Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory
ERIC Educational Resources Information Center
Dick, Frank; Norbury, John W.
2009-01-01
The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…
Changes in polarization and angular distribution of scattered radiation during cloud formation.
Harris, F S
1969-01-01
Changes in radiation scattering due to changes in droplet size distribution during development of stratus clouds have been calculated. The development model of Neiburger and Chien was used to give the droplet size distribution at various stages. Mie theory was used to calculate the angular variation for both parallel and perpendicular polarization of incident radiation at 0.4880 micro, 0.6328 micro, 3.50 micro, and 10.6 micro. The marked variations in the nature of the scattered radiation as the droplet size distribution varies with time indicate the measurement of radiation scattering may be a useful method of studying cloud formation processes.
Measurement of the angular distribution of neutron-proton scattering at 10 MeV
Haight, R.C.; Bateman, F.B.; Grimes, S.M.; Brient, C.E.; Massey, T.N.; Wasson, O.A.; Carlson, A.D.; Zhou, H.
1995-12-31
The relative angular distribution of neutrons scattered from protons was measured at an incident neutron energy of 10 MeV at the Ohio University Accelerator Laboratory. An array of 11 detector telescopes at laboratory angles of 0 to 60 degrees was used to detect recoil protons from neutron interactions with a CH{sub 2} (polypropylene) target. Data for 7 of these telescopes were obtained with one set of electronics and are presented here. These data, from 108 to 180 degrees for the center-of-mass scattering angles, have a small slope which agrees better with angular distributions predicted by the Arndt phase shifts than with the ENDF/B-VI angular distribution.
Zhou, Yun Pollak, Eli; Miret-Artés, Salvador
2014-01-14
A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.
Energy and angular distributions of hyperthermal-energy Li{sup +} scattered from Cu(001)
Behringer, E.R.; McLean, J.G.; Cooper, B.H.
1996-03-01
We have measured the in-plane energy and angular distributions of scattered Li{sup +} ions that result when Li{sup +} ion beams with incident energies {ital E}{sub {ital i}}=100 and 400 eV impinge on Cu(001) with an incident angle {theta}{sub {ital i}}=65{degree} and along the {l_angle}100{r_angle} azimuth. By comparing the energy and angular distributions with those generated by classical trajectory simulations, we extract information about the ion-surface interaction potential. A model ion-surface potential consisting of a sum of Hartree-Fock pair potentials and an attractive term produces good agreement with the measured distributions at both incident energies, while the universal potential of Ziegler, Biersack, and Littmarck does so only for {ital E}{sub {ital i}} = 400 eV. Analysis of the simulated distributions enables us to correlate different types of scattering events with features of the measured distributions (e.g., rainbows) and so obtain a detailed understanding of the scattering of Li{sup +}, which is more complex than has been previously observed for heavier alkali ions (e.g., Na{sup +} and K{sup +}). We find that the energy loss of the Li{sup +} ions can be mostly accounted for by momentum transfer to the surface atoms and that inelastic losses are small but significant for this system at these incident energies. We also find that the thermal vibrations of the surface atoms have dramatic effects on the simulated energy and angular distributions. {copyright} {ital 1996 The American Physical Society.}
Popa, Alexandru
2011-08-15
We prove that the analytical expression of the intensity of the relativistic Thomson scattered field for a system composed of an electron interacting with a plane electromagnetic field can be written in the form of a composite periodic function of only one variable, that is, the phase of the incident field. This property is proved without using any approximation in the most general case in which the field is elliptically polarized, the initial phase of the incident field and the initial velocity of the electron are taken into consideration, and the direction in which the radiation is scattered is arbitrary. This property leads to an exact method for calculating the angular and spectral distributions of the scattered field, which reveals a series of physical details of these distributions, such as their dependence on the components of the initial electron velocity. Since the phase of the field is a relativistic invariant, it follows that the periodicity property is also valid when the analysis is made in the inertial system in which the initial velocity of the electron is zero in the case of interactions between very intense electromagnetic fields and relativistic electrons. Consequently, the calculation method can be used for the evaluation of properties of backscattered hard radiations generated by this type of interaction. The theoretical evaluations presented in this paper are in good agreement with the experimental data from literature.
NASA Astrophysics Data System (ADS)
Cantero, E. D.; Lantschner, G. H.; Eckardt, J. C.; Lovey, F. C.; Arista, N. R.
2010-04-01
Measurements of angular distributions and of the angular dependence of the energy loss of 4-, 6-, and 9-keV protons transmitted through thin Cu and Ag polycrystalline foils are presented. By means of standard multiple-scattering model calculations it is found that a V(r)∝r-2.8 potential leads to significantly better fits of the angular distributions than the standard Thomas Fermi, Lenz-Jensen, or Ziegler-Biersack-Littmark potentials. A theoretical model for the angular dependence of the energy loss based on considering geometric effects on a frictional inelastic energy loss plus an angular-dependent elastic contribution and the effects of foil roughness reproduces the experimental data. This agrees with previous results in Au and Al, therefore extending the applicability of the model to other metallic elements.
SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues
Ganezer, K; Krmar, M; Cvejic, Z; Rakic, S; Pajic, B
2015-06-15
Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profile usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.
Meyer, F.W.; Folkerts, L.; Schippers, S.
1994-10-01
The authors have measured scattered projectile angular and charge state distributions for 3.75 keV/amu O{sup q+} (3 {le} q {le} 8) and 1.2 keV/amu Ar{sup 1+} (3 {le} q {le} 14) ions grazingly incident along the [110] and [100] directions of a Au(110) single crystal target. Scattered projectile angular distribution characteristic of surface channeling are observed. For both incident species, the dominant scattered charge fraction is neutral, which varies only by a few percent as a function of incident charge state. Significant O{sup {minus}} formation is observed, which manifests a distinct velocity threshold. For incident Ar projectiles with open L-shells, the positive scattered charge fractions, while always less than about 10%, increase linearly with increasing number of initial L-shell vacancies.
NASA Astrophysics Data System (ADS)
Li, Xuesong; Northrop, William F.
2016-04-01
This paper describes a quantitative approach to approximate multiple scattering through an isotropic turbid slab based on Markov Chain theorem. There is an increasing need to utilize multiple scattering for optical diagnostic purposes; however, existing methods are either inaccurate or computationally expensive. Here, we develop a novel Markov Chain approximation approach to solve multiple scattering angular distribution (AD) that can accurately calculate AD while significantly reducing computational cost compared to Monte Carlo simulation. We expect this work to stimulate ongoing multiple scattering research and deterministic reconstruction algorithm development with AD measurements.
The Angular Distribution of Neutrons Scattered from Deuterium below 2 MeV
NASA Astrophysics Data System (ADS)
Nankov, N.; Plompen, A. J. M.; Kopecky, S.; Kozier, K. S.; Roubtsov, D.; Rao, R.; Beyer, R.; Grosse, E.; Hannaske, R.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Yakorev, D.; Wagner, A.; Stanoiu, M.; Canton, L.; Nolte, R.; Röttger, S.; Beyer, J.; Svenne, J.
2014-05-01
Neutron elastic scattering measurements were carried out at the nELBE neutron time-of-flight facility at a 6 m flight path. Energies below 2 MeV were studied using a setup consisting of eight 6Li-glass detectors placed at nominal angles of 15∘ and 165∘ with respect to the incident neutron beam. A deuterated polyethylene sample with 99.999% enrichment in deuterium was used. These angles were chosen since an earlier study showed that the ratio of the differential cross section at these angles is the most sensitive to differences in evaluated files and model calculations. Accurate 165∘/15∘ angle ratios were obtained. Above 1 MeV these are somewhat larger than given by ENDF/B-VII. Simultaneously the early day experiments using a proportional counter to infer angular distributions from deuterium recoil pulse height distributions are being studied through a new experiment with such a device at the Physikalisch-Technische Bundesanstalt (PTB). At 500 keV this experiment favors ENDF/B-VII over JENDL-4.0, while at lower energies agreement with the data is similar.
Effect of the third π ∗ resonance on the angular distributions for electron-pyrimidine scattering
NASA Astrophysics Data System (ADS)
Mašín, Zdeněk; Gorfinkiel, Jimena D.
2016-07-01
We present a detailed analysis of the effect of the well known third π∗ resonance on the angular behaviour of the elastic cross section in electron scattering from pyrimidine. This resonance, occurring approximately at 4.7 eV, is of mixed shape and core-excited character. Experimental and theoretical results show the presence of a peak/dip behaviour in this energy range, that is absent for other resonances. Our investigations show that the cause of the peak/dip is an interference of background p-wave to p-wave scattering amplitudes with the amplitudes for resonant scattering. The equivalent resonance in pyrazine shows the same behaviour and the effect is therefore likely to appear in other benzene-like molecules. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Differences in forward angular light scattering distributions between M1 and M2 macrophages
NASA Astrophysics Data System (ADS)
Halaney, David L.; Zahedivash, Aydin; Phipps, Jennifer E.; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E.; Feldman, Marc D.
2015-11-01
The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.
Differences in forward angular light scattering distributions between M1 and M2 macrophages.
Halaney, David L; Zahedivash, Aydin; Phipps, Jennifer E; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E; Feldman, Marc D
2015-11-01
The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture. PMID:26538329
Directional Stand-off Detection of Fast Neutrons and Gammas Using Angular Scattering Distributions
Vanier P. e.; Dioszegi, I.; Salwen, C.; Forman, L.
2009-10-25
We have investigated the response of a DoubleScatter Neutron Spectrometer (DSNS) for sources at long distances (gr than 200 meters). We find that an alternative method for analyzing double scatter data avoids some uncertainties introduced by amplitude measurements in plastic scintillators.Time of flight is used to discriminate between gamma and neutron events, and the kinematic distributions of scattering angles are assumed to apply. Non-relativistic neutrons are most likely to scatter at 45°, while gammas with energies greater than 2 MeV are most likely to be forward scattered. The distribution of scattering angles of fission neutrons arriving from a distant point source generates a 45° cone, which can be back-projected to give the source direction. At the same time, the distribution of Compton-scattered gammas has a maximum in the forward direction, and can be made narrower by selecting events that deposit minimal energy in the first scattering event. We have further determined that the shape of spontaneous fission neutron spectra at ranges gr than 110 m is still significantly different from thecosmic ray background.
NASA Technical Reports Server (NTRS)
Herman, B. M.
1977-01-01
Polarization properties of the angularly scattered laser light from a volume of air are used to determine the size distribution of the aerosol particles within the volume by the use of appropriate inversion techniques. Similar techniques are employed to determine a mean size distribution of the particulates within a vertical column through the atmosphere from determinations of the aerosol optical depth as a function of wavelength. In both of these examples, a modification of an inversion technique originally described by Twomey has been employed. Details of this method are presented as well as results from actual measurements employing bistatic lidar and solar radiometer.
NASA Astrophysics Data System (ADS)
Gómez Camacho, A.
2016-07-01
CDCC calculations of elastic scattering angular distributions for reactions of the weakly bound projectile 6Li with targets 28Si and 58Ni at energies around the Coulomb barrier are presented. Special emphasis is given to account for the effect of couplings from 6Li resonance states l = 2, J π = 3+, 2+, 1+. Similarly, the effect produced by non-resonant state couplings is studied. The convergent calculations are carried out with global α-target and d-target interactions. The calculated elastic scattering angular distributions are in general in good agreement with the measurements for the systems considered in this work. It is found that the calculations with only resonance states are very similar to that with all couplings (resonance+non-resonance). So, the absence of these states have a strong effect on elastic scattering (non-resonance states calculation). It is shown that the effects increase as the collision energy increases. An interpretation of the strength of the different effects is given in terms of the polarization potentials that emerge from the different couplings.
Angular distributions of 5eV atomic oxygen scattered from solid surfaces on the LDEF satellite
NASA Technical Reports Server (NTRS)
Gregory, John C.; Peters, Palmer N.
1992-01-01
The angular distribution of 5eV atomic oxygen scattered off several smooth solid surfaces was measured by experiment A0114 which flew on board the Long Duration Exposure Facility (LDEF). Target surfaces were silver, vitreous carbon, and lithium fluoride crystal. The apparatus was entirely passive. It used the property of silver surfaces to absorb oxygen atoms with high efficiency; the silver is converted to optically transmissive silver oxide. A collimated beam of oxygen atoms is allowed to fall on the target surface at some pre-set angle. Reflected atoms are then intercepted by a silver film placed so that it subtends a considerable solid angle from the primary beam impact on the target surface. The silver films are evaporated onto flexible optically-clear polycarbonate sheets which are scanned later to determine oxygen uptake. While the silver detector cannot measure atom velocity or energy, its physical configuration allows easy coverage of large angular space both in the beam-plane (that which includes the incident beam and the surface normal), and in the azimuthal plane of the target surface.
Schüller, A; Winter, H
2008-03-01
Fast atoms with keV energies are scattered under a grazing angle of incidence from a clean and flat LiF(001) surface. For scattering along low index azimuthal directions within the surface plane ("axial surface channeling") we observe pronounced peak structures in the angular distributions for scattered projectiles that are attributed to "supernumerary rainbows." This phenomenon can be understood in the framework of quantum scattering only and is observed here up to projectile energies of 20 keV. We demonstrate that the interaction potential and, in particular, its corrugation for fast atomic projectiles at surfaces can be derived with a high accuracy. PMID:18352749
NASA Astrophysics Data System (ADS)
Bystritsky, V. M.; Grozdanov, D. N.; Zontikov, A. O.; Kopach, Yu. N.; Rogov, Yu. N.; Ruskov, I. N.; Sadovsky, A. B.; Skoy, V. R.; Barmakov, Yu. N.; Bogolyubov, E. P.; Ryzhkov, V. I.; Yurkov, D. I.
2016-07-01
The work is devoted to measuring the angular distribution of 4.43-MeV γ-rays produced in inelastic scattering of 14.1-MeV neutrons by 12C nuclei. A portable ING-27 neutron generator (designed and fabricated at VNIIA, Moscow) with a built-in 64-pixel silicon α-detector was used as a source of tagged neutrons. The γ-rays of characteristic nuclear radiation from 12C were detected with a spectrometric system that consisted of 22 γ-detectors based on NaI(Tl) crystals arranged around the carbon target. The measured angular distribution of 4.43-MeV γ-rays is analyzed and compared with the results of other published experimental works.
Vargas-Ubera, Javier; Sánchez-Escobar, Juan Jaime; Aguilar, J Félix; Gale, David Michel
2007-06-10
An algorithm is presented based on an evolution strategy to retrieve a particle size distribution from angular light-scattering data. The analyzed intensity patterns are generated using the Mie theory, and the algorithm retrieves a series of known normal, gamma, and lognormal distributions by using the Fraunhofer approximation. The distributions scan the interval of modal size parameters 100 < or = alpha < or = 150. The numerical results show that the evolution strategy can be successfully applied to solve this kind of inverse problem, obtaining a more accurate solution than, for example, the Chin-Shifrin inversion method, and avoiding the use of a priori information concerning the domain of the distribution, commonly necessary for reconstructing the particle size distribution when this analytical inversion method is used.
NASA Astrophysics Data System (ADS)
Qu, W. W.; Zhang, G. L.; Terashima, S.; Guo, C. L.; Tanihata, I.; Le, X. Y.; Wang, T. F.; Zhang, X. H.; Sun, Z. Y.; Duan, L. M.; Hu, R. J.; Lu, C. G.; Ma, P.
2016-10-01
To obtain the angular distributions of 12C + 12C elastic scatterings with the incident energies of 200-400A MeV for the study of three-body forces, a detector system was constructed at second Radioactive Ion Beam Line in Lanzhou (RIBLL2) of Institute of Modern Physics (IMP). This system was composed of five plastic scintillation detectors with two read-outs for each detector, a Multi Wire Proportional Chamber (MWPC) and a 4×4 CsI(Tl) array. The 12C beam with the incident energy of 200A MeV on a natural carbon target was used to test this detector system. It is found that the plastic scintillation detector can give the good energy loss (Δ E) and time of flight (TOF) signals, it can also reflect the position information of scattered 12C events. MWPC can precisely provide the trajectories of scattered particles. This system has a very good particle identification ability and can clearly distinguish the scattered 12C particles from the fragments. It can be used for the study of the three-body forces effect for high energy heavy-ion scattering.
Mie scattering of light with orbital angular momentum by nanoparticles
NASA Astrophysics Data System (ADS)
Acharya, Pramod; Guzmán, Angela M.
2011-09-01
We generalize Mie scattering theory to describe the scattering of light with orbital angular momentum (OAM). We apply our results to the analysis of scattering by gold nanoparticles and compare the angular distribution of the scattered light for plane waves and light with OAM. The multipole expansion for scattered OAM waves depends on the localized surface plasmon modes that can couple to incident light carrying a well-defined amount of azimuthal charge (or l-number) at a particular wavelength. We study here the properties of Mie scattering of OAM waves by nanoparticles located at the beam waist as a function of the size of the particle and of the frequency and content of azimuthal charge of the incident wave.
Angular scattering functions of algae and silt: an analysis of backscattering to scattering fraction
NASA Astrophysics Data System (ADS)
Dekker, Arnold G.; Hoogenboom, H. J.; Volten, H.; Schreurs, R.; de Haan, Johan F.
1997-02-01
In order to obtain more information on the angular scattering behavior of algae and silt research was initiated to determine whether or not the volume scattering functions by Petzold of the San Diego Harbor are appropriate for use in other types of turbid waters as is often stated in literature. This paper presents a selection of the measured angular scattering distribution functions over the range 10 degrees-165 degrees, the extrapolated angular scattering distribution functions extended to the range of 0 degrees- 180 degree by fitting Mie functions and the calculated backward scattering to total scattering ratios. The San Diego Harbor measurements by Petzold may not be applied to other turbid waters; it is in the backscattering region where the samples deviate most from the San Diego ASD from Petzold. A large addition to existing literature values for backscatter probabilities is presented for 14 freshwater and marine algal species samples and 2 estuarine silt samples.
Kozier, K. S.
2006-07-01
This paper examines the sensitivity of MCNP5 k{sub eff} results to various deuterium data files for a simple benchmark problem consisting of an 8.4-cm radius sphere of uranium surrounded by an annulus of deuterium at the nuclide number density corresponding to heavy water. This study was performed to help clarify why {Delta}k{sub eff} values of about 10 mk are obtained when different ENDF/B deuterium data files are used in simulations of critical experiments involving solutions of high-enrichment uranyl fluoride in heavy water, while simulations of low-leakage, heterogeneous critical lattices of natural-uranium fuel rods in heavy water show differences of <1 mk. The benchmark calculations were performed as a function of deuterium reflector thickness for several uranium compositions using deuterium ACE files derived from ENDF/B-VII.b1 (release beta 1), ENDF/B-VI.4 and JENDL-3.3, which differ primarily in the energy/angle distributions for elastic scattering <3.2 MeV. Calculations were also performed using modified ACE files having equiprobable cosine bin values in the centre-of-mass reference frame in a progressive manner with increasing energy. It was found that the {Delta}k{sub eff} values increased with deuterium reflector thickness and uranium enrichment. The studies using modified ACE files indicate that most of the reactivity differences arise at energies <1 MeV; hence, this energy range should be given priority if new scattering distribution measurements are undertaken. (authors)
NASA Astrophysics Data System (ADS)
Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Carroll, T. J.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H. J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.
1996-03-01
We have used the energy-energy angular pattern of hadrons in inelastic muon-deuteron scattering to study perturbative QCD effects and to extract the gluon distribution function ηG( η) of the nucleon, where η is the fractional momentum carried by the gluon. The data were taken with the E665 spectrometer using the Fermilab Tevatron muon beam with a mean beam energy of 490 GeV. We present ηG( η) for 0.005< η<0.05 and at an average Q 2 of 8 GeV2 using this new technique. We find that ηG( η) in this region can be described by ηG( η) α ηλ with λ=-0.87±0.09( stat.)±{0.37/0.32}( sys.). We compare our results to expectations from various parametrizations of the parton distribution function and also to results from HERA.
Phenomenology of preequilibrium angular distributions
Kalbach, C.; Mann, F.M.
1980-05-01
The systematics of continuum angular distributions from a wide variety of light ion nuclear reactions have been studied. To first order, the shape of the angular distributions have been found to depend only on the energy of the outgoing particle and on the division of the cross section into multi-step direct and multi-step compound parts. The angular distributions can be described in terms of Legendre polynomials with the reduced polynomial coefficients exhibiting a simple dependence on the outgoing particle energy. Two integer and four continuous parameters with universal values are needed to describe the coefficients for outgoing energies of 2 to 60 MeV in all the reaction types studied. This parameterization combined with a modified Griffin model computer code permits the calculation of double differential cross sections for light ion continuum reactions where no data is available.
Time-dependent photoelectron angular distributions
NASA Astrophysics Data System (ADS)
Wang, Xiangyang
1999-09-01
I show that the angular distribution of electrons photoionized from gas phase targets by short light pulses is time-dependent, when the orbital momentum composition of the photocurrent changes with excitation energy so evolves with the time of detection. A theory of time- dependent photoionization is outlined and general formulas of time-dependent photoelectron flux and angular distribution are given. Two general propagator methods suitable to describe the time-dependent photoionization and scattering processes are developed. The photoionization process is viewed as a local excitation followed by a half scattering. The local excitation process is solved theoretically in a small region around the target core. This approach has been generalized to describe the evolution of a wavepacket in an unbound system. An asymptotic propagator theorem is discovered and used to derive analytic expressions for asymptotic propagators. The origin of the time dependence is explored by parameterizing the time delay and orbital momentum coupling in a two channel model. K-shell photoionization of N2 and CO are calculated with this time- dependent photoionization theory, implemented using a multiple scattering model. Numerical results demonstrate that the time dependence of photoelectron angular distributions is a realistic effect.
NASA Astrophysics Data System (ADS)
Peatross, Justin Bruce
The far-field angular distributions of high-order optical harmonics have been measured. Harmonics up to the 41st order were observed in the light scattered from noble gas targets subjected to very intense pulses of laser radiation with wavelength 1053nm. The experimental conditions minimized collective effects such as phase-mismatch due to propagation or refractive index effects caused, for example, by free electrons arising in the ionization of the target Ar, Kr, or Xe atoms. The angular distributions of many harmonic orders, ranging from the low teens to the upper thirties, all of which emerge collinear to the laser beam, could be distinguished and recorded simultaneously. Gaussian laser pulses, 1.25 -times-diffraction-limited and 1.4ps duration, were focused to intensities ranging from 1times 10^ {13} W/cm^2 to 5times 10^{14} W/cm ^2 using f/70 optics. A novel gas target localized the gas distribution to a thickness of about 1mm, less than one tenth of the laser confocal parameter, at pressures of 1 Torr and less. The narrow and low-density gas distribution employed in these experiments allows the harmonics to be thought of as emerging from atoms lying in a single plane in the interaction region. This is in contrast with previously reported harmonic generation experiments in which propagation effects played strong roles. At these pressures, an order of magnitude below pressures used in other experiments, free electrons created by ionization of target atoms had a negligible effect on the far-field harmonic profiles. We have found that the far-field distributions of nearly all of the harmonics exhibit a narrow central peak surrounded by broad wings of about the same width as the emerging laser beam. The relative widths and strengths of the wings have been found to vary with harmonic order, laser intensity, and atomic species. Since the intensity varies radially across the laser beam in the atomic source plane, an intensity-dependent phase variation among the
Limitations of fitting angular scattering from single cells (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fan, Xing; Cannaday, Ashley E.; Berger, Andrew J.
2016-04-01
The literature contains several reports of Mie-like fits to angular-domain elastic scattering measurements from multiple cells or isolated mitochondria. In these studies, the sampling volume typically contains hundreds or thousands of mitochondria, allowing for the size distribution of mitochondria to be modeled as a smooth function, (e.g. Gaussian or log-normal) with a small number of free parameters. In the case of a single-cell volume containing significantly fewer mitochondria, the true size distribution will no longer be as smooth. Increasing the number of free parameters can lead to unstable fits, however, as the forward-directed angular scattering pattern from such a population illuminated with 785 nm light is a monotonically decaying radial function with few distinct features. Using simulations, we have investigated the limitations of modeling single-cell mitochondrial scattering using smooth population distributions of Mie scatterers. In different instances, the fidelity of the estimated size information can be limited by the number of organelles, the angular detection range, or the non-ideality of the data (both speckle and shot noise). We will describe the conditions under which each of these effects dominates. We will also discuss whether mean and standard deviation are the best sizes to report from such Mie modeling, or if there are other size parameters that have greater fidelity to the true, non-smooth size distributions.
Atmospheric particulate analysis using angular light scattering
NASA Technical Reports Server (NTRS)
Hansen, M. Z.
1980-01-01
Using the light scattering matrix elements measured by a polar nephelometer, a procedure for estimating the characteristics of atmospheric particulates was developed. A theoretical library data set of scattering matrices derived from Mie theory was tabulated for a range of values of the size parameter and refractive index typical of atmospheric particles. Integration over the size parameter yielded the scattering matrix elements for a variety of hypothesized particulate size distributions. A least squares curve fitting technique was used to find a best fit from the library data for the experimental measurements. This was used as a first guess for a nonlinear iterative inversion of the size distributions. A real index of 1.50 and an imaginary index of -0.005 are representative of the smoothed inversion results for the near ground level atmospheric aerosol in Tucson.
Acoustic orbital angular momentum transfer to matter by chiral scattering
NASA Astrophysics Data System (ADS)
Wunenburger, Régis; Israel Vazquez Lozano, Juan; Brasselet, Etienne
2015-10-01
We report on orbital angular momentum exchange between sound and matter mediated by a non-dissipative chiral scattering process. An experimental demonstration is made possible by irradiating a three-dimensional printed, spiral-shaped chiral object with an incident ultrasonic beam carrying zero orbital angular momentum. Chiral refraction is shown to impart a nonzero orbital angular momentum to the scattered field and to rotate the object. This result constitutes a proof of concept of a novel kind of acoustic angular manipulation of matter.
Pinnick, R G; Biswas, A; Armstrong, R L; Latifi, H; Creegan, E; Srivastava, V; Fernandez, G
1988-12-01
Measurements of the angular scattering characteristics of elastic and stimulated Raman scattering (SRS) in single (nominal 20-microm-radius) water, ethanol, and CC1(4) droplets irradiated with 0.532-microm-wavelength radiation from a pulsed laser demonstrate that SRS is more isotropic than elastic scattering yet qualitatively mimics angularly smoothed elastic scattering patterns. The angular fine structure characteristic of the coherent elastic scattering process is lacking in SRS, regardless of whether the SRS derives from multiple orders of Stokes shifts, multiple resonances within a single Stokes shift, or single resonances within a single Stokes shift.
Polarization resolved angular optical scattering of aerosol particles
NASA Astrophysics Data System (ADS)
Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui
2014-05-01
Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.
Calculated angular distributions of energetic atmospheric neutrons
NASA Technical Reports Server (NTRS)
Merker, M.
1975-01-01
Calculated angular distributions of atmospheric leakage neutron fluxes from 19 MeV to 1 GeV are presented. Comparisons with the balloon measurements of Preszler et al. and Kanbach et al. are made and show substantial agreement, strengthening the belief in the importance of the CRAND (cosmic-ray albedo-neutron decay) contribution to the high-energy protons in the earth's inner radiation belt. The calculation is presented as a means for investigating features of atmospheric flux distributions.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Felice, Maria; Velichko, Alexander; Wilcox, Paul
2016-02-01
The scattering behaviour of a finite-sized elastodynamic scatterer in a homogeneous isotropic medium can be encapsulated in a scattering matrix (S-matrix) for each wave mode combination. Each S-matrix is a continuous complex function of 3 variables: incident wave angle, scattered wave angle and frequency. In the paper, the S-matrices for various scatterers (circular holes, straight smooth cracks, rough cracks and 4 circular holes in an area of interest) are investigated. It is shown that, for a given scatterer, the continuous data in the angular dimensions of an S-matrix can be represented to a prescribed level of accuracy by a finite number of complex Fourier coefficients. The finding is that the number of angular orders required to characterise a scatterer is a function of scatterer size and is related to the Nyquist theorem. The variation of scattering behaviour with frequency is examined next and is found to show periodic oscillation with a period which is a function of scatterer size and its geometry. The shortest period of these oscillations indicates the maximum frequency increment required to accurately describe the scattering behaviour in a specific frequency range. Finally, the maximum angular order and frequency increments for the chosen scatterers in a specific frequency range are suggested.
Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos
NASA Astrophysics Data System (ADS)
Fields, Brian D.; Hochmuth, Kathrin A.
2006-12-01
Decays of radionuclides throughout the earth’s interior produce geothermal heat, but also are a source of antineutrinos; these geoneutrinos are now becoming observable in experiments such as KamLAND. The (angle-integrated) geoneutrino flux has been shown to provide a unique probe of geothermal heating due to decays, and an integral constraint on the distribution of radionuclides in the earth. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radial distribution of terrestrial radionuclides. We develop the general formalism for the neutrino angular distribution. We also present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the earth’s interior, but offer a direct measure of the radioactive earth, both revealing the earth’s inner structure as probed by radionuclides, and allowing a complete determination of the radioactive heat generation as a function of radius. Turning to specific models, we emphasize the very useful approximation in which the earth is modeled as a series of shells of uniform density. Using this multishell approximation, we present the geoneutrino angular distribution for the favored earth model which has been used to calculate the geoneutrino flux. In this model the neutrino generation is dominated by decays of potassium, uranium, and thorium in the earth’s mantle and crust; this leads to a very “peripheral” angular distribution, in which 2/3 of the neutrinos come from angles θ ≳ 60° away from the nadir. We note that a measurement of the neutrino intensity in peripheral directions leads to a strong lower limit to the central intensity. We briefly discuss the challenges facing experiments to measure the geoneutrino angular distribution. Currently available techniques using inverse beta decay of protons require a (for now
Angular distribution of laser ablation plasma
Kondo, K.; Kanesue, T.; Dabrowski, R.; Okamura, M.
2010-05-23
An expansion of a laser induced plasma is fundamental and important phenomena in a laser ion source. To understand the expanding direction, an array of Langmuir probes were employed. The chosen ion for the experiment was Ag{sup 1+} which was created by a second harmonics of a Nd-YAG laser. The obtained angular distribution was about {+-}10 degree. This result also indicates a proper positioning of a solenoid magnet which enhances ion beam current.
Angular distribution of cosmic rays in the interplanetary magnetic field
NASA Astrophysics Data System (ADS)
Fedorov, Yu. I.
2001-08-01
Cosmic ray propagation in the interplanetary medium is considered on the basis of kinetic equation describing the scattering of charged particles by magnetic irregularities and their focusing by regular interplanetary magnetic field. The relationship between cosmic ray distribution function and parameters of particle scattering in the interplanetary medium is investigated. Obtained results are applied to the analyses of solar proton events and galactic cosmic ray anisotropy. 1 COSMIC RAY DISTRIBUTION FUNCTION Angular distribution of energetic charged particles contains valuable information about particle scattering in the heliosphere and the geometry of interplanetary magnetic field (IMF) (Bieber and Pomerantz, 1983; Beeck and Wibberenz,1986; Wibberenz and Green, 1988; Hatzky and Wibberenz, 1997). In the present paper the relationship between the distribution function of cosmic rays (CR) and parameters of particle scattering is investigated. The kinetic equation describing CR propagation in the interplanetary medium, can be written as (Earl,1981; Toptygin,1985) ∂f ∂t + vµ ∂f ∂z + v 2ζ (1 - µ2 ) ∂f ∂µ - ∂ ∂µ Dµµ ∂f ∂µ = Q, (1) where f is CR distribution function, Dµµ is the diffusion coefficient in angular space, µ = cos θ and θ is the pitch angle, ς is the focusing length, and z is a coordinate directed along regular magnetic field. The particle source is included in the right hand side of Eq(1). One can present the distribution function as a superposition of isotropic f0 and anisotropic δf(µ) components f(z, µ, t) = 1 2 f0(z, t) + δf(z, µ, t). (2) Assuming that the particle source Q is isotropic and subtracting from Eq.(1) averaged over µ equation, we obtain
Measurement of the Angular Distributions of Drell-Yan Dimuons
NASA Astrophysics Data System (ADS)
Bowen, Brandon; Fermilab E-906/SeaQuest Collaboration
2011-10-01
The angular differential cross section for the Drell-Yan (DY) process can be parametrized by dσ/dΩ ~ 1 + λcos2 θ + μsin 2 θcosφ +ν/2sin2 θcos 2 φ , where λ, μ, and ν are the angular distribution parameters vs pT. θ and φ denote the polar and azimuthal angles, respectively for the positive lepton produced. The Lam-Tung relation, 1 - λ = 2 ν , was validated by Fermilab E-866 for proton induced Drell-Yan scattering; However pion induced DY shows a much stronger cos2 θ angular dependence and a violation of the Lam-Tung relation. In pion induced DY the antiquark is a valance quark, whereas in proton induced DY (in a forward acceptance spectrometer) it is a sea quark, so E-866 probed the antiquark sea of the nucleon. The SeaQuest experiment, also using proton induced DY, will improve on the measurement of the angular dependencies at a lower energy (120 GeV), taking advantage lower backgrounds and an increase in Drell-Yan cross section at lower energies. The Boer-Mulders correlates the quark correlates between the quark transverse spin and momentum. Improved data from SeaQuest will help determine the Boer-Mulders function. Funding for this work was provided in part by the U.S. DOE Office of Science.
NASA Astrophysics Data System (ADS)
Seng, Chien-Yeah; Ramsey-Musolf, Michael J.
2013-07-01
We study the effect of parton angular momentum on the twist-four correction to the left-right asymmetry in the electron-deuteron parity-violating deep-inelastic scattering (PVDIS). We show that this higher-twist correction is transparent to the dynamics of parton angular momentum needed to account for the Sivers and Boer-Mulders functions and spin-independent parton distribution functions. A sufficiently precise measurement of the PVDIS asymmetry may, thus, provide additional information about the parton dynamics responsible for nucleon spin.
Evaluation of angular scattering models for electron-neutral collisions in Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Janssen, J. F. J.; Pitchford, L. C.; Hagelaar, G. J. M.; van Dijk, J.
2016-10-01
In Monte Carlo simulations of electron transport through a neutral background gas, simplifying assumptions related to the shape of the angular distribution of electron-neutral scattering cross sections are usually made. This is mainly because full sets of differential scattering cross sections are rarely available. In this work simple models for angular scattering are compared to results from the recent quantum calculations of Zatsarinny and Bartschat for differential scattering cross sections (DCS’s) from zero to 200 eV in argon. These simple models represent in various ways an approach to forward scattering with increasing electron energy. The simple models are then used in Monte Carlo simulations of range, straggling, and backscatter of electrons emitted from a surface into a volume filled with a neutral gas. It is shown that the assumptions of isotropic elastic scattering and of forward scattering for the inelastic collision process yield results within a few percent of those calculated using the DCS’s of Zatsarinny and Bartschat. The quantities which were held constant in these comparisons are the elastic momentum transfer and total inelastic cross sections.
Beye, M; Hennies, F; Deppe, M; Suljoti, E; Nagasono, M; Wurth, W; Föhlisch, A
2009-12-01
Experimentally, we observe angular-momentum transfer in electron-phonon scattering, although it is commonly agreed that phonons transfer mostly linear momentum. Therefore, the incorporation of angular momentum to describe phonons is necessary already for simple semiconductors and bears significant implications for the formation of new quasiparticles in correlated functional materials. Separation of linear and angular-momentum transfer in electron-phonon scattering is achieved by highly selective excitations on the femtosecond time scale of resonant inelastic x-ray scattering.
Integrated Raman and angular scattering of single biological cells
NASA Astrophysics Data System (ADS)
Smith, Zachary J.
2009-12-01
Raman, or inelastic, scattering and angle-resolved elastic scattering are two optical processes that have found wide use in the study of biological systems. Raman scattering quantitatively reports on the chemical composition of a sample by probing molecular vibrations, while elastic scattering reports on the morphology of a sample by detecting structure-induced coherent interference between incident and scattered light. We present the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum2 region in both epi- and trans-illumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of a living sample without the need for exogenous dyes or labels. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a CCD array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD detector array to yield an angle-resolved elastic scattering pattern. Post-processing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. In this thesis we will present validations of the IRAM instrument through measurements performed on single beads of a few microns in size, as well as on ensembles of sub-micron particles of known size distributions. The benefits and drawbacks of the
Incoherent source angular domain imaging through complex three-dimensional scattering structures
NASA Astrophysics Data System (ADS)
Cheng, Rongen L. K.; Chiang, Gary; Chapman, Glenn H.
2012-03-01
Scattering of photons in biological imaging is a known factor of degrading image resolution and quality. Angular Domain Imaging (ADI) is a technique which utilizes the angular distribution of photons to filter out multiple-scattering photons and accept only photons with small angular deviation from their original trajectories. The advantage of ADI is that it does not require a high optical quality, coherent, or pulsed source to acquire quality image. Initial experiments with Spatialfrequency Filter (SFF) ADI on simple liquid scattering test phantom showed good results as it can image through media with scattering ratio (SR) of 106:1. Previous work with complex 3D aquatic species eliminated scattering but showed optical interference patterns from the coherent laser sources. With SFF ADI, our target is to image through a complex 3D scattering structure with multilayer of different refractive indices and scattering coefficient from an Intralipid-infused polymer/agar, and a small species called Branchiostoma lanceolatum, a lancelet that is 5-8cm long and ~5mm thick. To remove interference, several narrow wavelength-band LEDs were used as illumination sources with one peaks at 630nm and the other peaks at 415nm. The LEDs are collimated and illuminates the 3D structure/lancelet in a water-filler container while a SFF removes the scattered photons before the imager. This allows us to reduce the optical interference and to study the impact of switching from coherent laser source into an incoherent narrow wavelength-band source. Hence, it allows us to investigate the enhancement of imaging the internal structures using the incoherent narrow wavelength-band source.
NASA Astrophysics Data System (ADS)
Lucchese, Robert R.; Stolow, Albert
2012-10-01
Angle-resolved photoelectron measurements in molecular ionization continue to grow in importance due to their sensitivity to molecular dynamics combined with their avoidance of deleterious averaging over molecular orientation. This special issue contains only regularly refereed articles and provides an account of current experimental and theoretical studies of such molecular-frame photoelectron angular distributions (MFPADs). Recent experimental activity in this field has been stimulated by advances in light sources such as x-ray free electron lasers, attosecond XUV laser pulses and phase-stable ultrashort strong laser fields. This effort is further amplified by recent developments in coincidence detection and molecular-frame alignment/orientation techniques. Beyond perturbative light-matter interactions, strong field processes such as tunnel ionization, above threshold ionization and rescattering phenomena such as high harmonic generation and laser-induced electron diffraction are beginning to probe molecular-frame photoelectron-molecule scattering dynamics. Theoretical developments are playing an equally important role in furthering molecular-frame photoelectron science. This issue contains several purely theoretical papers that aim to provide insight into possible schemes for using MFPADs in the study of molecular dynamics. Because the details of the electron-molecule scattering dynamics are important to the interpretation of experimental data, significant progress is made by a close collaboration between theory and experiment. There are a number of such contributions in this issue that combine theory and experiment to obtain a detailed understanding of the observed processes. One recurring theme is the use of measured MFPADs as probes of the molecular state and to uncover information about the dynamics of molecular systems. Contributions in this issue consider using MFPADs to investigate molecular geometry or the rotational, vibrational or electronic state of a
Vibrational branching ratios and photoelectron angular distributions in 5σ photoionisation of CO
Stephens, J. A.; Dill, Dan; Dehmer, Joseph L.
1981-10-28
Vibrationally resolved photoelectron angular distributions have been calculated for the 5σ photoionisation channel of CO using the multiple-scattering method. Vibrational branching ratios and vibrationally unresolved integrated cross sections and photoelectron angular distributions are also reported and compared with available measurements. Both angular distributions and branching ratios exhibit striking non-Franck-Condon behaviour caused primarily by the f-wave shape resonance in the sigma photoionisation continuum. Significant discrepancies between theory and experiment exist for the weaker v_{f}=2,3 vibrational levels and interaction with nearby two-electron excitation is proposed as a likely cause.
Construction of an integrated Raman- and angular-scattering microscope.
Smith, Zachary J; Berger, Andrew J
2009-04-01
We report on the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum(2) region in both epi- and transillumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of the chemistry and morphology of a living sample without the need for exogenous dyes or labels, thus allowing measurements to be made longitudinally in time on the same sample as it evolves naturally. A sample is illuminated either from above or below with a focused 785 nm TEM(00) mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a charge-coupled device (CCD) array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD array. Postprocessing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. PMID:19405678
Light Scattering by Fractal Dust Aggregates. I. Angular Dependence of Scattering
NASA Astrophysics Data System (ADS)
Tazaki, Ryo; Tanaka, Hidekazu; Okuzumi, Satoshi; Kataoka, Akimasa; Nomura, Hideko
2016-06-01
In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T-matrix method, and the results were then compared with those obtained using the Rayleigh-Gans-Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster-cluster agglomerates (BCCAs) and ballistic particle-cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.
Light Scattering by Fractal Dust Aggregates. I. Angular Dependence of Scattering
NASA Astrophysics Data System (ADS)
Tazaki, Ryo; Tanaka, Hidekazu; Okuzumi, Satoshi; Kataoka, Akimasa; Nomura, Hideko
2016-06-01
In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T-matrix method, and the results were then compared with those obtained using the Rayleigh–Gans–Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster–cluster agglomerates (BCCAs) and ballistic particle–cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.
NASA Astrophysics Data System (ADS)
Shao, Bing; Jaffe, Jules S.; Chachisvilis, Mirianas; Esener, Sadik C.
2006-12-01
In order to assess the capability to optically identify small marine microbes, both simulations and experiments of angular resolved light scattering (ARLS) were performed. After calibration with 30-nm vesicles characterized by a nearly constant scattering distribution for vertically polarized light (azimuthal angle=90°), ARLS from suspensions of three types of marine picoplankton (two prokaryotes and one eukaryote) in seawater was measured with a scattering device that consisted of an elliptical mirror, a rotating aperture, and a PMT. Scattered light was recorded with adequate signal-to-noise in the 40-140°. Simulations modeled the cells as prolate spheroids with independently measured dimensions. For the prokaryotes, approximated as homogeneous spheroids, simulations were performed using the RM (Rayleigh-Mie) - I method, a hybrid of the Rayleigh-Debye approximation and the generalized Lorentz-Mie theory. For the picoeukaryote, an extended RM - I method was developed for a coated spheroid with different shell thickness distributions. The picoeukaryote was then modeled as a coated sphere with a spherical core. Good overall agreements were obtained between simulations and experiments. The distinctive scattering patterns of the different species hold promise for an identification system based on ARLS.
Distinction between shadow and edge effects in heavy-ion elastic angular distributions
Silveira, R. da; Leclercq-Willain, Ch.
2004-10-01
We propose a model independent method which allows us to distinguish between shadow and edge or surface effects in the angular distributions of heavy-ion elastic scattering, showing regular patterns of marked oscillations. The method is illustrated with a few experimental results where this undulatory behavior is present.
NASA Astrophysics Data System (ADS)
Stark, Julian; Müller, Dennis; Nothelfer, Steffen; Kienle, Alwin
2015-07-01
Spectrally and angular resolved light scattering from yeast cells was studied with a scattering microscope and a goniometer. Different cell models were investigated with help of analytical solutions of Maxwell's equations. It was found that extraction of precise morphological and optical cellular properties from the measured scattering patterns and phase functions requires more sophisticated cell models than standard Mie theory.
Quantum optimal control of photoelectron spectra and angular distributions
NASA Astrophysics Data System (ADS)
Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.
2016-01-01
Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.
NASA Astrophysics Data System (ADS)
Holler, Stephen; Fuerstenau, Stephen D.; Skelsey, Charles R.
2016-07-01
Light scattering from non-spherical particles and aggregates exhibits complex structure that is revealed only when observed in two angular dimensions (θ, ϕ). However, due to variations in shape, packing, and orientation of such aerosols, the structure of two-dimensional angular optical scattering (TAOS) patterns varies among particles. The spectral dependence of scattering contributes further to the observed complexity, but offers another facet to consider. By leveraging multispectral TAOS data from flowing aerosols, we have identified novel morphological descriptors that may be employed in multivariate statistical algorithms for "unknown" particle classification.
NASA Astrophysics Data System (ADS)
Loiko, V. A.; Krakhalev, M. N.; Konkolovich, A. V.; Prishchepa, O. O.; Miskevich, A. A.; Zyryanov, V. Ya.
2016-07-01
Light scattering by a monolayer of bipolar nematic droplets encapsulated in polymer film is examined both experimentally and theoretically. A method for the simulation of the angular distribution of scattered light is based on the anomalous diffraction and interference approximations taking into account the director configuration within liquid crystal droplets and their bipolar axes orientation. The director configuration in nematic droplets is calculated using the relaxation method of the free energy minimization. The characteristics of the sample, including distribution of droplet sizes and shape anisometry, are measured in details. The experimental results and theoretical data agree closely with each other.
NASA Astrophysics Data System (ADS)
Blazhevich, S. V.; Koskova, T. V.; Ligidov, A. Z.; Noskov, A. V.
2016-07-01
Diffracted transition radiation (DTR) generated by a divergent beam of relativistic electrons crossing a single-crystal plate in different (Laue, Bragg) scattering geometry has been considered for the general case of asymmetric reflection of the electron coulomb field relative to the entrance target surface. The expressions for spectral-angular density of DTR and parametric X-ray Radiation (PXR) has been derived. Then DTR and PXR has been considered in case of a thin target, when multiple scattering of electron is negligibly small, which is important for divergence measurement in real time regime. Numerical calculation of spectral-angular density of DTR by a beam of relativistic electrons has been made using averaging over the bivariate Gauss distribution as angular distribution of relativistic electrons in the beam. It has been shown that in Bragg scattering geometry the angular density of DTR is bigger, than in Laue geometry, which can be explained by the existence of the frequency range, in which the incident wave propagation vector takes complex value even under absence of absorption. In this range, all of photons are reflected in Bragg direction. It means that the range of total reflection defines the width of DTR spectrum.
Orbital angular momentum in optical waves propagating through distributed turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-11-21
This is the second of two papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. In the companion paper, it is shown that propagation through atmospheric turbulence can create non-trivial angular momentum. Here, we extend the result and demonstrate that this momentum is, at least in part, orbital angular momentum. Specifically, we demonstrate that branch points (in the language of the adaptive optic community) indicate the presence of photons with non-zero OAM. Furthermore, the conditions required to create photons with non-zero orbital angular momentum are ubiquitous. The repercussions of this statement are wide ranging and these are cursorily enumerated. PMID:22109489
Orbital angular momentum in optical waves propagating through distributed turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-11-21
This is the second of two papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. In the companion paper, it is shown that propagation through atmospheric turbulence can create non-trivial angular momentum. Here, we extend the result and demonstrate that this momentum is, at least in part, orbital angular momentum. Specifically, we demonstrate that branch points (in the language of the adaptive optic community) indicate the presence of photons with non-zero OAM. Furthermore, the conditions required to create photons with non-zero orbital angular momentum are ubiquitous. The repercussions of this statement are wide ranging and these are cursorily enumerated.
Angular distributions for two-photon double ionization of lithium
NASA Astrophysics Data System (ADS)
Armstrong, G. S. J.; Colgan, J.
2012-08-01
We present angular distributions for two-photon double ionization of lithium at photon energies of 50 eV (λ = 25 nm) and 59 eV (λ = 21 nm). The results are obtained from full-dimensional solution of the two-active-electron time-dependent Schrödinger equation using the time-dependent close-coupling method. We investigate two different double ionization mechanisms. First, we consider direct double ionization of the Li ground state following the absorption of two photons. Secondly, we consider an initial photoexcitation of the 1s2s2p doubly excited state, followed by photoionization of the 2s and 2p electrons. We find significant differences between the angular distributions obtained for these two distinct processes. We also compare the characteristics of the angular distributions for Li with those of other two-electron atoms.
Energy distribution of elastically scattered electrons from double layer samples
NASA Astrophysics Data System (ADS)
Tőkési, K.; Varga, D.
2016-02-01
We present a theoretical description of the spectra of electrons elastically scattered from thin double layered Au-C samples. The analysis is based on the Monte Carlo simulation of the recoil and Doppler effects in reflection and transmission geometries of the scattering at a fixed angle of 44.3 ° and a primary energy of 40 keV. The relativistic correction is taken into account. Besides the experimentally measurable energy distributions the simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). Furthermore, we present detailed analytical calculations for the main parameters of the single scattering, taking into account both the ideal scattering geometry, i.e. infinitesimally small angular range, and the effect of the real, finite angular range used in the measurements. We show our results for intensity ratios, peak shifts and broadenings for four cases of measurement geometries and layer thicknesses. While in the peak intensity ratios of gold and carbon for transmission geometries were found to be in good agreement with the results of the single scattering model, especially large deviations were obtained in reflection geometries. The separation of the peaks, depending on the geometry and the thickness, generally smaller, and the peak width generally larger than it can be expected from the nominal values of the primary energy, scattering angle, and mean kinetic energy of the atoms. We also show that the peaks are asymmetric even for the case of the single scattering due to the finite solid angle. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with recent measurements.
Characterization of the angular memory effect of scattered light in biological tissues.
Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain
2015-05-18
High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers. PMID:26074598
Characterization of the angular memory effect of scattered light in biological tissues.
Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain
2015-05-18
High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.
Characterization of the angular memory effect of scattered light in biological tissues
NASA Astrophysics Data System (ADS)
Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain
2015-05-01
High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues. It therefore grants access to superficial layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations (`angular memory effect') are of very short range and, in theory, only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range (and thus the possible field-of-view) by more than an order of magnitude compared to isotropic scattering for $\\sim$1\\,mm thick tissue layers.
Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon
NASA Technical Reports Server (NTRS)
Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.
1974-01-01
The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.
Systematical Analysis on Angular Distribution of Bremsstrahlung Radiation
Otgooloi, B.; Enkhbat, N.
2009-03-31
The systematic analysis has been made the measurement results of the relative angular distribution of gamma quantium with 11 divide 16 MeV energy using experimental data of Ta, W, Cu, Mo and Ti targets with various radiating lengths thicknesses.
Systematical Analysis on Angular Distribution of Bremsstrahlung Radiation
NASA Astrophysics Data System (ADS)
Otgooloi, B.; Enkhbat, N.
2009-03-01
The systematic analysis has been made the measurement results of the relative angular distribution of gamma quantium with 11÷16 MeV energy using experimental data of Ta, W, Cu, Mo and Ti targets with various radiating lengths thicknesses.
Orbital angular momentum and generalized transverse momentum distribution
NASA Astrophysics Data System (ADS)
Zhao, Yong; Liu, Keh-Fei; Yang, Yi-Bo
2016-03-01
We show that, when boosted to the infinite momentum frame, the quark and gluon orbital angular momentum operators defined in the nucleon spin sum rule of Chen et al. are the same as those whose matrix elements correspond to the moments of generalized transverse momentum distributions. This completes the connection between the infinite momentum limit of each term in that sum rule and experimentally measurable observables. We also show that these orbital angular momentum operators can be defined locally and discuss the strategies of calculating them in lattice QCD.
Source distribution dependent scatter correction for PVI
Barney, J.S.; Harrop, R.; Dykstra, C.J. . School of Computing Science TRIUMF, Vancouver, British Columbia )
1993-08-01
Source distribution dependent scatter correction methods which incorporate different amounts of information about the source position and material distribution have been developed and tested. The techniques use image to projection integral transformation incorporating varying degrees of information on the distribution of scattering material, or convolution subtraction methods, with some information about the scattering material included in one of the convolution methods. To test the techniques, the authors apply them to data generated by Monte Carlo simulations which use geometric shapes or a voxelized density map to model the scattering material. Source position and material distribution have been found to have some effect on scatter correction. An image to projection method which incorporates a density map produces accurate scatter correction but is computationally expensive. Simpler methods, both image to projection and convolution, can also provide effective scatter correction.
Rescigno, Thomas N; Miyabe, S.; McCurdy, C.W.; Orel, A.E.
2009-02-18
We report the results of ab initio calculations of cross sections and molecular-frame photoelectron angular distributions for C 1s ionization of CO2, and propose a mechanism for the recently observed asymmetry of those angular distributions with respect to the CO^+and O^+ions produced by subsequent Auger decay. The fixed-nuclei, photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. We have also carried out electronic structure calculations which identify a dissociative state of the CO2^++ dication that is likely populated following Auger decay and which leads to O^+ + CO^+ fragment ions. We show that a proper accounting of vibrational motion in the computation of the photoelectron angular distributions, along with reasonable assumptions about the nuclear dissociation dynamics, gives results in good agreement with recent experimental observations. We also demonstrate that destructive interference between different partial waves accounts for sudden changes with photon energy in the observed angular distributions.
NASA Astrophysics Data System (ADS)
Hillman, Timothy R.; Alexandrov, Sergey A.; Gutzler, Thomas; Sampson, David D.
2006-11-01
We utilize Fourier-holographic light scattering angular spectroscopy to record the spatially resolved complex angular scattering spectra of samples over wide fields of view in a single or few image captures. Without resolving individual scatterers, we are able to generate spatially-resolved particle size maps for samples composed of spherical scatterers, by comparing generated spectra with Mie-theory predictions. We present a theoretical discussion of the fundamental principles of our technique and, in addition to the sphere samples, apply it experimentally to a biological sample which comprises red blood cells. Our method could possibly represent an efficient alternative to the time-consuming and laborious conventional procedure in light microscopy of image tiling and inspection, for the characterization of microscopic morphology over wide fields of view.
NASA Astrophysics Data System (ADS)
Shipp, Dustin W.; Mitra, Soumya; Foster, Thomas H.; Berger, Andrew J.
2012-01-01
Using integrated Raman and angular scattering microscopy (IRAM), we follow the response of EMT6 cancer cells to photodynamic therapy (PDT) treatment. The study combines two non-labelling light scattering techniques to extract chemical information and organelle sizes from single cells. Each cell is measured repeatedly over several hours to follow changes in these parameters as the cell responds to the PDT treatment. An automated algorithm identifies which parameters are changing in time. Size parameters extracted from angular scattering measurements show a decrease in the size of 1-micron-diameter scatterers in treated cells. Treated cells also exhibit trends in several Raman peaks, denoting changes in chemical concentrations of proteins, nucleic acids, and lipids. Each of these parameters - acquired from both measurement modalities - can be monitored on a cell-by-cell basis. The ability to track these chemical and structural changes over time allows access to greater knowledge of biological processes.
Analytic expression for in-field scattered light distribution
NASA Astrophysics Data System (ADS)
Peterson, Gary L.
2004-01-01
Light that is scattered from lenses and mirrors in an optical system produces a halo of stray light around bright objects within the field of view. The angular distribution of scattered light from any one component is usually described by the Harvey model. This paper presents analytic expressions for the scattered irradiance at a focal plane from optical components that scatter light in accordance with the Harvey model. It is found that the irradiance is independent of the location of an optical element within the system, provided the element is not located at or near an intermediate image plane. It is also found that the irradiance has little or no dependence on the size of the element.
Parton transverse momentum and orbital angular momentum distributions
NASA Astrophysics Data System (ADS)
Rajan, Abha; Courtoy, Aurore; Engelhardt, Michael; Liuti, Simonetta
2016-08-01
The quark orbital angular momentum component of proton spin, Lq, can be defined in QCD as the integral of a Wigner phase space distribution weighting the cross product of the quark's transverse position and momentum. It can also be independently defined from the operator product expansion for the off-forward Compton amplitude in terms of a twist-three generalized parton distribution. We provide an explicit link between the two definitions, connecting them through their dependence on partonic intrinsic transverse momentum. Connecting the definitions provides the key for correlating direct experimental determinations of Lq and evaluations through lattice QCD calculations. The direct observation of quark orbital angular momentum does not require transverse spin polarization but can occur using longitudinally polarized targets.
Angular distribution and atomic effects in condensed phase photoelectron spectroscopy
Davis, R.F.
1981-11-01
A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.
A Novel Microsensor for Measuring Angular Distribution of Radiative Intensity.
Murphy, Thomas E; Pilorz, Stuart; Prufert-Bebout, Leslie; Bebout, Brad
2015-01-01
This article presents the design, construction and characterization of a novel type of light probe for measuring the angular radiance distribution of light fields. The differential acceptance angle (DAA) probe can resolve the directionality of a light field in environments with steep light gradients, such as microbial mats, without the need to remove, reorient, and reinsert the probe, a clear advantage over prior techniques. The probe consists of an inner irradiance sensor inside a concentric, moveable light-absorbing sheath. The radiative intensity in a specific zenith direction can be calculated by comparing the irradiance onto the sensor at different acceptance angles. We used this probe to measure the angular radiance distribution of two sample light fields, and observed good agreement with a conventional radiance probe. The DAA probe will aid researchers in understanding light transfer physics in dense microbial communities and expedite validation of numerical radiative transfer models for these environments. PMID:25763775
(e,2e) Angular Distributions and Energy Spectra in Cadmium
NASA Astrophysics Data System (ADS)
Martin, N. L. S.; Bauman, R. P.; Ross, K. J.; Wilson, M.
1996-05-01
Early angular distribution measurements on the Cd 4d^95s^25p ^3P1 autoionizing level( N.L.S. Martin and K.J. Ross, J. Phys. B 17), 4033 (1984). did not correspond with those expected from a single level of mixed ^3P+^1P character. An analysis indicated that the results were consistent with the combined angular distributions of the ^3P1 level and a previously unknown ^1D2 even parity autoionizing level at a slightly displaced ejected-electron energy. Recent (e,2e) energy spectra measurements( N.L.S. Martin, D.B. Thompson, R.P. Bauman, M. Wilson, Phys.Rev.A 50), 3878 (1994). that spanned the 4d^95s^25p energy region were interpreted with the help of ab initio structure and plane wave Born amplitude calculations. It was found that the experimental data could be modeled satisfactorily without including a ^1D2 level close to the ^3P1 level. We will present new calculations which reconcile these apparent contradictions between the angular distributions and energy spectra.
Statistical mechanics of collisionless orbits. IV. Distribution of angular momentum
Williams, Liliya L. R.; Hjorth, Jens; Wojtak, Radosław E-mail: jens@dark-cosmology.dk
2014-03-01
It has been shown in previous work that DARKexp, which is a theoretically derived, maximum entropy, one shape parameter model for isotropic collisionless systems, provides very good fits to simulated and observed dark matter halos. Specifically, it fits the energy distribution, N(E), and the density profiles, including the central cusp. Here, we extend DARKexp N(E) to include the distribution in angular momentum, L {sup 2}, for spherically symmetric systems. First, we argue, based on theoretical, semi-analytical, and simulation results, that while dark matter halos are relaxed in energy, they are not nearly as relaxed in angular momentum, which precludes using maximum entropy to uniquely derive N(E, L {sup 2}). Instead, we require that when integrating N(E, L {sup 2}) over squared angular momenta one retrieves the DARKexp N(E). Starting with a general expression for N(E, L {sup 2}) we show how the distribution of particles in L {sup 2} is related to the shape of the velocity distribution function, VDF, and velocity anisotropy profile, β(r). We then demonstrate that astrophysically realistic halos, as judged by the VDF shape and β(r), must have linear or convex distributions in L {sup 2}, for each separate energy bin. The distribution in energy of the most bound particles must be nearly flat, and become more tilted in favor of radial orbits for less bound particles. These results are consistent with numerical simulations and represent an important step toward deriving the full distribution function for spherically symmetric dark matter halos.
Batishchev, Pavel A.; Tolstikhin, Oleg I.
2007-06-15
The Siegert pseudostate (SPS) formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura [Phys. Rev. A, 58, 2077 (1998)] for s-wave scattering in a spherically symmetric finite-range potential, is generalized to nonzero angular momenta. The orthogonality and completeness properties of SPSs are established and SPS expansions for the outgoing-wave Green's function, physical states, and scattering matrix are obtained. The present formulation completes the theory of SPSs in the one-channel case, making its application to three-dimensional problems possible. The results are illustrated by calculations for several model potentials.
Accessing the quark orbital angular momentum with Wigner distributions
Lorce, Cedric
2013-04-15
The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.
Bower, Geoffrey C.; Deller, Adam; Falcke, Heino; Demorest, Paul; Brunthaler, Andreas; Eatough, Ralph; Kramer, Michael; Lee, K. J.; Spitler, Laura
2014-01-01
The pulsed radio emission from the Galactic Center (GC) pulsar SGR J1745-29 probes the turbulent, magnetized plasma of the GC hyperstrong scattering screen through both angular and temporal broadening. We present measurements of the angular size of SGR J1745-29, obtained with the Very Long Baseline Array and the phased Very Large Array at 8.7 and 15.4 GHz. The source sizes are consistent with the scatter-broadened size of Sagittarius A* at each frequency, demonstrating that SGR J1745-29 is also located behind the same scattering medium. Combining the angular broadening with temporal scattering obtained from pulsar observations provides a complete picture of the scattering properties. A best-fit solution for the distance of a single thin screen is Δ = 5.8 ± 0.3 kpc, consistent with being located in the Scutum spiral arm. The scattering is also consistent with a uniform scattering medium or a series of thin screens distributed between the GC and the Earth. This result is a substantial revision of the previously held model in which the scattering screen is located very close to the GC. As also discussed in Spitler et al., these results suggest that GC searches can detect millisecond pulsars gravitationally bound to Sgr A* with observations at ≳ 10 GHz and ordinary pulsars at even lower frequencies.
Cooper, M.A.
2000-07-03
We present various approximations for the angular distribution of particles emerging from an optically thick, purely isotropically scattering region into a vacuum. Our motivation is to use such a distribution for the Fleck-Canfield random walk method [1] for implicit Monte Carlo (IMC) [2] radiation transport problems. We demonstrate that the cosine distribution recommended in the original random walk paper [1] is a poor approximation to the angular distribution predicted by transport theory. Then we examine other approximations that more closely match the transport angular distribution.
Energy dependent 4-dimensional multiple scattering distributions
NASA Astrophysics Data System (ADS)
Tschalär, C.
1984-12-01
A complete analytic solution in Fourier space is presented of the four dimensional small angle, multiple scattering distribution MSD in angle and space, produced by an energy dependent single scattering cross section from an initial pencil beam of heavy particles. Independently, simple integrals are derived for the central moments of the energy dependent MSD in the continuous-slowing-down approximation. The distributions of the projections t and x of the scattering angle and displacement into a plane through the axis of propagation are evaluated numerically for a truncated Rutherford scattering cross section using a fast Fourier transform. The resulting MSDs for a wide range of particles, initial and final momenta, and scattering materials are found to be approximately represented by one-dimensional set of standard distributions symmetrized by a linear transformation in t- x-space.
Stray, swing and scatter: angular momentum evolution of orbits and streams in aspherical potentials
NASA Astrophysics Data System (ADS)
Erkal, Denis; Sanders, Jason L.; Belokurov, Vasily
2016-09-01
In aspherical potentials orbital planes continuously evolve. The gravitational torques impel the angular momentum vector to precess, that is to slowly stray around the symmetry axis, and nutate, i.e. swing up and down periodically in the perpendicular direction. This familiar orbital pole motion - if detected and measured - can reveal the shape of the underlying gravitational potential, the quantity only crudely gauged in the Galaxy so far. Here we demonstrate that the debris poles of stellar tidal streams show a very similar straying and swinging behaviour, and give analytic expressions to link the amplitude and the frequency of the pole evolution to the flattening of the dark matter distribution. While these results are derived for near-circular orbits, we show they are also valid for eccentric orbits. Most importantly, we explain how the differential orbital plane precession leads to the broadening of the stream and show that streams on polar orbits ought to scatter faster. We provide expressions for the stream width evolution as a function of the axisymmetric potential flattening and the angle from the symmetry plane and prove that our models are in good agreement with streams produced in N-body simulations. Interestingly, the same intuition applies to streams whose progenitors are on short- or long-axis loops in a triaxial potential. Finally, we present a compilation of the Galactic cold stream data, and discuss how the simple picture developed here, along with stream modelling, can be used to constrain the symmetry axes and flattening of the Milky Way.
Angular and energy distributions of electrons produced in arbitrary biomaterials by proton impact.
de Vera, Pablo; Garcia-Molina, Rafael; Abril, Isabel
2015-01-01
We present a simple method for obtaining reliable angular and energy distributions of electrons ejected from arbitrary condensed biomaterials by proton impact. Relying on a suitable description of the electronic excitation spectrum and a physically motivated relation between the ion and electron scattering angles, it yields cross sections in rather good agreement with experimental data in a broad range of ejection angles and energies, by only using as input the target composition and density. The versatility and simplicity of the method, which can be also extended to other charged particles, make it especially suited for obtaining ionization data for any complex biomaterial present in realistic cellular environments.
Angular and Energy Distributions of Electrons Produced in Arbitrary Biomaterials by Proton Impact
NASA Astrophysics Data System (ADS)
de Vera, Pablo; Garcia-Molina, Rafael; Abril, Isabel
2015-01-01
We present a simple method for obtaining reliable angular and energy distributions of electrons ejected from arbitrary condensed biomaterials by proton impact. Relying on a suitable description of the electronic excitation spectrum and a physically motivated relation between the ion and electron scattering angles, it yields cross sections in rather good agreement with experimental data in a broad range of ejection angles and energies, by only using as input the target composition and density. The versatility and simplicity of the method, which can be also extended to other charged particles, make it especially suited for obtaining ionization data for any complex biomaterial present in realistic cellular environments.
Neutron angular distribution in plutonium-240 spontaneous fission
NASA Astrophysics Data System (ADS)
Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.
2016-09-01
Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.
Harmel, T; Hieronymi, M; Slade, W; Röttgers, R; Roullier, F; Chami, M
2016-01-25
Measurements of the volume scattering function (VSF) of hydrosols is of primary importance to investigate the interaction of light with hydrosols and to further interpret in situ and remote sensing data of ocean color. In this paper, a laboratory inter-comparison experiment of three recently developed VSF meters that are able to measure the scattered light for a wide range of scattering angle at 515 nm wavelength is performed using phytoplankton cultures and mineral-like hydrosols. A rigorous measurement protocol was employed to ensure good quality data. In particular, the protocol enabled removing the influence of bacteria on the hydrosols within the sample. The differences in the VSF measurements between the instruments vary from 10 to 25% depending on the composition of the hydrosols. The analysis of the angular features of the VSF revealed a sharp increase of the VSF beyond the scattering angle of 150° for some phytoplankton species. Such behavior is observed for two of the three VSF meters, thus suggesting that it is not due to instrumental artifacts but more likely to phytoplankton optical properties themselves. Moreover, comparisons with currently used theoretical phase functions show that the models are not able to reproduce satisfactorily the directional patterns in the backscattering region. This study suggests that a better modelling of the VSF shape of phytoplankton at high scattering angles is required to correctly represent the angular shape of the VSF in the backscattering hemisphere. Tabulated values of the measured phase functions are provided for scattering angles from 0.1 to 175°.
NASA Astrophysics Data System (ADS)
MacDonald, M. J.; Fletcher, L. B.; Gamboa, E. J.; Gauthier, M.; Lee, H. J.; Galtier, E.; Ravasio, A.; Gleason, A.; Hamel, S.; Vorberger, J.; Gericke, D. O.; Chen, Z.; Kraus, D.; Barbrel, B.; Funk, S.; Hastings, J. B.; Glenzer, S. H.; HED Science Collaboration Collaboration
2015-03-01
Direct measurements of the crystal structure of materials under shock and ramp compression can be obtained using 2D angularly resolved x-ray scattering at the MEC end station of the LCLS facility. Diamond has been proposed as an ablator material for inertial confinement fusion targets, requiring a better understanding how the crystal structure responds to dynamic compression. In this experiment we used the two 527 nm optical lasers to compress 25 and 50 μm diamond foils. Each beam provided 6 J in 3 ns focused to an intensity of 4 ×1014 W/cm2 with different pulse shapes to provide shock and ramp compression. Compression and lattice deformation measurements were made directly from angularly resolved x-ray scattering and compared to DFT simulations.
NASA Astrophysics Data System (ADS)
Williams, L. M.; Cummins, H. Z.; Ladeira, L. O.; Mesquita, O. N.
1992-03-01
We have investigated the phenomenon of intense dynamic light scattering at the nonequilibrium crystal-melt interface in succinonitrile and naphthalene, in order to resolve the ongoing controversy over its origin. Of the several models that have been proposed to explain this phenomenon, the microbubble model of H. Z. Cummins et al. [Solid State Commun. 60, 857 (1986)] and the mesophase model proposed by J. Bilgram and co-workers [P. Boni, J. H. Bilgram, and W. Kanzig, Phys. Rev. A 28, 2953 (1983)] are the only two still considered to be consistent with most of the experimental observations. In these experiments the angular dependence of the scattered light was investigated. In the mesophase model the angular dependence of the scattered light is described by the Ornstein-Zernike form I(q)=I0(1+q2ξ2)-1, whereas light scattered by bubbles can be modeled by the Mie scattering theory. The data for both materials were found to be incompatible with the Ornstein-Zernike form, but could be reasonably well fit by the Mie theory. The behavior of the onset of scattering was also investigated, and it was found that the product R0t0v2g was a constant, where R0 is the onset radius, t0 the onset time, and vg the crystal growth velocity. This result is consistent with the analysis of Mesquita et al. [Phys. Rev. B 38, 1550 (1988)], in which the onset of the scattering was modeled by considering the rate of buildup of dissolved gas at the advancing crystal-melt interface. The time taken for the disappearance of the scattering after growth was terminated was also investigated. Lastly, the gases dissolved in our samples of succinonitrile were identified by mass spectroscopy and found to have a composition similar to air.
The inverse scattering problem at fixed angular momentum for nonlocal separable interactions
NASA Technical Reports Server (NTRS)
Chadan, K.
1972-01-01
The problem of inverse scattering at fixed angular momentum is considered. The problem is particularized to the case of nonlocal separable interactions. A brief survey of the inverse problem for nonlocal separable interactions is presented. This problem can be solved exactly by integration. It amounts to solving singular integral equations of the Hilbert-Mushkhelishvili type, which have been studied extensively in the past and appear in many areas of physics, including theory of elasticity and dispersions relations in high energy physics.
Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin
2015-12-15
We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL.
Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin
2015-12-15
We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. PMID:26176206
DISTRIBUTION OF ACCRETING GAS AND ANGULAR MOMENTUM ONTO CIRCUMPLANETARY DISKS
Tanigawa, Takayuki; Ohtsuki, Keiji; Machida, Masahiro N.
2012-03-01
We investigate gas accretion flow onto a circumplanetary disk from a protoplanetary disk in detail by using high-resolution three-dimensional nested-grid hydrodynamic simulations, in order to provide a basis of formation processes of satellites around giant planets. Based on detailed analyses of gas accretion flow, we find that most of gas accretion onto circumplanetary disks occurs nearly vertically toward the disk surface from high altitude, which generates a shock surface at several scale heights of the circumplanetary disk. The gas that has passed through the shock surface moves inward because its specific angular momentum is smaller than that of the local Keplerian rotation, while gas near the midplane in the protoplanetary disk cannot accrete to the circumplanetary disk. Gas near the midplane within the planet's Hill sphere spirals outward and escapes from the Hill sphere through the two Lagrangian points L{sub 1} and L{sub 2}. We also analyze fluxes of accreting mass and angular momentum in detail and find that the distributions of the fluxes onto the disk surface are well described by power-law functions and that a large fraction of gas accretion occurs at the outer region of the disk, i.e., at about 0.1 times the Hill radius. The nature of power-law functions indicates that, other than the outer edge, there is no specific radius where gas accretion is concentrated. These source functions of mass and angular momentum in the circumplanetary disk would provide us with useful constraints on the structure and evolution of the circumplanetary disk, which is important for satellite formation.
Spin O decay angular distribution for interfering mesons in electroproduction
Funsten, H.; Gilfoyle, G.
1994-04-01
Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W({theta},{psi}). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W({theta},{psi}) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter`s relative orbital angular momentum m-projection; none is {open_quotes}absorbed{close_quotes} into daughter helicities. The decaying meson`s helicity maximally appears in W({theta},{psi}). W({theta},{psi}) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W({theta},{psi}) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W ({theta},{psi}), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters.
Angular Distributions of Fe/O From Wind: New Insight Into SEP Transport
NASA Technical Reports Server (NTRS)
Reames, D. V.; Ng, C. K.; White, Nicholas E. (Technical Monitor)
2002-01-01
We examine the angular distributions of He, O, and Fe in large solar energetic particle (SEP) events measured on the Wind spacecraft. We report for the first time, that in a fixed velocity interval, Fe/O is often larger for particles flowing sunward along the magnetic field than for particles flowing outward from the Sun in many SEP events. This occurs because the anisotropy for O exceeds that for Fe, even though both species are streaming outward. There are no examples of events for which the outward Fe/O dominates. The behavior of Fe and O conflicts with the expectations of simple diffusion theory, that angular distributions should be independent of species. It also seems to conflict with the idea that energetic Fe scatters less than O of the same velocity. However, preliminary modeling suggests that the presence of a reflecting magnetic boundary beyond 1 AU, together with the increased scattering of O over Fe due to proton generated Alfven waves, can explain the direction and magnitude of the effect. These observations add a new dimension to the study of SEP transport.
Method for improving the angular resolution of a neutron scatter camera
Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.
2012-12-25
An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.
Angular distributions in the decay B→K*l+l-
NASA Astrophysics Data System (ADS)
Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Tico, J. Garra; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Walker, D.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Höcker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; George, K. A.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; McLachlin, S. E.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Gladney, L.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Biesiada, J.; Lau, Y. P.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Baracchini, E.; Cavoto, G.; Del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.; Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Drummond, B. W.; Izen, J. M.; Lou, X. C.; Ye, S.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.
2009-02-01
We use a sample of 384×106 B Bmacr events collected with the BABAR detector at the PEP-II e+e- collider to study angular distributions in the rare decays B→K*ℓ+ℓ-, where ℓ+ℓ- is either e+e- or μ+μ-. For low dilepton invariant masses, mℓℓ<2.5GeV/c2, we measure a lepton forward-backward asymmetry AFB=0.24-0.23+0.18±0.05 and K* longitudinal polarization FL=0.35±0.16±0.04. For mℓℓ>3.2GeV/c2, we measure AFB=0.76-0.32+0.52±0.07 and FL=0.71-0.22+0.20±0.04.
Influence of the angular scattering of electrons on the runaway threshold in air
NASA Astrophysics Data System (ADS)
Chanrion, O.; Bonaventura, Z.; Bourdon, A.; Neubert, T.
2016-04-01
The runaway electron mechanism is of great importance for the understanding of the generation of x- and gamma rays in atmospheric discharges. In 1991, terrestrial gamma-ray flashes (TGFs) were discovered by the Compton Gamma-Ray Observatory. Those emissions are bremsstrahlung from high energy electrons that run away in electric fields associated with thunderstorms. In this paper, we discuss the runaway threshold definition with a particular interest in the influence of the angular scattering for electron energy close to the threshold. In order to understand the mechanism of runaway, we compare the outcome of different Fokker-Planck and Monte Carlo models with increasing complexity in the description of the scattering. The results show that the inclusion of the stochastic nature of collisions smooths the probability to run away around the threshold. Furthermore, we observe that a significant number of electrons diffuse out of the runaway regime when we take into account the diffusion in angle due to the scattering. Those results suggest using a runaway threshold energy based on the Fokker-Planck model assuming the angular equilibrium that is 1.6 to 1.8 times higher than the one proposed by [1, 2], depending on the magnitude of the ambient electric field. The threshold also is found to be 5 to 26 times higher than the one assuming forward scattering. We give a fitted formula for the threshold field valid over a large range of electric fields. Furthermore, we have shown that the assumption of forward scattering is not valid below 1 MeV where the runaway threshold usually is defined. These results are important for the thermal runaway and the runaway electron avalanche discharge mechanisms suggested to participate in the TGF generation.
The distribution of mass and angular momentum in the solar system
Marochnik, L.S.; Mukhin, L.M.; Sagdeev, R.Z. )
1989-01-01
This book describes the contribution of the comets in the Oort cloud to the angular momentum of the solar system. Topics covered include: Nuclear mass of the new comets observed, Mass of the Oort cloud, Mass distribution in the solar system, Zone of comet formation, Angular momentum of the Oort cloud, and Angular momentum of the Hills cloud.
Influence of the angular scattering on the thermal runaway acceleration mechanism.
NASA Astrophysics Data System (ADS)
Chanrion, Olivier; Bonaventura, Zdenek; Bourdon, Anne; Neubert, Torsten
2015-04-01
The runaway electron acceleration mechanism is of great importance for the understanding of the generation of X- and Gamma-rays in atmospheric discharges. Recently, Terrestrial Gamma-ray Flashes (TGFs) were discovered by the Compton Gamma-ray Observatory in 1991. Those emissions are bremsstrahlung from high energy electrons which run away in electric fields associated with thunderstorms. In this presentation we focus on the theory of acceleration of thermal electrons to the runaway regime and discuss the influence of the scattering for electron energy close to the runaway threshold. We compare the outcome of different models with increasing complexity in the description of the scattering. The results show that the inclusion of the scattering in the model reduces the runaway production by allowing some electrons to diffuse out of the runaway regime before they reach energy high enough to justify a forward scattering model. The outcome of the present work emphasizes the importance of the set of cross section or model used to describe the angular scattering in electron-neutral collision when studying the runaway acceleration mechanism.
Photoelectron angular distributions as a probe of anisotropic electron-ion interactions
NASA Technical Reports Server (NTRS)
Dill, D.; Manson, S. T.; Starace, A. F.
1974-01-01
Expressions are given for atomic photoelectron angular distributions in LS coupling in which the role of anisotropic final state electron-ion interactions emerges explicitly. Calculations of photoelectron angular distributions for atomic sulfur are presented in which these anisotropic interactions produce clear deviations from the predictions of the Cooper-Zare model. Such effects are expected to be a general feature of photoelectron angular distributions for most open-shell atoms.
Photoelectron angular distributions as a probe of anisotropic electron-ion interactions
NASA Technical Reports Server (NTRS)
Dill, D.; Manson, S. T.; Starace, A. F.
1974-01-01
Expressions are given for atomic photoelectron angular distributions in LS coupling in which the role of anisotropic final state electron-ion interactions emerges explicitly. Calculations of photoelectron angular distributions for atomic sulfur are presented in which these anisotropic interactions produce pronounced deviations from the predictions of the Cooper-Zare model. Such effects are expected to be a general feature of photoelectron angular distributions for most open shell atoms.
The Schiff angular bremsstrahlung distribution from composite media
NASA Astrophysics Data System (ADS)
Taylor, M. L.; Dalton, B.; Franich, R. D.
2012-12-01
The Schiff differential for the angular distribution of bremsstrahlung is widely employed, but calculations involving composite materials (i.e. compounds and mixtures) are often undertaken in a somewhat ad hoc fashion. In this work, we suggest an alternative approach to power-law estimates of the effective atomic number utilising Seltzer and Berger's combined approach in order to generate single-valued effective atomic numbers applicable over a large energy range (in the worst case deviation from constancy of about 2% between 10 keV and 1 GeV). Differences with power-law estimates of Z for composites are potentially significant, particularly for low-Z media such as biological or surrogate materials as relevant within the context of medical physics. As an example, soft tissue differs by >70% and cortical bone differs by >85%, while for high-Z composites such as a tungsten-rhenium alloy the difference is of the order of 1%. Use of the normalised Schiff formula for shape only does not exhibit strong Z dependence. Consequently, in such contexts the differences are negligible - the power-law approach overestimates the magnitude by 1.05% in the case of water and underestimates it by <0.1% for the high-Z alloys. The differences in the distribution are most pronounced for small angles and where the bremsstrahlung quanta are low energy.
Generalized poisson 3-D scatterer distributions.
Laporte, Catherine; Clark, James J; Arbel, Tal
2009-02-01
This paper describes a simple, yet powerful ultrasound scatterer distribution model. The model extends a 1-D generalized Poisson process to multiple dimensions using a Hilbert curve. The model is intuitively tuned by spatial density and regularity parameters which reliably predict the first and second-order statistics of varied synthetic imagery. PMID:19251530
Time--Dependent Electron--Hydrogen Scattering for increasing Total Angular Momentum
NASA Astrophysics Data System (ADS)
Odero, D. O.; Madison, D. H.; Peacher, J. L.; Schultz, D. R.
2000-06-01
The electron--hydrogen scattering process has been examined by employing the direct numerical integration of the time--dependent Schrödinger equation using lattice techniques. The wavefunction for the three--body system is formed using a fully correlated two--electron wavefunction approach. The time--dependent probabilities for excitation are computed by projecting the states of the target atom onto the final system wavefunction. The partial excitation cross sections are obtained at the point where the probabilities are no longer changing with time. The results from this approach for a total angular momentum of zero, presented previously (G. D. Buffington, D. H. Madison, J. L. Peacher and D. R. Schultz, J. Phys. B 32), 2991(1999), compared favorably with those obtained from perturbative and close--coupling methods. Here we report the generalization of the previous work to higher angular momentum. We find that the accuracy of the method for higher angular momentum is strongly dependent on the stability of the coupling matrices formed from the mixing of the two electrons.
Small Deflection Energy Analyzer for Energy and Angular Distributions
NASA Technical Reports Server (NTRS)
Herrero, Federico A.
2009-01-01
The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.
Angular distributions in J / ψ → p p bar π0 (η) decays
NASA Astrophysics Data System (ADS)
Dmitriev, V. F.; Milstein, A. I.; Salnikov, S. G.
2016-09-01
The differential decay rates of the processes J / ψ → p p bar π0 and J / ψ → p p bar η close to the p p bar threshold are calculated with the help of the N N bar optical potential. The same calculations are made for the decays of ψ (2 S). We use the potential which has been suggested to fit the cross sections of N N bar scattering together with N N bar and six pion production in e+e- annihilation close to the p p bar threshold. The p p bar invariant mass spectrum is in agreement with the available experimental data. The anisotropy of the angular distributions, which appears due to the tensor forces in the N N bar interaction, is predicted close to the p p bar threshold. This anisotropy is large enough to be investigated experimentally. Such measurements would allow one to check the accuracy of the model of N N bar interaction.
ATOMIC AND MOLECULAR PHYSICS: Jet-like structures in photoelectron angular distributions
NASA Astrophysics Data System (ADS)
Wang, Yi; Zhang, Jing-Tao; Ren, Xiang-He; Xu, Zhi-Zhan
2009-11-01
The photoelectron angular distributions (PADs) of hydrogen atoms in an intense laser field of linear polarization are studied using the S-matrix theory in the length gauge. The PADs show main lobes along the laser polarization and jet-like structures sticking from the waist of main lobes. Our previous prediction, based on a nonperturbative scattering theory of photoionization developed by Guo et al, showing that the number of jets on one side of PADs may increase by one, three, or other odd numbers and may decrease by one when one more photon is absorbed, is confirmed by this treatment. Within the strong-field approximation, good agreement is obtained between these two quite different treatments. We further study the influence of the Coulomb attraction to PADs, by taking a Coulomb-Volkov state as the continuum state of photoelectrons. We find that under the influence of the Coulomb attraction, the PADs change greatly but the predicted phenomena still appear. This study verifies that the jet-like structures have no relation with the angular momentum of photoelectrons.
NASA Astrophysics Data System (ADS)
Motoki, S.; Adachi, J.; Hikosaka, Y.; Ito, K.; Sano, M.; Soejima, K.; Yagishita, A.; Raseev, G.; Cherepkov, N. A.
2000-10-01
Angular distributions of photoelectrons from both C and O K-shells of the fixed-in-space CO molecule have been measured using the angle-resolved photoelectron-photoion coincidence technique. The measurements have been performed at several photon energies from the ionization thresholds up to about 30 eV above them, where the σ* shape resonances occur. Experimental results are compared with the multiple-scattering calculations of Dill et al (1976 J. Chem. Phys. 65 3158) and with our new calculations in the relaxed-core Hartree-Fock approximation. Our calculations are in a better agreement with the experimental data though numerical discrepancies remain. The experimental angular distributions are fitted by the expansion in Legendre polynomials containing up to ten terms and the extracted parameters are compared with the corresponding theoretical values.
Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter.
Guo, Xinxin; Wood, Michael F G; Vitkin, I Alex
2006-01-01
The effects of turbid chiral media on light polarization are studied in different directions around the scattering samples using a refined linear Stokes polarimeter, which simplifies the signal analysis, and allows for the detailed investigations of scattered light. Because no moving parts are involved in a measurement at a specific detection direction, the determination accuracy of polarization states is increased. The results show that light depolarization increases with both turbidity and detection angle for low and moderately turbid samples; however, the angular dependence decreases with increasing turbidity. When the turbidity is increased to approximately 100 cm(-1), the depolarization becomes higher in the forward than in the backward direction. Polarization sensitive Monte Carlo simulations are used to verify some experimental observations. The results also demonstrate that surviving linear polarization fraction and overall intensity are more sensitive to the increase of glucose concentration in backward than in the forward direction in highly turbid media, indicating that backward geometry may be preferable for potential glucose detection in a biomedical context. Comparison measurements with optically inactive glycerol suggest that the refractive index matching effect, and not the chiral nature of the solute, dominates the observed optical rotation engendered by glucose in highly turbid media. PMID:16965133
Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.
Shukla, P K; Eliasson, B; Stenflo, L
2012-07-01
We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.
A New Rainbow: Angular Scattering of the F + H2(vi = 0, ji = 0) → FH(vf = 3, jf = 3) + H Reaction
NASA Astrophysics Data System (ADS)
Xiahou, Chengkui; Connor, J. N. L.
2009-11-01
The angular scattering of a state-to-state chemical reaction contains fundamental information on its dynamics. Often the angular distributions are highly structured and the physical interpretation of this structure is an important and difficult problem. Here, we report a surprising finding for the benchmark F + H2 → FH + H reaction, when the product molecule FH is in a vibrational state with quantum number = 3 and a rotational state with quantum number = 3. We demonstrate that the differential cross section (DCS) is an example of (attractive) rainbow scattering, being characterized by an Airy function and its derivative. The rainbow reveals its presence in the DCS by interference with the repulsive (or nearside) scattering producing characteristic diffraction oscillations. The rainbow is broad, which explains why it has not been recognized in the many earlier theoretical and experimental investigations of this reaction. There is an angular region in the DCS where the rainbow dominates, but with the unusual property that the DCS is less intense than in adjoining angular regions. The reaction investigated is F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H, where vi, ji, mi and vf, jf, mf are initial and final vibrational, rotational and helicity quantum numbers, respectively. The relative translational energy is 0.119 eV. We use rigorous semiclassical (asymptotic) techniques that provide physical insight as well as a mathematically sound and numerically accurate description of the angular scattering. The semiclassical DCS agrees very closely with the exact quantum DCS. The semiclassical scattering amplitude is used to assess the physical effectiveness of the Fuller nearside-farside decomposition for the partial wave series of the F + H2 reaction, including the effect of one resummation. We also compare the semiclassical and exact quantum nearside, farside, and full local angular momenta and find good agreement. Although our new rainbow has unusual
Modification of the photoelectron angular distribution through laser-induced continuum structure
Nakajima, Takashi; Buica, Gabriela
2005-01-01
We theoretically investigate how the photoelectron angular distribution is altered by the introduction of a dressing laser. The physical mechanism underlying this alteration is the so-called laser-induced continuum structure; namely, a strong dressing laser induces quantum mechanical interference, the degree of which is different for different ionization channels. Therefore the branching ratio into different ionization channels changes as a function of laser detuning, and accordingly the photoelectron angular distribution is altered. After a general argument, we present specific theoretical results for the K atom, which indeed exhibit significant modification of the photoelectron angular distribution.
Angular distributions for the electron-impact single ionization of sodium and magnesium
NASA Astrophysics Data System (ADS)
Armstrong, G. S. J.; Colgan, J.; Pindzola, M. S.
2013-10-01
We present angular distributions for the electron-impact single ionization of sodium and magnesium at intermediate incident electron energies. The results are obtained from a full-dimensionality solution of the two-active-electron time-dependent Schrödinger equation using the time-dependent close-coupling method. We compare calculated angular distributions with existing measurements. We find good overall agreement with measurements over a range of incident electron energies in both cases. We also calculate angular distributions for ejection configurations in which no measurements are currently available.
The angular distribution of solar wind ˜20-200 keV superhalo electrons at quiet times
NASA Astrophysics Data System (ADS)
Yang, Liu; Wang, Linghua; Li, Gang; He, Jiansen; Salem, Chadi S.; Tu, Chuanyi; Wimmer-Schweingruber, Robert F.; Bale, Stuart D.
2016-03-01
We present a comprehensive study of the angular distribution of ˜20-200 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet times from 1995 January through 2005 December. According to the interplanetary magnetic field, we re-bin the observed electron pitch angle distributions to obtain the differential flux, Jout (Jin), of electrons traveling outward from (inward toward) the Sun, and define the anisotropy of superhalo electrons as A =2/(Jo u t-Ji n) Jo u t+Ji n at a given energy. We found that for out in ˜96% of the selected quiet-time samples, superhalo electrons have isotropic angular distributions, while for ˜3% (˜1%) of quiet-time samples, superhalo electrons are outward-anisotropic (inward-anisotropic). All three groups of angular distributions show no correlation with the local solar wind plasma, interplanetary magnetic field and turbulence. Furthermore, the superhalo electron spectral index shows no correlation with the spectral index of local solar wind turbulence. These quiet-time superhalo electrons may be accelerated by nonthermal processes related to the solar wind source and strongly scattered/ reflected in the interplanetary medium, or could be formed due to the electron acceleration through the interplanetary medium.
NASA Astrophysics Data System (ADS)
Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Shkuratov, Yuriy; Vandervoort, Kurt; Vides, Christina L.
2016-10-01
The reflectance and polarization of light reflected from a solar system object indicates the chemical and textural state of the regolith. Remote sensing data are compared to laboratory angular scattering measurements and surface properties are determined.We use a Goniometric Photopolarimeter (GPP) to make angular reflectance and polarization measurements of particulate materials that simulate planetary regoliths. The GPP employs the Helmholtz Reciprocity Principle ( 2, 1) – the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces improving signal to noise. The lab data are physically equivalent to the astronomical data.Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our lab data exhibit polarization phase curves that are very similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials agree with the same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al.(3) report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data indicating Europa's regolith is fine-grained, high porous with void space exceeding 90%.1. Hapke, B. W. (2012). ISBN 978-0-521-88349-82. Minnaert, M. (1941).Asrophys. J., 93, 403-410.3. Nelson, R. M. et al. (1998). Icarus, 131, 223-230.4. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359.5. Shkuratov, Yu. et al. (2002) Icarus 159, 396–416.
Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections
Bootsma, G. J.; Verhaegen, F.; Jaffray, D. A.
2013-11-15
Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6 cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup −1} and 7/(2π) rad{sup −1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and π/7 rad (∼25°) can be used to properly capture
M. Mirazita; F. Ronchetti; P. Rossi; E. De Sanctis; CLAS Collaboration
2004-07-12
Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CEBAF Large Acceptance Spectrometer detector and the tagged photon beam at the Thomas Jefferson National Accelerator Facility. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10{sup o}-160{sup o}. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well described by the nonperturbative quark gluon string model.
Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions
NASA Technical Reports Server (NTRS)
Dill, D.; Starace, A. F.; Manson, S. T.
1975-01-01
A summary of the angular momentum transfer formulation of the differential photoionization cross section is presented and photoionization amplitudes in LS coupling are considered. The application of the theoretical concepts and relations developed is illustrated with the aid of an example involving the calculation of the angular distribution of photoelectrons ionized from atomic sulfur according to a certain reaction. The investigation shows that anisotropic electron-ion interactions in atomic sulfur lead to measurable differences between photoelectron angular distribution asymmetry parameters corresponding to alternative ionic term levels.
NASA Astrophysics Data System (ADS)
Düsterer, S.; Rading, L.; Johnsson, P.; Rouzée, A.; Hundertmark, A.; Vrakking, M. J. J.; Radcliffe, P.; Meyer, M.; Kazansky, A. K.; Kabachnik, N. M.
2013-08-01
The angular distribution of photoelectrons ejected during the ionization of Ne atoms by extreme ultraviolet (XUV) free-electron laser radiation in the presence of an intense near infrared (NIR) dressing field was investigated experimentally and theoretically. A highly nonlinear process with absorption and emission of more than ten NIR photons results in the formation of numerous sidebands. The amplitude of the sidebands varies strongly with the emission angle and the angular distribution pattern reveals clear signatures of interferences between the different angular momenta for the outgoing electron in the multi-photon process. As a specific feature, the central photoelectron line is characterized at the highest NIR fields by an angular distribution, which is peaked perpendicularly to both the XUV and NIR polarization directions. Experimental results are reproduced by a theoretical model based on the strong field approximation.
NASA Astrophysics Data System (ADS)
Zhang, H.; Yang, D.; Song, P.; Zou, S.; Zhao, Y.; Li, S.; Li, Z.; Guo, L.; Wang, F.; Zheng, W.; Gu, P.; Pei, W.; Zhu, S.; Jiang, S.; Ding, Y.
2016-08-01
The symmetric radiation drive is essential to the capsule implosion in the indirect drive fusion but is hard to achieve due to the non-uniform radiation distribution inside the hohlraum. In this work, the non-uniform radiation properties of both vacuum and gas-filled hohlraums are studied by investigating the angular distribution of the radiation temperature experimentally and numerically. It is found that the non-uniform radiation distribution inside the hohlraum induces the variation of the radiation temperature between different view angles. The simulations show that both the angular distribution of the radiation temperature and the hohlraum radiation distribution can be affected by the electron heat flux. The measured angular distribution of the radiation temperature is more consistent with the simulations when the electron heat flux limiter f e = 0.1 . Comparisons between the experiments and simulations further indicate that the x-ray emission of the blow-off plasma is overestimated in the simulations when it stagnates around the hohlraum axis. The axial position of the laser spot can also be estimated by the angular distribution of the radiation temperature due to their sensitive dependence. The inferred laser spot moves closer to the laser entrance hole in the gas-filled hohlraum than that in the vacuum hohlraum, consisting with the x-ray images taken from the framing camera. The angular distribution of the radiation temperature provides an effective way to investigate the hohlraum radiation properties and introduces more constraint to the numerical modeling of the hohlraum experiments.
Mass-resolved angular distribution of fission products in the 20Ne+232Th reaction
NASA Astrophysics Data System (ADS)
Tripathi, R.; Sodaye, S.; Sudarshan, K.; Guin, R.
2013-08-01
Mass-resolved angular distributions of fission product were measured in the 20Ne + 232Th reaction at Elab = 125.6 and 142.5 MeV using the recoil catcher technique followed by offline γ-ray spectrometry. Angular anisotropy was found to decrease with increasing asymmetry of mass division. Angular anisotropies of the fission products in the symmetric region were significantly higher compared to those calculated using the statistical saddle-point model. Experimental anisotropies could be explained after considering the contribution from pre-equilibrium fission. Use of barrier energies corresponding to different mass asymmetry values in the calculations could reasonably reproduce the mass dependence of angular anisotropies. The role of barrier energies in governing the angular anisotropy indicates that the mass dependence of anisotropy may possibly be a distinguishing feature of pre-equilibrium fission from quasifission, in which the composite system escapes into the exit channel without being captured inside the saddle point.
Sharples, Thomas R; Luxford, Thomas F M; Townsend, Dave; McKendrick, Kenneth G; Costen, Matthew L
2015-11-28
We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface. PMID:26627953
Wang, J.; Liu, K.; Schatz, G.C.; ter Horst, M.
1997-11-01
This paper presents new measurements of angular and translational energy distributions for the title reaction at a reagent kinetic energy of 5.8 kcal/mol, and compares them with the corresponding results from quasiclassical trajectory calculations based on an accurate global potential energy surface. The comparison of theory and experiment is generally good; however, the minor deviations that we find provide valuable information concerning errors in the potential energy surface. Both experiment and theory indicate that CN+D{sub 2} is a simple abstraction reaction, with predominantly backward-scattered angular distributions and about 37{percent} of the available energy ending up in product translation. Strong dependence of the calculated angular and translational energy distributions on reagent kinetic energy is noted. {copyright} {ital 1997 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Lautenschläger, T.; Feder, R.; Neumann, H.; Rice, C.; Schubert, M.; Bundesmann, C.
2016-10-01
In the present study, the influence of ion energy and geometrical parameters onto the angular and energy distribution of secondary particles for sputtering a Ti target with Ar ions is investigated. The angular distribution of the particle flux of the sputtered Ti atoms was determined by the collection method, i.e. by growing Ti films and measuring their thickness. The formal description of the particle flux can be realized by dividing it into an isotropic and an anisotropic part. The experimental data show that increasing the ion energy or decreasing the ion incidence angle lead to an increase of the isotropic part, which is in good agreement with basic sputtering theory. The energy distribution of the secondary ions was measured using an energy-selective mass spectrometer. The energy distribution of the sputtered target ions shows a maximum at an energy between 10 eV and 20 eV followed by a decay proportional to E-n, which is in principle in accordance with Thompson's theory, followed by a high energetic tail. When the sum of incidence angle and emission angle is increased, the high-energetic tail expands to higher energies and an additional peak due to direct sputtering events may occur. In the case of backscattered primary Ar ions, a maximum at an energy between 5 eV and 10 eV appears and, depending on the scattering geometry, an additional broad peak at a higher energy due to direct scattering events is observed. The center energy of the additional structure shifts systematically to higher energies with decreasing scattering angle or increasing ion energy. The experimental results are compared to calculations based on simple elastic two-particle-interaction theory and to simulations done with the Monte Carlo code SDTrimSP. Both confirm in principle the experimental findings.
Angular distribution of field emitted electrons from vertically aligned carbon nanotube arrays
NASA Astrophysics Data System (ADS)
Iacobucci, S.; Fratini, M.; Rizzo, A.; Scarinci, F.; Zhang, Y.; Mann, M.; Li, C.; Milne, W. I.; El Gomati, M. M.; Lagomarsino, S.; Stefani, G.
2012-01-01
Angular field emission (FE) properties of vertically aligned carbon nanotube arrays have been measured on samples grown by plasma enhanced chemical vapor deposition and characterized by scanning electron microscope and I-V measurements. These properties determine the angular divergence of electron beams, a crucial parameter in order to obtain high brilliance FE based cathodes. From angular distributions of the electron beam transmitted through extraction grids of different mesh size and by using ray-tracing simulations, the maximum emission angle from carbon nanotube tips has been determined to be about ± 30° around the tube main axis.
SiON metrology using angular and energy distributions of photoelectrons
NASA Astrophysics Data System (ADS)
Tasneem, G.; Tomastik, C.; Mroczyński, R.; Werner, W. S. M.
2013-06-01
Angle-resolved X-ray photoelectron spectroscopy (ARXPS) is a useful tool for non-destructive in-depth analysis of near surface regions. However, the reconstruction of depth profile from ARXPS data is an ill-posed mathematical problem. Thus, the main goal of this work was to develop a new, iterative algorithm based on the least square fitting which allows to solve this problem. The depth profiles were restored by dividing sample in thin virtual box shaped layers each with a different concentration. To extract information on the depth distribution, this algorithm is based on the analysis of the angular peak intensities along with the inelastic background. In addition, the physically trivial constraint of atomic fractions adding up to unity was imposed. The model takes into account the effect of elastic scattering and anisotropy of the photoelectric cross section. To test the algorithm, experimental spectrum for SiON samples on Si substrate were measured with a Thermo Theta Probe electron spectrometer for off-normal emission angles in the range between 25° and 75°. A very good agreement was found between the measured spectra and obtained spectra from the algorithm.
Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma
NASA Astrophysics Data System (ADS)
Chen, Hong; Wang, Xinbing; Duan, Lian; Lan, Hui; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang
2015-05-01
Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer-Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.
Energy spreading and angular distribution of a beam of electrons in molecular hydrogen
NASA Technical Reports Server (NTRS)
Heaps, M. G.; Green, A. E. S.
1975-01-01
A Monte Carlo approach is used to obtain the energy spreading and angular distribution of initially monoenergetic and monodirectional beams of electron incident on a gas of molecular hydrogen. Several beams of primary electrons and the resultant secondaries are degraded in a step-by-step procedure which utilizes a detailed set of cross sections, together with reasonable approximations for the creation of secondary electrons. Particular attention is paid to the initial angular distribution of secondary electrons. An analytic function which characterizes current experimental differential cross-section data is used to provide realistic inputs into our calculations. The results for energy distribution as a function of distance and angular distribution at selected energies and distances are illustrated.
Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma
Chen, Hong; Duan, Lian; Lan, Hui; Wang, Xinbing Chen, Ziqi; Zuo, Duluo; Lu, Peixiang
2015-05-21
Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.
Yeom, Han-Ju; Park, Jae-Hyeung
2016-08-22
We propose a method to obtain a computer-generated hologram that renders reflectance distributions of individual mesh surfaces of three-dimensional objects. Unlike previous methods which find phase distribution inside each mesh, the proposed method performs convolution of angular spectrum of the mesh to obtain desired reflectance distribution. Manipulation in the angular spectrum domain enables its application to fully-analytic mesh based computer generated hologram, removing the necessity for resampling of the spatial frequency grid. It is also computationally inexpensive as the convolution can be performed efficiently using Fourier transform. In this paper, we present principle, error analysis, simulation, and experimental verification results of the proposed method.
NASA Astrophysics Data System (ADS)
Intonti, F.; Caselli, N.; Lawrence, N.; Trevino, J.; Wiersma, D. S.; Dal Negro, L.
2013-08-01
In this work, we employ scanning near-field optical microscopy, full-vector finite difference time domain numerical simulations and fractional Fourier transformation to investigate the near-field and propagation behavior of the electromagnetic energy scattered at 1.56 μm by dielectric arrays of silicon nitride nanopillars with chiral α1-Vogel spiral geometry. In particular, we experimentally study the spatial evolution of scattered radiation and demonstrate near-field coupling between adjacent nanopillars along the parastichies arms. Moreover, by measuring the spatial distribution of the scattered radiation at different heights from the array plane, we demonstrate a characteristic rotation of the scattered field pattern consistent with net transfer of orbital angular momentum in the Fresnel zone, within a few micrometers from the plane of the array. Our experimental results agree with the simulations we performed and may be of interest to nanophotonics applications.
Angular distribution of atoms ejected by laser ablation of different metals
Konomi, I.; Motohiro, T.; Asaoka, T.
2009-07-01
Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm{sup 2}) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos{sup n} theta distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.
1991-03-12
Version 00 SUSD calculates sensitivity coefficients for one- and two-dimensional transport problems. Variance and standard deviation of detector responses or design parameters can be obtained using cross-section covariance matrices. In neutron transport problems, this code can perform sensitivity-uncertainty analysis for secondary angular distribution (SAD) or secondary energy distribution (SED).
NASA Astrophysics Data System (ADS)
Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.
2016-07-01
Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The
Model-independent constraints on the shape parameters of dilepton angular distributions
NASA Astrophysics Data System (ADS)
Faccioli, Pietro; Lourenço, Carlos; Seixas, João; Wöhri, Hermine K.
2011-03-01
The coefficients determining the dilepton decay angular distribution of vector particles obey certain positivity constraints and a rotation-invariant identity. These relations are a direct consequence of the covariance properties of angular momentum eigenstates and are independent of the production mechanism. The Lam-Tung relation can be derived as a particular case, simply recognizing that the Drell-Yan dilepton is always produced transversely polarized with respect to one or more quantization axes. The dilepton angular distribution continues to be characterized by a frame-independent identity also when the Lam-Tung relation is violated. Moreover, the violation can be easily characterized by measuring a one-dimensional distribution depending on one shape coefficient.
NASA Astrophysics Data System (ADS)
Petrović, V. M.; Miladinović, T. B.
2016-05-01
Within the framework of the Ammosov-Delone-Krainov theory, we consider the angular and energy distribution of outgoing electrons due to ionization by a circularly polarized electromagnetic field. A correction of the ground ionization potential by the ponderomotive and Stark shift is incorporated in both distributions. Spatial dependence is analyzed.
Photofragment imaging of HNCO decomposition: Angular anisotropy and correlated distributions
Sanov, A.; Droz-Georget, T.; Zyrianov, M.; Reisler, H.
1997-05-01
Photodissociation of jet-cooled isocyanic acid has been examined by photofragment ion imaging of H(D) from H(D)NCO and CO from HNCO, and by laser induced fluorescence (LIF) of NH(a{sup 1}{Delta}) from HNCO. Only modest recoil anisotropy is observed in the H+NCO channel at 243.1 nm ({beta}={minus}0.13{plus_minus}0.05), while the D+NCO channel at approximately the same wavelength reveals no anisotropy ({beta}=0.00{plus_minus}0.05), confirming that the dissociation of H(D)NCO from the opening of the H(D) channel proceeds via vibrational predissociation on the S{sub 0}({sup 1}A) surface. In contrast, substantial anisotropy ({beta}={minus}0.66{plus_minus}0.08) is observed in the NH(a{sup 1}{Delta})+CO channel at 230.1 nm, but this value can correspond to dissociation on either S{sub 0} or S{sub 1}. The photolysis region between 243 and 230 nm thus appears important in providing clues to the dissociation mechanism and the competition between different potential energy surfaces. At 217.6 nm, product state distributions exhibit clear dynamical biases. CO is produced in both {nu}=0 and {nu}=1, while NH(a{sup 1}{Delta}) distributions correlated with different rovibrational levels of CO, although different in shape, are always cold, consistent with the global NH distribution measured by LIF. The NH distributions indicate dissociation on S{sub 1}({sup 1}A{sup {prime}{prime}}), and can be described by Franck{endash}Condon mapping of transition state wave functions in the HNC bending coordinate without additional torque, implying little anisotropy in the potential along that coordinate. On the other hand, a larger torque is manifest in the CO rotational distribution. Although at 217.6 nm the dissociation is likely to be dominated by decomposition on S{sub 1}, competition with radiationless decay is still manifest. The NH(a{sup 1}{Delta})+CO dissociation threshold is determined at 42765{plus_minus}25cm{sup {minus}1}. {copyright} {ital 1997 American Institute of Physics.}
Angular distribution in the dissociation of H2O by swift heavy ions
NASA Astrophysics Data System (ADS)
Cabrera-Trujillo, R.; Stolterfoht, N.; Öhrn, Y.; Deumens, E.; Sabin, J. R.
2006-05-01
In this work, we present calculations of the angular distribution of the products of the dissociation of water molecules when bombarded with He^q+ for projectile energies between 1 and 5 keV. Here q=0,1,2 is the charge of the incoming ion. Our theoretical results are based on the Electron-Nuclear Dynamics formalism (END). We present results for the dissociation cross section, charge transfer cross section, the stopping cross section (nuclear and electronic) for the projectiles, and the angular distribution of He^q+, H, OH, and O. E. Deumens, A. Diz, R. Longo, and Y. "Ohrn, Rev. Mod. Phys. 66, 917 (1994).
Angular distribution of Auger electrons due to 3d-shell ionization of krypton
NASA Technical Reports Server (NTRS)
Omidvar, K.
1977-01-01
Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.
Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton
NASA Technical Reports Server (NTRS)
Omidvar, K.
1977-01-01
Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.
NASA Astrophysics Data System (ADS)
Curtis, D. B.; Tinilau, S. S.
2013-12-01
Aerosol particles play an important, but relatively poorly understood, role in Earth's climate. Sea-salt aerosol is one of the most prevalent naturally occurring aerosols and is therefore expected to have a large effect on climate by scattering incoming solar radiation back to space. While sea-salt aerosol has been thought to be mainly composed of sodium chloride and other salts, measurements have shown the presence of biogenic organic compounds, such as glucose, in primary sea-salt aerosol particles. In addition, the sea-salt aerosol particles can become coated by secondary organics from anthropogenic activities. In order to better understand the potential climate effects of internally mixed organic and sea-salt particles, the angular scattering properties of laboratory-generated aerosols were measured at a wavelength of 532 nm using polar nephelometry. The polar nephelometer collected scattered light with an elliptical mirror and focused it across a linear CCD detector. The instrument was therefore capable of measuring the scattering intensity as a function of scattering angle (the phase function). Two incident polarizations were studied, parallel and perpendicular to the scattering plane, which were then used to calculate the degree of linear polarization. The scattering measurements along with size distribution measurements were used to retrieve the refractive index of the particles by comparison with Mie theory. Particles were generated from solutions of sodium chloride with varying concentrations of organics such as glucose and oxalic acid. In addition, particles generated from authentic sea-water were studied for comparison. Preliminary results indicate that the effective refractive indices of the mixed particles differ significantly from pure sodium chloride and do not follow simple mixing rules used to calculate refractive index from individual components.
Distributions of off-diagonal scattering matrix elements: Exact results
Nock, A. Kumar, S. Sommers, H.-J. Guhr, T.
2014-03-15
Scattering is a ubiquitous phenomenon which is observed in a variety of physical systems which span a wide range of length scales. The scattering matrix is the key quantity which provides a complete description of the scattering process. The universal features of scattering in chaotic systems is most generally modeled by the Heidelberg approach which introduces stochasticity to the scattering matrix at the level of the Hamiltonian describing the scattering center. The statistics of the scattering matrix is obtained by averaging over the ensemble of random Hamiltonians of appropriate symmetry. We derive exact results for the distributions of the real and imaginary parts of the off-diagonal scattering matrix elements applicable to orthogonally-invariant and unitarily-invariant Hamiltonians, thereby solving a long standing problem. -- Highlights: •Scattering problem in complex or chaotic systems. •Heidelberg approach to model the chaotic nature of the scattering center. •A novel route to the nonlinear sigma model based on the characteristic function. •Exact results for the distributions of off-diagonal scattering-matrix elements. •Universal aspects of the scattering-matrix fluctuations.
Time evolution analysis of the electron distribution in Thomson/Compton back-scattering
Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.
2013-07-28
We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.
Angular Distributions of Drell-Yan Dimuons at Fermilab E-906/SeaQuest
NASA Astrophysics Data System (ADS)
Ramson, Bryan; Fermilab E-906/SeaQuest Collaboration
2015-10-01
Transverse momentum dependent (TMD) parton distribution functions (PDF), fragmentation functions, and their necessary theoretical framework provide a rich foundation from which to build a more descriptive, quantitative understanding of QCD and hadron structure. Fortuitously, TMD sensitive analyses of leptonic angular distributions have been a fixture in Drell-Yan experiments since the π+W CERN NA-10 of the 1980's, with particular focus on the violation of the Lam-Tung relation through a non-zero cos (2 ϕ) modulation in the angular distributions of the final-state leptons. The cos (2 ϕ) modulation is sensitive to the correlation between the motion and spin of transversely polarized (anti)quarks within their encompassing unpolarized hadron, described by the Boer-Mulders TMD PDF. In the mid-1990's, Fermilab E-866/NuSea investigated angular distributions of p+p and p+d Drell-Yan and found that the relative strength of the cos (2 ϕ) modulation, as compared to pion-induced Drell-Yan, is reduced. Fermilab E-906/SeaQuest provides an ideal laboratory in which to measure the cos (2 ϕ) modulation at a higher target xBj than possible with E-866. Recent progress in the analysis of the angular distributions from SeaQuest Drell-Yan dimuons will be shown.
Robinson, A. P. L. Schmitz, H.
2015-10-15
The evolution of the angular distribution of laser-generated fast electrons propagating in dense plasmas is studied by 3D numerical simulations. As resistively generated magnetic fields can strongly influence and even pinch the fast electron beam, the question of the effect on the angular distribution is of considerable interest. It was conjectured that in the limit of strong collimation, there will only be minimal changes to the angular distribution, whereas the largest reduction in the angular distribution will occur where there is only modest pinching of the fast electron beam and the beam is able to expand considerably. The results of the numerical simulations indicate this conjecture.
Dill, D.; Swanson, J.R.; Wallace, S.; Dehmer, J.L.
1980-10-27
The angular distribution of Auger electrons emitted in the decay of molecular K-shell vacancies created by photoabsorption is predicted to be a direct probe of the anisotropy of molecular photoabsorption. The sigma..--> pi.. discrete absorption of the sigma..-->..sigma f-wave shape resonance in N/sub 2/ and CO are given as examples.
Hemmers, O.; Manson, S. T.; Sant'Anna, M. M.; Focke, P.; Wang, H.; Sellin, I. A.; Lindle, D. W.
2001-08-01
Measurements of the photoelectron angular-distribution asymmetry parameter {beta} for Xe 5s photoionization have been performed in the 80--200 eV photon-energy region. The results show a substantial deviation from the nonrelativistic value of {beta}=2 and provide a clear signature of significant relativistic effects in interchannel coupling.
On the angular and energy distribution of solar neutrons generated in P-P reactions
NASA Technical Reports Server (NTRS)
Efimov, Y. E.; Kocharov, G. E.
1985-01-01
The problem of high energy neutron generation in P-P reactions in the solar atmosphere is reconsidered. It is shown that the angular distribution of emitted neutrons is anisotropic and the energy spectrum of neutrons depends on the angle of neutron emission.
Angular 21 cm power spectrum of a scaling distribution of cosmic string wakes
Hernández, Oscar F.; Wang, Yi; Brandenberger, Robert; Fong, José E-mail: wangyi@physics.mcgill.ca E-mail: jose.fong@ens-lyon.fr
2011-08-01
Cosmic string wakes lead to a large signal in 21 cm redshift maps at redshifts larger than that corresponding to reionization. Here, we compute the angular power spectrum of 21 cm radiation as predicted by a scaling distribution of cosmic strings whose wakes have undergone shock heating.
Kadmensky, S. G. Titova, L. V.; Pen'kov, N. V.
2006-08-15
In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.
Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions
NASA Technical Reports Server (NTRS)
Rubinstein, R.; Greenberg, P. S.
1994-01-01
Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation
The two-dimensional angular momentum distribution in a protostellar core L1527
NASA Astrophysics Data System (ADS)
Kiyokane, Kazuhiro; Saito, Masao; Saigo, Kazuya; Kurono, Yasutaka
2013-07-01
In star formation at the early phase, angular momentum distribution of a natal core is crucial to determine the evolution of the core such as binary formation and disk formation. We have not yet fully understood the angular momentum distribution of such dense cores. We therefore mapped a 6 arcmin x6 arcmin region (0.2 pc x 0.2 pc) of the protostellar core L1527 in C18O(1-0) with 0.1 km/s resolution with the Nobeyama 45m Telescope in order to derive rotation properties. In the C18O(1-0) integrated intensity map, the emission distribution is centered on the protostar. We introduced a new method to calculate the two-dimensional specific angular momentum distribution of a core and derived the direction of the rotation axis as a function of the core radius. We found that the direction of the angular momentum vector changes from outside to inside and thus, we have confirmed that the dense core L1527 cannot be described by a single rotation axis. Since the inner rotational axis direction is especially important with formation and evolution of the inner rotating disk (Tobin+2013), we think that analysis of the two dimensional specific angular momentum distributions is required. Our method has advantages over the previous analysis of dense cores. First the linear or planar fitting of the line of sight velocity to derive a velocity gradient cannot detect change of the rotational axis (Goodman+1993, Ohashi+1997, and Caselli+2002). Second the position-velocity diagrams can distinguish between rigid-rotation or differential rotation of the core, but only the cut direction. (Belloch+2002). Indeed our analysis results agree with Tobin+2011 who firstly showed the different directions of the velocity gradient on between large- and small-scales.
Helicity-dependent angular distributions in double-charged-pion photoproduction
Steffen Strauch
2003-05-01
Two-pion photoproduction in the reaction {gamma}p {yields} p{pi}{sup +} {pi}{sup -} has been studied at Jefferson Lab Hall B using a circularly-polarized tagged photon beam in the energy range between 0.6 GeV and 2.3 GeV. Owing to the large angular acceptance of the CLAS detector, complete beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics of the reaction and provide valuable information on the reaction dynamics. Preliminary results are presented.
Hu, Yue-Houng; Zhao, Wei
2011-01-01
Purpose: Substantial effort has been devoted to the clinical development of digital breast tomosynthesis (DBT). DBT is a three-dimensional (3D) x-ray imaging modality that reconstructs a number of thin image slices parallel to a stationary detector plane. Preliminary clinical studies have shown that the removal of overlapping breast tissue reduces image clutter and increases detectability of large, low contrast lesions. However, some studies, as well as anecdotal evidence, suggested decreased conspicuity of small, high contrast objects such as microcalcifications. Several investigators have proposed alternative imaging methods for improving microcalcification detection by delivering half of the total dose to the central view in addition to a separate DBT scan. Preliminary observer studies found possible improvement by either viewing the central projection alone or combining all views with a reconstruction algorithm.Methods: In this paper, we developed a generalized imaging theory based on a cascaded linear-system model for DBT to calculate the effect of variable angular dose distribution on the 3D modulation transfer function (MTF) and noise power spectrum (NPS). Using the ideal observer signal-to-noise ratio (SNR), d′, as a figure-of-merit (FOM) for a signal embedded in a uniform background, we compared the detectability of objects with different sizes under different imaging conditions (e.g., angular dose distribution and reconstruction filters). Experimental investigation was conducted for three different angular dose schemes (ADS) using a Siemens NovationTOMO prototype unit.Results: Our results show excellent agreement between modeled and experimental measurements of 3D NPS with different angular dose distribution. The ideal observer detectability index for the detection of Gaussian objects with different angular dose distributions depends strongly on the applied reconstruction filter as well as the imaging task. For detection tasks of small calcifications
Instability in the dense supernova neutrino gas with flavor-dependent angular distributions.
Mirizzi, Alessandro; Serpico, Pasquale Dario
2012-06-01
The usual description of self-induced flavor conversions for neutrinos (ν's) in supernovae is based on the simplified assumption that all the ν's of the different species are emitted "half-isotropically" by a common neutrinosphere, in analogy to a blackbody emission. However, realistic supernova simulations show that ν angular distributions at decoupling are far from being half-isotropic and, above all, are flavor dependent. We show that flavor-dependent angular distributions may lead to crossing points in the angular spectra of different ν species (where F(ν(e))=F(ν(x)) and F(ν(e))=F(ν(x))) around which a new multiangle instability can develop. To characterize this effect, we carry out a linearized flavor stability analysis for different supernova neutrino angular distributions. We find that this instability can shift the onset of the flavor conversions toward low radii and produce a smearing of the splitting features found with trivial ν emission models. As a result the spectral differences among ν's of different flavors could be strongly reduced.
Angular distribution of fusion products and x rays emitted by a small dense plasma focus machine
Castillo, F.; Herrera, J. J. E.; Gamboa, Isabel; Rangel, J.; Golzarri, J. I.; Espinosa, G.
2007-01-01
Time integrated measurements of the angular distributions of fusion products and x rays in a small dense plasma focus machine are made inside the discharge chamber, using passive detectors. The machine is operated at 37 kV with a stored energy of 4.8 kJ and a deuterium filling pressure of 2.75 torr. Distributions of protons and neutrons are measured with CR-39 Lantrack registered nuclear track detectors, on 1.8x0.9 cm{sup 2} chips, 500 {mu}m thick. A set of detectors was placed on a semicircular Teflon registered holder, 13 cm away from the plasma column, and covered with 15 {mu}m Al filters, thus eliminating tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. The angular distribution of x rays is also studied within the chamber with TLD-200 dosimeters. While the neutron angular distributions can be fitted by Gaussian curves mounted on constant pedestals and the proton distributions are strongly peaked, falling rapidly after {+-}40 deg. , the x-ray distributions show two maxima around the axis, presumably as a result of the collision of a collimated electron beam against the inner electrode, along the axis.
Huang, Xian Rong
2011-11-01
The development of medium-energy inelastic X-ray scattering optics with meV and sub-meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back-reflection angular-dispersion monochromator or analyzer, is analyzed. The results show that the multiple-beam diffraction effect together with transmission-induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four-bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV- to sub-meV-resolution inelastic X-ray scattering spectroscopy.
Correlation of angular and lateral distributions of electrons in extensive air showers
NASA Astrophysics Data System (ADS)
Giller, Maria; Śmiałkowski, Andrzej; Legumina, Remigiusz
2016-08-01
The aim of this paper is to explain the weak correlation of the angular and lateral deflections of electrons in extensive air showers in the primary energy range 1016-1019 eV, when compared with that in some models of electron propagation. We derive analytical formulae for the correlation coefficient in the multiple scattering model with energy losses and show a strong role of the ionisation in diminishing the correlation. By considering a Heitler-like model of an electromagnetic cascade we show also that the presence of photons, parent to electrons, causes a decrease of the correlation, roughly explaining quantitatively the small correlation in air showers.
On the non-uniform distribution of the angular elements of near-Earth objects
NASA Astrophysics Data System (ADS)
JeongAhn, Youngmin; Malhotra, Renu
2014-02-01
We examine the angular distributions of near-Earth objects (NEOs) which are often regarded as uniform. The apparent distribution of the longitude of ascending node, Ω, is strongly affected by well-known seasonal effects in the discovery rate of NEOs. The deviation from the expected π-periodicity in the apparent distribution of Ω indicates that its intrinsic distribution is slightly enhanced along a mean direction, Ω‾=111°; approximately 53% of NEOs have Ω values within ±90° of Ω‾. We also find that each subgroup of NEOs (Amors, Apollos and Atens) has different observational selection effects which cause different non-uniformities in the apparent distributions of their arguments of perihelion ω, and longitudes of perihelion ϖ. For their intrinsic distributions, our analysis reveals that the Apollo asteroids have non-uniform ω due to secular dynamics associated with inclination-eccentricity-ω coupling, and the Amors’ ϖ distribution is peaked towards the secularly forced eccentricity vector. The Apollos’ ω distribution is axial, favoring values near 0° and 180°; the two quadrants centered at 0° and 180° account for 55% of the Apollos’ ω values. The Amors’ ϖ distribution peaks near ϖ‾=4°; 61% of Amors have ϖ within ±90° of this peak. We show that these modest but statistically significant deviations from uniform random distributions of angular elements are owed to planetary perturbations, primarily Jupiter’s. It is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.
Angular distributions of surface produced H{sup −} ions for reflection and desorption processes
Wada, M. Kasuya, T.; Kenmotsu, T.; Sasao, M.
2014-02-15
A numerical simulation code, Atomic Collision in Amorphous Target, has been run to clarify the effects due to the incident angle of hydrogen flux onto surface collision cascade in the subsurface region of a Cs covered Mo plasma grid. The code has taken into account the threshold energy for negative hydrogen (H{sup −}) ions to leave the surface. This modification has caused the shift of energy distribution functions of H{sup −} from that of hydrogen atoms leaving the surface. The results have shown that large incident angle of hydrogen particle tilt the angular distribution of reflection component, while it caused a small effect onto the angular distribution of desorption component. The reflection coefficient has increased, while the desorption yield has decreased for increased angle of incidence measured from the surface normal.
Angular distributions of surface produced H(-) ions for reflection and desorption processes.
Wada, M; Kasuya, T; Kenmotsu, T; Sasao, M
2014-02-01
A numerical simulation code, Atomic Collision in Amorphous Target, has been run to clarify the effects due to the incident angle of hydrogen flux onto surface collision cascade in the subsurface region of a Cs covered Mo plasma grid. The code has taken into account the threshold energy for negative hydrogen (H(-)) ions to leave the surface. This modification has caused the shift of energy distribution functions of H(-) from that of hydrogen atoms leaving the surface. The results have shown that large incident angle of hydrogen particle tilt the angular distribution of reflection component, while it caused a small effect onto the angular distribution of desorption component. The reflection coefficient has increased, while the desorption yield has decreased for increased angle of incidence measured from the surface normal.
Influence of the initial angular distribution on strong-field molecular dissociation
NASA Astrophysics Data System (ADS)
Yu, Youliang; Zeng, Shuo; Hernández, J. V.; Wang, Yujun; Esry, B. D.
2016-08-01
We study few-cycle, strong-field dissociation of aligned H2+ by solving the time-dependent Schrödinger equation including rotation. We examine the dependence of the final angular distribution, the kinetic energy release spectrum, and the total dissociation yield on the initial nuclear angular distribution. In particular, we look at the dependence on the relative angle θ0 between the laser polarization and the symmetry axis of a well-aligned initial distribution, as well as the dependence on the delay between the "pump" pulse that prepares the alignment and the few-cycle probe pulse. Surprisingly, we find the dissociation probability for θ0=90∘ can be appreciable even though the transitions involved are purely parallel. We therefore address the limits of the commonly held "ball-and-stick" picture for molecules in intense fields as well as the validity of the axial recoil approximation.
Transverse Momentum Dependent Distributions in Hard Scattering
Alexie Prokudin
2011-05-01
Transverse Momentum Dependent Distributions (TMDs) describe the spin structure of the proton. At leading twist spin structure of spin-1/2 hadron can be described by 8 TMDs. TMDs reveal three-dimensional distribution of partons inside polarised nucleon. Experimentally these functions can be studied in polarised experiments using Spin Asymmetries in particular Single Spin Asymmetries (SSAs). We discuss transversity that measures distribution of transversely polarised quarks in a transversely polarised nucleon and Sivers distribution function that describes distribution of unpolarised quarks in a transversely polarised nucleon.
Effects of graded distribution of scattering centers on ballistic transport
Mitran, T. L.; Nemnes, G. A.; Ion, L.; Dragoman, Daniela
2014-09-28
The transmission coefficient of a two dimensional scattering region connected to ideal leads was calculated for the case of electrons interacting with an inhomogeneous distribution of repulsive or attractive scattering centers. The scattering centers with Gaussian profiles were positioned at regular intervals perpendicular to the transport direction, but were spaced according to a power law along this direction. The transmission function was obtained using a scattering formalism based on the R-matrix method. The simulations revealed that although, overall, the transmission coefficient decreases and becomes almost monotonously dependent on energy as the inhomogeneity of both attractive and repulsive scattering centers increases, the redistribution of transmission between open channels depends on the type of scattering centers.
Sokolovski, D.; Msezane, A.Z.
2004-09-01
A semiclassical complex angular momentum theory, used to analyze atom-diatom reactive angular distributions, is applied to several well-known potential (one-particle) problems. Examples include resonance scattering, rainbow scattering, and the Eckart threshold model. Pade reconstruction of the corresponding matrix elements from the values at physical (integral) angular momenta and properties of the Pade approximants are discussed in detail.
NASA Astrophysics Data System (ADS)
Ibraheem, Awad A.; Aygun, M.
2016-08-01
In this paper, the elastic scattering angular distributions of 6,7Li on 64Zn have been investigated by using various nuclear potentials. For this, we use the phenomenological Woods-Saxon potential, the real double folding potential with the density-independent M3Y effective interaction supplemented with an imaginary part in Woods-Saxon form and the double folding potentials multiplied with a normalization factor of the real and imaginary parts via the density-independent and CDM3Y6 density-dependent versions of the M3Y effective interaction have been used. The results have been compared with each other as well as with the experimental data. It has been observed that the agreement between the theoretical results and earlier reported data is perfect. Finally, the change of the total reaction cross sections with energy has been investigated.
Young, V.; McCaslin, P.C.
1985-04-01
Changes in the distribution of species in the near surface region of compacted lead ion selective membrane powders, as revealed by angular distribution XPS, are reported. Scanning electron micrographs of pellets pressed at pressures ranging from a low of 7 lb/in./sup 2/ to a high of 15,000 lb/in./sup 2/ reveal surfaces of almost undistorted, compacted spheres with an average diameter of 0.25 ..mu..m. For untreated membranes, angular distribution XPS reveals the stratification of the near surface region of the surface layer of spheres. Scanning electron micrographs of EDTA and HClO/sub 4/ treated pellets show that an erosion of the surfaces occurs and angular distribution XPS analysis reveals the stratification of the near surface region of the new surfaces. Profilometry has been used to measure the surface topography of the pellets, and the data have been used to assess the effect of roughness on XPS intensity ratios. 47 references, 8 figures, 4 tables.
Bogdanov, O. V. Fiks, E. I.; Pivovarov, Yu. L.
2012-09-15
Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.
Angular distribution of photoelectrons from atomic oxygen, nitrogen and carbon. [in upper atmosphere
NASA Technical Reports Server (NTRS)
Manson, S. J.; Kennedy, D. J.; Starace, A. F.; Dill, D.
1974-01-01
The angular distributions of photoelectrons from atomic oxygen, nitrogen, and carbon are calculated. Both Hartree-Fock and Hartree-Slater (Herman-Skillman) wave functions are used for oxygen, and the agreement is excellent; thus only Hartree-Slater functions are used for carbon and nitrogen. The pitch-angle distribution of photoelectrons is discussed, and it is shown that previous approximations of energy-independent isotropic or sin squared theta distributions are at odds with the authors' results, which vary with energy. This variation with energy is discussed, as is the reliability of these calculations.
Neutron angular distribution in a plasma focus obtained using nuclear track detectors.
Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G
2002-01-01
The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.
Measurement of the angular distribution in anti-p p ---> psi(2S) ---> e+ e-
Ambrogiani, M.; Andreotti, M.; Argiro, S.; Bagnasco, S.; Baldini, W.; Bettoni, D.; Borreani, G.; Buzzo, A.; Calabrese, R.; Cester, R.; Cibinetto, G.; Dalpiaz, P.; Fan, X.; Garzoglio, G.; Gollwitzer, K.E.; Graham, M.; Hahn, A.; Hu, M.; Jin, S.; Joffe, D.; Kasper, J.; /Fermilab /INFN, Ferrara /Ferrara U. /INFN, Genoa /Genoa U. /INFN, Turin /Turin U. /Northwestern U. /UC, Irvine /Minnesota U.
2004-12-01
The authors present the first measurement of the angular distribution for the exclusive process {bar p}p {yields} {psi}(2S) {yields} e{sup +}e{sup -} based on a sample of 6844 events collected by the Fermilab E835 experiment. They find that the angular distribution is well described by the expected functional form dN/d cos {theta}* {proportional_to} 1 + {lambda} cos{sup 2} {theta}*, where {theta}* is the angle between the antiproton and the electron in the center of mass frame, with {lambda} = 0.67 {+-} 0.15(stat.) {+-} 0.04(sys.). The measured value for {lambda} implies a small but non zero {psi}(2S) helicity 0 formation amplitude in {bar p}p, comparable to what is observed in J/{psi} decays to baryon pairs.
Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons
Bunakov, V. E. Kadmensky, S. G. Kadmensky, S. S.
2008-11-15
Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.
NASA Astrophysics Data System (ADS)
Dauth, M.; Kümmel, S.
2016-02-01
Photoemission spectroscopy is one of the most frequently used tools for characterizing the electronic structure of condensed matter systems. We discuss a scheme for simulating photoemission from finite systems based on time-dependent density-functional theory. It allows for the first-principles calculation of relative electron binding energies, ionization cross sections, and anisotropy parameters. We extract these photoemission spectroscopy observables from Kohn-Sham orbitals propagated in real time. We demonstrate that the approach is capable of estimating photoemission intensities, i.e., peak heights. It can also reliably predict the angular distribution of photoelectrons. For the example of benzene we contrast calculated angular distribution anisotropy parameters to experimental reference data. Self-interaction free Kohn-Sham theory yields meaningful outer valence single-particle states in the right energetic order. We discuss how to properly choose the complex absorbing potential that is used in the simulations.
Near-threshold photoelectron angular distributions from two-photon resonant photoionization of He
NASA Astrophysics Data System (ADS)
O'Keeffe, P.; Mihelič, A.; Bolognesi, P.; Žitnik, M.; Moise, A.; Richter, R.; Avaldi, L.
2013-01-01
Two-photon resonant photoionization of helium is investigated both experimentally and theoretically. Ground state helium atoms are excited to the 1s4p, 1s5p and 1s6p 1P states by synchrotron radiation and ionized by a synchronized infrared pulsed picosecond laser. The photoelectron angular distributions of the emitted electrons are measured using a velocity map imaging (VMI) spectrometer. The measured asymmetry parameters of the angular distribution allow the phase differences and the ratios of the dipole matrix elements of the 1sɛs and 1sɛd channels to be determined. The experimental results agree with the calculated values obtained in a configuration-interaction calculation with a Coulomb-Sturmian basis set. The effects of the radiative decay of the intermediate state and the static electric field of the VMI spectrometer on the measurements are discussed.
Hsi, W.; Kwiatkowski, K.; Wang, G.; Bracken, D.S.; Cornell, E.; Ginger, D.S.; Viola, V.E.; Yoder, N.R.; Korteling, R.G.; Gimeno-Nogues, F.; Ramakrishnan, E.; Rowland, D.; Yennello, S.J.; Huang, R.; Lynch, W.G.; Tsang, M.B.; Xi, H.; Breuer, H.; Morley, K.B.; Gushue, S.; Remsberg, L.P.; Friedman, W.A.; Botvina, A.
1998-07-01
Exclusive studies of sideways-peaked angular distributions for intermediate-mass fragments (IMFs) produced in hadron-induced reactions have been performed with the Indiana silicon sphere (ISiS) detector array. The effect becomes prominent for beam momenta above about 10thinspGeV/c. Both the magnitude of the effect and the peak angle increase as a function of fragment multiplicity and charge. When gated on IMF kinetic energy, the angular distributions evolve from forward peaked to nearly isotropic as the fragment energy decreases. Fragment-fragment correlation studies show no evidence for a preferred angle that might signal a fast dynamic breakup mechanism. Moving-source and intranuclear cascade simulations suggest a possible kinematic origin arising from significant transverse momentum imparted to the recoil nucleus during the fast cascade. A two-step cascade and statistical multifragmentation calculation is consistent with the data. {copyright} {ital 1998} {ital The American Physical Society}
Twofold symmetric angular distributions in multiphoton ionization with elliptically polarized light
Basile, S.; Trombetta, F.; Ferrante, G.
1988-11-21
The angular distributions of electrons in multiphoton multichannel ionization of hydrogen for the case of elliptically polarized laser light are calculated within a nonperturbative theoretical model taking into account the Coulomb interaction in the final state. It is found that the ellipticity of the radiation not only modifies the shape but also lowers the fourfold rotational symmetry occurring in linear polarization to a twofold one.
Drukarev, E. G.; Ma, X.; Mikhailov, A. I.; Mikhailov, I. A.; Mokler, P. H.
2006-08-15
We investigate the difference in the angular distribution of Ly-{alpha}{sub 1} and K{alpha}{sub 1} photons from hydrogenlike and heliumlike ions of uranium after radiative electron capture to the L shell. The strong anisotropy in the former case is changed to a very small one in the latter case. Our calculations support the observation. The effect takes place even in the limiting case of noninteracting electrons, being caused by the Pauli principle.
High energy angular distribution measurements of the exclusive deuteron photodisintegration reaction
Elaine Schulte; et. Al.
2002-10-01
The first complete measurements of the angular distributions of the two-body deuteron photodisintegration differential cross section at photon energies above 1.6 GeV were performed at the Thomas Jefferson National Accelerator Facility. The results show a persistent forward-backward asymmetry up to Egamma = 2.4 GeV, the highest-energy measured in this experiment. The Hard Rescattering and the Quark-Gluon string models are in fair agreement with the results.
Retrieving orbital angular momentum distribution of light with plasmonic vortex lens
Zhou, Hailong; Dong, Jianji; Zhang, Jihua; Zhang, Xinliang
2016-01-01
We utilize a plasmonic vortex lens (PVL) to retrieve the orbital angular momentum (OAM) distribution of light. The OAM modes are coupled to the surface plasmon polaritons (SPPs) in the form of various Bessel functions respectively. By decomposing the interference pattern of SPPs into these Bessel functions, we can retrieve the relative amplitude and the relative phase of input OAM modes simultaneously. Our scheme shows advantage in integration and can measure hybrid OAM states by one measurement. PMID:27255406
Inner engine shutdown from transitions in the angular momentum distribution in collapsars
NASA Astrophysics Data System (ADS)
Batta, Aldo; Lee, William H.
2016-06-01
For the collapsar scenario to be effective in the production of gamma ray bursts (GRBs), the infalling star's angular momentum J(r) must be larger than the critical angular momentum needed to form an accretion disc around a black hole (BH), namely Jcrit = 2rgc for a Schwarzschild BH. By means of 3D smoothed particle hydrodynamics simulations, here we study the collapse and accretion on to BHs of spherical rotating envelopes, whose angular momentum distribution has transitions between supercritical (J > Jcrit) and subcritical (J < Jcrit) values. Contrary to results obtained in previous 2D hydrodynamical simulations, we find that a substantial amount of subcritical material fed to the accretion disc, lingers around long enough to contribute significantly to the energy loss rate. Increasing the amount of angular momentum in the subcritical material increases the time spent at the accretion disc, and only when the bulk of this subcritical material is accreted before it is replenished by a massive outermost supercritical shell, the inner engine experiences a shutdown. Once the muffled accretion disc is provided again with enough supercritical material, the shutdown will be over and a quiescent time in the long GRB produced afterwards could be observed.
NASA Astrophysics Data System (ADS)
Martensen, S.; Brudern, M.; Christiansen, F.; Koberle, M.; Trautwein, D.; Wraase, S.; Bottcher, S.; Burmeister, S.; Heber, B.; Wimmer-Schweingruber, R.
2015-09-01
Particle showers, which produce a large number of secondary particles, are generated by the interaction of high-energy cosmic ray particles with the Earth's atmosphere. The Team ADAM (Angular Distribution of charged partides - Atmosphere Measurement) has flown an experiment to measure the altitude- dependent angular distribution of secondary charged particles on a stratospheric balloon within the REXUS/BEXUS programme in October 2014. We designed a sensor head consisting of 16 planar silicon semi-conductor detectors (SSDs), which allowed us to determine the zenith-angle of individual particles by coincidence measurements. After a year of development and testing, on October 9th the instrument performed measurements for 4 hours in an altitude of 27 km in northern Sweden. In this contribution measurements performed during the flight in comparison to ones obtained on ground will be presented. On the one hand we focus on the count and dose rate profiles as functions of residual pressure, on the other hand we discuss the angular distribution below and above the PFOTZERMaximum.
Angular momentum distribution during the collapse of primordial star-forming clouds
NASA Astrophysics Data System (ADS)
Dutta, Jayanta
2016-01-01
It is generally believed that angular momentum is distributed during the gravitational collapse of the primordial star forming cloud. However, so far there has been little understanding of the exact details of the distribution. We use the modified version of the Gadget-2 code, a three-dimensional smoothed-particle hydrodynamics simulation, to follow the evolution of the collapsing gas in both idealized as well as more realistic minihalos. We find that, despite the lack of any initial turbulence and magnetic fields in the clouds the angular momentum profile follows the same characteristic power-law that has been reported in studies that employed fully self-consistent cosmological initial conditions. The fit of the power-law appears to be roughly constant regardless of the initial rotation of the cloud. We conclude that the specific angular momentum of the self-gravitating rotating gas in the primordial minihalos maintains a scaling relation with the gas mass as L ∝ M^{1.125}. We also discuss the plausible mechanisms for the power-law distribution.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.
1993-01-01
Rigorously light scattering by size-shape distributions of randomly oriented axially symmetric particles are calculated by the T-matrix method, as extended to randomly oriented scatterers. The computational scheme is described along with a newly developed convergence procedure that makes it possible to substantially reduce computer time and storage requirements. The elements of the Stokes scattering matrix for a power-law size distribution of randomly oriented moderately aspherical spheroids are shown to be much smoother than and differ substantially from those of equivalent monodisperse spheroids; averaging over orientations does not eliminate the necessity of averaging over particle sizes. The angular-scattering behavior of the ensembles of nonspherical particles is found to be significantly different from that of the equivalent polydisperse spheres.
NASA Astrophysics Data System (ADS)
Cabrera-Trujillo, R.; Öhrn, Y.; Sabin, John R.; Deumens, E.
2002-02-01
We analyze the implications of the molecular structure of a target and the angular scattering effects on projectile-target collisions within the Electron-Nuclear Dynamics (END) approach. We show the suitability of the END method for the analysis of molecular scattering processes such as differential cross sections, charge exchange, and energy loss as required for the study of the stopping cross section. As a consequence of these effects, we show that the rovibronic energy loss becomes of greatest importance at low projectile energies. Furthermore, we find that the Bragg additivity rule and the linear-velocity dependence of the stopping cross section are not fulfilled at low projectile energies. Finally, we analyze the differences in the scattering processes for molecular and atomic targets, and show that in a transmission experiment with small exit window, the acceptance angle corresponds to different impact parameter selection for molecular targets than for atomic ones. Thus, the measured stopping cross section becomes a function of the acceptance angle of the experimental setup. We present results for hydrogen beams on H2 and N2 gas targets.
NASA Technical Reports Server (NTRS)
Misakian, M.; Mumma, M. J.; Faris, J. F.
1975-01-01
Dissociative excitation of CO2 by electron impact was studied using the methods of translational spectroscopy and angular distribution analysis. Earlier time of flight studies revealed two overlapping spectra, the slower of which was attributed to metastable CO(a3 pi) fragments. The fast peak is the focus of this study. Threshold energy, angular distribution, and improve time of flight measurements indicate that the fast peak actually consists of five overlapping features. The slowest of the five features is found to consist of metastable 0(5S) produced by predissociation of a sigma u + state of CO2 into 0(5S) + CO(a3 pi). Oxygen Rydberg fragments originating directly from a different sigma u + state are believed to make up the next fastest feature. Mechanisms for producing the three remaining features are discussed.
Angular ion species distribution in droplet-based laser-produced plasmas
Giovannini, Andrea Z.; Gambino, Nadia; Rollinger, Bob; Abhari, Reza S.
2015-01-21
The angular distribution of the ion species generated from a laser irradiated droplet target is measured. The employed instrument was an electrostatic energy analyzer with differential pumping. Singly and doubly charged ions were detected at an argon ambient gas pressure of 2 × 10{sup −2} mbar. The amount of Sn{sup +} and Sn{sup 2+} and their kinetic energy is measured from 45° to 120° from the laser axis. Sn{sup +} expands approximately isotropically, and Sn{sup 2+} expansion is peaked towards the incoming laser radiation. The singly charged ion kinetic energy is close to constant over the measurement range, while it decreases by around 30% for Sn{sup 2+}. A calibrated model of the ion expansion that includes recombinations correctly predicts the mean ion charge distribution. The model is able to qualitatively estimate the influence of the laser wavelength on the mean ion charge distribution. The results show a more pronounced isotropic distribution for shorter wavelengths, and a more forward-peaked distribution for longer wavelengths. The ion charge distribution expected without the ambient gas is estimated through the measured ion kinetic energy. The presence of the ambient gas results in a decrease of the mean ion charge state and a decrease in angular anisotropy.
High Purity Germanium Detectors and Angular Distribution of 2Al(p,g)28Si
NASA Astrophysics Data System (ADS)
Wilson, Andre
2014-09-01
The purpose of this research was to study high purity germanium detector systems, and to calculate and compare absorption ratios of 27Al(p,g)28Si. Work with the germanium detector online array for gamma ray spectroscopy in nuclear astrophysics in the Nuclear Science Laboratory at the University of Notre Dame, also known as Georgina, including energy calibrations and work with software and hardware logic, provided the necessary background and experience with high purity germanium detectors and angular distribution of gamma rays. The knowledge taken from work with the Georgina detectors was then applied to the analysis of 27Al(p,g)28Si. Previous experimental data of 27Al(p,g)28Si was analyzed using the Ep = 1778.9 keV resonance. The data used was taken from a 2010 experiment completed in the Nuclear Science Laboratory at the University of Notre Dame using the 4MV KN particle accelerator. A 1977 paper by A. Anttila and J. Keinonen with analysis of the same reaction using the Ep = 992 keV resonance was used for the energy calibration and gamma energies. Peak fitting and background reduction of the spectra were completed using analysis software, jtek. Angular distribution ratios from a 56Co source were used for the normalization of the 27Al data. Angular dependent absorption factors were used to analyze the angular distribution of γ-rays from the 27Al beam target. With these absorption factors, relative gamma intensity measurements of 27Al(p,g)28Si were calculated.
NASA Astrophysics Data System (ADS)
Wright, I.; Sestric, G.; Ferguson, S.; Williams, S.
2015-03-01
Theoretical work suggests that when an atomic inner-shell vacancy with total angular momentum j greater than 1/2 is created by interaction with a photon or charged particle the vacancy will be aligned due to the magnetic sublevels of the ion having nonstatistical populations. The experiments we performed, testing this theory, involved measurements of the angular distributions of gold Lα, Lβ, and Ll X-rays at forward angles in the range 0 degrees to 25 degrees emitted after being bombarded with 15-keV electrons. After corrections for absorption of the characteristic X-rays within the gold target, our results suggest that the angular distributions of the Lα and Lβ X-rays are essentially isotropic, as no angular dependence was observed in our data outside of experimental uncertainties. However, the results of our experiments suggest that the angular distribution of the gold Ll X-rays may be weakly anisotropic.
Final-state angular momentum distributions in charge transfer collisions at high energies
NASA Astrophysics Data System (ADS)
Burgdörfer, Joachim
1985-11-01
We investigate the influence of different terms of the Born series on the final-state angular momentum ( l) distribution and the anisotropy of the captured electron. A variety of different l distributions depending on the projectile velocity v and the charge asymmetry {Z p}/{Z T} of the collision system can be found, revealing different underlying mechanisms for charge transfer. We compare the predictions of perturbation theories such as the first and second Born approximation, the continuum distorted wave (CDW) approximation and the post-collision interaction (PCI) model valid at high velocities with those of the "quasi-resonant over barrier" model of charge transfer valid at intermediate velocities.
NASA Technical Reports Server (NTRS)
Mumma, M. J.; Misakian, M.; Jackson, W. M.; Faris, J. L.
1973-01-01
Angular intensity distributions of helium (n 1P - 1 1S) resonance photons with respect to the exciting electron beam are presented. The angular intensity distributions were measured at selected electron impact energies from 25 eV (near threshold) to 150 eV. Polarization fractions (Pi) were obtained by analyzing the data in terms of the theoretical relation between angular intensity distribution and Pi, i.e. Iota (theta) = Iota (90) (1 - Pi sq cos theta). The experimental values for Pi are compared with recent theoretical results and with previous experimental values for the (3 1P - 2 1S) transition.
Kheifets, A. S.; Ivanov, I. A.; Bray, Igor
2007-08-15
We present convergent-close-coupling (CCC) calculations of the angular anisotropy parameters {beta}{sub 2},{beta}{sub 4} and the recoil ion momentum distribution d{sigma}/dp in two-photon double ionization (TPDI) of helium. In a stark contrast to single-photon double ionization (SPDI), where the {beta}{sub 2} parameter varies widely changing the angular distribution from isotropic to nearly dipole for slow and fast photoelectrons, respectively, the {beta} parameters for TPDI show very little change. The angular distribution of the recoil ion is fairly isotropic in TPDI as opposed to a strong alignment with the polarization of light in SPDI.
Hiryanov, R. M.; Karpov, A. V.; Adeev, G. D.
2008-08-15
The anisotropy of angular distributions of fission fragments and the average multiplicity of prescission neutrons were calculated within a stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations. This approach was combined with a Monte Carlo algorithm for the degree of freedom K (projection of the total angular momentum I onto the fission axis). The relaxation time {tau}{sub K} in the coordinate K was considered as a free parameter of the model; it was estimated on the basis of a fit to experimental data on the anisotropy of angular distributions. Specifically, the relaxation time {tau}{sub K} was estimated at 2 x 10{sup -21} s for the compound nuclei {sup 224}Th and {sup 225}Pa and at 4 x 10{sup -21} s for the heavier nuclei {sup 248}Cf, {sup 254}Fm, and {sup 264}Rf. The potential energy was calculated on the basis of the liquid-drop model with allowance for finiteness of the range of nuclear forces and for the diffuseness of the nuclear surface. A modified one-body viscosity mechanism featuring a coefficient k{sub s} that takes into account the reduction of the contribution from the wall formula was used to describe collective-energy dissipation. The coefficient k{sub s} was also treated as a free parameter and was estimated at 0.5 on the basis of a fit to experimental data on the average prescission multiplicity of neutrons.
NASA Technical Reports Server (NTRS)
Sassen, K.
1984-01-01
A cryogenic, 50 liter volume Planetary Cloud Simulation Chamber has been constructed to permit the laboratory study of the cloud compositions which are likely to be found in the atmospheres of the outer planets. On the basis of available data, clouds composed of water ice, carbon dioxide, and liquid and solid ammonia and methane, both pure and in various mixtures, have been generated. Cloud microphysical observations have been permitted through the use of a cloud particle slide injector and photomicrography. Viewports in the lower chamber have enabled the collection of cloud backscattering data using 633 and 838 nm laser light, including linear depolarization ratios and complete Stokes parameterization. The considerable technological difficulties associated with the collection of angular scattering patterns within the chamber, however, could not be completely overcome.
Measurement of angular distribution of sound emission from training projectiles in subsonic flight
NASA Technical Reports Server (NTRS)
Cho, Y. I.; Parthasarathy, S. P.; Harstad, K. G.; Back, L. H.
1986-01-01
Training projectiles with nose ring cavities that produce intense whistles in stationary free-jet tests were shot in a relatively straight-line trajectory. A ground based microphone was used to obtain the angular distribution of sound intensity produced from the subsonically flying projectile. Data reduction required calculation of Doppler and attenuation factors which were determined based on a non-linear trajectory. Also, the directional sensitivity of the microphone was measured and used in the data reduction. Significant angular variation of sound intensity produced from the projectile was found which can be used to plot an intensity contour map on the ground. A full-scale field test confirmed the validity of the aeroacoustic concept of producing a relatively intense whistle from the projectile, and the usefulness of a real-time data acquisition system.
NASA Astrophysics Data System (ADS)
Gonzales, Daniel; Cavness, Brandon; Williams, Scott
2012-03-01
Experimental results are presented comparing the intensities of the thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag, measured at forward angles in the range of 0 to 55 degrees. When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E0. The results of our experiments suggest that, as k/E0->0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. Comparison to the theory of Kissel et al. [At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E0 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program PENELOPE.
New Statistical Results on the Angular Distribution of Gamma-Ray Bursts
Balazs, Lajos G.; Horvath, Istvan; Vavrek, Roland
2008-05-22
We presented the results of several statistical tests of the randomness in the angular sky-distribution of gamma-ray bursts in BATSE Catalog. Thirteen different tests were presented based on Voronoi tesselation, Minimal spanning tree and Multifractal spectrum for five classes (short1, short2, intermediate, long1, long2) of gamma-ray bursts, separately. The long1 and long2 classes are distributed randomly. The intermediate subclass, in accordance with the earlier results of the authors, is distributed non-randomly. Concerning the short subclass earlier statistical tests also suggested some departure from the random distribution, but not on a high enough confidence level. The new tests presented in this article suggest also non-randomness here.
Scattering of electromagnetic waves from a half space of densely distributed dielectric scatterers
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1983-01-01
The scattering of a plane wave obliquely incident on a half space of densely distributed spherical dielectric scatterers is studied. The quasi-crystalline approximation is applied to truncate the hierarchy of multiple scattering equations, and the Percus-Yevick and the Verlet-Weis results are used to represent the pair distribution function. The coherent reflected wave is studied with these approximations. The incoherent scattered wave is calculated with the distorted Born approximation. In the low-frequency limit, closed-form expressions are obtained for the effective propagation constants, the coherent reflected wave, and the bistatic scattering coeficients. Results at higher frequencies are calculated numerically. The advantage of the present approach is that, in the low-frequency limit, it reproduces the effects of specular reflection, Fresnel reflection coefficient, Brewster angle, and Clausius-Mosotti relation. In addition to the classical results, the bistatic scattering coefficients are also calculated. The theory is also applied to match backscattering data from dry snow at microwave frequencies.
NASA Astrophysics Data System (ADS)
Stenflo, J. O.
2013-07-01
Different analyses of identical Hinode SOT/SP data of quiet-Sun magnetic fields have in the past led to contradictory answers to the question of whether the angular distribution of field vectors is preferentially horizontal or vertical. These answers have been obtained by combining the measured circular and linear polarizations in different ways to derive the field inclinations. A problem with these combinations is that the circular and linear polarizations scale with field strength in profoundly different ways. Here, we avoid these problems by using an entirely different approach that is based exclusively on the fundamental symmetry properties of the transverse Zeeman effect for observations away from the disk center without any dependence on the circular polarization. Systematic errors are suppressed by the application of a doubly differential technique with the 5247-5250 Å line pair for observations with the ZIMPOL-2 imaging polarimeter on the French THEMIS telescope on Tenerife. For the weakest, intranetwork-type magnetic fields, the angular distribution changes sign with the center-to-limb distance, being preferentially horizontal limbwards of μ (cosine of the heliocentric angle) = 0.2, while favoring the vertical direction inside this disk position. Since decreasing μ corresponds to increasing height of line formation, this finding implies that the intranetwork fields are more peaked around the vertical direction in the low to middle photosphere, while they are more horizontal in the upper photosphere. The angular distribution is however also found to become more vertical with increasing flux density. Thus, all facular points that we have observed have a strong preference for the vertical direction for all disk positions, including those all the way to the extreme limb. In terms of spatial averages weighted by the intrinsic magnetic energy density, these results are independent of telescope resolution.
Xiahou, Chengkui; Connor, J N L
2009-12-31
The angular scattering of a state-to-state chemical reaction contains fundamental information on its dynamics. Often the angular distributions are highly structured and the physical interpretation of this structure is an important and difficult problem. Here, we report a surprising finding for the benchmark F + H(2) --> FH + H reaction, when the product molecule FH is in a vibrational state with quantum number = 3 and a rotational state with quantum number = 3. We demonstrate that the differential cross section (DCS) is an example of (attractive) rainbow scattering, being characterized by an Airy function and its derivative. The rainbow reveals its presence in the DCS by interference with the repulsive (or nearside) scattering producing characteristic diffraction oscillations. The rainbow is broad, which explains why it has not been recognized in the many earlier theoretical and experimental investigations of this reaction. There is an angular region in the DCS where the rainbow dominates, but with the unusual property that the DCS is less intense than in adjoining angular regions. The reaction investigated is F + H(2)(v(i) = 0, j(i) = 0, m(i) = 0) --> FH(v(f) = 3, j(f) = 3, m(f) = 0) + H, where v(i), j(i), m(i) and v(f), j(f), m(f) are initial and final vibrational, rotational and helicity quantum numbers, respectively. The relative translational energy is 0.119 eV. We use rigorous semiclassical (asymptotic) techniques that provide physical insight as well as a mathematically sound and numerically accurate description of the angular scattering. The semiclassical DCS agrees very closely with the exact quantum DCS. The semiclassical scattering amplitude is used to assess the physical effectiveness of the Fuller nearside-farside decomposition for the partial wave series of the F + H(2) reaction, including the effect of one resummation. We also compare the semiclassical and exact quantum nearside, farside, and full local angular momenta and find good agreement
Xiahou, Chengkui; Connor, J N L
2009-12-31
The angular scattering of a state-to-state chemical reaction contains fundamental information on its dynamics. Often the angular distributions are highly structured and the physical interpretation of this structure is an important and difficult problem. Here, we report a surprising finding for the benchmark F + H(2) --> FH + H reaction, when the product molecule FH is in a vibrational state with quantum number = 3 and a rotational state with quantum number = 3. We demonstrate that the differential cross section (DCS) is an example of (attractive) rainbow scattering, being characterized by an Airy function and its derivative. The rainbow reveals its presence in the DCS by interference with the repulsive (or nearside) scattering producing characteristic diffraction oscillations. The rainbow is broad, which explains why it has not been recognized in the many earlier theoretical and experimental investigations of this reaction. There is an angular region in the DCS where the rainbow dominates, but with the unusual property that the DCS is less intense than in adjoining angular regions. The reaction investigated is F + H(2)(v(i) = 0, j(i) = 0, m(i) = 0) --> FH(v(f) = 3, j(f) = 3, m(f) = 0) + H, where v(i), j(i), m(i) and v(f), j(f), m(f) are initial and final vibrational, rotational and helicity quantum numbers, respectively. The relative translational energy is 0.119 eV. We use rigorous semiclassical (asymptotic) techniques that provide physical insight as well as a mathematically sound and numerically accurate description of the angular scattering. The semiclassical DCS agrees very closely with the exact quantum DCS. The semiclassical scattering amplitude is used to assess the physical effectiveness of the Fuller nearside-farside decomposition for the partial wave series of the F + H(2) reaction, including the effect of one resummation. We also compare the semiclassical and exact quantum nearside, farside, and full local angular momenta and find good agreement
Angular distribution of non-linear optical emission from spheroidal microparticles
NASA Astrophysics Data System (ADS)
Kasparian, J.; Boutou, V.; Wolf, J.-P.; Pan, Y.-L.; Chang, R. K.
2008-04-01
We measured the angular distribution of the near-backward multiphoton-excited fluorescence emission by ellipsoidal-shaped, dye-doped ethanol microdroplets deformed perpendicularly to the direction of the incident laser beam. The high-intensity region in the backward direction is elongated in the same direction as the emitting microdroplet. Simulations based on ray tracing agree well with the experimental pattern and show that the droplet aspect ratio ϱ may be deduced from the fluorescence pattern of both oblate and prolate microparticles with ϱ varying from 0.9 to 1.3.
Alpha-Particle Angular Distributions of At and Rn Isotopes and Their Relation to Nuclear Structure
NICOLE Collaboration and ISOLDE Collaboration
1996-12-01
We report on an extensive on-line nuclear orientation study of the angular distribution of {alpha} particles emitted in the favored decay of neutron deficient At and Rn nuclei near the {ital N}=126 shell closure. Surprisingly large anisotropies were observed, showing pronounced changes from one isotope to another. Comparing these data with several theoretical models shows that anisotropic {alpha} emission in favored decays from near-spherical nuclei can well be explained within the shell model, implying that it is mainly determined by the structure of the decaying nucleus. {copyright} {ital 1996 The American Physical Society.}
NASA Technical Reports Server (NTRS)
Carlson, R. W.; Judge, D. L.
1975-01-01
The Pioneer 10 ultraviolet photometer observations of the Jovian hydrogen torus are analyzed to obtain the angular distribution. The cloud is asymmetric about Io, where the atoms presumably originate, with the greater density occurring in the trailing portion. A simple model which assumes Jeans escape from the atmosphere of Io is developed and compared to the observations. The results suggest that the exospheric temperature is high (approximately 3000 K) and that the ionization lifetime of the cloud atoms is approximately 100,000 sec.
Angular distribution of positrons in coherent pair production in deformed crystals.
Parazian, V V
2009-05-01
We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO(2) and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by an acoustic wave of S-type.
Buersgens, F; Madison, K W; Symes, D R; Hartke, R; Osterhoff, J; Grigsby, W; Dyer, G; Ditmire, T
2006-07-01
We have studied experimentally the angular distributions of fusion neutrons from plasmas of multi-keV ion temperature, created by 40 fs, multi-TW laser pulses in dense plumes of D2 and CD4 clusters. A slight anisotropy in the neutron emission is observed. We attribute this anisotropy to the fact that the differential cross section for DD fusion is anisotropic even at low collision energies, and this, coupled with the geometry of the gas jet target, leads to beam-target neutrons that are slightly directed. The qualitative features of this anisotropy are confirmed by Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Buersgens, F.; Madison, K. W.; Symes, D. R.; Hartke, R.; Osterhoff, J.; Grigsby, W.; Dyer, G.; Ditmire, T.
2006-07-01
We have studied experimentally the angular distributions of fusion neutrons from plasmas of multi-keV ion temperature, created by 40fs , multi-TW laser pulses in dense plumes of D2 and CD4 clusters. A slight anisotropy in the neutron emission is observed. We attribute this anisotropy to the fact that the differential cross section for DD fusion is anisotropic even at low collision energies, and this, coupled with the geometry of the gas jet target, leads to beam-target neutrons that are slightly directed. The qualitative features of this anisotropy are confirmed by Monte Carlo simulations.
Angular distributions in J/{psi}({rho}{sup 0},{omega}) states near threshold
Rosner, Jonathan L.
2004-11-01
A resonance X(3872), first observed in the decays B{yields}KX, has been seen to decay to J/{psi}{pi}{sup +}{pi}{sup -}. The {pi}{sup +}{pi}{sup -} mass spectrum peaks near its kinematic upper limit, prompting speculation that the dipion system may be in a {rho}{sup 0}. The decay X(3872){yields}J/{psi}{omega} also has been observed. The reaction {gamma}{gamma}{yields}J/{psi}{pi}{sup +}{pi}{sup -} has been studied. Consequently, angular distributions in decays of J/{psi}({rho}{sup 0},{omega}) states near threshold are of interest, and results are presented.
NASA Astrophysics Data System (ADS)
Dahni, Anwar
Available from UMI in association with The British Library. The distribution of ^ {75}Se in tissue equivalent materials was investigated employing Gamma ray Emission Topography with a rectilinear scanner utilizing NaI(Tl) and BGO detectors. The reconstructed images, using Filtered Back Projection and Iterative techniques were presented in 2D colour and 3D representations. Using a lead collimator of aperture 1.5 x 20 mm and 70 length, the distribution of selenium with variation of volume and concentration was examined and clearly seen. Several corrections such as background, scattering, attenuation compensation and X-ray characteristic suppression, were performed to improve the quality of the images which was evaluated in terms of the fidelity factor. The possibility of quantifying an image was considered with regard to spatial resolution and least detectable concentration. The spatial resolution was measured using two small vials containing the same concentration of selenium, the value obtained was the same as the width of the collimator aperture. The value of the least detectable concentration of selenium however, was difficult to find, due to the many ambiguous factors involved. The binding site of selenium which is based on quadrupole interaction with the surrounding electric field, was investigated employing Perturbed Angular Correlation (PAC) experiments using NaI(Tl) and BaF_2 detectors. Using NaI(Tl) detectors, it was difficult to observe the perturbation, due to the poor time resolution. The BaF_2 detector according to the literature has a shorter light emission decay time constant (0.6 ns), suggested that a better time resolution than that found with the NaI(Tl) detectors could be obtained. A Perturbed Angular Correlation experiment employing BaF _2 detectors and a fast-slow coincidence system was set up. The time differential PAC of selenium in solution showed an unperturbed angular correlation pattern. The main problem is the very short half life of the
NASA Astrophysics Data System (ADS)
Park, Tyler; Adams, Mike; Bunker, Austin; Hodges, Jeffery; Stufflebeam, Michael; Evenson, William; Matheson, Phil; Zacate, Matthew
2009-10-01
Materials contain defects, which affect crystal properties such as damping of the correlation signal,G2(t), in time and broadening of the frequency spectrum in perturbed angular correlation (PAC) experiments. We attribute this inhomogeneous broadening (IHB) to the random static defects that produce a distribution of electric field gradients (EFGs). Our goal is to find a relationship between the amount of broadening and the concentration of defects. After simulating the EFGs from random configurations of defects, we map our results from the Vzz-Vxx plane to a coordinate system optimized for the EFG distribution through a Czjzek transformation, followed by a conformal mapping. From histograms in this space, we can define probability distribution functions with parameters that vary according to defect concentration. This allows us to calculate the broadened G2(t) spectrum for any concentration, and, in reverse, identify concentrations given a broadened G2(t) spectrum.
Lee, Tsung-Xian; Lu, Tsung-Lin; Chen, Bo-Song
2016-07-11
The integration of spatial distribution of light intensity and color in the midfield is instrumental for LED optical design. On the basis of this rationale, we proposed an accurate and convenient method for developing white LED optical models. Near-field hyperspectral images and far-field spectral-angular distributions were integrated to illustrate changes in spatial light intensity and color distribution in the mid-field, to the exclusion of the absorption, conversion, and scattering of phosphors. The corresponding optical models were developed for three LED samples under different packaging conditions. Their normalized cross-correlation values for spatial light intensity and correlated-color-temperature distribution between simulation and measurement averaged as high as 0.995 and 0.99 respectively, which validated the accuracy and feasibility of the proposed method. PMID:27410897
Wang, M; Gordon, H R
1995-10-20
We report the results of simulations in which an algorithm developed for estimation of aerosol optical properties from the angular distribution of radiance exiting the top of the atmosphere over the oceans [Appl. Opt. 33, 4042 (1994)] is combined with a technique for carrying out radiative transfer computations by synthesis of the radiance produced by individual components of the aerosol-size distribution [Appl. Opt. 33, 7088 (1994)], to estimate the aerosol-size distribution by retrieval of the total aerosol optical thickness and the mixing ratios for a set of candidate component aerosol-size distributions. The simulations suggest that in situations in which the true size-refractive-index distribution can actually be synthesized from a combination of the candidate components, excellent retrievals of the aerosol optical thickness and the component mixing ratios are possible. An exception is the presence of strongly absorbing aerosols. The angular distribution of radiance in a single spectral band does not appear to contain sufficient information to separate weakly from strongly absorbing aerosols. However, when two spectral bands are used in the algorithm, retrievals in the case of strongly absorbing aerosols are improved. When pseudodata were simulated with an aerosol-size distribution that differed in functional form from the candidate components, excellent retrievals were still obtained as long as the refractive indices of the actual aerosol model and the candidate components were similar. This underscores the importance of component candidates having realistic indices of refraction in the various size ranges for application of the method. The examples presented all focus on the multiangle imaging spectroradiometer; however, the results should be as valid for data obtained by the use of high-altitude airborne sensors. PMID:21060560
NASA Astrophysics Data System (ADS)
Dinh Dang, N.; Ciemala, M.; Kmiecik, M.; Maj, A.
2013-05-01
The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus 88Mo, which is formed after the fusion-evaporation reaction 48Ti + 40Ca at various excitation energies E* from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum J≥ 50 ℏ at T=4 MeV and at J≥ 70 ℏ at any T.
Interpretation of angular distributions of Z-boson production at colliders
NASA Astrophysics Data System (ADS)
Peng, Jen-Chieh; Chang, Wen-Chen; McClellan, Randall Evan; Teryaev, Oleg
2016-07-01
High precision data of dilepton angular distributions in γ* / Z production were reported recently by the CMS Collaboration covering a broad range of the dilepton transverse momentum, qT, up to ∼ 300 GeV. Pronounced qT dependencies of the λ and ν parameters, characterizing the cos2 θ and cos 2 ϕ angular distributions, were found. Violation of the Lam-Tung relation was also clearly observed. We show that the qT dependence of λ allows a determination of the relative contributions of the q q bar annihilation versus the qG Compton process. The violation of the Lam-Tung relation is attributed to the presence of a non-zero component of the q - q bar axis in the direction normal to the "hadron plane" formed by the colliding hadrons. The magnitude of the violation of the Lam-Tung relation is shown to reflect the amount of this 'non-coplanarity". The observed qT dependencies of λ and ν from the CMS and the earlier CDF data can be well described using this approach.
Angular distributions for electron-impact ionization of Na and Mg
NASA Astrophysics Data System (ADS)
Armstrong, G. S. J.; Colgan, J.; Nixon, K. L.; Murray, A. J.; Pindzola, M. S.
2013-09-01
We present angular distributions for electron-impact single ionization of sodium and magnesium at intermediate electron impact energies. In this work, the time-dependent close-coupling (TDCC) method is used to solve the two-electron time-dependent Schrödinger equation in full dimensionality. The ionization process is treated as a two-active-electron process, where the two outgoing electrons move in the field of the frozen singly-charged ion. We compare calculated angular distributions with measurements taken over a range of intermediate electron impact energies, and in both coplanar symmetric and asymmetric geometries. Several new features are incorporated into the present TDCC approach, including a core orthogonalization at each time step to avoid unphysical de-excitation of the active electrons, an implicit time propagator, and a variable radial mesh. The latter is required to map out the inner atomic orbitals accurately, and the use of an implicit time propagator enables reasonably large time steps to be used.
Ebert, Robert W; Allegrini, Frédéric; Fuselier, Stephen A; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J
2014-03-01
We present experimental results for the angular scattering of ~1-50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ~0.5 μg cm(-2) carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm(-2) carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ(1/2), for ~3-5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm(-2) (~20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ~50 keV. PMID:24689570
Ebert, Robert W.; Allegrini, Frédéric; Fuselier, Stephen A.; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J.
2014-03-15
We present experimental results for the angular scattering of ∼1–50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ∼0.5 μg cm{sup −2} carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm{sup −2} carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ{sub 1/2}, for ∼3–5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm{sup −2} (∼20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ∼50 keV.
Ebert, Robert W; Allegrini, Frédéric; Fuselier, Stephen A; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J
2014-03-01
We present experimental results for the angular scattering of ~1-50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ~0.5 μg cm(-2) carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm(-2) carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ(1/2), for ~3-5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm(-2) (~20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ~50 keV.
Search for Z' ---> e+ e- using dielectron mass and angular distribution
Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara
2006-02-01
The authors search Z{prime} bosons in dielectron events produced in p{bar p} collisions at {radical}s = 1.96 TeV, using a 0.45 fb{sup -1} dataset accumulated with the CDF II detector at the Fermilab Tevatron. To identify the Z{prime} {yields} e{sup +}e{sup -} signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z{prime} mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z{prime}, as well as on the contact interaction mass scales for different helicity structure scenarios.
Search for Z' --> e+ e- using dielectron mass and angular distribution.
Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S
2006-06-01
We search for Z' bosons in dielectron events produced in pp collisions at square root of s = 1.96 TeV, using 0.45 fb(-1) of data accumulated with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. To identify the Z' --> e+ e- signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z' mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z', as well as on the contact-interaction mass scales for different helicity structure scenarios.
Search for Z' --> e+ e- using dielectron mass and angular distribution.
Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S
2006-06-01
We search for Z' bosons in dielectron events produced in pp collisions at square root of s = 1.96 TeV, using 0.45 fb(-1) of data accumulated with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. To identify the Z' --> e+ e- signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z' mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z', as well as on the contact-interaction mass scales for different helicity structure scenarios. PMID:16803227
First Results on Angular Distributions of Thermal Dileptons in Nuclear Collisions
Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Banicz, K.; Damjanovic, S.; Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.; Falco, A. de; Floris, M.; Masoni, A.; Puddu, G.; Serci, S.
2009-06-05
The NA60 experiment at the CERN Super Proton Synchrotron has studied dimuon production in 158A GeV In-In collisions. The strong excess of pairs above the known sources found in the complete mass region 0.2
Dondera, M.
2010-11-15
We introduce an adequate integral representation of the wave function in the asymptotic region, valid for the stage postinteraction between a one-electron atom and a laser pulse of short duration, as a superposition of divergent radial spherical waves. Starting with this representation, we derive analytic expressions for the energy and angular distributions of the photoelectrons and we show their connection with expressions used before in the literature. Using our results, we propose a method to extract the photoelectron distributions from the time dependence of the wave function at large distances. Numerical results illustrating the method are presented for the photoionization of hydrogenlike atoms from the ground state and several excited states by extreme ultraviolet pulses with a central wavelength of 13.3 nm and several intensities around the value I{sub 0}{approx_equal}3.51x10{sup 16} W/cm{sup 2}.
NASA Astrophysics Data System (ADS)
Bunakov, V. E.; Kadmensky, S. G.; Lyubashevsky, D. E.
2016-05-01
It is shown that A. Bohr's classic theory of angular distributions of fragments originating from low-energy fission should be supplemented with quantum corrections based on the involvement of a superposition of a very large number of angular momenta L m in the description of the relative motion of fragments flying apart along the straight line coincidentwith the symmetry axis. It is revealed that quantum zero-point wriggling-type vibrations of the fissile system in the vicinity of its scission point are a source of these angular momenta and of high fragment spins observed experimentally.
NASA Astrophysics Data System (ADS)
Kroner, D. O.; Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K.; Smythe, W. D.
2014-12-01
We report the results of a comparative study of two types of photometric detectors that are commonly used for, spacecraft, ground-based telescope, and laboratory observations in support of precise angular scattering investigations of the type described in a companion paper (Nelson et al., this meeting). The performance of the state of the art Hamamatsu C12703-01 Silicon Avalanche photodiode (SAD) was compared to that of the Hamamatsu R928 Photomultiplier tube (PMT). The Hamamatsu R928 evolved from a sequence of photometric detectors with a long history of use in support of laboratory and remote sensing studies, tracing backwards to include the RCA 1P21 and the RCA 931A. Two newly acquired SADs were bench tested along with a new R928 photomultiplier tube that was thermoelectrically cooled to -10 deg C. The SAD's employed electronic thermal compensation supplied by the manufacturer. The SADs and PMT measured electromagnetic radiation from solid-state lasers of wavelength 635 nm after the radiation was reflected from diffusely-scattering surfaces of varying albedos. The SADs were housed on tripods that were co-aligned with the PMT and laser. The photometric detectors were placed 4.3 meters from a reflecting disk. The disk was rotated to reduce the effect of laser speckle. All detectors in the experiment were equipped with notch filters that transmit light only of the wavelength emitted by the laser. Three SR830 DSP Lock-in Amplifiers were connected to the detectors and various setting configurations were compared in order to optimize signal to noise. Neutral Density filters (ND 0,3 and ND 0,9) were placed in the light path to determine the linearity in the response function of the detectors. We conclude that in this application SADs and PMTs produce comparable photometric precision and fidelity. SADs offer greater convenience because thermal compensation circuitry is integrated with the detector. This work was partially supported by NASA's Cassini Science
The Angular Distribution of Quiet-time ~20-300 keV Superhalo Electrons in the Solar Wind
NASA Astrophysics Data System (ADS)
Yang, L.; Wang, L.; He, J.; Tu, C. Y.; Pei, Z.
2014-12-01
The angular distribution of solar wind superhalo electrons carries important information on the electron acceleration location and scattering in the interplanetary medium. Here we present a comprehensive study of the angular distribution of ~20-300 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet-time periods from 1995 January through 2013 December. For quiet-time intervals, we re-bin the observed electron pitch angle distributions into the outward-traveling and inward-traveling bins, according the direction of interplanetary magnetic field (IMF). The inward-outward anisotropy of superhalo electrons at energy E is defined as A = 2(fout - fin)/(fout + fin), where fout (fin) is the average flux of outward-traveling (inward-traveling) electrons. We find that among all the ~640 quiet-time intervals, ~5% have an A > 0.1 (referred to as "outward events"), ~5% have an A < -0.1 (referred to as "inward events"), and ~90% have an |A| ≤ 0.1 (referred to as "isotropic events"). Isotropic events show no clear correlation with solar wind parameters (nSW, Vsw and Tp), IMF and solar wind turbulence spectrum. Inward and outward events also have no association with the IMF and nSW. But the occurrence ratio of outward (inward) events over all the events, α, roughly decreases (increases) with increasing VSW. Moreover, for outward (inward) events, α roughly increases with ρe/ρTp, where ρTp is the solar wind thermal proton gyroradius that is related to the separation between the turbulence inertial and dissipation ranges. These results suggest that quite-time superhalo electrons are generally isotropic due to the wave-particle interaction in the interplanetary medium; outward-traveling (inward-traveling) superhalo electrons may come from the acceleration occurring beyond (within) 1 AU, probably by CIRs or turbulence. We will also present a case study of several quiet-time electron events with the anisotropy A increasing with the electron energy E.
A Model for Hydraulic Properties Based on Angular Pores with Lognormal Size Distribution
NASA Astrophysics Data System (ADS)
Durner, W.; Diamantopoulos, E.
2014-12-01
Soil water retention and unsaturated hydraulic conductivity curves are mandatory for modeling water flow in soils. It is a common approach to measure few points of the water retention curve and to calculate the hydraulic conductivity curve by assuming that the soil can be represented as a bundle of capillary tubes. Both curves are then used to predict water flow at larger spatial scales. However, the predictive power of these curves is often very limited. This can be very easily illustrated if we measure the soil hydraulic properties (SHPs) for a drainage experiment and then use these properties to predict the water flow in the case of imbibition. Further complications arise from the incomplete wetting of water at the solid matrix which results in finite values of the contact angles between the solid-water-air interfaces. To address these problems we present a physically-based model for hysteretic SHPs. This model is based on bundles of angular pores. Hysteresis for individual pores is caused by (i) different snap-off pressures during filling and emptying of single angular pores and (ii) by different advancing and receding contact angles for fluids that are not perfectly wettable. We derive a model of hydraulic conductivity as a function of contact angle by assuming flow perpendicular to pore cross sections and present closed-form expressions for both the sample scale water retention and hydraulic conductivity function by assuming a log-normal statistical distribution of pore size. We tested the new model against drainage and imbibition experiments for various sandy materials which were conducted with various liquids of differing wettability. The model described both imbibition and drainage experiments very well by assuming a unique pore size distribution of the sample and a zero contact angle for the perfectly wetting liquid. Eventually, we see the possibility to relate the particle size distribution with a model which describes the SHPs.
NASA Astrophysics Data System (ADS)
Li, Lei; Yang, Kecheng; Li, Wei; Wang, Wanyan; Guo, Wenping; Xia, Min
2016-07-01
Conventional regularization methods have been widely used for estimating particle size distribution (PSD) in single-angle dynamic light scattering, but they could not be used directly in multiangle dynamic light scattering (MDLS) measurements for lack of accurate angular weighting coefficients, which greatly affects the PSD determination and none of the regularization methods perform well for both unimodal and multimodal distributions. In this paper, we propose a recursive regularization method-Recursion Nonnegative Tikhonov-Phillips-Twomey (RNNT-PT) algorithm for estimating the weighting coefficients and PSD from MDLS data. This is a self-adaptive algorithm which distinguishes characteristics of PSDs and chooses the optimal inversion method from Nonnegative Tikhonov (NNT) and Nonnegative Phillips-Twomey (NNPT) regularization algorithm efficiently and automatically. In simulations, the proposed algorithm was able to estimate the PSDs more accurately than the classical regularization methods and performed stably against random noise and adaptable to both unimodal and multimodal distributions. Furthermore, we found that the six-angle analysis in the 30-130° range is an optimal angle set for both unimodal and multimodal PSDs.
A new study of 25Mg 28Si angular distributions at MeV
NASA Astrophysics Data System (ADS)
Caciolli, A.; Marchi, T.; Depalo, R.; Appannababu, S.; Blasi, N.; Broggini, C.; Cinausero, M.; Collazuol, G.; Degerlier, M.; Fabris, D.; Gramegna, F.; Leone, M.; Mastinu, P.; Menegazzo, R.; Montagnoli, G.; Rossi Alvarez, C.; Rigato, V.; Wieland, O.
2014-09-01
The observation of 26Al gives us the proof of active nucleosynthesis in the Milky Way. However the identification of the main producers of 26Al is still a matter of debate. Many sites have been proposed, but our poor knowledge of the nuclear processes involved introduces high uncertainties. In particular, the limited accuracy on the 25Mg 28Si reaction cross section has been identified as the main source of nuclear uncertainty in the production of 26Al in C/Ne explosive burning in massive stars, which has been suggested to be the main source of 26Al in the Galaxy. We studied this reaction through neutron spectroscopy at the CN Van de Graaff accelerator of the Legnaro National Laboratories. Thanks to this technique we are able to discriminate the events from possible contamination arising from parasitic reactions. In particular, we measured the neutron angular distributions at 5 different beam energies (between 3 and 5 MeV) in the - laboratory system angular range. The presented results disagree with the assumptions introduced in the analysis of a previous experiment.
Scattering of a laser beam on a wet blood smear and measurement of red cell size distribution
NASA Astrophysics Data System (ADS)
Yurchuk, Yu S.; Ustinov, V. D.; Nikitin, S. Yu; Priezzhev, A. V.
2016-06-01
We report an automated laser system that allows the red cell size distribution to be measured. Experiments are performed on laser light scattering by a suspension of oriented red blood cells (a wet blood smear). Based on an analysis of the angular distribution of light intensity in the diffraction pattern, we have restored the red cell size distribution. The average diameter of a red blood cell is determined with an error of less than 1%, and the spread of red blood cells in size – with an error of about 20%. We discuss the problems of photometry and processing of diffraction patterns, preparing blood samples and data processing algorithms, including methods for solving the inverse scattering problem.
Sharples, Thomas R.; Luxford, Thomas F. M.; McKendrick, Kenneth G.; Costen, Matthew L.; Townsend, Dave
2015-11-28
We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A{sup 2}Σ{sup +}, v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm{sup −1}. We report differential cross sections for scattering into NO(A{sup 2}Σ{sup +}, v = 0, N′ = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N′. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.
Measurements of the Angular Distributions in the Decays B→K(*)μ+μ- at CDF
Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; et al
2012-02-01
We reconstruct the decays B → K(*) µ+µ- and measure their angular distributions in pp collisions at √s = 1.96 TeV using a data sample corresponding to an integrated luminosity of 6.8 fb-1. The transverse polarization asymmetry AT(2) and the time-reversal-odd charge-and-parity asymmetry Aim are measured for the first time, together with the K* longitudinal polarization fraction FL and the µ on forward-backward asymmetry AFB, for the decays B0→K*0µ+µ- and B0→K*+µ+µ-. Our results are among the most accurate to date and consistent with those from other experiments.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Ning, Chuangang
2015-10-01
Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li-, C-, O-, F-, CH-, OH-, NH2-, O2-, and S2- show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.
NASA Astrophysics Data System (ADS)
Karl, Markus; Whitworth, Guy L.; Schubert, Marcel; Dietrich, Christof P.; Samuel, Ifor D. W.; Turnbull, Graham A.; Gather, Malte C.
2016-06-01
We demonstrate an evanescently pumped water-based optofluidic distributed feedback (DFB) laser with a record low pump threshold of ETH=520 n J . The low threshold results from an optimized mode shape, which is achieved by a low refractive index substrate, and from the use of a mixed-order DFB grating. Investigating the photonic band structure via angular dispersion analysis both above and below lasing threshold allows us to measure the refractive index of the liquid gain layer and to determine the device parameters such as the waveguide core layer thickness. We show that it is possible to tailor the divergence of the lasing emission by varying the number of second order grating periods used for outcoupling.
Photoelectron angular distributions from polarized Ne{sup *} atoms near threshold
O'Keeffe, P.; Bolognesi, P.; Mihelic, A.; Moise, A.; Richter, R.; Cautero, G.; Stebel, L.; Sergo, R.; Pravica, L.; Ovcharenko, E.; Decleva, P.; Avaldi, L.
2010-11-15
Photoelectron distributions of the polarized 2p{sup 5}3d Rydberg states of neon have been studied with a newly built velocity map imaging analyzer. The atoms were polarized by absorption of synchrotron radiation and ionized by an infrared laser. The asymmetry parameters {beta}{sub 2} and {beta}{sub 4} characterizing two-photon resonant ionization have been extracted from the measured images and compared with the results of a quantum defect treatment. To achieve a good theoretical description of the data, it is necessary to take into account the dependence of the dipole transition matrix elements and phases of the partial waves on the angular momentum quantum numbers pertaining to various continuum channels.
NASA Astrophysics Data System (ADS)
Douguet, Nicolas; Grum-Grzhimailo, Alexei N.; Gryzlova, Elena V.; Staroselskaya, Ekaterina I.; Venzke, Joel; Bartschat, Klaus
2016-03-01
We investigate two-pathway interferences between nonresonant one-photon and resonant two-photon ionization of atomic hydrogen. In particular, we analyze in detail the photoionization mediated by the fundamental frequency and the second harmonic of a femtosecond VUV pulse when the fundamental is tuned near an intermediate atomic state. Following our recent study [Phys. Rev. A 91, 063418 (2015), 10.1103/PhysRevA.91.063418] of such effects with linearly polarized light, we analyze a similar situation with circularly polarized radiation. As a consequence of the richer structure in circularly polarized light, characterized by its right-handed or left-handed helicity, we present and discuss various important features associated with the photoelectron angular distribution.
Monte Carlo calculation of the angular distribution of cosmic rays at flight altitudes.
Battistoni, G; Ferrari, A; Pelliccioni, M; Villari, R
2004-01-01
The angular distribution of the secondary radiation produced by the galactic component of cosmic rays has been determined by simulating the penetration of the primary spectra in the Earth's atmosphere. The simulations have been carried out with the latest version of the FLUKA code. Particles have been scored at various altitudes according to their angle of incidence for some significant values of vertical cut-off rigidity and solar modulation parameter. The calculated results at typical cruise altitudes for a civil aircraft are presented. The data at 10.7 km have been fitted with simple mathematical equations. It has been demonstrated that the major contribution to the doses at aviation altitudes arises from downward-directed particles. The isotropic irradiation usually assumed for the evaluation of aircrew exposure could be a very poor approximation.
Sanchez, I.; Martin, F. )
1992-04-01
We report theoretical calculations for the {beta}{sub 2{ital p}}-asymmetry parameter in the photoionization of He(1{ital s}{sup 2}) above the {ital N}=2 ionization threshold. We use an extension of a method recently proposed (I. Sanchez and F. Martin, Phys. Rev. A 44, 7318 (1991)) that makes use of a Feshbach partitioning of the final-state wave function and an {ital L}{sup 2} representation of the coupled continuum states. Partial differential cross sections at emission angles 0{degree} and 90{degree} are also provided. Our results are in good agreement with the experimental data, thus showing the accuracy of the present method to study electron angular-distribution properties.
Xiahou, Chengkui; Connor, J N L; Zhang, Dong H
2011-07-28
State-of-the-art differential cross sections (DCSs) have been reported by Wang et al. [Proc. Nat. Acad. Sci. (U.S.), 2008, 105, 6227] for the state-to-state F + H(2)→ FH + H reaction using fully quantum-state-selected crossed molecular beams. We theoretically analyze the angular scattering of this reaction, in order to quantitatively understand the physical content of structure in the DCSs. Three transitions are studied, v(i)=0, j(i)=0, m(i)=0 → v(f)=3, j(f)=0, 1, 2, m(f)=0 at a translational energy of 0.04088 eV, where v, j, m are the vibrational, rotational and helicity quantum numbers respectively for the initial and final states. The input to our analyses consists of accurate quantum scattering (S) matrix elements computed for the Fu-Xu-Zhang potential energy surface, as used by Wang et al. in a computational simulation of their experimental DCSs. We prove that the pronounced peak at forward angles observed in the experimental and simulated DCSs for all three transitions is a glory. At larger angles, it is demonstrated that the 000 → 300 and 000 → 310 DCSs both possess a broad farside rainbow, which is accompanied by diffraction oscillations. We confirm the conjecture of Wang et al. that these diffraction oscillations arise from nearside-farside (NF) interference. We find that the reaction is N dominant for all three transitions. The theoretical techniques used to analyze the angular scattering include uniform semiclassical theories of glory and of rainbow scattering. We also make the first application of a semiclassical formula that is uniform for both glory + rainbow scattering. In addition, structure in the DCSs is analyzed using NF theory and local angular momentum theory, in both cases with three resummations of the partial wave series for the scattering amplitude. We make the first explicit application of the Thiele rational interpolation formula to extract the position and residue of the leading Regge pole from a set of S matrix elements, thereby
NASA Astrophysics Data System (ADS)
Steiper, F.; Frommhold, Th.; Henkel, W.; Jung, A.; Kneissl, U.; Stock, R.
1993-10-01
Near-barrier fission of 232Th and 236U induced by linearly polarized photons has been investigated. The experiments have been carried out at the "off-axis" bremsstrahlung facility of the Giessen 65 MeV electron linac. Fragment angular, mass and energy distributions have been measured simultaneously allowing the investigation of correlations between these fragment characteristics. A consistent assignment of the quantum numbers Jπ and K for the fussion channels involved in the fission process is proposed. For the first time, the polar anisotropies and azimuthal asymmetries of the fission fragment angular distributions W( θ, φ) have been investigated as a function of the fragment masses. The results are discussed in the framework of the double-humped fission barrier concept and the so-called "multi-exit fission channel" model. Additionally, angular distributions of heavy and light fission fragments from photofission of 236U have been analyzed for a possible asymmetry with respect to θ = 90°.
Sisniega, A.; Zbijewski, W.; Badal, A.; Kyprianou, I. S.; Stayman, J. W.; Vaquero, J. J.; Siewerdsen, J. H.
2013-01-01
Purpose: The proliferation of cone-beam CT (CBCT) has created interest in performance optimization, with x-ray scatter identified among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configurations suggests that not all configurations are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, efficacy of antiscatter grids, guide system design, and augment development of scatter correction. Methods: A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-panel detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-to-detector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuration was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70–280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment. Results: Variance reduction yielded improvements in MC simulation efficiency ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significant acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficiency). The benefit of a more extended geometry was evident by virtue of a larger air gap—e.g., for a 16 cm
Product angular distributions in the ultraviolet photodissociation of N{sub 2}O
McBane, George C.; Schinke, Reinhard
2012-01-28
The angular distribution of products from the ultraviolet photodissociation of nitrous oxide yielding O({sup 1}D) and N{sub 2}(X {Sigma}{sub g}{sup +1}) was investigated using classical trajectory calculations. The calculations modeled absorption only to the 2 {sup 1}A{sup '} electronic state but used surface-hopping techniques to model nonadiabatic transitions to the ground electronic state late in the dissociation. Observed values of the anisotropy parameter {beta}, which decrease as the product N{sub 2} rotational quantum number j increases, could be well reproduced. The relatively low observed {beta} values arise principally from nonaxial recoil due to the very strong bending forces present in the excited state. In the main part of the product rotational distribution near 203 nm, an unusual dynamical effect produces the decrease in {beta} with increasing j; nonaxial recoil effects remain approximately constant while higher j product molecules arise from parent molecules that had their transition dipole moments aligned more closely along the molecular axis. In both low and high j tails of the rotational distribution, the variations in {beta} with j are caused by changes in the extent of nonaxial recoil. In the high-j tail, additional torque present on the ground state potential energy surface following nonadiabatic transitions causes both the additional rotational excitation and the lower {beta} values.
Chen, Xinjuan; Ji, Cheng; Xiang, Yong; Kang, Xiangning; Shen, Bo; Yu, Tongjun
2016-05-16
Angular distribution of polarized light and its effect on light extraction efficiency (LEE) in AlGaN deep-ultraviolet (DUV) light-emitting diodes (LEDs) are investigated in this paper. A united picture is presented to describe polarized light's emission and propagation processes. It is found that the electron-hole recombinations in AlGaN multiple quantum wells produce three kinds of angularly distributed polarized emissions and propagation process can change their intensity distributions. By investigation the change of angular distributions in 277nm and 215nm LEDs, this work reveals that LEE can be significantly enhanced by modulating the angular distributions of polarized light of DUV LEDs.
Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.
2012-09-01
We present a study of the spectral and angular dependence of scattered mid-infrared light from surfaces coated with explosives residues (TNT, RDX, and tetryl) detected at a 2 meter standoff distance. An external cavity quantum cascade laser provided tunable illumination between 7 and 8 µm. Important differences were identified in the spectral features between specular reflection and diffuse scattering which will impact most practical testing scenarios and complicate material identification. We discuss some of the factors influencing the dependence of observed spectra on the experimental geometry.
Teule, J. M.; Hilgeman, M. H.; Janssen, M. H. M.; Chandler, D. W.; Taatjes, C. A.; Stolte, S.
1997-01-15
Photodissociation experiments of state-selected and oriented triatomics are presented. Selective ionization using REMPI in combination with two-dimensional ion-imaging allows us to measure both the internal energy and angular distribution of the fragments. The dissociation of N{sub 2}O is studied using one laser around 204 nm for both the dissociation of the molecule and the ionization of the fragments. The angular distributions of O({sup 1}D) and N{sub 2}(J) are presented and implications of these results on the dissociation dynamics are discussed.
Teule, J.M.; Hilgeman, M.H.; Janssen, M.H.; Chandler, D.W.; Taatjes, C.A.; Stolte, S.
1997-01-01
Photodissociation experiments of state-selected and oriented triatomics are presented. Selective ionization using REMPI in combination with two-dimensional ion-imaging allows us to measure both the internal energy and angular distribution of the fragments. The dissociation of N{sub 2}O is studied using one laser around 204 nm for both the dissociation of the molecule and the ionization of the fragments. The angular distributions of O({sup 1}D) and N{sub 2}(J) are presented and implications of these results on the dissociation dynamics are discussed. {copyright} {ital 1997 American Institute of Physics.}
Xu, Kaichen; Zhang, Chentao; Zhou, Rui; Ji, Rong; Hong, Minghui
2016-05-16
Surface enhanced Raman spectroscopy (SERS) has drawn much research interest in the past decades as an efficient technique to detect low-concentration molecules. Among many technologies, which can be used to fabricate SERS substrates, laser ablation is a simple and high-speed method to produce large-area SERS substrates. This work investigates the angular texturing effect by dynamic laser ablation and its influence on SERS signals. By tuning the angle between the Si surface and laser irradiation, the distributions and sizes of laser induced hybrid micro/nano-structures are studied. By decorating with a silver film, plenty of hot spots can be created among these structures for SERS. It is found that when the incident laser angle is 15° at the laser fluence of 16.0 J/cm^{2}, the SERS performance is well optimized. This work realizes antisymmetric distribution of nanoparticles deposited on Si surface, which provides a flexible tuning of the hybrid micro/nano-structures' fabrication with high controllability for practical applications.
Generalized Parton Distributions And Deeply Virtual Compton Scattering At Clas
De Masi, Rita
2007-09-01
The deeply virtual Compton scattering is the simplest process to access the generalized parton distributions of the nucleon. A dedicated large statistics experiment for the measurement of deeply virtual Compton scattering with a 6 GeV polarized electron beam on a proton target has been performed at the Hall-B of Jefferson Laboratory with the CLAS spectrometer. The experiment covered a wide kinematic range, allowing the study of the beam spin asymmetry as function of the Bjorken variable xB, the Mandelstam variable t, the virtual photon four-momentum squared Q2 and the angle phi between leptonic and hadronic planes. The preliminary results are in agreement with previous measurements and with the predicted twist-2 dominance.
Light scattering by hexagonal ice crystals with distributed inclusions
NASA Astrophysics Data System (ADS)
Panetta, R. Lee; Zhang, Jia-Ning; Bi, Lei; Yang, Ping; Tang, Guanlin
2016-07-01
Inclusions of air bubbles or soot particles have significant effects on the single-scattering properties of ice crystals, effects that in turn have significant impacts on the radiation budget of an atmosphere containing the crystals. This study investigates some of the single-scattering effects in the case of hexagonal ice crystals, including effects on the backscattering depolarization ratio, a quantity of practical importance in the interpretation of lidar observations. One distinguishing feature of the study is an investigation of scattering properties at a visible wavelength for a crystal with size parameter (x) above 100, a size regime where one expects some agreement between exact methods and geometrical optics methods. This expectation is generally borne out in a test comparison of how the sensitivity of scattering properties to the distribution of a given volume fraction of included air is represented using (i) an approximate Monte Carlo Ray Tracing (MCRT) method and (ii) a numerically exact pseudo-spectral time-domain (PSTD) method. Another distinguishing feature of the study is a close examination, using the numerically exact Invariant-Imbedding T-Matrix (II-TM) method, of how some optical properties of importance to satellite remote sensing vary as the volume fraction of inclusions and size of crystal are varied. Although such an investigation of properties in the x>100 regime faces serious computational burdens that force a large number of idealizations and simplifications in the study, the results nevertheless provide an intriguing glimpse of what is evidently a quite complex sensitivity of optical scattering properties to inclusions of air or soot as volume fraction and size parameter are varied.
NASA Astrophysics Data System (ADS)
Sharma, Sanjib
Within the past decade, the L CDM model has emerged as a standard paradigm of structure formation. While it has been very successful in explaining the structure of the Universe on large scales, on smaller (galactic) scales problems have surfaced. In this thesis, we investigate several of these problems in more detail. The thesis is organized as follows. In Chapter 1, we give a brief introduction about structure formation in the universe and discuss some of the problems being faced by the current CDM paradigm of galaxy formation. In Chapter 2, we analyze the angular momentum properties of virialized halos obtained from hydrodynamical simulations. We describe an analytical function that can be used to describe a wide variety of angular momentum distributions (AMDs), with just one parameter a. About 90-95% of halos turn out to have a < 1.3, while exponential disks in cosmological halos would require 1.3 < a < 1.6. This implies that a typical halo in simulations has an excess of low angular momentum material as compared to that of observed exponential disks, a result which is consistent with the findings of earlier works. In Chapter 3, we perform controlled numerical experiments of merging galactic halos in order to shed light on the results obtained in cosmological simulations. We explore the properties of shape parameter a of AMDs and the spin ratio l Gas /l DM in merger remnants and also their dependence on orbital parameters. We find that the shape parameter a is typically close to 1 for a wide range of orbital parameters, less than what is needed to form an exponential disk. The last chapter of the thesis (Chapter 4) is devoted to the analysis of phase space structure of dark matter halos. We first present a method to numerically estimate the densities of discretely sampled data based on a binary space partitioning tree. We implement an entropy-based node splitting criterion that results in a significant improvement in the estimation of densities compared to
Generalized parton distributions from deep virtual compton scattering at CLAS
Guidal, M.
2010-04-24
Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factors $H_{Im}$ and $\\tilde{H}_{Im}$ with uncertainties, in average, of the order of 30%.
Generalized parton distributions from deep virtual compton scattering at CLAS
Guidal, M.
2010-04-24
Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factorsmore » $$H_{Im}$$ and $$\\tilde{H}_{Im}$$ with uncertainties, in average, of the order of 30%.« less
The mass and angular momentum distribution of simulated massive early-type galaxies to large radii
NASA Astrophysics Data System (ADS)
Wu, Xufen; Gerhard, Ortwin; Naab, Thorsten; Oser, Ludwig; Martinez-Valpuesta, Inma; Hilz, Michael; Churazov, Eugene; Lyskova, Natalya
2014-03-01
We study the dark and luminous mass distributions, circular velocity curves (CVCs), line-of-sight kinematics and angular momenta for a sample of 42 cosmological zoom simulations of galaxies with stellar masses from 2.0 × 1010 to 3.4 × 1011 M⊙ h-1. Using a temporal smoothing technique, we are able to reach large radii. We find the following.
Angular distribution of {alpha} particles from oriented {sup 253,254}Es and {sup 255}Fm nuclei
Severijns, N.; Golovko, V.V.; Kraev, I.S.; Phalet, T.; Belyaev, A.A.; Lukhanin, A.A.; Noga, V.I.; Erzinkyan, A.L.; Parfenova, V.P.; Eversheim, P.-D.; Herzog, P.; Tramm, C.; Filimonov, V.T.; Toporov, Yu.G.; Zotov, E.; Gurevich, G.M.; Rusakov, A.V.; Vyachin, V.N.; Zakoucky, D.
2005-04-01
The anisotropy in the angular distribution of {alpha} particles from oriented {sup 253,254}Es and {sup 255}Fm nuclei, which are among the strongest deformed {alpha} emitters, was measured. Large {alpha} anisotropies have been observed for all three nuclei. The results are compared with calculations based on {alpha}-particle tunneling through a deformed Coulomb barrier.
Creane, Arthur; Maher, Eoghan; Sultan, Sherif; Hynes, Niamh; Kelly, Daniel J; Lally, Caitríona
2012-07-01
Many soft biological tissues contain collagen fibres, which act as major load bearing constituents. The orientation and the dispersion of these fibres influence the macroscopic mechanical properties of the tissue and are therefore of importance in several areas of research including constitutive model development, tissue engineering and mechanobiology. Qualitative comparisons between these fibre architectures can be made using vector plots of mean orientations and contour plots of fibre dispersion but quantitative comparison cannot be achieved using these methods. We propose a 'remodelling metric' between two angular fibre distributions, which represents the mean rotational effort required to transform one into the other. It is an adaptation of the earth mover's distance, a similarity measure between two histograms/signatures used in image analysis, which represents the minimal cost of transforming one distribution into the other by moving distribution mass around. In this paper, its utility is demonstrated by considering the change in fibre architecture during a period of plaque growth in finite element models of the carotid bifurcation. The fibre architecture is predicted using a strain-based remodelling algorithm. We investigate the remodelling metric's potential as a clinical indicator of plaque vulnerability by comparing results between symptomatic and asymptomatic carotid bifurcations. Fibre remodelling was found to occur at regions of plaque burden. As plaque thickness increased, so did the remodelling metric. A measure of the total predicted fibre remodelling during plaque growth, TRM, was found to be higher in the symptomatic group than in the asymptomatic group. Furthermore, a measure of the total fibre remodelling per plaque size, TRM/TPB, was found to be significantly higher in the symptomatic vessels. The remodelling metric may prove to be a useful tool in other soft tissues and engineered scaffolds where fibre adaptation is also present. PMID:22086167
On the Angular Distribution of Neutrons Protons and X-Rays from a Small Dense Plasma Focus Machine
Herrera, J.J.E.; Castillo, F.; Gamboa, I.; Rangel, R.; Espinosa, G.; Golzarri, J. I.
2006-01-05
Time integrated measurements of the angular distributions of neutrons, protons and X-rays are made, inside the discharge chamber of the FN-II device, using passive detectors. A set of detectors was placed on a semi-circular Teflon registered holder, 13 cm. around the plasma column, and covered with 15 {mu}m Al filters, thus eliminating energetic ions from the expansion of the discharge, as well as tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. It is found that the detectors on the upper side of the holder show two distinctively different distributions of track diameters. The distribution of the smaller ones, is sharper than that of the larger ones, and are presumably originated by a wide angle beam of protons. The distribution of the ones on the lower side of the holder, which can only be attributed to charged particles which result as a recoil of neutron collisions, are slightly shifted to larger diameters. The angular distribution of X-rays is also studied within the chamber with TLD-200 dosimeters. While the neutron and proton angular distributions can be fitted by single maximum distributions, the X-ray one shows two maxima around the axis.
Light scattering by lunar-like particle size distributions
NASA Technical Reports Server (NTRS)
Goguen, Jay D.
1991-01-01
A fundamental input to models of light scattering from planetary regoliths is the mean phase function of the regolith particles. Using the known size distribution for typical lunar soils, the mean phase function and mean linear polarization for a regolith volume element of spherical particles of any composition were calculated from Mie theory. The two contour plots given here summarize the changes in the mean phase function and linear polarization with changes in the real part of the complex index of refraction, n - ik, for k equals 0.01, the visible wavelength 0.55 micrometers, and the particle size distribution of the typical mature lunar soil 72141. A second figure is a similar index-phase surface, except with k equals 0.1. The index-phase surfaces from this survey are a first order description of scattering by lunar-like regoliths of spherical particles of arbitrary composition. They form the basis of functions that span a large range of parameter-space.
NASA Astrophysics Data System (ADS)
Turner, David M.; Niezgoda, Stephen R.; Kalidindi, Surya R.
2016-10-01
Chord length distributions (CLDs) and lineal path functions (LPFs) have been successfully utilized in prior literature as measures of the size and shape distributions of the important microscale constituents in the material system. Typically, these functions are parameterized only by line lengths, and thus calculated and derived independent of the angular orientation of the chord or line segment. We describe in this paper computationally efficient methods for estimating chord length distributions and lineal path functions for 2D (two dimensional) and 3D microstructure images defined on any number of arbitrary chord orientations. These so called fully angularly resolved distributions can be computed for over 1000 orientations on large microstructure images (5003 voxels) in minutes on modest hardware. We present these methods as new tools for characterizing microstructures in a statistically meaningful way.
Isomer production ratios and the angular momentum distribution of fission fragments
NASA Astrophysics Data System (ADS)
Stetcu, I.; Talou, P.; Kawano, T.; Jandel, M.
2013-10-01
Latest generation fission experiments provide an excellent testing ground for theoretical models. In this contribution we compare the measurements for 235U(nth,f), obtained with the Detector for Advanced Neutron Capture Experiments (DANCE) calorimeter at Los Alamos Neutron Science Center (LANSCE), with our full-scale simulation of the primary fragment de-excitation, using the recently developed cgmf code, based on a Monte Carlo implementation of the Hauser-Feshbach theoretical model. We compute the isomer ratios as a function of the initial angular momentum of the fission fragments, for which no direct information exists. Comparison with the available experimental data allows us to determine the initial spin distribution. We also study the dependence of the isomer ratio on the knowledge of the low-lying discrete spectrum input for nuclear fission reactions, finding a high degree of sensitivity. Finally, in the same Hauser-Feshbach approach, we calculate the isomer production ratio for thermal neutron capture on stable isotopes, where the initial conditions (spin, excitation energy, etc.) are well understood. We find that with the current parameters involved in Hauser-Feshbach calculations, we obtain up to a factor of 2 deviation from the measured isomer ratios.
Random walk with nonuniform angular distribution biased by an external periodic pulse
NASA Astrophysics Data System (ADS)
Acharyya, Aranyak
2016-11-01
We studied the motion of a random walker in two dimensions with nonuniform angular distribution biased by an external periodic pulse. Here, we analytically calculated the mean square displacement (end-to-end distance of a walk after n time steps), without bias and with bias. We determined the average x-component of the final displacement of the walker. Interestingly, we noted that for a particular periodicity of the bias, this average x-component of the final displacement becomes approximately zero. The average y-component of the final displacement is found to be zero for any perodicity of the bias, and its reason can be attributed to the nature of the probability density function of the angle (subtended by the displacement vector with the x-axis). These analytical results are also supported by computer simulations. The present study may be thought of as a model for arresting the bacterial motion (along a preferred direction) by an external periodic bias. This article will be useful for undergraduate students of physics, statistics and biology as an example of an interdisciplinary approach to understand a way to control bacterial motion.
NASA Astrophysics Data System (ADS)
Carvalho, C. Sofia; Basilakos, Spyros
2016-08-01
We use a kinematic parametrisation of the luminosity distance to measure the angular distribution on the sky of time derivatives of the scale factor, in particular the Hubble parameter H0, the deceleration parameter q0, and the jerk parameter j0. We apply a recently published method to complement probing the inhomogeneity of the large-scale structure by means of the inhomogeneity in the cosmic expansion. This parametrisation is independent of the cosmological equation of state, which renders it adequate to test interpretations of the cosmic acceleration alternative to the cosmological constant. For the same analytical toy model of an inhomogeneous ensemble of homogenous pixels, we derive the backreaction term in j0 due to the fluctuations of { H0,q0 } and measure it to be of order 10-2 times the corresponding average over the pixels in the absence of backreaction. In agreement with that computed using a ΛCDM parametrisation of the luminosity distance, the backreaction effect on q0 remains below the detection threshold. Although the backreaction effect on j0 is about ten times that on q0, it is also below the detection threshold. Hence backreaction remains unobservable both in q0 and in j0.
Angular distribution of cosmological parameters as a probe of space-time inhomogeneities
NASA Astrophysics Data System (ADS)
Carvalho, C. Sofia; Marques, Katrine
2016-08-01
We develop a method based on the angular distribution on the sky of cosmological parameters to probe the inhomogeneity of large-scale structure and cosmic acceleration. We demonstrate this method on the largest type Ia supernova (SN) data set available to date, as compiled by the Joint Light-curve Analysis (JLA) collaboration and, hence, consider the cosmological parameters that affect the luminosity distance. We divide the SN sample into equal surface area pixels and estimate the cosmological parameters that minimize the chi-square of the fit to the distance modulus in each pixel, hence producing maps of the cosmological parameters {ΩM,ΩΛ,H0} . In poorly sampled pixels, the measured fluctuations are mostly due to an inhomogeneous coverage of the sky by the SN surveys; in contrast, in well-sampled pixels, the measurements are robust enough to suggest a real fluctuation. We also measure the anisotropy of the parameters by computing the power spectrum of the corresponding maps of the parameters up to ℓ = 3. For an analytical toy model of an inhomogeneous ensemble of homogeneous pixels, we derive the backreaction term in the deceleration parameter due to the fluctuations of H0 across the sky and measure it to be of order 10-3 times the corresponding average over the pixels in the absence of backreaction. We conclude that, for the toy model considered, backreaction is not a viable dynamical mechanism to emulate cosmic acceleration.
Ateshian, Gerard A.; Rajan, Vikram; Chahine, Nadeen O.; Canal, Clare E.; Hung, Clark T.
2010-01-01
Background Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. Method of approach In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. Results It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissue’s equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poisson’s ratio from very low values in compression (~0.02) to very high values in tension (~2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. Conclusions The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (G. A. Ateshian. J Biomech Eng, 129(2):240-9, 2007). PMID:19449957
Role of screening and angular distributions in resonant soft-x-ray emission of CO
Skytt, P.; Glans, P.; Gunnelin, K.
1997-04-01
In the present work the authors focus on two particular properties of resonant X-ray emission, namely core hole screening of the excited electron, and anisotropy caused by the polarization of the exciting synchrotron radiation. The screening of the core hole by the excited electron causes energy shifts and intensity variations in resonant spectra compared to the non-resonant case. The linear polarization of the synchrotron radiation and the dipole nature of the absorption process create a preferential alignment selection of the randomly oriented molecules in the case of resonant excitation, producing an anisotropy in the angular distribution of the emitted X-rays. The authors have chosen CO for this study because this molecule has previously served as a showcase for non-resonant X-ray emission, mapping the valence electronic structure differently according to the local selection rules. With the present work they take interest in how this characteristic feature of the spectroscopy is represented in the resonant case.
Liu, Yuan; Ning, Chuangang
2015-10-14
Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li{sup −}, C{sup −}, O{sup −}, F{sup −}, CH{sup −}, OH{sup −}, NH{sub 2}{sup −}, O{sub 2}{sup −}, and S{sub 2}{sup −} show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.
NASA Astrophysics Data System (ADS)
Covington, A. M.; Duvvuri, Srividya S.; Emmons, E. D.; Kraus, R. G.; Williams, W. W.; Thompson, J. S.; Calabrese, D.; Carpenter, D. L.; Collier, R. D.; Kvale, T. J.; Davis, V. T.
2007-02-01
Photodetachment cross sections and the angular distributions of photoelectrons produced by the single-photon detachment of the transition metal negative ions Fe- and Cu- have been measured at four discrete photon wavelengths ranging from 457.9 to 647.1nm (2.71-1.92eV) using a crossed-beams laser photodetachment electron spectrometry (LPES) apparatus. Photodetachment cross sections were determined by comparing the photoelectron yields from the photodetachment of Fe- to those of Cu- and C- , which have known absolute photodetachment cross sections. Using the measured photodetachment cross sections, radiative electron attachment cross sections were calculated using the principle of detailed balance. Angular distributions were determined by measurements of laboratory frame, angle-, and energy-resolved photoelectrons as a function of the angle between the linear laser polarization vector and the momentum vector of the collected photoelectrons. Values of the asymmetry parameter have been determined by nonlinear least-squares fits to these angular distributions. The measured asymmetry parameters are compared to predictions of photodetachment models including Cooper and Zare’s dipole approximation theory [J. Cooper and R. N. Zare, J. Chem. Phys. 48, 942 (1968)], and the angular momentum transfer theory developed by Fano and Dill [Phys. Rev. A 6, 185 (1972)].
Exclusive studies of angular distributions in GeV hadron-induced reactions with [sup 197]Au
Hsi, W.; Kwiatkowski, K.; Wang, G.; Bracken, D.S.; Cornell, E.; Ginger, D.S.; Viola, V.E. ); Korteling, R.G. V5A I56); Morley, K.B. ); Huang, R.; Lynch, W.G.; Tsang, M.B.; Xi, H. ); Gimeno-Nogues, F.; Ramakrishnan, E.; Rowland, D.; Yennello, S.J. ); Breuer, H. ); Gushue, S.; Remsberg, L.P. ); Botvin
1999-09-01
Exclusive studies of angular distributions for intermediate-mass fragments (IMFs) produced in GeV hadron-induced reactions have been performed with the Indiana Silicon Sphere (ISiS) 4[pi] detector array. Special emphasis has been given to understanding the origin of sideways peaking, which becomes prominent in the angular distributions for beam momenta above about 10 GeV/c. Both the magnitude of the effect and the peak angle increase as a function of fragment multiplicity and charge. When gated on IMF kinetic energy, the angular distributions evolve from forward-peaked to near isotropy as the fragment kinetic energy decreases. Fragment-fragment angular-correlation analyses show no obvious evidence for a dynamic mechanism that might signal shock wave effects or the breakup of exotic geometric shapes such as bubbles or toroids. Moving-source and intranuclear cascade simulations suggest that the observed sideways peaking is of kinematic origin, arising from significant transverse momentum imparted to the heavy recoil nucleus during the fast cascade stage of the collision. A two-step cascade and statistical multifragmentation calculation is consistent with this assumption. [copyright] [ital 1999] [ital The American Physical Society
Exclusive studies of angular distributions in GeV hadron-induced reactions with {sup 197}Au
Hsi, W.; Kwiatkowski, K.; Wang, G.; Bracken, D.S.; Cornell, E.; Ginger, D.S.; Viola, V.E.; Korteling, R.G.; Morley, K.B.; Huang, R.; Lynch, W.G.; Tsang, M.B.; Xi, H.; Gimeno-Nogues, F.; Ramakrishnan, E.; Rowland, D.; Yennello, S.J.; Breuer, H.; Gushue, S.; Remsberg, L.P.; Botvina, A.; Friedman, W.A.
1999-09-01
Exclusive studies of angular distributions for intermediate-mass fragments (IMFs) produced in GeV hadron-induced reactions have been performed with the Indiana Silicon Sphere (ISiS) 4{pi} detector array. Special emphasis has been given to understanding the origin of sideways peaking, which becomes prominent in the angular distributions for beam momenta above about 10 GeV/c. Both the magnitude of the effect and the peak angle increase as a function of fragment multiplicity and charge. When gated on IMF kinetic energy, the angular distributions evolve from forward-peaked to near isotropy as the fragment kinetic energy decreases. Fragment-fragment angular-correlation analyses show no obvious evidence for a dynamic mechanism that might signal shock wave effects or the breakup of exotic geometric shapes such as bubbles or toroids. Moving-source and intranuclear cascade simulations suggest that the observed sideways peaking is of kinematic origin, arising from significant transverse momentum imparted to the heavy recoil nucleus during the fast cascade stage of the collision. A two-step cascade and statistical multifragmentation calculation is consistent with this assumption. {copyright} {ital 1999} {ital The American Physical Society}
Saikia, P.
1981-07-01
The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic.
Sur, B.; Anghel, V.N.P.; Rogge, R.B.; Katsaras, J.
2005-01-01
The diffraction of spherical waves (S waves) interacting with a periodic scattering length distribution produces characteristic intensity patterns known as Kossel and Kikuchi lines (collectively called K lines). The K-line signal can be inverted to give the three-dimensional structure of the coherent scattering length distribution surrounding the source of S waves - a process known as 'Gabor holography' or, simply, 'holography'. This paper outlines a kinematical formulation for the diffraction pattern of monochromatic plane waves scattering from a mixed incoherent and coherent S-wave scattering length distribution. The formulation demonstrates that the diffraction pattern of plane waves incident on a sample with a uniformly random distribution of incoherent scatterers is the same as that from a sample with a single incoherent scatterer per unit cell. In practice, one can therefore reconstruct the holographic data from samples with numerous incoherent S-wave scatterers per unit cell. Thus atomic resolution thermal neutron holography is possible for materials naturally rich in incoherent thermal neutron scatterers, such as hydrogen (e.g., biological and polymeric materials). Additionally, holographic inversions from single-wavelength data have suffered from the so-called conjugate or twin-image problem. The formulation presented for holographic inversion - different from those used previously [e.g., T. Gog et al., Phys. Rev. Lett. 76, 3132 (1996)] - eliminates the twin-image problem for single-wavelength data.
NASA Astrophysics Data System (ADS)
Sur, B.; Anghel, V. N. P.; Rogge, R. B.; Katsaras, J.
2005-01-01
The diffraction of spherical waves ( S waves) interacting with a periodic scattering length distribution produces characteristic intensity patterns known as Kossel and Kikuchi lines (collectively called K lines). The K -line signal can be inverted to give the three-dimensional structure of the coherent scattering length distribution surrounding the source of S waves—a process known as “Gabor holography” or, simply, “holography.” This paper outlines a kinematical formulation for the diffraction pattern of monochromatic plane waves scattering from a mixed incoherent and coherent S -wave scattering length distribution. The formulation demonstrates that the diffraction pattern of plane waves incident on a sample with a uniformly random distribution of incoherent scatterers is the same as that from a sample with a single incoherent scatterer per unit cell. In practice, one can therefore reconstruct the holographic data from samples with numerous incoherent S -wave scatterers per unit cell. Thus atomic resolution thermal neutron holography is possible for materials naturally rich in incoherent thermal neutron scatterers, such as hydrogen (e.g., biological and polymeric materials). Additionally, holographic inversions from single-wavelength data have suffered from the so-called conjugate or twin-image problem. The formulation presented for holographic inversion—different from those used previously [e.g., T. Gog , Phys. Rev. Lett. 76, 3132 (1996)]—eliminates the twin-image problem for single-wavelength data.
Miyabe, Shungo; Haxton, Dan; Rescigno, Tom; McCurdy, Bill
2010-11-30
We report the results of semiclassical calculations of the asymmetric molecular-frame photoelectron angular distributions for C 1s ionization of CO{sub 2} measured with respect to the CO{sup +} and O{sup +} ions produced by subsequent Auger decay, and show how the decay event can be used to probe ultrafast molecular dynamics of the transient cation. The fixed-nuclei photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. The amplitudes are then used in a semiclassical manner to investigate their dependence on the nuclear dynamics of the cation. The method introduced here can be used to study other core-level ionization events.
Hosaka, K.; Teramoto, T.; Adachi, J.; Yagishita, A.; Golovin, A. V.; Takahashi, M.; Watanabe, N.; Jahnke, T.; Weber, Th.; Schoeffler, M.; Schmidt, L.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.; Osipov, T.; Prior, M. H.; Landers, A. L.; Semenov, S. K.; Cherepkov, N. A.
2006-02-15
Measurements and calculations of a contribution of the nondipole terms in the angular distribution of photoelectrons from the C K shell of randomly oriented CO molecules are reported. In two sets of measurements, the angular distribution in the plane containing the photon polarization and the photon momentum vectors of linearly polarized radiation and the full three-dimensional photoelectron momentum distribution after absorption of circularly polarized light have been measured. Calculations have been performed in the relaxed core Hartree-Fock approximation with a fractional charge. Both theory and experiment show that the nondipole terms are very small in the photon energy region from the ionization threshold of the K shell up to about 70 eV above it.
Polarization of photons scattered by electrons in any spectral distribution
Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo
2014-01-01
On the basis of the quantum electrodynamics, we present a generic formalism of the polarization for beamed monochromatic photons scattered by electrons in any spectral distribution. The formulae reduce to the components of the Fano matrix when electrons are at rest. We mainly investigate the polarization in three scenarios, i.e., electrons at rest, isotropic electrons with a power-law spectrum, and thermal electrons. If the incident beam is polarized, the polarization is reduced significantly by isotropic electrons at large viewing angles; the degree of polarization caused by thermal electrons is about half of that caused by power-law electrons. If the incident bean is unpolarized, soft γ-rays can lead to about 15% polarization at viewing angles around π/4. For isotropic electrons, one remarkable feature is that the polarization as a function of the incident photon energy always peaks roughly at 1 MeV; this is valid for both the thermal and power-law cases. This feature can be used to distinguish the model of the inverse Compton scattering from that of the synchrotron radiation.
Clark, G
2003-04-28
This report describes a feasibility study. We are interested in calculating the angular and linear velocities of a re-entry vehicle using six acceleration signals from a distributed accelerometer inertial measurement unit (DAIMU). Earlier work showed that angular and linear velocity calculation using classic nonlinear ordinary differential equation (ODE) solvers is not practically feasible, due to mathematical and numerical difficulties. This report demonstrates the theoretical feasibility of using model-based nonlinear state estimation techniques to obtain the angular and linear velocities in this problem. Practical numerical and calibration issues require additional work to resolve. We show that the six accelerometers in the DAIMU are not sufficient to provide observability, so additional measurements of the system states are required (e.g. from a Global Positioning System (GPS) unit). Given the constraint that our system cannot use GPS, we propose using the existing on-board 3-axis magnetometer to measure angular velocity. We further show that the six nonlinear ODE's for the vehicle kinematics can be decoupled into three ODE's in the angular velocity and three ODE's in the linear velocity. This allows us to formulate a three-state Gauss-Markov system model for the angular velocities, using the magnetometer signals in the measurement model. This re-formulated model is observable, allowing us to build an Extended Kalman Filter (EKF) for estimating the angular velocities. Given the angular velocity estimates from the EKF, the three ODE's for the linear velocity become algebraic, and the linear velocity can be calculated by numerical integration. Thus, we do not need direct measurements of the linear velocity to provide observability, and the technique is mathematically feasible. Using a simulation example, we show that the estimator adds value over the numerical ODE solver in the presence of measurement noise. Calculating the velocities in the presence of
NASA Astrophysics Data System (ADS)
Liu, Yan; Hu, LiWen; Wang, Fang; Gao, YanYan; Zheng, Yang; Wang, Yu; Liu, Yang
2016-01-01
To investigate the angular distributions of UVA, UVB, and effective UV for erythema and vitamin D (vitD) synthesis, the UV spectral irradiances were measured at ten inclined angles (from 0° to 90°) and seven azimuths (from 0° to 180°) at solar elevation angle (SEA) that ranged from 18.8° to 80° in Shanghai (31.22° N, 121.55° E) under clear sky and the albedo of ground was 0.1. The results demonstrated that in the mean azimuths and with the back to the sun, the UVA, UVB, and erythemally and vitD-weighted irradiances increased with the inclined angles and an increase in SEA. When facing toward the sun at 0°-60° inclined angles, the UVA first increased and then decreased with an increase in SEA; at other inclined angles, the UVA increased with SEA. At 0°-40° inclined angles, the UVB and erythemally and vitD-weighted irradiances first increased and then decreased with an increase in SEA, and their maximums were achieved at SEA 68.7°; at other inclined angles, the above three irradiances increased with an increase in SEA. The maximum UVA, UVB, and erythemally and vitD-weighted irradiances were achieved at an 80° inclined angle at SEA 80° (the highest in our measurements); the cumulative exposure of the half day achieved the maximum at a 60° inclined angle, but not on the horizontal. This study provides support for the assessment of human skin sun exposure.
NASA Astrophysics Data System (ADS)
Freda, W.; Piskozub, J.; Toczek, H.
2015-12-01
This article describes a method for determining the angular distribution of light polarization over a roughened surface of the sea. Our method relies on measurements of the Stokes vector elements using a polarization imaging camera that operates using the Division of Focal Plane (DoFP) method. It uses special monochrome CCD array in which the neighbouring cells, instead of recording different colours (red green and blue), are equipped with micropolarizers of four directions (0, 45, 90 and 135 degrees). We combined the camera with a fish-eye lens of Field of View (FoV) > 180 deg. Such a large FoV allowed us to crop out the fragment of the frame along the circular horizon, showing a view covering all directions of the hemisphere. Because of complicated optical design of the fish-eye lens (light refraction on surfaces of parts of the lens) connected to the sensor we checked the accuracy of the measurement system. A method to determine the accuracy of measured polarization is based on comparison of the experimentally obtained rotation matrix with its theoretical form. Such a comparison showed that the maximum error of Stokes vector elements depended on zenith angle and reached as much as 24% for light coming from just above the horizon, but decreased rapidly with decreasing zenith angle to the value of 12% for the angles 10Â° off the edge of FoV. Moreover we present the preliminary results prepared over rough sea surface. These results include total intensity of light, Degree of Linear Polarization (DoLP) and their standard deviations. The results have been averaged over one thousand frames of a movie. These results indicate that the maximum polarization is observed near the reflection of the sun, and the signal coming from below the surface may be observed at zenith angles far from the vertical direction.
Angular Distributions of High-Mass Dilepton Production in Hadron Collisions
McClellan, Randall Evan
2016-01-01
λ has been performed, and the remaining difficulties in extracting ν have been evaluated. Although the results are not yet publishable, significant progress has been made in developing this very challenging angular distributions analysis. A simple scheme for correcting for the angular acceptances of the spectrometer, trigger, and reconstruction has been developed and demonstrated. A generally applicable correction for the kinematically-dependent, rate-dependent reconstruction efficiency has been developed and applied to all current analyses on SeaQuest data. This rate-dependence correction was the first major hurdle in the path to publication of many preliminary SeaQuest results. The last remaining major correction for all analyses, but especially important for the angular parameter extraction, is the full characterization, rate-dependence correction, and subtraction of the combinatoric background contribution to the reconstructed dimuon sample. Independently, an intuitive, kinematic derivation of the single-event definitions of the Drell-Yan angular parameters has been developed under the assumption of unpolarized annihilating quarks within unpolarized nuclei. At O(αs), where the quarks remain co-planar with the hadrons in the photon rest frame, this kinematic method reproduces the Lam-Tung relation and derives an additional equality for µ2, which is only interpretable for single-event parameters. This method has been extended to the case of quark non- coplanarity, and the coplanar equalities become inequalities. A new equality was discovered, which should be obeyed by single-event parameters even in the case of a non-coplanar quark axis. The non-coplanar parameter relations have been used to derive constraints on the experimentally accessible values of λ and ν. These constraints are compared with existing data and have been found consistent, except in the cases where significant contributions from non-zero Boer-Mulders functions are expected. Finally, the
Measurement of Angular Distributions of Drell-Yan Dimuons in p+p Interactions at 800GeV/c
NASA Astrophysics Data System (ADS)
Zhu, L. Y.; Peng, J. C.; Reimer, P. E.; Awes, T. C.; Brooks, M. L.; Brown, C. N.; Bush, J. D.; Carey, T. A.; Chang, T. H.; Cooper, W. E.; Gagliardi, C. A.; Garvey, G. T.; Geesaman, D. F.; Hawker, E. A.; He, X. C.; Isenhower, L. D.; Kaplan, D. M.; Kaufman, S. B.; Klinksiek, S. A.; Koetke, D. D.; Lee, D. M.; Lee, W. M.; Leitch, M. J.; Makins, N.; McGaughey, P. L.; Moss, J. M.; Mueller, B. A.; Nord, P. M.; Papavassiliou, V.; Park, B. K.; Petitt, G.; Sadler, M. E.; Sondheim, W. E.; Stankus, P. W.; Thompson, T. N.; Towell, R. S.; Tribble, R. E.; Vasiliev, M. A.; Webb, J. C.; Willis, J. L.; Wise, D. K.; Young, G. R.
2009-05-01
We report a measurement of the angular distributions of Drell-Yan dimuons produced using an 800GeV/c proton beam on a hydrogen target. The polar and azimuthal angular distribution parameters have been extracted over the kinematic range 4.5
Angular dispersion of oblique phonon modes in BiFeO3 from micro-Raman scattering
NASA Astrophysics Data System (ADS)
Hlinka, J.; Pokorny, J.; Karimi, S.; Reaney, I. M.
2011-01-01
The angular dispersion of oblique phonon modes in a multiferroic BiFeO3 has been obtained from a micro-Raman spectroscopic investigation of a coarse grain ceramic sample. Continuity of the measured angular dispersion curves allows conclusive identification of all pure zone-center polar modes. The method employed here to reconstruct the anisotropic crystal property from a large set of independent local measurements on a macroscopically isotropic ceramic sample profits from the considerable dispersion of the oblique modes in ferroelectric perovskites and it can be in principle conveniently applied to any other optically uniaxial ferroelectric material.
Xiahou, Chengkui; Connor, J N L
2014-06-01
This paper considers the asymptotic (semiclassical) analysis of a forward glory and a rainbow in the differential cross section (DCS) of a state-to-state chemical reaction, whose scattering amplitude is given by a Legendre partial wave series (PWS). A recent paper by C. Xiahou, J. N. L. Connor and D. H. Zhang [Phys. Chem. Chem. Phys., 2011, 13, 12981] stated without proof a new asymptotic formula for the scattering amplitude, which is uniform for a glory and a rainbow in the DCS. The new formula was designated "6Hankel" because it involves six Hankel functions. This paper makes three contributions: (1) we provide a detailed derivation of the 6Hankel approximation. This is done by first generalizing a method described by G. F. Carrier [J. Fluid Mech., 1966, 24, 641] for the uniform asymptotic evaluation of an oscillating integral with two real coalescing stationary phase points, which results in the "2Hankel" approximation (it contains two Hankel functions). Application of the 2Hankel approximation to the PWS results in the 6Hankel approximation for the scattering amplitude. We also test the accuracy of the 2Hankel approximation when it is used to evaluate three oscillating integrals of the cuspoid type. (2) We investigate the properties of the 6Hankel approximation. In particular, it is shown that for angles close to the forward direction, the 6Hankel approximation reduces to the "semiclassical transitional approximation" for glory scattering derived earlier. For scattering close to the rainbow angle, the 6Hankel approximation reduces to the "transitional Airy approximation", also derived earlier. (3) Using a J-shifted Eckart parameterization for the scattering matrix, we investigate the accuracy of the 6Hankel approximation for a DCS. We also compare with angular scattering results from the "uniform Bessel", "uniform Airy" and other semiclassical approximations. PMID:24519014
Search for quark compositeness in dijet angular distributions from pp collisions at sqrt(s) = 7 TeV
Chatrchyan, Serguei; et al.
2012-05-01
A search for quark compositeness using dijet angular distributions from pp collisions at sqrt(s) = 7 TeV is presented. The search has been carried out using a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS experiment at the LHC. Normalized dijet angular distributions have been measured for dijet invariant masses from 0.4 TeV to above 3 TeV and compared with a variety of contact interaction models, including those which take into account the effects of next-to-leading-order QCD corrections. The data are found to be in agreement with the predictions of perturbative QCD, and lower limits are obtained on the contact interaction scale, ranging from 7.5 up to 14.5 TeV at 95% confidence level.
NASA Astrophysics Data System (ADS)
Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.
2016-06-01
We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.
Czasch, A.; Schoeffler, M.; Hattass, M.; Schoessler, S.; Jahnke, T.; Weber, Th.; Staudte, A.; Titze, J.; Wimmer, C.; Kammer, S.; Weckenbrock, M.; Voss, S.; Grisenti, R.E.; Jagutzki, O.; Schmidt, L.Ph.H.; Schmidt-Boecking, H.; Doerner, R.; Rost, J.M.; Schneider, T.; Liu, C.-N.
2005-12-09
Partial photoionization cross sections {sigma}{sub N}(E{sub {gamma}}) and photoelectron angular distributions {beta}{sub N}(E{sub {gamma}}) were measured for the final ionic states He{sup +}(N>4) in the region between the N=8 and N=13 thresholds (E{sub {gamma}}>78.155 eV) using the cold target recoil ion momentum spectroscopy technique (COLTRIMS). Comparison of the experimental data with two independent sets of theoretical predictions reveals disagreement for the branching ratios to the various He{sub N}{sup +} states. The angular distributions just below the double ionization threshold suggest an excitation process for highly excited N states similar to the Wannier mechanism for double ionization.
Zakowicz, S.; Harman, Z.; Gruen, N.; Scheid, W.
2003-10-01
In collisions of heavy few-electron projectile ions with light targets, an electron can be transferred from the target with the simultaneous excitation of a projectile electron. We study the angular distribution of deexcitation x rays following the resonant capture process. Our results are compared to experimental values of Ma et al. [Phys. Rev. A 68, 042712 (2003)] for collisions of U{sup 91+} ions with a hydrogen gas target.
Heather L. Holmes-Ross; Hall, Gregory E.; Valenti, Rebecca J.; Yu, Hua -Gen; Lawrance, Warren D.
2016-01-29
In this study, we present the results of an investigation into the rotational and angular distributions of the NO A~ state fragment following photodissociation of the NO-He, NO-Ne and NO-Ar van der Waals complexed excited via the A~ ← X~ transition. For each complex the dissociation is probed for several values of Ea, the available energy above the dissociation threshold.
The effects of compensator design on scatter distribution and magnitude: a Monte Carlo study
NASA Astrophysics Data System (ADS)
Bootsma, G. J.; Verhaegen, F.; Jaffray, D. A.
2011-03-01
X-ray scatter has a significant impact on image quality in kV cone-beam CT (CBCT), its effects include: CT number inaccuracy, streak and cupping artifacts, and loss of contrast. Compensators provide a method for not only decreasing the magnitude of the scatter distribution, but also reducing the structure found in the scatter distribution. Recent Monte Carlo (MC) simulations examining X-ray scatter in CBCT projection images have shown that the scatter distribution in x-ray imaging contains structure largely induced by coherent scattering. In order to maximize the reduction of x-ray scatter induced artifacts a decrease in the magnitude and structure of the scatter distribution is sought through optimal compensator design. A flexible MC model that allows for separation of scattered and primary photons has been created to simulate the CBCT imaging process. The CBCT MC model is used to investigate the effectiveness of compensators in decreasing the magnitude and structure of the scatter distribution in CBCT projection images. The influence of the compensator designs on the scatter distribution are evaluated for different anatomy (abdomen, pelvis, and head and neck) and viewing angles using a voxelized anthropomorphic phantom. The effect of compensator material composition on the amount of contamination photons in an open field is also investigated.
Hansen, L.F.
1985-05-01
Neutron elastic and inelastic differential cross sections for targets between /sup 9/Be and /sup 239/Pu at energies, E > 14 MeV have been measured using the Livermore and Ohio University neutron time-of-flight facilities. We review here the data and the analyses based on two local microscopic optical potentials: that of Jeukenne, Lejeune and Mahaux, and that of Brieva and Rook. The results are also compared with calculations using global potentials. Coupled channel formalism has been used in the analysis of targets with strong deformations, such as Be, C, Ta, and actinides. The value of the microscopic optical potentials as a tool to predict elastic and inelastic neutron cross sections over a wide mass and energy range is discussed. The need for neutron measurements up to higher energies and their analysis in conjunction with (p,p) and charge exchange (p,n) data is addressed. 17 refs.
NASA Astrophysics Data System (ADS)
Holmes-Ross, Heather L.; Valenti, Rebecca J.; Yu, Hua-Gen; Hall, Gregory E.; Lawrance, Warren D.
2016-01-01
We present the results of an investigation into the rotational and angular distributions of the NO A ˜ state fragment following photodissociation of the NO-He, NO-Ne, and NO-Ar van der Waals complexes excited via the A ˜ ←X ˜ transition. For each complex, the dissociation is probed for several values of Ea, the available energy above the dissociation threshold. For NO-He, the Ea values probed were 59, 172, and 273 cm-1; for NO-Ne they were 50 and 166 cm-1; and for NO-Ar they were 44, 94, 194, and 423 cm-1. The NO A ˜ state rotational distributions arising from NO-He are cold, with most products in low angular momentum states. NO-Ne leads to broader NO rotational distributions but they do not extend to the maximum possible given the energy available. In the case of NO-Ar, the distributions extend to the maximum allowed at that energy and show the unusual shapes associated with the rotational rainbow effect reported in previous studies. This is the only complex for which a rotational rainbow effect is observed at the chosen Ea values. Product angular distributions have also been measured for the NO A ˜ photodissociation product for the three complexes. NO-He produces nearly isotropic fragments, but the anisotropy parameter, β, for NO-Ne and NO-Ar photofragments shows a surprising change in sign from negative to positive as Ea increases within the unstructured excitation profile. Franck-Condon selection of a broader distribution of geometries including more linear geometries at lower excitation energies and more T-shaped geometries at higher energies can account for the changing recoil anisotropy. Two-dimensional wavepacket calculations are reported to model the rotational state distributions and the bound-continuum absorption spectra.
Angular distribution of light emission from compound-eye cornea with conformal fluorescent coating
NASA Astrophysics Data System (ADS)
Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh
2014-09-01
The complex morphology of the apposition compound eyes of insects of many species provides them a wide angular field of view. This characteristic makes these eyes attractive for bioreplication as artificial sources of light. The cornea of a blowfly eye was conformally coated with a fluorescent thin film with the aim of achieving wide field-of-view emission. On illumination by shortwave-ultraviolet light, the conformally coated eye emitted visible light whose intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.
Massopust, P.R.
1997-08-01
All solutions of an in its angular coordinates continuously perturbed Laplace-Beltrami equation in the open unit ball IB{sup n+2} {contained_in} IR{sup n+2}, n {ge} 1, are characterized. Moreover, it is shown that such pertubations yield distributional boundary values which are different from, but algebraically and topologically equivalent to, the hyperfunctions of Lions & Magenes. This is different from the case of radially perturbed Laplace-Beltrami operators (cf. [7]) where one has stability of distributional boundary values under such perturbations.
Havermeier, T.; Kreidi, K.; Wallauer, R.; Voss, S.; Schoeffler, M.; Schoessler, S.; Foucar, L.; Neumann, N.; Titze, J.; Sann, H.; Kuehnel, M.; Voigtsberger, J.; Schmidt-Boecking, H.; Doerner, R.; Jahnke, T.; Sisourat, N.; Schoellkopf, W.; Grisenti, R. E.
2010-12-15
In the present paper, we show that the absorption of a single photon can singly ionize both atoms of a helium dimer (He{sub 2}): ionization with simultaneous excitation of one atom followed by de-excitation via interatomic Coulombic decay leads to the ejection of an electron from each of the the two atoms of the dimer. Using the Cold Target Recoil Ion Momentum Spectroscopy technique (COLTRIMS), we obtained angular distributions of these electrons in the laboratory frame and the molecular frame. We observe a pronounced variation of these distributions for different regions of kinetic-energy releases of the ions.
NASA Astrophysics Data System (ADS)
Chanrion, O.; Bonaventura, Z.; Neubert, T.; Bourdon, A.
2015-12-01
The discovery of Terrestrial Gamma-ray Flashes (TGFs) by the Compton Gamma-ray Observatory in 1991 is now understood as X- and Gamma-rays emissions associated with thunderstorms. This interest led to a better understanding of the emissions, now explained by bremsstrahlung from high energy electrons which run away in electric fields associated with thunderstorms. In this presentation we discuss the influence of the scattering for the runaway mechanism and the runaway threshold. We compare the outcome of different models with increasing complexity in the description of the scattering. The results show that the inclusion of the scattering in the model firstly reduces the runaway production by allowing some electrons to diffuse out of the runaway regime before they reach energy high enough to justify a forward scattering model. Secondly they affect the definition of the runaway threshold itself. We purpose a alternative definition applicable for sub-MeV electrons and discuss the impact on runaway rates.
Overbury, S. H.; Dittner, P. F.; Datz, S.; Thoe, R. S.
1980-01-01
The energy distributions of H/sup +/ and D/sup +/ backscattered from a polycrystalline graphite sample were recorded as a function of total scattering angle, angle of incidence, and for incident beam energies 200 < E/sub i/ < 3000 eV. The general shapes of the distributions are discussed qualitatively, and their variation with incident energy and total scattering angle are explained and compared with theoretical and other experimental results. The average energies E/sup - +/, of the distributions are found to increase relative to the single scattering energy, E/sub k/, with decreasing incident energy, E/sup - +//E/sub k/ also increases with increasing exit angle from the solid in a way which is slightly dependent upon the angle of incidence. The integrated intensities of the distributions are found to depend strongly upon the angle of incidence, with a normally incident beam producing a nearly cosine distribution of backscattered ions and grazing angles of incidence producing an intensity which peaks at an angle forward of the specular direction. Using charge fractions obtained previously for surface scattering from graphite and transmission through thin carbon foil, values of the particle reflection coefficient R/sub N/ are obtained as a function of energy.
Angular distributions in t t ¯H (H →b b ¯) reconstructed events at the LHC
NASA Astrophysics Data System (ADS)
Amor dos Santos, S. P.; Araque, J. P.; Cantrill, R.; Castro, N. F.; Fiolhais, M. C. N.; Frederix, R.; Gonçalo, R.; Martins, R.; Santos, R.; Silva, J.; Onofre, A.; Peixoto, H.; Reigoto, A.
2015-08-01
The associated production of a Higgs boson and a top-quark pair, t t ¯ H , in proton-proton collisions is addressed in this paper for a center of mass energy of 13 TeV at the LHC. Dileptonic final states of t t ¯H events with two oppositely charged leptons and four jets from the decays t →b W+→b ℓ+νℓ , t ¯ →b ¯ W-→b ¯ ℓ-ν¯ ℓ and h →b b ¯ , are used. Signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed by applying a kinematic fit. New angular distributions of the decay products as well as angular asymmetries are explored in order to improve discrimination of t t ¯H signal events over the dominant irreducible background contribution, t t ¯b b ¯. Even after the full kinematic fit reconstruction of the events, the proposed angular distributions and asymmetries are still quite different in the t t ¯H signal and the dominant background (t t ¯b b ¯).
Deeply virtual Compton scattering and generalized parton distributions at CLAS
Niccolai, Silvia
2008-11-01
The exclusive electroproduction of real photons and mesons at high momentum transfer allows us to access the Generalized Parton Distributions (GPDs). The formalism of the GPDs provides a unified description of the hadronic structure in terms of quark and gluonic degrees of freedom. In particular, the Deeply Virtual Compton Scattering (DVCS), ep â e2p2Å , is one of the key reactions to determine the GPDs experimentally, as it is the simplest process that can be described in terms of GPDs. A dedicated experiment to study DVCS has been carried out in Hall B at Jefferson Lab. Beam-spin asymmetries, resulting from the interference of the Bethe-Heitler process and DVCS have been extracted over the widest kinematic range ever accessed for this reaction ( 1.2 < Q 2 < 3.7 (GeV/c 2, 0.09 < - t < 1.3 (GeV/c 2, 0.13 < x B < 0.46 . In this paper, the results obtained experimentally are shown and compared to GPD parametrizations.
NASA Astrophysics Data System (ADS)
Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.
2016-09-01
We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilises measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey (RCSLenS), which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4%. For photometric redshift bins which spatially overlap in 3-D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.
NASA Astrophysics Data System (ADS)
Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu
2015-08-01
The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.
Li, Yang; Lan, Pengfei; Xie, Hui; He, Mingrui; Zhu, Xiaosong; Zhang, Qingbin; Lu, Peixiang
2015-11-01
We perform time-dependent calculation of strong-field ionization of neon, initially prepared in 2p(-1) and 2p(+1) states, with intense near-circularly polarized laser pulses. By solving the three-dimensional time-dependent Schrödinger equation, we find clear different offset angles of the maximum in the photoelectron momentum distribution in the polarization plane of the laser pulses for the two states. We provide clear interpretation that this different angular offset is linked to the sign of the magnetic quantum number, thus it can be used to map out the orbital angular momentum of the initial state. Our results provide a potential tool for studying orbital symmetry in atomic and molecular systems. PMID:26561149
Chen, Xinjuan; Ji, Cheng; Xiang, Yong; Kang, Xiangning; Shen, Bo; Yu, Tongjun
2016-05-16
Angular distribution of polarized light and its effect on light extraction efficiency (LEE) in AlGaN deep-ultraviolet (DUV) light-emitting diodes (LEDs) are investigated in this paper. A united picture is presented to describe polarized light's emission and propagation processes. It is found that the electron-hole recombinations in AlGaN multiple quantum wells produce three kinds of angularly distributed polarized emissions and propagation process can change their intensity distributions. By investigation the change of angular distributions in 277nm and 215nm LEDs, this work reveals that LEE can be significantly enhanced by modulating the angular distributions of polarized light of DUV LEDs. PMID:27409966
Shan, Xiao; Connor, J N L
2016-08-18
We report two new contributions for understanding the quantum dynamics of the benchmark state-to-state reaction, F + H2(vi, ji, mi) → FH(vf, jf, mf) + H, where (vi, ji, mi) and (vf, jf, mf) are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. We analyze product differential cross sections (DCSs) for the transitions, 000 → 300, 000 → 310, and 000 → 320, at a translational energy of 0.04088 eV using the potential energy surface of Fu-Xu-Zhang. The two new contributions are as follows: (1) We exploit the recently introduced QP decomposition of J. N. L. Connor [ J. Chem. Phys . 2013 , 138 , 124310 ] to transform numerical partial-wave scattering (S) matrix elements for the three transitions into parametrized (analytic) formulas, in which all terms in the three parametrized S matrices have a direct physical interpretation. In particular, they contain the positions and residues of Regge poles in the first quadrant of the complex angular momentum (CAM) plane. We obtain very close agreement between the values of the parametrized and numerical S matrix elements. (2) We then apply a uniform asymptotic Watson/CAM theory, which allows a Regge pole to be close to a saddle point. It uses the parametrized S matrices and is applied to the partial wave series (PWS) representation for the scattering amplitude to understand structure in a DCS in terms of three contributing subamplitudes. We prove using this powerful CAM theory that resonance Regge poles contribute to the small-angle scattering in the DCSs for all three transitions, with the oscillations at larger angles arising from nearside-farside interference. We obtain very good agreement between the uniform asymptotic Watson/CAM DCSs and the corresponding PWS DCSs, except for angles close to the forward and backward directions, where (as expected) the Watson/CAM formulas become nonuniform.
Shan, Xiao; Connor, J N L
2016-08-18
We report two new contributions for understanding the quantum dynamics of the benchmark state-to-state reaction, F + H2(vi, ji, mi) → FH(vf, jf, mf) + H, where (vi, ji, mi) and (vf, jf, mf) are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. We analyze product differential cross sections (DCSs) for the transitions, 000 → 300, 000 → 310, and 000 → 320, at a translational energy of 0.04088 eV using the potential energy surface of Fu-Xu-Zhang. The two new contributions are as follows: (1) We exploit the recently introduced QP decomposition of J. N. L. Connor [ J. Chem. Phys . 2013 , 138 , 124310 ] to transform numerical partial-wave scattering (S) matrix elements for the three transitions into parametrized (analytic) formulas, in which all terms in the three parametrized S matrices have a direct physical interpretation. In particular, they contain the positions and residues of Regge poles in the first quadrant of the complex angular momentum (CAM) plane. We obtain very close agreement between the values of the parametrized and numerical S matrix elements. (2) We then apply a uniform asymptotic Watson/CAM theory, which allows a Regge pole to be close to a saddle point. It uses the parametrized S matrices and is applied to the partial wave series (PWS) representation for the scattering amplitude to understand structure in a DCS in terms of three contributing subamplitudes. We prove using this powerful CAM theory that resonance Regge poles contribute to the small-angle scattering in the DCSs for all three transitions, with the oscillations at larger angles arising from nearside-farside interference. We obtain very good agreement between the uniform asymptotic Watson/CAM DCSs and the corresponding PWS DCSs, except for angles close to the forward and backward directions, where (as expected) the Watson/CAM formulas become nonuniform. PMID:27434264
Simple approach to the angular momentum distribution in the ground states of many-body systems
NASA Astrophysics Data System (ADS)
Zhao, Y. M.; Arima, A.; Yoshinaga, N.
2002-09-01
We propose a simple approach to predict the angular momentum I ground state (I g.s.) probabilities of many-body systems that does not require the diagonalization of Hamiltonians with random interactions. This method is found to be applicable to all cases that have been discussed: even and odd fermion systems (both in single-j and many-j shells), and boson (both sd and sdg) systems. A simple relation for the highest angular momentum g.s. probability is found. Furthermore, it is suggested for the first time that the 0 g.s. dominance in boson systems and in even-fermion systems is given by two-body interactions with specific features.
Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions
NASA Technical Reports Server (NTRS)
Dill, D.; Starace, A. F.; Manson, S. T.
1974-01-01
The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.
Estimation of guided wave scattering matrices from spatially distributed transducer arrays
NASA Astrophysics Data System (ADS)
Chen, Xin; Michaels, Jennifer E.; Michaels, Thomas E.
2013-01-01
Because of their ability to travel relatively long distances with low attenuation, guided waves are being considered as a tool for the detection of defects in plate-like structures for aerospace, civil, and petrochemical applications. When a guided wave encounters a defect, a scattered field related to the characteristics of the defect is generated. The far field scattering behavior can be described by a scattering matrix that quantifies the amplitude of the scattered signal as a function of incident and scattered angles. Because of the mode and frequency dependence of guided waves interacting with defects, the scattering matrix is typically defined for specific guided wave modes (incident and scattered) at a designated frequency. Prior work has utilized finite element modeling and full wavefield scanning to estimate scattering matrices, but these approaches may be impractical because of either computational requirements or experimental issues. Here, we propose a methodology for estimating a scattering matrix based upon limited experimental data recorded from a spatially distributed transducer array. After applying baseline subtraction to extract changes in received signals resulting from the introduction of a scatterer, we further process differenced signals to obtain a limited number of scattering matrix data points corresponding to the incident and scattered angles for each transducer pair. We perform radial basis function interpolation of these initial points to estimate the complete scattering matrix and evaluate the efficacy of the proposed method via experiments with a glued-on linear scatterer.
Angular correlation measurements for {sup 12}C{sup 12}C,{sup 12}C{sup 12}C 3{sup -} scattering
Wuosmaa, A.H.; Betts, R.R.; Freer, M.
1995-08-01
Previous studies of inelastic {sup 12}C + {sup 12}C scattering to a variety of final states identified significant resonance behavior in a number of different reaction channels. These resonances can be interpreted as either potential scattering resonances, or as population of cluster structures in the compound nucleus {sup 24}Mg, or as some interplay between the two mechanisms. Currently, for many of these resonances the situation remains unclear. One example is a large peak observed in the excitation function for the 3{sup -} - g.s. excitation, identified in previous work performed at the Daresbury Laboratory in England. This peak is observed at the same center-of-mass energy as one observed in the O{sub 2}{sup +}-O{sub 2}{sup +} inelastic scattering channel. That structure was suggested to correspond to exotic deformed configurations in the compound nucleus {sup 24}Mg. As the peak in the 3{sup -} + g.s. exit channel occurs at precisely the same energy as the purported resonance, it is tempting to associate the two. Before such an association can be confirmed or ruled out, further information must be obtained about the 3{sup -} + g.s. structure. In particular, it is important to determine the angular momenta that dominate the 3{sup -} + g.s. structure.
NASA Astrophysics Data System (ADS)
Tarlow, Thomas; Beausang, Cornelius; Hughes, Richard; Ross, Timothy; Gell, Kristen; Vyas, Gargi
2013-10-01
The structure of even and odd Gd nuclei at low/moderate spins and up to high excitation energies in the vicinity of the N = 90 shape change region have been probed using the (p,t) and (p,d) reactions on even-even targets. The proton beam, at a beam energy of 25 MeV, was provided by the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Outgoing charged particles, between ~30 and 60 degrees, were detected by the STARS silicon telescope while coincident gamma-rays were detected with the clover Ge detectors of the Liberace Array. The measured angular distributions for outgoing deuterons and tritons are well reproduced by DWBA calculations for discrete low-lying states, whereas at higher excitations of (2 - 9) MeV the angular momentum distribution of the continuum region should be represented by a distribution of L-transfer values. The angular distribution of the continuum region has been investigated in the present work . Weighted linear combinations of calculated (DWBA) angular distributions for L-transfer values of ΔL = 0 to 6 ℏ are compared to the experimental angular distribution in a chi-square minimization technique to find the best fitting distribution of angular momentum transfers in gadolinium nuclei. Preliminary results will be presented.
Perkins, Bradford G; Nesbitt, David J
2010-11-14
Full three dimensional (3D) translational distributions for quantum state-resolved scattering dynamics at the gas-liquid interface are presented for experimental and theoretical studies of CO(2) + perfluorinated surfaces. Experimentally, high resolution absorption profiles are measured as a function of incident (θ(inc)) and scattering (θ(scat)) angles for CO(2) that has been scattered from a 300 K perfluorinated polyether surface (PFPE) with an incident energy of E(inc) = 10.6(8) kcal mol(-1). Line shape analysis of the absorption profiles reveals non-equilibrium dynamics that are characterized by trapping-desorption (TD) and impulsive scattering (IS) components, with each channel simply characterized by an effective "temperature" that compares very well with previous results from rotational state analysis [Perkins and Nesbitt, J. Phys. Chem. A, 2008, 112, 9324]. From a theoretical perspective, molecular dynamics (MD) simulations of CO(2) + fluorinated self-assembled monolayer surface (F-SAMs) yield translational probability distributions that are also compared with experimental results. Trajectories are parsed by θ(scat) and J, with the results rigorously corrected by flux-to-density transformation and providing comparisons in near quantitative agreement with experiment. 3D flux and velocity distributions obtained from MD simulations are also presented to illustrate the role of in- and out-of-plane scattering.
NASA Astrophysics Data System (ADS)
Rozhkova, E. I.; Pivovarov, Yu. L.
2016-07-01
The Cherenkov radiation (ChR) angular distribution is usually described by the Tamm-Frank (TF) theory, which assumes that relativistic charged particle moves uniformly and rectilinearly in the optically transparent radiator. According to the TF theory, the full width at half maximum (FWHM) of the ChR angular distribution inversely depends on the radiator thickness. In the case of relativistic heavy ions (RHI) a slowing-down in the radiator may sufficiently change the angular distribution of optical radiation in vicinity of the Cherenkov cone, since there appears a mixed ChR-Bremsstrahlung radiation. As a result, there occurs a drastic transformation of the FWHM of optical radiation angular distribution in dependence on the radiator thickness: from inversely proportional (TF theory) to the linearly proportional one. In our paper we present the first analysis of this transformation taking account of the gradual velocity decrease of RHI penetrating through a radiator.
NASA Astrophysics Data System (ADS)
Pettinger, B.; Wenning, U.; Wetzel, H.
1980-12-01
The strong dependence of the surface Raman intensity on the exciting frequency and on the angle of incidence for pyridine molecules adsorbed on Au, Ag and Cu electrodes after a weak oxidation/reduction cycle is evidence for a surface plasmon enhanced Raman scattering (SPERS).
NASA Technical Reports Server (NTRS)
Zhu, P. Y.
1991-01-01
The effective-medium approximation is applied to investigate scattering from a half-space of randomly and densely distributed discrete scatterers. Starting from vector wave equations, an approximation, called effective-medium Born approximation, a particular way, treating Green's functions, and special coordinates, of which the origin is set at the field point, are used to calculate the bistatic- and back-scatterings. An analytic solution of backscattering with closed form is obtained and it shows a depolarization effect. The theoretical results are in good agreement with the experimental measurements in the cases of snow, multi- and first-year sea-ice. The root product ratio of polarization to depolarization in backscattering is equal to 8; this result constitutes a law about polarized scattering phenomena in the nature.
Magnetization curves and probability angular distribution of the magnetization vector in Er2Fe14Si3
NASA Astrophysics Data System (ADS)
Sobh, Hala A.; Aly, Samy H.; Shabara, Reham M.; Yehia, Sherif
2016-01-01
Specific magnetic and magneto-thermal properties of Er2Fe14Si3, in the temperature range of 80-300 K, have been investigated using basic laws of classical statistical mechanics in a simple model. In this model, the constructed partition function was used to derive, and therefore calculate the temperature and/or field dependence of a host of physical properties. Examples of these properties are: the magnetization, magnetic heat capacity, magnetic susceptibility, probability angular distribution of the magnetization vector, and the associated angular dependence of energy. We highlight a correlation between the energy of the system, its magnetization behavior and the angular location of the magnetization vector. Our results show that Er2Fe14Si3 is an easy-axis system in the temperature range 80-114 K, but switches to an easy-plane system at T≥114 K. This transition is also supported by both of the temperature dependence of the magnetic heat capacity, which develops a peak at a temperature ~114 K, and the probability landscape which shows, in zero magnetic field, a prominent peak in the basal plane at T=113.5 K.
NASA Astrophysics Data System (ADS)
Jiménez-Ángeles, Felipe; Odriozola, Gerardo; Lozada-Cassou, Marcelo
2006-04-01
A simple model for two like-charged parallel rods immersed in an electrolyte solution is considered. We derived the three point extension (TPE) of the hypernetted chain/mean spherical approximation (TPE-HNC/MSA) and Poisson-Boltzmann (TPE-PB) integral equations. We numerically solve these equations and compare them to our results of Monte Carlo (MC) simulations. The effective interaction force, FT, the charge distribution profiles, ρel(x,y), and the angular dependent integrated charge function, P(θ ), are calculated for this system. The analysis of FT is carried out in terms of the electrostatic and entropic (depletion) contributions, FE and FC. We studied several cases of monovalent and divalent electrolytes, for which the ionic size and concentration are varied. We find good qualitative agreement between TPE-HNC/MSA and MC in all the cases studied. The rod-rod force is found to be attractive when immersed in large size, monovalent or divalent electrolytes. In general, the TPE-PB has poor agreement with the MC. For large monovalent and divalent electrolytes, we find angular dependent charge reversal charge inversion and polarizability. We discuss the intimate relationship between this angular dependent charge reversal and rod-rod attraction.
Sugita, Mitsuro; Weatherbee, Andrew; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex
2016-01-01
The probability density function (PDF) of light scattering intensity can be used to characterize the scattering medium. We have recently shown that in optical coherence tomography (OCT), a PDF formalism can be sensitive to the number of scatterers in the probed scattering volume and can be represented by the K-distribution, a functional descriptor for non-Gaussian scattering statistics. Expanding on this initial finding, here we examine polystyrene microsphere phantoms with different sphere sizes and concentrations, and also human skin and fingernail in vivo. It is demonstrated that the K-distribution offers an accurate representation for the measured OCT PDFs. The behavior of the shape parameter of K-distribution that best fits the OCT scattering results is investigated in detail, and the applicability of this methodology for biological tissue characterization is demonstrated and discussed. PMID:27446689
Sugita, Mitsuro; Weatherbee, Andrew; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex
2016-07-01
The probability density function (PDF) of light scattering intensity can be used to characterize the scattering medium. We have recently shown that in optical coherence tomography (OCT), a PDF formalism can be sensitive to the number of scatterers in the probed scattering volume and can be represented by the K-distribution, a functional descriptor for non-Gaussian scattering statistics. Expanding on this initial finding, here we examine polystyrene microsphere phantoms with different sphere sizes and concentrations, and also human skin and fingernail in vivo. It is demonstrated that the K-distribution offers an accurate representation for the measured OCT PDFs. The behavior of the shape parameter of K-distribution that best fits the OCT scattering results is investigated in detail, and the applicability of this methodology for biological tissue characterization is demonstrated and discussed. PMID:27446689
Vázquez-López, C.; Zendejas-Leal, B. E.; Bogard, James S; Golzarri, J. I.; Espinosa Garcia, Guillermo
2009-01-01
This paper presents a device to measure the angular distribution of the diffuse optical transmittance produced by etched nuclear tracks in polyallyl diglycol carbonate (PADC) detector. The device makes use of a stepper motor to move an array of four photodetectors around the sample in 1.8-degree steps. The integrated transmitted light was observed to increase monotonically with the etched track density in a range from zero to 2.8 x 10^5 per cm^2, using a neutron Am Be source.
Wang, H.; Snell, G.; Hemmers, O.; Sant'Anna, M. M.; Sellin, I.; Berrah, N.; Lindle, D. W.; Deshmukh, P. C.; Haque, N.; Manson, S. T.
2001-09-17
Two decades ago, it was predicted [Y.S.Kim et al., Phys.Rev.Lett.46, 1326 (1981)] that relativistic effects should alter the dynamics of the photoionization process in the vicinity of Cooper minima. The present experimental and theoretical study of the angular distributions of Xe 4d{sub 3/2} and 4d{sub 5/2} photoelectrons demonstrates this effect for the first time. The results clearly imply that relativistic effects are likely to be important for intermediate-Z atoms at most energies.
Korica, Sanja; Rolles, Daniel; Reinkoester, Axel; Viefhaus, Jens; Cvejanovic, Slobodan; Becker, Uwe; Langer, Burkhard
2005-01-01
We have performed high-resolution measurements of photoelectrons emitted from the valence shell of C{sub 60}, for both gas phase and solid state, in order to obtain branching ratios, partial cross sections, and the angular distribution anisotropy parameters of the two highest occupied molecular orbitals. The analysis is based on the Fourier transform of the cross-section oscillations and the results are corroborated by different theoretical models. In contrast to this good overall agreement between theory and experiment there is a striking disagreement with respect to predicted discrete resonance structures in the partial cross sections. Possible reasons for this behavior are discussed.
Ma, Y.; Chen, L. M. Huang, K.; Yan, W. C.; Hafz, N. A. M.; Zhang, J.; Li, D. Z.; Dunn, J.; Sheng, Z. M.
2014-10-20
We present an indirect method to diagnose the electron beam behaviors and bubble dynamic evolution in a laser-wakefield accelerator. Four kinds of typical bubble dynamic evolution and, hence, electron beam behaviors observed in Particle-In-Cell simulations are identified correspondingly by simultaneous measurement of distinct angular distributions of the betatron radiation and electron beam energy spectra in experiment. The reconstruction of the bubble evolution may shed light on finding an effective way to better generate high-quality electron beams and enhanced betatron X-rays.
Fahlman, A.; Carlson, T.A.; Krause, M.O.
1983-04-11
The angular asymmetry parameter ..beta.. for the Xe 5s..-->..epsilonp photoelectrons has been studied with use of synchrotron radiation (h..nu.. = 28--65 eV). The present results show that the relativistic random-phase approximation theory does not satisfactorily describe the Xe 5s photoionization process close to the Cooper minimum and thus require a renewed theoretical approach. The 5s partial photoionization cross section was obtained over the same photon region and the results agree with experimental values found in the literature.
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.
2010-01-01
It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.
Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility
NASA Astrophysics Data System (ADS)
Leal-Cidoncha, E.; Durán, I.; Paradela, C.; Tarrío, D.; Leong, L. S.; Tassan-Got, L.; Audouin, L.; Altstadt, S.; Andrzejewski, J.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Lederer, C.; Leeb, H.; Lo Meo, S.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.
2016-03-01
Neutron-induced fission cross sections of 238U and 235U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection effciency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data.
Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.
2016-03-26
We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are n(i, f) similar to 10(4)-10(5). We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one canmore » infer the decay width in more realistic magnetic fields of 10(15) G, where n(i, f) similar to 10(12)-10(13), from the results for n(i, f) similar to 10(4)-10(5). The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less
Nikolaev, A. G. Savkin, K. P.; Yushkov, G. Yu.; Frolova, V. P.; Barengolts, S. A.
2014-12-07
We present research results on vacuum arc plasma produced with multicomponent cathode made of several different elements. The ion mass-to-charge-state spectra of the plasmas were studied by time-of-flight spectrometry. The angular distributions of different ion species were measured, and the kinetic energy of their directed (streaming) motion was determined. It is shown that the fractional composition of ions of different cathode components in the plasma flow from the cathode spot closely matches the fractional content of these components in the composite cathode. The charge states of ions of the various cathode components are determined by the average electron temperature in the cathode spot plasma. The angular distribution of lower mass ions in the plasma from a multicomponent cathode is less isotropic and broader than for the plasma from a single-component cathode of the same light element. The directed kinetic energies of the ions of the different components for plasma from a multicomponent cathode are lower for lighter elements and greater for heavier elements compared to the ion directed energy for plasmas from single-component cathodes made of the same materials. The physical processes responsible for these changes in the ion charge states in multicomponent-cathode vacuum arc plasma are discussed.
Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei
2014-09-28
We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.
Jia Ying; Bao Jingdong
2007-03-15
The anisotropy of the fission fragment angular distribution defined at the saddle point and the neutron multiplicities emitted prior to scission for fissioning nuclei {sup 224}Th, {sup 229}Np, {sup 248}Cf, and {sup 254}Fm are calculated simultaneously by using a set of realistic coupled two-dimensional Langevin equations, where the (c,h,{alpha}=0) nuclear parametrization is employed. In comparison with the one-dimensional stochastic model without neck variation, our two-dimensional model produces results that are in better agreement with the experimental data, and the one-dimensional model is available only for low excitation energies. Indeed, to determine the temperature of the nucleus at the saddle point, we investigate the neutron emission during nucleus oscillation around the saddle point for different friction mechanisms. It is shown that the neutrons emitted during the saddle oscillation cause the temperature of a fissioning nuclear system at the saddle point to decrease and influence the fission fragment angular distribution.
Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei
2014-09-28
We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO{sup −} photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.
Kontson, Kimberly; Jennings, Robert J.
2014-01-01
Abstract. Scatter contamination of projection images in cone-beam computed tomography (CT) degrades the image quality. The use of bowtie filters in dedicated breast CT can decrease this scatter contribution. Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to differences in path length in a projection were studied. These designs have been investigated in terms of their ability to reduce the scatter contamination in projection images acquired in a dedicated breast CT geometry. The scatter magnitude was measured as the scatter-to-primary ratio (SPR) using experimental and Monte Carlo techniques for various breast phantom diameters and tube voltages. The results show that a 55% reduction in the center SPR value could be obtained with the bowtie filter designs. On average, the bowtie filters reduced the center SPR by approximately 18% over all breast diameters. The distribution of the scatter was calculated at a range of different locations to produce scatter distribution maps for all three bowtie filter designs. With the inclusion of the bowtie filters, the scatter distribution was more uniform for all breast diameters. The results of this study will be useful in designing scatter correction methods and understanding the benefits of bowtie filters in dedicated breast CT. PMID:26158057
NASA Astrophysics Data System (ADS)
Hjelte, I.; Karlsson, L.; Svensson, S.; De Fanis, A.; Carravetta, V.; Saito, N.; Kitajima, M.; Tanaka, H.; Yoshida, H.; Hiraya, A.; Koyano, I.; Ueda, K.; Piancastelli, M. N.
2005-02-01
Vibrationally resolved spectra have been obtained for the lowest-lying cationic states XB12,AA12, and BB22 of the water molecule reached after participator resonant Auger decay of core-excited states. The angular distribution has been measured of the first four vibrational components of the X state in the photon energy regions including the O 1s →4a1 and the O 1s→2b2 core excitations, and for different portions of the vibrational envelope of the B state in the photon energy region including the O 1s→2b2 core excitation. For the X state, a large relative spread in β values of the different vibrational components is observed across both resonances. For the B state, a very different trend is observed for the high binding energy side and the low binding energy side of the related spectral feature as a function of photon energy. A theoretical method based on the scattering K matrix has been used to calculate both the photoabsorption spectrum and the β values, by taking both interference between direct and resonant photoemission and vibrational/lifetime interference into account. The numerical results show qualitative agreement with the trends detected in the experimental values and explain the conspicuous variations of the β values primarily in terms of coupling between direct and resonant photoemission by interaction terms of different sign for different final vibrational states.
NASA Astrophysics Data System (ADS)
Ohsawa, Daisuke; Kawauchi, Hidetaka; Hirabayashi, Masataka; Okada, Yuki; Honma, Toshihiro; Higashi, Akio; Amano, Shigeru; Hashimoto, Yoshinori; Soga, Fuminori; Sato, Yukio
2005-01-01
An apparatus has been built to measure the doubly differential cross-section of electron emission from water vapor with fast heavy-ion impact (6-25 MeV/u). Ejected electrons are detected by a Chevron-type microchannel plate assembly after being analyzed by a 45° inclined parallel-plate electrostatic spectrometer, which is rotatable from 20° to 160° with respect to the incident-beam direction. The scattering chamber is made of iron, and both the electron spectrometer and the detector assembly are mounted in a μ-metal housing in order to suppress the effects of stray magnetic fields (including that of Earth). Water vapor is emitted into the interaction region from a nozzle of 1 × 15 mm2 aperture, and is instantly frozen and trapped as ice on a stainless-steel panel, which is cooled by liquid N2. With this water-vapor generation and collection system, a stable water-vapor jet (10-2-10-3 Torr) was obtained without deteriorating the pressure in the scattering chamber (∼4 × 10-7 Torr with a vapor flow of 40.0 cc/min). Using the present apparatus, we have successfully measured the energy and angular distribution (7-10,000 eV and 20-160°) of secondary electrons produced in the collision of a 6.0-MeV/u He2+ ion with water vapor; binary-encounter collision peaks were clearly observed at the several keV region for angles smaller than 90°, as well as the K-LL Auger peak of oxygen at ∼500 eV for all angles.
Three-Dimensional Model of the Scatterer Distribution in Cirrhotic Liver
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Nakamura, Keigo; Hachiya, Hiroyuki
2003-05-01
Ultrasonic B-mode images are affected by changes in scatterer distribution. It is hard to estimate the relationship between the ultrasonic image and the tissue structure quantitatively because we cannot observe the continuous stages of liver cirrhosis tissue clinically, particularly the beginning stage. In this paper, we propose a three-dimensional modeling method of scatterer distribution for normal and cirrhotic livers to confirm the influence of the change in the form of scatterer distribution on echo information. The algorithm of the method includes parameters which determine the expansion of nodules and fibers. Using the B-mode images which are obtained from these scatterer distributions, we analyze the relationship between the changes in the form of biological tissue and the changes in the B-mode images during progressive liver cirrhosis.
Alkhazov, G. D.; Sarantsev, V. V.
2012-12-15
In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.
NASA Technical Reports Server (NTRS)
Sentman, D. D.; Vanallen, J. A.
1975-01-01
The results of an angular distribution analysis of the electron intensity data recorded near Jupiter for the period from 26 November to 14 December 1973 are presented. The data were from three directional particle detectors with effective integral electron energy thresholds of 0.06, 0.55, and 5.0 Mev, respectively. It was found that the central core of the magnetosphere, within 12 Jupiter radii, is dominated by pitch angle distributions strongly peaked at alpha = 90 deg, while the region from 12 to 25 Jupiter radii shows bidirectional and approximately equal maxima at alpha = 0 and 180 deg. Bidirectional angular distributions in the magnetodisc out to the radius of the magnetopause strongly suggest quasi-trapping on closed field lines as the predominant situation. Substantial field aligned, unidirectional streaming was detected on only two occasions. No distinctive effects on angular distributions were discerned near the L-shells of satellites.
Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D.A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D.J.; Hearty, C.; /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison
2011-08-15
We present branching fraction and CP asymmetry measurements as well as angular studies of B {yields} {phi}{phi}K decays using 464 x 10{sup 6} B{bar B} events collected by the BABAR experiment. The branching fractions are measured in the {phi}{phi} invariant mass range below the {eta}{sub c} resonance (m{sub {phi}{phi}} < 2.85 GeV). We find {Beta}(B{sup +} {yields} {phi}{phi}K{sup +}) = (5.6 {+-} 0.5 {+-} 0.3) x 10{sup -6} and {Beta}(B{sup 0} {yields} {phi}{phi}K{sup 0}) = (4.5 {+-} 0.8 {+-} 0.3) x 10{sup -6}, where the first uncertaintiy is statistical and the second systematic. The measured direct CP asymmetries for the B{sup {+-}} decays are A{sub CP} = -0.10 {+-} 0.08 {+-} 0.02 below the {eta}{sub c} threshold (m{sub {phi}{phi}} < 2.85 GeV) and A{sub CP} = 0.09 {+-} 0.10 {+-} 0.02 in the {eta}{sub c} resonance region (m{sub {phi}{phi}} in [2.94,3.02] GeV). Angular distributions are consistent with J{sub P} = 0{sup -} in the {eta}{sub c} resonance region and favor J{sup P} = 0{sup +} below the {eta}{sub c} resonance.
On The Distribution Of Angular Orbital Elements Of Near-earth Objects
NASA Astrophysics Data System (ADS)
JeongAhn, Youngmin; Malhotra, R.
2012-05-01
The longitude of ascending node Ω and the argument of periapsis ω are expected to be randomly distributed for near-Earth objects (NEOs). However, the distribution of these angles for the Apollo, Amor and Aten subclasses, considered separately, shows some striking non-random features. We explain how these features arise due to observational biases. The distribution of Ω has maxima near 0 and 180° and is affected by observational difficulty due to the galactic plane at the opposition and other seasonal effects. The ω distributions of Aten and Amor subclasses have minima at 90° and 270° while Apollos have minima at 0 and 180°. This is explained by the greater detectability of NEOs at close approach to Earth. The longitude of perihelion Ω+ω also has a strongly non-random distribution that may be owed to actual dynamical effects. Understanding the distribution of unobserved NEOs will help to improve planning for the next generation of NEO surveys. A better understanding of the intrinsic distribution of NEOs is important for estimating the impact hazard at Earth; it is also important for understanding the impact history of the Moon and the terrestrial planets.
The Angular Momentum Distribution and Baryon Content of Star-forming Galaxies at z ˜ 1-3
NASA Astrophysics Data System (ADS)
Burkert, A.; Förster Schreiber, N. M.; Genzel, R.; Lang, P.; Tacconi, L. J.; Wisnioski, E.; Wuyts, S.; Bandara, K.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R.; Dekel, A.; Fabricius, M.; Fossati, M.; Kulkarni, S.; Lutz, D.; Mendel, J. T.; Momcheva, I.; Nelson, E. J.; Naab, T.; Renzini, A.; Saglia, R.; Sharples, R. M.; Sternberg, A.; Wilman, D.; Wuyts, E.
2016-08-01
We analyze the angular momenta of massive star-forming galaxies (SFGs) at the peak of the cosmic star formation epoch (z ˜ 0.8-2.6). Our sample of ˜360 log(M */M ⊙) ˜ 9.3-11.8 SFGs is mainly based on the KMOS3D and SINS/zC-SINF surveys of Hα kinematics, and collectively provides a representative subset of the massive star-forming population. The inferred halo scale angular momentum distribution is broadly consistent with that theoretically predicted for their dark matter halos, in terms of mean spin parameter < λ > ˜ 0.037 and its dispersion (σ logλ ˜ 0.2). Spin parameters correlate with the disk radial scale and with their stellar surface density, but do not depend significantly on halo mass, stellar mass, or redshift. Our data thus support the long-standing assumption that on average, even at high redshifts, the specific angular momentum of disk galaxies reflects that of their dark matter halos (j d = j DM). The lack of correlation between λ × (j d /j DM) and the nuclear stellar density Σ*(1 kpc) favors a scenario where disk-internal angular momentum redistribution leads to “compaction” inside massive high-redshift disks. For our sample, the inferred average stellar to dark matter mass ratio is ˜2%, consistent with abundance matching results. Including the molecular gas, the total baryonic disk to dark matter mass ratio is ˜5% for halos near 1012 M ⊙, which corresponds to 31% of the cosmologically available baryons, implying that high-redshift disks are strongly baryon dominated. Based on observations obtained at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO Programme IDs 075.A-0466, 076.A-0527, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-0635, 081.B-0568, 081.A-0672, 082.A-0396, 183.A-0781, 087.A-0081, 088.A-0202, 088.A-0209, 091.A-0126, 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025).
NASA Astrophysics Data System (ADS)
Telnov, Dmitry A.; Wang, Jingyan; Chu, Shih-I.
1995-06-01
We present a general nonperturbative formalism and an efficient and accurate numerical technique for the study of the angular distributions and partial widths for multiphoton above-threshold detachment in two-color fields. The procedure is based on an extension of our recent paper [D. A. Telnov and S.-I Chu, Phys. Rev. A 50, 4099 (1994)] for one-color detachment, and the many-mode Floquet theory [T. S. Ho, S.-I Chu, and J. V. Tietz, Chem. Phys. Lett. 96, 464 (1983)]. The generalization of this procedure is performed for both cases of commensurable and incommensurable frequencies of the two-color fields. The procedure consists of the following elements: (i) Determination of the resonance wave function and complex quasienergy by means of the non-Hermitian Floquet Hamiltonian formalism. The Floquet Hamiltonian is discretized by the complex-scaling generalized pseudospectral technique recently developed [J. Wang, S.-I Chu, and C. Laughlin, Phys. Rev. A 50, 3208 (1994)]. (ii) Calculation of the angular distribution and partial widths based on an exact differential formula and a procedure for the rotation of the resonance wave function back to the real axis. The method is applied to a nonperturbative study of multiphoton above-threshold detachment of H- by 10.6-μm radiation and its third harmonic (the commensurable case). The results show strong dependence on the relative phase δ between the fundamental frequency field and its harmonic. For the intensities used in calculations (1010 W/cm2 for the fundamental frequency, 108 and 109 W/cm2 for the harmonic), the total rate has its maximum at δ=0 and minimum at δ=π. However, this tendency, though valid for the first several above-threshold peaks in the energy spectrum, is reversed for the higher-energy peaks. The energy spectrum for δ=π is broader, and the peak heights decrease more slowly compared to the case of δ=0. The strong phase dependence is also manifested in the angular distributions of the ejected electrons.
Generalized parton distributions and Deeply Virtual Compton Scattering on proton at CLAS
R. De Masi
2007-12-01
Two measurements of target and beam spin asymmetries for the reaction ep→epγ were performed with CLAS at Jefferson Laboratory. Polarized 5.7 GeV electrons were impinging on a longitudinally polarized ammonia and liquid hydrogen target respectively. These measurements are sensitive to Generalized Parton Distributions. Sizable sin phi azimuthal angular dependences were observed in both experiments, indicating the dominance of leading twist terms and the possibility of extracting combinations of Generalized Parton Distributions on the nucleon.
Turcu, Ioan; Pop, Cristian V L; Neamtu, Silvia
2006-03-20
Red blood cells (RBCs) scatter light mainly in the forward direction, where the scattering phase function has a narrow peak. We performed an experimental investigation into the angular distribution of light scattered by blood in the small-angle domain. A highly diluted suspension of RBCs (hematocrits in the range 5 x 10(-5)-10(-2)) was illuminated with a He-Ne laser with 633 nm wavelength. We focused our research on two main topics: the scattering efficiency of the RBCs given by the mean scattering cross section and the scattering anisotropy obtained from the angular distribution of the scattered photons. The collimated beam transmission and the angular distribution of scattered light were measured and compared with the predictions of the effective phase function model. The RBCs' mean scattering cross section and scattering anisotropy were obtained by fitting of the experimental data. PMID:16579566
Analytical and experimental investigation of light scattering from polydispersions of Mie particles.
Holland, A C; Draper, J S
1967-03-01
A comparison has been made between (1) the computed angular scattering coefficient for a polydisperse cloud of small, spherical (Mie) particles and (2) the measured angular scattering coefficient for a polydisperse cloud of irregular, randomly oriented (Mie) particles fitting the same distribution function and having the same material properties. The comparison has been made for eight wavelengths covering the visible range.
NASA Astrophysics Data System (ADS)
Hosaka, Makoto; Ishii, Toshiki; Tanaka, Asato; Koga, Shogo; Hoshizawa, Taku
2013-09-01
We developed an iterative method for optimizing the exposure schedule to obtain a constant signal-to-scatter ratio (SSR) to accommodate various recording conditions and achieve high-density recording. 192 binary images were recorded in the same location of a medium in approximately 300×300 µm2 using an experimental system embedded with a blue laser diode with a 405 nm wavelength and an objective lens with a 0.85 numerical aperture. The recording density of this multiplexing corresponds to 1 Tbit/in.2. The recording exposure time was optimized through the iteration of a three-step sequence consisting of total reproduced intensity measurement, target signal calculation, and recording energy density calculation. The SSR of pages recorded with this method was almost constant throughout the entire range of the reference beam angle. The signal-to-noise ratio of the sampled pages was over 2.9 dB, which is higher than the reproducible limit of 1.5 dB in our experimental system.
West, R.; Tsang, Leung; Winebrenner, D.P. )
1993-03-01
Dense medium radiative transfer theory is applied to a three-layer model consisting of two scattering layers overlying a homogeneous half space with a size distribution of particles in each layer. A model with a distribution of sizes gives quite different results than those obtained from a model with a single size. The size distribution is especially important in the low frequency limit when scattering is strongly dependent on particle size. The size distribution and absorption characteristics also affect the extinction behavior as a function of fractional volume. Theoretical results are also compared with experimental data. The sizes, permittivities, and densities used in the numerical illustrations are typical values for snow.
Koehrbrueck, R.; Grether, M.; Spieler, A.; Stolterfoht, N. ); Page, R.; Saal, A.; Bleck-Neuhaus, J. )
1994-08-01
Secondary electron spectra of the H-like Ne[sup 9+] ion incident with impact energies of 135 eV up to 90 keV on a solid Al(111) surface were measured. The dependence of the [ital K] Auger electron yield on the angle of observation is studied in detail. It is found to be cosine like in case of the 90-keV Ne[sup 9+] ions and to be more and more isotropic at lower ion energies although a clear anisotropy remains. Information about the rates of the filling of the [ital L] and [ital K] shells inside the solid is obtained from a comparison of the measured angular distributions with the calculation of a two-step model for the successive filling of the [ital L] and [ital K] shells. The data show clear evidence for Auger electron emission from below the surface for ion energies as low as 135 eV.
NASA Technical Reports Server (NTRS)
Borog, V. V.; Kirillov-Ugryumov, V. G.; Petrukhin, A. A.; Shestakov, V. V.
1975-01-01
An installation consisting of an ionization calorimeter and a counter hodoscope can be used to record cascade showers caused by the electromagnetic interactions of muons with superhigh energies in the cosmic ray horizontal flux. The direction of the muons is determined by a hodoscope consisting of 2196 counters. The information obtained makes it possible to restore the angular and energy distribution of the cosmic muons, which, in turn, makes it possible to determine the mechanism of their generation. The accuracy with which the angle of the passing particle is determined is discussed in detail in addition to the causes which can introduce distortions, such as shower accompaniment of neutrons, escape of shower electrons from the calorimeter, random coincidences, etc.
NASA Astrophysics Data System (ADS)
Babaeva, Natalia Yu; Kushner, Mark J.
2011-06-01
Atmospheric pressure streamers intersecting particles are of interest in the context of plasma aided combustion, where the particle may be a fuel aerosol droplet, or in sterilization of air, where the particle may be a bacterium. The ion energy and angular distributions (IEADs) incident on the particles, small curved dielectric surfaces, then in part determine the propensity for activating chemical reactions or, in the case of bacteria, the plasma's sterilization capability. In this paper, we discuss results from a computational investigation of IEADs on small particles (45 µm radius) produced by atmospheric pressure discharge. Streamers intersecting a particle momentarily generate a large sheath potential as the streamer passes by as the particle charges towards the plasma floating potential. During that time, ions of energies up to 3-10 eV can strike the particle. The permittivity of the particle and the streamer polarity in part determine the character of the IEAD.
NASA Astrophysics Data System (ADS)
Juarez, A. M.; Redt, E.; Hoenert, M.; Hoyos-Campo, L. M.; Rolles, D.; Berrah, N.; Aguilar, A.
2009-11-01
We present photoelectron angular distributions (PADs) in Helium and Neon for electrons with excess energies between 5 and 100 meV. These ultra-low kinetic energy PAD measurements were obtained with a modified Velocity Map Imaging spectrometer (VMI) and VUV light from the Advanced Light Source (ALS) synchrotron radiation source. The efficiency and reliability of the spectrometer at this ultra-low kinetic energy range has been tested by determining the variation with energy of the asymmetry, β, parameter of photoelectrons from the s-shell direct ionization in Helium. For Neon, we determined the energy dependent asymmetry parameters across the "s" and "d" autoionizing resonances between the P3/2 and P1/2 ionic states. Furthermore, we measured the asymmetry parameter for photoelectrons produced from the n = 2 to n = 6 satellite states of He. These measurements were performed at values of excess kinetic energy previously unexplored.
NASA Astrophysics Data System (ADS)
Sperl, A.; Rietz, H.; Schoenwald, M.; Fischer, A.; Simeonidis, K.; Ullrich, J.
Noble gas atoms can be ionized by irradiation with an extreme-ultraviolet (XUV) attosecond pulse train emitting electron wave packets. The attosecond pulse trains can be characterized by superimposing the XUV and its generating, fundamental IR field and considering the energy transfer to the electron wave packets as a function of time delay between both fields, resulting in oscillating energy-sidebands. The three-dimensional dynamics of the photoelectrons however can now be studied in more detail by combining the XUV light source with a Reaction Microscope. In this context we changed the polarisation of the XUV and the IR fields with respect to each other by 90{}^{circ }, detecting a remarkable change of the angular distribution of the sideband-photoelectrons.
Angular distribution of the bremsstrahlung emission during lower-hybrid current drive on PLT
von Goeler, S.; Stevens, J.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hill, K.; Hosea, J.
1985-06-01
The bremsstrahlung emission from the PLT tokamak during lower-hybrid current drive has been measured as a function of angle between the magnetic field and the emission direction. The emission is peaked strongly in the forward direction, indicating a strong anisotropy of the electron-velocity distribution. The data demonstrate the existence of a nearly flat tail of the velocity distribution, which extends out to approximately 500 keV and which is interpreted as the plateau created by Landau damping of the lower-hybrid waves.
Konomi, I.; Motohiro, T.; Azuma, H.; Asaoka, T.; Nakazato, T.; Sato, E.; Shimizu, T.; Fujioka, S.; Sarukura, N.; Nishimura, H.
2010-05-15
Angular distributions of atoms emitted by laser ablation of perovskite-type oxide SrZrO{sub 3} have been investigated using electron probe microanalysis with wavelength-dispersive spectroscopy and charge-coupled device photography with an interference filter. Each constituent element has been analyzed as a two-modal distribution composed of a broad cos{sup m} {theta} distribution and a narrow cos{sup n} {theta} distribution. The exponent n characterizes the component of laser ablation while the exponent m characterizes that of thermal evaporation, where a larger n or m means a narrower angular distribution. In vacuum, O (n=6) showed a broader distribution than those of Sr (n=16) and Zr (n=17), and Sr{sup +} exhibited a spatial distribution similar to that of Sr. As the laser fluence was increased from 1.1 to 4.4 J/cm{sup 2}, the angular distribution of Sr became narrower. In the laser fluence range of 1.1-4.4 J/cm{sup 2}, broadening of the angular distribution of Sr was observed only at the fluence of 1.1 J/cm{sup 2} under the oxygen pressure of 10 Pa. Monte Carlo simulations were performed to estimate approximately the energy of emitted atoms, focusing on the broadening of the angular distribution under the oxygen pressure of 10 Pa. The energies of emitted atoms were estimated to be 1-20 eV for the laser fluence of 1.1 J/cm{sup 2}, and more than 100 eV for 2.2 and 4.4 J/cm{sup 2}.
Measurements of the Angular Distributions of Muons from Υ Decays in pp̄ Collisions at √s=1.96 TeV
Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al
2012-04-11
The angular distributions of muons from Υ(1S,2S,3S)→μ⁺μ⁻ decays are measured using data from pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for Υ mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of Υ(3S) mesons. Within the kinematic range of Υ rapidity |y|<0.6 and pT up to 40 GeV/c, the angular distributions are found to be nearlymore » isotropic.« less
Measurements of the Angular Distributions of Muons from Υ Decays in pp̄ Collisions at √s=1.96 TeV
Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhou, C.; Zucchelli, S.
2012-04-11
The angular distributions of muons from Υ(1S,2S,3S)→μ⁺μ⁻ decays are measured using data from pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum p_{T} for Υ mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of Υ(3S) mesons. Within the kinematic range of Υ rapidity |y|<0.6 and p_{T} up to 40 GeV/c, the angular distributions are found to be nearly isotropic.
Selstoe, S.; Palacios, A.; Fernandez, J.; Martin, F.
2007-03-15
We present a theoretical study of the electron angular distribution produced in resonance enhanced two-photon ionization of the H{sub 2}{sup +} molecular ion using ultrashort laser pulses. The method consists in solving the time dependent Schroedinger equation and includes all electronic and vibrational degrees of freedom. Differential (in proton energy and electron emission solid angle) ionization probabilities have been evaluated for various photon energies, laser intensities, and pulse durations. We show that (1+1) resonance-enhanced multiphoton ionization (REMPI) leads to angular distributions significantly different from those produced in direct two-photon ionization. The REMPI process is observed even at photon energies not matching the energy difference between two electronic states in a perfect vertical transition. Interestingly, there is no trace of REMPI effects in the electron angular distribution when the fully differential probabilities are integrated over proton energy.
NASA Astrophysics Data System (ADS)
Schenk, Gundolf; Krajina, Brad; Spakowitz, Andrew; Doniach, Sebastian
2016-12-01
In vivo chromosomal behavior is dictated by the organization of genomic DNA at length scales ranging from nanometers to microns. At these disparate scales, the DNA conformation is influenced by a range of proteins that package, twist and disentangle the DNA double helix, leading to a complex hierarchical structure that remains undetermined. Thus, there is a critical need for methods of structural characterization of DNA that can accommodate complex environmental conditions over biologically relevant length scales. Based on multiscale molecular simulations, we report on the possibility of measuring supercoiling in complex environments using angular correlations of scattered X-rays resulting from X-ray free electron laser (xFEL) experiments. We recently demonstrated the observation of structural detail for solutions of randomly oriented metallic nanoparticles [D. Mendez et al., Philos. Trans. R. Soc. B 360 (2014) 20130315]. Here, we argue, based on simulations, that correlated X-ray scattering (CXS) has the potential for measuring the distribution of DNA folds in complex environments, on the scale of a few persistence lengths.
Cloud-droplet-size distribution from lidar multiple-scattering measurements.
Benayahu, Y; Ben-David, A; Fastig, S; Cohen, A
1995-03-20
A method for calculating droplet-size distribution in atmospheric clouds is presented, based on measurement of laser backscattering and multiple scattering from water clouds. The lidar uses a Nd:YAG laser that emits short pulses at a moderate repetition rate. The backscattering, which is composed mainly of single scattering, is measured with a detector pointing along the laser beam. The multiple scattering, which is mainly double scattering, is measured with a second detector, pointing at a specified angle to the laser beam. The domain of scattering angles that contribute to the doublescattering signal increases monotonically as the pulse penetrates the cloud. The water droplets within the probed volume are assumed to have a constant size distribution. Hence, from the double-scatteringmeasured signal as a function of penetration depth within the cloud, the double-scattering phase function of the scattering volume is derived. Inverting the phase function results in a cloud-droplet-size distribution in the form of a log-normal function.
Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies
NASA Technical Reports Server (NTRS)
Chou, T. T.; Chen, N. Y.
1985-01-01
The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail.
Yuan, Gangcheng; Chen, Xinjuan; Yu, Tongjun Lu, Huimin; Chen, Zhizhong; Kang, Xiangning; Wu, Jiejun; Zhang, Guoyi
2014-03-07
Angular intensity distributions of differently polarized light sources in multiple quantum wells (MQWs) and their effects on extraction behavior of spontaneous emission from light emitting diode (LED) chips have been studied. Theoretical calculation based on k·p approximation, ray tracing simulation and angular electroluminescence measurement were applied in this work. It is found that the electron-hole recombination in the InGaN MQWs produces a spherical distribution of an s-polarized source and a dumbbell-shaped p-polarized source. Light rays from different polarized sources experience different extraction processes, determining the polarization degree of electro-luminescence and extraction efficiency of LEDs.
Yamaoki, Toshihiko; Hamada, Hiroaki; Matoba, Osamu
2016-09-01
Experimental investigation to show the effectiveness of the extraction method of absorber information in a scattering medium by taking the output power ratio distribution is presented. In the experiment, two metallic wires sandwiched by three homogeneous scattering media are used as absorbers in transmission geometry. The output power ratio distributions can extract the influence of the absorbers to enhance the optical signal. The peak position of the output power ratio distributions agree with the results suggested by numerical simulation. From the reconstructed results of tomography in the scattering media, we have confirmed that the tomographic image of two wires can distinguish them successfully from 41×21 output power ratio distributions by using continuous-wave light. PMID:27607261
NASA Astrophysics Data System (ADS)
Hosseinkhani, H.; Modarres, M.
2011-01-01
To overcome the complexity of generalized two hard scale (kt , μ) evolution equation, well known as the Ciafaloni, Catani, Fiorani and Marchesini (CCFM) evolution equations, and calculate the unintegrated parton distribution functions (UPDF), Kimber, Martin and Ryskin (KMR) proposed a procedure based on (i) the inclusion of single-scale (μ) only at the last step of evolution and (ii) the angular ordering constraint (AOC) on the DGLAP terms (the DGLAP collinear approximation), to bring the second scale, kt into the UPDF evolution equations. In this work we intend to use the MSTW2008 (Martin et al.) parton distribution functions (PDF) and try to calculate UPDF for various values of x (the longitudinal fraction of parton momentum), μ (the probe scale) and kt (the parton transverse momentum) to see the general behavior of three-dimensional UPDF at the NLO level up to the LHC working energy scales (μ2). It is shown that there exits some pronounced peaks for the three-dimensional UPDF (fa (x ,kt)) with respect to the two variables x and kt at various energies (μ). These peaks get larger and move to larger values of kt, as the energy (μ) is increased. We hope these peaks could be detected in the LHC experiments at CERN and other laboratories in the less exclusive processes.
Angular Distribution of Tungsten Material and Ion Flux during Nanosecond Pulsed Laser Deposition
NASA Astrophysics Data System (ADS)
Hussain, M. S.; Dogar, A. H.; Qayyum, A.; Abbasi, S. A.
2016-01-01
Tungsten thin films were prepared by pulsed laser deposition (PLD) technique on glass substrates placed at the angles of 0∘ to 70∘ with respect to the target surface normal. Rutherford backscattering Spectrometry (RBS) analysis of the films indicated that about 90% of tungsten material flux is distributed in a cone of 40∘ solid angle while about 54% of it lies even in a narrower cone of 10∘ solid angle. Significant diffusion of tungsten in glass substrate has been observed in the films deposited at smaller angles with respect to target surface normal. Time-of-flight (TOF) measurements performed using Langmuir probe indicated that the most probable ion energy decreases from about 600 to 91eV for variation of θ from 0∘ to 70∘. In general ion energy spread is quite large at all angles investigated here. The enhanced tungsten diffusion in glass substrate observed at smaller angles is most probably due to the higher ion energy and ion assisted recoil implantation of already deposited tungsten.
NASA Astrophysics Data System (ADS)
Daon, Shauli; Pollak, Eli; Miret-Artés, S.
2012-11-01
Inspired by the semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984), 10.1063/1.446609], we derive explicit expressions for the angular distribution of particles scattered from thermal surfaces. At very low surface temperature, the observed experimental background scattering is proportional to the spectral density of the phonons. The angular distribution is a sum of diffraction peaks and a broad background reflecting the spectral density. The theory is applied to measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface.
NASA Technical Reports Server (NTRS)
Cloud, Stanley D.
1987-01-01
A computer calculation of the expected angular distribution of coherent anti-Stokes Raman scattering (CARS) from micrometer size polystyrene spheres based on a Mie-type model, and a pilot experiment to test the feasibility of measuring CARS angular distributions from micrometer size polystyrene spheres by simply suspending them in water are discussed. The computer calculations predict a very interesting structure in the angular distributions that depends strongly on the size and relative refractive index of the spheres.
E1 and E2S factors of C12(α,γ0)O16 from γ-ray angular distributions with a 4 π-detector array
NASA Astrophysics Data System (ADS)
Assunção, M.; Fey, M.; Lefebvre-Schuhl, A.; Kiener, J.; Tatischeff, V.; Hammer, J. W.; Beck, C.; Boukari-Pelissie, C.; Coc, A.; Correia, J. J.; Courtin, S.; Fleurot, F.; Galanopoulos, E.; Grama, C.; Haas, F.; Hammache, F.; Hannachi, F.; Harissopulos, S.; Korichi, A.; Kunz, R.; Ledu, D.; Lopez-Martens, A.; Malcherek, D.; Meunier, R.; Paradellis, Th.; Rousseau, M.; Rowley, N.; Staudt, G.; Szilner, S.; Thibaud, J. P.; Weil, J. L.
2006-05-01
A new experiment to determine the thermonuclear cross section of the C12(α,γ)O16 reaction has been performed in regular kinematics using an intense α-particle beam of up to 340 μA from the Stuttgart DYNAMITRON. For the first time, a 4π-germanium-detector setup has been used to measure the angular distribution of the γ rays at all angles simultaneously. It consisted of an array of nine EUROGAM high-purity Ge detectors in close geometry, actively shielded individually with bismuth germanate crystals. The C12 targets were isotopically enriched by magnetic separation during implantation. The depth profiles of the implanted carbon in the C12 targets were determined by Rutherford backscattering for purposes of cross-section normalization and absolute determination of the E1 and E2S factors. Angular distributions of the γ decay to the O16 ground state were measured in the energy range Ec.m.=1.30 2.78 MeV and in the angular range (lab.) 30° 130°. From these distributions, astrophysical E1 and E2S-factor functions vs energy were calculated, both of which are indispensable to the modeling of this reaction and the extrapolation toward lower energies. The separation of the E1 and E2 capture channels was done both by taking the phase value ϕ12 as a free parameter and by fixing it using the results of elastic α-particle scattering on C12 in the same energy range.
Assuncao, M.; Lefebvre-Schuhl, A.; Kiener, J.; Tatischeff, V.; Boukari-Pelissie, C.; Coc, A.; Correia, J.J.; Grama, C.; Hannachi, F.; Korichi, A.; LeDu, D.; Lopez-Martens, A.; Meunier, R.; Thibaud, J.P.; Beck, C.; Courtin, S.
2006-05-15
A new experiment to determine the thermonuclear cross section of the {sup 12}C({alpha},{gamma}){sup 16}O reaction has been performed in regular kinematics using an intense {alpha}-particle beam of up to 340 {mu}A from the Stuttgart DYNAMITRON. For the first time, a 4{pi}-germanium-detector setup has been used to measure the angular distribution of the {gamma} rays at all angles simultaneously. It consisted of an array of nine EUROGAM high-purity Ge detectors in close geometry, actively shielded individually with bismuth germanate crystals. The {sup 12}C targets were isotopically enriched by magnetic separation during implantation. The depth profiles of the implanted carbon in the {sup 12}C targets were determined by Rutherford backscattering for purposes of cross-section normalization and absolute determination of the E1 and E2 S factors. Angular distributions of the {gamma} decay to the {sup 16}O ground state were measured in the energy range E{sub c.m.}=1.30-2.78 MeV and in the angular range (lab.) 30 deg. -130 deg. . From these distributions, astrophysical E1 and E2 S-factor functions vs energy were calculated, both of which are indispensable to the modeling of this reaction and the extrapolation toward lower energies. The separation of the E1 and E2 capture channels was done both by taking the phase value {phi}{sub 12} as a free parameter and by fixing it using the results of elastic {alpha}-particle scattering on {sup 12}C in the same energy range.
NASA Technical Reports Server (NTRS)
Lingenfelter, Richard E.
1989-01-01
Comparisons of Solar Maximum Mission (SMM) observations of gamma-ray line and neutron emission with theoretical calculation of their expected production by flare accelerated ion interactions in the solar atmosphere have led to significant advances in the understanding of solar flare particle acceleration and interaction, as well as the flare process itself. These comparisons have enabled the determination of, not only the total number and energy spectrum of accelerated ions trapped at the sun, but also the ion angular distribution as they interact in the solar atmosphere. The Monte Carlo program was modified to include in the calculations of ion trajectories the effects of both mirroring in converging magnetic fields and of pitch angle scattering. Comparing the results of these calculations with the SMM observations, not only the angular distribution of the interacting ions can be determined, but also the initial angular distribution of the ions at acceleration. The reliable determination of the solar photospheric He-3 abundance is of great importance for understanding nucleosynthesis in the early universe and its implications for cosmology, as well as for the study of the evolution of the sun. It is also essential for the determinations of the spectrum and total number of flare accelerated ions from the SMM/GRS gamma-ray line measurements. Systematic Monte Carlo calculations of the time dependence were made as a function of the He-3 abundance and other variables. A new series of calculations were compared for the time-dependent flux of 2.223 MeV neutron capture line emission and the ratio of the time-integrated flux in the 2.223 MeV line to that in the 4.1 to 6.4 MeV nuclear deexcitation band.
NASA Astrophysics Data System (ADS)
Zhang, Zhengjia; Wang, Chao; Tang, Yixian; Fu, Qiaoyan; Zhang, Hong
2015-07-01
In coal mining areas, ground subsidence persistently happens, which produces serious environmental issues and affects the development of cities. To monitor the ground deformation due to coal mining, a modified time-series InSAR technique combining persistent scatterers (PSs) and distributed scatterers (DSs) is presented in this paper. In particular, DSs are efficiently identified using classified information and statistical characteristics. Furthermore, a two-scale network is introduced into traditional PSI to deal with PSs and DSs in a multi-layer framework by taking the advantage of the robust of PSs and the widely distribution of DSs. The proposed method is performed to investigate the subsidence of Huainan City, Anhui province (China), during 2012-2013 using 14 scenes of Radarsat-2 images. Experimental results show that the proposed method can ease the estimation complexity and significantly increase the spatial density of measurement points, which can provide more detailed deformation information. Result shows that there are obvious subsidence areas detected in the test site with subsidence velocity larger than 5 cm/year. The proposed method brings practical applications for non-urban area deformation monitoring.
A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects
NASA Astrophysics Data System (ADS)
Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.
2013-02-01
Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional "knees" in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now "frozen in" to portions of the Kuiper Belt sharing a "hot" orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10°.
A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS
Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M.
2013-02-10
Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional ''knees'' in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now ''frozen in'' to portions of the Kuiper Belt sharing a ''hot'' orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10 Degree-Sign .
NASA Astrophysics Data System (ADS)
Parel, Thomas S.; Pistolas, Christos; Danos, Lefteris; Markvart, Tomas
2015-04-01
Luminescent solar concentrators (LSCs) have the potential to provide cheap solar electricity by significantly reducing the solar cell area. However, these devices are still at the research level and several aspects of their behaviour need investigation in order to improve efficiencies. Understanding how light is absorbed/emitted and concentrated to the edge of LSCs is required to design a high efficiency device as well as identifying and overcoming the various losses present. One strategy for investigating the photon absorption and transport in LSCs as well as pinpointing the sources of losses in these devices is to look at the luminescence escaping the LSC as a function of angle. This paper presents a new model that reveals the main features of the angular distribution of light escaping a LSC edge. We compare this model with experimental measurements and provide an assessment of non-ideal losses and identify which emission angles are affected most by these losses. We investigated experimentally the effects of the absorption profile of the chromophores and re-absorption on the photon flux travelling at different angles. The effect of back surface reflectors, commonly used to 'recycle lost photons', on the edge emission of LSCs has also been investigated in this work.
Karlsson, Niklas; Kamae, Tuneyoshi; /SLAC /KIPAC, Menlo Park
2007-09-24
We present the angular distribution of gamma rays produced by proton-proton interactions in parameterized formulae to facilitate calculations in astrophysical environments. The parameterization is derived from Monte Carlo simulations of the up-to-date proton-proton interaction model by Kamae et al. (2005) and its extension by Kamae et al. (2006). This model includes the logarithmically rising inelastic cross section, the diffraction dissociation process and Feynman scaling violation. The extension adds two baryon resonance contributions: one representing the {Delta}(1232) and the other representing multiple resonances around 1600 MeV/c{sup 2}. We demonstrate the use of the formulae by calculating the predicted gamma-ray spectrum for two different cases: the first is a pencil beam of protons following a power law and the second is a fanned proton jet with a Gaussian intensity profile impinging on the surrounding material. In both cases we find that the predicted gamma-ray spectrum to be dependent on the viewing angle.
NASA Astrophysics Data System (ADS)
Vaz, Louis C.; Alexander, John M.
1983-07-01
Fission angular distributions have been studied for years and have been treated as classic examples of trasitions-state theory. Early work involving composite nuclei of relatively low excitation energy E ∗ (⪅35 MeV) and spin I (⪅25ħ) gave support to theory and delimited interesting properties of the transitions-state nuclei. More recent research on fusion fission and sequential fission after deeply inelastic reactions involves composite nuclei of much higher energies (⪅200 MeV) and spins (⪅100ħ). Extension of the basic ideas developed for low-spin nuclei requires detailed consideration of the role of these high spins and, in particular, the “spin window” for fussion. We have made empirical correlations of cross sections for evaporation residues and fission in order to get a description of this spin window. A systematic reanalysis has been made for fusion fission induced by H, He and heavier ions. Empirical correlations of K 20 (K 20 = {IeffT }/{h̷2}) are presented along with comparisons of Ieff to moments of inertia for saddle-point nuclei from the rotating liquid drop model. This model gives an excellent guide for the intermidiate spin zone (30⪅ I ⪅65), while strong shell and/or pairing effects are evident for excitations less than ⪅35 MeV. Observations of strong anisotropies for very high-spin systems signal the demise of certain approximation commonly made in the theory, and suggestions are made toward this end.
Angular distribution of energetic argon ions emitted by a 90 kJ Filippov-type plasma focus
Pestehe, S. J.; Mohammadnejad, M.
2015-02-15
Characteristics of the energetic argon ions emitted by a 90 kJ Filippov-type plasma focus are studied by employing an array of Faraday cups. The Faraday cups are designed to minimize the secondary electron emission effects on their response. Angular distribution of the ions is measured, and the results indicate a highly anisotropic emission with a dip at the device axis and a local maximum at the angle of 7° with respect to the axis. It has been argued that this kind of anisotropic emission may be related to the surfatron acceleration mechanism and shown that this behavior is independent of the working gas pressure. It has been also demonstrated that this mechanism is responsible for the generation of MeV ions. Measuring the total ion number at different working gas pressures gives an optimum pressure of 0.3 Torr. In addition, the energy spectrum of ions is measured by taking into account of the ambient gas effects on the energy and charge of the ions. The current neutralization effect of electrons trapped in the ion beam as well as the effect of conducting boundaries surrounding the beam, on the detected signals are investigated.
NASA Astrophysics Data System (ADS)
Leitner, Torsten; Taïeb, Richard; Meyer, Michael; Wernet, Philippe
2015-06-01
We present polarization-controlled multiphoton two-color above-threshold ionization (TCATI) of molecules. The intensity modulations of valence photoelectron intensities of molecules arising from varying the relative orientation of the linear polarization vectors of femtosecond infrared (IR) and vacuum-ultraviolet (VUV) radiation in TCATI of the highest occupied molecular orbitals of H2O , O2, and N2 are reported. The results on the molecular systems are compared to the 3 p photoionization of atomic Ar, which serves as a reference system. Modeling the large differences of the modulation amplitudes within the soft-photon approximation enables us to extract the one-photon-ionization anisotropy parameter β2. Accounting only for the first sideband due to two-photon TCATI by one VUV and one IR photon we find satisfactory agreement between experiment and simulation for H2O and O2. However, the model fails for N2 and possible reasons are discussed. We discuss that the described approach may represent an alternative way of determining photoelectron angular distributions from valence shells of molecules and indicate future directions for modeling TCATI of molecules.
NASA Astrophysics Data System (ADS)
Bhoj, Ananth; Roy, Abhra; Jain, Kunal; Xiong, Zhongmin
2015-09-01
Dual frequency capacitively coupled reactors are now commonly used in microelectronics fabrication. The extent of possible independent control of ion fluxes and ion energy and angular distribution (IEADs) by varying HF and LF signals is currently a topic of great interest. In this study, we report on investigations of IEADs in single and dual frequency CCPs, including the wafer edge refinement using CFD-ACE+. The current algorithms in CFD-ACE+ allow the determination of total power at the electrode or in the discharge. To account for the presence of two or more rf sources connected to a powered electrode, the existing numerical algorithms for power targeting were enhanced to track current at the electrode as a function of time, vary voltage and determine power as a function of frequency. The Monte Carlo transport module for heavy species in CFD-ACE+ was recently enhanced to compute IEADs in rf discharges. Results for the effect of varying power and pressure on IEADs were compared to semi-analytical models and data reported in Gahan et al.. The validated model was applied to investigate the effect of details of HF and LF signals on IEADs in Argon discharges.
A formalism for scattering of complex composite structures. II. Distributed reference points
NASA Astrophysics Data System (ADS)
Svaneborg, Carsten; Pedersen, Jan Skov
2012-04-01
Recently, we developed a formalism for the scattering from linear and acyclic branched structures build of mutually non-interacting sub-units. [C. Svaneborg and J. S. Pedersen, J. Chem. Phys. 136, 104105 (2012)], 10.1063/1.3682778 We assumed each sub-unit has reference points associated with it. These are well-defined positions where sub-units can be linked together. In the present paper, we generalize the formalism to the case where each reference point can represent a distribution of potential link positions. We also present a generalized diagrammatic representation of the formalism. Scattering expressions required to model rods, polymers, loops, flat circular disks, rigid spheres, and cylinders are derived, and we use them to illustrate the formalism by deriving the generic scattering expression for micelles and bottle-brush structures and show how the scattering is affected by different choices of potential link positions and sub-unit choices.
The angular dependence of partially redistributed resonance radiation
NASA Technical Reports Server (NTRS)
Ballagh, R. J.; Cooper, J.
1977-01-01
Explicit expressions for the angular distribution and frequency dependence of radiation scattered by a spatially degenerate atom undergoing collisions are derived using a previously developed formalism of the quantum theory of line broadening for an atom in its rest frame. Results valid in the impact regime for resonant scattering are presented for the cases of linear incident and scattered polarization circular incident and linear scattered polarization, and unpolarized incident radiation with no monitoring of the scattered polarization. These results relate to scattering involving a j - j + or - 1 - j atomic transition, with lower-state interactions neglected; the expressions obtained take a relatively simple form involving atomic multipolar relaxation rates of the order of k = 0 and k = 2. The angular distributions for each case are combined with the frequency dependences to yield a three-component frequency redistribution function for an s-p-s transition, the components being a coherent term, a frequency-redistributed term with the same angular dependence as the coherent term, and an isotropic frequency-redistributed term.
NASA Astrophysics Data System (ADS)
Asahi, Ippei; Ninomiya, Hideki
An experimental study to visualize and measure the concentration distribution of hydrogen gas flow using the Raman scattering was performed. A Nd:YAG laser of wavelength at 355 nm was used, and the beam pattern was transformed into a rectangle and a sheet beam was formed. The Raman scattered light was observed at a right angle with respect to the laser beam axis using a gated ICCD camera and an interference filter. Shadowgraph images were obtained at the same condition. The Raman scattering light image from atmospheric nitrogen was first acquired and the function of Raman scattering light acquisition and the background light suppression was confirmed. Next, images of the Raman scattering light image and shadowgraph of hydrogen gas discharged from a nozzle into the atmosphere were acquired. The two obtained Raman images were compared and the spatial concentration distribution of the flow of the hydrogen gas at different flow rates was calculated. This method is effective for visualizing the gas flow and measuring the concentration distribution of the Raman active molecules, such as hydrogen gas.
Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping
2016-03-21
Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780
Covington, A. M.; Duvvuri, Srividya S.; Emmons, E. D.; Kraus, R. G.; Williams, W. W.; Thompson, J. S.; Calabrese, D.; Carpenter, D. L.; Collier, R. D.; Kvale, T. J.; Davis, V. T.
2007-02-15
Photodetachment cross sections and the angular distributions of photoelectrons produced by the single-photon detachment of the transition metal negative ions Fe{sup -} and Cu{sup -} have been measured at four discrete photon wavelengths ranging from 457.9 to 647.1 nm (2.71-1.92 eV) using a crossed-beams laser photodetachment electron spectrometry (LPES) apparatus. Photodetachment cross sections were determined by comparing the photoelectron yields from the photodetachment of Fe{sup -} to those of Cu{sup -} and C{sup -}, which have known absolute photodetachment cross sections. Using the measured photodetachment cross sections, radiative electron attachment cross sections were calculated using the principle of detailed balance. Angular distributions were determined by measurements of laboratory frame, angle-, and energy-resolved photoelectrons as a function of the angle between the linear laser polarization vector and the momentum vector of the collected photoelectrons. Values of the asymmetry parameter have been determined by nonlinear least-squares fits to these angular distributions. The measured asymmetry parameters are compared to predictions of photodetachment models including Cooper and Zare's dipole approximation theory [J. Cooper and R. N. Zare, J. Chem. Phys. 48, 942 (1968)], and the angular momentum transfer theory developed by Fano and Dill [Phys. Rev. A 6, 185 (1972)].
NASA Astrophysics Data System (ADS)
Difilippo, Felix C.
2012-09-01
Within the context of general relativity theory we calculate, analytically, scattering signatures around a gravitational singularity: angular and time distributions of scattered massive objects and photons and the time and space modulation of Doppler effects. Additionally, the scattering and absorption cross sections for the gravitational interactions are calculated. The results of numerical simulations of the trajectories are compared with the analytical results.
NASA Astrophysics Data System (ADS)
Gogoi, Ankur
Light scattering is a subject of intensive research at the present time in diverse fields of research namely, physics, astronomy, meteorology, biology, nanotechnology, etc. Observation and theoretical calculation of the absorption and scattering properties of particles, whose size ranges from micrometer to nanometer, are not only essential to deduce their physical properties but also capable of giving useful information for better understanding of radiation transfer through a medium containing such scatterer. In addition to such experimental and theoretical studies on light scattering by particulate matter several other groups have been extensively using Monte Carlo (MC) method to simulate light (photon) propagation in scattering media. Importantly such methods of simulating light scattering properties of artificial particles are proving to be a very useful tool in verifying the experimental observations with real samples as well as providing new clues to improve the accuracy of the existing theoretical models. In this contribution we report a MC method developed by implementing Mie theory to simulate the light scattering pattern from size distributed homogenous and coated spherical particles in single scattering regime. The computer program was written in ANSI C-language. The accuracy, efficiency and reliability of the MC method were validated by comparing the results generated by using the MC method with other benchmark theoretical results and experimental results with standard samples. Notably the MC method reported here is found to be stable even for very large spherical particles (size parameters > 1000) with large values of real (= 10) and imaginary part (= 10) of the refractive index. The promising field of application of the reported MC method will be in simulating the light (or electromagnetic) scattering properties of different types of planetary and interplanetary dust particles.
Bootsma, G. J.; Verhaegen, F.; Jaffray, D. A.
2015-01-15
Purpose: X-ray scatter is a significant impediment to image quality improvements in cone-beam CT (CBCT). The authors present and demonstrate a novel scatter correction algorithm using a scatter estimation method that simultaneously combines multiple Monte Carlo (MC) CBCT simulations through the use of a concurrently evaluated fitting function, referred to as concurrent MC fitting (CMCF). Methods: The CMCF method uses concurrently run MC CBCT scatter projection simulations that are a subset of the projection angles used in the projection set, P, to be corrected. The scattered photons reaching the detector in each MC simulation are simultaneously aggregated by an algorithm which computes the scatter detector response, S{sub MC}. S{sub MC} is fit to a function, S{sub F}, and if the fit of S{sub F} is within a specified goodness of fit (GOF), the simulations are terminated. The fit, S{sub F}, is then used to interpolate the scatter distribution over all pixel locations for every projection angle in the set P. The CMCF algorithm was tested using a frequency limited sum of sines and cosines as the fitting function on both simulated and measured data. The simulated data consisted of an anthropomorphic head and a pelvis phantom created from CT data, simulated with and without the use of a compensator. The measured data were a pelvis scan of a phantom and patient taken on an Elekta Synergy platform. The simulated data were used to evaluate various GOF metrics as well as determine a suitable fitness value. The simulated data were also used to quantitatively evaluate the image quality improvements provided by the CMCF method. A qualitative analysis was performed on the measured data by comparing the CMCF scatter corrected reconstruction to the original uncorrected and corrected by a constant scatter correction reconstruction, as well as a reconstruction created using a set of projections taken with a small cone angle. Results: Pearson’s correlation, r, proved to be a
NASA Technical Reports Server (NTRS)
Lock, James A.; Hovenac, Edward A.
1989-01-01
A correction algorithm for evaluating the particle size distribution measurements of atmospheric aerosols obtained with a forward-scattering spectrometer probe (FSSP) is examined. A model based on Poisson statistics is employed to calculate the average diameter and rms width of the particle size distribution. The dead time and coincidence errors in the measured number density are estimated. The model generated data are compared with a Monte Carlo simulation of the FSSP operation. It is observed that the correlation between the actual and measured size distribution is nonlinear. It is noted that the algorithm permits more accurate calculation of the average diameter and rms width of the distribution compared to uncorrected measured quantities.
Bolognini, Gabriele; Bononi, Alberto
2009-04-27
We present a theoretical study of the performance of distributed Raman amplifiers with higher order pumping schemes, focusing in particular on double Rayleigh scattering (DRS) noise. Results show an unexpected significant DRS noise reduction for pumping order higher than third, allowing for an overall performance improvement of carefully designed distributed amplifiers, ensuring a large optical signal-to-noise ratio improvement together with reduced DRS-induced penalties.
Tatarskiy, D. A. Udalov, O. G.; Fraerman, A. A.
2012-10-15
It is shown that the elastic scattering of unpolarized neutrons by systems with the noncoplanar spatial magnetic induction distribution in nonreciprocal. Two systems with the noncoplanar distribution of the magnetic field are proposed and calculated, i.e., a nanoparticle with vortex magnetization and a system of three magnetic mirrors. It is shown that, under certain conditions, the nonreciprocity is rather large and can be observed experimentally.
NASA Astrophysics Data System (ADS)
Vinas, A. F.; Gurgiolo, C. A.; Nieves-Chinchilla, T.; Wendel, D. E.; Goldstein, M. L.; Fazakerley, A. N.
2010-12-01
The current hypothesis of the formation of the solar wind halo electrons is that they are produced from scattering of the strahl. This hypothesis is strengthened by direct observations of the strahl electrons being scattered into the halo in an isolated event. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions, a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a limited energy range. The observation implies that the formation of the halo is not a continuous process but occurs in bursts in regions where conditions for wave growth providing the scattering are optimum. Sometimes, observations indicates that the strahl component is anisotropic (Tper/Tpal ~ 2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism, however this condition is not always observed. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.
Bose condensate in superfluid sup 4 He and momentum distributions by deep inelastic scattering
Silver, R.N. ); Sokol, P.E. . Dept. of Physics)
1989-01-01
There are several reasons for the high interest in the recent experimental and theoretical progress in understanding deep inelastic neutron scattering from liquid {sup 4}He: it tests the fundamental London hypothesis of a connection between superfluidity and Bose condensation; it provides a quantitative test of ab-initio calculational methods for all systems with strong correlations which are the focus of current quantum many-body research; and it establishes the range of validity of deep inelastic scattering as a method for measuring momentum distributions. In this paper we introduce the concepts of impulse approximation in more detail, we describe recent progress in the theory for final state corrections to the impulse approximation, we present quantitative predictions for neutron scattering experiments, we compare with recent high energy pulsed neutron source experiments on liquid {sup 4}He by P. Sokol and colleagues as well as other attempts to extract the Bose condensate fraction from the neutron scattering data, and we discuss the implications of this progress for future momentum distribution experiments in other systems such as liquid {sup 3}He and quasi-elastic electron nucleus scattering. 42 refs., 23 figs.
Vos, M; Moreh, R; Tokési, K
2011-07-14
The momentum distributions of C atoms in polycrystalline diamond (produced by chemical vapor deposition) and in highly oriented pyrolitic graphite (HOPG) are studied by scattering of 40 keV electrons at 135°. By measuring the Doppler broadening of the energy of the elastically scattered electrons, we resolve a Compton profile of the motion of the C atoms. The aim of the present work is to resolve long-standing disagreements between the calculated kinetic energies of carbon atoms in HOPG and in diamond films and the measured ones, obtained both by neutron Compton scattering (NCS) and by nuclear resonance photon scattering (NRPS). The anisotropy of the momentum distribution in HOPG was measured by rotating the HOPG sample relative to the electron beam. The obtained kinetic energies for the motion component along, and perpendicular to, the graphite planes were somewhat higher than those obtained from the most recent NCS data of HOPG. Monte Carlo simulations indicate that multiple scattering adds about 2% to the obtained kinetic energies. The presence of different isotopes in carbon affects the measurement at a 1% level. After correcting for these contributions, the kinetic energies are 3%-6% larger than the most recent NCS results for HOPG, but 15%-25% smaller than the NRPS results. For diamond, the corrected direction-averaged kinetic energy is ≈ 6% larger than the calculated value. This compares favorably to the ≈25% discrepancy between theory and both the NCS and NRPS results for diamond.
Generalized helicity formalism, higher moments, and the B →KJK(→K π )ℓ1 ¯ ℓ2 angular distributions
NASA Astrophysics Data System (ADS)
Gratrex, James; Hopfer, Markus; Zwicky, Roman
2016-03-01
We generalize the Jacob-Wick helicity formalism, which applies to sequential decays, to effective field theories of rare decays of the type B →KJ K(→K π )ℓ¯1ℓ2. This is achieved by reinterpreting local interaction vertices b ¯ Γμ1…μn 's ℓ ¯ Γμ1…μnℓ as a coherent sum of 1 →2 processes mediated by particles whose spin ranges between zero and n . We illustrate the framework by deriving the full angular distributions for B ¯→K ¯ℓ1ℓ¯2 and B ¯→K¯*(→K ¯π )ℓ1ℓ¯2 for the complete dimension-six effective Hamiltonian for nonequal lepton masses. Amplitudes and decay rates are expressed in terms of Wigner rotation matrices, leading naturally to the method of moments in various forms. We discuss how higher-spin operators and QED corrections alter the standard angular distribution used throughout the literature, potentially leading to differences between the method of moments and the likelihood fits. We propose to diagnose these effects by assessing higher angular moments. These could be relevant in investigating the nature of the current LHCb anomalies in RK=B (B →K μ+μ-)/B (B →K e+e-) as well as angular observables in B →K*μ+μ-.
Germer, Thomas A
2016-09-01
We consider the effect of volume diffusion on measurements of the bidirectional scattering distribution function when a finite distance is used for the solid angle defining aperture. We derive expressions for correction factors that can be used when the reduced scattering coefficients and the index of refraction are known. When these quantities are not known, the expressions can be used to guide the assessment of measurement uncertainty. We find that some measurement geometries reduce the effect of volume diffusion compared to their reciprocal geometries. PMID:27607273
Local scattering stress distribution on surface of a spherical cell in optical stretcher
NASA Astrophysics Data System (ADS)
Bareil, Paul B.; Sheng, Yunlong; Chiou, Arthur
2006-12-01
We calculate stress distribution on the surface of a spherical cell trapped by two counter propagating beams in the optical stretcher in the ray optics regime. We demonstrate that the local scattering stress is perpendicular to the spherical refractive surface regardless of incident angle, polarization and the reflectance and transmittance at the surface. We explain the apparition of peaks in the stress distribution, which were not revealed in the existing theory. We consider the divergence of the incident beams from the fibers, and express the stress distribution as a function of fiber-to-cell distance. The new theory can predict the cell’s deformation more precisely.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Andeen, T; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; DeVaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; Prado da Silva, W L; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G
2009-11-01
We present the first measurement of dijet angular distributions in pp collisions at square root(s) = 1.96 TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of 0.7 fb(-1) collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25 TeV to above 1.1 TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV(-1) scale extra dimensions. For all models considered, we set the most stringent direct limits to date. PMID:20365918
Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Martinez, P; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R W; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kim, Y; Kimura, N; Kind, O M; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Selbach, K E; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spalla, M; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L
2015-06-01
A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of sqrt[s]=8 TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb^{-1}. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the standard model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% C.L.; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario. PMID:26196615
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al
2015-06-04
A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of √s=8 TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb⁻¹. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the standard model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% C.L.; median expected limits are 8.9 TeV formore » the destructive interference scenario and 14.1 TeV for the constructive interference scenario.« less
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R. W.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration
2015-06-01
A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of √{s }=8 TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb-1 . The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the standard model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% C.L.; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.
Collaboration, D0
2009-06-01
We present the first measurement of dijet angular distributions in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of 0.7 fb{sup -1} collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25 TeV to above 1.1 TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV{sup -1} scale extra dimensions. For all models considered, we set the most stringent direct limits to date.
Stener, M. Decleva, P.; Mizuno, T.; Yagishita, A.; Yoshida, H.
2014-01-28
F1s and C1s photoelectron angular distributions are considered for CH{sub 3}F, a molecule which does not support any shape resonance. In spite of the absence of features in the photoionization cross section profile, the recoil frame photoelectron angular distributions (RFPADs) exhibits dramatic changes depending on both the photoelectron energy and polarization geometry. Time-dependent density functional theory calculations are also given to rationalize the photoionization dynamics. The RFPADs have been compared with the theoretical calculations, in order to assess the accuracy of the theoretical method and rationalize the experimental findings. The effect of finite acceptance angles for both ionic fragments and photoelectrons has been included in the calculations, as well as the effect of rotational averaging around the fragmentation axis. Excellent agreement between theory and experiment is obtained, confirming the good quality of the calculated dynamical quantities (dipole moments and phase shifts)
Water and ice cloud discrimination by laser beam scattering.
Harris, F S
1971-04-01
Ice and liquid water phase clouds can be distinguished by the measurement of angular distribution of various polarization parameters at wavelengths for which there is a marked difference in the indices of refraction for the two phases. Mie single scattering theory calculations were made for a Deirmendjian cloud model Cl for wavelengths of 2.90 micro, 3.10 micro, 6.05 micro, 13 micro and 20 micro incident plane-polarized radiation. Plots of the angular distribution of the scattered radiation for the perpendicular polarization, parallel polarization, polarization ratio, polarization, ellipticity and plane of polarization of the polarization ellipse show marked differences in the scattering by ice and water clouds.
NASA Technical Reports Server (NTRS)
Loeb, N. G.; Parol, F.; Buriez, J.-C.; Vanbauce, C.
2000-01-01
The next generation of Earth radiation budget satellite instruments will routinely merge estimates of global top-of-atmosphere radiative fluxes with cloud properties. This information will offer many new opportunities for validating radiative transfer models and cloud parameterizations in climate models. In this study, five months of POLarization and Directionality of the Earth's Reflectances (POLDER) 670 nm radiance measurements are considered in order to examine how satellite cloud property retrievals can be used to define empirical Angular Distribution Models (ADMs) for estimating top-of-atmosphere (TOA) albedo. ADMs are defined for 19 scene types defined by satellite retrievals of cloud fraction and cloud optical depth. Two approaches are used to define the ADM scene types: The first assumes there are no biases in the retrieved cloud properties and defines ADMs for fixed discrete intervals of cloud fraction and cloud optical depth (fixed-tau approach). The second approach involves the same cloud fraction intervals, but uses percentile intervals of cloud optical depth instead (percentile-tau approach). Albedos generated using these methods are compared with albedos inferred directly from the mean observed reflectance field. Albedos based on ADMs that assume cloud properties are unbiased (fixed-tau approach) show a strong systematic dependence on viewing geometry. This dependence becomes more pronounced with increasing solar zenith angle, reaching approximately equals 12% (relative) between near-nadir and oblique viewing zenith angles for solar zenith angles between 60 deg and 70 deg. The cause for this bias is shown to be due to biases in the cloud optical depth retrievals. In contrast, albedos based on ADMs built using percentile intervals of cloud optical depth (percentile-tau approach) show very little viewing zenith angle dependence and are in good agreement with albedos obtained by direct integration of the mean observed reflectance field (less than 1
Balint-Kurti, Gabriel G; Vasyutinskii, Oleg S
2009-12-31
A general reactive collision of the type A + B --> C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients c(K(i)q(k))(K)(K(r),L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients c(K(i)q(k))(K)(K(r),L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection q(k) onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information.
NASA Astrophysics Data System (ADS)
Balint-Kurti, Gabriel G.; Vasyutinskii, Oleg S.
2009-07-01
A general reactive collision of the type A + B → C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients cKiqkK(Kr,L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients cKiqkK(Kr,L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection qk onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information.
Temperature dependence in rainbow scattering of hyperthermal Ar atoms from LiF(001)
NASA Astrophysics Data System (ADS)
Hayes, W. W.; Manson, J. R.
2015-11-01
Recent experiments have reported measurements of rainbow scattering features in the angular distributions of hyperthermal Ar colliding with LiF(001) [Kondo et al., J. Chem. Phys. 122, 244713 (2005)]. A theory of atom-surface collisions recently developed by the authors, based on the eikonal approximation, that includes multiphonon energy transfers is used to explain the temperature dependence of the measured scattered angular distribution spectra.
NASA Astrophysics Data System (ADS)
Vinogradov, E. G.; Glebova, S. N.; Pavlov, N. V.; Razhenkov, E. T.
1988-09-01
A fast-acting system for stabilization of the axis of the angular distribution of radiation from a continuous-flow CO2 laser is considered. The results of a simulation experiment are reported: they show that it is possible to suppress, by 24-28 dB, fluctuations of the position of the axis in the spectral range 0-20 Hz. This makes the proposed system a promising method for large-aperture laser beams.
Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering
Frankfurt, L.; Hyde, C. E.; Strikman, M.; Weiss, C.
2007-03-01
We study rapidity gap survival (RGS) in the production of high-mass systems (H=dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp{yields}p+(gap)+H+(gap)+p. Our approach is based on the idea that hard and soft interactions are approximately independent because they proceed over widely different time and distance scales. We implement this idea in a partonic description of proton structure, which allows for a model-independent treatment of the interplay of hard and soft interactions. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons, whose amplitude is calculable in terms of the gluon generalized parton distribution (GPD), measured in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate neglecting correlations between hard and soft interactions (independent interaction approximation). We obtain an analytic expression for the RGS probability in terms of the phenomenological pp elastic scattering amplitude, without reference to the eikonal approximation. Contributions from inelastic intermediate states are suppressed. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons ('diffraction pattern'). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the
NASA Astrophysics Data System (ADS)
Meo, F.; Stejner, M.; Salewski, M.; Bindslev, H.; Eich, T.; Furtula, V.; Korsholm, S. B.; Leuterer, F.; Leipold, F.; Michelsen, P. K.; Moseev, D.; Nielsen, S. K.; Reiter, B.; Stober, J.; Wagner, D.; Woskov, P.; ASDEX Upgrade Team
2010-05-01
Experimental knowledge of the fast ion physics in magnetically confined plasmas is essential. The collective Thomson scattering (CTS) diagnostic is capable of measuring localized 1D ion velocity distributions and anisotropies dependent on the angle to the magnetic field. The CTS installed at ASDEX-Upgrade (AUG) uses mm-waves generated by the 1 MW dual frequency gyrotron. The successful commissioning the CTS at AUG enabled first scattering experiments and the consequent milestone of first fast ion distribution measurements on AUG presented in this paper. The first fast ion distribution results have already uncovered some physics of confined fast ions at the plasma centre with off-axis neutral beam heating. However, CTS experiments on AUG H-mode plasmas have also uncovered some unexpected signals not related to scattering that required additional analysis and treatment of the data. These secondary emission signals are generated from the plasma-gyrotron interaction therefore contain additional physics. Despite their existence that complicate the fast ion analysis, they do not prevent the diagnostic's capability to infer the fast ion distribution function on AUG.
NASA Astrophysics Data System (ADS)
Shankman, C.; Kavelaars, JJ.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Bannister, M. T.; Chen, Y.-T.; Gwyn, S.; Jakubik, M.; Volk, K.
2016-02-01
We measure the absolute magnitude, H, distribution, dN(H) ∝ 10αH, of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around Hg ˜ 9 to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys—the Canada-France Ecliptic Plane Survey, Alexandersen et al., and the Outer Solar System Origins Survey, all of which provide well-characterized detection thresholds—combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that the number of scattering TNOs is (2.4-8.3) × 105 for Hr < 12. A divot H-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot H-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur H-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets.
Vos, M.; Went, M. R.
2006-11-15
High-resolution measurements of 40-keV electrons scattered over 44.3 deg. from evaporated carbon films are presented. The observed width of the energy distribution of electrons scattered from carbon is significantly larger than the experimental energy resolution, and its position is shifted to lower energy. Measurements were done for transmission and reflection geometries for thin films with thicknesses varying from 90 A ring to 1400 A ring . The observed peak shape is largely independent of the thickness and measurement geometry. The peak shape deviates from Gaussian in all cases, in a way consistent with theories that describe these processes beyond the impulse approximation. The energy shift of the carbon peak is measured by evaporating a small amount of Au on these films. Separation of the Au and C peak is somewhat smaller than calculated assuming scattering from free C and Au atoms, but independent of measurement geometry. Finally spectra were measured from highly oriented pyrolytic graphite (HOPG) films. Now different widths are observed in reflection geometry and transmission geometry. This is attributed to the anisotropy of the motion of the C atoms in HOPG. Also the Au-C separation is slightly orientation dependent for HOPG. All observations agree at least semiquantitatively with neutron Compton scattering results, a related scattering experiment that studies neutron-atom collisions at similar momentum transfers.
Griaznov, Vadim; Veselovskii, Igor; Di Girolamo, Paolo; Korenskii, Michail; Summa, Donato
2007-09-20
Depolarization lidars are widely used to study clouds and aerosols because of their ability to discriminate between spherical particles and particles of irregular shape. Depolarization of cloud backscattered radiation can be caused also by multiple scattering events. One of the ways to gain information about particle parameters in the presence of strong multiple scattering is the measurement of radial and azimuthal dependence of the polarization patterns in the focal plane of receiver. We present an algorithm for the calculation of corresponding polarized patterns in the frame of double scattering approximation. Computations are performed for various receiver field of views, for different parameters of the scattering geometry, e.g., cloud base and sounding depth, as well as for different values of cloud particle size and refractive index. As the spatial distribution of cross-polarized radiation is of cross shape and rotated at 45 degrees with respect to laser polarization, the use of a properly oriented cross-shaped mask in the receiver focal plane allows the removal of a significant portion of the depolarized component of the backscattered radiation produced by double scattering. This has been verified experimentally based on cloud depolarization measurements performed at different orientations of the cross-shaped mask. Results obtained from measurements are in agreement with model predictions.
Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires
Malhotra, Abhinav; Maldovan, Martin
2016-01-01
Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths in Si and SiGe nanowires. We present a rigorous and accurate description of phonon scattering at surfaces and predict and analyse nanowire heat spectra for different diameters and surface conditions. We show that the decrease in the diameter and increased roughness and correlation lengths makes the heat phonon spectra significantly shift towards short wavelengths and mean free paths. We also investigate the emergence of phonon confinement effects for small diameter nanowires and different surface scattering properties. Computed results for bulk materials show excellent agreement with recent experimentally-based approaches that reconstruct the mean-free-path heat spectra. Our phonon surface scattering model allows for an accurate theoretical extraction of heat spectra in nanowires and contributes to elucidate the development of critical phonon transport modes such as phonon confinement and coherent interference effects. PMID:27174699
Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires.
Malhotra, Abhinav; Maldovan, Martin
2016-01-01
Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths in Si and SiGe nanowires. We present a rigorous and accurate description of phonon scattering at surfaces and predict and analyse nanowire heat spectra for different diameters and surface conditions. We show that the decrease in the diameter and increased roughness and correlation lengths makes the heat phonon spectra significantly shift towards short wavelengths and mean free paths. We also investigate the emergence of phonon confinement effects for small diameter nanowires and different surface scattering properties. Computed results for bulk materials show excellent agreement with recent experimentally-based approaches that reconstruct the mean-free-path heat spectra. Our phonon surface scattering model allows for an accurate theoretical extraction of heat spectra in nanowires and contributes to elucidate the development of critical phonon transport modes such as phonon confinement and coherent interference effects. PMID:27174699
Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires
NASA Astrophysics Data System (ADS)
Malhotra, Abhinav; Maldovan, Martin
2016-05-01
Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths in Si and SiGe nanowires. We present a rigorous and accurate description of phonon scattering at surfaces and predict and analyse nanowire heat spectra for different diameters and surface conditions. We show that the decrease in the diameter and increased roughness and correlation lengths makes the heat phonon spectra significantly shift towards short wavelengths and mean free paths. We also investigate the emergence of phonon confinement effects for small diameter nanowires and different surface scattering properties. Computed results for bulk materials show excellent agreement with recent experimentally-based approaches that reconstruct the mean-free-path heat spectra. Our phonon surface scattering model allows for an accurate theoretical extraction of heat spectra in nanowires and contributes to elucidate the development of critical phonon transport modes such as phonon confinement and coherent interference effects.
Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki
2013-03-01
Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.
The VMI study on angular distribution of ejected electrons from Eu 4f76p1/26d autoionizing states
NASA Astrophysics Data System (ADS)
Zhang, Kai; Shen, Li; Dong, Cheng; Dai, Chang-Jian
2015-10-01
The combination of a velocity mapping imaging technique and mathematical transformation is adopted to study the angular distribution of electrons ejected from the Eu 4f76p1/26d autoionizing states, which are excited with a three-step excitation scheme via different Eu 4f76s6d 8 DJ (J = 5/2, 7/2, and 9/2) intermediate states. In order to determine the energy dependence of angular distribution of the ejected electrons, the anisotropic parameters are measured in the spectral profile of the 6p1/26d autoionizing states by tuning the wavelength of the third-step laser across the ionic resonance lines of the Eu 6s+ → 6p+. The configuration interaction is discussed by comparing the angular distributions of ejected electrons from the different states. The present study reveals the profound variations of anisotropic parameters in the entire region of autoionization resonance, highlighting the complicated nature of the autoionization process for the lowest member of 6p1/26d autoionization series. Project supported by the National Natural Science Foundation of China (Grant No. 11174218).
Resonant structure of the 3d electron`s angular distribution in a free Mn{sup +}Ion
Amusia, M.Y.; Dolmatov, V.K.
1995-08-01
The 3d-electron angular anisotropy parameter of the free Mn{sup +} ion is calculated using the {open_quotes}spin-polarized{close_quotes} random-phase approximation with exchange. Strong resonance structure is discovered, which is due to interference with the powerful 3p {yields} 3d discrete excitation. The effect of the 3p {yields} 4s transition is also noticeable. The ordering of these respective resonances with phonon energy increase proved to be opposite in angular anisotropy parameter to that in 3d-photoionization cross section. A paper describing these results was published.
Timelike Compton Scattering at Jlab
Paremuzyan, Rafayel G.
2014-01-01
It is demonstrated, that with exclusive final state, data from electron scattering experiments that are recorded with loose trigger requirements can be used to analyze photoproduction reactions. A preliminary results on Timelike Compton Scattering using the electroproduction data from the CLAS detector at Jefferson Lab are presented. In particular, using final state (pe{sup -}e{sup +}) photoproduction of vector mesons and timelike photon is studied. Angular asymmetries in Timelike Compton Scattering region is compared with model predictions in the framework of Generalized Parton Distribution.
Direct Angular Representation Monte Carlo Code for Criticality Safety Analysis
1988-01-01
Version 00 MKENO-DAR calculates the effective neutron multiplication factor and neutron flux distribution in a three dimensional media, solving multigroup neutron transport equation with a precise angular distribution function for neutron scattering. MKENO-DAR was developed from CCC-492/MULTI-KENO which was developed from KENO-IV. MULTI-KENO divides the system into many subsystem SUPER BOXES where the size of BOX TYPEs in each SUPER BOX can be selected independently. MKENO-DAR improves the representation of scattering angle over that inmore » MULTI-KENO.« less
NASA Astrophysics Data System (ADS)
Wang, Le; Zhao, Sheng-Mei; Gong, Long-Yan; Cheng, Wei-Wen
2015-12-01
In this paper, we propose a measurement-device-independent quantum-key-distribution (MDI-QKD) protocol using orbital angular momentum (OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol, the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie’s successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover, the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence (AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Natural Science Research Foundation for Universities of Jiangsu Province of China (Grant No. 11KJA510002), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), and the
NASA Technical Reports Server (NTRS)
Su, W.; Corbett, J.; Eitzen, Z.; Liang, L.
2015-01-01
The top-of-atmosphere (TOA) radiative fluxes are critical components to advancing our understanding of the Earth's radiative energy balance, radiative effects of clouds and aerosols, and climate feedback. The Clouds and the Earth's Radiant Energy System (CERES) instruments provide broadband shortwave and longwave radiance measurements. These radiances are converted to fluxes by using scene-type-dependent angular distribution models (ADMs). This paper describes the next-generation ADMs that are developed for Terra and Aqua using all available CERES rotating azimuth plane radiance measurements. Coincident cloud and aerosol retrievals, and radiance measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from Goddard Earth Observing System (GEOS) data assimilation version 5.4.1 are used to define scene type. CERES radiance measurements are stratified by scene type and by other parameters that are important for determining the anisotropy of the given scene type. Anisotropic factors are then defined either for discrete intervals of relevant parameters or as a continuous functions of combined parameters, depending on the scene type. Significant differences between the ADMs described in this paper and the existing ADMs are over clear-sky scene types and polar scene types. Over clear ocean, we developed a set of shortwave (SW) ADMs that explicitly account for aerosols. Over clear land, the SW ADMs are developed for every 1 latitude1 longitude region for every calendar month using a kernel-based bidirectional reflectance model. Over clear Antarctic scenes, SW ADMs are developed by accounting the effects of sastrugi on anisotropy. Over sea ice, a sea-ice brightness index is used to classify the scene type. Under cloudy conditions over all surface types, the longwave (LW) and window (WN) ADMs are developed by combining surface and cloud-top temperature, surface and cloud emissivity, cloud fraction, and precipitable water
Momentum distribution of a trapped Fermi gas with large scattering length
Viverit, L.; Giorgini, S.; Stringari, S.; Pitaevskii, L.P.
2004-01-01
Using a scattering length parametrization of the crossover from a BCS state to a Bose-Einstein condensate as well as the local density approximation for the density profile, we calculate the momentum distribution of a harmonically trapped atomic Fermi gas at zero temperature. Various interaction regimes are considered, including the BCS phase, the unitarity limit, and the molecular regime. We show that the relevant parameter which characterizes the crossover is given by the dimensionless combination N{sup 1/6}a/a{sub ho}, where N is the number of atoms, a is the scattering length, and a{sub ho} is the oscillator length. The width of the momentum distribution is shown to depend in a crucial way on the value and sign of this parameter. Our predictions can be relevant for experiments on ultracold atomic Fermi gases near a Feshbach resonance.
High-energy Electron Scattering and the Charge Distributions of Selected Nuclei
DOE R&D Accomplishments Database
Hahn, B.; Ravenhall, D. G.; Hofstadter, R.
1955-10-01
Experimental results are presented of electron scattering by Ca, V, Co, In, Sb, Hf, Ta, W, Au, Bi, Th, and U, at 183 Mev and (for some of the elements) at 153 Mev. For those nuclei for which asphericity and inelastic scattering are absent or unimportant, i.e., Ca, V, Co, In, Sb, Au, and Bi, a partial wave analysis of the Dirac equation has been performed in which the nuclei are represented by static, spherically symmetric charge distributions. Smoothed uniform charge distributions have been assumed; these are characterized by a constant charge density in the central region of the nucleus, with a smoothed-our surface. Essentially two parameters can be determined, related to the radium and to the surface thickness. An examination of the Au experiments show that the functional forms of the surface are not important, and that the charge density in the central regions is probably fairly flat, although it cannot be determined very accurately.
The measurement system of nanoparticle size distribution from dynamic light scattering data
NASA Astrophysics Data System (ADS)
Li, Zhenmei; Wang, Yajing; Shen, Jin; Liu, Wei; Sun, Xianming
2014-05-01
The measurement and analysis system of nanoparticle size distribution was developed by using virtual instrument technology, where the photon counting technology was applied in the system to replace the correlator; a high speed photon counter was designed with seamlessly counting technology to reduce the system cost and increase the accuracy. The data of nanoparticle dynamic light scattering (DLS) were analyzed in the mixed program of MATLAB and LabVIEW, where the autocorrelation functions of light scattering signals of 100 nm unimodal as well as 90 nm and 300 nm bimodal particles were inversed by truncated singular value decomposition arithmetic. Experiment results show that the peak position, peak width and symmetry of particle size distributions (PSDs) are very close to the real particles.
Estimation of the Scatterer Distribution of the Cirrhotic Liver using Ultrasonic Image
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hachiya, Hiroyuki
1998-05-01
In the B-mode image of the liver obtained by an ultrasonic imaging system, the speckled pattern changes with the progression of the disease such as liver cirrhosis.In this paper we present the statistical characteristics of the echo envelope of the liver, and the technique to extract information of the scatterer distribution from the normal and cirrhotic liver images using constant false alarm rate (CFAR) processing.We analyze the relationship between the extracted scatterer distribution and the stage of liver cirrhosis. The ratio of the area in which the amplitude of the processing signal is more than the threshold to the entire processed image area is related quantitatively to the stage of liver cirrhosis.It is found that the proposed technique is valid for the quantitative diagnosis of liver cirrhosis.
Mean square displacement evaluation by elastic neutron scattering self-distribution function.
Magazù, Salvatore; Maisano, Giacomo; Migliardo, Federica; Benedetto, Antonio
2008-06-01
In the present work an operational recipe for the mean square displacement (MSD) determination, highlighting the connection between elastic incoherent neutron scattering (EINS) intensity profiles and the associated self-distribution function, is presented. The determination of the thermal behavior of the total MSD and of its partial contributions is tested on EINS data collected by the backscattering spectrometer IN13 (ILL, Grenoble) on a model system such as PolyEthylene Glycol with a mean molecular weight of 400 Dalton (PEG 400).
Pore size distribution of shaley rock by small angle neutron scattering
NASA Astrophysics Data System (ADS)
Hall, P. L.; Mildner, D. F. R.; Borst, R. L.
1983-08-01
Information concerning pore microstructure of shaly rocks is of considerable relevance to petroleum exploration and production. Pore sizes and distributions within shaly samples have been determined by small angle neutron scattering. The data are indicative of a considerable spread of pore dimension, showing inhomogeneities with a range from 20 Å and greater. The cumulative pore volumes are compared with those derived from mercury intrusion porosimetry and nitrogen adsorption and desorption isotherms.
Pore size distribution of shaly rock by small angle neutron scattering
Hall, P.L.; Mildner, D.F.R.; Borst, R.L.
1983-08-01
Information concerning pore microstructure of shaly rocks is of considerable relevance to petroleum exploration and production. Pore sizes and distributions within shaly samples have been determined by small angle neutron scattering. The data are indicative of a considerable spread of pore dimension, showing inhomogeneities with a range from 20 A and greater. The cumulative pore volumes are compared with those derived from mercury intrusion porosimetry and nitrogen adsorption and desorption isotherms.
NASA Technical Reports Server (NTRS)
Robinson, P. A.; Newman, D. L.
1990-01-01
Strong turbulence and transit-time scattering theory are applied here to calculate the statistical distribution of intense Langmuir fields and the consequent beam scattering in plasma turbulence driven by an electron beam. The experimentally observed electric-field distributions are compared with predictions of strong-turbulence theory, concentrating on the wave levels, the Gaussian tail of the high-field distribution observed in one experiment, the arrest scale of collapse, and the fractional volume occupied by the highest fields. The Guassian form of the tail is confirmed, and the results imply that the collapse is arrested at a scale where the peak electrostatic energy density is of the same order as the thermal energy density. The theory of transit-time interactions is generalized to include relativistic particle dynamics and is applied to predict the scattering of the beam electrons in energy and angle as they pass through strong Langmuir turbulence. The results support the validity of the recently developed scaling theory of strong turbulence.
Spatial distribution of mineral dust single scattering albedo based on DREAM model
NASA Astrophysics Data System (ADS)
Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka
2016-04-01
Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.
HALO-TO-HALO SIMILARITY AND SCATTER IN THE VELOCITY DISTRIBUTION OF DARK MATTER
Mao, Yao-Yuan; Strigari, Louis E.; Wechsler, Risa H.; Hahn, Oliver; Wu, Hao-Yi
2013-02-10
We examine the velocity distribution function (VDF) in dark matter halos from Milky Way to cluster mass scales. We identify an empirical model for the VDF with a wider peak and a steeper tail than a Maxwell-Boltzmann distribution, and discuss physical explanations. We quantify sources of scatter in the VDF of cosmological halos and their implication for direct detection of dark matter. Given modern simulations and observations, we find that the most significant uncertainty in the VDF of the Milky Way arises from the unknown radial position of the solar system relative to the dark matter halo scale radius.
Scattering and diffraction of plane SH-waves by periodically distributed canyons
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Liang, Jianwen; Zhang, Yanju
2016-06-01
A new method is presented to study the scattering and diffraction of plane SH-waves by periodically distributed canyons in a layered half-space. This method uses the indirect boundary element method combined with Green's functions of uniformly distributed loads acting on periodically distributed inclined lines. The periodicity feature of the canyons is exploited to limit the discretization effort to a single canyon, which avoids errors induced by the truncation of the infinite boundary, and the computational complexity and the demand on memory can be significantly reduced. Furthermore, the total wave fields are decomposed into the free field and scattered field in the process of calculation, which means that the method has definite physical meaning. The implementation of the method is described in detail and its accuracy is verified. Parametric studies are performed in the frequency domain by taking periodically distributed canyons of semi-circular and semi-elliptic cross-sections as examples. Numerical results show that the dynamic responses of periodically distributed canyons can be quite different from those for a single canyon and significant dynamic interactions exist between the canyons.
Small-angle light scattering from polymer-dispersed liquid-crystal films
Loiko, V. A. Maschke, U.; Zyryanov, V. Ya.; Konkolovich, A. V.; Misckevich, A. A.
2008-10-15
A method is developed for modeling and computing the angular distribution of light scattered forward from a single-layer polymer-dispersed liquid-crystal (PDLC) film. The method is based on effective-medium approximation, anomalous diffraction approximation, and far-field single-scattering approximation. The angular distribution of forward-scattered light is analyzed for PDLC films with droplet size larger than the optical wavelength. The method can be used to study field-and temperature-induced phase transitions in LC droplets with cylindrical symmetry by measuring polarized scattered light intensity.
Positive Pion Scattering on MAGNESIUM-24.
NASA Astrophysics Data System (ADS)
Joyce, Donald
The reaction ('24)Mg(pi('+), piN) and the angular correlation between ('24)Mg first excited state deexcitation gamma rays and the nuclear recoil direction following pion inelastic scattering were studied at 200 MeV by means of coincidence measurements of outgoing charged particles and nuclear deexcitation gamma rays. The angular distribution of both pions and protons in coincidence with ('23)Na and ('23)Mg first excited state deexcitation gamma rays is consistent with those expected from quasi-free scattering. Comparison of results with final state nucleon charge exchange models suggests that final state nucleon charge exchange plays a minor role in single nucleon knockout reactions. The preliminary measurement of the angular correlation betwen ('24)Mg('2+) deexcitation gamma rays and the nuclear recoil direction is similar to the angular correlation W((theta)) = sin('2)(2(theta)) expected for non spin flip transitions.
Theoretical study on neutron distribution of 208Pb by parity-violating electron scattering
NASA Astrophysics Data System (ADS)
Liu, Jian; Zhang, Cun; Ren, Zhong-Zhou; Xu, Chang
2016-03-01
The precise determination of neutron distribution has important implications for both nuclear structure and nuclear astrophysics. The purpose of this paper is to study the characteristics of neutron distribution of 208Pb by parity-violating electron scattering (PVS). Parity-violating asymmetries of 208Pb with different types of neutron skins are systematically calculated and compared with the experimental data of PREx. The results indicate that the PVS experiments are very sensitive to the nuclear neutron distributions. From further PVS measurements, detailed information on nuclear neutron distributions can be extracted. Supported by the National Natural Science Foundation of China (11505292, 11175085, 11235001, 11447226), by the Shandong Provincial Natural Science Foundation, China (BS2014SF007), by the Fundamental Research Funds for the Central Universities (15CX02072A, 15CX02070A, 15CX05026A, 13CX10022A, 14CX02157A).
Jonsson, Jacob C.; Branden, Henrik
2006-10-19
This paper demonstrates a method to determine thebidirectional transfer distribution function (BTDF) using an integratingsphere. Information about the sample's angle dependent scattering isobtained by making transmittance measurements with the sample atdifferent distances from the integrating sphere. Knowledge about theilluminated area of the sample and the geometry of the sphere port incombination with the measured data combines to an system of equationsthat includes the angle dependent transmittance. The resulting system ofequations is an ill-posed problem which rarely gives a physical solution.A solvable system is obtained by using Tikhonov regularization on theill-posed problem. The solution to this system can then be used to obtainthe BTDF. Four bulk-scattering samples were characterised using both twogoniophotometers and the described method to verify the validity of thenew method. The agreement shown is great for the more diffuse samples.The solution to the low-scattering samples contains unphysicaloscillations, butstill gives the correct shape of the solution. Theorigin of the oscillations and why they are more prominent inlow-scattering samples are discussed.
Preliminary analysis of the distribution of water in human hair by small-angle neutron scattering.
Kamath, Yash; Murthy, N Sanjeeva; Ramaprasad, Ram
2014-01-01
Diffusion and distribution of water in hair can reveal the internal structure of hair that determines the penetration of various products used to treat hair. The distribution of water into different morphological components in unmodified hair, cuticle-free hair, and hair saturated with oil at various levels of humidity was examined using small-angle neutron scattering (SANS) by substituting water with deuterium oxide (D(2)O). Infrared spectroscopy was used to follow hydrogen-deuterium exchange. Water present in hair gives basically two types of responses in SANS: (i) interference patterns, and (ii) central diffuse scattering (CDS) around the beam stop. The amount of water in the matrix between the intermediate filaments that gives rise to interference patterns remained essentially constant over the 50-98% humidity range without swelling this region of the fiber extensively. This observation suggests that a significant fraction of water in the hair, which contributes to the CDS, is likely located in a different morphological region of hair that is more like pores in a fibrous structure, which leads to significant additional swelling of the fiber. Comparison of the scattering of hair treated with oil shows that soybean oil, which diffuses less into hair, allows more water into hair than coconut oil. These preliminary results illustrate the utility of SANS for evaluating and understanding the diffusion of deuterated liquids into different morphological structures in hair.
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-05-26
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.
NASA Astrophysics Data System (ADS)
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-05-01
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.
Richter, Andrew; Dergunov, Sergey; Ganus, Bill; Thomas, Zachary; Pingali, Sai Venkatesh; Urban, Volker S; Liu, Yun; Porcar, Lionel; Pinkhassik, Eugene
2011-01-01
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.
Richter, Andrew G; Dergunov, Sergey; Ganus, Bill; Thomas, Zachary P; Pingali, Sai Venkatesh; Urban, Volker S; Liu, Yun; Porcar, Lionel; Pinkhassik, Eugene
2011-01-01
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-01-01
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum. PMID:27225031
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-01-01
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum. PMID:27225031
NASA Technical Reports Server (NTRS)
Su, W.; Corbett, J.; Eitzen, Z.; Liang, L.
2015-01-01
Radiative fluxes at the top of the atmosphere (TOA) from the Clouds and the Earth's Radiant Energy System (CERES) instrument are fundamental variables for understanding the Earth's energy balance and how it changes with time. TOA radiative fluxes are derived from the CERES radiance measurements using empirical angular distribution models (ADMs). This paper evaluates the accuracy of CERES TOA fluxes using direct integration and flux consistency tests. Direct integration tests show that the overall bias in regional monthly mean TOA shortwave (SW) flux is less than 0.2Wm(exp -2) and the RMSE is less than 1.1Wm(exp -2). The bias and RMSE are very similar between Terra and Aqua. The bias in regional monthly mean TOA LW fluxes is less than 0.5Wm(exp -2) and the RMSE is less than 0.8Wm(exp -)2 for both Terra and Aqua. The accuracy of the TOA instantaneous flux is assessed by performing tests using fluxes inverted from nadir- and oblique-viewing angles using CERES along-track observations and temporally and spatially matched MODIS observations, and using fluxes inverted from multi-angle MISR observations. The averaged TOA instantaneous SW flux uncertainties from these two tests are about 2.3% (1.9Wm(exp -2) over clear ocean, 1.6% (4.5Wm(exp -2) over clear land, and 2.0% (6.0Wm(exp -) over clear snow/ice; and are about 3.3% (9.0Wm(exp -2), 2.7% (8.4Wm(exp -2), and 3.7% (9.9Wm(exp -2) over ocean, land, and snow/ice under all-sky conditions. The TOA SW flux uncertainties are generally larger for thin broken clouds than for moderate and thick overcast clouds. The TOA instantaneous daytime LW flux uncertainties derived from the CERESMODIS test are 0.5% (1.5Wm(exp -2), 0.8% (2.4Wm(exp -2), and 0.7% (1.3Wm(exp -2) over clear ocean, land, and snow/ice; and are about 1.5% (3.5Wm(exp -2), 1.0% (2.9Wm(exp -2), and 1.1% (2.1Wm(exp -2) over ocean, land, and snow/ice under all-sky conditions. The TOA instantaneous nighttime LW flux uncertainties are about 0.5-1% (<2.0Wm(exp -2) for all
Serov, A. V.; Mamonov, I. A.; Kol’tsov, A. V.
2015-10-15
The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the plane of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.
The total scattering atomic pair distribution function: New methodology for nanostructure analysis
NASA Astrophysics Data System (ADS)
Masadeh, Ahmad
The conventional xray diffration (XRD) methods probe for the presence of long-range order (periodic structure) which are reflected in the Bragg peaks. Local structural deviations or disorder mainly affect the diffuse scattering intensity. In order to obtain structural information about both long-range order and local structure disorder, a technique that takes in account both Bragg and diffuse scattering need to be employed, such as the atomic pair distribution function (PDF) technique. This work introduces a PDF based methodology to quantitatively investigate nanostructure materials in general. The introduced methodology can be applied to extract quantitatively structural information about structure, crystallinity level, core/shell size, nanoparticle size, and inhomogeneous internal strain in the measured nanoparticles. This method is generally applicable to the characterization of the nano-scale solid, many of which may exhibit complex disorder and strain
Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus; Beck, Alexander M.; Burkert, Andreas; Schulze, Felix; Steinborn, Lisa K.; Schmidt, Andreas S.
2015-10-10
The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticum Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo
NASA Astrophysics Data System (ADS)
Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus; Beck, Alexander M.; Burkert, Andreas; Schmidt, Andreas S.; Schulze, Felix; Steinborn, Lisa K.
2015-10-01
The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticum Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo
ERIC Educational Resources Information Center
Shakur, Asif; Sinatra, Taylor
2013-01-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…
The size-distribution of scattering TNOs observed by La Silla - QUEST
NASA Astrophysics Data System (ADS)
Rabinowitz, David L.; Schwamb, M. E.; Hadjiyska, E.
2013-10-01
Now in its final year of operation, the La Silla - QUEST (LSQ) survey for distant solar-system objects [1] has covered most of the southern hemisphere to magnitude limit R = 21.4. The total number of detected TNOs and Centaurs exceeds 108, more than any other full-hemisphere survey of the outer system. These bodies have been found at distances ranging from 10 to 100 AU, at ecliptic latitudes ranging from 0 to 40 deg, and over a size range of 15 to 2500 km. Nearly all have well-determined orbits from observations covering wide arcs or multiple oppositions. The efficiency of the survey has also been well characterized, with careful attention to maintaining a constant level of sensitivity. Remarkably, the LSQ observations of actively scattering TNOs spans the ~100 km knee in the size distribution which has been difficult for smaller-area, deeper surveys to detect. The results of the LSQ survey thus present a unique opportunity to constrain the total number and size distribution of the Centaurs and their likely parent population at the same time. Here we present preliminary results for the R-band absolute magnitude distribution of the actively scattering TNOs and discuss the implications for the existence of a "divot" at ~100 km as reported by Shankman et al [2]. [1] Rabinowitz, D. et al. 2012, AJ, 144, 140; [2] Shankman, C. et al. 2013, ApJ, 764, 2
Langer, B.; Berrah, N.; Farhat, A.
1997-04-01
Auger resonant Raman spectroscopy is a powerful tool for studying the resonant Auger decay processes with a resolution narrower than the natural lifetime width of the initial inner-shell hole state. This effect has been used to analyze branching ratios of resonantly excited atoms and molecules. In this paper, the authors present results of a study of angular distributions of the spectator decay lines of Xe following 4d{sub 5/2}{r_arrow}6p excitation using the Auger resonant Raman effect and highly resolved photons from the Advanced Light Source (ALS).
Vibrationally resolved photoelectron angular distributions for H2 in the range 17 eV<=hν<=39 eV
NASA Astrophysics Data System (ADS)
Parr, A. C.; Hardis, J. E.; Southworth, S. H.; Feigerle, C. S.; Ferrett, T. A.; Holland, D. M. P.; Quinn, F. M.; Dobson, B. R.; West, J. B.; Marr, G. V.; Dehmer, J. L.
1988-01-01
Vibrationally resolved photoelectron angular distributions have been measured for photoionization of H2 over the range 17 eV<=hν<=39 eV using independent instrumentation at two synchro- tron radiation facilities. The present data greatly extend and add vibrational resolution to earlier variable-wavelength measurements. The average magnitude of the asymmetry parameter continues to lie lower than the best independent-electron calculations. Broad structure is observed for the first time, possibly indicating the effects of channel interaction with dissociative, doubly excited states of H2. Neither the average magnitude nor the gross wavelength-dependent structure vary strongly with the final vibrational channel.
NASA Astrophysics Data System (ADS)
Mohanta, S. K.; Srivastava, S. K.; Mishra, S. N.
2016-12-01
The magnetic moment and spin fluctuation temperature of isolated Fe impurity atoms in Pd1-xVx (0 ≤ x ≤ 0.15) alloys have been studied by time differential perturbed angular distribution (TDPAD) technique. With increasing V content in Pd matrix, a large non-linear reduction of the local magnetic moment accompanied with an exponential increase of the spin fluctuation temperature TSF has been observed. At and beyond x = 0.12, the Fe atoms are found to be nonmagnetic. As an important new feature, TSF is observed to vary quadratically with composition dependent changes in host spin polarization.
Khachatryan, Vardan; et al.
2011-05-01
Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at s√ = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 inverse picobarns. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Lambda = 5.6 TeV is obtained at the 95% confidence level.
NASA Technical Reports Server (NTRS)
Avakian, V. V.; Azarian, M. O.; Egiyan, K. S.; Mamidjanian, E. A.; Ohanian, G. Z.; Ter-Antonian, S. V.
1985-01-01
Based on the analysis of approximates 5 X 1000 events registered on the PION installation, data are obtained on the angular distribution and multiplicity of particles, flying back into the laboratory coordinate system (LCS) that are identified mainly as hadrons produced in the reactions of hFe yield h prime X type. The inclusively produced hadron energy is 200 MeV. The experimental data are compared to the results of the cumulative particle production in hA processes observed on accelerators at lower energies.
NASA Astrophysics Data System (ADS)
Zhao, Y. M.; Arima, A.; Yoshinaga, N.
2002-12-01
In this paper we discuss in detail the P(I)’s, angular momentum I probabilities in the ground states, of many-body systems interacting via a two-body random ensemble (TBRE). In particular, we extensively apply an approach introduced in an earlier paper and compare the predicted P(I)’s with those obtained by diagonalizing a TBRE Hamiltonian. We begin with a few solvable cases, such as fermions in a small single-j shell and d boson systems, where elegant agreements between the predicted P(I)’s and those obtained by diagonalizing a TBRE Hamiltonian are achieved. We find that d boson systems systematically present counterexamples of angular momentum 0 ground state dominance when the number of d bosons is 6κ±1 with κ a natural number, which suggests that certain fundamental symmetry (say, time reversal invariance) of the Hamiltonian cannot ensure the occurrence of angular momentum 0 ground state dominance. Next, we apply the same approach to more complicated cases, such as even or odd number of fermions in a large single-j shell or a many-j shell, sd-boson or sdg-boson systems, etc. We find that the simple approach proposed in an earlier paper is also well applicable, and thus it is a universal approach. The numerical experiments provide a guideline to tell which interactions are essential to produce a sizable P(I) in a many-body system. This disproves a popular idea that the angular momentum 0 ground state (0 g.s.) dominance may be independent of two-body interactions. Some matrix elements which are useful to understand the observed regularities are given or addressed in detail. In this paper we also report a synchronous staggering between the 0 g.s. probabilities of even numbers of fermions in a single-j shells and j g.s. probabilities of odd numbers of fermions in a single-j shell when j is small. The low seniority chain of 0 g.s. using the same set of two-body interactions is confirmed, but it is noted that contribution to the total 0 g.s. probability
Perreault, William E; Mukherjee, Nandini; Zare, Richard N
2016-06-01
We report direct measurement of the anisotropy parameter β for the angular distribution of the photoelectron and photoion in (2 + 1) resonance enhanced multiphoton ionization process of H2 X (1)Σg (+) (v = 0, J = 0) molecules through the intermediate H2 E,F (1)Σg (+) (v' = 0, J' = 0) level (λ = 201.684 nm) using a time-of-flight mass spectrometer. The time-of-flight spectra were recorded as the direction of polarization of the ionizing laser was varied with respect to the flight axis of the H2 molecular beam and were fitted to an angular distribution in an appropriately rotated coordinate system with the z-axis oriented along the time-of-flight axis. The anisotropy parameter β was found to be 1.72 ± 0.13 by fitting the time-of-flight spectra and agreed with previous measurements. Using secondary ionization with a delayed laser pulse of different wavelength, we also determined the vibrational energy distribution of the ions, showing that 98% ± 4% of the ions are generated in their ground vibrational state, in agreement with the calculated Franck-Condon factors between the H2 E,F (1)Σg (+) (v' = 0) and H2 (+) X (1)Σg (+) (v″) vibrational levels.
NASA Astrophysics Data System (ADS)
Falcinelli, Stefano; Alagia, Michele; Farrar, James M.; Kalogerakis, Konstantinos S.; Pirani, Fernando; Richter, Robert; Schio, Luca; Stranges, Stefano; Rosi, Marzio; Vecchiocattivi, Franco
2016-09-01
The two-body dissociation reactions of the dication C2H2+2, initiated via double ionization of acetylene molecules by photons in the energy range 31.9-50.0 eV, have been studied by coupling photoelectron-photoion-photoion coincidence and ion imaging techniques. The angular distributions and kinetic energy of product ions, measured in the 31.9-50.0 eV energy range, exhibit significant differences for the three leading dissociation reactions with respect to a previous investigation carried out at a fixed energy of 39.0 eV, providing thus new information on the dynamical evolution of the system. The analysis of the results indicates that such dissociation reactions occur with a different mechanism. In particular, the symmetric dissociation in two CH+ ions is characterized by different dynamics, and the anisotropy of the angular distribution of ionic products increases with photon energy in a more pronounced way than the other two reactions. Moreover, the kinetic energy distribution of the symmetric dissociation reaction exhibits several components that change with photon energy. The new experimental findings cast light on the microscopic evolution of the system and can provide a laboratory reference for new theoretical calculations on specific features of the multidimensional potential energy surface, namely, the structure, energy and symmetry of dication states, the electronic state of dissociation products, energy barriers and their dependence on the geometry of the intermediate state.
NASA Astrophysics Data System (ADS)
Aidala, Christine; FNAL E906/SeaQuest Collaboration
2011-10-01
Striking cos 2 φ dependences in pion-induced Drell-Yan measurements were first observed in the 1980s, and proton- induced Drell-Yan measurements by the Fermilab E866 experiment on deuterium and hydrogen targets published in 2007 and 2009 reported smaller but non-zero azimuthal dependences of the Drell-Yan pairs. These azimuthal effects have been attributed to a correlation between the spin and transverse momentum of transversely polarized quarks within an unpolarized nucleon, parametrized by the Boer-Mulders transverse-momentum-dependent distribution function, with additional contributions from QCD effects. With data taking planned to start in the summer of 2011, the E906/SeaQuest experiment will use a 120 GeV/c proton beam extracted from the Fermilab Main Injector on liquid hydrogen and deuterium targets, extending the kinematic coverage of its predecessor experiment E866 to higher parton momentum fraction. Measurement of the dimuon angular distributions will also allow the Lam-Tung relation to be tested in an extended kinematic range compared to E866. The status of data taking and prospects for measurement of the angular distributions of Drell-Yan pairs will be presented.
Extracting water and ion distributions from solution x-ray scattering experiments.
Nguyen, Hung T; Pabit, Suzette A; Pollack, Lois; Case, David A
2016-06-01
Small-angle X-ray scattering measurements can provide valuable information about the solvent environment around biomolecules, but it can be difficult to extract solvent-specific information from observed intensity profiles. Intensities are proportional to the square of scattering amplitudes, which are complex quantities. Amplitudes in the forward direction are real, and the contribution from a solute of known structure (and from the waters it excludes) can be estimated from theory; hence, the amplitude arising from the solvent environment can be computed by difference. We have found that this "square root subtraction scheme" can be extended to non-zero q values, out to 0.1 Å(-1) for the systems considered here, since the phases arising from the solute and from the water environment are nearly identical in this angle range. This allows us to extract aspects of the water and ion distributions (beyond their total numbers), by combining experimental data for the complete system with calculations for the solutes. We use this approach to test molecular dynamics and integral-equation (3D-RISM (three-dimensional reference interaction site model)) models for solvent structure around myoglobin, lysozyme, and a 25 base-pair duplex DNA. Comparisons can be made both in Fourier space and in terms of the distribution of interatomic distances in real space. Generally, computed solvent distributions arising from the MD simulations fit experimental data better than those from 3D-RISM, even though the total small-angle X-ray scattering patterns are very similar; this illustrates the potential power of this sort of analysis to guide the development of computational models. PMID:27276943
Li, Xiaoqi; Jiang, Huabei
2013-02-21
We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data-up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.
NASA Astrophysics Data System (ADS)
Magazù, Salvatore; Maisano, Giacomo; Migliardo, Federica; Benedetto, Antonio
2009-04-01
In the present paper we first focus on the role of the instrumental resolution in elastic incoherent neutron scattering (EINS) where the connection between the self-distribution function (SDF) and the measured EINS intensity profile is highlighted. Second we show how the SDF procedure, previously introduced, allows both the total and the partial mean-square displacement evaluations through the total and the partial SDFs. Finally, we compare the SDF and the Gaussian procedures, by applying the two approaches to EINS data collected, by the IN13 backscattering spectrometer (Institute Laue-Langevin, Grenoble), on aqueous mixtures of two homologous disaccharides, i.e., sucrose and trehalose, and on myoglobin.
NASA Astrophysics Data System (ADS)
Flammini, D.; Pietropaolo, A.; Senesi, R.; Andreani, C.; McBride, F.; Hodgson, A.; Adams, M. A.; Lin, L.; Car, R.
2012-01-01
The spherical momentum distribution of the protons in ice is extracted from a high resolution deep inelastic neutron scattering experiment. Following a recent path integral Car-Parrinello molecular dynamics study, data were successfully interpreted in terms of an anisotropic Gaussian model, with a statistical accuracy comparable to that of the model independent scheme used previously, but providing more detailed information on the three dimensional potential energy surface experienced by the proton. A recently proposed theoretical concept is also employed to directly calculate the mean force from the experimental neutron Compton profile, and to evaluate the accuracy required to unambiguously resolve and extract the effective proton potential from the experimental data.
Flammini, D; Pietropaolo, A; Senesi, R; Andreani, C; McBride, F; Hodgson, A; Adams, M A; Lin, L; Car, R
2012-01-14
The spherical momentum distribution of the protons in ice is extracted from a high resolution deep inelastic neutron scattering experiment. Following a recent path integral Car-Parrinello molecular dynamics study, data were successfully interpreted in terms of an anisotropic Gaussian model, with a statistical accuracy comparable to that of the model independent scheme used previously, but providing more detailed information on the three dimensional potential energy surface experienced by the proton. A recently proposed theoretical concept is also employed to directly calculate the mean force from the experimental neutron Compton profile, and to evaluate the accuracy required to unambiguously resolve and extract the effective proton potential from the experimental data. PMID:22260600
Gorelik, Tatiana E; Schmidt, Martin U; Kolb, Ute; Billinge, Simon J L
2015-04-01
This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve.
A New Modeling for the Changes in the Distribution of Scatterers in Cirrhotic Liver
NASA Astrophysics Data System (ADS)
Hara, Takashi; Hachiya, Hiroyuki
2000-05-01
The human liver is composed of small hexagonal structures called liver lobules. Cirrhosis destroys these liver lobules and replaces them with permanent connective tissue referred to as regenerative nodules. In this paper, we propose a new modeling technique for changes in the scatterer distribution in liver tissue considering the structure of liver lobules to obtain images of the cirrhotic liver over continuous stages. Using these images, we analyze the relationship between changes in characteristics of biological tissue and changes in B-mode images during progressive liver cirrhosis.
Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor; McNeil, Andrew; Jonsson, Ph.D., Jacob
2011-01-21
We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.
Distributed data processing and analysis environment for neutron scattering experiments at CSNS
NASA Astrophysics Data System (ADS)
Tian, H. L.; Zhang, J. R.; Yan, L. L.; Tang, M.; Hu, L.; Zhao, D. X.; Qiu, Y. X.; Zhang, H. Y.; Zhuang, J.; Du, R.
2016-10-01
China Spallation Neutron Source (CSNS) is the first high-performance pulsed neutron source in China, which will meet the increasing fundamental research and technique applications demands domestically and overseas. A new distributed data processing and analysis environment has been developed, which has generic functionalities for neutron scattering experiments. The environment consists of three parts, an object-oriented data processing framework adopting a data centered architecture, a communication and data caching system based on the C/S paradigm, and data analysis and visualization software providing the 2D/3D experimental data display. This environment will be widely applied in CSNS for live data processing.
Barrier distribution from 28Si+154Sm quasielastic scattering: Coupling effects in the fusion process
NASA Astrophysics Data System (ADS)
Kaur, Gurpreet; Behera, B. R.; Jhingan, A.; Nayak, B. K.; Dubey, R.; Sharma, Priya; Thakur, Meenu; Mahajan, Ruchi; Saneesh, N.; Banerjee, Tathagata; Khushboo; Kumar, A.; Mandal, S.; Saxena, A.; Sugathan, P.; Rowley, N.
2016-05-01
Barrier distribution for the 28Si+154Sm system has been extracted from large angle quasielastic scattering measurement to investigate the role of various channel couplings on fusion dynamics. The coupled channel calculations, including the collective excitation of the target and projectile, are observed to reproduce the experimental BD rather well. It seems that the role of neutron transfer, relative to collective excitation, is in fact weak in the 28Si+154Sm system even though it has positive Q-value for neutron transfer channels.
Total Scattering and Pair Distribution Function Analysis in Modelling Disorder in PZN
Whitfield, Ross E.; Goossens, Darren J; Welberry, T. R.
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn_{1/3}Nb_{2/3}O_{3}) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that (110) Pb^{2+} displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.
Total Scattering and Pair Distribution Function Analysis in Modelling Disorder in PZN
Whitfield, Ross E.; Goossens, Darren J; Welberry, T. R.
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separationmore » distances and the fact that (110) Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.« less
Nagasawa, M.; Ida, S.
2011-12-01
We investigated the formation of close-in planets (hot Jupiters) by a combination of mutual scattering, Kozai effect, and tidal circularization, through N-body simulations of three gas giant planets, and compared the results with discovered close-in planets. We found that in about 350 cases out of 1200 runs ({approx}30%), the eccentricity of one of the planets is excited highly enough for tidal circularization by mutual close scatterings followed by secular effects due to outer planets, such as the Kozai mechanism, and the planet becomes a close-in planet through the damping of eccentricity and semimajor axis. The formation probability of close-in planets by such scattering is not affected significantly by the effect of the general relativity and inclusion of inertial modes in addition to fundamental modes in the tides. Detailed orbital distributions of the formed close-in planets and their counterpart distant planets in our simulations were compared with observational data. We focused on the possibility for close-in planets to retain non-negligible eccentricities ({approx}> 0.1) on timescales of {approx}10{sup 9} yr and have high inclinations, because close-in planets in eccentric or highly inclined orbits have recently been discovered. In our simulations we found that as many as 29% of the close-in planets have retrograde orbits, and the retrograde planets tend to have small eccentricities. On the other hand, eccentric close-in planets tend to have orbits of small inclinations.
NASA Astrophysics Data System (ADS)
Belousova, Inna M.; Grigor'ev, Vladimir A.; Danilov, Oleg B.; Kalintsev, Alexander G.; Kris'ko, A. V.; Mironova, N. G.; Yur'ev, Michail S.
2001-03-01
The contribution of light induced scattering to nonlinear optical limiting is theoretically and experimentally investigated. It is shown that light induced scattering is caused by fine-scale (1 divided by 10 micrometer) inhomogeneities formation, very low (comparable to spontaneous noise) laser beam inhomogeneities can evolve into light induced scattering. The numerical modeling of scattered radiation angular distribution and laser radiation attenuation in optical limiters was performed. The modeling results were compared with the experimental ones.
NASA Astrophysics Data System (ADS)
Hayes, W. W.
In the initial portion of this dissertation studies of Ar scattering from Ru(0001) at thermal and hyperthermal energies are compared to calculations with classical scattering theory. These data exhibited a number of characteristics that are unusual in comparison to other systems for which atomic beam experiments have been carried out under similar conditions. The measured energy losses were unusually small. Some of the angular distributions exhibited an anomalous shoulder feature in addition to a broad peak near the specular direction and quantum mechanical diffraction was observed under conditions for which it was not expected. Many of the unusual features observed in the measurements are explained, but only upon using an effective surface mass of 2.3 Ru atomic masses, which implies collective effects in the Ru crystal. The large effective mass, because it leads to substantially larger Debye-Waller factors, explains and confirms the observations of diffraction features. It also leads to the interesting conclusion that Ru is a metal for which atomic beam scattering measurements in the purely quantum mechanical regime, where diffraction and single-phonon creation are dominant, should be possible not only with He atoms, but with many other atomic species with larger masses. A useful theoretical expression for interpreting and analyzing observed scattering intensity spectra for atomic and molecular collisions with surfaces is the differential reflection coefficient for a smooth, vibrating surface. This differential reflection coefficient depends on a parameter, usually expressed in dimensions of velocity, that arises due to correlated motions of neighboring regions of the surface and can be evaluated if the polarization vectors of the phonons near the surface are known. As a part of this dissertation experimental conditions are suggested under which this velocity paramenter may be more precisely measured than it has been in the past. Experimental data for scattering
Cen, Renyue
2015-05-20
We reason that without physical fine-tuning, neither the supermassive black holes (SMBHs) nor the stellar bulges can self-regulate or inter-regulate by driving away already fallen cold gas to produce the observed correlation between them. We suggest an alternative scenario where the observed mass ratios of the SMBHs to bulges reflect the angular momentum distribution of infallen gas such that the mass reaching the stable accretion disk is a small fraction of that reaching the bulge region, averaged over the cosmological timescales. We test this scenario using high-resolution, large-scale cosmological hydrodynamic simulations, without active galactic nucleus (AGN) feedback, assuming the angular momentum distribution of gas landing in the bulge region yields a Mestel disk that is supported by independent simulations resolving the Bondi radii of SMBHs. A mass ratio of 0.1%–0.3% between the very low angular momentum gas that free falls to the subparsec region to accrete to the SMBH and the overall star formation rate is found. This ratio is found to increase with increasing redshift to within a factor of ∼2, suggesting that the SMBH-to-bulge ratio is nearly redshift independent, with a modest increase with redshift, which is a testable prediction. Furthermore, the duty cycle of AGNs with high Eddington ratios is expected to increase significantly with redshift. Finally, while SMBHs and bulges are found to coevolve on ∼30–150 Myr timescales or longer, there is indication that on still smaller timescales, the SMBH accretion and star formation may be less correlated.
Jankowiak, Martin; Larkoski, Andrew J.; /SLAC
2012-02-17
We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.
1994-01-01
Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate
NASA Astrophysics Data System (ADS)
Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc
2016-05-01
A novel distributed fibre sensing technique is described and experimentally validated, based on birefringence measurements using coherent Rayleigh scattering. It natively provides distributed measurements of temperature and strain with more than an order of magnitude higher sensitivity than Brillouin sensing, and requiring access to a single fibre-end. Unlike the traditional Rayleigh-based coherent optical time-domain reflectometry, this new method provides absolute measurements of the measurand and may lead to a robust discrimination between temperature and strain in combination with another technique. Since birefringence is purposely induced in the fibre by design, large degrees of freedom are offered to optimize and scale the sensitivity to a given quantity. The technique has been validated in 2 radically different types of birefringent fibres - elliptical-core and Panda polarization-maintaining fibres - with a good repeatability.
Beausang, K V; Prunty, S L; Scannell, R; Beurskens, M N; Walsh, M J; de la Luna, E
2011-03-01
The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV. PMID:21585113
Beausang, K V; Prunty, S L; Scannell, R; Beurskens, M N; Walsh, M J; de la Luna, E
2011-03-01
The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.
NASA Astrophysics Data System (ADS)
Wu, Xiao-Rui; Shen, Li; Zhang, Kai; Dai, Chang-Jian; Yang, Yu-Na
2016-09-01
The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f76p1/2nd auto-ionizing states are investigated with the velocity-map-imaging technique. To populate the above auto-ionizing states, the relevant bound Rydberg states have to be detected first. Two new bound Rydberg states are identified in the region between 41150 cm‑1 and 44580 cm‑1, from which auto-ionization spectra of the Eu 4f76p1/2nd states are observed with isolated core excitation method. With all preparations above, the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically. Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed, followed by a qualitative interpretation. Project supported by the National Natural Science Foundation of China (Grant No. 11174218).
Mbaiwa, Foster; Holtgrewe, Nicholas; Dao, Diep Bich; Lasinski, Joshua; Mabbs, Richard
2014-09-01
The use of photoelectron angular distributions to provide structural details of cluster environments is investigated. Photoelectron spectra and angular distributions of I(-)·(H2O)2 and I(-)·(CH3CN)2 cluster anions are recorded over a range of photon energies. The anisotropy parameter (β) for electrons undergoes a sharp change (Δβmax) at photon energies close to a detachment channel threshold. I(-)·(H2O)2 results show the relationship between dipole moment and Δβmax to be similar to that observed in monosolvated I(-) detachment. The Δβmax of the 4.0 eV band in the I(-)·(CH3CN)2 photoelectron spectrum suggests a dipole moment of 5-6 D. This is consistent with predictions of a hydrogen bonded conformer of the I(-)·(CH3CN)2 cluster anion [Timerghazin, Q. K.; Nguyen, T. N.; Peslherbe, G. H. J. Chem. Phys. 2002, 116, 6867-6870].
NASA Astrophysics Data System (ADS)
Weber, G.; Bräuning, H.; Surzhykov, A.; Brandau, C.; Fritzsche, S.; Geyer, S.; Grisenti, R. E.; Hagmann, S.; Hahn, C.; Hess, R.; Hess, S.; Kozhuharov, C.; Kühnel, M.; Märtin, R.; Petridis, N.; Spillmann, U.; Trotsenko, S.; Winters, D. F. A.; Stöhlker, Th
2015-07-01
By applying novel-type position sensitive x-ray detectors as Compton polarimeters we recently performed a study of the linear polarization of Lyman-{{α }1} radiation following radiative electron capture into initially bare uranium ions. It was found that a model-independent determination of the ratio of the E1 and M2 transition amplitudes, and consequently of the corresponding transition rates, is feasible by combining the linear polarization data with a measurement of the angular distribution of the emitted radiation. In this work a detailed description of the underlying experimental technique for combined measurements of the linear polarization and the angular distribution of characteristic transitions in high-Z ions is presented. Special emphasis is given to the application of two, two-dimensional position-sensitive x-ray detectors for Compton polarimetry of hard x-rays. Moreover, we demonstrate the polarimeter efficiency of such detector systems can be significantly improved if events, where the charge is spread over neighboring segments, are reconstructed to be used in the polarization analysis.
NASA Astrophysics Data System (ADS)
Wu, Xiao-Rui; Shen, Li; Zhang, Kai; Dai, Chang-Jian; Yang, Yu-Na
2016-09-01
The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f76p1/2nd auto-ionizing states are investigated with the velocity-map-imaging technique. To populate the above auto-ionizing states, the relevant bound Rydberg states have to be detected first. Two new bound Rydberg states are identified in the region between 41150 cm-1 and 44580 cm-1, from which auto-ionization spectra of the Eu 4f76p1/2nd states are observed with isolated core excitation method. With all preparations above, the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically. Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed, followed by a qualitative interpretation. Project supported by the National Natural Science Foundation of China (Grant No. 11174218).
NASA Astrophysics Data System (ADS)
Milot, Robin; Kleyn, A. W.; Jansen, A. P. J.
2001-08-01
We present classical trajectory calculations of the