAR-index and the sub-cellular hypoxic response of neurons to isoflurane overdose during euthanasia. The proposed SAR-OCT design and image process technique offer a contrast mechanism able to detect sub-resolution neuronal changes for murine retinal imaging.
NASA Astrophysics Data System (ADS)
Ozawa, T.; Miyagi, Y.
2017-12-01
Shinmoe-dake located to SW Japan erupted in January 2011 and lava accumulated in the crater (e.g., Ozawa and Kozono, EPS, 2013). Last Vulcanian eruption occurred in September 2011, and after that, no eruption has occurred until now. Miyagi et al. (GRL, 2014) analyzed TerraSAR-X and Radarsat-2 SAR data acquired after the last eruption and found continuous inflation in the crater. Its inflation decayed with time, but had not terminated in May 2013. Since the time-series of inflation volume change rate fitted well to the exponential function with the constant term, we suggested that lava extrusion had continued in long-term due to deflation of shallow magma source and to magma supply from deeper source. To investigate its deformation after that, we applied InSAR to Sentinel-1 and ALOS-2 SAR data. Inflation decayed further, and almost terminated in the end of 2016. It means that this deformation has continued more than five years from the last eruption. We have found that the time series of inflation volume change rate fits better to the double-exponential function than single-exponential function with the constant term. The exponential component with the short time constant has almost settled in one year from the last eruption. Although InSAR result from TerraSAR-X data of November 2011 and May 2013 indicated deflation of shallow source under the crater, such deformation has not been obtained from recent SAR data. It suggests that this component has been due to deflation of shallow magma source with excess pressure. In this study, we found the possibility that long-term component also decayed exponentially. Then this factor may be deflation of deep source or delayed vesiculation.
NASA Astrophysics Data System (ADS)
Mateus, Pedro; Miranda, Pedro M. A.; Nico, Giovanni; Catalão, João.; Pinto, Paulo; Tomé, Ricardo
2018-04-01
Very high resolution precipitable water vapor maps obtained by the Sentinel-1 A synthetic aperture radar (SAR), using the SAR interferometry (InSAR) technique, are here shown to have a positive impact on the performance of severe weather forecasts. A case study of deep convection which affected the city of Adra, Spain, on 6-7 September 2015, is successfully forecasted by the Weather Research and Forecasting model initialized with InSAR data assimilated by the three-dimensional variational technique, with improved space and time distributions of precipitation, as observed by the local weather radar and rain gauge. This case study is exceptional because it consisted of two severe events 12 hr apart, with a timing that allows for the assimilation of both the ascending and descending satellite images, each for the initialization of each event. The same methodology applied to the network of Global Navigation Satellite System observations in Iberia, at the same times, failed to reproduce observed precipitation, although it also improved, in a more modest way, the forecast skill. The impact of precipitable water vapor data is shown to result from a direct increment of convective available potential energy, associated with important adjustments in the low-level wind field, favoring its release in deep convection. It is suggested that InSAR images, complemented by dense Global Navigation Satellite System data, may provide a new source of water vapor data for weather forecasting, since their sampling frequency could reach the subdaily scale by merging different SAR platforms, or when future geosynchronous radar missions become operational.
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Campbell, B. A.; Zisk, S. H.; Schaber, Gerald G.; Evans, C.
1989-01-01
Simple impact craters are known to occur on all of the terrestrial planets and the morphologic expression of their ejecta blankets is a reliable indicator of their relative ages on the Moon, Mars, Mercury, and most recently for Venus. It will be crucial for the interpretation of the geology of Venus to develop a reliable means of distinguishing smaller impact landforms from volcanic collapse and explosion craters, and further to use the observed SAR characteristics of crater ejecta blankets (CEB) as a means of relative age estimation. With these concepts in mind, a study was initiated of the quantitative SAR textural characteristics of the ejecta blanket preserved at Meteor Crater, Arizona, the well studied 1.2 km diameter simple crater that formed approx. 49,000 years ago from the impact of an octahedrite bolide. While Meteor Crater was formed as the result of an impact into wind and water lain sediments and has undergone recognizable water and wind related erosion, it nonetheless represents the only well studied simple impact crater on Earth with a reasonably preserved CEB. Whether the scattering behavior of the CEB can provide an independent perspective on its preservation state and style of erosion is explored. Finally, airborne laser altimeter profiles of the microtopography of the Meteor Crater CEB were used to further quantify the subradar pizel scale topographic slopes and RMS height variations for comparisons with the scattering mechanisms computed from SAR polarimetry. A preliminary assessment was summarized of the L-band radar scattering mechanisms within the Meteor Crater CEB as derived from a NASA/JPL DC-8 SAR Polarimetry dataset acquired in 1988, and the dominant scattering behavior was compared with microtopographic data (laser altimeter profiles and 1:10,000 scale topographic maps).
Reliable estimation of orbit errors in spaceborne SAR interferometry. The network approach
NASA Astrophysics Data System (ADS)
Bähr, Hermann; Hanssen, Ramon F.
2012-12-01
An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.
Capability of geometric features to classify ships in SAR imagery
NASA Astrophysics Data System (ADS)
Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li
2016-10-01
Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.
NASA Astrophysics Data System (ADS)
Dai, K. R.; Liu, G. X.; Yu, B.; Jia, H. G.; Ma, D. Y.; Wang, X. W.
2013-10-01
A High Speed Railway goes across Wuqing district of Tianjin, China. Historical studies showed that the land subsidence of this area was very serious, which would give rise to huge security risk to the high speed railway. For detecting the detailed subsidence related to the high speed railway, we use the multi-temporal InSAR (MT-InSAR) technique to extract regional scale subsidence of Wuqing district. Take it into consideration that Wuqing district is a suburban region with large area of low coherence farmland, we select the temporarily coherent point InSAR (TCP-InSAR) approach for MT-InSAR analysis. The TCP-InSAR is a potential approach for detecting land subsidence in low coherence areas as it can identify and analysis coherent points between just two images and can acquire a reliable solution without conventional phase unwrapping. This paper extended the TCP-InSAR with use of ultrashort spatial baseline (USB) interferograms. As thetopographic effects are negligible in the USB interferograms, an external digital elevation model (DEM) is no longer needed in interferometric processing, and the parameters needed to be estimated were simplified at the same time. With use of 17 TerraSAR-X (TSX) images acquired from 2009 to 2010 over Wuqing district, the annual subsidence rates along the high speed railway were derived by the USB-TCPInSAR approach. Two subsidence funnels were found at ShuangJie town and around Wuqing Station with subsidence rate of -17 ∼ -27 mm/year and -7 ∼ -17 mm/year, respectively. The subsidence rates derived by USB-TCPInSAR were compared with those derived by the conventional TCP-InSAR that uses an external DEM for differential interferometry. The mean and the standard deviation of the differences between two types of results at 370697 TCPs are -4.43 × 10-6 mm/year and ±1.4673 mm/year, respectively. Further comparison with the subsidence results mentioned in several other studies were made, which shows good consistencies. The results verify that even without using a DEM the USB-TCPInSAR method can detect land subsidence accurately in flat areas.
Subway Subsidence Monitoring and Analysis in Beijing through Envisat-Asar and Terrasar-X DATA
NASA Astrophysics Data System (ADS)
Duan, G.; Gong, H.; Chen, B.; Li, X.
2014-12-01
Subway plays a significant role in public transport in Beijing, China. The safe operation of such underground rail transports are serious threatened by ground subsidence that mainly caused by groundwater over-exploitation. It is necessary to carry out a continuous observation and analysis of the surface deformation along the newly built rails. The paper mainly studied four subways which were built in different periods(see attachment). Envisat-ASAR and Terrasar-X images of the study area were selected to measure the ground deformation. Interferometric Point Target Analysis method was gathered to process the SAR data. The method is developed based on the idea of the Permanent Scatterers SAR Interferometry method which can overcome the decorrelation and atmospheric effect to gain more precise estimation of the ground deformation. The master image can be selected according to the perpendicular, Doppler and temporal baselines to minimize the potential decorrelation. After the registration of all slave images to the master image, the PS candidates would be detected on the basis of the scattering properties of the images. A complex operation of the PSs was conducted to obtain the interferometric phase which was composed of terrain phase, atmospheric phase, deformation phase and noise. A model used for the evaluation of the contribution of each component was built by means of the least squares method. The deformation phase would be the remaining of the interferometric phase minus disturbance terms. Deformation information that came from two different kinds of data was jointly analyzed to reveal the temporal character of the rails before, during and after they were built. The regional LOS(line-of-sight) velocity around a special subway station shows that the rail has suffered from a serious uneven settlement along the rail during the observation period. In addition, time series data revealed the characteristic stages of each PS point. There is a clear accelerating trend of settlement in the construction period of the subway, and the sedimentation velocity would remain very high after a period of the opening of the line. Overall, ground subsidence had a certain delay when compared to the construction and operation of the subway.
a Method of Generating dem from Dsm Based on Airborne Insar Data
NASA Astrophysics Data System (ADS)
Lu, W.; Zhang, J.; Xue, G.; Wang, C.
2018-04-01
Traditional methods of terrestrial survey to acquire DEM cannot meet the requirement of acquiring large quantities of data in real time, but the DSM can be quickly obtained by using the dual antenna synthetic aperture radar interferometry and the DEM generated by the DSM is more fast and accurate. Therefore it is most important to acquire DEM from DSM based on airborne InSAR data. This paper aims to the method that generate DEM from DSM accurately. Two steps in this paper are applied to acquire accurate DEM. First of all, when the DSM is generated by interferometry, unavoidable factors such as overlay and shadow will produce gross errors to affect the data accuracy, so the adaptive threshold segmentation method is adopted to remove the gross errors and the threshold is selected according to the coherence of the interferometry. Secondly DEM will be generated by the progressive triangulated irregular network densification filtering algorithm. Finally, experimental results are compared with the existing high-precision DEM results. The results show that this method can effectively filter out buildings, vegetation and other objects to obtain the high-precision DEM.
NASA Astrophysics Data System (ADS)
Casu, F.; de Luca, C.; Lanari, R.; Manunta, M.; Zinno, I.
2016-12-01
During the last 25 years, the Differential Synthetic Aperture Radar Interferometry (DInSAR) has played an important role for understanding the Earth's surface deformation and its dynamics. In particular, the large collections of SAR data acquired by a number of space-borne missions (ERS, ENVISAT, ALOS, RADARSAT, TerraSAR-X, COSMO-SkyMed) have pushed toward the development of advanced DInSAR techniques for monitoring the temporal evolution of the ground displacements with an high spatial density. Moreover, the advent of the Copernicus Sentinel-1 (S1) constellation is providing a further increase in the SAR data flow available to the Earth science community, due to its characteristics of global coverage strategy and free and open access data policy. Therefore, managing and storing such a huge amount of data, processing it in an effcient way and maximizing the available archives exploitation are becoming high priority issues. In this work we present some recent advances in the DInSAR field for dealing with the effective exploitation of the present and future SAR data archives. In particular, an efficient parallel SBAS implementation (namely P-SBAS) that takes benefit from high performance computing is proposed. Then, the P-SBAS migration to the emerging Cloud Computing paradigm is shown, together with extensive tests carried out in the Amazon's Elastic Cloud Compute (EC2) infrastructure. Finally, the integration of the P-SBAS processing chain within the ESA Geohazards Exploitation Platform (GEP), for setting up operational on-demand and systematic web tools, open to every user, aimed at automatically processing stacks of SAR data for the generation of SBAS displacement time series, is also illustrated. A number of experimental results obtained by using the ERS, ENVISAT and S1 data in areas characterized by volcanic, seismic and anthropogenic phenomena will be shown. This work is partially supported by: the DPC-CNR agreement, the EPOS-IP project and the ESA GEP project.
NASA Astrophysics Data System (ADS)
Blom, R. G.; Chapman, B. D.; Deese, R.; Dokka, R. K.; Fielding, E. J.; Hawkins, B.; Hensley, S.; Ivins, E. R.; Jones, C. E.; Kent, J. D.; Liu, Z.; Lohman, R.; Zheng, Y.
2012-12-01
The vulnerability of the US Gulf Coast has received increased attention in the years since hurricanes Katrina and Rita. Agencies responsible for the long-term protection of lives and infrastructure require precise estimates of future subsidence and sea level rise. A quantitative, geophysically based methodology can provide such estimates by incorporating geological data, geodetic measurements, geophysical models of non-elastic mechanical behavior at depth, and geographically comprehensive deformation monitoring made possible with measurements from Interferometric Synthetic Aperture Radar (InSAR). To be effective, results must be available to user agencies in a format suitable for integration within existing decision-support processes. Work to date has included analysis of historical and continuing ground-based geodetic measurements. These reveal a surprising degree of complexity, including regions that are subsiding at rates faster than those considered for hurricane protection planning of New Orleans and other coastal communities (http://www.mvn.usace.army.mil/pdf/hps_verticalsettlement.pdf) as well as Louisiana's coastal restoration strategies (http://www.coast2050.gov/2050reports.htm) (Dokka, 2011, J. Geophys. Res., 116, B06403, doi:10.1029/2010JB008008). Traditional geodetic measurements provide precise information at single points, while InSAR observations provide geographically comprehensive measurements of surface deformation at lower vertical precision. Available InSAR data sources include X-, C- and L-band satellite, and NASA/JPL airborne UAVSAR L-band data. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. For example, the shorter wavelength C-band data decorrelates over short time periods requiring more elaborate time-series analysis techniques, with which we've had some success. Meanwhile, preliminary analysis of limited L-Band ALOS/PALSAR satellite data show promise; unfortunately this Japanese satellite system failed in April 2011. We now have multiple airborne UAVSAR repeat pass interferometry data sets under analysis (http://uavsar.jpl.nasa.gov/) . UAVSAR interferogram processing has proven problematic in this environment, and new acquisitions are planned at shorter temporal intervals to yield improved results. Combining the geodetic and InSAR data can constrain geophysical models of crustal behavior, leading to quantitative predictions of future subsidence. Model results to date show good agreement between geodetic measurements and geophysically reasonable parameters including sediment load and ~130 m post-glacial sea level rise. We review work to date and present newly acquired UAVSAR data.
Optical measurement methods in thermogasdynamics
NASA Technical Reports Server (NTRS)
Stursberg, K.; Erhardt, K.; Krahr, W.; Becker, M.
1978-01-01
A review is presented of a number of optical methods of flow measurements. Consideration is given to such spectroscopic methods as emission and absorption techniques, electron beam-stimulated fluorescence, and light scattering - Rayleigh, Raman and Mie - methods. The following visualization methods are also discussed: shadow photography, schlieren photography, interferometry, holographic interferometry, laser anemometry, particle holography, and electron-excitation imaging. A large bibliography is presented and the work is copiously illustrated with figures and photographs.
Least Squares Solution of Small Sample Multiple-Master PSInSAR System
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ding, Xiao Li; Lu, Zhong
2010-03-01
In this paper we propose a least squares based approach for multi-temporal SAR interferometry that allows to estimate the deformation rate with no need of phase unwrapping. The approach utilizes a series of multi-master wrapped differential interferograms with short baselines and only focuses on the arcs constructed by two nearby points at which there are no phase ambiguities. During the estimation an outlier detector is used to identify and remove the arcs with phase ambiguities, and pseudoinverse of priori variance component matrix is taken as the weight of correlated observations in the model. The parameters at points can be obtained by an indirect adjustment model with constraints when several reference points are available. The proposed approach is verified by a set of simulated data.
Simulation Studies of Forest Structure using 3D Lidar and Radar Models
NASA Technical Reports Server (NTRS)
Sun, Guoqing; Ranson, K. Jon; Koetz, Benjamin; Liu, Dawei
2007-01-01
The use of lidars and radars to measure forest structure attributes such as height and biomass are being considered for future Earth Observation missions. Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield information about the vertical profile of the canopy. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and is useful for estimating biomass. Interferometric SAR (InSAR) has been shown to yield forest canopy height information. For example, the height of scattering phase retrieved from InSAR data is considered to be correlated with the three height and the spatial structure of the forest stand. There is much interest in exploiting these technologies separately and together to get important information for carbon cycle and ecosystem science. More detailed information of the electromagnetic radiation interactions within forest canopies is needed. And backscattering models can be of much utility here. As part of a NASA funded project to explore data fusion, a three-dimensional (3D) coherent radar backscattering model and a 3D lidar backscatter models were used to investigate the use of large footprint lidar, SAR and InSAR for characterizing realistic forest scenes. For this paper, we use stem maps and other forest measurements to develop a realistic spatial structure of a spruce-hemlock forest canopy found in Maine, USA. The radar and lidar models used measurements of the 3D forest scene as input and simulated the coherent radar backscattering signature and 1064nm energy backscatter, respectively. The relationships of backscatter derived forest structure were compared with field measurements. In addition, we also had detailed airborne lidar (Laser Imaging Vegetation Sensor, LVIS) data available over the stem map sites that was used to study the accuracies of tree height derived from modeled SAR backscatter and the scattering phase center retrieved from the simulated InSAR data will be compared with the height indices, or other structure parameters derived from the lidar data. These results will address the possible synergies between lidar and radar in data in terms of forest structural information.
Calibration of quadpolarization SAR data using backscatter statistics
NASA Technical Reports Server (NTRS)
Klein, Jeffrey D.
1989-01-01
A new technique is described for calibration of complex multipolarization SAR imagery. Scatterer reciprocity and lack of correlation between like- and cross-polarized radar echoes for natural targets are used to remove cross-polarized contamination in the radar data channels without the use of known ground targets. If known targets are available, all data channels can be calibrated relative to one another and absolutely as well. The method is verified with airborne SAR data.
Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests
NASA Technical Reports Server (NTRS)
Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.
1984-01-01
The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.
NASA Astrophysics Data System (ADS)
Gong, W.; Meyer, F. J.; Lee, C.-W.; Lu, Z.; Freymueller, J.
2015-02-01
A 7 year time series of satellite radar images over Unimak Island, Alaska—site of Westdahl Volcano, Fisher Caldera, and Shishaldin Volcano—was processed using a model-free Persistent Scatterer Interferometry technique assisted by numerical weather prediction model. The deformation-only signals were optimally extracted from atmosphere-contaminated phase records. The reconstructed deformation time series maps are compared with campaign and continuous Global Positioning System (GPS) measurements as well as Small Baseline Subset interferometric synthetic aperture radar (InSAR) results for quality assessment and geophysical interpretation. We observed subtle surface inflation at Westdahl Volcano that can be fit by a Mogi source located at approximately 3.6 km north of Westdahl peak and at depth of about 6.9 km that is consistent with the GPS-estimated depth for the 1998 to 2001 time period. The magma chamber volume change decays during the period of 2003 to 2010. The deformation field over Fisher Caldera is steadily subsiding over time. Its best fit analytical model is a sill source that is about 7.9 km in length, 0.54 km in width, and located at about 5.5 km below sea level underneath the center of Fisher Caldera with strike angle of N52°E. Very little deformation was detected near Shishaldin peak; however, a region approximately 15 km east of Shishaldin, as well as an area at the Tugamak range at about 30 km northwest of Shishaldin, shows evidence for movement toward the satellite, with a temporal signature correlated with the 2004 Shishaldin eruption. The cause of these movements is unknown.
Chen, Bei-Bei; Gong, Hui-Li; Li, Xiao-Juan; Lei, Kun-Chao; Lin, Zhu; Wang, Yan-Bing
2013-08-01
The excessive mining for underground water is the main reason inducing the land subsidence in Beijing, while, increasing of load brought by the urban construction aggravate the local land subsidence in a certain degree. As an international metropolis, the problems of land subsidence that caused by urban construction are becoming increasingly highlights, so revealing the relationship between regional load increase and the response of land subsidence also becomes one of the key problems in the land subsidence research field. In order to analyze the relationship between the load changes in construction and the land subsidence quantitatively, the present study selected the TM remote sensing image covering Beijing plain and used Erdas Modeler tool to invert the index based on building site (IBI), acquired the spatial and temporal change information in research area further; Based on results monitored by PS-InSAR (permanent scatterer interferometry) and IBI index method, and combined with the GIS spatial analysis method in the view of pixels in different scales, this paper analyzes the correlation between typical area load change and land subsidence, The conclusions show that there is a positive correlation between the density of load and the homogeneity of subsidence, especially in area which has a high sedimentation rate. Owing to such characteristics as the complexity and hysteretic nature of soil and geological structure, it is not obvious that the land subsidence caused by the increase of load in a short period. But with the increasing of local land load made by high density buildings and additional settlement of each monomer building superposed with each other, regional land subsidence is still a question that cannot be ignored and needs long-term systematic research and discussion.
Polarimetric and Structural Properties of a Boreal Forest at P-Band and L-Band
NASA Astrophysics Data System (ADS)
Tebaldini, S.; Rocca, F.
2010-12-01
With this paper we investigate the structural and polarimetric of the boreal forest within the Krycklan river catchment, Northern Sweden, basing on multi-polarimetric and multi-baseline SAR surveys at P-Band and L-Band collected in the framework of the ESA campaign BioSAR 2008. The analysis has been carried out by applying the Algebraic Synthesis (AS) technique, recently introduced in literature, which provides a theoretical framework for the decomposition of the backscattered signal into ground-only and volume-only contributions, basing on both baseline and polarization diversity. The availability of multiple baselines allows the formation of a synthetic aperture not only along the azimuth direction but also in elevation. Accordingly, the backscattered echoes can be focused not only in the slant range, azimuth plane, but in the whole 3D space. This is the rationale of the SAR Tomography (T-SAR) concept, which has been widely considered in the literature of the last years. It follows that, as long as the penetration in the scattering volume is guaranteed, the vertical profile of the vegetation layer is retrieved by separating backscatter contributions along the vertical direction, which is the main reason for the exploitation of Tomographic techniques at longer wavelengths. Still, the capabilities of T-SAR are limited to imaging the global vertical structure of the electromagnetic scattering in a certain polarization. It then becomes important to develop methodologies for the investigation of the vertical structure of different Scattering Mechanisms (SMs), such as ground and volume scattering, in such a way as to derive information that can be delivered also outside the field of Radar processing. This is an issue that may become relevant at longer wavelengths, such as P-Band, where the presence of multiple scattering arising from the interaction with terrain could hinder the correct reconstruction of the forest structure. The availability of multiple polarizations allows to overcome this limitation, thus providing a way to obtain the vertical structures associated with volume-only contributions. Experimental results will be provided showing the following. At P-Band the most relevant scattering contributions are observed at the ground level, not only in the co-polar channels, but also in HV, consistently with he first BioSAR campaign. L-Band data have shown a remarkable difference, resulting in a more uniform distribution of the backscattered power along the vertical direction. Volume top height has been observed to be substantially invariant to the choice of the solution for volume-only scattering. These results underline the validity of modeling a forest scenario as being constituted by volume and ground (or rather ground-locked) scattering, and the importance of forest top height as the most robust indicator of the forest structure as imaged through microwaves measurements. Nevertheless, it has also been shown that different solutions for volume scattering correspond to dramatically different vertical structures. In this framework, tomography represents a powerful tool for investigating the potential solutions, as it allows to see what kind of vertical structure has been retrieved. On this basis, a solution has been proposed as a criterion to emphasize volume contributions at P-Band.
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Saatchi, S.
1996-01-01
Several scattering mechanisms contribute to the total radar backscatter cross section measured by the synthetic aperture radar. These are volume scattering, trunk-ground double-bounce scattering, branch-ground double-bounce scattering, and surface scattering. All of these mechanisms are directly related to the dielectric constant of forest components responsible for that mechanism and their moisture.
Schaber, G.G.
1999-01-01
Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).
Analysing surface deformation in Surabaya from sentinel-1A data using DInSAR method
NASA Astrophysics Data System (ADS)
Anjasmara, Ira Mutiara; Yusfania, Meiriska; Kurniawan, Akbar; Resmi, Awalina L. C.; Kurniawan, Roni
2017-07-01
The rapid population growth and increasing industrial space in the urban area of Surabaya have caused an excessive ground water use and load of infrastructures. This condition triggers surface deformation, especially the vertical deformation (subsidence or uplift), in Surabaya and its surroundings. The presence of dynamic processes of the Earth and geological form of Surabaya area can also fasten the rate of the surface deformation. In this research, Differential Interferometry Synthetic Aperture Radar (DInSAR) method is chosen to infer the surface deformation over Surabaya area. The DInSAR processing utilized Sentinel 1A satellite images from May 2015 to September 2016 using two-pass interferometric. Two-pass interferometric method is a method that uses two SAR imageries and Digital Elevation Model (DEM). The results from four pairs of DInSAR processing indicate the occurrence of surface deformation in the form of land subsidence and uplift based on the displacement Line of Sight (LOS) in Surabaya. The average rate of surface deformation from May 2015 to September 2016 varies from -3.52 mm/4months to +2.35 mm/4months. The subsidence mostly occurs along the coastal area. However, the result still contains errors from the processing of displacement, due to the value of coherence between the image, noise, geometric distortion of a radar signal and large baseline on image pair.
Land subsidence detection using synthetic aperture radar (SAR) in Sidoarjo Mudflow area
NASA Astrophysics Data System (ADS)
Yulyta, Sendy Ayu; Taufik, Muhammad; Hayati, Noorlaila
2016-05-01
According to BPLS (Badan Penanggulangan Lumpur Sidoarjo) which is the Sidoarjo Mudflow Management Agency, land subsidence occurred in Porong, Sidoarjo was caused by the rocks bearing capacity decreasing which led by the mud outpouring since 2006. The subsidence varies in many ways depends on the radius of location from the mud flow center point and the geological structure. One of the most efficient technologies to monitor this multi temporal phenomenon is using the Synthetic Aperture Radar (SAR) as an applicative Spatial Geodesy. This study used 4 (four) times series L-Band ALOS PALSAR from 2008 to 2011 Fine Beam Single data (February 2008, January 2009 and February 2010 and January 2011) which then processed by the Differential SAR Interferometry (DInSAR) method to obtain the deformation vector at a radius of 1.5 km from the center of mudflow. The result showed that there was a significant subsidence which annually occurred on southern and western area of Sidoarjo mud flow. The deformation vector that occurred in the year 2008-2011 was up to 20 cm/year or 0.05 cm/day. For verification purpose, we also compared the result obtained from the SAR detection with the data measured by Global Position System (GPS) and some deformation monitoring results obtained from another researchs. The comparison showed a correlation that the subsidence occurred on the same location.
Observations and Mitigation of RFI in ALOS PALSAR SAR Data; Implications for the Desdyni Mission
NASA Technical Reports Server (NTRS)
Rosen, Paul A.; Hensley, Scott; Le, Charles
2008-01-01
Initial examination of ALOS PALSAR synthetic aperture radar (SAR) data has indicated significant radio frequency interference (RFI) in several geographic locations around the world. RFI causes significant reduction in image contrast, introduces periodic and quasi-periodic image artifacts, and introduces significant phase noise in repeat pass interferometric data reduction. The US National Research Council Decadal Survey of Earth Science has recommended DESDynI, a Deformation, Ecosystems, and Dynamics of Ice satellite mission comprising an L-band polarimetric radar configured for repeat pass interferometry. There is considerable interest internationally in other future L-band and lower frequency systems as well. Therefore the issues of prevalence and possibilities of mitigation of RFI in these crowded frequency bands is of considerable interest. RFI is observed in ALOS PALSAR in California, USA, and in southern Egypt in data examined to date. Application of several techniques for removing it from the data prior to SAR image formation, ranging from straightforward spectral normalization to time-domain, multi-phase filtering techniques are considered. Considerable experience has been gained from the removal of RFI from P-band acquired by the GeoSAR system. These techniques applied to the PALSAR data are most successful when the bandwidth of any particular spectral component of the RFI is narrow. Performance impacts for SAR imagery and interferograms are considered in the context of DESDynI measurement requirements.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Polarimetric Interferometry and Differential Interferometry
2005-02-01
example of the entropy or phase stability of a mixed scene, being the Oberpfaffenhofen area as collected by the DLR L-Band ESAR system. We note that...robust ratios of scattering elements as shown for example in table I. [10,11,12,13,14,15] The urban areas (upper right corner) in figure 2 show...height and biomass estimation, but there are many other application areas where this technology is being considered. Table I provides a selective
Potentiality of SENTINEL-1 for landslide detection: first results in the Molise Region (Italy)
NASA Astrophysics Data System (ADS)
Barra, Anna; Monserrat, Oriol; Mazzanti, Paolo; Esposito, Carlo; Crosetto, Michele; Scarascia Mugnozza, Gabriele
2016-04-01
A detailed inventory map, including information on landslide activity, is one of the most important input to landslide susceptibility and hazard analyses. The contribution of satellite SAR Interferometry in landslide risk mitigation is well-known within the scientific community. In fact, many encouraging results have been obtained, principally, in areas characterized by high coherence of the images (e.g. due to rock lithology or urban environment setting). In terms of coherence, the expected increased capabilities of Sentinel-1 for landslide mapping and monitoring are connected to both wavelength (55.5 mm) and short temporal baseline (12 days). The latter one is expected to be a key feature for increasing coherence and for defining monitoring and updating plans. With the aim of assessing these potentialities, we processed a set of 14 Sentinel-1 SLC images, acquired during a temporal span of 7 months, over the Molise region (Southern Italy), a critical area geologically susceptible to landslides. Even though Molise is mostly covered by crops and forested areas (63% and 35% respectively), that means a non-optimal coherence condition for SAR interferometry, promising results have been obtained. This has been achieved by integrating differential interferometric SAR techniques (12-days interferograms and time series) with GIS multilayer analysis (optical, geological, geomorphological, etc.). Specifically, analyzing a single burst of a Sentinel-1 frame (approximately 1875 km2), 62 landslides have been detected, thus allowing to improve the pre-existing inventory maps both in terms of landslide boundaries and state of activity. The results of our ongoing research show that Sentinel-1 can give a significant improvement in terms of exploitation of SAR data for landslide mapping and monitoring. As a matter of fact, by analyzing longer periods, it is expected to achieve a better understanding of landslide behavior and its relationship with triggering factors. This will be key to perform hazard analyses. Further research will be focused in finding algorithms to automatically detect and extract patterns and in developing a more reliable methodology. This will be done by integrating the Sentinel-1 data with other types of data and, in particular, with Sentinel-2 imagery.
Phase information contained in meter-scale SAR images
NASA Astrophysics Data System (ADS)
Datcu, Mihai; Schwarz, Gottfried; Soccorsi, Matteo; Chaabouni, Houda
2007-10-01
The properties of single look complex SAR satellite images have already been analyzed by many investigators. A common belief is that, apart from inverse SAR methods or polarimetric applications, no information can be gained from the phase of each pixel. This belief is based on the assumption that we obtain uniformly distributed random phases when a sufficient number of small-scale scatterers are mixed in each image pixel. However, the random phase assumption does no longer hold for typical high resolution urban remote sensing scenes, when a limited number of prominent human-made scatterers with near-regular shape and sub-meter size lead to correlated phase patterns. If the pixel size shrinks to a critical threshold of about 1 meter, the reflectance of built-up urban scenes becomes dominated by typical metal reflectors, corner-like structures, and multiple scattering. The resulting phases are hard to model, but one can try to classify a scene based on the phase characteristics of neighboring image pixels. We provide a "cooking recipe" of how to analyze existing phase patterns that extend over neighboring pixels.
Status of a UAV SAR Designed for Repeat Pass Interferometry for Deformation Measurements
NASA Technical Reports Server (NTRS)
Hensley, Scott; Wheeler, Kevin; Hoffman, Jim; Miller, Tim; Lou, Yunling; Muellerschoen, Ron; Zebker, Howard; Madsen, Soren; Rosen, Paul
2004-01-01
Under the NASA ESTO sponsored Instrument Incubator Program we have designed a lightweight, reconfigurable polarimetric L-band SAR designed for repeat pass deformation measurements of rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes. This radar will be installed on an unmanned airborne vehicle (UAV) or a lightweight, high-altitude, and long endurance platform such as the Proteus. After a study of suitable available platforms we selected the Proteus for initial development and testing of the system. We want to control the repeat track capability of the aircraft to be within a 10 m tube to support the repeat deformation capability. We conducted tests with the Proteus using real-time GPS with sub-meter accuracy to see if pilots could fly the aircraft within the desired tube. Our results show that pilots are unable to fly the aircraft with the desired accuracy and therefore an augmented autopilot will be required to meet these objectives. Based on the Proteus flying altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and 16 km range swath. This radar will have an active electronic beam steering antenna to achieve Doppler centroid stability that is necessary for repeat-pass interferometry (RPI). This paper will present are design criteria, current design and expected science applications.
NASA Astrophysics Data System (ADS)
Casu, F.; de Luca, C.; Lanari, R.; Manunta, M.; Zinno, I.
2016-12-01
A methodology for computing surface deformation time series and mean velocity maps of large areas is presented. Our approach relies on the availability of a multi-temporal set of Synthetic Aperture Radar (SAR) data collected from ascending and descending orbits over an area of interest, and also permits to estimate the vertical and horizontal (East-West) displacement components of the Earth's surface. The adopted methodology is based on an advanced Cloud Computing implementation of the Differential SAR Interferometry (DInSAR) Parallel Small Baseline Subset (P-SBAS) processing chain which allows the unsupervised processing of large SAR data volumes, from the raw data (level-0) imagery up to the generation of DInSAR time series and maps. The presented solution, which is highly scalable, has been tested on the ascending and descending ENVISAT SAR archives, which have been acquired over a large area of Southern California (US) that extends for about 90.000 km2. Such an input dataset has been processed in parallel by exploiting 280 computing nodes of the Amazon Web Services Cloud environment. Moreover, to produce the final mean deformation velocity maps of the vertical and East-West displacement components of the whole investigated area, we took also advantage of the information available from external GPS measurements that permit to account for possible regional trends not easily detectable by DInSAR and to refer the P-SBAS measurements to an external geodetic datum. The presented results clearly demonstrate the effectiveness of the proposed approach that paves the way to the extensive use of the available ERS and ENVISAT SAR data archives. Furthermore, the proposed methodology can be particularly suitable to deal with the very huge data flow provided by the Sentinel-1 constellation, thus permitting to extend the DInSAR analyses at a nearly global scale. This work is partially supported by: the DPC-CNR agreement, the EPOS-IP project and the ESA GEP project.
NASA Astrophysics Data System (ADS)
Xie, Q.; Wang, C.; Zhu, J.; Fu, H.; Wang, C.
2015-06-01
In recent years, a lot of studies have shown that polarimetric synthetic aperture radar interferometry (PolInSAR) is a powerful technique for forest height mapping and monitoring. However, few researches address the problem of terrain slope effect, which will be one of the major limitations for forest height inversion in mountain forest area. In this paper, we present a novel forest height retrieval algorithm by integration of dual-baseline PolInSAR data and external DEM data. For the first time, we successfully expand the S-RVoG (Sloped-Random Volume over Ground) model for forest parameters inversion into the case of dual-baseline PolInSAR configuration. In this case, the proposed method not only corrects terrain slope variation effect efficiently, but also involves more observations to improve the accuracy of parameters inversion. In order to demonstrate the performance of the inversion algorithm, a set of quad-pol images acquired at the P-band in interferometric repeat-pass mode by the German Aerospace Center (DLR) with the Experimental SAR (E-SAR) system, in the frame of the BioSAR2008 campaign, has been used for the retrieval of forest height over Krycklan boreal forest in northern Sweden. At the same time, a high accuracy external DEM in the experimental area has been collected for computing terrain slope information, which subsequently is used as an inputting parameter in the S-RVoG model. Finally, in-situ ground truth heights in stand-level have been collected to validate the inversion result. The preliminary results show that the proposed inversion algorithm promises to provide much more accurate estimation of forest height than traditional dualbaseline inversion algorithms.
Improving near-range forecasts of severe precipitation with GNSS and InSAR high-resolution data
NASA Astrophysics Data System (ADS)
Miranda, P. M.; Mateus, P.; Nico, G.; Catalão, J.; Pinto, P.; Tomé, R.; Benevides, P.
2017-12-01
Precipitable water vapor (PWV) maps obtained by GNSS observations are now routinely incorporated into meteorological reanalysis by the main forecast centers such as ECMWF and NCEP. Such data, however, represent a small subset of the available microwave information, which now includes many regional networks of GNSS stations capable to produce frequent updates of the PWV distribution (at least at hourly time scales), and in some cases very high resolution PWV-anomaly fields that may be produced by SAR interferometry (Mateus et al 2013). Such very high resolution fields can be assimilated into state of the art forecast models such as WRF improving it's performance (Mateus et al 2016). In the present study, the assimilation of InSAR data from Sentinel 1A is used to analyse the evolution of two severe precipitation events, which occurred 12 hours apart in the city of Adra in 6-7 September 2015, southern Spain, timed after the two successive passages of the Sentinel. Such events, which produced a flash flood with casualties and large structural damage, were not forecasted by the operational models, but are very accurately reproduced once InSAR data is assimilated, as shown by local observations including weather radar. The physical processes involved in the development of the storm are discussed in some detail, by comparing different simulations: a control run, an experiment with GNSS assimilation, and the experiment with InSAR assimilation. While InSAR images are at this time only available every 6 days, the fact that an improvement of the water vapor distribution by data assimilation can have such a dramatic impact in severe weather forecasts suggests there is significant room for improvement in near term forecasting, by a better incorporation of both higher resolution GNSS data and more frequent SAR images.
Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR
NASA Astrophysics Data System (ADS)
Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.
2016-12-01
Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi-institutional and interdisciplinary group of scientists and engineers, for its technical contributions.
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-01-01
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE. PMID:27447635
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-07-19
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE.
The ESA Geohazard Exploitation Platform
NASA Astrophysics Data System (ADS)
Bally, Philippe; Laur, Henri; Mathieu, Pierre-Philippe; Pinto, Salvatore
2015-04-01
Earthquakes represent one of the world's most significant hazards in terms both of loss of life and damages. In the first decade of the 21st century, earthquakes accounted for 60 percent of fatalities from natural disasters, according to the United Nations International Strategy for Disaster Reduction (UNISDR). To support mitigation activities designed to assess and reduce risks and improve response in emergency situations, satellite EO can be used to provide a broad range of geo-information services. This includes for instance crustal block boundary mapping to better characterize active faults, strain rate mapping to assess how rapidly faults are deforming, soil vulnerability mapping to help estimate how the soil is behaving in reaction to seismic phenomena, geo-information to assess the extent and intensity of the earthquake impact on man-made structures and formulate assumptions on the evolution of the seismic sequence, i.e. where local aftershocks or future main shocks (on nearby faults) are most likely to occur. In May 2012, the European Space Agency and the GEO Secretariat convened the International Forum on Satellite EO for Geohazards now known as the Santorini Conference. The event was the continuation of a series of international workshops such as those organized by the Geohazards Theme of the Integrated Global Observing Strategy Partnership. In Santorini the seismic community has set out a vision of the EO contribution to an operational global seismic risk program, which lead to the Geohazard Supersites and Natural Laboratories (GSNL) initiative. The initial contribution of ESA to suuport the GSNL was the first Supersites Exploitation Platform (SSEP) system in the framework of Grid Processing On Demand (GPOD), now followed by the Geohazard Exploitation Platform (GEP). In this presentation, we will describe the contribution of the GEP for exploiting satellite EO for geohazard risk assessment. It is supporting the GEO Supersites and has been further expanded to address broader objectives of the geohazards community. In particular it is a contribution to the CEOS WG Disasters and its Seismic Hazards Pilot and terrain deformation applications of its Volcano Pilot. The geohazards platform is sourced with elements - data, tools, and processing- relevant to the geohazards theme and related exploitation scenarios. For example, platform provides access to large SAR data collections and services to support SAR Interferometry (InSAR), in particular the Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) techniques, to provide precise terrain deformation. The GEP includes data coming from the ENVISAT ASAR and ERS archives, already hosted in the ESA clusters and in ESA's Virtual Archive and further extended to cover the requirements of the CEOS Pilot on Seismic Hazards. The GEP is gradually accessing Sentinel-1A data alongside with EO data from other space agencies with an interest in the geohazard exploitation platform. Further to this, the platform is intended to be available in the framework of the European Plate Observing System (EPOS) initiative, in order to help its users exploit EO data to support solid Earth monitoring and geophysical and geological analysis.
Estimating snow water equivalent (SWE) using interferometric synthetic aperture radar (InSAR)
NASA Astrophysics Data System (ADS)
Deeb, Elias J.
Since the early 1990s, radar interferometry and interferometric synthetic aperture radar (InSAR) have been used extensively to measure changes in the Earth's surface. Previous research has presented theory for estimating snow properties, including potential for snow water equivalent (SWE) retrieval, using InSAR. The motivation behind using remote sensing to estimate SWE is to provide a more complete, continuous set of "observations" to assist in water management operations, climate change studies, and flood hazard forecasting. The research presented here primarily investigates the feasibility of using the InSAR technique at two different wavelengths (C-Band and L-Band) for SWE retrieval of dry snow within the Kuparuk watershed, North Slope, Alaska. Estimating snow distribution around meteorological towers on the coastal plain using a three-day repeat orbit of C-Band InSAR data was successful (Chapter 2). A longer wavelength L-band SAR is evaluated for SWE retrievals (Chapter 3) showing the ability to resolve larger snow accumulation events over a longer period of time. Comparisons of InSAR estimates and late spring manual sampling of SWE show a R2 = 0.61 when a coherence threshold is used to eliminate noisy SAR data. Qualitative comparisons with a high resolution digital elevation model (DEM) highlight areas of scour on windward slopes and areas of deposition on leeward slopes. When compared to a mid-winter transect of manually sampled snow depths, the InSAR SWE estimates yield a RMSE of 2.21cm when a bulk snow density is used and corrections for bracketing the satellite acquisition timing is performed. In an effort to validate the interaction of radar waves with a snowpack, the importance of the "dry snow" assumption for the estimation of SWE using InSAR is tested with an experiment in Little Cottonwood Canyon, Alta, Utah (Chapter 5). Snow wetness is shown to have a significant effect on the velocity of propagation within the snowpack. Despite the radar interaction with the snowpack being complex, the methodology for using InSAR to estimate SWE shows great promise when considering NASA's proposed L-Band, weekly repeat time interval, interferometric DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission.
NASA Astrophysics Data System (ADS)
Liao, H.; Meyer, F. J.; Liu, L.
2017-12-01
Tundra fires have important ecological impacts on vegetation succession, carbon cycling, and permafrost dynamics. Recent research has demonstrated that SAR Interferometry (InSAR) is a useful tool for quantifying surface subsidence caused by permafrost degradation and tundra fires. Many of these studies have relied on L-band SAR data due to its ability to remain relatively high coherence in the changing Arctic environment. L-band SAR data, however, are susceptive to ionospheric effects. Traditionally, permafrost-related InSAR studies dealt with ionospheric artifacts by either throwing away ionosphere-contaminated data or by fitting and removing low-order polynomial surfaces from affected images. Discarding data samples is always luxurious and risky, as the number of SAR images is limited and the incurred reduction of temporal sampling might hinder the retrieval of important short-term dynamics in active layer and permafrost. Baseline fitting relies on the assumption that ionospheric signals large spatial scales, an assumption that is often violated in polar regions. To improve upon this situation, we propose the integration of the split-spectrum ionospheric correction technique into permafrost-related InSAR processing workflows. We demonstrate its performance for correcting L-band SAR data in permafrost zones. For the Anaktuvuk River fire area, Alaska, 6 out of 15 ALOS-1 PALSAR scenes used by Liu et al. 2014 were found to be contaminated by ionospheric signals. We extracted the ionospheric phase screens for all contaminated data. We derive their power spectra and provide information on the typical magnitudes and spatial structures of identified phase screens. With the ionosphere corrected data we revisit a model that was developed by Liu et.al (2014) to estimate pre-fire and post-fire thaw-season subsidence for the Anaktuvuk River fire region. We will demonstrate that for our area of interest ionospheric correction leads to improvements of the InSAR-based permafrost deformation estimates. We will also show that ionospheric correction increases the number of usable InSAR data, which improves the accuracy in the retrieved permafrost variables such as subsidence rates and active layer thickness and allows for the detection of shorter-term variations in elevation changes over permafrost areas.
NASA Astrophysics Data System (ADS)
Gunn, Grant; Duguay, Claude; Atwood, Don
2017-04-01
This study identifies the dominant scattering mechanism for C-, X- and Ku-band for bubbled freshwater lake ice in the Hudson Bay Lowlands near Churchill, Canada, using a winter time series of fully polarimetric ground-based (X- and Ku-band, UW-Scat) scatterometer and spaceborne (C-band) synthetic aperture radar (SAR, Radarsat-2) observations collected coincidentally to in-situ snow and ice measurements. Scatterometer observations identify two dominant backscatter sources from the ice cover: the snow-ice, and ice-water interface. Using in-situ measurements as ground-truth, a winter time series of scatterometer and satellite acquisitions show increases in backscatter from the ice-water interface prior to the timing of tubular bubble development in the ice cover. This timing indicates that scattering in the ice is independent of double-bounce scatter caused by tubular bubble inclusions. Concurrently, the co-polarized phase difference of interactions at the ice-water interface from both scatterometer and SAR observations are centred at 0° throughout the time series, indicating a scattering regime other than double bounce. A Yamaguchi three-component decomposition of SAR observations is presented for C-band acquisitions indicating a dominant single-bounce scattering mechanism regime, which is hypothesized to be a result of an ice-water interface that presents a rough surface or a surface composed of preferentially oriented facets. This study is the first to present a winter time series of coincident ground-based and spaceborne fully polarimetric active microwave observations for bubbled freshwater lake ice.
Land subsidence in southwest Cyprus revealed from C-band radar interferometry
NASA Astrophysics Data System (ADS)
Michalis, Pantelis; Giourou, Anthi; Charalampopoulou, Betty; Li, Zhenhong; Li, Yongsheng
2014-08-01
Land subsidence is a major worldwide hazard, and causes many problems including: damage to public facilities such as bridges, roads, railways, electric power lines, underground pipes; damage to private and public buildings; and in some cases of low-lying land, can increase the risk of coastal flooding from storm surges and rising sea-levels. The island of Cyprus is famous for its complex geology, particularly in the southwest part of the island. Deposits of massive breccias (melange) are widely exposed in the Paphos District situated between the Troodos Mountains and the sea. These deposits are rich in clay minerals that are prone to landslide phenomena. With its global coverage and all-weather imaging capability, Interferometric SAR (InSAR) is revolutionizing our ability to image the Earth's surface and the evolution of its shape over time. In this paper, an advanced InSAR time series technique, InSAR TS + AEM, has been employed to analysed C-band ERS and Envisat data collected over southwest Cyprus during the period from 1992 to 2010. Our InSAR time series results suggest that: (1) a total number of 274,619 coherent pixels with a density of 46 points per squared km were detected in the area of interest; and (2) clear surface displacements can be observed in several areas. The combination of archived ESA SAR datasets allows a long record (~18 years) of historic deformation to be measured over a large region. Ultimately this should help inform land managers in assessing land subsidence and planning appropriate remedial measures.
Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD
NASA Astrophysics Data System (ADS)
Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun
2017-12-01
This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.
Potential of SENTINEL-1A for Nation-Wide Routine Updates of Active Landslide Maps
NASA Astrophysics Data System (ADS)
Lazecky, M.; Canaslan Comut, F.; Nikolaeva, E.; Bakon, M.; Papco, J.; Ruiz-Armenteros, A. M.; Qin, Y.; de Sousa, J. J. M.; Ondrejka, P.
2016-06-01
Slope deformation is one of the typical geohazards that causes an extensive economic damage in mountainous regions. As such, they are usually intensively monitored by means of modern expertise commonly by national geological or emergency services. Resulting landslide susceptibility maps, or landslide inventories, offer an overview of areas affected by previously activated landslides as well as slopes known to be unstable currently. Current slope instabilities easily transform into a landslide after various triggering factors, such as an intensive rainfall or a melting snow cover. In these inventories, the majority of the existing landslide-affected slopes are marked as either stable or active, after a continuous investigative work of the experts in geology. In this paper we demonstrate the applicability of Sentinel-1A satellite SAR interferometry (InSAR) to assist by identifying slope movement activity and use the information to update national landslide inventories. This can be done reliably in cases of semi-arid regions or low vegetated slopes. We perform several analyses based on multitemporal InSAR techniques of Sentinel-1A data over selected areas prone to landslides.
Programme for Monitoring of the Greenland Ice Sheet - Ice Surface Velocities
NASA Astrophysics Data System (ADS)
Andersen, S. B.; Ahlstrom, A. P.; Boncori, J. M.; Dall, J.
2011-12-01
In 2007, the Danish Ministry of Climate and Energy launched the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) as an ongoing effort to assess changes in the mass budget of the Greenland Ice Sheet. Iceberg calving from the outlet glaciers of the Greenland Ice Sheet, often termed the ice-dynamic mass loss, is responsible for an important part of the mass loss during the last decade. To quantify this part of the mass loss, we combine airborne surveys yielding ice-sheet thickness along the entire margin, with surface velocities derived from satellite synthetic-aperture radar (SAR). In order to derive ice sheet surface velocities from SAR a processing chain has been developed for GEUS by DTU Space based on a commercial software package distributed by GAMMA Remote Sensing. The processor, named SUSIE (Scripts and Utilities for SAR Ice-motion Estimation), can use both differential SAR interferometry and offset-tracking techniques to measure the horizontal velocity components, providing also an estimate of the corresponding measurement error. So far surface velocities have been derived for a number of sites including Nioghalvfjerdsfjord Glacier, the Kangerlussuaq region, the Nuuk region, Helheim Glacier and Daugaard-Jensen Glacier using data from ERS-1/ERS-2, ENVISAT ASAR and ALOS Palsar. Here we will present these first results.
Calibration of complex polarimetric SAR imagery using backscatter correlations
NASA Technical Reports Server (NTRS)
Klein, Jeffrey D.
1992-01-01
A new technique for calibration of multipolarization synthetic aperture radar (SAR) imagery is described. If scatterer reciprocity and lack of correlation between co- and cross-polarized radar echoes (for azimuthally symmetric distributed targets) is assumed, the effects of signal leakage between the radar data channels can be removed without the use of known ground targets. If known targets are available, all data channels may be calibrated relative to one another and radiometrically as well. The method is verified with simulations and application to airborne SAR data.
What InSAR time-series methods are best suited for the Ecuadorian volcanoes
NASA Astrophysics Data System (ADS)
Mirzaee, S.; Amelung, F.
2017-12-01
Ground displacement measurements from stacks of SAR images obtained using interferometric time-series approaches play an increasingly important role for volcanic hazard assessment. The inflation of the ground surface can indicate that magma ascends to shallower levels and that a volcano gets ready for an eruption. Commonly used InSAR time-series approaches include Small Baseline (SB), Persistent Scatter InSAR (PSI) and SqueeSAR methods but it remains unclear which approach is best suited for volcanic environments. On this poster we present InSAR deformation measurements for the active volcanoes of Ecuador (Cotopaxi, Tungurahua and Pichincha) using a variety of INSAR time-series methods. We discuss the pros and cons of each method given the available data stacks (TerraSAR-X, Cosmo-Skymed and Sentinel-1) in an effort to design a comprehensive observation strategy for the Ecuadorian volcanoes. SAR data are provided in the framework of the Group on Earth Observation's Ecuadorian Volcano Geohazard Supersite.
Dual-Pol X-Band Pol-InSAR Time Series of a Greenland Outlet Glacier
NASA Astrophysics Data System (ADS)
Fischer, Georg; Hajnsek, Irena
2015-04-01
This study investigates X-band (TanDEM-X) polarimetric and interferometric SAR (Pol-InSAR) data in order to retrieve information about the temporal and spatial variations of surface and subsurface parameters of the Helheim Glacier in south east Greenland. In particular, it will be indicated that the copolar phase difference between HH and VV could be a suitable proxy for snow accumulation, when Pol-InSAR techniques are used to assess the underlying scattering mechanism. By applying a two-phase mixing formula, this approach shows potential to reveal the temporal and spatial snow accumulation patterns in time series of TanDEM-X data.
UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry
NASA Technical Reports Server (NTRS)
Moes, Timothy R.
2009-01-01
The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.
NASA Technical Reports Server (NTRS)
Evans, D.; Vidal-Madjar, D.
1994-01-01
Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).
NASA Astrophysics Data System (ADS)
Ressel, Rudolf; Singha, Suman; Lehner, Susanne
2016-08-01
Arctic Sea ice monitoring has attracted increasing attention over the last few decades. Besides the scientific interest in sea ice, the operational aspect of ice charting is becoming more important due to growing navigational possibilities in an increasingly ice free Arctic. For this purpose, satellite borne SAR imagery has become an invaluable tool. In past, mostly single polarimetric datasets were investigated with supervised or unsupervised classification schemes for sea ice investigation. Despite proven sea ice classification achievements on single polarimetric data, a fully automatic, general purpose classifier for single-pol data has not been established due to large variation of sea ice manifestations and incidence angle impact. Recently, through the advent of polarimetric SAR sensors, polarimetric features have moved into the focus of ice classification research. The higher information content four polarimetric channels promises to offer greater insight into sea ice scattering mechanism and overcome some of the shortcomings of single- polarimetric classifiers. Two spatially and temporally coincident pairs of fully polarimetric acquisitions from the TerraSAR-X/TanDEM-X and RADARSAT-2 satellites are investigated. Proposed supervised classification algorithm consists of two steps: The first step comprises a feature extraction, the results of which are ingested into a neural network classifier in the second step. Based on the common coherency and covariance matrix, we extract a number of features and analyze the relevance and redundancy by means of mutual information for the purpose of sea ice classification. Coherency matrix based features which require an eigendecomposition are found to be either of low relevance or redundant to other covariance matrix based features. Among the most useful features for classification are matrix invariant based features (Geometric Intensity, Scattering Diversity, Surface Scattering Fraction).
Monitoring of Sea Ice Dynamic by Means of ERS-Envisat Tandem Cross-Interferometry
NASA Astrophysics Data System (ADS)
Pasquali, Paolo; Cantone, Alessio; Barbieri, Massimo; Engdahl, Marcus
2010-03-01
The interest in the monitoring of sea ice masses has increased greatly over the past decades for a variety of reasons. These include:- Navigation in northern latitude waters;- transportation of petroleum;- exploitation of mineral deposits in the Arctic, and- the use of icebergs as a source of fresh water.The availability of ERS-Envisat 28minute tandem acquisitions from dedicated campaigns, covering large areas in the northern latitudes with large geometrical baseline and very short temporal separation, allows the precise estimation of sea ice displacement fields with an accuracy that cannot be obtained on large scale from any other instrument. This article presents different results of sea ice dynamic monitoring over northern Canada obtained within the "ERS-Envisat Tandem Cross-Interferometry Campaigns: CInSAR processing and studies over extended areas" project from data acquired during the 2008-2009 Tandem campaign..
Corner reflector SAR interferometry as an element of a landslide early warning system
NASA Astrophysics Data System (ADS)
Singer, J.; Riedmann, M.; Lang, O.; Anderssohn, J.; Thuro, K.; Wunderlich, Th.; Heunecke, O.; Minet, Ch.
2012-04-01
The development of efficient and cost-effective landslide monitoring techniques is the central aim of the alpEWAS research project (www.alpewas.de). Within the scope of the project a terrestrial geosensor network on a landslide site in the Bavarian Alps has been set up, consisting of low cost GNSS with subcentimeter precision, time domain reflectometry (TDR) and video tacheometry (VTPS). To increase the spatial sampling, 16 low-cost Radar Corner Reflectors (CRs) were installed on the site in 2011. The CRs are to reflect radar signals back to the TerraSAR-X radar satellite, allowing for precise displacement measurements. The subject of this study is the application of the CR SAR Interferometry (CRInSAR) technique, and the integration of the derived motion field into an early warning system for landslide monitoring based on terrestrial measurements. An accurate validation data set is realized independently of the monitoring network using millimeter precision GNSS and tacheometer measurements. The 12 CRs from Astrium Geo-Information Services employed over the test site were specifically designed for TerraSAR-X satellite passes. They are made of concrete with integrated metal plates weighing about 80 to 100 kg. They are of triangular trihedral shape with minimal dimensions to obtain a Radar Cross Section 100 times stronger than that of the surrounding area. The concrete guarantees stability against harsh weather conditions, and robustness with respect to vandalism or theft. In addition, the Technical University of Munich (TUM) and the German Aerospace Center (DLR) installed another four CRs made entirely out of aluminum, with the TUM reflectors being of similar minimum size than the Astrium reflectors. Three CRs were placed on assumed stable ground outside the slope area and shall act as reference reflectors. Since the installation date of most CRs (25/08/2011), TerraSAR-X HighResolution SpotLight data have been repeatedly acquired from ascending orbit over the test site with an incidence angle of 25.73°. The ascending orbit was chosen for the satellite to look on the backslope of the mountain, minimizing foreshortening effects. The datasets have a spatial resolution of about one meter and VV polarization, and have been processed with precise Scientific Orbits. In a first step, the sub-pixel position of the CR, as well as its intensity are characterized. The phase values for each image are then extracted for each CR and a differential interferometric phase with respect to a single master is calculated using a Digital Elevation Model. These phases are then unwrapped in the temporal domain and transformed to displacements. The redundant displacement results stemming from the use of three different reference reflectors are adjusted and an error is estimated. To integrate the result into the early warning system, datum corrections are necessary, as the InSAR displacement measurement is relative to the reference point(s) and reference time. In addition, the line-of-sight measurement is transformed with respect to coordinate system of the alpEWAS measurement system. Both the InSAR and terrestrial landslide movement measurements are then cross-checked with the validation high precision GNSS and tacheometer measurements.
NASA Astrophysics Data System (ADS)
Manzo, Mariarosaria; Del Gaudio, Carlo; De Martino, Prospero; Ricco, Ciro; Tammaro, Umberto; Castaldo, Raffaele; Tizzani, Pietro; Lanari, Riccardo
2014-05-01
Ischia Island, located at the North-Western corner of the Gulf of Napoli (South Italy), is a volcanic area, whose state of activity is testified from eruptions (the last one occurred in 1302), earthquakes (the most disastrous in 1881 and 1883), hydrothermal manifestations and ground deformation. In this work we present the state of the art of the Ischia Island ground deformation phenomena through the joint analysis of data collected via different monitoring methodologies (leveling, GPS, and Differential SAR Interferometry) during the last twenty years. In particular, our analysis benefits from the large amount of periodic and continuous geodetic measurements collected by the 257 leveling benchmarks and the 20 (17 campaign and 3 permanent) GPS stations deployed on the island. Moreover, it takes advantage from the large archives of C-band SAR data (about 300 ascending and descending ERS-1/2 and ENVISAT images) acquired over the island since 1992 and the development of the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS). The latter, allows providing space-time information on the ground displacements measured along the radar line of sight (LOS), and thanks to the availability of multi-orbit SAR data, permits to discriminate the vertical and east-west components of the detected displacements. Our integrated analysis reveals a complex deformative scenario; in particular, it identifies a spatially extended subsidence pattern, which increases as we move to higher heights, with no evidence of any uplift phenomena. This broad effect involve the Northern, Eastern, Southern and South-Western sectors of the island where we measure velocity values not exceeding -6 mm/year; moreover, we identify a more localized phenomenon affecting the North-Western area in correspondence to the Fango zone, where velocity values up to -10 mm/year are retrieved. In addition, our study shows a migration of the Eastern sector of the island towards West with velocity values of -1/-2 mm/year. Conversely, a not clear behaviour of the central and South-Western areas is found; indeed, while the GPS velocity vectors are primarily Northward directed, the DInSAR measurements reveal a migration of these sectors towards East; in both cases we measure deformation velocity values of a very few mm/year. This discrepancy is very likely related to the fact that the North deformation component does not contribute to the measured LOS displacement component due to the nearly polar characteristics of the radar sensor orbits. The performed integrated time-series analysis can significantly contribute to the comprehension of the volcanic island dynamics, especially in the case of long-term observations that promote the investigation, modelling and interpretation of the physical processes behind the deformation phenomena at different temporal and spatial scales.
Levee Health Monitoring With Radar Remote Sensing
NASA Astrophysics Data System (ADS)
Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.
2012-12-01
Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers the entire network of more than 1100 miles of levees in the area, has used several sets of in situ data to validate the results. This type of levee health status information acquired with radar remote sensing could provide a cost-effective method to significantly improve the spatial and temporal coverage of levee systems and identify areas of concern for targeted levee maintenance, repair, and emergency response in the future. Our results show, for example, that during an emergency, when time is of the essence, SAR remote sensing offers the potential of rapidly providing levee status information that is effectively impossible to obtain over large areas using conventional monitoring, e.g., through high precision measurements of subcentimeter-scale levee movement prior to failure. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.
Castellazzi, Pascal; Martel, Richard; Galloway, Devin L; Longuevergne, Laurent; Rivera, Alfonso
2016-11-01
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km 2 ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems. © 2016, National Ground Water Association.
Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations
Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso
2016-01-01
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.
NASA Astrophysics Data System (ADS)
Paine, J. G.; Collins, E.; Yang, D.; Andrews, J. R.; Averett, A.; Caudle, T.; Saylam, K.
2014-12-01
We are using airborne lidar and satellite-based radar interferometry (InSAR) to quantify short-term (months to years) and longer-term (decades) subsidence in the area surrounding two large (100- to 200-m diameter) sinkholes that formed above Permian bedded salt in 1980 and 2002 in the Wink area, west Texas. Radar interferograms constructed from synthetic aperture radar data acquired between 2008 and 2011 with the ALOS PALSAR L-band satellite-borne instrument reveal local areas that are subsiding at rates that reach a few cm per month. Subsiding areas identified on radar interferograms enable labor-intensive ground investigations (such as microgravity surveys) to focus on areas where subsidence is occurring and shallow-source mass deficits might exist that could be sites of future subsidence or collapse. Longer-term elevation changes are being quantified by comparing digital elevation models (DEMs) constructed from high-resolution airborne lidar data acquired over a 32-km2 area in 2013 with older, lower-resolution DEMs constructed from data acquired during the NASA- and NGA-sponsored Shuttle Radar Topographic Mission in February 2000 and from USGS aerial photogrammetry-derived topographic data from the 1960s. Total subsidence reaches more than 10 m over 45 years in some areas. Maximum rates of subsidence measured on annual (from InSAR) and decadal (from lidar) time scales are about 0.25 m/yr. In addition to showing the extent and magnitude of subsidence at the 1980 and 2002 sinkholes, comparison of the 2013 lidar-derived DEM with the 1960s photogrammetry-derived DEM revealed other locations that have undergone significant (more than 1 m) elevation change since the 1960s, but show no evidence of recent (2008 to 2011) ground motion from satellite radar interferograms. Regional coverage obtained by radar interferometry and local coverage obtained with airborne lidar show that areas of measurable subsidence are all within a few km of the 1980 and 2002 sinkholes.
Observations of the Sea Ice Cover Using Satellite Radar Interferometry
NASA Technical Reports Server (NTRS)
Kwok, Ronald
1995-01-01
The fringes observed in repeat pass interferograms are expressions of surface relief and relative displacements. The limiting condition in the application of spaceborne radar interferometry to the remote sensing of the sea ice cover is the large magnitude of motion between repeat passes. The translation and rotation of ice floes tend to decorrelate the observations rendering radar interferometry ineffective. In our study, we have located three images in the high Arctic during a period when there was negligible motion between repeat observations. The fringes obtained from these images show a wealth of information about the sea ice cover which is important in atmosphere-ice interactions and sea ice mechanics. These measurements provide the first detailed remote sensing view of the sea ice cover. Ridges can be observed and their heights estimated if the interferometric baseline allows. We have observed ridges with heights greater than 4m. The variability in the phase measurements over an area provides an indication of the large scale roughness. Relative centimetric displacements between rigid ice floes have been observed. We illustrate these observations with examples extracted from the interferograms formed from this set of ERS-1 SAR images.
Schoen, K; Snow, W M; Kaiser, H; Werner, S A
2005-01-01
The neutron index of refraction is generally derived theoretically in the Fermi approximation. However, the Fermi approximation neglects the effects of the binding of the nuclei of a material as well as multiple scattering. Calculations by Nowak introduced correction terms to the neutron index of refraction that are quadratic in the scattering length and of order 10(-3) fm for hydrogen and deuterium. These correction terms produce a small shift in the final value for the coherent scattering length of H2 in a recent neutron interferometry experiment.
Multi-temporal InSAR Datastacks for Surface Deformation Monitoring: a Review
NASA Astrophysics Data System (ADS)
Ferretti, A.; Novali, F.; Prati, C.; Rocca, F.
2009-04-01
In the last decade extensive processing of thousands of satellite radar scenes acquired by different sensors (e.g. ERS-1/2, ENVISAT and RADARSAT) has demonstrated how multi-temporal data-sets can be successfully exploited for surface deformation monitoring, by identifying objects on the terrain that have a stable, point-like behaviour. These objects, referred to as Permanent or Persistent Scatterers (PS), can be geo-coded and monitored for movement very accurately, acting as a "natural" geodetic network, integrating successfully continuous GPS data. After a brief analysis of both advantages and drawbacks of InSAR datastacks, the paper presents examples of applications of PS measurements for detecting and monitoring active faults, aquifers and oil/gas reservoirs, using experience in Europe, North America and Japan, and concludes with a discussion on future directions for PSInSAR analysis. Special attention is paid to the possibility of creating deformation maps over wide areas using historical archives of data already available. This second part of the paper will briefly discuss the technical features of the new radar sensors recently launched (namely: TerraSAR-X, RADARSAT-2, and CosmoSkyMed) and their impact on space geodesy, highlighting the importance of data continuity and standardized acquisition policies for almost all InSAR and PSInSAR applications. Finally, recent advances in the algorithms applied in PS analysis, such as detection of "temporary PS", PS characterization and exploitation of distributed scatterers, will be briefly discussed based on the processing of real data.
NASA Astrophysics Data System (ADS)
Tessari, G.; Riccardi, P.; Pasquali, P.
2017-12-01
Monitoring of dam structural health is an important practice to control the structure itself and the water reservoir, to guarantee efficient operation and safety of surrounding areas. Ensuring the longevity of the structure requires the timely detection of any behaviour that could deteriorate the dam and potentially result in its shutdown or failure.The detection and monitoring of surface displacements is increasingly performed through the analysis of satellite Synthetic Aperture Radar (SAR) data, thanks to the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the new space missions equipped with high spatial resolution sensors. The availability of SAR satellite acquisitions from the early 1990s enables to reconstruct the historical evolution of dam behaviour, defining its key parameters, possibly from its construction to the present. Furthermore, the progress on SAR Interferometry (InSAR) techniques through the development of Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR) allows to obtain accurate velocity maps and displacement time-series.The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. In such cases, A-DInSAR constitutes a reliable diagnostic tool of dam structural health to avoid any extraordinary failure that may lead to loss of lives.In this contest, an emblematic case will be analysed as test case: the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, causing possible risks for the population security. In fact, it is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security problems. The dam consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core, and it was completed in 1984.The deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalized to assess possible damages affecting a dam through remote sensing and civil engineering surveys.
Enhanced SAR data processing for land instability forecast.
NASA Astrophysics Data System (ADS)
Argentiero, Ilenia; Pellicani, Roberta; Spilotro, Giuseppe; Parisi, Alessandro; Bovenga, Fabio; Pasquariello, Guido; Refice, Alberto; Nutricato, Raffaele; Nitti, Davide Oscar; Chiaradia, Maria Teresa
2017-04-01
Monitoring represents the main tool for carrying out evaluation procedures and criteria for spatial and temporal landslide forecast. The forecast of landslide behaviour depends on the possibility to identify either evidences of activity (displacement, velocity, volume of unstable mass, direction of displacement, and their temporal variation) or triggering parameters (rainfalls). Generally, traditional geotechnical landslide monitoring technologies permit to define, if correctly positioned and with adequate accuracy, the critical value of displacement and/or acceleration into landslide body. In most cases, they do not allow real time warning signs to be generated, due to environmental induced errors, and the information is related to few points on unstable area. Remote-sensing monitoring instruments are capable of inspecting an unstable slope with high spatial and temporal frequency, but allow solely measurements of superficial displacements and deformations. Among these latest technologies, the satellite Persistent Scatterer SAR Interferometry (PSInSAR) is very useful to investigate the unstable area both in terms of space and time. Indeed, this technique allows to analyse wide areas, individuate critical unstable areas, not identifiable by means detailed in situ surveys, and study the phenomenon evolution in a long time-scale. Although this technique usually adopts, as first approximation, a linear model to describe the displacement of the detected targets, also non-linear models can be used. However, the satellite revisit time, which defines the time sampling of the detected displacement signal, limits the maximum measurable velocity and acceleration. This makes it difficult to assess in the short time any acceleration indicating a loss of equilibrium and, therefore, a probable reactivation of the landslide. The recent Sentinel-1 mission from the European Space Agency (ESA), provides a spatial resolution comparable to the previous ESA missions, but a nominal revisit time reduced to 6 days. By offering regular global-scale coverage, better temporal resolution and freely available imagery, Sentinel-1 improves the performance of PSInSAR for ground displacement investigations. In particular, the short revisit time allows a better time series analysis by improving the temporal sampling and the chances to catch pre-failure signals characterised by high rate and non-linear behaviour signals. Moreover, it allows collecting large data stacks in a short time period, thus improving the PSInSAR performance in emergency (post-event) scenarios. In the present work, we propose to match satellite data with numerical analysis techniques appropriate to evidence unsteady kinematics and, thanks to the high resolution of satellite data and improved temporal sampling, to detect early stages of land instability phenomena. The test area is situated in a small town in the Southern Apennine, Basilicata region, affected by old and new huge landslides, now close to a lived outskirt.
NASA Technical Reports Server (NTRS)
vanZyl, Jakob J.
2012-01-01
Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.
NASA Astrophysics Data System (ADS)
Thirion-Lefevre, L.; Guinvarc'h, R.
2016-12-01
InSAR provides forest height estimation that can be used to evaluate the aboveground biomass (AGB). This estimation depends on frequency, polarization and forest structure. If the forest is dense, high frequency gives a good estimation of the AGB whatever the polarization. For other forests, the response is a mix of scattering mechanisms with different phase centers. For instance at P-band, more information can be obtained on the structure thanks to a deeper penetration. However, double bounce mechanism can be strong with its phase center closer to the ground. As a consequence, AGB is underestimated. Quantifying double bounce mechanism can therefore help to assess this estimation. This mechanism can actually be significantly lowered using the Double Brewster Effect (DBE). The latter occurs for a dielectric dihedral and results in a reduced VV component by more than 10 dB for a large angular bandwidth, typically from 20° to 70° (HH is not affected). It consists in two successive Brewster effects, one for the ground, one for the trunk. This DBE is then dependent on the frequency and on the properties of the scatterers (moisture, ground composition, etc). It gives a new light on the interpretation of InSAR height estimation, based on a phenomenology study. We will first quantify this effect on real data at P- and L-bands. We will then present the relation between DBE and the interferometric height using a coherent scattering electromagnetic model previously validated on forests at P- and L-bands. Actually, the interferometric coherence of a forest can be modeled for each polarization by a simple summation of the coherence of the main scattering mechanisms (single and double bounce scattering), weighted by their respective magnitude. Thus, at HH, the resulting height will be determined by the relative weight of the scattering mechanisms. At VV, if DBE is strong, then the interferometric height will depend on the single scattering only.
An assessment of the DORT method on simple scatterers using boundary element modelling.
Gélat, P; Ter Haar, G; Saffari, N
2015-05-07
The ability to focus through ribs overcomes an important limitation of a high-intensity focused ultrasound (HIFU) system for the treatment of liver tumours. Whilst it is important to generate high enough acoustic pressures at the treatment location for tissue lesioning, it is also paramount to ensure that the resulting ultrasonic dose on the ribs remains below a specified threshold, since ribs both strongly absorb and reflect ultrasound. The DORT (décomposition de l'opérateur de retournement temporel) method has the ability to focus on and through scatterers immersed in an acoustic medium selectively without requiring prior knowledge of their location or geometry. The method requires a multi-element transducer and is implemented via a singular value decomposition of the measured matrix of inter-element transfer functions. The efficacy of a method of focusing through scatterers is often assessed by comparing the specific absorption rate (SAR) at the surface of the scatterer, and at the focal region. The SAR can be obtained from a knowledge of the acoustic pressure magnitude and the acoustic properties of the medium and scatterer. It is well known that measuring acoustic pressures with a calibrated hydrophone at or near a hard surface presents experimental challenges, potentially resulting in increased measurement uncertainties. Hence, the DORT method is usually assessed experimentally by measuring the SAR at locations on the surface of the scatterer after the latter has been removed from the acoustic medium. This is also likely to generate uncertainties in the acoustic pressure measurement. There is therefore a strong case for assessing the efficacy of the DORT method through a validated theoretical model. The boundary element method (BEM) applied to exterior acoustic scattering problems is well-suited for such an assessment. In this study, BEM was used to implement the DORT method theoretically on locally reacting spherical scatterers, and to assess its focusing capability relative to the spherical focusing case, binarised apodisation based on geometric ray tracing and the phase conjugation method.
Ice Types in the Beaufort Sea, Alaska
NASA Technical Reports Server (NTRS)
2003-01-01
Determining the amount and type of sea ice in the polar oceans is crucial to improving our knowledge and understanding of polar weather and long term climate fluctuations. These views from two satellite remote sensing instruments; the synthetic aperture radar (SAR) on board the RADARSAT satellite and the Multi-angle Imaging SpectroRadiometer (MISR), illustrate different methods that may be used to assess sea ice type. Sea ice in the Beaufort Sea off the north coast of Alaska was classified and mapped in these concurrent images acquired March 19, 2001 and mapped to the same geographic area.To identify sea ice types, the National Oceanic and Atmospheric Administration (NOAA) National Ice Center constructs ice charts using several data sources including RADARSAT SAR images such as the one shown at left. SAR classifies sea ice types primarily by how the surface and subsurface roughness influence radar backscatter. In the SAR image, white lines delineate different sea ice zones as identified by the National Ice Center. Regions of mostly multi-year ice (A) are separated from regions with large amounts of first year and younger ice (B-D), and the dashed white line at bottom marks the coastline. In general, sea ice types that exhibit increased radar backscatter appear bright in SAR and are identified as rougher, older ice types. Younger, smoother ice types appear dark to SAR. Near the top of the SAR image, however, red arrows point to bright areas in which large, crystalline 'frost flowers' have formed on young, thin ice, causing this young ice type to exhibit an increased radar backscatter. Frost flowers are strongly backscattering at radar wavelengths (cm) due to both surface roughness and the high salinity of frost flowers, which causes them to be highly reflective to radar energy.Surface roughness is also registered by MISR, although the roughness observed is at a different spatial scale. Older, rougher ice areas are predominantly backward scattering to the MISR cameras, whereas younger, smoother ice types are predominantly forward scattering. The MISR map at right was generated using a statistical classification routine (called ISODATA) and analyzed using ice charts from the National Ice Center. Five classes of sea ice were found based upon the classification of MISR angular data. These are described, based on interpretation of the SAR image, by the image key. Very smooth ice areas that are predominantly forward scattering are colored red. Frost flowers are largely smooth to the MISR visible band sensor and are mapped as forward scattering. Areas mapped as blue are predominantly backward scattering, and the other three classes have statistically distinct angular signatures and fall within the middle of the forward/backward scattering continuum. Some areas that may be first year or younger ice between the multi year ice floes are not discernible to SAR, illustrating how MISR potentially can make a unique contribution to sea ice mapping.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during Terra orbit 6663. The MISR image has been cropped to include an area that is 200 kilometers wide, and utilizes data from blocks 30 to 33 within World Reference System-2 path 71.MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets
NASA Technical Reports Server (NTRS)
Moller, Delwyn K.; Sadowy, Gregory A.; Rignot, Eric J.; Madsen, Soren N.
2007-01-01
A report discusses Ka-band (35-GHz) radar for mapping the surface topography of glaciers and ice sheets at high spatial resolution and high vertical accuracy, independent of cloud cover, with a swath-width of 70 km. The system is a single- pass, single-platform interferometric synthetic aperture radar (InSAR) with an 8-mm wavelength, which minimizes snow penetration while remaining relatively impervious to atmospheric attenuation. As exhibited by the lower frequency SRTM (Shuttle Radar Topography Mission) AirSAR and GeoSAR systems, an InSAR measures topography using two antennas separated by a baseline in the cross-track direction, to view the same region on the ground. The interferometric combination of data received allows the system to resolve the pathlength difference from the illuminated area to the antennas to a fraction of a wavelength. From the interferometric phase, the height of the target area can be estimated. This means an InSAR system is capable of providing not only the position of each image point in along-track and slant range as with a traditional SAR but also the height of that point through interferometry. Although the evolution of InSAR to a millimeter-wave center frequency maximizes the interferometric accuracy from a given baseline length, the high frequency also creates a fundamental problem of swath coverage versus signal-to-noise ratio. While the length of SAR antennas is typically fixed by mass and stowage or deployment constraints, the width is constrained by the desired illuminated swath width. As the across-track beam width which sets the swath size is proportional to the wavelength, a fixed swath size equates to a smaller antenna as the frequency is increased. This loss of antenna size reduces the two-way antenna gain to the second power, drastically reducing the signal-to-noise ratio of the SAR system. This fundamental constraint of high-frequency SAR systems is addressed by applying digital beam-forming (DBF) techniques to synthesize multiple simultaneous receive beams in elevation while maintaining a broad transmit illumination. Through this technique, a high antenna gain on receive is preserved, thereby reducing the required transmit power and thus enabling high-frequency SARs and high-precision InSAR from a single spacecraft.
Far-infrared elastic scattering proposal for the Avogadro Project's silicon spheres
NASA Astrophysics Data System (ADS)
Humayun, Muhammad Hamza; Khan, Imran; Azeem, Farhan; Chaudhry, Muhammad Rehan; Gökay, Ulaş Sabahattin; Murib, Mohammed Sharif; Serpengüzel, Ali
2018-05-01
Avogadro constant determines the number of particles in one mole of a substance, thus relating the molar mass of the substance to the mass of this substance. Avogadro constant is related to Système Internationale base units by defining the very concept of chemical quantity. Revisions of the base units created a need to redefine the Avogadro constant, where a collaborative work called the Avogadro Project is established to employ optical interferometry to measure the diameter of high quality 100 mm silicon spheres. We propose far-infrared spectroscopy for determining the Avogadro constant by using elastic scattering from the 100 mm Avogadro Project silicon spheres. Similar spectroscopic methods are already in use in the near-infrared, relating whispering gallery modes of the 1 mm silicon spheres to the diameter of the spheres. We present numerical simulations in the far-infrared and the near-infrared, as well as spatially scaled down elastic scattering measurements in the near-infrared. These numerical and experimental results show that, the diameter measurements of 100 mm single crystal silicon spheres with elastic scattering in the far-infrared can be considered as an alternative to optical interferometry.
NASA Astrophysics Data System (ADS)
Polcari, Marco; Albano, Matteo; Fernández, José; Palano, Mimmo; Samsonov, Sergey; Stramondo, Salvatore; Zerbini, Susanna
2016-04-01
In this work we present a 3D map of coseismic displacements due to the 2014 Mw 6.0 South Napa earthquake, California, obtained by integrating displacement information data from SAR Interferometry (InSAR), Multiple Aperture Interferometry (MAI), Pixel Offset Tracking (POT) and GPS data acquired by both permanent stations and campaigns sites. This seismic event produced significant surface deformation along the 3D components causing several damages to vineyards, roads and houses. The remote sensing results, i.e. InSAR, MAI and POT, were obtained from the pair of SAR images provided by the Sentinel-1 satellite, launched on April 3rd, 2014. They were acquired on August 7th and 31st along descending orbits with an incidence angle of about 23°. The GPS dataset includes measurements from 32 stations belonging to the Bay Area Regional Deformation Network (BARDN), 301 continuous stations available from the UNAVCO and the CDDIS archives, and 13 additional campaign sites from Barnhart et al, 2014 [1]. These data constrain the horizontal and vertical displacement components proving to be helpful for the adopted integration method. We exploit the Bayes theory to search for the 3D coseismic displacement components. In particular, for each point, we construct an energy function and solve the problem to find a global minimum. Experimental results are consistent with a strike-slip fault mechanism with an approximately NW-SE fault plane. Indeed, the 3D displacement map shows a strong North-South (NS) component, peaking at about 15 cm, a few kilometers far from the epicenter. The East-West (EW) displacement component reaches its maximum (~10 cm) south of the city of Napa, whereas the vertical one (UP) is smaller, although a subsidence in the order of 8 cm on the east side of the fault can be observed. A source modelling was performed by inverting the estimated displacement components. The best fitting model is given by a ~N330° E-oriented and ~70° dipping fault with a prevailing right-lateral motion. Both NS and UP components are well constrained while the residuals for the EW component are higher. Further analysis will be mainly focused on model improvements. References [1] Barnhart W.D., Murray J.R., Yun S. H., Svarc J. L., Samsonov S. V., Fielding E. J., Brooks B. A., Milillo P. (2015) - Geodetic Constraints on the 2014 M 6.0 South Napa Earthquake. Seismological Research Letters, vol. 86, pp. 335-343, doi: http://dx.doi.org/10.1785/0220140210.
Estimation of penetration of forest canopies by Interferometric SAR measurements
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto; Michel, Thierry R.; Harding, David J.
1995-01-01
In contrast to traditional Synthetic Aperture Radar (SAR), an Interferometric SAR (INSAR) yields two additional measurements: the phase difference and the correlation between the two interferometric channels. The phase difference has been used to estimate topographic height. For homogeneous surfaces, the correlation depends on the system signal-to-noise (SNR) ratio, the interferometer parameters, and the local slope. In the presence of volume scattering, such as that encountered in vegetation canopies, the correlation between the two channels is also dependent on the degree of penetration of the radiation into the scattering medium. In this paper, we propose a method for removing system and slope effects in order to obtain the decorrelation due to penetration alone. The sensitivities and accuracy of the proposed method are determined by Monte Carlo experiments, and we show that the proposed technique has sufficient sensitivity to provide penetration measurements for airborne SAR systems. Next, we provide a theoretical model to estimate the degree of penetration in a way which is independent of the details of the scattering medium. We also present a model for the correlation from non-homogeneous layers. We assess the sensitivity of the proposed inversion technique to these inhomogeneous situations. Finally, we present a comparison of the interferometric results against in situ data obtained by an airborne laser profilometer which provides a direct measurement of tree height and an estimate of the vegetation density profile in the forested areas around Mt. Adams, WA.
Development of a portable frequency-domain angle-resolved low coherence interferometry system
NASA Astrophysics Data System (ADS)
Pyhtila, John W.; Wax, Adam
2007-02-01
Improved methods for detecting dysplasia, or pre-cancerous growth, are a current clinical need. Random biopsy and subsequent diagnosis through histological analysis is the current gold standard in endoscopic surveillance for dysplasia. However, this approach only allows limited examination of the at-risk tissue and has the drawback of a long delay in time-to-diagnosis. In contrast, optical scattering spectroscopy methods offer the potential to assess cellular structure and organization in vivo, thus allowing for instantaneous diagnosis and increased coverage of the at-risk tissue. Angle-resolved low coherence interferometry (a/LCI), a novel scattering spectroscopy technique, combines the ability of low-coherence interferometry to isolate scattered light from sub-surface tissue layers with the ability of light scattering spectroscopy to obtain structural information on sub-wavelength scales, specifically by analyzing the angular distribution of the backscattered light. In application to examining tissue, a/LCI enables depthresolved quantitative measurements of changes in the size and texture of cell nuclei, which are characteristic biomarkers of dysplasia. The capabilities of a/LCI were demonstrated initially by detecting pre-cancerous changes in epithelial cells within intact, unprocessed, animal tissues. Recently, we have developed a new frequency-domain a/LCI system, with sub-second acquisition time and a novel fiber optic probe. Preliminary results using the fa/LCI system to examine human esophageal tissue in Barrett's esophagus patients demonstrate the clinical viability of the approach. In this paper, we present a new portable system which improves upon the design of the fa/LCI system to allow for higher quality data to be collected in the clinic. Accurate sizing of polystyrene microspheres and cell nuclei from ex vivo human esophageal tissue is presented. These results demonstrate the promise of a/LCI as a clinically viable diagnostic tool.
Beyond PSInSAR: the SQUEESAR Approach
NASA Astrophysics Data System (ADS)
Ferretti, A.; Novali, F.; Fumagalli, A.; Prati, C.; Rocca, F.; Rucci, A.
2009-12-01
After a decade since the first results on ERS data, Permanent Scatterer (PS) InSAR has become an operational technology for detecting and monitoring slow surface deformation phenomena such as subsidence and uplift, landslides, seismic fault creeping, volcanic inflation, etc. Processing procedures have been continuously updated, but the core of the algorithm has not been changed significantly. As well known, in PSInSAR, the main target is the identification of individual pixels that exhibit a “PS behavior”, i.e. they are only slightly affected by both temporal and geometrical decorrelation. Typically, these scatterers correspond to man-made objects, but PS have been identified also in non-urban areas, where exposed rocks or outcrops can indeed create good radar benchmarks and enable high-quality displacement measurements. Contrary to interferogram stacking techniques, PS analyses are carried out on a pixel-by-pixel basis, with no filtering of the interferograms, in order to preserve phase values from possible incoherent clutter surrounding good radar targets. In fact, any filtering process implies a spatial smoothing of the data that could compromise - rather than improve - phase coherence, at least for isolated PS. Although the PS approach usually allows one to retrieve high quality deformation measurements on a sparse grid of good radar targets, in some datasets it is quite evident how the number of pixels where some information can be extracted could be significantly increased by relaxing the hypothesis on target coherence and searching for pixels where the coherence level is high enough at least in some interferograms of the data-stack, not necessarily all. The idea of computing a “coherence matrix” for each pixel of the area of interest have been already proposed in previous papers, together with a statistical estimation of some physical parameters of interest (e.g. the average displacement rate) based on the covariance matrix. In past publications, however, it was not highlighted how a reliable estimation of the coherence matrix can be carried out on distributed scatterers only, characterized by a sufficient number of looks, sharing the same statistics of the reflectivity values. In this paper, we propose how to estimate reliable coherence values by properly selecting the statistical population used in the estimation. In standard PSInSAR, the so-called amplitude stability index is used as a proxy for temporal phase coherence, here we expand the concept and we show how local amplitude statistics can be successfully exploited to detect distributed scatterers, rather than individual pixels, where reliable statistical parameters can be extracted. As a byproduct of carefully estimating coherence values, we get despeckled amplitude images and filtered interferograms. Coherence matrixes and distributed scatterers, apart from the well-known PS, then become invaluable sources of information that can be “squeezed” to estimate any InSAR parameter of interest (the SqueeSAR concept). Preliminary results on real datasets will be shown using both C-band and X-band SAR data.
NASA Astrophysics Data System (ADS)
Béjar-Pizarro, Marta; Ezquerro, Pablo; Herrera, Gerardo; Tomás, Roberto; Guardiola-Albert, Carolina; Ruiz Hernández, José M.; Fernández Merodo, José A.; Marchamalo, Miguel; Martínez, Rubén
2017-04-01
Groundwater resources are under stress in many regions of the world and the future water supply for many populations, particularly in the driest places on Earth, is threatened. Future climatic conditions and population growth are expected to intensify the problem. Understanding the factors that control groundwater storage variation is crucial to mitigate its adverse consequences. In this work, we apply satellite-based measurements of ground deformation over the Tertiary detritic aquifer of Madrid (TDAM), Central Spain, to infer the spatio-temporal evolution of water levels and estimate groundwater storage variations. Specifically, we use Persistent Scatterer Interferometry (PSI) data during the period 1992-2010 and piezometric time series on 19 well sites covering the period 1997-2010 to build groundwater level maps and quantify groundwater storage variations. Our results reveal that groundwater storage loss occurred in two different periods, 1992-1999 and 2005-2010 and was mainly concentrated in a region of ∼200 km2. The presence of more compressible materials in that region combined with a long continuous water extraction can explain this volumetric deficit. This study illustrates how the combination of PSI and piezometric data can be used to detect small aquifers affected by groundwater storage loss helping to improve their sustainable management.
NASA Astrophysics Data System (ADS)
Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Homayouni, S.
2016-06-01
Polarimetric Synthetic Aperture Radar (PolSAR) imagery is a complex multi-dimensional dataset, which is an important source of information for various natural resources and environmental classification and monitoring applications. PolSAR imagery produces valuable information by observing scattering mechanisms from different natural and man-made objects. Land cover mapping using PolSAR data classification is one of the most important applications of SAR remote sensing earth observations, which have gained increasing attention in the recent years. However, one of the most challenging aspects of classification is selecting features with maximum discrimination capability. To address this challenge, a statistical approach based on the Fisher Linear Discriminant Analysis (FLDA) and the incorporation of physical interpretation of PolSAR data into classification is proposed in this paper. After pre-processing of PolSAR data, including the speckle reduction, the H/α classification is used in order to classify the basic scattering mechanisms. Then, a new method for feature weighting, based on the fusion of FLDA and physical interpretation, is implemented. This method proves to increase the classification accuracy as well as increasing between-class discrimination in the final Wishart classification. The proposed method was applied to a full polarimetric C-band RADARSAT-2 data set from Avalon area, Newfoundland and Labrador, Canada. This imagery has been acquired in June 2015, and covers various types of wetlands including bogs, fens, marshes and shallow water. The results were compared with the standard Wishart classification, and an improvement of about 20% was achieved in the overall accuracy. This method provides an opportunity for operational wetland classification in northern latitude with high accuracy using only SAR polarimetric data.
On The TerraSAR-X Dual-Mode For Oil Slick Observation
NASA Astrophysics Data System (ADS)
Velotto, D.; Migliaccio, M.; Nunziata, F.; Lehner, S.
2010-04-01
In this study a polarimetric approach is for the first time developed and applied to X-band Synthetic Aperture Radar (SAR) data for sea oil slick observation. Following this an electromagnetic model which, based on the Co-polarized Phase Difference (CPD), allows describing the slick-free and slick-covered sea surface scattering is proposed. Single Look Complex (SSC) TerraSAR-X (TSX) data, gathered in dual polarimetric mode, in which both certified oil slicks and look-alikes are present, are analyzed. Several experiments are shown here and discussed in detail.
SAR Polarimetric Scattering from Natural Terrains
2017-02-17
Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Radar polarimetry and speckles of random rough surface scattering is studied using 3-D numerical...Performance : 04/18/2013 - 04/17/2016 AOARD PM: Dr. Seng Hong Abstract : Radar polarimetry and speckles of random rough surface scattering is studied using 3...Doctoral Dissertation Title : Polarimetry In Radar Backscattering from Soil and Vegetated Surfaces Institution : University of Washington, Seattle
NASA Astrophysics Data System (ADS)
Masson, F.; Rabalais, J. W.
1991-08-01
The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS) is used for quantitative structural characterization of the reconstructed (1 × 2) missing-row Pt{110} clean surface. The results are presented as scans of scattered intensity versus incident angle at two scattering angles and are interpreted in terms of simple classical concepts (shadowing, blocking, focusing). Measured critical incident and exit angles corresponding to interatomic spacings unaffected by reconstruction are used to calibrate the screening constant of the interaction potential employed in the trajectory simulations. Analysis of the surface reconstruction is performed by combining experimental data and calibrated computations. The results indicate a contraction of the first-to-second interlayer spacing (-0.22 ± 0.07 Å, i.e., -16 ± 5%), a buckling of amplitude 0.19 ± 0.13 Å in the third layer and, possibly, a row-pairing in the second layer. These observations are in agreement with LEED, MEIS, GXRD, and RHEED experiments.
InSAR Constraints on the Deformation of Debris-Covered Glaciers in the Khumbu Region of Nepal
NASA Astrophysics Data System (ADS)
Schmidt, D. A.; Hallet, B.; Barker, A. D.; Shean, D. E.; Conway, H.
2016-12-01
We present InSAR results for the Khumbu region of Nepal that document the downslope displacement and subsidence of the glacier's terminus. Meltwater from glaciers in the Himalaya is an important water resource to the region during the dry season. Climate change is negatively impacting this frozen reservoir by increasing the melt rates, causing the glaciers to thin and recede. Documenting the response of these glaciers is critical to forecasting the future impacts of climate change on this system. To constrain the thinning rates of glaciers in the Khumbu region, we exploit SAR data from the ALOS-1 satellite, which exhibits good coherence on the debris-covered glaciers. We also explore the use of SAR data from more recent satellite missions (i.e TerraSAR-X, Sentinel, ALOS-2). The ALOS-1 interferograms reveal the slow, down-slope movement of the debris-covered terminus ( mm/yr), as well as anomalous subsidence along the northwestern edge of Khumbu glacier, which may indicate local thinning. Deformation rates are generally consistent with campaign GPS observations, which also help to differentiate vertical from horizontal deformation. Elsewhere within the SAR scene, active movement is detected on the glacier-moraine dam of Imja Tsho, which has implications for the stability of the terminal moraine and for assessing the risk of a glacial lake outburst flood. Elsewhere, localized subsidence signals may indicate the melting of entrained ice in debris-covered landforms. The significant vertical relief in the Himalaya region poses a challenge for doing differential radar interferometry, as artifacts in the digital elevation model (DEM) can propagate into the differential interferograms. We explore the impacts of using different DEMs in our analysis, in an attempt to separate the topographic artifacts from the real deformation signals.
Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry
NASA Astrophysics Data System (ADS)
Yang, Zefa; Li, Zhiwei; Zhu, Jianjun; Yi, Huiwei; Feng, Guangcai; Hu, Jun; Wu, Lixin; Preusse, Alex; Wang, Yunjia; Papst, Markus
2018-01-01
It is crucial to locate underground goafs (i.e., mined-out areas) resulting from coal mining and define their spatial dimensions for effectively controlling the induced damages and geohazards. Traditional geophysical techniques for locating and defining underground goafs, however, are ground-based, labour-consuming and costly. This paper presents a novel space-based method for locating and defining the underground goaf caused by coal extraction using Interferometric Synthetic Aperture Radar (InSAR) techniques. As the coal mining-induced goaf is often a cuboid-shaped void and eight critical geometric parameters (i.e., length, width, height, inclined angle, azimuth angle, mining depth, and two central geodetic coordinates) are capable of locating and defining this underground space, the proposed method reduces to determine the eight geometric parameters from InSAR observations. Therefore, it first applies the Probability Integral Method (PIM), a widely used model for mining-induced deformation prediction, to construct a functional relationship between the eight geometric parameters and the InSAR-derived surface deformation. Next, the method estimates these geometric parameters from the InSAR-derived deformation observations using a hybrid simulated annealing and genetic algorithm. Finally, the proposed method was tested with both simulated and two real data sets. The results demonstrate that the estimated geometric parameters of the goafs are accurate and compatible overall, with averaged relative errors of approximately 2.1% and 8.1% being observed for the simulated and the real data experiments, respectively. Owing to the advantages of the InSAR observations, the proposed method provides a non-contact, convenient and practical method for economically locating and defining underground goafs in a large spatial area from space.
NASA Astrophysics Data System (ADS)
Schlögel, Romy; Darvishi, Mehdi; Cuozzo, Giovanni; Kofler, Christian; Rutzinger, Martin; Zieher, Thomas; Toschi, Isabella; Remondino, Fabio
2017-04-01
Sentinel-1 mission allows us to have Synthetic Aperture Radar (SAR) acquisitions over large areas every 6 days with spatial resolution of 20 m. This new open-source generation of satellites has enhanced the capabilities for continuously studying earth surface changes. Over the past two decades, several studies have demonstrated the potential of Differential Synthetic Aperture Radar Interferometry (DInSAR) for detecting and quantifying land surface deformation. DInSAR limitations and challenges are linked to the SAR properties and the field conditions (especially in Alpine environments) leading to spatial and temporal decorrelation of the SAR signal. High temporal decorrelation can be caused by changes in vegetation (particularly in non-urban areas), atmospheric conditions or high ground surface velocity. In this study, kinematics of the complex and vegetated Corvara landslide, situated in Val Badia (South Tirol, Italy), are monitored by a network of 3 permanent and 13 monthly Differential Global Positioning System (DGPS) stations. The slope displacement rates are found to be highly unsteady and reach several meters a year. This analysis focuses on evaluating the limitations of Sentinel-1 imagery processed with Small Baseline Subset (SBAS) technique in comparison to ground-based measurements for assessing the landslide kinematic linked to meteorological conditions. Selecting some particular acquisitions, coherence thresholds and unwrapping processes gives various results in terms of reliability and accuracy supporting the understanding of the landslide velocity field. The evolution of the coherence and phase signals are studied according to the changing field conditions and the monitored ground-based displacements. DInSAR deformation maps and residual topographic heights are finally compared with difference of high resolution Digital Elevation Models at local scale. This research is conducted within the project LEMONADE (http://lemonade.mountainresearch.at) funded by the Euregio Science Fund.
NASA Astrophysics Data System (ADS)
Wang, Xiaowen; Liu, Lin; Zhao, Lin; Wu, Tonghua; Li, Zhongqin; Liu, Guoxiang
2017-04-01
Rock glaciers are widespread in the Tien Shan. However, rock glaciers in the Chinese part of the Tien Shan have not been systematically investigated for more than 2 decades. In this study, we propose a new method that combines SAR interferometry and optical images from Google Earth to map active rock glaciers (ARGs) in the northern Tien Shan (NTS) of China. We compiled an inventory that includes 261 ARGs and quantitative information about their locations, geomorphic parameters, and downslope velocities. Our inventory shows that most of the ARGs are moraine-derived (69 %) and facing northeast (56 %). The altitude distribution of ARGs in the western NTS is significantly different from those located in the eastern part. The downslope velocities of the ARGs vary significantly in space, with a maximum of about 114 cm yr-1 and a mean of about 37 cm yr-1. Using the ARG locations as a proxy for the extent of alpine permafrost, our inventory suggests that the lowest altitudinal limit for the presence of permafrost in the NTS is about 2500-2800 m, a range determined by the lowest ARG in the entire inventory and by a statistics-based estimation. The successful application of the proposed method would facilitate effective and robust efforts to map rock glaciers over mountain ranges globally. This study provides an important dataset to improve mapping and modeling permafrost occurrence in vast western China.
Tectonic setting of the Wooded Island earthquake swarm, eastern Washington
Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Rohay, Alan C.; Wells, Ray E.
2012-01-01
Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site,Washington. Epicenters were concentrated in a 2 km2 area nearWooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.
Status of a UAVSAR designed for repeat pass interferometry for deformation measurements
NASA Technical Reports Server (NTRS)
Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren; Paul, Rose
2005-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also known as differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar wilI be designed to operate on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus buitt by Scaled Composites or on a NASA Gulfstream III. The radar design is a fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered along track to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. Other features supported by the antenna include an elevation monopulse option and a pulse-to-pulse resteering capability that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began out as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
Long term SAR interferometry monitoring for assessing changing levels of slope instability hazards
NASA Astrophysics Data System (ADS)
Wasowski, J.; Ferretti, A.
The population growth with increasing impact of man on the environment and urbanisation of areas susceptible to slope failures coupled with the ongoing change in climate patterns will require a shift in the approaches to landslide hazard reduction Indeed there is evidence that landslide activity and related socio-economic loss are increasing in both rich and less developed countries throughout the world Because of this and because the urbanisation of hillside and mountain slopes prone to failure will likely continue in the future the protection of new and pre-existing developed areas via traditional engineering stabilisation works and in situ monitoring is not considered economically feasible Furthermore in most cases the ground control systems are installed post-factum and for short term monitoring and hence their role in preventing disasters is limited Considering the global dimension of the slope instability problem a sustainable road to landslide hazard reduction seems to be via exploitation of EO systems with focus on early detection long term monitoring and early warning Thanks to the wide-area coverage regular schedule and improving resolution of space-borne sensors the EO can foster the auspicious shift from a culture of repair to a culture of awarness and prevention Under this scenario the space-borne synthetic aperture radar differential interferometry DInSAR is attractive because of its capability to provide both wide-area and spatially dense information on surface displacements Since the presence of movements represents a direct evidence of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blakely, R. J.; Sherrod, B. L.; Weaver, C. S.
Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site, Washington. Epicenters were concentrated in a 2 km 2 area near Wooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Groupmore » (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Finally, although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.« less
Hubig, Michael; Suchandt, Steffen; Adam, Nico
2004-10-01
Phase unwrapping (PU) represents an important step in synthetic aperture radar interferometry (InSAR) and other interferometric applications. Among the different PU methods, the so called branch-cut approaches play an important role. In 1996 M. Costantini [Proceedings of the Fringe '96 Workshop ERS SAR Interferometry (European Space Agency, Munich, 1996), pp. 261-272] proposed to transform the problem of correctly placing branch cuts into a minimum cost flow (MCF) problem. The crucial point of this new approach is to generate cost functions that represent the a priori knowledge necessary for PU. Since cost functions are derived from measured data, they are random variables. This leads to the question of MCF solution stability: How much can the cost functions be varied without changing the cheapest flow that represents the correct branch cuts? This question is partially answered: The existence of a whole linear subspace in the space of cost functions is shown; this subspace contains all cost differences by which a cost function can be changed without changing the cost difference between any two flows that are discharging any residue configuration. These cost differences are called strictly stable cost differences. For quadrangular nonclosed networks (the most important type of MCF networks for interferometric purposes) a complete classification of strictly stable cost differences is presented. Further, the role of the well-known class of node potentials in the framework of strictly stable cost differences is investigated, and information on the vector-space structure representing the MCF environment is provided.
NASA Astrophysics Data System (ADS)
Pezzo, Giuseppe; Merryman Boncori, John Peter; Atzori, Simone; Antonioli, Andrea; Salvi, Stefano
2014-07-01
In this study, we use Differential Synthetic Aperture Radar Interferometry (DInSAR) and multi-aperture interferometry (MAI) to constrain the sources of the three largest events of the 2008 Baluchistan (western Pakistan) seismic sequence, namely two Mw 6.4 events only 12 hr apart and an Mw 5.7 event that occurred 40 d later. The sequence took place in the Quetta Syntaxis, the most seismically active region of Baluchistan, tectonically located between the colliding Indian Plate and the Afghan Block of the Eurasian Plate. Surface displacements estimated from ascending and descending ENVISAT ASAR acquisitions were used to derive elastic dislocation models for the sources of the two main events. The estimated slip distributions have peak values of 120 and 130 cm on a pair of almost parallel and near-vertical faults striking NW-SE, and of 50 cm and 60 cm on two high-angle faults striking NE-SW. Values up to 50 cm were found for the largest aftershock on an NE-SW fault located between the sources of the main shocks. The MAI measurements, with their high sensitivity to the north-south motion component, are crucial in this area to accurately describe the coseismic displacement field. Our results provide insight into the deformation style of the Quetta Syntaxis, suggesting that right-lateral slip released at shallow depths on large NW fault planes is compatible with left-lateral activation on smaller NE-SW faults.
A comparative study on methods of improving SCR for ship detection in SAR image
NASA Astrophysics Data System (ADS)
Lang, Haitao; Shi, Hongji; Tao, Yunhong; Ma, Li
2017-10-01
Knowledge about ship positions plays a critical role in a wide range of maritime applications. To improve the performance of ship detector in SAR image, an effective strategy is improving the signal-to-clutter ratio (SCR) before conducting detection. In this paper, we present a comparative study on methods of improving SCR, including power-law scaling (PLS), max-mean and max-median filter (MMF1 and MMF2), method of wavelet transform (TWT), traditional SPAN detector, reflection symmetric metric (RSM), scattering mechanism metric (SMM). The ability of SCR improvement to SAR image and ship detection performance associated with cell- averaging CFAR (CA-CFAR) of different methods are evaluated on two real SAR data.
Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery
Wang, Teng; Poland, Michael; Lu, Zhong
2016-01-01
Synthetic aperture radar imagery is widely used to study surface deformation induced by volcanic activity; however, it is rarely applied to quantify the evolution of lava domes, which is important for understanding hazards and magmatic system characteristics. We studied dome formation associated with eruptive activity at Mount Cleveland, Aleutian Volcanic Arc, in 2011–2012 using TerraSAR-X imagery. Interferometry and offset tracking show no consistent deformation and only motion of the crater rim, suggesting that ascending magma may pass through a preexisting conduit system without causing appreciable surface deformation. Amplitude imagery has proven useful for quantifying rates of vertical and areal growth of the lava dome within the crater from formation to removal by explosive activity to rebirth. We expect that this approach can be applied at other volcanoes that host growing lava domes and where hazards are highly dependent on dome geometry and growth rates.
Network Adjustment of Orbit Errors in SAR Interferometry
NASA Astrophysics Data System (ADS)
Bahr, Hermann; Hanssen, Ramon
2010-03-01
Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.
New signatures of underground nuclear tests revealed by satellite radar interferometry
Vincent, P.; Larsen, S.; Galloway, D.; Laczniak, R.J.; Walter, W.R.; Foxall, W.; Zucca, J.J.
2003-01-01
New observations of surface displacement caused by past underground nuclear tests at the Nevada Test Site (NTS) are presented using interferometric synthetic aperture radar (InSAR). The InSAR data reveal both coseismic and postseismic subsidence signals that extend one kilometer or more across regardless of whether or not a surface crater was formed from each test. While surface craters and other coseismic surface effects (ground cracks, etc.) may be detectable using high resolution optical or other remote sensing techniques, these broader, more subtle subsidence signals (one to several centimeters distributed over an area 1-2 kilometers across) are not detectable using other methods [Barker et al., 1998]. A time series of interferograms reveal that the postseismic signals develop and persist for months to years after the tests and that different rates and styles of deformation occur depending on the geologic and hydrologic setting and conditions of the local test area.
Bridge Collapse Revealed By Multi-Temporal SAR Interferometry
NASA Astrophysics Data System (ADS)
Sousa, Joaquim; Bastos, Luisa
2013-12-01
On the night of March 4, 2001, the Hintze Ribeiro centennial Bridge, made of steel and concrete, collapsed in Entre-os-Rios (Northern Portugal), killing 59 people, including those in a bus and three cars that were attempting to reach the other side of the Douro River. It still remains the most serious road accident in the Portuguese history. In this work we do not intend to corroborate or contradict the official version of the accident causes, but only demonstrate the potential of Multi-Temporal Interferometric (MTI-InSAR) techniques for detection and monitoring of deformations in structures such as bridges, helping to prevent new catastrophic events. Based on the analysis of 57 ERS-1/2 covering the period from December 1992 to the fatality occurrence, we were able to detect significant movements (up to 20 mm/yr) in the section of the bridge that fell in the Douro River, obvious signs of the bridge instability.
NASA Astrophysics Data System (ADS)
Bouchaala, F.; Ali, M. Y.; Matsushima, J.
2016-06-01
In this study a relationship between the seismic wavelength and the scale of heterogeneity in the propagating medium has been examined. The relationship estimates the size of heterogeneity that significantly affects the wave propagation at a specific frequency, and enables a decrease in the calculation time of wave scattering estimation. The relationship was applied in analyzing synthetic and Vertical Seismic Profiling (VSP) data obtained from an onshore oilfield in the Emirate of Abu Dhabi, United Arab Emirates. Prior to estimation of the attenuation, a robust processing workflow was applied to both synthetic and recorded data to increase the Signal-to-Noise Ratio (SNR). Two conventional methods of spectral ratio and centroid frequency shift methods were applied to estimate the attenuation from the extracted seismic waveforms in addition to a new method based on seismic interferometry. The attenuation profiles derived from the three approaches demonstrated similar variation, however the interferometry method resulted in greater depth resolution, differences in attenuation magnitude. Furthermore, the attenuation profiles revealed significant contribution of scattering on seismic wave attenuation. The results obtained from the seismic interferometry method revealed estimated scattering attenuation ranges from 0 to 0.1 and estimated intrinsic attenuation can reach 0.2. The subsurface of the studied zones is known to be highly porous and permeable, which suggest that the mechanism of the intrinsic attenuation is probably the interactions between pore fluids and solids.
NASA Astrophysics Data System (ADS)
Cigna, Francesca; Rawlins, Barry G.; Jordan, Colm J.; Sowter, Andrew; Evans, Christopher D.
2014-05-01
It is renowned that the success of multi-interferometric Synthetic Aperture Radar (SAR) methods such as Persistent Scatterer Interferometry (PSI) and Small BASeline Subset (SBAS) is controlled by not only the availability of data, but also local topography and land cover. Locations with sufficient temporal phase stability and coherence are typically limited to either built-up, urban areas or areas of exposed bedrock. Whilst conventional PSI and SBAS approaches have limited potential to monitor surface motions in areas where few (or zero) scatterers or coherent targets exist, the newly developed Intermittent SBAS (ISBAS) technique (Sowter et al. 2013) can fill the gap by providing a more complete picture of ground movement in rural and vegetated regions. ISBAS is a small baseline, multi-look, coherent target method, which considers the intermittent coherence of rural areas and can work over a wide range of land cover classes including agriculture and grassland. Building upon a nationwide study that the British Geological Survey (BGS) undertook to assess the feasibility of InSAR techniques to monitor the landmass of Great Britain (Cigna et al. 2013), we identified a rural region in North Wales as an appropriate target area to evaluate the efficacy of ISBAS, where conventional SBAS and PSI approaches are unlikely to succeed. According to the UK Land Cover Map 2007 (LCM2007) from the Centre for Ecology & Hydrology (CEH), this area is dominated by improved and acid grassland, heather, bog and coniferous woodland, which are likely to result into extremely low PSI or SBAS point densities and sparse coverage of monitoring results. We employed 53 ERS-1/2 C-band (5.3GHz frequency) SAR data acquired in descending mode between 1993 and 2000, which were made available to BGS via the ESA Category 1 project id.13543. In the framework of the Glastir Monitoring & Evaluation Programme (Emmett et al. 2013), funded by the Welsh Government, we processed these using ISBAS covering a 4,460 km2 region of interest. By using thresholds for perpendicular and temporal baselines of 200 m and 4 years respectively, a total of 300 small baseline interferograms were generated and good network redundancy was obtained. Average temporal coherence of the processed scenes was rather low, with only ~4% of the processed area showing values exceeding 0.25 (hence suitable for an SBAS analysis), and most of the region revealed very low coherence, especially over areas of peat, grass, forest and heather. Processing with ISBAS allowed us to consider the intermittent behaviour of rural scatterers, dramatically improving the point density and achieving areal coverage results of around 99%. This increased the total number of monitored points by a factor of 25. The greatest improvement in terms of point density was achieved for coniferous woodland, which showed ISBAS/SBAS ratios exceeding 300, and densities increasing up to 150 points/km2 with ISBAS. Bog, acid grassland and dwarf shrub heath showed densities increasing from 2-10 to 150-160 points/km2 when using ISBAS with respect to conventional SBAS. It is worth noting that despite intermittence and the fact of relying only on a temporal subset of interferograms, the vast majority of the ISBAS points showed velocity standard deviations lower than 1.0-1.5 mm/yr, hence good quality of the estimated ground motion rates was retained using ISBAS and intermittently coherent targets. Geological interpretation, analysis and further discussion of the results in relation to changes in surface elevation of blanket peat are presented by Rawlins et al. 2014 (cf. BG2.3/SSS6.6). REFERENCES Cigna, F., Bateson, L., Jordan, C., & Dashwood, C. (2013). Nationwide monitoring of geohazards in Great Britain with InSAR: feasibility mapping based on ERS-1/2 and ENVISAT imagery. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 672:675. Emmett B. E. & the GMEP team (2013). Glastir Monitoring & Evaluation Programme. First Year Annual Report to Welsh Government (Contract reference: C147/2010/11). NERC Centre for Ecology & Hydrology (CEH Project: NEC04780), pp. 393. Rawlins, B. G., Cigna, F., Jordan, C., Sowter, A., & Evans, C. (2014). Monitoring changes in surface elevation of blanket peat and other land cover types using a novel InSAR processing technique. EGU 2014, Session BG2.3/SSS6.6. Sowter, A., Bateson, L., Strange, P., Ambrose, K., & Syafiudin, M. (2013). DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfield. Remote Sensing Letters, 4, 979:987.
Study of Retreat and Movement of Himalayan Glaciers Using Spaceborne Repeat Pass SAR Data
NASA Astrophysics Data System (ADS)
Kumar, V.; Venkataraman, G.; Rao, Y. S.
2008-12-01
In this study retreat and movement of Himalayan glaciers using Spaceborne SAR data have been attempted. Gangotri, Siachen, Bara Shigri and Patsio are major glaciers in the Himalayan region which are showing retreat and their respective tributary glaciers are completely disconnected from main body of glaciers. Glacier retreat study will be done using time series coregistered multi temporal SAR data. Simultaneously InSAR coherence thresholding will be applied for tracking snout of Gangotri glacier. Information about dynamism of glaciated terrain can be retrieved by differential interferograms. In this study, movement of Himalayan glaciers will be deciphered using Spaceborne InSAR technique. ERS-1/2 tandem observations showed high correlation on glacier area and hence movement of Siachen and Gangotri glacier are measured for year 1996. Displacement of Gangotri glacier in the radar look direction has been observed as 8.4 cm per day whereas Siachen glacier exhibits a displacement of 22 cm per day (Venkataraman et al. 2005). ERS-1/2 tandem data over all these glaciers show highest correlation over glacier areas but ENVISAT ASAR data shows coherence loss over glacier area due to decorrelation (Vijay et al. 2008). Coherence loss is usual phenomena in glaciated terrain as repeativity of sensor is high (35 days for ENVISAT). A tandem pair of ERS- 1&2 acquired on April 1 and 2, 1996 in descending pass over Siachen shows high coherence than the ascending pair acquired on May 2 and 3, 1996. It is due to change in climate between two acquisitions at glacier locations. Due to the X-band frequency TerraSAR-X interferometry will be more sensitive to orbit errors than current SAR sensors that operate in C-band or L-band (Eineder et al. 2003). A single frequency GPS receiver plus an additional dual-frequency GPS flown as an experimental payload will deliver an orbit accuracy in the order of centimeters. TerraSAR-X will supplement and enhance the InSAR based observations using other satellite data sets because of its high phase to deformation sensitivity, high spatial resolution (1 meter in High Resolution Spot Light Mode) and short (11 day) repeativity.
NASA Astrophysics Data System (ADS)
Abulaitijiang, Adili; Baltazar Andersen, Ole; Stenseng, Lars
2014-05-01
Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry. This enabled qualified measurements of sea surface height (SST) in the fjords in Greenland. Scoresbysund fjord on the east coast of Greenland is the largest fjord in the world which is also covered by CryoSat-2 SAR-In mask making it a good test region. Also, the tide gauge operated by DTU Space is sitting in Scoresbysund bay, which provides solid ground-based sea level variation records throughout the year. We perform an investigation into sea surface height variation since the start of the Cryosat-2 mission using SAR-In L1B data processed with baseline B processing. We have employed a new develop method for projecting all SAR-In observations in the Fjord onto a centerline up the Fjord. Hereby we can make solid estimates of the annual and (semi-) annual signal in sea level/sea ice freeboard within the Fjord. These seasonal height variations enable us to derive sea ice freeboard changes in the fjord from satellite altimetry. Derived sea level and sea-ice freeboard can be validated by comparison with the tide gauge observations for sea level and output from the Microwave Radiometer derived observations of sea ice freeboard developed at the Danish Meteorological Institute.
The Monitoring and Spatial-Temporal Evolution Characteristic Analysis for Land Subsidence in Beijing
NASA Astrophysics Data System (ADS)
Zhou, Q.; Zhao, W.; Yu, J.
2018-05-01
At present the land subsidence has been the main geological disaster in the plain area of China, and became one of the most serious disaster that restrict the social and economic sustainable development, it also is an important content in the project of national geographic conditions monitoring. With the development of economy and society, Beijing as the capital of China has experienced significant population growth in the last few decades which led to over-exploitation of the ground water to meet the water demand of more than 20 million inhabitants, especially in the urban region with high population density. However, the rainfall and surface runoff can't satisfy the need of aquifer recharge that product the land subsidence. As China's political center and a metropolis, there are a lot of large constructions, underground traffic projects and complicated municipal pipeline network, and Beijing is also an important traffic hub for national railway and highway network, all of them would be threatened by the land subsidence disaster. In this article the author used twenty ENVISAT Synthetic Aperture Radar (SAR) images acquired in 2008 June-2010 August and ten TerraSAR images acquired in 2011 June-2012 September were processed with Small Baseline Subset SAR Interferometry (SBAS-InSAR) techniques, to investigate spatial and temporal patterns of land subsidence in the urban area of Beijing.
Analysis of building deformation in landslide area using multisensor PSInSAR™ technique.
Ciampalini, Andrea; Bardi, Federica; Bianchini, Silvia; Frodella, William; Del Ventisette, Chiara; Moretti, Sandro; Casagli, Nicola
2014-12-01
Buildings are sensitive to movements caused by ground deformation. The mapping both of spatial and temporal distribution, and of the degree of building damages represents a useful tool in order to understand the landslide evolution, magnitude and stress distribution. The high spatial resolution of space-borne SAR interferometry can be used to monitor displacements related to building deformations. In particular, PSInSAR technique is used to map and monitor ground deformation with millimeter accuracy. The usefulness of the above mentioned methods was evaluated in San Fratello municipality (Sicily, Italy), which was historically affected by landslides: the most recent one occurred on 14th February 2010. PSInSAR data collected by ERS 1/2, ENVISAT, RADARSAT-1 were used to study the building deformation velocities before the 2010 landslide. The X-band sensors COSMO-SkyMed and TerraSAR-X were used in order to monitor the building deformation after this event. During 2013, after accurate field inspection on buildings and structures, damage assessment map of San Fratello were created and then compared to the building deformation velocity maps. The most interesting results were obtained by the comparison between the building deformation velocity map obtained through COSMO-SkyMed and the damage assessment map. This approach can be profitably used by local and Civil Protection Authorities to manage the post-event phase and evaluate the residual risks.
NASA Astrophysics Data System (ADS)
Beyene, F.; Knospe, S.; Busch, W.
2015-04-01
Landslide detection and monitoring remain difficult with conventional differential radar interferometry (DInSAR) because most pixels of radar interferograms around landslides are affected by different error sources. These are mainly related to the nature of high radar viewing angles and related spatial distortions (such as overlays and shadows), temporal decorrelations owing to vegetation cover, and speed and direction of target sliding masses. On the other hand, GIS can be used to integrate spatial datasets obtained from many sources (including radar and non-radar sources). In this paper, a GRID data model is proposed to integrate deformation data derived from DInSAR processing with other radar origin data (coherence, layover and shadow, slope and aspect, local incidence angle) and external datasets collected from field study of landslide sites and other sources (geology, geomorphology, hydrology). After coordinate transformation and merging of data, candidate landslide representing pixels of high quality radar signals were filtered out by applying a GIS based multicriteria filtering analysis (GIS-MCFA), which excludes grid points in areas of shadow and overlay, low coherence, non-detectable and non-landslide deformations, and other possible sources of errors from the DInSAR data processing. At the end, the results obtained from GIS-MCFA have been verified by using the external datasets (existing landslide sites collected from fieldworks, geological and geomorphologic maps, rainfall data etc.).
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; Guo, H.; LV, M.
2016-12-01
Glacier dynamic parameters, such as velocity fields and motion patterns, play a crucial role in the estimation of ice mass balance variations and in the monitoring of glacier-related hazards. Characterized by being independent of cloud cover and solar illumination, synthetic aperture radar (SAR) at long wavelength has provided an invaluable way to measure mountain glacier motion. Compared with optical imagery and in-situ surveys, it has been successfully exploited to detect glacier motion in many previous studies, usually with pixel-tracking (PT), differential interferometric SAR (D-InSAR) and multi-aperture interferometry (MAI) methods. However, the reliability of the extracted glacier velocities heavily depends on complex terrain topography and diverse glacial motion types. D-InSAR and MAI techniques are prone to fail in the case of mountain glaciers because of the steep terrain and their narrow sizes. PT method is considered to be the alternative way, although it is subject to a low accuracy.We propose an integrated strategy based on comprehensive utilization of the phase information (D-InSAR and MAI) and intensity information (PT) of SAR images, which is used to yield an accurate and detailed ice motion pattern for the typical glaciers in the West Kunlun Mountains, China, by fully exploiting the SAR imagery. In order to avoid the error introduced by the motion decomposition operation, the derived ice motion is presented in the SAR imaging dimension composed of the along-track and slant-range directions. The Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) at 3 arc-sec resolution is employed to remove and compensate for the topography-related signal in the D-InSAR, MAI, and PT methods. Compared with the traditional SAR-based methods, the proposed approach can determine the ice motion over a widely varying range of ice velocities with a relatively high accuracy. Its capability is proved by the detailed ice displacement pattern with the average accuracy of 0.2 m covering the entire glacier surface, which shows a maximum ice movement of 4.9 m over 46 days. Therefore, the integrated approach could present us with a novel way to comprehensively and accurately understand glacier dynamics by overcoming the incoherence phenomenon, and has great potential for glaciology study.
Analysis of Multipath Pixels in SAR Images
NASA Astrophysics Data System (ADS)
Zhao, J. W.; Wu, J. C.; Ding, X. L.; Zhang, L.; Hu, F. M.
2016-06-01
As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings) and the physical parameters of the surface (roughness, correlation length, permittivity)which determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.
Variable ratio beam splitter for laser applications
NASA Technical Reports Server (NTRS)
Brown, R. M.
1971-01-01
Beam splitter employing birefringent optics provides either widely different or precisely equal beam ratios, it can be used with laser light source systems for interferometry of lossy media, holography, scattering measurements, and precise beam ratio applications.
NASA Astrophysics Data System (ADS)
Duro, Javier; Iglesias, Rubén; Blanco, Pablo; Albiol, David; Koudogbo, Fifamè
2015-04-01
The Wide Area Product (WAP) is a new interferometric product developed to provide measurement over large regions. Persistent Scatterers Interferometry (PSI) has largely proved their robust and precise performance in measuring ground surface deformation in different application domains. In this context, however, the accurate displacement estimation over large-scale areas (more than 10.000 km2) characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. The main reason for that is the inclusion of low quality and more distant persistent scatterers in order to bridge low-quality areas, such as water bodies, crop areas and forested regions. This fact yields to spatial propagation errors on PSI integration process, poor estimation and compensation of the Atmospheric Phase Screen (APS) and the difficult to face residual long-wavelength phase patterns originated by orbit state vectors inaccuracies. Research work for generating a Wide Area Product of ground motion in preparation for the Sentinel-1 mission has been conducted in the last stages of Terrafirma as well as in other research programs. These developments propose technological updates for keeping the precision over large scale PSI analysis. Some of the updates are based on the use of external information, like meteorological models, and the employment of GNSS data for an improved calibration of large measurements. Usually, covering wide regions implies the processing over areas with a land use which is chiefly focused on livestock, horticulture, urbanization and forest. This represents an important challenge for providing continuous InSAR measurements and the application of advanced phase filtering strategies to enhance the coherence. The advanced PSI processing has been performed out over several areas, allowing a large scale analysis of tectonic patterns, and motion caused by multi-hazards as volcanic, landslide and flood. Several examples of the application of the PSI WAP to wide regions for measuring ground displacements related to different types of hazards, natural and human induced will be presented. The InSAR processing approach to measure accurate movements at local and large scales for allowing multi-hazard interpretation studies will also be discussed. The test areas will show deformations related to active faults systems, landslides in mountains slopes, ground compaction over underneath aquifers and movements in volcanic areas.
Computerized ionospheric tomography based on geosynchronous SAR
NASA Astrophysics Data System (ADS)
Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng
2017-02-01
Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.
UAV-based L-band SAR with precision flight path control
NASA Astrophysics Data System (ADS)
Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Gregory A.; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul A.
2005-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes1. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 m tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
UAV-Based L-Band SAR with Precision Flight Path Control
NASA Technical Reports Server (NTRS)
Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul
2004-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
Phase Sensitiveness to Soil Moisture in Controlled Anechoic Chamber: Measurements and First Results
NASA Astrophysics Data System (ADS)
Ben Khadhra, K.; Nolan, M.; Hounam, D.; Boerner, T.
2005-12-01
To date many radar methods and models have been reported for the estimation of soil moisture, such as the Oh-model or the Dubois model. Those models, which use only the magnitude of the backscattered signal, show results with 5 to 10 % accuracy. In the last two decades SAR Interferometry (InSAR) and differential InSAR (DInSAR), which uses the phase of the backscattered signal, has been shown to be a useful tool for the creation of Digital Elevation Models (DEMs), and temporal changes due to earthquakes, subsidence, and other ground motions. Nolan (2003) also suggested the possibility to use DINSAR penetration depth as a proxy to estimate the soil moisture. The principal is based on the relationship between the penetration depth and the permittivity, which varies as a function of soil moisture. In this paper we will present new interferometric X-band laboratory measurements, which have been carried out in the Bistatic Measurement Facility at the DLR Oberpfaffenhofen, Microwaves and Radar Institute in Germany. The bistatic geometry enables us to have interferometric pairs with different baseline and different soil moistures controlled by a TDR (Time Domain Reflectivity) system. After calibration of the measuring system using a large metal plate, the sensitivity of phase and reflectivity with regard to moisture variation and therefore the penetration depth was evaluated. The effect of the surface roughness has been also reported. Current results demonstrate a non-linear relationship between the signal phase and the soil moisture, as expected, confirming the possibility of using DInSAR to measure variations in soil moisture.
NASA Astrophysics Data System (ADS)
Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.
2017-04-01
Active volcanoes often display cyclic behaviour with alternating quiescent and eruptive periods. Continuously monitoring volcanic processes such as deformation, seismicity and degassing, irrespective of their current status, is crucial for understanding the parameters governing the fluid transport within the edifice and the transitions between different regimes. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging. Here we present for the first time the near-3D surface deformation field derived from high resolution radar interferometry (InSAR) acquired by the satellite TerraSAR-X at a degassing volcano dome and interpret the results in combination with overflight infrared and topographic data. We find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. We present a new method for accurate mapping of heterogeneities in the dome deformation, and comparison to the topography and precisely located surface temperature anomalies. The identified deformation is dominated by strong but highly localized subsidence of the summit dome. Our results highlight the competing effects of the topography, permeability and shallow volcanic structures controlling the degassing pathways. On small spatial scales compaction sufficiently reduced the dome permeability to redirect the fluid flow. High resolution InSAR monitoring of volcanic domes thus provides valuable data for constraining models of their internal structure, degassing pathways and densification processes.
Potential inundated coastal area estimation in Shanghai with multi-platform SAR and altimetry data
NASA Astrophysics Data System (ADS)
Ma, Guanyu; Yang, Tianliang; Zhao, Qing; Kubanek, Julia; Pepe, Antonio; Dong, Hongbin; Sun, Zhibin
2017-09-01
As global warming problem is becoming serious in recent decades, the global sea level is continuously rising. This will cause damages to the coastal deltas with the characteristics of low-lying land, dense population, and developed economy. Continuously reclamation costal intertidal and wetland areas are making Shanghai, the mega city of Yangtze River Delta, more vulnerable to sea level rise. In this paper, we investigate the land subsidence temporal evolution of patterns and processes on a stretch of muddy coast located between the Yangtze River Estuary and Hangzou Bay with differential synthetic aperture radar interferometry (DInSAR) analyses. By exploiting a set of 31 SAR images acquired by the ENVISAT/ASAR from February 2007 to May 2010 and a set of 48 SAR images acquired by the COSMO-SkyMed (CSK) sensors from December 2013 to March 2016, coherent point targets as long as land subsidence velocity maps and time series are identified by using the Small Baseline Subset (SBAS) algorithm. With the DInSAR constrained land subsidence model, we predict the land subsidence trend and the expected cumulative subsidence in 2020, 2025 and 2030. Meanwhile, we used altimetrydata and densely distributed in the coastal region are identified (EEMD) algorithm to obtain the average sea level rise rate in the East China Sea. With the land subsidence predictions, sea level rise predictions, and high-precision digital elevation model (DEM), we analyze the combined risk of land subsidence and sea level rise on the coastal areas of Shanghai. The potential inundated areas are mapped under different scenarios.
Radar scattering from desert terrains, Pisgah/Lavic Region, California: Implications for Magellan
NASA Technical Reports Server (NTRS)
Plaut, J. J.; Arvidson, R. E.; Wall, S.
1989-01-01
A major component of the 1988 Mojave Field Experiment involved the simultaneous acquisition of quad-polarization multifrequency airborne Synthetic Aperture Radar (SAR) imaging radar data and ground measurements thought to be relevant to the radar scattering behavior of a variety of desert surfaces. In preparation for the Magellan mission to Venus, the experiment was designed to explore the ability of SAR to distinguish types of geological surfaces, and the effects of varying incidence angles on the appearance of such surfaces. The airborne SAR system acquired images at approx. 10 m resolution, at 3 incidence angles (30, 40, 50 degs) and at 3 wavelengths (P:68 cm, L:24 cm, C:5.6 cm). The polarimetric capabilities of the instrument allow the simulation of any combination of transmit and receive polarizations during data reduction. Calibrated trihedral corner reflectors were deployed within each scene to permit absolute radiometric calibration of the image data. Initial analyses of this comprehensive radar data set is reported, with emphasis on implications for interpretation of Magellan data.
Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces.
Yoshida, Takero; Rheem, Chang-Kyu
2015-06-10
A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed.
Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces
Yoshida, Takero; Rheem, Chang-Kyu
2015-01-01
A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed. PMID:26067197
Phase retrieval with the reverse projection method in the presence of object's scattering
NASA Astrophysics Data System (ADS)
Wang, Zhili; Gao, Kun; Wang, Dajiang
2017-08-01
X-ray grating interferometry can provide substantially increased contrast over traditional attenuation-based techniques in biomedical applications, and therefore novel and complementary information. Recently, special attention has been paid to quantitative phase retrieval in X-ray grating interferometry, which is mandatory to perform phase tomography, to achieve material identification, etc. An innovative approach, dubbed ;Reverse Projection; (RP), has been developed for quantitative phase retrieval. The RP method abandons grating scanning completely, and is thus advantageous in terms of higher efficiency and reduced radiation damage. Therefore, it is expected that this novel method would find its potential in preclinical and clinical implementations. Strictly speaking, the reverse projection method is applicable for objects exhibiting only absorption and refraction. In this contribution, we discuss the phase retrieval with the reverse projection method for general objects with absorption, refraction and scattering simultaneously. Especially, we investigate the influence of the object's scattering on the retrieved refraction signal. Both theoretical analysis and numerical experiments are performed. The results show that the retrieved refraction signal is the product of object's refraction and scattering signals for small values. In the case of a strong scattering, the reverse projection method cannot provide reliable phase retrieval. Those presented results will guide the use of the reverse projection method for future practical applications, and help to explain some possible artifacts in the retrieved images and/or reconstructed slices.
e-Collaboration for Earth observation (E-CEO): the Cloud4SAR interferometry data challenge
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manunta, Michele; Boissier, Enguerran; Brito, Fabrice; Aas, Christina; Lavender, Samantha; Ribeiro, Rita; Farres, Jordi
2014-05-01
The e-Collaboration for Earth Observation (E-CEO) project addresses the technologies and architectures needed to provide a collaborative research Platform for automating data mining and processing, and information extraction experiments. The Platform serves for the implementation of Data Challenge Contests focusing on Information Extraction for Earth Observations (EO) applications. The possibility to implement multiple processors within a Common Software Environment facilitates the validation, evaluation and transparent peer comparison among different methodologies, which is one of the main requirements rose by scientists who develop algorithms in the EO field. In this scenario, we set up a Data Challenge, referred to as Cloud4SAR (http://wiki.services.eoportal.org/tiki-index.php?page=ECEO), to foster the deployment of Interferometric SAR (InSAR) processing chains within a Cloud Computing platform. While a large variety of InSAR processing software tools are available, they require a high level of expertise and a complex user interaction to be effectively run. Computing a co-seismic interferogram or a 20-years deformation time series on a volcanic area are not easy tasks to be performed in a fully unsupervised way and/or in very short time (hours or less). Benefiting from ESA's E-CEO platform, participants can optimise algorithms on a Virtual Sandbox environment without being expert programmers, and compute results on high performing Cloud platforms. Cloud4SAR requires solving a relatively easy InSAR problem by trying to maximize the exploitation of the processing capabilities provided by a Cloud Computing infrastructure. The proposed challenge offers two different frameworks, each dedicated to participants with different skills, identified as Beginners and Experts. For both of them, the contest mainly resides in the degree of automation of the deployed algorithms, no matter which one is used, as well as in the capability of taking effective benefit from a parallel computing environment.
ISCE: A Modular, Reusable Library for Scalable SAR/InSAR Processing
NASA Astrophysics Data System (ADS)
Agram, P. S.; Lavalle, M.; Gurrola, E. M.; Sacco, G. F.; Rosen, P. A.
2016-12-01
Traditional community SAR/InSAR processing software tools have primarily focused on differential interferometry and Solid Earth applications. The InSAR Scientific Computing Environment (ISCE) was specifically designed to support the Earth Sciences user community as well as large scale operational processing tasks, thanks to its two-layered (Python+C/Fortran) architecture and modular framework. ISCE is freely distributed as a source tarball, allowing advanced users to modify and extend it for their research purposes and developing exploratory applications, while providing a relatively simple user interface for novice users to perform routine data analysis efficiently. Modular design of the ISCE library also enables easier development of applications to address the needs of Ecosystems, Cryosphere and Disaster Response communities in addition to the traditional Solid Earth applications. In this talk, we would like to emphasize the broader purview of the ISCE library and some of its unique features that sets it apart from other freely available community software like GMTSAR and DORIS, including: Support for multiple geometry regimes - Native Doppler (ALOS-1) as well Zero Doppler (ESA missions) systems. Support for data acquired by airborne platforms - e.g, JPL's UAVSAR and AirMOSS, DLR's F-SAR. Radiometric Terrain Correction - Auxiliary output layers from the geometry modules include projection angles, incidence angles, shadow-layover masks. Dense pixel offsets - Parallelized amplitude cross correlation for cryosphere / ionospheric correction applications. Rubber sheeting - Pixel-by-pixel offsets fields for resampling slave imagery for geometric co-registration/ ionospheric corrections. Preliminary Tandem-X processing support - Bistatic geometry modules. Extensibility to support other non-Solid Earth missions - Modules can be directly adopted for use with other SAR missions, e.g., SWOT. Preliminary support for multi-dimensional data products- multi-polarization, multi-frequency, multi-temporal, multi-baseline stacks via the PLANT and GIAnT toolboxes. Rapid prototyping - Geometry manipulation functionality at the python level allows users to prototype and test processing modules at the interpreter level before optimal implementation in C/C++/Fortran.
Photon interferometry of Au+Au collisions at the BNL Relativistic Heavy-Ion Collider.
Bass, Steffen A; Müller, Berndt; Srivastava, Dinesh K
2004-10-15
We calculate the two-body correlation function of direct photons produced in central Au+Au collisions at the Relativistic Heavy-Ion Collider. Our calculation includes contributions from the early preequilibrium phase in which photons are produced via hard parton scatterings as well as radiation of photons from a thermalized quark-gluon plasma and the subsequent expanding hadron gas. We find that high energy photon interferometry provides a faithful probe of the details of the space-time evolution and of the early reaction stages of the system.
NASA Astrophysics Data System (ADS)
Liu, Zhen; Lundgren, Paul
2016-07-01
The San Andreas Fault (SAF) system is the primary plate boundary in California, with the central SAF (CSAF) lying adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The CSAF displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where the fault transitions to being fully locked. At least six Mw ~6.0 events since 1857 have occurred near the Parkfield transition, most recently in 2004. Large earthquakes also occurred on secondary faults parallel to the SAF, the result of distributed deformation across the plate boundary zone. Recent studies have revealed the complex interaction between anthropogenic related groundwater depletion and the seismic activity on adjacent faults through stress interaction. Despite recent progress, many questions regarding fault and anthropogenic processes in the region still remain. For example, how is the relative plate motion accommodated between the CSAF and off-fault deformation? What is the distribution of fault creep and slip deficit at shallow depths? What are the spatiotemporal variations of fault slip? What are the spatiotemporal characteristics of anthropogenic and lithospheric processes and how do they interact with each other? To address these, we combine satellite InSAR and NASA airborne UAVSAR data to image on and off-fault deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using ERS-1/2, Envisat, ALOS and UAVSAR interferograms. The combined C-band ERS-1/2 and Envisat data provide a long time interval of SAR data over the region, but are subject to severe decorrelation. The L-band ALOS and UAVSAR SAR sensors provide improved coherence compared to the shorter wavelength radar data. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. Modeling selected fault transects reveals a distinct change in surface creep and shallow slip deficit from the central creeping section towards the Parkfield transition. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground subsidence in the SJV due to over-exploitation of groundwater. Groundwater related deformation is spatially and temporally variable and is composed of both recoverable elastic and non-recoverable inelastic components. InSAR time series are compared to GPS and well-water hydraulic head in-situ time series to understand water storage processes and mass loading changes. We are currently developing poroelastic finite element method models to assess the influence of anthropogenic processes on surface deformation and fault mechanics. Ongoing work is to better constrain both tectonic and non-tectonic processes and understand their interaction and implication for regional earthquake hazard.
Neutron interferometry: The pioneering contributions of Samuel A. Werner
NASA Astrophysics Data System (ADS)
Klein, A. G.
2006-11-01
In 1975, Sam Werner, while on the staff of the Scientific Laboratory of the Ford Motor Company, and his collaborators from Purdue University, Roberto Colella and Albert Overhauser, carried out one of the pioneering experiments in neutron interferometry at the 2 MW University of Michigan research reactor. It was the famous COW Experiment [Colella et al., Phys. Rev. Lett. 34 (1975) 1472] on gravitationally induced quantum interference. Shortly thereafter he moved to the University of Missouri in Columbia, to set up a program of neutron scattering research, including neutron interferometry. In the 25 years until his retirement a large number of beautiful experiments have been performed by Sam, with his group, his numerous students and many international collaborators. This work and its history are briefly reviewed in this paper.
NASA Technical Reports Server (NTRS)
Moghaddam, Mahta
1995-01-01
In this work, the application of an inversion algorithm based on a nonlinear opimization technique to retrieve forest parameters from multifrequency polarimetric SAR data is discussed. The approach discussed here allows for retrieving and monitoring changes in forest parameters in a quantative and systematic fashion using SAR data. The parameters to be inverted directly from the data are the electromagnetic scattering properties of the forest components such as their dielectric constants and size characteristics. Once these are known, attributes such as canopy moisture content can be obtained, which are useful in the ecosystem models.
Phase of Target Scattering for Wetland Characterization using Polarimetric C-Band SAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touzi, R; Deschamps, Mireille C; Rother, Gernot
2009-09-01
Wetlands continue to be under threat, and there is a major need for mapping and monitoring wetlands for better management and protection of these sensitive areas. Only a few studies have been published on wetland characterization using polarimetric synthetic aperture radars (SARs). The most successful results have been obtained using the phase difference between HH and VV polarizations, phi{sub HH} - phi{sub VV}, which has shown promise for separating flooded wetland classes. Recently, we have introduced a new decomposition, the Touzi decomposition, which describes target scattering type in terms of a complex entity, the symmetric scattering type. Huynen's target helicitymore » is used to assess the symmetric nature of target scattering. In this paper, the new complex-scattering-type parameters, the magnitude alphas and phase Phi{sub alpha} s, are investigated for wetland characterization. The use of the dominant-scattering-type phase Phi{sub alpha} s makes it possible to discriminate shrub bogs from poor (sedge or shrub) fens. These two classes cannot be separated using phi{sub HH} - phi{sub VV}, or the radiometric scattering information provided by alphas, the Cloude alpha, the entropy H, and the multipolarization HH-HV-VV channels. phi{sub alpha} s, which cannot detect deep (45 cm below the peat surface) water flow in a bog, is more sensitive to the shallower (10-20-cm) fen beneath water, and this makes possible the separation of poor fens from shrub bogs. Phi{sub alpha} s also permits the discrimination of conifer-dominated treed bog from upland deciduous forest under leafy conditions. Target helicity information is exploited to introduce a new parameter, the target asymmetry. The latter is shown very promising for detection of forest changes between leafy and no-leaf conditions. The analysis of low-entropy marsh scattering showed that both the scattering-type magnitude and phas- - e alphas and Phi{sub alpha} s, respectively, as well as the maximum polarization intensity of the dominant scattering m, are needed for a better understanding of marsh complex scattering mechanisms. The unique information provided by the new roll-invariant decomposition parameters are demonstrated using repeat-pass Convair-580 polarimetric C-band SAR data collected in June and October 1995 over the RAMSAR Mer Bleue wetland site near Ottawa (Canada).« less
Ding, W X; Lin, L; Duff, J R; Brower, D L
2014-11-01
Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1-2 cm(-1) for beam width w = 1.5 cm and 15 cm(-1) for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.
Methods of InSAR atmosphere correction for volcano activity monitoring
Gong, W.; Meyer, F.; Webley, P.W.; Lu, Z.
2011-01-01
When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Takada, Y.; Furuya, M.; Murakami, M.
2008-12-01
Introduction: A catastrophic earthquake struck China"fs Sichuan area on May 12, 2008, with the moment magnitude of 7.9 (USGS). The hypocenter and their aftershocks are distributed along the western edge of the Sichuan Basin, suggesting that this seismic event occurred at the Longmeng Shan fault zone which is constituted of major three active faults (Wenchuan-Maowen, Beichuan, and Pengguan faults). However, it is unclear whether these faults were directly involved in the mainshock rupture. An interferometry SAR (InSAR) analysis generally has a merit that we can detect ground deformation in a vast region with high precision, however, for the Sichuan event, the surface deformation near the fault zone has not been satisfactorily detected from the InSAR analyses due to a low coherency. An offset-tracking method is less precise but more robust for detecting large ground deformation than the interferometric approach. Our purpose is to detect the detail ground deformation immediately near the faults involved in the Sichuan event with applying the offset-tracking method. Analysis Method: We analyzed ALOS/PALSAR images, which have been taken from Path 471 to 476 of ascending track, acquired before and after the mainshock. We processed SAR data from the level-1.0 product, using a software package from Gamma Remote Sensing. For offset-tracking analysis we adopt intensity tracking method which is performed by cross-correlating samples of backscatter intensity of a master SAR image with samples from the corresponding search area of a slave image in order to estimate range and azimuth offset fields. We reduce stereoscopic effects that produce apparent offsets, using SRTM3 DEM data. Results: We have successfully obtained the surface deformation in range (radar look direction) component, while in azimuth (flight direction) no significant deformation can be detected in some orbits due to "gazimuth streaks"h that are errors caused by ionospheric effects. Some concluding remarks are as follows: On the Beichuan F. and its northeastward extension, a clear boundary of a motion toward and away from the satellite can be recognized just along the fault, which is almost consistent with a right-lateral fault motion. On the other hand, in the southwestern region from the Beichuan city where the three major faults are running almost parallel, two boundaries of motions can be recognized; On the Beichuan F. there are a clear displacement boundary in range component, while on the Pengguan F. a boundary can be identified in azimuth component rather than in range, suggesting that the seismic ruptures proceeded with different fault motions at each fault. For the Wenchuan-Maowen F., no significant displacement boundary can be recognized. Acknowledgments: PALSAR data are provided from Earthquake Working Group and PIXEL (PALSAR Interferometry Consortium to Study our Evolving Land surface) under a cooperative research contract with JAXA. The ownership of PALSAR data belongs to METI (Ministry of Economy, Trade and Industry) and JAXA.
Effect of temperature gradient on the optical quality of mercurous chloride crystals
NASA Technical Reports Server (NTRS)
Singh, N. B.; Davies, D. K.; Gottlieb, M.; Henningsen, T.; Mazelsky, R.
1989-01-01
Single crystals of mercurous chloride were grown at temperature gradients of 8, 11 and 17 K/cm by the physical vapor transport method. The optical quality of these crystals was evaluated by measuring bulk scattering and inhomogeneity of refractive index by birefringence interferometry. It was observed that a high temperature gradient at the solid-vapor interface induced thermal stresses and crystals showed higher scattering and irregular fringes.
Species-area relationships and extinction forecasts.
Halley, John M; Sgardeli, Vasiliki; Monokrousos, Nikolaos
2013-05-01
The species-area relationship (SAR) predicts that smaller areas contain fewer species. This is the basis of the SAR method that has been used to forecast large numbers of species committed to extinction every year due to deforestation. The method has a number of issues that must be handled with care to avoid error. These include the functional form of the SAR, the choice of equation parameters, the sampling procedure used, extinction debt, and forest regeneration. Concerns about the accuracy of the SAR technique often cite errors not much larger than the natural scatter of the SAR itself. Such errors do not undermine the credibility of forecasts predicting large numbers of extinctions, although they may be a serious obstacle in other SAR applications. Very large errors can arise from misinterpretation of extinction debt, inappropriate functional form, and ignoring forest regeneration. Major challenges remain to understand better the relationship between sampling protocol and the functional form of SARs and the dynamics of relaxation, especially in continental areas, and to widen the testing of extinction forecasts. © 2013 New York Academy of Sciences.
Using Persistent Scatterers Interferometry to create a subsidence map of the Nile Delta in Egypt
NASA Astrophysics Data System (ADS)
Bouali, E. Y.; Sultan, M.; Becker, R.; Cherif, O.
2013-12-01
Inhabitants of the Nile Delta in Egypt, especially those who live around the coast, are threatened by two perpetual hazards: (1) sea level rise and encroachment from the Mediterranean Sea and (2) land subsidence that is inherent in deltaic environments. With cities like Alexandria and Port Said currently only one meter above sea level, it is important to understand the nature of the sea level rise and land subsidence, both spatially and temporally, and to be able to quantify these hazards. The magnitude of sea level rise has been actively monitored in stations across the Mediterranean Sea; the subsidence of the Nile Delta, as a whole system however, has not been adequately quantified. We have employed the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique known as Persistent Scatterers Interferometry (PSI) across the entire northern parts of the Nile Delta. A dataset of 106 ENVISAT single look complex (SLC) scenes (four descending tracks: 164, 207, 436, and 479) acquired throughout the time period 2003 to 2010 were obtained from the European Space Agency and utilized for radar interferometric purposes. Multiple combinations of these scenes - used for output optimization and validation - were processed. Due to the nature of the PSI technique, subsidence rates calculated using this technique are values measured from cities and urban areas - where PSI works well. The methodology of choice is to calculate the subsidence rates on a city-by-city basis by: (1) choosing an urban area and cutting the SLC scene stack down to a small area (25 - 200 km2); (2) processing this area multiple times using difference scene and parameter combinations in order to best optimize persistent scatterer (PS) abundance and ground displacement measurements; (3) calibrating the relative ground motion measured by PSI to known locations of minimal subsidence rates. The final result is a spatial representation of the subsidence rates across the Nile Delta in Egypt. Measured subsidence rates vary widely across the Nile Delta, with the highest rates occurring in cities near the mouth of the Damietta branch of the Nile River and around the Mansala Lagoon, such as Ras El Bar (up to 15 mm/year), Damietta (up to 10 mm/year), and Port Said (up to 7 mm/year). The complexity of these subsidence rates is spatially evident: many cities display a wide range of subsidence rates - for example Port Said, where a majority of the city is undergoing minimal to no subsidence (< 1 mm/year) there are two regions - near the Mediterranean coast and near the Mansala Lagoon - where subsidence rates are quite high (5-7 mm/year). There are also a few overall trends observed across the delta: (1) subsidence rates are greatest in the northeast region of the delta (average: > 5 mm/year) than anywhere else (e.g., average western subsidence: 1-4 mm/year) and (2) cities generally more proximal to the Mediterranean coast exhibit greater subsidence rates (average subsidence rates: Ras El Bar: 8 mm/year, Port Said: 5 mm/year, and Damietta: 6 mm/year)than cities in the middle (e.g., Mansoura and Al Mahallah: 4 mm/year) or south regions (e.g., Tanta: <4 mm/year) of the delta.
NASA Astrophysics Data System (ADS)
Werner, C. L.; Wegmuller, U.; Strozzi, T.; Wiesmann, A.
2006-12-01
Principle contributors to the noise in differential SAR interferograms are temporal phase stability of the surface, geometry relating to baseline and surface slope, and propagation path delay variations due to tropospheric water vapor and the ionosphere. Time series analysis of multiple interferograms generated from a stack of SAR SLC images seeks to determine the deformation history of the surface while reducing errors. Only those scatterers within a resolution element that are stable and coherent for each interferometric pair contribute to the desired deformation signal. Interferograms with baselines exceeding 1/3 the critical baseline have substantial geometrical decorrelation for distributed targets. Short baseline pairs with multiple reference scenes can be combined using least-squares estimation to obtain a global deformation solution. Alternately point-like persistent scatterers can be identified in scenes that do not exhibit geometrical decorrelation associated with large baselines. In this approach interferograms are formed from a stack of SAR complex images using a single reference scene. Stable distributed scatter pixels are excluded however due to the presence of large baselines. We apply both point- based and short-baseline methodologies and compare results for a stack of fine-beam Radarsat data acquired in 2002-2004 over a rapidly subsiding oil field near Lost Hills, CA. We also investigate the density of point-like scatters with respect to image resolution. The primary difficulty encountered when applying time series methods is phase unwrapping errors due to spatial and temporal gaps. Phase unwrapping requires sufficient spatial and temporal sampling. Increasing the SAR range bandwidth increases the range resolution as well as increasing the critical interferometric baseline that defines the required satellite orbital tube diameter. Sufficient spatial sampling also permits unwrapping because of the reduced phase/pixel gradient. Short time intervals further reduce the differential phase due to deformation when the deformation is continuous. Lower frequency systems (L- vs. C-Band) substantially improve the ability to unwrap the phase correctly by directly reducing both interferometric phase amplitude and temporal decorrelation.
Yang, Yi; Tang, Xiangyang
2012-12-01
The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.
NASA Astrophysics Data System (ADS)
Mleczko, M.
2014-12-01
Polarimetric SAR data is not widely used in practice, because it is not yet available operationally from the satellites. Currently we can distinguish two approaches in POL - In - SAR technology: alternating polarization imaging (Alt - POL) and fully polarimetric (QuadPol). The first represents a subset of another and is more operational, while the second is experimental because classification of this data requires polarimetric decomposition of scattering matrix in the first stage. In the literature decomposition process is divided in two types: the coherent and incoherent decomposition. In this paper the decomposition methods have been tested using data from the high resolution airborne F - SAR system. Results of classification have been interpreted in the context of the land cover mapping capabilities
Land subsidence in the Yangtze River Delta, China revealed from multi-frequency SAR Interferometry
NASA Astrophysics Data System (ADS)
Li, Zhenhong; Motagh, Mahdi; Yu, Jun; Gong, Xulong; Wu, Jianqiang; Zhu, Yefei; Chen, Huogen; Zhang, Dengming; Xu, Yulin
2014-05-01
Land subsidence is a major worldwide hazard, and its principal causes are subsurface fluid withdrawal, drainage of organic soils, sinkholes, underground mining, hydrocompaction, thawing permafrost, and natural consolidation. Land subsidence causes many problems including: damage to public facilities such as bridges, roads, railroads, electric power lines, underground pipes; damage to private and public buildings; and in some cases of low-lying land, can increase the risk of coastal flooding from storm surges and rising sea-levels. In China, approximately 48600 km2 of land, an area roughly 30 times of the size of the Greater London, has subsided (nearly 50 cities across 16 provinces), and the annual direct economic loss is estimated to be more than RMB 100 million (~12 million). It is believed that the Suzhou-Wuxi-Changzhou region within the Yangtze River Delta is the most severely affected area for subsidence hazards in China. With its global coverage and all-weather imaging capability, Interferometric SAR (InSAR) is revolutionizing our ability to image the Earth's surface and the evolution of its shape over time. In this paper, an advanced InSAR time series technique, InSAR TS + AEM, has been employed to analysed ERS (C-band), Envisat (C-band) and TerraSAR-X (X-band) data collected over the Suzhou-Wuxi-Changzhou region during the period from 1992 to 2013. Validation with precise levelling and GPS data suggest: (1) the accuracy of the InSAR-derived mean velocity measurements is 1-3 mm/yr; (2) InSAR-derived displacements agreed with precise levelling with root mean square errors around 5 mm. It is evident that InSAR TS + AEM can be used to image the evolution of deformation patterns in the Suzhou-Wuxi-Changzhou region over time: the maximum mean velocity decreased from ~12 cm/yr during the period of 1992-1993 to ~2 cm/yr in 2003-2013. This is believed to be a result of the prohibition of groundwater use carried out by Jiangsu provincial government. The combination of multi-frequency SAR datasets allows a long record (~20 years) of historic deformation to be measured over a large region. Ultimately this should help inform land managers in assessing land subsidence and planning appropriate remedial measures.
NASA Astrophysics Data System (ADS)
Doin, Marie-Pierre; Lasserre, Cécile; Peltzer, Gilles; Cavalié, Olivier; Doubre, Cécile
2010-05-01
The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.
NASA Astrophysics Data System (ADS)
Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C.
2009-09-01
The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/ T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.
Azimuthal resolution degradation due to ocean surface motion in focused arrays and SARS
NASA Astrophysics Data System (ADS)
1990-06-01
During the meeting at WHOI (5-18-90), a discussion arose of the ability of the focused array to simulate the R/v ratios typical of airborne and/or spaceborne SARs. In particular, the ability was questioned of the focused array to yield the same azimuthal resolution, rho, as the SAR. Although the focused array can be sampled to yield the same azimuthal resolution as the SAR, it is likely that the images generated by the focused array will not be identical to those produced by a SAR with the same azimuth resolution. For a true SAR, biases in the Doppler history of azimuthally traveling waves due to their along-track motion will cause shifts in their apparent position. This will cause waves which are physically at one location to shift over several pixel widths in the image. The limited swath width of the focused array will prevent if from observing scattered power from waves falling outside the swath, thus such waves will not affect the image formed within the swath, as would happen in the SAR. Thus, it is likely that the focused array will not yield the same image as a SAR having the same resolution.
Temporal Coherence as an Estimate of Decorrelation Time of SAR Interferometric Measurements
NASA Astrophysics Data System (ADS)
Foumelis, Michael
2014-05-01
Following a plethora of validations and demonstrations Interferometric SAR (InSAR) has been established as a mature space geodetic technique for providing valuable insights for various phenomena related to geohazards. One of the main advantages of space borne SAR systems with respect to GNSS is the continuous spatial coverage. However, the impact of temporal decorrelation especially in repeat-pass interferometry has been observed during the historical development of InSAR applications. Interferometric coherence is considered as the expression of temporal decorrelation. It is understood that interferometric coherence decreases with time between SAR acquisitions because of changes in surface reflectivity, reducing the accuracy and spatial coverage of SAR phase measurements. This is an intrinsic characteristic of the design of SAR systems that has a significant contribution at longer time scales. Since the majority of geohazards rely on long term observation scenarios, the effect of temporal decorrelation is evident as coherence becomes dominated by temporal changes. Although in the past there was not sufficient amount of SAR data to extract robust statistical metrics, in the present study it is demonstrated that tailored analysis of interferometric coherence by exploiting the large archive of SAR data available by the European Space Agency (ESA), enables the accurate quantification of temporal decorrelation. A methodology to translate the observed rate of coherence loss into decorrelation times over a volcanic landscape is the subject treated in this study. Specifically, a sensitivity analysis based on a large data stack of interferometric pairs in order to quantitatively estimate at a pixel level the time beyond which each interferometric phase becomes practically unusable is presented. The estimation and mapping of the spatial distribution of the temporal decorrelation times in an area without a necessary a priori knowledge of its surface characteristics is a fundamental parameter for the design and establishment of local GNSS networks as well as the definition of optimal monitoring strategy for various geohazards. The dependence of decorrelation on various land cover/use types is also analyzed. The performed analysis is viewed in the framework of future SAR systems, while underlining the necessity for exploitation of archive data. Though the dependence of decorrelation on various land cover/use types is already documented the provision of additional information regarding the expected time of decorrelation is of practical use especially when EO data are utilized in operational activities. Finally, the impact of the revisit time and increased performance of upcoming SAR missions is discussed.
NASA Astrophysics Data System (ADS)
Del Soldato, Matteo; Bianchini, Silvia; Nolesini, Teresa; Frodella, William; Casagli, Nicola
2017-04-01
Multisystem remote sensing techniques were exploited to provide a comprehensive overview of Volterra (Italy) site stability with regards to its landscape, urban fabric and cultural heritage. Interferometric Synthetic Aperture Radar (InSAR) techniques allow precise measurements of Earth surface displacement, as well as the detection of building deformations on large urban areas. In the field of cultural heritage conservation Infrared thermography (IRT) provides surface temperature mapping and therefore detects various potential criticalities, such as moisture, seepage areas, cracks and structural anomalies. Between winter 2014 and spring 2015 the historical center and south-western sectors of Volterra (Tuscany region, central Italy) were affected by instability phenomena. The spatial distribution, typology and effect on the urban fabrics of the landslide phenomena were investigated by analyzing the geological and geomorphological settings, traditional geotechnical monitoring and advanced remote sensing data such as Persistent Scatterers Interferometry (PSI). The ground deformation rates and the maximum settlement values derived from SAR acquisitions of historical ENVISAT and recent COSMO-SkyMed sensors, in 2003-2009 and 2010-2015 respectively, were compared with background geological data, constructive features, in situ evidences and detailed field inspections in order to classify landslide-damaged buildings. In this way, the detected movements and their potential correspondences with recognized damages were investigated in order to perform an assessment of the built-up areas deformations and damages on Volterra. The IRT technique was applied in order to survey the surface temperature of the historical Volterra wall-enclosure, and allowed highlighting thermal anomalies on this cultural heritage element of the site. The obtained results permitted to better correlate the landslide effects of the recognized deformations in the urban fabric, in order to provide useful information for future risk mitigation strategies to be planned by the local authorities and the involved technicians and conservators.
Natural Environment Characterization Using Hybrid Tomographic Aproaches
NASA Astrophysics Data System (ADS)
Huang, Yue; Ferro-Famil, Laurent; Reigber, Andreas
2011-03-01
SAR tomography (SARTOM) is the extension of conventional two-dimensional SAR imaging principle to three dimensions [1]. A real 3D imaging of a scene is achieved by the formation of an additional synthetic aperture in elevation and the coherent combination of images acquired from several parallel flight tracks. This imaging technique allows a direct localization of multiple scattering contributions in a same resolution cell, leading to a refined analysis of volume structures, like forests or dense urban areas. In order to improve the vertical resolution with respect to classical Fourier-based methods, High-Resolution (HR) approaches are used in this paper to perform SAR tomography. Both nonparametric spectral estimators, like Beamforming and Capon and parametric ones, like MUSIC, Maximum Likelihood, are applied to real data sets and compared in terms of scatterer location accuracy and resolution. It is known that nonparametric approaches are in general more robust to focusing artefacts, whereas parametric approaches are characterized by a better vertical resolution. It has been shown [2], [3] that the performance of these spectral analysis approaches is conditioned by the nature of the scattering response of the observed objects. In the scenario of hybrid environments where objects with a deterministic response are embedded in a speckle affected environment, the parameter estimation for this type of scatterers becomes a problem of mixed-spectrum estimation. The impenetrable medium like the ground or object, possesses an isolated localized phase center in the vertical direction, leading to a discrete (line) spectrum. This type of scatterers can be considered as 'h-localized', named 'Isolated Scatterers' (IS). Whereas natural environments consist of a large number of elementary scatterers successively distributed in the vertical direction. This type of scatterers can be described as 'h-distributed' scatterers and characterized by a continuous spectrum. Therefore, the usual spectral estimators may reach some limitations due to their lack of adaptation to both the statistical features of the backscattered information and the type of spectrum of the considered media. In order to overcome this problem, a tomographic focusing approach based on hybrid spectral estimators is introduced and extended to the polarimetric case. It contains two parallel procedures: one is to detect and localize isolated scatterers and the other one is to characterize the natural environment by estimating the heights of the ground and the tree top. These two decoupled procedures permit to more precisely characterize the scenario of hybrid environments.
SAR interferometry monitoring along the ancient Rome City Walls -the PROTHEGO project case study
NASA Astrophysics Data System (ADS)
Carta, Cristina; Cimino, Maria gabriella; Leoni, Gabriele; Marcelli, Marina; Margottini, Claudio; Spizzichino, Daniele
2017-04-01
Led by the Italian Institute for Environmental Protection and Research, in collaboration with NERC British Geological Survey, Geological and Mining Institute of Spain, University of Milano-Bicocca and Cyprus University of Technology, the PROTHEGO project, co-funded in the framework of JPI on Cultural Heritage EU program (2015-2018), brings an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage in Europe. The project apply InSAR techniques to monitor monuments and sites that are potentially unstable due to natural geo-hazard. After the remote sensing investigation, detailed geological interpretation, hazard analysis, local-scale monitoring, advanced modeling and field surveying for some case studies is implemented. The selected case studies are: the Alhambra in Granada (ES); the Choirokoitia village (CY); the Derwent Valley Mills (UK); the Pompei archaeological site and Historical centre of Rome (IT). In this work, in particular, we will focus on ground deformation measurements (obtained by satellite SAR Interferometry) and on their interpretation with respect to the ancient Rome City Walls. The research activities carried out jointly with the Superintendence's technicians, foresee the implementation of a dedicated web GIS platform as a final repository for data storage and spatial data elaboration. The entire circuit of the ancient city walls (both Mura Aureliane and Mura Gianicolensi), was digitalized and georeferenced. All the elements (towers, gates and wall segments) were drawn and collected in order to produce a map of elements at risk. A detailed historical analysis (during the last twenty years) of the ground and structural deformations were performed. A specific data sheet of ruptures was created and fulfilled in order to produce a geographic inventory of past damage. This data sheet contains the following attributes: triggering data; typology of damage; dimension, triggering mechanism; presence of restoration works. More than thirty events were collected. The most frequent damages refers to human impacts, detachment of brick outer surface and wall collapse. The resulting damage layer was compared with different local hazard maps (e.g. landslide; subsidence; seismic) and also with the PS (monitored point) coming from the satellite analysis. The satellite monitoring data and analysis was based on the processing of COSMO-SkyMed image data (from 2011 to 2014). The data were obtained from the Extraordinary Monitoring Project Plan, implemented by the Italian Environmental Ministry. The preliminary analysis did not show large areas affected by deformations. A wide area affected by subsidence phenomena was detected in the south portion of the walls (close to the Ostiense district). While smaller and localized detachments were detected in the northern sector. Starting from these firsts results, COSMO-SkyMed SAR interferometry analysis seems to be very efficient due to its capability of providing a large number of deformation measurements over the whole site and structures with relatively small cost and without any impact. Cross analysis between interferometric results, natural hazard and historical data of the site (e.g. collapses, works) is still in progress in order to define a forecasting model aiming at an early identification of areas subjected to potential instability or sudden collapse
NASA Astrophysics Data System (ADS)
Pushkarev, A. B.; Kovalev, Y. Y.
2015-10-01
We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.