Science.gov

Sample records for scattering angular distribution

  1. Surface Roughness Metrology By Angular Distributions Of Scattered Light

    NASA Astrophysics Data System (ADS)

    Gilsinn, David E.; Vorburger, Theodore V.; Teague, E. Clayton; MeLay, Michael J.; Giauque, Charles; Scire, Fredric E.

    1985-09-01

    On-line industrial inspection of batch manufactured parts requires fast measurement techniques for surface finish quality. In order to develop the measurement basis for these techniques, a system has been built to determine surface roughness by measuring the angular distributions of scattered light. The system incorporates data gathered from the angular distribution instrument and traditional surface stylus instruments. These data are used both as input and as comparison data in order to test various mathematical models of optical scattering phenomena. The object is to develop a mathematical model that uses the angular distribution of scattered light to deduce surface roughness parameters such as Ra and surface wavelength. This paper describes the results of an experiment in which angular scattered data from surfaces with sinusoidal profiles was used to compute the surface R and wavelength. Stylus measurements of these parameters were made separately. A comparative table is given of the computed and measured values. Estimates of uncertainties are also given.

  2. Angular distribution of electrons elastically scattered from water vapor

    NASA Astrophysics Data System (ADS)

    Shyn, T. W.; Grafe, Alan

    1992-10-01

    The angular distributions of electrons elastically scattered from H2O have been measured by electron impact using a modulated crossed-beam method. The energy and angular range measured were from 30 to 200 eV and 12° to 156°, respectively. The present results show a high backward scattering for low incident energies, but this falls off for high incident energies. The present results are in qualitative agreement with the measurements of Danjo and Nishimura [J. Phys. Soc. Jpn. 54, 1224 (1985)] and in quantitative agreement with the measurements of Katase et al. [J. Phys. B 19, 2715 (1986)]. Agreement between the present results and the calculation of Jain, Tripathi, and Jain [Phys. Rev. A 37, 2893 (1988)] is good except at 200-eV impact.

  3. Photoelectron angular distributions from liquid water: effects of electron scattering.

    PubMed

    Thürmer, Stephan; Seidel, Robert; Faubel, Manfred; Eberhardt, Wolfgang; Hemminger, John C; Bradforth, Stephen E; Winter, Bernd

    2013-10-25

    Photoelectron angular distributions (PADs) from the liquid-water surface and from bulk liquid water are reported for water oxygen-1s ionization. Although less so than for the gas phase, the measured PADs from the liquid are remarkably anisotropic, even at electron kinetic energies lower than 100 eV, when elastic scattering cross sections for the outgoing electrons with other water molecules are large. The PADs reveal that theoretical estimates of the inelastic mean free path are likely too long at low kinetic energies, and hence the electron probing depth in water, near threshold ionization, appears to be considerably smaller than so far assumed.

  4. Effects of Angular Scattering on Ion Velocity Distribution Functions

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Sukhomlinov, Vladimir; Kaganovich, Igor; Mustafaev, Alexander

    2016-09-01

    An approximation model for total elastic and charge exchange ion-atom angular differential scattering cross sections is developed for simulations of the ion velocity distribution functions (IVDF), which is validated by the experiment data of mobility and diffusion. IVDFs are simulated using the developed model and compared with recently published experimental data. The IVDFs obtained with this model are compared to that from two other conventional models of less accurate differential cross sections. The simulation results show the necessity to take into account the accurate differential cross sections, especially for strong E/ N. The study reveals that IVDF cannot be separated into product of two independent IVDFs in the transverse and parallel to the electric field directions due to the significant effect of scattering.

  5. Seemingly anomalous angular distributions in H + D₂ reactive scattering.

    PubMed

    Jankunas, Justin; Zare, Richard N; Bouakline, Foudhil; Althorpe, Stuart C; Herráez-Aguilar, Diego; Aoiz, F Javier

    2012-06-29

    When a hydrogen (H) atom approaches a deuterium (D(2)) molecule, the minimum-energy path is for the three nuclei to line up. Consequently, nearly collinear collisions cause HD reaction products to be backscattered with low rotational excitation, whereas more glancing collisions yield sideways-scattered HD products with higher rotational excitation. Here we report that measured cross sections for the H + D(2) → HD(v' = 4, j') + D reaction at a collision energy of 1.97 electron volts contradict this behavior. The anomalous angular distributions match closely fully quantum mechanical calculations, and for the most part quasiclassical trajectory calculations. As the energy available in product recoil is reduced, a rotational barrier to reaction cuts off contributions from glancing collisions, causing high-j' HD products to become backward scattered.

  6. Visualization of scattering angular distributions with the SAP code

    NASA Astrophysics Data System (ADS)

    Fernandez, J. E.; Scot, V.; Basile, S.

    2010-07-01

    SAP (Scattering Angular distribution Plot) is a graphical tool developed at the University of Bologna to compute and plot Rayleigh and Compton differential cross-sections (atomic and electronic), form-factors (FFs) and incoherent scattering functions (SFs) for single elements, compounds and mixture of compounds, for monochromatic excitation in the range of 1-1000 keV. The computation of FFs and SFs may be performed in two ways: (a) by interpolating Hubbell's data from EPDL97 library and (b) by using semi-empirical formulas as described in the text. Two kinds of normalization permit to compare the plots of different magnitudes, by imposing a similar scale. The characteristics of the code SAP are illustrated with one example.

  7. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    ERIC Educational Resources Information Center

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  8. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    ERIC Educational Resources Information Center

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  9. Angular distribution of electrons elastically scattered from hydrogen atoms

    SciTech Connect

    Shyn, T. W.; Cho, S. Y.

    1989-08-01

    Absolute elastic differential cross sections of atomic hydrogen have been measured by a modulated crossed-beam method. The energy and angular range covered were from 5 to 30 eV and from 12/degree/ to 156/degree/, respectively. The present results agree with the previous measurements within the experimental uncertainty below 15 eV, but it is found that the present results show stronger backward scattering (/gt/120/degree/) than the previous measurement and theoretical results by more than a factor of 2 above 20 eV.

  10. Surface texture characterization by angular distributions of scattered light

    NASA Technical Reports Server (NTRS)

    Gilsinn, D. E.; Vorburger, T. V.; Scire, F. E.; Teague, E. C.; Mclay, M. J.

    1985-01-01

    Work at the National Bureau of Standards to develop an on-line optical measurement device and attendant algorithms for automated optical scattering measurements of machined metal surfaces are described. The surfaces could be milled, ground or lapped, and the system is intended to categorize the resulting surface characteristics. The optical device consists of a He-Ne laser which is shone on a surface. The scattered light is captured by a semicircular array of 87 detector elements rotated over the scanned area. The light signals are processed through a digital voltmeter and then an A/D converter. The signals are then stored for later comparisons with optical scattering data obtained by optical instruments used with stylus instruments for characterizing surface topographies. A theoretical model has been defined which relates light scattering and the characteristics of the surface roughness. Initial experimental results with a sinusoidal surface have indicated that although the system can follow the trend of the roughness, the roughness amplitude is as yet uncertainly defined and the computations require excessive time.

  11. Measurement of the angular distribution of neutron-proton scattering at 10 MeV

    SciTech Connect

    Haight, R.C.; Bateman, F.B.; Grimes, S.M.; Brient, C.E.; Massey, T.N.; Wasson, O.A.; Carlson, A.D.; Zhou, H.

    1995-12-31

    The relative angular distribution of neutrons scattered from protons was measured at an incident neutron energy of 10 MeV at the Ohio University Accelerator Laboratory. An array of 11 detector telescopes at laboratory angles of 0 to 60 degrees was used to detect recoil protons from neutron interactions with a CH{sub 2} (polypropylene) target. Data for 7 of these telescopes were obtained with one set of electronics and are presented here. These data, from 108 to 180 degrees for the center-of-mass scattering angles, have a small slope which agrees better with angular distributions predicted by the Arndt phase shifts than with the ENDF/B-VI angular distribution.

  12. Measurements of neutron scattering angular distributions with a new scintillator setup

    NASA Astrophysics Data System (ADS)

    Pirovano, Elisa; Beyer, Roland; Junghans, Arnd; Nolte, Ralf; Nyman, Markus; Plompen, Arjan

    2017-09-01

    A new experimental setup for the measurement of neutron scattering cross sections and angular distributions is currently being developed at the neutron time-of-flight facility GELINA, at the JRC-Geel. Up to 32 liquid organic scintillators are employed for the detection of neutrons scattered from a sample of the investigated material. The differential cross section is measured at eight different angles, and the angle-integrated cross section is obtained from the differential data by numerical integration. Two experiments for the study of scattering on iron were carried out, one at GELINA and the other at nELBE (HZDR). The first results for the angular distributions of elastic scattering in the neutron energy range from 2 to 6 MeV are here presented and compared with evaluations from the major nuclear data libraries.

  13. Determination of angular distribution of radiation in an isotropically scattering slab

    NASA Astrophysics Data System (ADS)

    Cengel, Y. A.; Ozisik, M. N.; Yener, Y.

    1984-02-01

    Ozisik (1982) has employed the Galerkin method to arrive at a solution of the radiative transfer equation in an absorbing, emitting, isotropically scattering plane-parallel slab in order to predict radiation flux. This method is presently developed to accurately determine the angular distribution of radiation intensity anywhere in the medium, subject to general boundary conditions.

  14. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    SciTech Connect

    Zhou, Yun Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  15. Spatial and angular distribution of light incident on coatings using Mie-scattering Monte Carlo simulations.

    PubMed

    Yamada, Masako; Butts, Matthew D; Kalla, Karen K

    2005-01-01

    We show the results of Mie-scattering Monte Carlo models developed to simulate the optical properties of light incident on particle-containing coatings. The model accommodates mixtures of particles with different sizes and complex refractive indices, enabling the simulation of formulations, including pigments. The simulation tracks trajectories of photons as they propagate through the turbid medium, calculating both angular and spatial light intensity distributions. Scalar quantities such as total transmission and reflection, and haze and diffuse reflectance, are also calculated.

  16. Angular distribution and polarization properties of radiation scattering in the classical framework

    NASA Astrophysics Data System (ADS)

    Boca, Madalina

    2017-06-01

    We study the scattering of intense electromagnetic radiation on free relativistic electrons in the classical formalism. Starting from the well known property that in the relativistic regime the radiation is emitted by an accelerated charged particle along its instantaneous velocity direction we discuss the effects of the radiation reaction on the shape of the angular distribution in Thomson effect for the case of linear and circular polarization of the incident light and for different collision geometries. We also study the polarization properties of the emitted radiation for several low intensity cases.

  17. Monte Carlo based angular distribution estimation method of multiply scattered photons for underwater imaging

    NASA Astrophysics Data System (ADS)

    Li, Shengfu; Chen, Guanghua; Wang, Rongbo; Luo, Zhengxiong; Peng, Qixian

    2016-12-01

    This paper proposes a Monte Carlo (MC) based angular distribution estimation method of multiply scattered photons for underwater imaging. This method targets on turbid waters. Our method is based on applying typical Monte Carlo ideas to the present problem by combining all the points on a spherical surface. The proposed method is validated with the numerical solution of the radiative transfer equation (RTE). The simulation results based on typical optical parameters of turbid waters show that the proposed method is effective in terms of computational speed and sensitivity.

  18. The calibration of elastic scattering angular distribution at low energies on HIRFL-RIBLL

    NASA Astrophysics Data System (ADS)

    Zhang, G. X.; Zhang, G. L.; Lin, C. J.; Qu, W. W.; Yang, L.; Ma, N. R.; Zheng, L.; Jia, H. M.; Sun, L. J.; Liu, X. X.; Chu, X. T.; Yang, J. C.; Wang, J. S.; Xu, S. W.; Ma, P.; Ma, J. B.; Jin, S. L.; Bai, Z.; Huang, M. R.; Zang, H. L.; Yang, B.; Liu, Y.

    2017-02-01

    The precise calibration of angular distribution of heavy-ion elastic scattering induced by Radioactive Ion Beams (RIBs) at energies around Coulomb barrier on the Radioactive Ion Beam Line in Lanzhou (RIBLL) at the Heavy-Ion Research Facility in Lanzhou (HIRFL) is presented. The beam profile and the scattering angles on the target are deduced by a measurement with two Multi Wire Proportional Chambers (MWPC), and four sets of detector telescopes (including Double-sided Silicon Strip Detectors (DSSD) placed systematically along the beam line, incorporating with Monte Carlo simulation. The MWPCs were used to determine the beam trajectory before the target, and the energies and the positions of scattered particles on the detectors were measured by the DSSDs. Minor corrections on the beam spot and the detector position are performed by assuming the pure Rutherford scattering at angles which are smaller than the related grazing angle. This method is applied for the elastic scattering of 17F on 89Y target at Elab=59 MeV and 50 MeV.

  19. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering.

    PubMed

    Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E

    2017-06-28

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  20. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering

    NASA Astrophysics Data System (ADS)

    Antonsson, E.; Langer, B.; Halfpap, I.; Gottwald, J.; Rühl, E.

    2017-06-01

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  1. Periodicity property of relativistic Thomson scattering with application to exact calculations of angular and spectral distributions of the scattered field

    SciTech Connect

    Popa, Alexandru

    2011-08-15

    We prove that the analytical expression of the intensity of the relativistic Thomson scattered field for a system composed of an electron interacting with a plane electromagnetic field can be written in the form of a composite periodic function of only one variable, that is, the phase of the incident field. This property is proved without using any approximation in the most general case in which the field is elliptically polarized, the initial phase of the incident field and the initial velocity of the electron are taken into consideration, and the direction in which the radiation is scattered is arbitrary. This property leads to an exact method for calculating the angular and spectral distributions of the scattered field, which reveals a series of physical details of these distributions, such as their dependence on the components of the initial electron velocity. Since the phase of the field is a relativistic invariant, it follows that the periodicity property is also valid when the analysis is made in the inertial system in which the initial velocity of the electron is zero in the case of interactions between very intense electromagnetic fields and relativistic electrons. Consequently, the calculation method can be used for the evaluation of properties of backscattered hard radiations generated by this type of interaction. The theoretical evaluations presented in this paper are in good agreement with the experimental data from literature.

  2. Multiple-scattering distributions and angular dependence of the energy loss of slow protons in copper and silver

    NASA Astrophysics Data System (ADS)

    Cantero, E. D.; Lantschner, G. H.; Eckardt, J. C.; Lovey, F. C.; Arista, N. R.

    2010-04-01

    Measurements of angular distributions and of the angular dependence of the energy loss of 4-, 6-, and 9-keV protons transmitted through thin Cu and Ag polycrystalline foils are presented. By means of standard multiple-scattering model calculations it is found that a V(r)∝r-2.8 potential leads to significantly better fits of the angular distributions than the standard Thomas Fermi, Lenz-Jensen, or Ziegler-Biersack-Littmark potentials. A theoretical model for the angular dependence of the energy loss based on considering geometric effects on a frictional inelastic energy loss plus an angular-dependent elastic contribution and the effects of foil roughness reproduces the experimental data. This agrees with previous results in Au and Al, therefore extending the applicability of the model to other metallic elements.

  3. SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues

    SciTech Connect

    Ganezer, K; Krmar, M; Cvejic, Z; Rakic, S; Pajic, B

    2015-06-15

    Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profile usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.

  4. Quasi-elastic scattering and transfer angular distribution for B,1110+232Th systems at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Dubey, Shradha; Biswas, D. C.; Mukherjee, S.; Patel, D.; Gupta, Y. K.; Prajapati, G. K.; Joshi, B. N.; Danu, L. S.; Mukhopadhyay, S.; John, B. V.; Suryanarayana, S. V.; Vind, R. P.

    2016-12-01

    Quasi-elastic scattering and transfer angular distributions for B,1110+232Th reactions have been measured simultaneously in a wide range of bombarding energies around the Coulomb barrier. The quasi-elastic angular distribution data are analyzed using the optical model code ecis with phenomenological Woods-Saxon potentials. The obtained potential parameters suggest the presence of usual threshold anomaly, confirming tightly bound characteristics for both the projectiles. The reaction cross sections are obtained from the fitting of quasi-elastic angular distribution data. The reduced cross sections at sub-barrier energies compared with Li,76+232Th systems show a systematic dependence on projectile breakup energy. The angular distribution of the transfer products show similar behavior for both the systems.

  5. State-to-state and state-to-all-states reactive scattering angular distributions: F+H /sub 2/. -->. HF+H

    SciTech Connect

    Emmons, R.W.; Suck, S.H.

    1983-04-01

    How each state-to-state reactive transition determines nonundulatory ''state-to-all-states'' angular distribution has not yet been investigated. Here we present a complete exposure of state-to-state distorted-wave Born-approximation angular distributions in order to examine how the nonoscillatory and backward-peaked state-to-all-states reactive scattering angular distribution occurs.

  6. Angular and charge state distributions of highly charged ions scattered during low energy surface-channeling interactions with Au(110)

    SciTech Connect

    Meyer, F.W.; Folkerts, L.; Schippers, S.

    1994-10-01

    The authors have measured scattered projectile angular and charge state distributions for 3.75 keV/amu O{sup q+} (3 {le} q {le} 8) and 1.2 keV/amu Ar{sup 1+} (3 {le} q {le} 14) ions grazingly incident along the [110] and [100] directions of a Au(110) single crystal target. Scattered projectile angular distribution characteristic of surface channeling are observed. For both incident species, the dominant scattered charge fraction is neutral, which varies only by a few percent as a function of incident charge state. Significant O{sup {minus}} formation is observed, which manifests a distinct velocity threshold. For incident Ar projectiles with open L-shells, the positive scattered charge fractions, while always less than about 10%, increase linearly with increasing number of initial L-shell vacancies.

  7. Angular distributions of electrons photoemitted from core levels of oriented diatomic molecules: Multiple scattering theory in non-spherical potentials

    SciTech Connect

    Diez Muino, R.; Rolles, D.; Garcia de Abajo, F.J.; Fadley, C.S.; Van Hove, M.A.

    2001-09-06

    We use multiple scattering in non-spherical potentials (MSNSP) to calculate the angular distributions of electrons photoemitted from the 1s-shells of CO and N2 gas-phase molecules with fixed-in-space orientations. For low photoelectron kinetic energies (E<50 eV), as appropriate to certain shape-resonances, the electron scattering must be represented by non-spherical scattering potentials, which are naturally included in our formalism. Our calculations accurately reproduce the experimental angular patterns recently measured by several groups, including those at the shape-resonance energies. The MSNSP theory thus enhances the sensitivity to spatial electronic distribution and dynamics, paving the way toward their determination from experiment.

  8. Effect of the third π ∗ resonance on the angular distributions for electron-pyrimidine scattering

    NASA Astrophysics Data System (ADS)

    Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2016-07-01

    We present a detailed analysis of the effect of the well known third π∗ resonance on the angular behaviour of the elastic cross section in electron scattering from pyrimidine. This resonance, occurring approximately at 4.7 eV, is of mixed shape and core-excited character. Experimental and theoretical results show the presence of a peak/dip behaviour in this energy range, that is absent for other resonances. Our investigations show that the cause of the peak/dip is an interference of background p-wave to p-wave scattering amplitudes with the amplitudes for resonant scattering. The equivalent resonance in pyrazine shows the same behaviour and the effect is therefore likely to appear in other benzene-like molecules. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  9. Spectral and angular distribution of light scattered from the elytra of two carabid beetle species

    NASA Astrophysics Data System (ADS)

    Wu, X.; Erbe, A.; Fabritius, H.; Raabe, D.

    2010-06-01

    Color in living organisms is primarily generated by two mechanisms: selective absorption by pigments and structural coloration, or a combination of both. In this study, we investigated the coloration of cuticle from the wings (elytra) of the two ground beetle species Carabus auronitens and Carabus auratus. The greenish iridescent color of both species is created by a multilayer structure consisting of periodically alternating layers with different thicknesses and composition which is located in the 1-2 µm thick outermost layer of the cuticle (epicuticle). Illuminated with white light, reflectance spectra in both linear polarisation show an angle-dependent characteristic peak in the blue/green region of the spectrum. Furthermore, the reflected light is polarised linearly. Scattering experiments with laser illumination at 532 nm show diffuse scattering over a larger angular range. The polarisation dependence of the scattered light is consistent with the interpretation of small inhomogeneities as scattering centres in the elytra.

  10. Differences in forward angular light scattering distributions between M1 and M2 macrophages

    NASA Astrophysics Data System (ADS)

    Halaney, David L.; Zahedivash, Aydin; Phipps, Jennifer E.; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E.; Feldman, Marc D.

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.

  11. Differences in forward angular light scattering distributions between M1 and M2 macrophages

    PubMed Central

    Halaney, David L.; Zahedivash, Aydin; Phipps, Jennifer E.; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E.; Feldman, Marc D.

    2015-01-01

    Abstract. The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture. PMID:26538329

  12. Differences in forward angular light scattering distributions between M1 and M2 macrophages.

    PubMed

    Halaney, David L; Zahedivash, Aydin; Phipps, Jennifer E; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E; Feldman, Marc D

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.

  13. Directional Stand-off Detection of Fast Neutrons and Gammas Using Angular Scattering Distributions

    SciTech Connect

    Vanier P. e.; Dioszegi, I.; Salwen, C.; Forman, L.

    2009-10-25

    We have investigated the response of a DoubleScatter Neutron Spectrometer (DSNS) for sources at long distances (gr than 200 meters). We find that an alternative method for analyzing double scatter data avoids some uncertainties introduced by amplitude measurements in plastic scintillators.Time of flight is used to discriminate between gamma and neutron events, and the kinematic distributions of scattering angles are assumed to apply. Non-relativistic neutrons are most likely to scatter at 45°, while gammas with energies greater than 2 MeV are most likely to be forward scattered. The distribution of scattering angles of fission neutrons arriving from a distant point source generates a 45° cone, which can be back-projected to give the source direction. At the same time, the distribution of Compton-scattered gammas has a maximum in the forward direction, and can be made narrower by selecting events that deposit minimal energy in the first scattering event. We have further determined that the shape of spontaneous fission neutron spectra at ranges gr than 110 m is still significantly different from thecosmic ray background.

  14. Measurements of angular distributions for7Li elastically scattered from58Ni at energies around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Amador-Valenzuela, P.; Aguilera, E. F.; Martinez-Quiroz, E.; Lizcano, D.; Morales-Rivera, J. C.

    2017-07-01

    Recently, experimental measurements of elastic scattering angular distributions for the system7Li+58Ni at ten different energies around the Coulomb barrier were made by the Heavy-Ion Group. The measurements were made at the Tandem Van de Graaff Particle Accelerator Laboratory in the National Institute for Nuclear Research (ININ) in Mexico. In this work, preliminary elastic scattering angular distributions for five energies (E lab , = 12.0, 12.5, 13.0, 13.5 and 14.22 MeV) are presented. The preliminary experimental data were analyzed using the São Paulo Optical Model Potential (SPP) which is based on a double-folding potential, reproducing very well these data. A comparison is made with old data reported back in 1973 and in 2012. Further analysis is in progress in order to fully understand this particular system, specially because7Li is known to be a weakly bound nucleus.

  15. Angular distributions for the inelastic scattering of NO(X2Π ) with O2(X3Σg-)

    NASA Astrophysics Data System (ADS)

    Brouard, M.; Gordon, S. D. S.; Nichols, B.; Squires, E.; Walpole, V.; Aoiz, F. J.; Stolte, S.

    2017-05-01

    The inelastic scattering of NO(X2Π ) by O2(X3Σg-) was studied at a mean collision energy of 550 cm-1 using velocity-map ion imaging. The initial quantum state of the NO(X2Π , v = 0, j = 0.5, Ω =0.5 , 𝜖 = -1 , f) molecule was selected using a hexapole electric field, and specific Λ-doublet levels of scattered NO were probed using (1 +1' ) resonantly enhanced multiphoton ionization. A modified "onion-peeling" algorithm was employed to extract angular scattering information from the series of "pancaked," nested Newton spheres arising as a consequence of the rotational excitation of the molecular oxygen collision partner. The extracted differential cross sections for NO(X) f →f and f →e Λ-doublet resolved, spin-orbit conserving transitions, partially resolved in the oxygen co-product rotational quantum state, are reported, along with O2 fragment pair-correlated rotational state population. The inelastic scattering of NO with O2 is shown to share many similarities with the scattering of NO(X) with the rare gases. However, subtle differences in the angular distributions between the two collision partners are observed.

  16. Vibrationally and rotationally resolved angular distributions for F+H2 --> HF(ν,j)+H reactive scattering

    NASA Astrophysics Data System (ADS)

    Dharmasena, Gamini; Phillips, Timothy R.; Shokhirev, Kirill N.; Parker, Gregory A.; Keil, Mark

    1997-06-01

    Angular distributions for individually resolved ν, j states from the F+H2→HF(ν,j)+H chemical reaction are measured for the first time. Vibrational and rotational resolution is achieved simultaneously by applying laser+bolometer detection techniques to crossed-beam reactive scattering. In addition to backward-scattering HF(ν=1, j=6) and HF(ν=2, j=5), we also observe HF(ν=1, j=6) products scattered into the forward hemisphere. The results are in qualitative agreement with fully three-dimensional exact quantum reactive scattering calculations [Castillo et al., J. Chem. Phys. 104, 6531 (1996)] which were conducted on an accurate potential-energy surface [Stark and Werner, J. Chem. Phys. 104, 6515 (1996)]. However, the forward-scattered HF(ν=1, j=6) observed in this experiment is not reproduced by quasi-classical calculations [Aoiz et al., Chem. Phys. Lett. 223, 215 (1994)] on the same potential-energy surface.

  17. Angular distributions of 5eV atomic oxygen scattered from solid surfaces on the LDEF satellite

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Peters, Palmer N.

    1992-01-01

    The angular distribution of 5eV atomic oxygen scattered off several smooth solid surfaces was measured by experiment A0114 which flew on board the Long Duration Exposure Facility (LDEF). Target surfaces were silver, vitreous carbon, and lithium fluoride crystal. The apparatus was entirely passive. It used the property of silver surfaces to absorb oxygen atoms with high efficiency; the silver is converted to optically transmissive silver oxide. A collimated beam of oxygen atoms is allowed to fall on the target surface at some pre-set angle. Reflected atoms are then intercepted by a silver film placed so that it subtends a considerable solid angle from the primary beam impact on the target surface. The silver films are evaporated onto flexible optically-clear polycarbonate sheets which are scanned later to determine oxygen uptake. While the silver detector cannot measure atom velocity or energy, its physical configuration allows easy coverage of large angular space both in the beam-plane (that which includes the incident beam and the surface normal), and in the azimuthal plane of the target surface.

  18. Analytical inversions in remote sensing of particle size distributions. I - Multispectral extinctions in the anomalous diffraction approximation. II Angular and spectral scattering in diffraction approximations

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1978-01-01

    Consideration is given to analytical inversions in the remote sensing of particle size distributions, noting multispectral extinctions in anomalous diffraction approximation and angular and spectral scattering in diffraction approximation. A closed-form analytical inverse solution is derived in order to reconstruct the size distribution of atmospheric aerosols. The anomalous diffraction approximation to Mie's solution is used to describe the particles. Experimental data yield the geometrical area of aerosol polydispersion. Size distribution is thus found from a set of multispectral extinction measurements. In terms of the angular and spectral scattering of light in a narrow forward cone, it is shown that an analytical inverse solution may also be found for the Fraunhofer approximation to the Kirchhoff diffraction, and for an improved expression of this approximation due to Penndorf (1962) and Shifrin-Punina (1968).

  19. Angular distributions in multifragmentation

    SciTech Connect

    Stoenner, R.W.; Klobuchar, R.L.; Haustein, P.E.; Virtes, G.J.; Cumming, J.B.; Loveland, W.

    2006-04-15

    Angular distributions are reported for {sup 37}Ar and {sup 127}Xe from 381-GeV {sup 28}Si+Au interactions and for products between {sup 24}Na and {sup 149}Gd from 28-GeV {sup 1}H+Au. Sideward peaking and forward deficits for multifragmentation products are significantly enhanced for heavy ions compared with protons. Projectile kinetic energy does not appear to be a satisfactory scaling variable. The data are discussed in terms of a kinetic-focusing model in which sideward peaking is due to transverse motion of the excited product from the initial projectile-target interaction.

  20. Angular distribution of 4.43-MeV γ-rays produced in inelastic scattering of 14.1-MeV neutrons by 12C nuclei

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Grozdanov, D. N.; Zontikov, A. O.; Kopach, Yu. N.; Rogov, Yu. N.; Ruskov, I. N.; Sadovsky, A. B.; Skoy, V. R.; Barmakov, Yu. N.; Bogolyubov, E. P.; Ryzhkov, V. I.; Yurkov, D. I.

    2016-07-01

    The work is devoted to measuring the angular distribution of 4.43-MeV γ-rays produced in inelastic scattering of 14.1-MeV neutrons by 12C nuclei. A portable ING-27 neutron generator (designed and fabricated at VNIIA, Moscow) with a built-in 64-pixel silicon α-detector was used as a source of tagged neutrons. The γ-rays of characteristic nuclear radiation from 12C were detected with a spectrometric system that consisted of 22 γ-detectors based on NaI(Tl) crystals arranged around the carbon target. The measured angular distribution of 4.43-MeV γ-rays is analyzed and compared with the results of other published experimental works.

  1. Numerical study of particle-size distributions retrieved from angular light-scattering data using an evolution strategy with the Fraunhofer approximation.

    PubMed

    Vargas-Ubera, Javier; Sánchez-Escobar, Juan Jaime; Aguilar, J Félix; Gale, David Michel

    2007-06-10

    An algorithm is presented based on an evolution strategy to retrieve a particle size distribution from angular light-scattering data. The analyzed intensity patterns are generated using the Mie theory, and the algorithm retrieves a series of known normal, gamma, and lognormal distributions by using the Fraunhofer approximation. The distributions scan the interval of modal size parameters 100 < or = alpha < or = 150. The numerical results show that the evolution strategy can be successfully applied to solve this kind of inverse problem, obtaining a more accurate solution than, for example, the Chin-Shifrin inversion method, and avoiding the use of a priori information concerning the domain of the distribution, commonly necessary for reconstructing the particle size distribution when this analytical inversion method is used.

  2. Detector system for the angular distribution measurement of 12C + 12C elastic scattering at 200-400A MeV

    NASA Astrophysics Data System (ADS)

    Qu, W. W.; Zhang, G. L.; Terashima, S.; Guo, C. L.; Tanihata, I.; Le, X. Y.; Wang, T. F.; Zhang, X. H.; Sun, Z. Y.; Duan, L. M.; Hu, R. J.; Lu, C. G.; Ma, P.

    2016-10-01

    To obtain the angular distributions of 12C + 12C elastic scatterings with the incident energies of 200-400A MeV for the study of three-body forces, a detector system was constructed at second Radioactive Ion Beam Line in Lanzhou (RIBLL2) of Institute of Modern Physics (IMP). This system was composed of five plastic scintillation detectors with two read-outs for each detector, a Multi Wire Proportional Chamber (MWPC) and a 4×4 CsI(Tl) array. The 12C beam with the incident energy of 200A MeV on a natural carbon target was used to test this detector system. It is found that the plastic scintillation detector can give the good energy loss (Δ E) and time of flight (TOF) signals, it can also reflect the position information of scattered 12C events. MWPC can precisely provide the trajectories of scattered particles. This system has a very good particle identification ability and can clearly distinguish the scattered 12C particles from the fragments. It can be used for the study of the three-body forces effect for high energy heavy-ion scattering.

  3. Angular scattering from optical interference coatings: scalar scattering predictions and measurements.

    PubMed

    Zavislan, J M

    1991-06-01

    A scalar scattering theory is developed that predicts the angular distribution of light scattered and the total integrated scatter from a randomly rough or inhomogeneous optical interference coating. Three types of random variation are considered: uncorrelated roughness, additive roughness, and uncorrelated index inhomogeneity. The scattering calculations are formulated so that the output of any conventional thin film analysis program along with a coating's surface or index statistics could be used to calculate the scattering distribution of a coating. The scattering calculations are compared to experimental measurements from a sixteen-layer high reflector coating with small additive roughness sigma = 2.4 A and large correlated roughness sigma = 93 A.

  4. Sensitivity of MCNP5 calculations for a spherical numerical benchmark problem to the angular scattering distributions for deuterium

    SciTech Connect

    Kozier, K. S.

    2006-07-01

    This paper examines the sensitivity of MCNP5 k{sub eff} results to various deuterium data files for a simple benchmark problem consisting of an 8.4-cm radius sphere of uranium surrounded by an annulus of deuterium at the nuclide number density corresponding to heavy water. This study was performed to help clarify why {Delta}k{sub eff} values of about 10 mk are obtained when different ENDF/B deuterium data files are used in simulations of critical experiments involving solutions of high-enrichment uranyl fluoride in heavy water, while simulations of low-leakage, heterogeneous critical lattices of natural-uranium fuel rods in heavy water show differences of <1 mk. The benchmark calculations were performed as a function of deuterium reflector thickness for several uranium compositions using deuterium ACE files derived from ENDF/B-VII.b1 (release beta 1), ENDF/B-VI.4 and JENDL-3.3, which differ primarily in the energy/angle distributions for elastic scattering <3.2 MeV. Calculations were also performed using modified ACE files having equiprobable cosine bin values in the centre-of-mass reference frame in a progressive manner with increasing energy. It was found that the {Delta}k{sub eff} values increased with deuterium reflector thickness and uranium enrichment. The studies using modified ACE files indicate that most of the reactivity differences arise at energies <1 MeV; hence, this energy range should be given priority if new scattering distribution measurements are undertaken. (authors)

  5. Angular distribution measurement of gamma rays from inelastic neutron scattering on 56Fe at the nELBE time-of-flight facility

    NASA Astrophysics Data System (ADS)

    Dietz, Mirco; Bemmerer, Daniel; Beyer, Roland; Gohl, Stefan; Junghans, Arnd R.; Kögler, Toni; Massarczyk, Ralph; Müller, Stefan E.; Schwengner, Ronald; Szücs, Tamás; Takacs, Marcell P.; Wagner, Andreas; Wagner, Louis

    2017-09-01

    Inelastic neutron scattering from 56Fe was studied at the nELBE time-of-flight facility. The incoming neutron energy ranges from 100 keV to 10 MeV in the fast neutron spectrum, where high precision nuclear data are needed. A detector setup has been installed to investigate the γ-ray angular distributions. It contains five HPGe and five LaBr3 detectors positioned at 30, 55, 90, 125 and 150 degrees relative to the beam axis. The intrinsic and the neutron induced background from the setup was subtracted by cyclical measurements with and without the natural Fe-target. Corrections for extended source efficiency and gamma-self-absorption, inside the target, were done using GEANT4 simulations. The angular distributions measured with the HPGe detectors are compared with earlier data. High neutron energy resolution up to a few keV was obtained with the LaBr3 detectors due to their much better time resolution.

  6. Time-dependent photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang

    1999-09-01

    I show that the angular distribution of electrons photoionized from gas phase targets by short light pulses is time-dependent, when the orbital momentum composition of the photocurrent changes with excitation energy so evolves with the time of detection. A theory of time- dependent photoionization is outlined and general formulas of time-dependent photoelectron flux and angular distribution are given. Two general propagator methods suitable to describe the time-dependent photoionization and scattering processes are developed. The photoionization process is viewed as a local excitation followed by a half scattering. The local excitation process is solved theoretically in a small region around the target core. This approach has been generalized to describe the evolution of a wavepacket in an unbound system. An asymptotic propagator theorem is discovered and used to derive analytic expressions for asymptotic propagators. The origin of the time dependence is explored by parameterizing the time delay and orbital momentum coupling in a two channel model. K-shell photoionization of N2 and CO are calculated with this time- dependent photoionization theory, implemented using a multiple scattering model. Numerical results demonstrate that the time dependence of photoelectron angular distributions is a realistic effect.

  7. Peculiarities of the angular distribution of laser radiation intensity scattered by laser-spark plasma in air

    SciTech Connect

    Malyutin, A A; Podvyaznikov, V A; Chevokin, V K

    2010-02-28

    The spatiotemporal study of the diagram of laser radiation scattering by the laser-spark plasma produced by 3-ns and 50-ns pulses is performed. It is shown that radiation appearing outside the laser beam cone is scattered during the first one - two nanoseconds after the air breakdown, when the spark plasma is located in the vicinity of the laser beam waist and has a shape close to spherical.

  8. Models and theory for precompound angular distributions

    SciTech Connect

    Blann, M.; Pohl, B.A.; Remington, B.A. ); Scobel, W.; Trabandt, M. . 1. Inst. fuer Experimentalphysik); Byrd, R.C. ); Foster, C.C. ); Bonetti, R.; Chiesa, C. . Ist. di Fisica Generale Applicata); Grimes, S.M. (Ohio Univ

    1990-06-06

    We compare angular distributions calculated by folding nucleon- nucleon scattering kernels, using the theory of Feshbach, Kerman and Koonin, and the systematics of Kalbach, with a wide range of data. The data range from (n,xn) at 14 MeV incident energy to (p,xn) at 160 MeV incident energy. The FKK theory works well with one adjustable parameter, the depth of the nucleon-nucleon interaction potential. The systematics work well when normalized to the hybrid model single differential cross section prediction. The nucleon- nucleon scattering approach seems inadequate. 9 refs., 10 figs.

  9. Limitations of fitting angular scattering from single cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fan, Xing; Cannaday, Ashley E.; Berger, Andrew J.

    2016-04-01

    The literature contains several reports of Mie-like fits to angular-domain elastic scattering measurements from multiple cells or isolated mitochondria. In these studies, the sampling volume typically contains hundreds or thousands of mitochondria, allowing for the size distribution of mitochondria to be modeled as a smooth function, (e.g. Gaussian or log-normal) with a small number of free parameters. In the case of a single-cell volume containing significantly fewer mitochondria, the true size distribution will no longer be as smooth. Increasing the number of free parameters can lead to unstable fits, however, as the forward-directed angular scattering pattern from such a population illuminated with 785 nm light is a monotonically decaying radial function with few distinct features. Using simulations, we have investigated the limitations of modeling single-cell mitochondrial scattering using smooth population distributions of Mie scatterers. In different instances, the fidelity of the estimated size information can be limited by the number of organelles, the angular detection range, or the non-ideality of the data (both speckle and shot noise). We will describe the conditions under which each of these effects dominates. We will also discuss whether mean and standard deviation are the best sizes to report from such Mie modeling, or if there are other size parameters that have greater fidelity to the true, non-smooth size distributions.

  10. The Far-Field Angular Distribution of High-Order Harmonics Produced in Light Scattering from a Thin Low - Gas Target

    NASA Astrophysics Data System (ADS)

    Peatross, Justin Bruce

    The far-field angular distributions of high-order optical harmonics have been measured. Harmonics up to the 41st order were observed in the light scattered from noble gas targets subjected to very intense pulses of laser radiation with wavelength 1053nm. The experimental conditions minimized collective effects such as phase-mismatch due to propagation or refractive index effects caused, for example, by free electrons arising in the ionization of the target Ar, Kr, or Xe atoms. The angular distributions of many harmonic orders, ranging from the low teens to the upper thirties, all of which emerge collinear to the laser beam, could be distinguished and recorded simultaneously. Gaussian laser pulses, 1.25 -times-diffraction-limited and 1.4ps duration, were focused to intensities ranging from 1times 10^ {13} W/cm^2 to 5times 10^{14} W/cm ^2 using f/70 optics. A novel gas target localized the gas distribution to a thickness of about 1mm, less than one tenth of the laser confocal parameter, at pressures of 1 Torr and less. The narrow and low-density gas distribution employed in these experiments allows the harmonics to be thought of as emerging from atoms lying in a single plane in the interaction region. This is in contrast with previously reported harmonic generation experiments in which propagation effects played strong roles. At these pressures, an order of magnitude below pressures used in other experiments, free electrons created by ionization of target atoms had a negligible effect on the far-field harmonic profiles. We have found that the far-field distributions of nearly all of the harmonics exhibit a narrow central peak surrounded by broad wings of about the same width as the emerging laser beam. The relative widths and strengths of the wings have been found to vary with harmonic order, laser intensity, and atomic species. Since the intensity varies radially across the laser beam in the atomic source plane, an intensity-dependent phase variation among the

  11. Atmospheric particulate analysis using angular light scattering

    NASA Technical Reports Server (NTRS)

    Hansen, M. Z.

    1980-01-01

    Using the light scattering matrix elements measured by a polar nephelometer, a procedure for estimating the characteristics of atmospheric particulates was developed. A theoretical library data set of scattering matrices derived from Mie theory was tabulated for a range of values of the size parameter and refractive index typical of atmospheric particles. Integration over the size parameter yielded the scattering matrix elements for a variety of hypothesized particulate size distributions. A least squares curve fitting technique was used to find a best fit from the library data for the experimental measurements. This was used as a first guess for a nonlinear iterative inversion of the size distributions. A real index of 1.50 and an imaginary index of -0.005 are representative of the smoothed inversion results for the near ground level atmospheric aerosol in Tucson.

  12. Angular width of the Cherenkov radiation with inclusion of multiple scattering

    SciTech Connect

    Zheng, Jian

    2016-06-15

    Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.

  13. Integrated Raman and angular scattering microscopy (IRAM)

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.; Berger, Andrew J.

    2008-02-01

    A microscope system has been constructed that allows simultaneous acquisition of Raman scattering spectra and elastic scattering Fourier-plane data. The Raman scattering channel reports on chemical composition of the microscopic sample while the elastic scattering channel reports on morphological information about the sample. The system has been validated by acquiring data from single polystyrene beads and analyzing the elastic scattering signal using Generalized Lorenz-Mie Theory while comparing the Raman scattering signature to other polystyrene spectra from the literature. Monocytes and neutrophils, two immune cell types, have also been studied and show clear chemical and morphological differences between cell types.

  14. Glory and thresholds effects in H+D 2 reactive angular scattering

    NASA Astrophysics Data System (ADS)

    Sokolovski, D.

    2003-03-01

    We analyse H+D 2 reactive angular scattering using the S-matrix elements obtained by Aoiz et al. and Althorpe et al. Enhancement of small angle scattering in the v'=3← v=0 H+D 2 delayed reaction is attributed to a glory effect caused by threshold resonances in the v=3 vibrationally adiabatic channel. The oscillatory structures in the reactive angular distributions are shown to be of nearside-farside (NP) origin and are likely to arise from capture in a number of relatively short-lived barrier Regge states at large angular momenta. Padé reconstruction of the reactive matrix element is discussed in detail.

  15. ANGULAR LIGHT-SCATTERING STUDIES ON ISOLATED MITOCHONDRIA

    PubMed Central

    Gotterer, Gerald S.; Thompson, Thomas E.; Lehninger, Albert L.

    1961-01-01

    Angular light-scattering studies have been carried out on suspensions of isolated rat liver mitochondria. The angular scatter pattern has a large forward component, typical of large particles. Changes in dissymmetry and in the intensity of light scattered at 90° have been correlated with changes in optical density during the course of mitochondrial swelling and contraction. Such changes can be measured at mitochondrial concentrations much below those required for optical density measurements. Changes in mitochondrial geometry caused by factors "leaking" from mitochondria, not detectable by optical density measurements, have been demonstrated by measuring changes in dissymmetry. Angular light-scattering measurements therefore offer the advantages of increased sensitivity and of added indices of changes in mitochondrial conformation. PMID:19866589

  16. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  17. Angular distribution of turbulence in wave space

    NASA Technical Reports Server (NTRS)

    Coleman, G.; Ferziger, J. H.; Bertoglio, J. P.

    1987-01-01

    An alternative to the one-point closure model for turbulence, the large eddy simulation (LES), together with its more exact relative, direct numerical simulation (DNS) are discussed. These methods are beginning to serve as partial substitutes for turbulence experiments. The eddy damped quasi-normal Markovian (EDQNM) theory is reviewed. Angular distribution of the converted data was examined in relationship to EDQNM.

  18. Investigation into angular and frequency dependence of scattering matrices of elastodynamic scatterers

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Felice, Maria; Velichko, Alexander; Wilcox, Paul

    2016-02-01

    The scattering behaviour of a finite-sized elastodynamic scatterer in a homogeneous isotropic medium can be encapsulated in a scattering matrix (S-matrix) for each wave mode combination. Each S-matrix is a continuous complex function of 3 variables: incident wave angle, scattered wave angle and frequency. In the paper, the S-matrices for various scatterers (circular holes, straight smooth cracks, rough cracks and 4 circular holes in an area of interest) are investigated. It is shown that, for a given scatterer, the continuous data in the angular dimensions of an S-matrix can be represented to a prescribed level of accuracy by a finite number of complex Fourier coefficients. The finding is that the number of angular orders required to characterise a scatterer is a function of scatterer size and is related to the Nyquist theorem. The variation of scattering behaviour with frequency is examined next and is found to show periodic oscillation with a period which is a function of scatterer size and its geometry. The shortest period of these oscillations indicates the maximum frequency increment required to accurately describe the scattering behaviour in a specific frequency range. Finally, the maximum angular order and frequency increments for the chosen scatterers in a specific frequency range are suggested.

  19. Calculated angular distributions of energetic atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Merker, M.

    1975-01-01

    Calculated angular distributions of atmospheric leakage neutron fluxes from 19 MeV to 1 GeV are presented. Comparisons with the balloon measurements of Preszler et al. and Kanbach et al. are made and show substantial agreement, strengthening the belief in the importance of the CRAND (cosmic-ray albedo-neutron decay) contribution to the high-energy protons in the earth's inner radiation belt. The calculation is presented as a means for investigating features of atmospheric flux distributions.

  20. The angular momentum distribution in galactic halos

    NASA Astrophysics Data System (ADS)

    Quinn, P. J.; Zurek, W. H.

    1988-08-01

    N-body simulations are used to model the formation of individual galactic halos from scale-free density perturbations in universes dominated by cold, nondissipative dark matter. In well-mixed halos, the angular momentum distribution is shown to have a systematic behavior with power law index n corresponding to that found for circular rotation curves. For a given n, the distribution of angular momentum has the same trend with radius and energy as that implied for a halo in which all the matter has its maximum possible angular momentum. Dynamical mixing during the relaxation of the halo redistributes both angular momentum and binding energy in an orderly manner. The organized nature of the collapse means that relaxation is not completely violent and that the secondary infall paradigm, in its simplest form, needs to be modified to include the organizing effects of dynamical friction. It is shown that the Mestel hypothesis is not consistent with the final collapsed state of halos, but may be applicable to the collapse of the disks of spirals.

  1. Two-body scattering without angular-momentum decomposition

    SciTech Connect

    Rodriguez-Gallardo, M.; Deltuva, A.; Cravo, E.; Fonseca, A. C.; Crespo, R.

    2008-09-15

    Two-body scattering is studied by solving the Lippmann-Schwinger equation in momentum space without angular-momentum decomposition for a local spin-dependent short-range interaction plus Coulomb. The screening and renormalization approach is employed to treat the Coulomb interaction. Benchmark calculations are performed by comparing our procedure with partial-wave calculations in configuration space for p-{sup 10}Be,p-{sup 16}O, and {sup 12}C-{sup 10}Be elastic scattering, using a simple optical potential model.

  2. Angular scattering of sound from solid particles in turbulent suspension.

    PubMed

    Moore, Stephanie A; Hay, Alex E

    2009-09-01

    Sound scattering by solid particles suspended in a turbulent jet is investigated. Measurements of the scattered amplitude were made in a bistatic geometry at frequencies between 1.5 and 4.0 MHz, and at scattering angles from 95 degrees to 165 degrees relative to the forward direction. Two types of particle were used: nearly spherical lead-glass beads and aspherical natural sand grains. For each particle type, experiments were carried out using approximately 200 and approximately 500 microm median diameter grain sizes, corresponding to 0.7 < or approximately ka < or approximately 4. The sphericity of the sand grains, defined as the ratio of projected perimeter size to projected area size, was 1.08. The lead-glass bead results are consistent with an elastic sphere model. A rigid movable sphere model provides the best fit to the sand data, and the best-fit diameter is within 4% of the equivalent volume size. However, the scattering pattern for sand is systematically smoother than predicted: that is, the undulations in the angular scattering pattern predicted by spherical scatterer theory are present, but muted. This observed departure from spherical scatterer theory is attributed to disruption of the interference among creeping waves by the irregular surfaces of natural sand grains.

  3. Network representations of angular regions for electromagnetic scattering

    PubMed Central

    2017-01-01

    Network modeling in electromagnetics is an effective technique in treating scattering problems by canonical and complex structures. Geometries constituted of angular regions (wedges) together with planar layers can now be approached with the Generalized Wiener-Hopf Technique supported by network representation in spectral domain. Even if the network representations in spectral planes are of great importance by themselves, the aim of this paper is to present a theoretical base and a general procedure for the formulation of complex scattering problems using network representation for the Generalized Wiener Hopf Technique starting basically from the wave equation. In particular while the spectral network representations are relatively well known for planar layers, the network modelling for an angular region requires a new theory that will be developed in this paper. With this theory we complete the formulation of a network methodology whose effectiveness is demonstrated by the application to a complex scattering problem with practical solutions given in terms of GTD/UTD diffraction coefficients and total far fields for engineering applications. The methodology can be applied to other physics fields. PMID:28817573

  4. Quark structure of the nucleon and angular asymmetry of proton-neutron hard elastic scattering.

    PubMed

    Granados, Carlos G; Sargsian, Misak M

    2009-11-20

    We investigate an asymmetry in the angular distribution of hard elastic proton-neutron scattering with respect to the 90 degrees center of mass scattering angle and demonstrate that it's magnitude is related to the helicity-isospin symmetry of the quark wave function of the nucleon. Our estimate of the asymmetry within the quark-interchange model of hard scattering demonstrates that the quark wave function of a nucleon based on the exact SU(6) symmetry predicts an angular asymmetry opposite to that of experimental observations. We found that the quark wave function based on the diquark picture of the nucleon produces a correct asymmetry. Comparison with the data allowed us to show that the vector diquarks contribute around 10% in the nucleon wave function and they are in negative phase relative to the scalar diquarks. These observations are essential in constraining QCD models of a nucleon.

  5. Axions and the galactic angular momentum distribution

    NASA Astrophysics Data System (ADS)

    Banik, N.; Sikivie, P.

    2013-12-01

    We analyze the behavior of axion dark matter before it falls into a galactic gravitational potential well. The axions thermalize sufficiently fast by gravitational self-interactions that almost all go to their lowest-energy state consistent with the total angular momentum acquired from tidal torquing. That state is a state of rigid rotation on the turnaround sphere. It predicts the occurrence and detailed properties of the caustic rings of dark matter for which observational evidence had been found earlier. We show that the vortices in the axion Bose-Einstein condensate (BEC) are attractive, unlike those in superfluid He4 and dilute gases. We expect that a large fraction of the vortices in the axion BEC join into a single big vortex along the rotation axis of the galaxy. The resulting enhancement of caustic rings explains the typical size of the rises in the Milky Way rotation curve attributed to caustic rings. We show that baryons and ordinary cold dark matter particles are entrained by the axion BEC and acquire the same velocity distribution. The resulting baryonic angular momentum distribution gives a good qualitative fit to the distributions observed in dwarf galaxies. We give estimates of the minimum fraction of dark matter that is composed of axions.

  6. Measurement of the Angular Distributions of Drell-Yan Dimuons

    NASA Astrophysics Data System (ADS)

    Bowen, Brandon; Fermilab E-906/SeaQuest Collaboration

    2011-10-01

    The angular differential cross section for the Drell-Yan (DY) process can be parametrized by dσ/dΩ ~ 1 + λcos2 θ + μsin 2 θcosφ +ν/2sin2 θcos 2 φ , where λ, μ, and ν are the angular distribution parameters vs pT. θ and φ denote the polar and azimuthal angles, respectively for the positive lepton produced. The Lam-Tung relation, 1 - λ = 2 ν , was validated by Fermilab E-866 for proton induced Drell-Yan scattering; However pion induced DY shows a much stronger cos2 θ angular dependence and a violation of the Lam-Tung relation. In pion induced DY the antiquark is a valance quark, whereas in proton induced DY (in a forward acceptance spectrometer) it is a sea quark, so E-866 probed the antiquark sea of the nucleon. The SeaQuest experiment, also using proton induced DY, will improve on the measurement of the angular dependencies at a lower energy (120 GeV), taking advantage lower backgrounds and an increase in Drell-Yan cross section at lower energies. The Boer-Mulders correlates the quark correlates between the quark transverse spin and momentum. Improved data from SeaQuest will help determine the Boer-Mulders function. Funding for this work was provided in part by the U.S. DOE Office of Science.

  7. Electron angular distributions above the dayside auroral oval

    NASA Technical Reports Server (NTRS)

    Craven, J. D.; Frank, L. A.

    1975-01-01

    An electrostatic analyzer was employed on the Ariel 4 satellite to determine pitch angle distributions of electron intensities over the dayside auroral oval. Two major precipitation zones were encountered: an equatorward zone of broad spectra with intensities of approximately 1000 electrons/(sq cm-sec-sr-eV) and a poleward zone, the polar cusp, with intensities typical of those of the magnetosheath. Angular distributions within the equatorward zone are generally isotropic outside of the atmospheric backscatter cone. The precipitation mechanism appears to be pitch angle scattering near the distant magnetic equator. In contrast, pitch angle distributions within the polar cusp are often found to be strongly field aligned with intensities within the atmospheric loss cone greater by factors of approximately 10 than the mirroring intensities. These distributions are qualititatively similar to those for the inverted V precipitation events at later local times, and probably share a common acceleration mechanism with the inverted V phenomenon.

  8. Integrated Raman and angular scattering of single biological cells

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.

    2009-12-01

    Raman, or inelastic, scattering and angle-resolved elastic scattering are two optical processes that have found wide use in the study of biological systems. Raman scattering quantitatively reports on the chemical composition of a sample by probing molecular vibrations, while elastic scattering reports on the morphology of a sample by detecting structure-induced coherent interference between incident and scattered light. We present the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum2 region in both epi- and trans-illumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of a living sample without the need for exogenous dyes or labels. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a CCD array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD detector array to yield an angle-resolved elastic scattering pattern. Post-processing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. In this thesis we will present validations of the IRAM instrument through measurements performed on single beads of a few microns in size, as well as on ensembles of sub-micron particles of known size distributions. The benefits and drawbacks of the

  9. Spectrum, angular distribution and polarization of auroral hard X-rays

    NASA Astrophysics Data System (ADS)

    Khosa, P. N.; Rausaria, R. R.; Moza, K. L.

    1984-01-01

    Elastic and inelastic scattering cross section angular variations are computed, and used as the basis of Monte Carlo calculations of electron energy evolution and angular distributions at different heights in the ionosphere. Monoenergic, power law and exponential electron spectra with isotropic and monodirectional incidence, starting at 300 km altitude, have been used to obtain the angular and energy distributions at various height intervals. It is found that isotropic distribution incident at the top of the ionosphere becomes anisotropic, due to collisions at lower heights. The Sauter (1934) bremsstrahlung cross section, and the calculated electron flux, are used to compute the spectrum, angular distribution, and polarization of bremsstrahlung X-rays at different heights. Angular distribution and polarization studies can yield data about the nature of precipitating electron flux, and hence about the acceleration mechanism operating during electron precipitation.

  10. Incoherent source angular domain imaging through complex three-dimensional scattering structures

    NASA Astrophysics Data System (ADS)

    Cheng, Rongen L. K.; Chiang, Gary; Chapman, Glenn H.

    2012-03-01

    Scattering of photons in biological imaging is a known factor of degrading image resolution and quality. Angular Domain Imaging (ADI) is a technique which utilizes the angular distribution of photons to filter out multiple-scattering photons and accept only photons with small angular deviation from their original trajectories. The advantage of ADI is that it does not require a high optical quality, coherent, or pulsed source to acquire quality image. Initial experiments with Spatialfrequency Filter (SFF) ADI on simple liquid scattering test phantom showed good results as it can image through media with scattering ratio (SR) of 106:1. Previous work with complex 3D aquatic species eliminated scattering but showed optical interference patterns from the coherent laser sources. With SFF ADI, our target is to image through a complex 3D scattering structure with multilayer of different refractive indices and scattering coefficient from an Intralipid-infused polymer/agar, and a small species called Branchiostoma lanceolatum, a lancelet that is 5-8cm long and ~5mm thick. To remove interference, several narrow wavelength-band LEDs were used as illumination sources with one peaks at 630nm and the other peaks at 415nm. The LEDs are collimated and illuminates the 3D structure/lancelet in a water-filler container while a SFF removes the scattered photons before the imager. This allows us to reduce the optical interference and to study the impact of switching from coherent laser source into an incoherent narrow wavelength-band source. Hence, it allows us to investigate the enhancement of imaging the internal structures using the incoherent narrow wavelength-band source.

  11. Construction of an integrated Raman- and angular-scattering microscope

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.; Berger, Andrew J.

    2009-04-01

    We report on the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 μm2 region in both epi- and transillumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of the chemistry and morphology of a living sample without the need for exogenous dyes or labels, thus allowing measurements to be made longitudinally in time on the same sample as it evolves naturally. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a charge-coupled device (CCD) array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD array. Postprocessing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample.

  12. Neutron Angular Scatter Effects in 3DHZETRN: Quasi-Elastic

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Werneth, Charles M.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2017-01-01

    The current 3DHZETRN code has a detailed three dimensional (3D) treatment of neutron transport based on a forward/isotropic assumption and has been compared to Monte Carlo (MC) simulation codes in various geometries. In most cases, it has been found that 3DHZETRN agrees with the MC codes to the extent they agree with each other. However, a recent study of neutron leakage from finite geometries revealed that further improvements to the 3DHZETRN formalism are needed. In the present report, angular scattering corrections to the neutron fluence are provided in an attempt to improve fluence estimates from a uniform sphere. It is found that further developments in the nuclear production models are required to fully evaluate the impact of transport model updates. A model for the quasi-elastic neutron production spectra is therefore developed and implemented into 3DHZETRN.

  13. Angular Rate Estimation Using a Distributed Set of Accelerometers

    PubMed Central

    Park, Sungsu; Hong, Sung Kyung

    2011-01-01

    A distributed set of accelerometers based on the minimum number of 12 accelerometers allows for computation of the magnitude of angular rate without using the integration operation. However, it is not easy to extract the magnitude of angular rate in the presence of the accelerometer noises, and even worse, it is difficult to determine the direction of a rotation because the angular rate is present in its quadratic form within the inertial measurement system equations. In this paper, an extended Kalman filter scheme to correctly estimate both the direction and magnitude of the angular rate through fusion of the angular acceleration and quadratic form of the angular rate is proposed. We also provide observability analysis for the general distributed accelerometers-based inertial measurement unit, and show that the angular rate can be correctly estimated by general nonlinear state estimators such as an extended Kalman filter, except under certain extreme conditions. PMID:22346651

  14. Light Scattering by Fractal Dust Aggregates. I. Angular Dependence of Scattering

    NASA Astrophysics Data System (ADS)

    Tazaki, Ryo; Tanaka, Hidekazu; Okuzumi, Satoshi; Kataoka, Akimasa; Nomura, Hideko

    2016-06-01

    In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T-matrix method, and the results were then compared with those obtained using the Rayleigh-Gans-Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster-cluster agglomerates (BCCAs) and ballistic particle-cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.

  15. Energy Dependence of Angular Distributions of Sputtered Particles by Ion-Beam Bombardment at Normal Incidence

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshinobu; Yamamura, Yasunori; Ueda, Yasutoshi; Uchino, Kiichiro; Muraoka, Katsunori; Maeda, Mitsuo; Akazaki, Masanori

    1986-01-01

    The angular distributions of sputtered Fe-atoms were measured using the laser fluorescence technique during Ar-ion bombardment for energies of 0.6, 1, 2 and 3 keV at normal incidence. The measured cosine distribution at 0.6 keV progressively deviated to an over-cosine distribution at higher energies, and at 3 keV the angular distribution was an over-cosine distribution of about 20%. The experimental results agree qualitatively with calculations by a recent computer simulation code, ACAT. The results are explained by the competition between surface scattering and the effects of primary knock-on atoms, which tend to make the angular distributions over-cosine and under-cosine, respectively.

  16. Angular Distributions of Synchrotron Radiation in the Nonrelativistic Approximation

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Loginov, A. S.

    2017-03-01

    The angular distribution functions of the polarized components of synchrotron radiation in the nonrelativistic approximation are investigated using methods of classical and quantum theory. Particles of zero spin (bosons) and spin 1/2 (electrons) are considered in the quantum theory. It is shown that in the first nonzero approximation the angular distribution functions, calculated by methods of classical and quantum theory, coincide identically. Quantum corrections to the angular distribution functions appear only in the subsequent approximation whereas the total radiated power contains quantum and spin corrections already in the first approximation.

  17. Quantum optimal control of photoelectron spectra and angular distributions

    NASA Astrophysics Data System (ADS)

    Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  18. Energy and angular distributions of sputtered atoms at normal incidence

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.; Takiguchi, T.; Ishida, M.

    1991-12-01

    The Monte Carlo simulation code ACAT has been applied to investigate the angular distribution and the energy distribution of atoms sputtered from Cu and Nb targets by normally incident Ar+ ions. It is found that there are two important effects which affect the angular distributions and the energy distributions of sputtered atoms, i.e., the anisotropic effect and the bulk recoil effect. The former effects means that the recoil flux keeps the memory of the incident ion-beam direction because of the incomplete cascade, while the latter one means the contributions of recoils generated at the deeper layer to the angular and the energy distributions of sputtered atoms. The anisotropic effect is important in the low energy region, and it makes the angular distribution under-cosine and the high energy tail of the energy distribution fall off faster than the Thompson distribution. The bulk recoil effect makes angular distribution be over-cosine and the peak position of the energy distribution be shifted to somewhat higher energies.

  19. Fourier transform light scattering angular spectroscopy using digital inline holography.

    PubMed

    Kim, Kyoohyun; Park, YongKeun

    2012-10-01

    A simple and practical method for measuring the angle-resolved light scattering (ARLS) from individual objects is reported. Employing the principle of inline holography and a Fourier transform light scattering technique, both the static and dynamic scattering patterns from individual micrometer-sized objects can be effectively and quantitatively obtained. First, the light scattering measurements were performed on individual polystyrene beads, from which the refractive index and diameter of each bead were retrieved. Also, the measurements of the static and dynamic light scattering from intact human red blood cells are demonstrated. Using the present method, an existing microscope can be directly transformed into a precise instrument for ARLS measurements.

  20. Effective scatterer diameter estimates for broad scatterer size distributions.

    PubMed

    Nordberg, Eric P; Hall, Timothy J

    2015-01-01

    Acoustic form factors have been used to model the frequency dependence of acoustic scattering in phantoms and tissues. This work demonstrates that a broad range of scatterer sizes, individually well represented by Faran theory or a Gaussian form factor, is not accurately described by a single effective scatterer from either of these models. Contributions from a distribution of discrete scatterer sizes for two different form factor functions (Gaussian form factors and scattering functions from Faran's theory) were calculated and linearly combined. Composite form factors created from Gaussian distributions of scatterer sizes centered at 50 µm with standard deviations of up to σ = 40 µm were fit to each scattering model between 2 and 12 MHz. Scatterer distributions were generated using one of two assumptions: the number density of the scatterer diameter distribution was Gaussian distributed, or the volume fraction of each scatterer diameter in the distribution was Gaussian distributed. Each simulated form factor was fit to a single-diameter form factor model for Gaussian and exponential form factors. The mean-squared error (MSE) between the composite simulated data and the best-fit single-diameter model was smaller with an exponential form factor model, compared with a Gaussian model, for distributions with standard deviations larger than 30% of the centroid value. In addition, exponential models were shown to have better ability to distinguish between Faran scattering model-based distributions with varying center diameters than the Gaussian form factor model. The evidence suggests that when little is known about the scattering medium, an exponential scattering model provides a better first approximation to the scattering correlation function for a broad distribution of spherically symmetric scatterers than when a Gaussian form factor model is assumed.

  1. Spatial distributions of angular momenta in quantum and quasiclassical stereodynamics.

    PubMed

    de Miranda, Marcelo P; Aoiz, F Javier; Sáez-Rábanos, V; Brouard, Mark

    2004-11-22

    We have recently reported a derivation of the relationship between the quantum and classical descriptions of angular momentum polarization [M. P. de Miranda and F. Javier Aoiz, Phys. Rev. Lett. 93, 083201 (2004)]. This paper presents a detailed account of the derivation outlined in that paper, and discusses the implications of the new results. These include (i) a new expression of the role of the uncertainty principle in the broadening of angular momentum distributions, (ii) the attribution of azimuthal fluctuations of angular momentum distributions to spatial quantum beats, (iii) the definition of a new Fourier transform of the density matrix, distinct from those suggested in the past, that provides an alternative view of how the quantum description of angular momentum polarization approaches the classical one in the correspondence principle limit, (iv) a prescription for the determination of a quasiclassical angular momentum distribution function that does not suffer from problems encountered with its purely classical counterpart, and (v) a description of how angular momentum distributions commonly visualized with recourse to the classical vector model can be depicted with exact and well-defined quantum mechanics.

  2. Spatial distributions of angular momenta in quantum and quasiclassical stereodynamics

    NASA Astrophysics Data System (ADS)

    de Miranda, Marcelo P.; Aoiz, F. Javier; Sáez-Rábanos, V.; Brouard, Mark

    2004-11-01

    We have recently reported a derivation of the relationship between the quantum and classical descriptions of angular momentum polarization [M. P. de Miranda and F. Javier Aoiz, Phys. Rev. Lett. 93, 083201 (2004)]. This paper presents a detailed account of the derivation outlined in that paper, and discusses the implications of the new results. These include (i) a new expression of the role of the uncertainty principle in the broadening of angular momentum distributions, (ii) the attribution of azimuthal fluctuations of angular momentum distributions to spatial quantum beats, (iii) the definition of a new Fourier transform of the density matrix, distinct from those suggested in the past, that provides an alternative view of how the quantum description of angular momentum polarization approaches the classical one in the correspondence principle limit, (iv) a prescription for the determination of a quasiclassical angular momentum distribution function that does not suffer from problems encountered with its purely classical counterpart, and (v) a description of how angular momentum distributions commonly visualized with recourse to the classical vector model can be depicted with exact and well-defined quantum mechanics.

  3. Comparison of DTR spectral-angular characteristics of divergent beam of relativistic electrons in scattering geometry of Laue and Bragg

    NASA Astrophysics Data System (ADS)

    Blazhevich, S. V.; Koskova, T. V.; Ligidov, A. Z.; Noskov, A. V.

    2016-07-01

    Diffracted transition radiation (DTR) generated by a divergent beam of relativistic electrons crossing a single-crystal plate in different (Laue, Bragg) scattering geometry has been considered for the general case of asymmetric reflection of the electron coulomb field relative to the entrance target surface. The expressions for spectral-angular density of DTR and parametric X-ray Radiation (PXR) has been derived. Then DTR and PXR has been considered in case of a thin target, when multiple scattering of electron is negligibly small, which is important for divergence measurement in real time regime. Numerical calculation of spectral-angular density of DTR by a beam of relativistic electrons has been made using averaging over the bivariate Gauss distribution as angular distribution of relativistic electrons in the beam. It has been shown that in Bragg scattering geometry the angular density of DTR is bigger, than in Laue geometry, which can be explained by the existence of the frequency range, in which the incident wave propagation vector takes complex value even under absence of absorption. In this range, all of photons are reflected in Bragg direction. It means that the range of total reflection defines the width of DTR spectrum.

  4. Orbital angular momentum in optical waves propagating through distributed turbulence.

    PubMed

    Sanchez, Darryl J; Oesch, Denis W

    2011-11-21

    This is the second of two papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. In the companion paper, it is shown that propagation through atmospheric turbulence can create non-trivial angular momentum. Here, we extend the result and demonstrate that this momentum is, at least in part, orbital angular momentum. Specifically, we demonstrate that branch points (in the language of the adaptive optic community) indicate the presence of photons with non-zero OAM. Furthermore, the conditions required to create photons with non-zero orbital angular momentum are ubiquitous. The repercussions of this statement are wide ranging and these are cursorily enumerated. © 2011 Optical Society of America

  5. Angular distribution of particles sputtered from metals and alloys

    SciTech Connect

    Wucher, A.; Reuter, W.

    1988-07-01

    The angular distributions of atoms sputtered from pure Cu and Be as well as Cu/sub 98/Be/sub 2/, Cu/sub 71/Zn/sub 29/, Co/sub 3/Au, and WSi/sub 2.3/ were investigated for bombardment with Ar/sup +/ ions of 250 eV and 2 keV under normal incidence. Between polar emission angles theta = 0/sup 0/ and 60/sup 0/, for the higher bombarding energy all observed angular distributions look very much alike and follow essentially a cos/sup 3/ theta law. For the low bombarding energy, however, significant differences between the angular distributions of the alloy constituents are found. The effect, which is most pronounced for CuBe, seems to scale with the atomic mass in the way that the lower mass particles are sputtered preferentially along the surface normal.

  6. Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Chami, Malik; McKee, David; Leymarie, Edouard; Khomenko, Gueorgui

    2006-12-01

    Scattering phase functions derived from measured (volume-scattering meter, VSM) volume-scattering functions (VSFs) from Crimean coastal waters were found to have systematic differences in angular structure from Fournier-Forand (FF) functions with equivalent backscattering ratios. Hydrolight simulations demonstrated that differences in the angular structure of the VSF could result in variations in modeled subsurface radiance reflectances of up to ±20%. Furthermore, differences between VSM and FF simulated reflectances were found to be nonlinear as a function of scattering and could not be explained with the single-scattering approximation. Additional radiance transfer modeling demonstrated that the contribution of multiple scattering to radiance reflectance increased exponentially from a minimum of 16% for pure water to a maximum of ˜94% for turbid waters. Monte Carlo simulations demonstrated that multiple forward-scattering events were the dominant contributors to the generation of radiance reflectance signals for turbid waters and that angular structures in the shape of the VSF at forward angles could have a significant influence in determining reflectance signals for turbid waters.

  7. Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance.

    PubMed

    Chami, Malik; McKee, David; Leymarie, Edouard; Khomenko, Gueorgui

    2006-12-20

    Scattering phase functions derived from measured (volume-scattering meter, VSM) volume-scattering functions (VSFs) from Crimean coastal waters were found to have systematic differences in angular structure from Fournier-Forand (FF) functions with equivalent backscattering ratios. Hydrolight simulations demonstrated that differences in the angular structure of the VSF could result in variations in modeled subsurface radiance reflectances of up to +/-20%. Furthermore, differences between VSM and FF simulated reflectances were found to be nonlinear as a function of scattering and could not be explained with the single-scattering approximation. Additional radiance transfer modeling demonstrated that the contribution of multiple scattering to radiance reflectance increased exponentially from a minimum of 16% for pure water to a maximum of approximately 94% for turbid waters. Monte Carlo simulations demonstrated that multiple forward-scattering events were the dominant contributors to the generation of radiance reflectance signals for turbid waters and that angular structures in the shape of the VSF at forward angles could have a significant influence in determining reflectance signals for turbid waters.

  8. Energy distribution of elastically scattered electrons from double layer samples

    NASA Astrophysics Data System (ADS)

    Tőkési, K.; Varga, D.

    2016-02-01

    We present a theoretical description of the spectra of electrons elastically scattered from thin double layered Au-C samples. The analysis is based on the Monte Carlo simulation of the recoil and Doppler effects in reflection and transmission geometries of the scattering at a fixed angle of 44.3 ° and a primary energy of 40 keV. The relativistic correction is taken into account. Besides the experimentally measurable energy distributions the simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). Furthermore, we present detailed analytical calculations for the main parameters of the single scattering, taking into account both the ideal scattering geometry, i.e. infinitesimally small angular range, and the effect of the real, finite angular range used in the measurements. We show our results for intensity ratios, peak shifts and broadenings for four cases of measurement geometries and layer thicknesses. While in the peak intensity ratios of gold and carbon for transmission geometries were found to be in good agreement with the results of the single scattering model, especially large deviations were obtained in reflection geometries. The separation of the peaks, depending on the geometry and the thickness, generally smaller, and the peak width generally larger than it can be expected from the nominal values of the primary energy, scattering angle, and mean kinetic energy of the atoms. We also show that the peaks are asymmetric even for the case of the single scattering due to the finite solid angle. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with recent measurements.

  9. Equilibrium Tail Distribution Due to Touschek Scattering

    SciTech Connect

    Nash,B.; Krinsky, S.

    2009-05-04

    Single large angle Coulomb scattering is referred to as Touschek scattering. In addition to causing particle loss when the scattered particles are outside the momentum aperture, the process also results in a non-Gaussian tail, which is an equilibrium between the Touschek scattering and radiation damping. Here we present an analytical calculation for this equilibrium distribution.

  10. THE ANGULAR DISTRIBUTION OF Ly{alpha} RESONANT PHOTONS EMERGING FROM AN OPTICALLY THICK MEDIUM

    SciTech Connect

    Yang Yang; Shu Chiwang; Roy, Ishani; Fang Lizhi

    2013-07-20

    We investigate the angular distribution of Ly{alpha} photons scattering or emerging from an optically thick medium. Since the evolution of specific intensity I in frequency space and angular space are coupled with each other, we first develop the WENO numerical solver to find the time-dependent solutions of the integro-differential equation of I in frequency and angular space simultaneously. We first show that the solutions with the Eddington approximation, which assume that I is linearly dependent on the angular variable {mu}, yield similar frequency profiles of the photon flux as those without the Eddington approximation. However, the solutions of the {mu} distribution evolution are significantly different from those given by the Eddington approximation. First, the angular distribution of I is found to be substantially dependent on the frequency of the photons. For photons with the resonant frequency {nu}{sub 0}, I contains only a linear term of {mu}. For photons with frequencies at the double peaks of the flux, the {mu}-distribution is highly anisotropic; most photons are emitted radially forward. Moreover, either at {nu}{sub 0} or at the double peaks, the {mu} distributions actually are independent of the initial {mu} distribution of photons of the source. This is because the photons with frequencies either at {nu}{sub 0} or the double peaks undergo the process of forgetting their initial conditions due to resonant scattering. We also show that the optically thick medium is a collimator of photons at the double peaks. Photons from the double peaks form a forward beam with a very small opening angle.

  11. Characterization of the angular memory effect of scattered light in biological tissues.

    PubMed

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  12. Characterization of the angular memory effect of scattered light in biological tissues

    NASA Astrophysics Data System (ADS)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-01

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues. It therefore grants access to superficial layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations (`angular memory effect') are of very short range and, in theory, only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range (and thus the possible field-of-view) by more than an order of magnitude compared to isotropic scattering for $\\sim$1\\,mm thick tissue layers.

  13. Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.

  14. Measurement of Dijet Angular Distributions and Search for Quark Compositeness

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grim, G.; Grinstein, S.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Kirshnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lan, H.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Q.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-01-01

    We have measured the dijet angular distribution in s = 1.8 TeV pp¯ collisions using the D0 detector. Order α3s QCD predictions are in good agreement with the data. At 95% confidence limit the data exclude models of quark compositeness in which the contact interaction scale is below 2 TeV.

  15. Laser-polarization-dependent photoelectron angular distributions from polar molecules.

    PubMed

    Zhu, Xiaosong; Zhang, Qingbin; Hong, Weiyi; Lu, Peixiang; Xu, Zhizhan

    2011-11-21

    Photoelectron angular distributions (PADs) of oriented polar molecules in response to different polarized lasers are systematically investigated. It is found that the PADs of polar CO molecules show three distinct styles excited by linearly, elliptically and circularly polarized lasers respectively. In the case of elliptical polarization, a deep suppression is observed along the major axis and the distribution concentrates approximately along the minor axis. Additionally, it is also found that the concentrated distributions rotate clockwise as the ellipticity increases. Our investigation presents a method to manipulate the motion and angular distribution of photoelectrons by varying the polarization of the exciting pulses, and also implies the possibility to control the processes in laser-molecule interactions in future work.

  16. Optimization of angular compounding in scatterer size estimation

    NASA Astrophysics Data System (ADS)

    Gerig, Anthony L.; Chen, Quan; Zagzebski, James A.

    2003-10-01

    Ultrasonic scatterer size estimates generally have large variances due to the inherent noise of the spectral estimates used to calculate size. Compounding partially correlated size estimates associated with the same tissue, but produced with data acquired from different angles of incidence, is an effective way to reduce the variance without making dramatic sacrifices in spatial resolution. This work derives theoretical approximations for the correlation between these size estimates, and between their associated spectral estimates, as functions of data acquisition and processing parameters, where a Gaussian spatial autocorrelation function is assumed to adequately model scatterer shape. Size results exhibit a fair degree of agreement with those of simulation experiments, while spectral results compare favorably with simulation outcomes. Utilization of the theoretical correlation expressions for data acquisition and processing optimization is discussed. Further simplifying approximations, such as the invariance of phase and amplitude terms with rotation angle, are made in order to obtain closed-form solutions to the derived spectral correlation, and permit an analytical optimization analysis. Results indicate that recommended parameter adjustments for performance improvement depend upon whether, for the system under consideration, the primary source of estimate decorrelation with rotation is scatterer phase change or field separation. [Work supported by NIH T32CA09206.

  17. Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy

    NASA Astrophysics Data System (ADS)

    Hillman, Timothy R.; Alexandrov, Sergey A.; Gutzler, Thomas; Sampson, David D.

    2006-11-01

    We utilize Fourier-holographic light scattering angular spectroscopy to record the spatially resolved complex angular scattering spectra of samples over wide fields of view in a single or few image captures. Without resolving individual scatterers, we are able to generate spatially-resolved particle size maps for samples composed of spherical scatterers, by comparing generated spectra with Mie-theory predictions. We present a theoretical discussion of the fundamental principles of our technique and, in addition to the sphere samples, apply it experimentally to a biological sample which comprises red blood cells. Our method could possibly represent an efficient alternative to the time-consuming and laborious conventional procedure in light microscopy of image tiling and inspection, for the characterization of microscopic morphology over wide fields of view.

  18. Effect of photodynamic therapy on single cancer cells studied by integrated Raman and angular scattering microscopy

    NASA Astrophysics Data System (ADS)

    Shipp, Dustin W.; Mitra, Soumya; Foster, Thomas H.; Berger, Andrew J.

    2012-01-01

    Using integrated Raman and angular scattering microscopy (IRAM), we follow the response of EMT6 cancer cells to photodynamic therapy (PDT) treatment. The study combines two non-labelling light scattering techniques to extract chemical information and organelle sizes from single cells. Each cell is measured repeatedly over several hours to follow changes in these parameters as the cell responds to the PDT treatment. An automated algorithm identifies which parameters are changing in time. Size parameters extracted from angular scattering measurements show a decrease in the size of 1-micron-diameter scatterers in treated cells. Treated cells also exhibit trends in several Raman peaks, denoting changes in chemical concentrations of proteins, nucleic acids, and lipids. Each of these parameters - acquired from both measurement modalities - can be monitored on a cell-by-cell basis. The ability to track these chemical and structural changes over time allows access to greater knowledge of biological processes.

  19. Quantum mechanical angular distributions for the F+H2 reaction

    NASA Astrophysics Data System (ADS)

    Castillo, Jesus F.; Manolopoulos, David E.; Stark, Klaus; Werner, Hans-Joachim

    1996-05-01

    Quantum mechanical integral and differential cross sections have been calculated for the title reaction at the three collision energies studied in the 1985 molecular beam experiment of Lee and co-workers, using the new ab initio potential energy surface of Stark and Werner (preceding paper). Although the overall agreement between the calculated and experimental center-of-mass frame angular distributions is satisfactory, there are still some noticeable differences. In particular, the forward scattering of HF(v'=3) is more pronounced in the present calculations than it is in the experiment and the calculations also predict some forward scattering of HF(v'=2). A comparison with the quasiclassical trajectory results of Aoiz and co-workers on the same potential energy surface shows that the forward scattering is largely a quantum mechanical effect in both cases, being dominated by high orbital angular momenta in the tunneling region where the combined centrifugal and potential energy barrier prevents classical trajectories from reacting. The possible role of a reactive scattering resonance in contributing to the quantum mechanical forward scattering is also discussed in some detail.

  20. Analytic expression for in-field scattered light distribution

    NASA Astrophysics Data System (ADS)

    Peterson, Gary L.

    2004-01-01

    Light that is scattered from lenses and mirrors in an optical system produces a halo of stray light around bright objects within the field of view. The angular distribution of scattered light from any one component is usually described by the Harvey model. This paper presents analytic expressions for the scattered irradiance at a focal plane from optical components that scatter light in accordance with the Harvey model. It is found that the irradiance is independent of the location of an optical element within the system, provided the element is not located at or near an intermediate image plane. It is also found that the irradiance has little or no dependence on the size of the element.

  1. Angular scattering of light by a homogeneous spherical particle in a zeroth-order Bessel beam and its relationship to plane wave scattering.

    PubMed

    Preston, Thomas C; Reid, Jonathan P

    2015-06-01

    The angular scattering of light from a homogeneous spherical particle in a zeroth-order Bessel beam is calculated using a generalized Lorenz-Mie theory. We investigate the dependence of the angular scattering on the semi-apex angle of the Bessel beam and discuss the major features of the resulting scattering plots. We also compare Bessel beam scattering to plane wave scattering and provide criterion for when the difference between the two cases can be considered negligible. Finally, we discuss a method for characterizing spherical particles using angular light scattering. This work is useful to researchers who are interested in characterizing particles trapped in optical beams using angular dependent light scattering measurements.

  2. Calculation of angular distribution of 662 keV gamma rays by Monte Carlo method in copper medium.

    PubMed

    Kahraman, A; Ozmutlu, E N; Gurler, O; Yalcin, S; Kaynak, G; Gundogdu, O

    2009-12-01

    This paper presents results on the angular distribution of Compton scattering of 662 keV gamma photons in both forward and backward hemispheres in copper medium. The number of scattered events graph has been determined for scattered gamma photons in both the forward and backward hemispheres and theoretical saturation thicknesses have been obtained using these results. Furthermore, response function of a 51 x 51 mm NaI(Tl) detector at 60 degrees angle with incoming photons scattered from a 10mm thick copper layer has been determined using Monte Carlo method.

  3. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    SciTech Connect

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  4. Angular Distributions of η Meson Production in pp Reactions

    NASA Astrophysics Data System (ADS)

    Fröhlich, I.; Balestra, F.; Bedfer, Y.; Bertini, R.; Bland, L. C.; Brenschede, A.; Brochard, F.; Bussa, M. P.; Choi, Seonho; Colantoni, M. L.; Dressler, R.; Dzemidzic, M.; Faivre, J.-Cl.; Ferrero, A.; Ferrero, L.; Foryciarz, J.; Frolov, V.; Garfagnini, R.; Grasso, A.; Heinz, S.; Jacobs, W. W.; Kühn, W.; Maggiora, A.; Maggiora, M.; Manara, A.; Panzieri, D.; Pfaff, H.-W.; Piragino, G.; Popov, A.; Ritman, J.; Salabura, P.; Tchalyshev, V.; Tosello, F.; Vigdor, S. E.; Zosi, G.

    With the DISTO spectrometer, exclusive η production in pp collisions have been measured at kinetic energies of Tbeam=2.15, 2.50 and 2.85 GeV, respectively, via the π+π-π0 decay channel. The resulting angular distributions of the η are important for the interpretation of dilepton spectra obtained in elementary as well as heavy ion reactions.

  5. Neutron spectra and angular distributions of concrete-moderated neutron calibration fields at JAERI.

    PubMed

    Yoshizawa, M; Tanimura, Y; Saegusa, J; Nemoto, H; Yoshida, M

    2004-01-01

    The Facility of Radiation Standards of Japan Atomic Energy Research Institute has been equipped with concrete-moderated neutron calibration fields as simulated workplace neutron fields. The fields use an 241Am-Be neutron source placed in the narrow space surrounded by concrete bricks, walls and floor. The neutron spectra and the neutron fluence rates of the fields were measured with the Bonner multi-sphere spectrometer system (BMS), spherical recoil-proton proportional counters, and a liquid scintillation counter (NE-213). The results were compared with each other. The reference values of H*(10) were determined from the results of BMS. The angular distributions of neutron fluence were calculated using MCNP-4B2 to obtain the reference values of Hp(10). The calculated results show that the scattered neutrons have a wide range of incident angles. The reference Hp(10) values considered the angular distribution were found to be 10-18% smaller than those without consideration.

  6. Statistical mechanics of collisionless orbits. IV. Distribution of angular momentum

    SciTech Connect

    Williams, Liliya L. R.; Hjorth, Jens; Wojtak, Radosław E-mail: jens@dark-cosmology.dk

    2014-03-01

    It has been shown in previous work that DARKexp, which is a theoretically derived, maximum entropy, one shape parameter model for isotropic collisionless systems, provides very good fits to simulated and observed dark matter halos. Specifically, it fits the energy distribution, N(E), and the density profiles, including the central cusp. Here, we extend DARKexp N(E) to include the distribution in angular momentum, L {sup 2}, for spherically symmetric systems. First, we argue, based on theoretical, semi-analytical, and simulation results, that while dark matter halos are relaxed in energy, they are not nearly as relaxed in angular momentum, which precludes using maximum entropy to uniquely derive N(E, L {sup 2}). Instead, we require that when integrating N(E, L {sup 2}) over squared angular momenta one retrieves the DARKexp N(E). Starting with a general expression for N(E, L {sup 2}) we show how the distribution of particles in L {sup 2} is related to the shape of the velocity distribution function, VDF, and velocity anisotropy profile, β(r). We then demonstrate that astrophysically realistic halos, as judged by the VDF shape and β(r), must have linear or convex distributions in L {sup 2}, for each separate energy bin. The distribution in energy of the most bound particles must be nearly flat, and become more tilted in favor of radial orbits for less bound particles. These results are consistent with numerical simulations and represent an important step toward deriving the full distribution function for spherically symmetric dark matter halos.

  7. Low-energy Auger electron diffraction: influence of multiple scattering and angular momentum

    NASA Astrophysics Data System (ADS)

    Chassé, A.; Niebergall, L.; Kucherenko, Yu.

    2002-04-01

    The angular dependence of Auger electrons excited from single-crystal surfaces is treated theoretically within a multiple-scattering cluster model taking into account the full Auger transition matrix elements. In particular the model has been used to discuss the influence of multiple scattering and angular momentum of the Auger electron wave on Auger electron diffraction (AED) patterns in the region of low kinetic energies. Theoretical results of AED patterns are shown and discussed in detail for Cu(0 0 1) and Ni(0 0 1) surfaces, respectively. Even though Cu and Ni are very similar in their electronic and scattering properties recently strong differences have been found in AED patterns measured in the low-energy region. It is shown that the differences may be caused to superposition of different electron diffraction effects in an energy-integrated experiment. A good agreement between available experimental and theoretical results has been achieved.

  8. Accessing the quark orbital angular momentum with Wigner distributions

    NASA Astrophysics Data System (ADS)

    Lorcé, Cédric; Pasquini, Barbara

    2013-04-01

    The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.

  9. Accessing the quark orbital angular momentum with Wigner distributions

    SciTech Connect

    Lorce, Cedric

    2013-04-15

    The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.

  10. Time-stretched spectrally encoded angular light scattering for high-throughput real-time diagnostics

    NASA Astrophysics Data System (ADS)

    Adam, Jost; Mahjoubfar, Ata; Diebold, Eric D.; Buckley, Brandon W.; Jalali, Bahram

    2014-05-01

    The angular light scattering profile of microscopic particles significantly depends on their morphological parameters, such as size and shape. This dependency is widely used in state-of-the-art flow cytometry methods for particle classification. We recently introduced the spectrally encoded angular light scattering (SEALS) method, with potential application in scanning flow cytometry (SFC). We show that a one-to-one wavelength-to-angle mapping enables the measurement of the angular dependence of scattered light from microscopic particles over a wide dynamic range. Improvement in dynamic range is obtained by equalizing the angular scattering dependence via spectral equalization. The resulting continuous angular spectrum is obtained without mechanical scanning, enabling single-shot measurement. Using this information, particle morphology can be determined with improved accuracy. We derive and experimentally verify an analytic wavelength-to-angle mapping model, facilitating rapid data processing. As a proof of concept, we demonstrate the method's capability of distinguishing differently sized polystyrene beads. The combination of SEALS with time-stretch dispersive Fourier transform (TS-DFT) offers real-time and high-throughput (high frame rate) measurements and renders the method suitable for integration in standard flow cytometers: By transforming the spectrum into time and slowing the time scale, using group velocity dispersion (GVD), single-shot spectra can be obtained at high throughput, using a photodiode and a real-time digitizer. The amount of group velocity dispersion is chosen to time-stretch the optical pulses, that is, to slow them down, such that they do not overlap and may be digitized in real-time.

  11. Properties of Angular Distributions in Drell-Yan Dilepton Production

    NASA Astrophysics Data System (ADS)

    McClellan, R. Evan; Peng, Jen-Chieh; Chang, Wen-Chen; Teryaev, Oleg

    2016-09-01

    We present a simple geometric model of the Drell-Yan process based on the unobserved `natural axis' (quark-anti-quark axis) in the dilepton rest frame. We utilize this model to interpret the recent high-precision Z-boson ``Drell-Yan'' angular distributions data from CMS. We find good agreement with the pT-dependence of the angular parameters, and extract the relative contributions from the quark-anti-quark and quark-gluon subprocesses, as well as the average degree of `non-coplanarity' between the quark axis and the hadron plane. We interpret the non-coplanarity as a result of higher-order QCD contributions, and as the cause of the observed Lam-Tung violation. Supported in part by the U.S. National Science Foundation (NSF PHY 15-06416) and the National Science Council of the Republic of China.

  12. Properties of Angular Distributions in Drell-Yan Dilepton Production

    NASA Astrophysics Data System (ADS)

    McClellan, R. Evan; Peng, Jen-Chieh; Chang, Wen-Chen; Teryaev, Oleg

    2017-01-01

    We present a simple geometric model of the Drell-Yan process based on the unobserved `natural axis' (quark-anti-quark axis) in the dilepton rest frame. We utilize this model to interpret the recent high-precision Z-boson ``Drell-Yan'' angular distributions data from CMS. We find good agreement with the pT-dependence of the angular parameters, and extract the relative contributions from the quark-anti-quark and quark-gluon subprocesses, as well as the average degree of `non-coplanarity' between the quark axis and the hadron plane. We interpret the non-coplanarity as a result of higher-order QCD contributions, and as the cause of the observed Lam-Tung violation.

  13. THE ANGULAR BROADENING OF THE GALACTIC CENTER PULSAR SGR J1745-29: A NEW CONSTRAINT ON THE SCATTERING MEDIUM

    SciTech Connect

    Bower, Geoffrey C.; Deller, Adam; Falcke, Heino; Demorest, Paul; Brunthaler, Andreas; Eatough, Ralph; Kramer, Michael; Lee, K. J.; Spitler, Laura

    2014-01-01

    The pulsed radio emission from the Galactic Center (GC) pulsar SGR J1745-29 probes the turbulent, magnetized plasma of the GC hyperstrong scattering screen through both angular and temporal broadening. We present measurements of the angular size of SGR J1745-29, obtained with the Very Long Baseline Array and the phased Very Large Array at 8.7 and 15.4 GHz. The source sizes are consistent with the scatter-broadened size of Sagittarius A* at each frequency, demonstrating that SGR J1745-29 is also located behind the same scattering medium. Combining the angular broadening with temporal scattering obtained from pulsar observations provides a complete picture of the scattering properties. A best-fit solution for the distance of a single thin screen is Δ = 5.8 ± 0.3 kpc, consistent with being located in the Scutum spiral arm. The scattering is also consistent with a uniform scattering medium or a series of thin screens distributed between the GC and the Earth. This result is a substantial revision of the previously held model in which the scattering screen is located very close to the GC. As also discussed in Spitler et al., these results suggest that GC searches can detect millisecond pulsars gravitationally bound to Sgr A* with observations at ≳ 10 GHz and ordinary pulsars at even lower frequencies.

  14. A Wigner Distribution Analysis of Scattering Dynamics

    NASA Astrophysics Data System (ADS)

    Weeks, David; Lacy, Brent

    2009-04-01

    Using the time dependent Channel Packet Method (CPM),ootnotetextD.E.Weeks, T.A.Niday, S.H.Yang, J Chem Phys. 125, 164301 (2006). a Fourier transformation of the correlation function between evolving wave packets is used to compute scattering matrix elements. The correlation function can also be used to compute a Wigner distribution as a function of time and energy. This scattering Wigner distribution is then used to investigate times at which various energetic contributions to the scattering matrix are made during a molecular collision. We compute scattering Wigner distributions for a variety of molecular systems and use them to characterize the associated molecular dynamics. In particular, the square well provides a simple and easily modified potential to study the relationship between the scattering Wigner distribution and wave packet dynamics. Additional systems that are being studied include the collinear H + H2 molecular reaction, and the non-adiabatic B + H2 molecular collision.

  15. Stray, swing and scatter: angular momentum evolution of orbits and streams in aspherical potentials

    NASA Astrophysics Data System (ADS)

    Erkal, Denis; Sanders, Jason L.; Belokurov, Vasily

    2016-09-01

    In aspherical potentials orbital planes continuously evolve. The gravitational torques impel the angular momentum vector to precess, that is to slowly stray around the symmetry axis, and nutate, i.e. swing up and down periodically in the perpendicular direction. This familiar orbital pole motion - if detected and measured - can reveal the shape of the underlying gravitational potential, the quantity only crudely gauged in the Galaxy so far. Here we demonstrate that the debris poles of stellar tidal streams show a very similar straying and swinging behaviour, and give analytic expressions to link the amplitude and the frequency of the pole evolution to the flattening of the dark matter distribution. While these results are derived for near-circular orbits, we show they are also valid for eccentric orbits. Most importantly, we explain how the differential orbital plane precession leads to the broadening of the stream and show that streams on polar orbits ought to scatter faster. We provide expressions for the stream width evolution as a function of the axisymmetric potential flattening and the angle from the symmetry plane and prove that our models are in good agreement with streams produced in N-body simulations. Interestingly, the same intuition applies to streams whose progenitors are on short- or long-axis loops in a triaxial potential. Finally, we present a compilation of the Galactic cold stream data, and discuss how the simple picture developed here, along with stream modelling, can be used to constrain the symmetry axes and flattening of the Milky Way.

  16. Fission fragment angular distributions in pre-actinide nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu

    2016-10-01

    Background: Complete fusion of two nuclei leading to formation of a heavy compound nucleus (CN) is known to be hindered by various fission-like processes, in which the composite system reseparates after capture of the target and the projectile inside the potential barrier. As a consequence of these non-CN fission (NCNF) processes, fusion probability (PCN) starts deviating from unity. Despite substantial progress in understanding, the onset and the experimental signatures of NCNF and the degree of its influence on fusion have not yet been unambiguously identified. Purpose: This work aims to investigate the presence of NCNF, if any, in pre-actinide nuclei by systematic study of fission angular anisotropies and fission cross sections (σfis) in a number of nuclear reactions carried out at and above the Coulomb barrier (VB) . Method: Fission fragment angular distributions were measured for six 28Si-induced reactions involving isotopically enriched targets of 169Tm,176Yb,175Lu,180Hf,181Ta, and 182W leading to probable formation of CN in the pre-actinide region, at a laboratory energy (Elab) range of 129-146 MeV. Measurements were performed with large angular coverage (θlab=41∘ -170∘) in which fission fragments (FFs) were detected by nine hybrid telescope (E -Δ E ) detectors. Extracted fission angular anisotropies and σfis were compared with statistical model (SM) predictions. Results: Barring two reactions involving targets with large non-zero ground state spin (J ) , viz., 175Lu(7/2+) and 181Ta(7/2+) , experimental fission angular anisotropies were found to be higher in comparison with predictions of the statistical saddle point model (SSPM), at Ec .m . near VB. Comparison of present results with those from neighboring systems revealed that experimental anisotropies increasingly deviated from SSPM predictions as one moved from pre-actinide to actinide nuclei. For reactions involving targets with large nonzero J , this deviation was subdued. Comparison between

  17. Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols.

    PubMed

    Harmel, T; Hieronymi, M; Slade, W; Röttgers, R; Roullier, F; Chami, M

    2016-01-25

    Measurements of the volume scattering function (VSF) of hydrosols is of primary importance to investigate the interaction of light with hydrosols and to further interpret in situ and remote sensing data of ocean color. In this paper, a laboratory inter-comparison experiment of three recently developed VSF meters that are able to measure the scattered light for a wide range of scattering angle at 515 nm wavelength is performed using phytoplankton cultures and mineral-like hydrosols. A rigorous measurement protocol was employed to ensure good quality data. In particular, the protocol enabled removing the influence of bacteria on the hydrosols within the sample. The differences in the VSF measurements between the instruments vary from 10 to 25% depending on the composition of the hydrosols. The analysis of the angular features of the VSF revealed a sharp increase of the VSF beyond the scattering angle of 150° for some phytoplankton species. Such behavior is observed for two of the three VSF meters, thus suggesting that it is not due to instrumental artifacts but more likely to phytoplankton optical properties themselves. Moreover, comparisons with currently used theoretical phase functions show that the models are not able to reproduce satisfactorily the directional patterns in the backscattering region. This study suggests that a better modelling of the VSF shape of phytoplankton at high scattering angles is required to correctly represent the angular shape of the VSF in the backscattering hemisphere. Tabulated values of the measured phase functions are provided for scattering angles from 0.1 to 175°.

  18. Angular dependence of multiple scattered photons and saturation thickness for certain elements by gamma scattering method

    NASA Astrophysics Data System (ADS)

    Kiran, K. U.; Ravindraswami, K.; Eshwarappa, K. M.; Somashekarappa, H. M.

    2016-02-01

    Multiple scattering of gamma photons obtained from 0.215 GBq 137Cs source in both forward and backward hemisphere for 4 elements viz., carbon, aluminium, iron and copper are detected by a 76 mm ×76 mm NaI(Tl) scintillation detector. The variation of saturation thicknesses of 4 elements are studied experimentally at 60°, 80°, 90°, 100°, 120° and 135°. Monte Carlo N-Particle (MCNP) simulation of multiple scattering and variation in saturation thicknesses is carried out for 40°, 60°, 80°, 90°, 100°, 120°, 135°, 160° and 180° for four elements. The variation of the intensity of multiple scattered photons in different scattering angles is found to be different in forward and backward hemispheres. The intensity of multiple scattered photons is found to be minimum at around 90°. Saturation thicknesses for 40° and 60° are found to be less than saturation thicknesses for 80°, 90°, 100°, 120°, 135°, 160° and 180° in spite of the fact that the scattered energy is more for lower scattering angles. The behaviour of variation of saturation thicknesses as a function of scattering angles obtained from MCNP simulation agrees well with experimentally obtained values.

  19. Neutron angular distribution in plutonium-240 spontaneous fission

    NASA Astrophysics Data System (ADS)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  20. Energy dependent 4-dimensional multiple scattering distributions

    NASA Astrophysics Data System (ADS)

    Tschalär, C.

    1984-12-01

    A complete analytic solution in Fourier space is presented of the four dimensional small angle, multiple scattering distribution MSD in angle and space, produced by an energy dependent single scattering cross section from an initial pencil beam of heavy particles. Independently, simple integrals are derived for the central moments of the energy dependent MSD in the continuous-slowing-down approximation. The distributions of the projections t and x of the scattering angle and displacement into a plane through the axis of propagation are evaluated numerically for a truncated Rutherford scattering cross section using a fast Fourier transform. The resulting MSDs for a wide range of particles, initial and final momenta, and scattering materials are found to be approximately represented by one-dimensional set of standard distributions symmetrized by a linear transformation in t- x-space.

  1. The inverse scattering problem at fixed angular momentum for nonlocal separable interactions

    NASA Technical Reports Server (NTRS)

    Chadan, K.

    1972-01-01

    The problem of inverse scattering at fixed angular momentum is considered. The problem is particularized to the case of nonlocal separable interactions. A brief survey of the inverse problem for nonlocal separable interactions is presented. This problem can be solved exactly by integration. It amounts to solving singular integral equations of the Hilbert-Mushkhelishvili type, which have been studied extensively in the past and appear in many areas of physics, including theory of elasticity and dispersions relations in high energy physics.

  2. Capillary-scale direct measurement of hemoglobin concentration of erythrocytes using photothermal angular light scattering.

    PubMed

    Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin

    2015-12-15

    We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL.

  3. Determination of atmospheric particle size distribution from forward scattering data.

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1973-01-01

    Description of an analytic method of reconstructing the particle size distribution of atmospheric aerosols when no a priori information is available regarding the refractive index of the particles, the analytic form of the distribution, the size range, and the size extremal values. The method applies in principle to angle-dependent scattering data at a fixed wave number, or to wave-number-dependent scattering data at a fixed angle, or to a combination of the two. Some results of an angular scan study of the aureole are presented to illustrate the effectiveness of the method. In conclusion, an analysis is made of the efficiency and accuracy of the method, the uniqueness of the inverse solutions, and the stability of the method relative to experimental noise.

  4. Long-term variations of muon flux angular distribution

    NASA Astrophysics Data System (ADS)

    Shutenko, V. V.; Astapov, I. I.; Barbashina, N. S.; Dmitrieva, A. N.; Kokoulin, R. P.; Kompaniets, K. G.; Petrukhin, A. A.; Yashin, I. I.

    2013-02-01

    Intensity of the atmospheric muon flux depends on a number of factors: energy spectrum of primary cosmic rays (PCR), heliospheric conditions, state of the magnetosphere and atmosphere of the Earth. The wide-aperture muon hodoscope URAGAN (Moscow, Russia, 55.7° N, 37.7° E, 173 m a.s.l.) makes it possible to investigate not only variations of the intensity of muon flux, but also temporal changes of its angular distribution. For the analysis of angular distribution variations, the vector of local anisotropy is used. The vector of local anisotropy is the sum of individual vectors (directions of the reconstructed muon tracks) normalized to the total number of reconstructed tracks. The vector of local anisotropy and its projections show different sensitivities to parameters of the processes of modulation of PCR in the heliosphere and the Earth's magnetosphere, and the passage of secondary cosmic rays through the terrestrial atmosphere. In the work, results of the analysis of long-term variations of hourly average projections of the vector of local anisotropy obtained from the URAGAN data during experimental series of 2007-2011 are presented.

  5. Ion angular distribution simulation of the HEMP Thruster

    NASA Astrophysics Data System (ADS)

    Duras, Julia; Koch, Norbert; Kahnfeld, Daniel; Bandelow, Gunnar; Matthias, Paul; Lüskow, Karl Felix; Schneider, Ralf; Kemnitz, Stefan

    2016-10-01

    Ion angular current and energy distributions are important parameters for ion thrusters, which are typically measured at a few tens of centimetres to a few meters distance from thruster exit. However, fully kinetic Particle-in-Cell simulations are not able to simulate such domain sizes, due to high computational costs. Therefore, a parallelisation strategy of the code is presented to reduce computational time. To map diagnostics information from the domain boundary of the calculational domain to the positions of experimental diagnostics the concept of transfer functions is introduced. The calculated ion beam angular distributions in the plume region are quite sensitive to boundary conditions of the potential, possible additional source contributions, e.g. from secondary electron emission at vessel walls, and charge exchange collisions. This work was supported by the Bavarian State Ministry of Education Science and the Arts and the German Space Agency DLR. We also like to thank R. Heidemann from THALES Electron Devices GmbH, for interesting and stimulating discussions.

  6. SASER action in optically excited ruby: Angular and spectral distribution

    NASA Astrophysics Data System (ADS)

    Tilstra, L. G.; Arts, A. F. M.; de Wijn, H. W.

    2007-12-01

    Selective pulsed optical excitation is used in 500-at.ppm ruby (Al2O3:Cr3+) at 1.4 K to prepare complete population inversion of the Zeeman-split bar E(2E) doublet in a zone of limited size. The inversion results in prolific stimulated emission of phonons resonant with the one-phonon transition connecting the doublet states. The phonons are detected via the R1 luminescence. The angular and spectral distributions of the associated acoustic wave are measured using a geometry with inverted zones at either end of the crystal, one serving as generator and the other as detector. The divergence appears to be governed by the geometry of the zone, while the spectral distribution is, within errors, in keeping with the inhomogeneously broadened phonon transition.

  7. Surface roughness studies with DALLAS-detector array for laser light angular scattering

    NASA Technical Reports Server (NTRS)

    Vorburger, T. V.; Teague, E. C.; Scire, F. E.; Mclay, M. J.; Gilsinn, D. E.

    1984-01-01

    An attempt is made to develop a better mathematical description of optical scattering phenomena, in order to construct an optical scattering apparatus for reliable and routine measurements of roughness parameters without resorting to comparator standards. After a brief outline of optical scattering theory, a description is presented of an experimental instrument for measuring surface roughness which incorporates optical scattering principles. The instrument has a He-Ne laser which illuminates the test surface at a variable angle of incidence. Scattered light distribution is detected by an array of 87 fiber-optic sensors positioned in a rotating semicircular yoke. The output from the detector is digitized and analyzed in a laboratory computer. For a comparison with experimental data, theoretical distributions are calculated by substituting the roughness profiles into the operand of and integral equation for electromagnetic scattering developed by Beckmann and Spizzichino (1963). A schematic diagram of the instrument is provided and the general implications of the experimental results are discussed.

  8. DISTRIBUTION OF ACCRETING GAS AND ANGULAR MOMENTUM ONTO CIRCUMPLANETARY DISKS

    SciTech Connect

    Tanigawa, Takayuki; Ohtsuki, Keiji; Machida, Masahiro N.

    2012-03-01

    We investigate gas accretion flow onto a circumplanetary disk from a protoplanetary disk in detail by using high-resolution three-dimensional nested-grid hydrodynamic simulations, in order to provide a basis of formation processes of satellites around giant planets. Based on detailed analyses of gas accretion flow, we find that most of gas accretion onto circumplanetary disks occurs nearly vertically toward the disk surface from high altitude, which generates a shock surface at several scale heights of the circumplanetary disk. The gas that has passed through the shock surface moves inward because its specific angular momentum is smaller than that of the local Keplerian rotation, while gas near the midplane in the protoplanetary disk cannot accrete to the circumplanetary disk. Gas near the midplane within the planet's Hill sphere spirals outward and escapes from the Hill sphere through the two Lagrangian points L{sub 1} and L{sub 2}. We also analyze fluxes of accreting mass and angular momentum in detail and find that the distributions of the fluxes onto the disk surface are well described by power-law functions and that a large fraction of gas accretion occurs at the outer region of the disk, i.e., at about 0.1 times the Hill radius. The nature of power-law functions indicates that, other than the outer edge, there is no specific radius where gas accretion is concentrated. These source functions of mass and angular momentum in the circumplanetary disk would provide us with useful constraints on the structure and evolution of the circumplanetary disk, which is important for satellite formation.

  9. Spin O decay angular distribution for interfering mesons in electroproduction

    SciTech Connect

    Funsten, H.; Gilfoyle, G.

    1994-04-01

    Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W({theta},{psi}). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W({theta},{psi}) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter`s relative orbital angular momentum m-projection; none is {open_quotes}absorbed{close_quotes} into daughter helicities. The decaying meson`s helicity maximally appears in W({theta},{psi}). W({theta},{psi}) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W({theta},{psi}) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W ({theta},{psi}), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters.

  10. Evidence for the distribution of angular velocity inside the sun and stars

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing the distribution of angular velocity inside the sun and stars.

  11. Mass distribution and mass resolved angular distribution of fission products in 28Si+232Th

    NASA Astrophysics Data System (ADS)

    Sodaye, Suparna; Tripathi, R.; John, B. V.; Ramachandran, K.; Pujari, P. K.

    2017-01-01

    Background: Fission process with heavier projectiles and actinide targets has contributions from processes, such as compound nucleus fission, transfer-induced fission, and noncompound nucleus fission. Mass distribution and mass-dependent anisotropy can be used to identify and delineate the contributions due to these different processes. Purpose: Mass distribution in 28Si+232Th has been studied at beam energies of 180 and 158 MeV to investigate the nature of mass distribution arising from complete and incomplete momentum-transfer fission events. Mass-dependent angular anisotropy has been measured at 166 MeV to investigate the dominant noncompound nucleus process contributing to the fission. Method: Mass distribution and mass resolved angular distribution of fission products were measured by the recoil catcher method followed by off-line γ -ray spectrometry. Results: Mass distributions for full momentum-transfer fission processes were found to be symmetric, and those for transfer-induced fission were found to be asymmetric at both beam energies. The relative contribution from transfer-induced fission was found to be higher at lower beam energy. The anisotropy of the fission product angular distribution was found to increase with decreasing mass asymmetry. Conclusions: The mass distribution indicates that, apart from the full momentum-transfer fission process, there is a significant contribution due to transfer-induced fission. The mass dependence of angular anisotropy indicated that preequilibrium fission is the dominant noncompound nucleus process in the present reaction system at near barrier energy (Ec .m ./VC=1.06 ) .

  12. Photoelectron angular distributions from two-photon ionizations of atoms

    NASA Astrophysics Data System (ADS)

    Haber, Louis Hamilton

    Photoelectron angular distributions provide detailed information about interferences between different quantum pathways of photoionization. Measurements of photoelectron energies and angular distributions from two-color two-photon ionizations of atoms using ultrashort pulses of extreme ultraviolet and optical light are performed using a novel, homebuilt experimental instrument. The setup is composed of an amplified femtosecond laser system, a high-order harmonic generation source, and an interaction region with photoelectron velocity map imaging The experimental temporal resolution is determined to be approximately 100 fs. Two different types of two-photon ionizations are investigated. Photoelectron angular distributions from resonant two-photon ionizations of helium are measured using the 15th high-order harmonic to excite from the ground state to either the 1s3p 1P1 state at 23.1 eV or to the 1s4p 1 P1 state at 23.7 eV and either 800, 400, or 267 nm to ionize. The anisotropy parameters allow for the determination of the energy-dependent ratios of radial dipole matrix elements and the phase shift differences between the S and D partial waves. Using available total cross section measurements, the absolute partial cross sections of the 1s3p1P 1 state are obtained, providing the complete information on photoionization. The experimental results are in excellent agreement with theoretical predictions using the one-electron model. Additional experiments are aimed at studying atomic free-free transitions. Two-color two-photon above threshold ionizations of helium and argon are investigated using selected high-order harmonics and perturbative infrared dressing fields. The measured anisotropy parameters and cross section ratios of the positive and negative above threshold ionization sidebands are compared to theoretical predictions using second-order perturbation theory and the soft-photon approximation. In general, deviations between the experimental results and the

  13. Method for improving the angular resolution of a neutron scatter camera

    SciTech Connect

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  14. Time-dependent treatment of electron-hydrogen scattering for higher angular momenta (L>0)

    NASA Astrophysics Data System (ADS)

    Odero, D. O.; Peacher, J. L.; Schultz, D. R.; Madison, D. H.

    2001-02-01

    The time-dependent approach to electron-atom scattering is emerging as an alternative to more conventional methods of treating atomic collisions. Solving the time-dependent Schrödinger equation directly has several very attractive features including a completely nonperturbative solution, dense representation of the nonphysical positive energy states, circumvention of the need to explicitly impose boundary conditions for ionization, and the convenience of being able to ``watch'' the electronic probability density evolve though the collision. Two principal approaches have so far been applied to treat electron-atom scattering, namely, the time-dependent close couping (TDCC) method and what we refer to as the time-dependent Hylleraas (TDH) method. The TDCC method solves coupled equations with two variables within a truncated infinite sum over individual angular momenta for each total angular momentum L of the system. In contrast, the TDH method avoids an infinite summation over the angular momenta of the individual electrons at the expense of solving a coupled equation with three variables for each L. The TDH method has previously been used for L=0 only. An important question, therefore, concerns whether the TDH method would represent a numerical advantage over the TDCC method for higher L values. This issue is investigated in this paper.

  15. Interacting resonances in the F+H2 reaction revisited: complex terms, Riemann surfaces, and angular distributions.

    PubMed

    Sokolovski, D; Sen, S K; Aquilanti, V; Cavalli, S; De Fazio, D

    2007-02-28

    We study the effect of overlapping resonances on the angular distributions of the reaction F+H2(v=0,j=0)-->HF(v=2,j=0)+H in the collision energy range from 5 to 65 meV, i.e., under the reaction barrier. Reactive scattering calculations were performed using the hyperquantization algorithm on the potential energy surface of Stark and Werner [J. Chem. Phys. 104, 6515 (1996)]. The positions of the Regge and complex energy poles are obtained by Pade reconstruction of the scattering matrix element. The Sturmian theory is invoked to relate the Regge and complex energy terms. For two interacting resonances, a two-sheet Riemann surface is contracted and inverted. The semiclassical complex angular momentum analysis is used to decompose the scattering amplitude into the direct and resonance contributions.

  16. Photoelectron Angular Distribution and Molecular Structure in Multiply Charged Anions

    SciTech Connect

    Xing, Xiaopeng; Wang, Xue B.; Wang, Lai S.

    2009-02-12

    Photoelectrons emitted from multiply charged anions (MCAs) carry information of the intramolecular Coulomb repulsion (ICR), which is dependent on molecular structures. Using photoelectron imaging, we observed the effects of ICR on photoelectron angular distributions (PAD) of the three isomers of benzene dicarboxylate dianions C6H4(CO2)22– (o-, m- and p-BDC2–). Photoelectrons were observed to peak along the laser polarization due to the ICR, but the anisotropy was the largest for p-BDC2–, followed by the m- and o-isomer. The observed anisotropy is related to the direction of the ICR or the detailed molecular structures, suggesting that photoelectron imaging may allow structural information to be obtained for complex multiply charged anions.

  17. Angular Distribution of light emission in ELVES events

    NASA Astrophysics Data System (ADS)

    Mussa, Roberto

    2017-04-01

    The Pierre Auger Observatory, located in Malargüe (Argentina), is the largest facility (3000 kmq ) for the study of Ultra High Energy Cosmic Rays (E>0.3 EeV). The four sites of the Fluorescence Detector (FD) are continuously observing the night sky with moon fraction below 50% (13% duty cycle) with 100 ns time resolution and a space resolution below one degree. Since 2013, the Observatory has implemented a dedicated trigger for the study of ELVES events, produced by lightning activity in Northern Argentina during summer months. A network of ancillary devices (lidars, cloud cameras, weather stations, lightning sensors, E-field mills) complements the FD data to correct for the variation of atmospheric optical properties. This paper will report about the angular distribution of the light emission around the vertical above the lightning source and compare with existing models.

  18. Photoelectron angular distributions of ultrathin Ni/Cu(001) films

    SciTech Connect

    Mankey, G.J.; Subramanian, K.; Stockbauer, R.L.; Kurtz, R.L.

    1996-12-31

    The authors present measurements of the evolution with film thickness of the 3d electronic states at the Fermi energy of ultrathin Ni films. The morphology and thickness of the films is determined from x-ray photoelectron spectroscopy, x-ray photoelectron diffraction and x-ray magnetic linear dichroism using synchrotron radiation. Photoelectron angular distributions were measured using an ellipsoidal mirror analyzer. Even at submonolayer Ni coverages, the 3d electronic states exhibit bulk-like properties. This is attributed to the short screening length of electrons in metals, the localization of the 3d electrons, the similarity of the Ni and Cu ion cores, and finally the interaction with the underlying fcc periodic potential.

  19. Creation of twisted terahertz carrying orbital angular momentum via stimulated Raman scattering in a plasma vortex

    NASA Astrophysics Data System (ADS)

    Sobhani, H.

    2017-09-01

    Here, a scheme for the generation of twisted terahertz radiation in a plasma vortex with a helical structure is proposed. Based on stimulated Raman scattering, the incident laser decays into the Langmuir wave. Beating the Langmuir wave with the plasma wave of the media causes the production of current density. The current density can excite twisted radiation at the terahertz frequency. For an incident laser with Gaussian envelops, the orbital angular momentum of terahertz radiation is provoked by the helicity of the plasma vortex. Furthermore, for the Laguerre-Gaussian laser, the orbital angular momentum of terahertz radiation is equal to the difference between the topological charge of the lasers and the electron plasma vortex.

  20. Threshold photoneutron angular distribution and polarization studies of nuclei

    SciTech Connect

    Holt, R.J.

    1980-01-01

    The photoneutron method was applied to the study of: (1) deuteron photodisintegration; (2) giant magnetic dipole resonances in heavy nuclei; (3) mechanism of radiative capture in light nuclei; and (4) isospin splitting of the giant dipole resonance in /sup 60/Ni. These studies were performed with the pulsed bremsstrahlung beam and high-resolution spectrometer available at the Argonne high-current electron linac. A threshold photoneutron polarization method was developed in order to search for the giant M1 resonance in heavy nuclei. A surprisingly small amount of M1 strength was found in /sup 208/Pb. Furthermore, the M1 strength for the 5.08-MeV excitation in /sup 17/O, the best example of a single-particle M1 resonance in nuclei, was found to be strongly quenched. In addition, the /sup 17/O(..gamma..,n/sub 0/)/sup 16/O reaction was found to provide an ideal example of the Lane-Lynn theory of radiative capture. The interplay among the three components of the theory, internal, channel and potential capture, were evident from the data. An electron beam transport system was developed which allows the bremsstrahlung to impinge on the photoneutron target on an axis perpendicular to the usual reaction plane. This system provides an accurate method for the measurement of relative angular distributions in (..gamma..,n) reactions. This system was applied to a high-accuracy measurement of the relative angular distribution for the D(..gamma..,n)H reaction. The question of isospin-splitting of the giant dipole resonance in /sup 60/Ni was studied by using the unique pico-pulse from the accelerator and the newly installed 25-m, neutron flight paths. The results provide clear evidence for the effect of isospin splitting.

  1. Angular oscillation of solid scatterers in response to progressive planar acoustic waves: do fish otoliths rock?

    PubMed

    Krysl, Petr; Hawkins, Anthony D; Schilt, Carl; Cranford, Ted W

    2012-01-01

    Fish can sense a wide variety of sounds by means of the otolith organs of the inner ear. Among the incompletely understood components of this process are the patterns of movement of the otoliths vis-à-vis fish head or whole-body movement. How complex are the motions? How does the otolith organ respond to sounds from different directions and frequencies? In the present work we examine the responses of a dense rigid scatterer (representing the otolith) suspended in an acoustic fluid to low-frequency planar progressive acoustic waves. A simple mechanical model, which predicts both translational and angular oscillation, is formulated. The responses of simple shapes (sphere and hemisphere) are analyzed with an acoustic finite element model. The hemispherical scatterer is found to oscillate both in the direction of the propagation of the progressive waves and also in the plane of the wavefront as a result of angular motion. The models predict that this characteristic will be shared by other irregularly-shaped scatterers, including fish otoliths, which could provide the fish hearing mechanisms with an additional component of oscillation and therefore one more source of acoustical cues.

  2. Influence of the angular scattering of electrons on the runaway threshold in air

    NASA Astrophysics Data System (ADS)

    Chanrion, O.; Bonaventura, Z.; Bourdon, A.; Neubert, T.

    2016-04-01

    The runaway electron mechanism is of great importance for the understanding of the generation of x- and gamma rays in atmospheric discharges. In 1991, terrestrial gamma-ray flashes (TGFs) were discovered by the Compton Gamma-Ray Observatory. Those emissions are bremsstrahlung from high energy electrons that run away in electric fields associated with thunderstorms. In this paper, we discuss the runaway threshold definition with a particular interest in the influence of the angular scattering for electron energy close to the threshold. In order to understand the mechanism of runaway, we compare the outcome of different Fokker-Planck and Monte Carlo models with increasing complexity in the description of the scattering. The results show that the inclusion of the stochastic nature of collisions smooths the probability to run away around the threshold. Furthermore, we observe that a significant number of electrons diffuse out of the runaway regime when we take into account the diffusion in angle due to the scattering. Those results suggest using a runaway threshold energy based on the Fokker-Planck model assuming the angular equilibrium that is 1.6 to 1.8 times higher than the one proposed by [1, 2], depending on the magnitude of the ambient electric field. The threshold also is found to be 5 to 26 times higher than the one assuming forward scattering. We give a fitted formula for the threshold field valid over a large range of electric fields. Furthermore, we have shown that the assumption of forward scattering is not valid below 1 MeV where the runaway threshold usually is defined. These results are important for the thermal runaway and the runaway electron avalanche discharge mechanisms suggested to participate in the TGF generation.

  3. Optical Properties Of Solid Particle Receiver Materials I: Angular Scattering And Extinction Characteristics Of Norton Masterbeads

    NASA Astrophysics Data System (ADS)

    Griffin, J. W.; Stahl, K. A.; Pettit, R. B.

    1985-12-01

    As part of the Solar Thermal Technology Program, the direct absorption of sunlight by free-falling particles inside a cavity receiver is being evaluated. The objective of the on-going optical properties measurement program is to obtain information to be used as input to radiation transfer models for prediction of receiver performance. Instrumenta tion and data analysis techniques have been developed to determine both the angular scattering properties and the scattering and absorption components of the extinction coefficient of candidate materials. This report summarizes the measurement procedures and presents data for an ion-doped alumina spheroid, Masterbeads, manufactured by Norton Chemical Company. This material exhibits good optical absorption properties over the solar insolation spectrum and favorable thermal and mechanical properties for temperatures up to 1000°C. Scattering and extinction measurements were performed at 632.8 nm in a falling curtain geometry of one-particle nominal thickness. Data were obtained over a range of mass flow rates and particle areal densities. Photographic documentation of curtain particle density enabled calculation of mean particle scattering and absorption loss components in the absence of multiple-particle optical interactions. Prediction of optical extinction properties at other wavelengths is anticipated to be straightforward using spectral hemispherical reflectance measurements on bulk samples. Additional scattering and extinction data were obtained on transparent glass microspheres for comparison and as a verification of the measurement apparatus and procedures.

  4. The distribution of mass and angular momentum in the solar system

    SciTech Connect

    Marochnik, L.S.; Mukhin, L.M.; Sagdeev, R.Z. )

    1989-01-01

    This book describes the contribution of the comets in the Oort cloud to the angular momentum of the solar system. Topics covered include: Nuclear mass of the new comets observed, Mass of the Oort cloud, Mass distribution in the solar system, Zone of comet formation, Angular momentum of the Oort cloud, and Angular momentum of the Hills cloud.

  5. On the angular dependence and scattering model of polar mesospheric summer echoes at VHF

    NASA Astrophysics Data System (ADS)

    Sommer, Svenja; Stober, Gunter; Chau, Jorge L.

    2016-01-01

    We present measurements of the angular dependence of polar mesospheric summer echoes (PMSE) with the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). Our results are based on multireceiver and multibeam observations using beam pointing directions with off-zenith angles up to 25° as well as on spatial correlation analysis (SCA) from vertical beam observations. We consider a beam filling effect at the upper and lower boundaries of PMSE in tilted beams, which determines the effective mean angle of arrival. Comparing the average power of the vertical beam to the oblique beams suggests that PMSE are mainly not as aspect sensitive as in contrast to previous studies. However, from SCA, times of enhanced correlation are found, indicating aspect sensitivity or a localized scattering mechanism. Our results suggest that PMSE consist of nonhomogeneous isotropic scattering and previously reported aspect sensitivity values might have been influenced by the inhomogeneous nature of PMSE.

  6. Angular source size measurements and interstellar scattering at 103 MHz using interplanetary scintillation

    NASA Astrophysics Data System (ADS)

    Janardhan, P.; Alurkar, S. K.

    1993-03-01

    Data obtained between 1984 and 1987, using a radio telescope (RT) with a 10,000 sq m dipole array operating at 103 MHz, was used to determine the angular diameters of fourteen strongly scintillating radio sources. The method used exploited the technique of interplanetary scintillation (IPS), wherein the systematic variation of scintillation index with solar elongation was used as a unique indicator of the source size. The method has been used before but these are the first measurements at 103 MHz. These values were then used in conjunction with similar available measurements at 151.5 MHz to determine the contribution of interstellar scattering (ISS) to source broadening at 103 MHz. Enhanced scattering due to ISS in the plane of the galaxy has been confirmed.

  7. Modelling complex geological angular data with the Projected Normal distribution and mixtures of von Mises distributions

    NASA Astrophysics Data System (ADS)

    Lark, R. M.; Clifford, D.; Waters, C. N.

    2013-12-01

    Angular data are commonly encountered in the earth sciences and statistical descriptions and inferences about such data are necessary in structural geology. In this paper we compare two statistical distributions appropriate for complex angular data sets: the mixture of von Mises and the projected normal distribution. We show how the number of components in a mixture of von Mises distribution may be chosen, and how one may chose between the projected normal distribution and mixture of von Mises for a particular data set. We illustrate these methods with some structural geological data, showing how the fitted models can complement geological interpretation and permit statistical inference. One of our data sets suggests a special case of the projected normal distribution which we discuss briefly.

  8. Photoelectron angular distributions as a probe of anisotropic electron-ion interactions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Manson, S. T.; Starace, A. F.

    1974-01-01

    Expressions are given for atomic photoelectron angular distributions in LS coupling in which the role of anisotropic final state electron-ion interactions emerges explicitly. Calculations of photoelectron angular distributions for atomic sulfur are presented in which these anisotropic interactions produce pronounced deviations from the predictions of the Cooper-Zare model. Such effects are expected to be a general feature of photoelectron angular distributions for most open shell atoms.

  9. Photoelectron angular distributions as a probe of anisotropic electron-ion interactions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Manson, S. T.; Starace, A. F.

    1974-01-01

    Expressions are given for atomic photoelectron angular distributions in LS coupling in which the role of anisotropic final state electron-ion interactions emerges explicitly. Calculations of photoelectron angular distributions for atomic sulfur are presented in which these anisotropic interactions produce clear deviations from the predictions of the Cooper-Zare model. Such effects are expected to be a general feature of photoelectron angular distributions for most open-shell atoms.

  10. Angular Distributions of Sputtered Atoms from Semiconductor Targets at Grazing Ion Beam Incidence Angles

    SciTech Connect

    Sekowski, M.; Burenkov, A.; Martinez-Limia, A.; Hernandez-Mangas, J.; Ryssel, H.

    2008-11-03

    Angular distributions of ion sputtered germanium and silicon atoms are investigated within this work. Experiments are performed for the case of grazing ion incidence angles, where the resulting angular distributions are asymmetrical with respect to the polar angle of the sputtered atoms. The performed experiments are compared to Monte-Carlo simulations from different programs. We show here an improved model for the angular distribution, which has an additional dependence of the ion incidence angle.

  11. Angular distributions in the radiative decays of the state of charmonium originating from polarized collisions

    NASA Astrophysics Data System (ADS)

    Wong, Cheuk-Ping; Mok, Alex W. K.; Sit, Wai-Yu

    2015-03-01

    Using the helicity formalism, we calculate the combined angular distribution function of the two gamma photons ( and ) and the electron () in the triple cascade process , when and are arbitrarily polarized. We also derive six different partially integrated angular distribution functions which give the angular distributions of one or two particles in the final state. Our results show that by measuring the two-particle angular distribution of and and that of and , one can determine the relative magnitudes as well as the relative phases of all the helicity amplitudes in the two charmonium radiative transitions and.

  12. Polarized angular dependent light scattering from plasmonic nanoparticles: Modeling, measurements, and biomedical applications

    NASA Astrophysics Data System (ADS)

    Fu, Kun

    Several significant applications have been realized for light scattering in biomedical imaging. In order to improve imaging results with light scattering-based techniques, a variety of nanoparticles have been investigated as contrast agents, including gold nanoshells. As a method for studying the optical properties of plasmonic gold nanoparticles used as contrast agents for molecular imaging, we developed an automated goniometer instrumentation system. This system, which allows us to specifically study polarized angular-dependent light scattering of plasmonic nanoparticles, allowed us to perform a series of theoretical and experimental step-wise studies. The basic optical properties of the following gold nanoparticles were progressively investigated: (1) bare nanoshells at multipolar plasmonic resonances, (2) nanoshells with PEG modifications, (3) surface-textured nanoshells and (4) immunotargeted nanoshells (nanoshell-antibody bioconjugates) for cancer imaging. Based on the results from these studies, a new technique was developed to quantitatively measure the number of immunotargeted nanoparticles that bind to HER2-positive SKBR3 human breast cancer cells. Preliminary studies of determining the minimal incubation time of immunotargeted nanoshells with SKBR3 cells were also carried out to evaluate the potential clinical application of using gold nanoshells intraoperatively. We, therefore, anticipate that our findings will provide the theoretical groundwork required for further studies aimed at optimizing the application of plasmonic nanoparticles in scattering-based optical imaging techniques.

  13. Angular distribution of single-photon superradiance in a dilute and cold atomic ensemble

    NASA Astrophysics Data System (ADS)

    Kuraptsev, A. S.; Sokolov, I. M.; Havey, M. D.

    2017-08-01

    On the basis of a quantum microscopic approach we study the dynamics of the afterglow of a dilute Gaussian atomic ensemble excited by pulsed radiation. Taking into account the vector nature of the electromagnetic field we analyze in detail the angular and polarization distribution of single-photon superradiance of such an ensemble. The dependence of the angular distribution of superradiance on the length of the pulse and its carrier frequency as well as on the size and the shape of the atomic clouds is studied. We show that there is substantial dependence of the superradiant emission on the polarization and the direction of fluorescence. We observe essential peculiarities of superradiance in the region of the forward diffraction zone and in the area of the coherent backscattering cone. We demonstrate that there are directions for which the rate of fluorescence is several times more than the decay rate of the timed-Dicke state. We show also that single-photon superradiance can be excited by incoherent excitation when atomic polarization in the ensemble is absent. Besides a quantum microscopic approach, we analyze single-photon superradiance on the basis of the theory of incoherent multiple scattering in optically thick media (random walk theory). In the case of very short resonant and long nonresonant pulses we derive simple analytical expressions for the decay rate of single-photon superradiance for incoherent fluorescence in an arbitrary direction.

  14. Small Deflection Energy Analyzer for Energy and Angular Distributions

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.

    2009-01-01

    The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.

  15. The Angular Momentum Distribution within Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Chen, D.; Jing, Y.

    We study the angular momentum profile of dark matter halos for a statistical sample drawn from a set of high-resolution cosmological simulations of 2563 particles. Two typical Cold Dark Matter (CDM) models have been analyzed, and the halos are selected to have at least 3× 104 particles in order to reliably measure the angular momentum profile. In contrast with the recent claims of Bullock et al. (2001), we find that the degree of misalignment of angular momentum within a halo is very high. About 50 percent of halos have more than 10 percent of halo mass in the mass of negative angular momentum j. After the mass of negative j is excluded, the cumulative mass function M(angular momentum profile of halos in a Warm Dark Matter (WDM) model and a Self-Interacting Dark Matter (SIDM) model. We find that the angular momentum profile of halos in the WDM is statistically indistinguishable from that in the CDM model, but the angular momentum of halos in the SIDM is reduced by the self-interaction of dark matter.

  16. Strong oscillations in the nondipole corrections to the photoelectron angular distributions from C{sub 60}

    SciTech Connect

    Toffoli, Daniele; Decleva, Piero

    2010-06-15

    Nondipolar corrections to the photoelectron angular distributions from C{sub 60} have been calculated for the highest occupied molecular orbital (HOMO), HOMO-1, and HOMO-2 photoemission bands. The computational method employed takes advantage of a parallel algorithm that uses a multicentric expansion of bound- and scattering-wave functions and a density-functional theory one-particle Hamiltonian. First-order nondipolar asymmetry parameters have been calculated from thresholds of up to 160 eV of photon energy. Strong oscillations, reminiscent of those found in the ratio of the HOMO and HOMO-1 partial cross sections, have been observed in the nondipolar asymmetry parameters as well. The oscillations have the same period, but a different phase, compared to the ones that characterize the HOMO-HOMO-1 intensity ratio.

  17. Over-cosine angular distributions of sputtered atoms at normal incidence

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.; Muraoka, K.

    1989-06-01

    The angular distribution of sputtered atoms for normal incidence ions has been investigated theoretically and by computer simulation. For low energy ions the angular distribution is under-cosine, while for relatively high energy ions we obtain an over-cosine angular distribution for the sputtered atoms. It is found that the outward-peakness of the angular distribution for relatively high energy ions is due to the geometrical asymmetry near the surface. Using the Monte Carlo simulation code ACAT, which is based on the binary collision approximation, the angular distributions of sputtered atoms are calculated for various incident energies of Ar ions incident normally on an Fe target. It is found that one needs to take into account the surface roughness in order to obtain good agreement with experiment. The surface roughness is believed to reduce the degree of the over-cosine distribution because a rough surface has a larger effective surface area as compared with an unirradiated surface.

  18. Prediction of angular distributions for the F+H/sub 2/ and F+D/sub 2/ reactions

    SciTech Connect

    Hayes, E.F.; Walker, R.B.

    1988-05-01

    The bending corrected rotating linear model is used to predict angular distributions for the reactions F+H/sub 2/(v = 0)..-->..H+HF(v' = 2,3) and and F+D/sub 2/(v = 0)..-->..D+DF(v' = 3,4). The calculations were performed using the surface (No. 5A) that was reported recently by Steckler, Truhlar, and Garrett. The angular distributions obtained using this new surface differ in several important respects from distributions predicted in earlier quantal scattering studies using the Muckerman-5 surface. More importantly, these new predictions are in much better agreement with the high resolution molecular beam studies of these same reactions. The combination of these predictions with the results of the molecular beam studies provides additional evidence for the role of dynamical resonances in the two title reactions.

  19. Effects of W and Mo crystalline texture on the angular distribution of sputtered atoms

    NASA Astrophysics Data System (ADS)

    Rogov, A. V.; Martynenko, Yu. V.; Belova, N. E.; Shulga, V. I.

    2011-11-01

    The effects of W and Mo surface crystalline texture on the angular distribution of sputtered atoms were investigated experimentally and by computer simulation. A small-sized planar DC magnetron was used to sputter the target by 200-300 eV Ar+ ions. The crystalline texture was formed under rolling of metal foils and during the preparation of metal bars and was controlled by X-ray diffraction analysis. For W and Mo foils, a strong anisotropy of the angular distribution was found. The character of angular distribution was different in the planes oriented perpendicularly and in parallel to the direction of rolling. In the first case, the angular distribution was peaked at the polar angle θ=0, while in the second case, the angular distribution, in addition to a maximum at θ=0, revealed a pronounced maximum at θ≈ 57° and ≈60° for Mo and W, respectively. For bars, no azimuthal anisotropy was observed, but the angular distribution was peaked at θ=37° (Mo) and θ=45° (W). This is in contrast to the case of non-textured Mo and W polycrystals, for which the angular distribution had a maximum at θ=0. Computer simulation technique in combination with the results of X-ray analysis was used to clarify the above experimental findings. It was demonstrated that the angular distribution of sputtered atoms can be successfully used for the determination of the crystalline texture of metals.

  20. The Evolution of the Angular Momentum Distribution during Star Formation.

    PubMed

    Tomisaka

    2000-01-01

    If the angular momentum of the molecular cloud core were conserved during the star formation process, a newborn star would rotate much faster than its fission speed. This constitutes the angular momentum problem of newborn stars. In this Letter, the angular momentum transfer in the contraction of a rotating magnetized cloud is studied with axisymmetric MHD simulations. Because of the large dynamic range covered by the nested-grid method, the structure of the cloud in the range from 10 AU to 0.1 pc is explored. First, the cloud experiences a runaway collapse, and a disk forms perpendicularly to the magnetic field, in which the central density increases greatly in a finite timescale. In this phase, the specific angular momentum j of the disk decreases to about one-third of the initial cloud. After the central density of the disk exceeds approximately 1010 cm-3, the infall on to the central object develops. In this accretion stage, the rotation motion and thus the toroidal magnetic field drive the outflow. The angular momentum of the central object is transferred efficiently by the outflow as well as by the effect of the magnetic stress. In 7000 yr from the core formation, the specific angular momentum of the central 0.17 M middle dot in circle decreases a factor of 10-4 from the initial value (i.e., from 1020 to 1016 cm2 s-1).

  1. Torque distribution algorithm for effective use of reaction wheel torques and angular momentums

    NASA Astrophysics Data System (ADS)

    Sugita, Mikihiro

    2017-10-01

    In attitude control of spacecraft using more than three reaction wheels, the distribution of the attitude control torque to the wheels is not unique because of the redundancy. There are several wheel torque distribution algorithms which optimize the wheel torques or other factors. In particular, the optimal torque distribution algorithm is acknowledged as algorithm which minimizes the maximum wheel torque. This algorithm is advantageous to make maximum use of the wheel torques, because each wheel torque must be lower than the wheel torque capability and torque is the primary driver in many cases. However, as a result of minimizing the maximum wheel torque, the distribution of the wheel angular momentums is not calculated by a similar formula for the wheel torques distribution. In other words, the wheel angular momentums cannot be derived from the current attitude angular momentum. When certain wheel reaches maximum angular momentum earlier than the other wheels, this prohibits maximum use of the other wheels' capability. Therefore, minimizing the maximum wheel torque is not always effective when other constraint such as angular momentum matters. Recently, it has become more important that both wheel torques and angular momentums are used more effectively in order to improve the performance of the spacecraft agility, such as the high angular acceleration and rate, by using minimum spacecraft resources (i.e. minimum number of wheels which satisfies certain agility requirements). In this paper, shown is the wheel torque distribution algorithm which is effective in terms of both the wheel torques and angular momentums as much as possible. In the proposed algorithm, the wheel torques/angular momentums distributed from the current attitude torque/angular momentum can be optimal for particular direction like the spacecraft X/Y/Z axis. In addition, it is shown by numerical simulation that the proposed algorithm improves the usage of attitude control angular momentum by up

  2. Angular distributions of the polarized photons and electron in the decays of the state of charmonium

    NASA Astrophysics Data System (ADS)

    Mok, Alex W. K.; Wong, Cheuk-Ping; Sit, Wai-Yu

    2014-02-01

    We calculate the combined angular-distribution functions of the polarized photons ( and ) and electron () produced in the cascade process , when the colliding and are unpolarized. Our results are independent of any dynamical models and are expressed in terms of the spherical harmonics whose coefficients are functions of the angular-momentum helicity amplitudes of the individual processes. Once the joint angular distribution of (, ) and that of (, ) with the polarization of either one of the two particles are measured, our results will enable one to determine the relative magnitudes as well as the relative phases of all the angular-momentum helicity amplitudes in the radiative decay processes and.

  3. Distributed angular double-slit interference with pseudo-thermal light

    NASA Astrophysics Data System (ADS)

    Gao, Lu; Hashemi Rafsanjani, Seyed Mohammad; Zhou, Yiyu; Yang, Zhe; Magaña-Loaiza, Omar S.; Mirhosseini, Mohammad; Zhao, Jiapeng; Gao, Boshen; Boyd, Robert W.

    2017-02-01

    We propose and perform an interference experiment involving a distributed angular double-slit and the orbital angular momentum (OAM) correlations of thermal light. In the experiment, two spatially separated angular apertures are placed in two correlated light beams generated by splitting the thermal light beam via a beam splitter. The superposition of the two spatially separated slits constitutes an angular double-slit in two-photon measurements. The angular interference pattern of the distributed double-slit is measured even though each beam interacts with a different part of the object. This scheme allows us to discriminate among different angular amplitude objects using a classical incoherent light source. This procedure has potential applications in remote sensing or optical metrology in the OAM domain.

  4. K-shell photoionization of CO: I. Angular distributions of photoelectrons from fixed-in-space molecules

    NASA Astrophysics Data System (ADS)

    Motoki, S.; Adachi, J.; Hikosaka, Y.; Ito, K.; Sano, M.; Soejima, K.; Yagishita, A.; Raseev, G.; Cherepkov, N. A.

    2000-10-01

    Angular distributions of photoelectrons from both C and O K-shells of the fixed-in-space CO molecule have been measured using the angle-resolved photoelectron-photoion coincidence technique. The measurements have been performed at several photon energies from the ionization thresholds up to about 30 eV above them, where the σ* shape resonances occur. Experimental results are compared with the multiple-scattering calculations of Dill et al (1976 J. Chem. Phys. 65 3158) and with our new calculations in the relaxed-core Hartree-Fock approximation. Our calculations are in a better agreement with the experimental data though numerical discrepancies remain. The experimental angular distributions are fitted by the expansion in Legendre polynomials containing up to ten terms and the extracted parameters are compared with the corresponding theoretical values.

  5. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  6. Modification of the photoelectron angular distribution through laser-induced continuum structure

    SciTech Connect

    Nakajima, Takashi; Buica, Gabriela

    2005-01-01

    We theoretically investigate how the photoelectron angular distribution is altered by the introduction of a dressing laser. The physical mechanism underlying this alteration is the so-called laser-induced continuum structure; namely, a strong dressing laser induces quantum mechanical interference, the degree of which is different for different ionization channels. Therefore the branching ratio into different ionization channels changes as a function of laser detuning, and accordingly the photoelectron angular distribution is altered. After a general argument, we present specific theoretical results for the K atom, which indeed exhibit significant modification of the photoelectron angular distribution.

  7. A new low-complexity angular spread estimator in the presence of line-of-sight with angular distribution selection

    NASA Astrophysics Data System (ADS)

    Bousnina, Inès; Stéphenne, Alex; Affes, Sofiène; Samet, Abdelaziz

    2011-12-01

    This article treats the problem of angular spread (AS) estimation at a base station of a macro-cellular system when a line-of-sight (LOS) is potentially present. The new low-complexity AS estimator first estimates the LOS component with a moment-based K-factor estimator. Then, it uses a look-up table (LUT) approach to estimate the mean angle of arrival (AoA) and AS. Provided that the antenna geometry allows it, the new algorithm can also benefit from a new procedure that selects the angular distribution of the received signal from a set of possible candidates. For this purpose, a nonlinear antenna configuration is required. When the angular distribution is known, any antenna structure could be used a priori; hence, we opt in this case for the simple uniform linear array (ULA). We also compare the new estimator with other low-complexity estimators, first with Spread Root-MUSIC, after we extend its applicability to nonlinear antenna array structures, then, with a recently proposed two-stage algorithm. The new AS estimator is shown, via simulations, to exhibit lower estimation error for the mean AoA and AS estimation.

  8. Angular Scattering Reflectance and Polarization Measurements of Candidate Regolith Materials Measured in the Laboratory

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Shkuratov, Yuriy; Vandervoort, Kurt; Vides, Christina L.

    2016-10-01

    The reflectance and polarization of light reflected from a solar system object indicates the chemical and textural state of the regolith. Remote sensing data are compared to laboratory angular scattering measurements and surface properties are determined.We use a Goniometric Photopolarimeter (GPP) to make angular reflectance and polarization measurements of particulate materials that simulate planetary regoliths. The GPP employs the Helmholtz Reciprocity Principle ( 2, 1) - the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces improving signal to noise. The lab data are physically equivalent to the astronomical data.Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our lab data exhibit polarization phase curves that are very similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials agree with the same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al.(3) report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data indicating Europa's regolith is fine-grained, high porous with void space exceeding 90%.1. Hapke, B. W. (2012). ISBN 978-0-521-88349-82. Minnaert, M. (1941).Asrophys. J., 93, 403-410.3. Nelson, R. M. et al. (1998). Icarus, 131, 223-230.4. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359.5. Shkuratov, Yu. et al. (2002) Icarus 159, 396-416.

  9. Angular Scattering Dynamics of the CH4 + Cl → CH3 + HCl Reaction Using Nearside-Farside, Local Angular Momentum, and Resummation Theories.

    PubMed

    Totenhofer, A J; Connor, J N L; Nyman, Gunnar

    2016-03-03

    The differential cross section (DCS) for the CH4 + Cl → CH3 + HCl reaction is studied at six total energies where all of the species are in their ground states. The scattering (S) matrix elements have been calculated by the rotating line umbrella method for a dual-level ab initio analytic potential energy surface. We make the first application to this reaction of nearside-farside (NF) and local angular momentum (LAM) techniques, including resummation orders (r) of 0, 1, 2, and 3 for the partial-wave series representation of the full scattering amplitude. We find that resummation usually cleans the NF r = 0 DCSs of unphysical oscillations, especially at small angles. This cleaning effect is typically most pronounced when changing from no resummation (r = 0) to r = 1; further resummations from r = 1 to r = 2 and from r = 2 to r = 3 have smaller effects. The NF DCS analyses show that the reaction is N-dominated at sideward and large angles, whereas at small angles there are oscillations caused by NF interference. The NF LAM analysis provides consistent and complementary information, in particular for the total angular momenta that contribute to the reaction at different scattering angles. The NF analyses also provide justification for simpler N-dominant dynamical theories such as the semiclassical optical model, which provides an explanation for the distorted mirror image effect for the moduli of the S matrix elements and the DCSs, as well as the use of a hard-sphere DCS over limited angular ranges.

  10. Determination of the angular and energy dependence of hard constituent scattering from. pi. /sup 0/ pair events at the CERN intersecting storage rings

    SciTech Connect

    Angelis, A.L.S.; Besch, H.J.; Blumenfeld, B.J.

    1982-08-23

    We present data on proton-proton collisions, obtained at the CERN Intersecting Storage Rings, in which two roughly back-to-back ..pi../sup 0/'s of high transverse momentum (p/sub T/) were produced. The angular distribution of the dipion axis relative to the collision axis is found to be independent of both the effective mass m of the dipion system and the centre-of-mass energy ..sqrt..s of the proton-proton collision. The cross-sections dsigma/dm at the two values of ..sqrt..s satisfy a scaling law of the form dsigma/dm = G(x)/m/sup n/, where x = m(..pi../sup 0/,..pi../sup 0/)/..sqrt..s and n = 6.5 +- 0.5. We show from our data that the leading ..pi../sup 0/ carries most of the momentum of the scattered parton. Given this fact, the axis of the dipion system follows closely the direction of the scattered constituents, and we exploit this to determine the angular dependence of the hard-scattering subprocess. We also compare our data with the lowest order QCD predictions using structure functions as determined in deep-inelastic scattering and fragmentation functions from electron-positron annihilation.

  11. Molecular above-threshold-ionization angular distributions with attosecond bichromatic intense XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2012-01-01

    Angular distributions of molecular above-threshold ionization (MATI) in bichromatic attosecond extreme ultraviolet (XUV) linear polarization laser pulses have been theoretically investigated. Multiphoton ionization in a prealigned molecular ion H2+ produces clear MATI spectra which show a forward-backward asymmetry in angular and momentum distributions which is critically sensitive to the carrier envelope phase (CEP) φ, the time delay Δτ between the two laser pulses, and the photoelectron kinetic energies Ee. The features of the asymmetry in MATI angular distributions are described well by multiphoton perturbative ionization models. Phase differences of continuum electron wave functions can be extracted from the CEP φ and time delay Δτ dependent ionization asymmetry ratio created by interfering multiphoton ionization pathways. At large internuclear distances MATI angular distributions exhibit more complex features due to laser-induced electron diffraction where continuum electron wavelengths are less than the internuclear distance.

  12. Cross sections, momentum distributions, and neutron angular distributions for 11Be induced reactions on silicon

    NASA Astrophysics Data System (ADS)

    Negoita, F.; Borcea, C.; Carstoiu, F.; Lewitowicz, M.; Saint-Laurent, M. G.; Anne, R.; Guillemaud-Mueller, D.; Mueller, A. C.; Pougheon, F.; Sorlin, O.; Fomitchev, A.; Lukyanov, S.; Penionzhkevich, Yu.; Skobelev, N.; Dlouhy, Z.

    1999-04-01

    The halo neutron breakup cross section for 11Be on Si has been obtained in a wide energy range by applying an integral method and separately determining the contributions of stripping and dissociation mechanisms. A new breakup mechanism, for which the core energy is strongly dumped, has also been observed. Parallel momentum distributions of 10Be resulting from breakup have been deduced for both stripping and dissociation and angular and energy distributions of the neutrons coincident with different reaction products have been measured. Charge changing cross sections for 10,11Be complemented the measurements. An extended Glauber model has been elaborated in order to provide a unitary interpretation for all the data. It takes into account both the specific structure of 11Be and the reaction mechanism, practically without free parameters. The effects of reaction mechanisms on the widths of observed momentum distributions are particularly important.

  13. Complete angular distribution measurements of two-body deuteron photodisintegration between 0.5 and 3 GeV

    SciTech Connect

    M. Mirazita; F. Ronchetti; P. Rossi; E. De Sanctis; CLAS Collaboration

    2004-07-12

    Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CEBAF Large Acceptance Spectrometer detector and the tagged photon beam at the Thomas Jefferson National Accelerator Facility. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10{sup o}-160{sup o}. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well described by the nonperturbative quark gluon string model.

  14. Complete angular distribution measurements of two-body deuteron photodisintegration between 0.5 and 3 GeV

    NASA Astrophysics Data System (ADS)

    Mirazita, M.; Ronchetti, F.; Rossi, P.; de Sanctis, E.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bertozzi, W.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Vita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deppman, A.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gai, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuhn, J.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Lima, A. C.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McCarthy, J.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stokes, B.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhou, Z.

    2004-07-01

    Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CEBAF Large Acceptance Spectrometer detector and the tagged photon beam at the Thomas Jefferson National Accelerator Facility. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10° 160° . The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well described by the nonperturbative quark gluon string model.

  15. Angular Distribution of Ly(alpha) Resonant Photons Emergent from Optically Thick Medium

    DTIC Science & Technology

    2012-02-26

    solutions with the Eddington approximation, which assume I to be linearly dependent on the angular variable µ, yield similar frequency profiles of the photon...flux as that without the Eddington approximation. However, the solutions of the µ distribution evolution are significantly different from that given...by Eddington approximation. First, the angular distribution of I are found to be substantially de- pendent on the frequency of photons. For photons

  16. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1975-01-01

    A summary of the angular momentum transfer formulation of the differential photoionization cross section is presented and photoionization amplitudes in LS coupling are considered. The application of the theoretical concepts and relations developed is illustrated with the aid of an example involving the calculation of the angular distribution of photoelectrons ionized from atomic sulfur according to a certain reaction. The investigation shows that anisotropic electron-ion interactions in atomic sulfur lead to measurable differences between photoelectron angular distribution asymmetry parameters corresponding to alternative ionic term levels.

  17. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    NASA Astrophysics Data System (ADS)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-02-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.

  18. Nonstandard Higgs couplings from angular distributions in [Formula: see text].

    PubMed

    Buchalla, Gerhard; Catà, Oscar; D'Ambrosio, Giancarlo

    We compute the fully differential rate for the Higgs-boson decay [Formula: see text], with [Formula: see text]. For these processes we assume the most general matrix elements within an effective Lagrangian framework. The electroweak chiral Lagrangian we employ assumes minimal particle content and Standard Model gauge symmetries, but it is otherwise completely general. We discuss how information on new physics in the decay form factors may be obtained that is inaccessible in the dilepton-mass spectrum integrated over angular variables. The form factors are related to the coefficients of the effective Lagrangian, which are used to estimate the potential size of new-physics effects.

  19. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections

    SciTech Connect

    Bootsma, G. J.; Verhaegen, F.; Jaffray, D. A.

    2013-11-15

    Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6 cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup −1} and 7/(2π) rad{sup −1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and π/7 rad (∼25°) can be used to properly capture

  20. Laboratory-Frame Photoelectron Angular Distributions in Anion Photodetachment: Insight into Electronic Structure and Intermolecular Interactions

    NASA Astrophysics Data System (ADS)

    Sanov, Andrei

    2014-04-01

    This article provides an overview of some recent advances in the modeling of photoelectron angular distributions in negative-ion photodetachment. Building on the past developments in threshold photodetachment spectroscopy that first tackled the scaling of the partial cross sections with energy, depending on the angular momentum quantum number ℓ, it examines the corresponding formulation of the central potential model and extends it to the more general case of hybrid molecular orbitals. Several conceptual approaches to understanding photoelectron angular distributions are discussed. In one approach, the angular distributions are examined based on the contributions of the symmetry-allowed s and p partial waves of the photodetached electron. In another related approach, the parent molecular orbitals are described based on their dominant s and p characters, whereas the continuum electron is described in terms of interference of the corresponding ℓ = ±1 photodetachment channels.

  1. Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization.

    PubMed

    Sharples, Thomas R; Luxford, Thomas F M; Townsend, Dave; McKendrick, Kenneth G; Costen, Matthew L

    2015-11-28

    We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.

  2. Investigating the hohlraum radiation properties through the angular distribution of the radiation temperature

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Yang, D.; Song, P.; Zou, S.; Zhao, Y.; Li, S.; Li, Z.; Guo, L.; Wang, F.; Zheng, W.; Gu, P.; Pei, W.; Zhu, S.; Jiang, S.; Ding, Y.

    2016-08-01

    The symmetric radiation drive is essential to the capsule implosion in the indirect drive fusion but is hard to achieve due to the non-uniform radiation distribution inside the hohlraum. In this work, the non-uniform radiation properties of both vacuum and gas-filled hohlraums are studied by investigating the angular distribution of the radiation temperature experimentally and numerically. It is found that the non-uniform radiation distribution inside the hohlraum induces the variation of the radiation temperature between different view angles. The simulations show that both the angular distribution of the radiation temperature and the hohlraum radiation distribution can be affected by the electron heat flux. The measured angular distribution of the radiation temperature is more consistent with the simulations when the electron heat flux limiter f e = 0.1 . Comparisons between the experiments and simulations further indicate that the x-ray emission of the blow-off plasma is overestimated in the simulations when it stagnates around the hohlraum axis. The axial position of the laser spot can also be estimated by the angular distribution of the radiation temperature due to their sensitive dependence. The inferred laser spot moves closer to the laser entrance hole in the gas-filled hohlraum than that in the vacuum hohlraum, consisting with the x-ray images taken from the framing camera. The angular distribution of the radiation temperature provides an effective way to investigate the hohlraum radiation properties and introduces more constraint to the numerical modeling of the hohlraum experiments.

  3. Intensity distribution angular shaping - Practical approach for 3D optical beamforming

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek; Traczyk, Maciej; Zygmunt, Marek; Mierczyk, Zygmunt; Knysak, Piotr; Drozd, Tadeusz

    2014-12-01

    We present approach of optical design which enables to obtain aspheric lens shape optimized for providing the specific light power density distribution in space. Proposed method is based on the evaluation of corresponding angular intensity distribution which can be obtained by the decomposition of the desired spatial distribution into virtual light cones set and collapsing it to the equivalent angular fingerprint. Rigorous formulas have been derived to relate refractive aspheric shape and the corresponding intensity distribution which is used for lens optimization. Algorithms of modeling and optimization were implemented in Matlab© and the calculated designs were successfully tested in Zemax environment.

  4. Ion beam sputtering of Ti: Influence of process parameters on angular and energy distribution of sputtered and backscattered particles

    NASA Astrophysics Data System (ADS)

    Lautenschläger, T.; Feder, R.; Neumann, H.; Rice, C.; Schubert, M.; Bundesmann, C.

    2016-10-01

    In the present study, the influence of ion energy and geometrical parameters onto the angular and energy distribution of secondary particles for sputtering a Ti target with Ar ions is investigated. The angular distribution of the particle flux of the sputtered Ti atoms was determined by the collection method, i.e. by growing Ti films and measuring their thickness. The formal description of the particle flux can be realized by dividing it into an isotropic and an anisotropic part. The experimental data show that increasing the ion energy or decreasing the ion incidence angle lead to an increase of the isotropic part, which is in good agreement with basic sputtering theory. The energy distribution of the secondary ions was measured using an energy-selective mass spectrometer. The energy distribution of the sputtered target ions shows a maximum at an energy between 10 eV and 20 eV followed by a decay proportional to E-n, which is in principle in accordance with Thompson's theory, followed by a high energetic tail. When the sum of incidence angle and emission angle is increased, the high-energetic tail expands to higher energies and an additional peak due to direct sputtering events may occur. In the case of backscattered primary Ar ions, a maximum at an energy between 5 eV and 10 eV appears and, depending on the scattering geometry, an additional broad peak at a higher energy due to direct scattering events is observed. The center energy of the additional structure shifts systematically to higher energies with decreasing scattering angle or increasing ion energy. The experimental results are compared to calculations based on simple elastic two-particle-interaction theory and to simulations done with the Monte Carlo code SDTrimSP. Both confirm in principle the experimental findings.

  5. Angular distribution of field emitted electrons from vertically aligned carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Fratini, M.; Rizzo, A.; Scarinci, F.; Zhang, Y.; Mann, M.; Li, C.; Milne, W. I.; El Gomati, M. M.; Lagomarsino, S.; Stefani, G.

    2012-01-01

    Angular field emission (FE) properties of vertically aligned carbon nanotube arrays have been measured on samples grown by plasma enhanced chemical vapor deposition and characterized by scanning electron microscope and I-V measurements. These properties determine the angular divergence of electron beams, a crucial parameter in order to obtain high brilliance FE based cathodes. From angular distributions of the electron beam transmitted through extraction grids of different mesh size and by using ray-tracing simulations, the maximum emission angle from carbon nanotube tips has been determined to be about ± 30° around the tube main axis.

  6. Annual variation of the angular distribution of the UV beneath public shade structures.

    PubMed

    Turnbull, D J; Parisi, A V

    2004-10-25

    Local governments provide many shade structures at parks and sporting ovals for public use. However, the question remains of how effective are public shade structures at reducing biologically effective UV radiation throughout the year? Broadband measurements of the angular distribution of scattered UV beneath three specific public shade structures was conducted for relatively clear skies and for a solar zenith angle (SZA) ranging from 13 degrees to 76 degrees. The ultraviolet protection factors (UPF) for the shade structures ranged from 18.3 to 1.5 for an increasing SZA. Measurements showed that the horizontal plane received the highest SUV levels from the SZA of 28 degrees to 75 degrees, 42 degrees to 76 degrees, and 50 degrees to 76 degrees for the small, medium and large structures, respectively. This was due to the angle of the sun causing the shade created by the shade structure to be outside the structure. For the small shade structure, the measurements directed to the west were the highest levels in the shade after approximately 28 degrees. For the medium and large shade structures, the measurements directed to the west and south were the highest levels in the shade after roughly 42 degrees and 50 degrees, respectively.

  7. Identifying and Understanding Strong Vibronic Interaction Effects Observed in the Asymmetry of Chiral Molecule Photoelectron Angular Distributions.

    PubMed

    Garcia, Gustavo A; Dossmann, Héloïse; Nahon, Laurent; Daly, Steven; Powis, Ivan

    2017-03-03

    Electron-ion coincidence imaging is used to study chiral asymmetry in the angular distribution of electrons emitted from randomly-oriented enantiomers of two molecules, methyloxirane and trifluoromethyloxirane, upon ionization by circularly polarized VUV synchrotron radiation. Vibrationally-resolved photoelectron circular dichroism (PECD) measurements of the outermost orbital ionization reveal unanticipated large fluctuations in the magnitude of the forward-backward electron scattering asymmetry, including even a complete reversal of direction. Identification and assignment of the vibrational excitations is supported by Franck-Condon simulations of the photoelectron spectra. A previously proposed quasi-diatomic model for PECD is developed and extended to treat polyatomic systems. The parametric dependence of the electronic dipole matrix elements on nuclear geometry is evaluated in the adiabatic approximation. It provokes vibrational level dependent shifts in amplitude and phase, to which the chiral photoelectron angular distributions are especially sensitive. It is shown that single quantum excitation of those vibrational modes, which experience only a relatively small displacement of the ion equilibrium geometry along the normal coordinate and which are then only weakly excited in the Franck-Condon limit, can be accompanied by big shifts in scattering phase; hence the observed big fluctuations in PECD asymmetry for such modes.

  8. Resonance Regge poles and the state-to-state F + H2 reaction: QP decomposition, parametrized S matrix, and semiclassical complex angular momentum analysis of the angular scattering.

    PubMed

    Connor, J N L

    2013-03-28

    Three new contributions to the complex angular momentum (CAM) theory of differential cross sections (DCSs) for chemical reactions are reported. They exploit recent advances in the Padé reconstruction of a scattering (S) matrix in a region surrounding the ReJ axis, where J is the total angular momentum quantum variable, starting from the discrete values, J = 0, 1, 2, .... In particular, use is made of Padé continuations obtained by Sokolovski, Castillo, and Tully [Chem. Phys. Lett. 313, 225 (1999)] for the S matrix of the benchmark F + H2(v(i) = 0, j(i) = 0, m(i) = 0) → FH(v(f) = 3, j(f) = 3, m(f) = 0) + H reaction. Here v(i), j(i), m(i) and v(f), j(f), m(f) are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. The three contributions are: (1) A new exact decomposition of the partial wave (PW) S matrix is introduced, which is called the QP decomposition. The P part contains information on the Regge poles. The Q part is then constructed exactly by subtracting a rapidly oscillating phase and the PW P matrix from the input PW S matrix. After a simple modification, it is found that the corresponding scattering subamplitudes provide insight into the angular-scattering dynamics using simple partial wave series (PWS) computations. It is shown that the leading n = 0 Regge pole contributes to the small-angle scattering in the centre-of-mass frame. (2) The Q matrix part of the QP decomposition has simpler properties than the input S matrix. This fact is exploited to deduce a parametrized (analytic) formula for the PW S matrix in which all terms have a direct physical interpretation. This is a long sort-after goal in reaction dynamics, and in particular for the state-to-state F + H2 reaction. (3) The first definitive test is reported for the accuracy of a uniform semiclassical (asymptotic) CAM theory for a DCS based on the Watson transformation. The parametrized S matrix obtained in contribution (2) is used in both the PW and

  9. Resonance Regge poles and the state-to-state F + H2 reaction: QP decomposition, parametrized S matrix, and semiclassical complex angular momentum analysis of the angular scattering

    NASA Astrophysics Data System (ADS)

    Connor, J. N. L.

    2013-03-01

    Three new contributions to the complex angular momentum (CAM) theory of differential cross sections (DCSs) for chemical reactions are reported. They exploit recent advances in the Padé reconstruction of a scattering (S) matrix in a region surrounding the {Renolimits} J axis, where J is the total angular momentum quantum variable, starting from the discrete values, J = 0, 1, 2, …. In particular, use is made of Padé continuations obtained by Sokolovski, Castillo, and Tully [Chem. Phys. Lett. 313, 225 (1999), 10.1016/S0009-2614(99)01016-7] for the S matrix of the benchmark F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H reaction. Here vi, ji, mi and vf, jf, mf are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. The three contributions are: (1) A new exact decomposition of the partial wave (PW) S matrix is introduced, which is called the QP decomposition. The P part contains information on the Regge poles. The Q part is then constructed exactly by subtracting a rapidly oscillating phase and the PW P matrix from the input PW S matrix. After a simple modification, it is found that the corresponding scattering subamplitudes provide insight into the angular-scattering dynamics using simple partial wave series (PWS) computations. It is shown that the leading n = 0 Regge pole contributes to the small-angle scattering in the centre-of-mass frame. (2) The Q matrix part of the QP decomposition has simpler properties than the input S matrix. This fact is exploited to deduce a parametrized (analytic) formula for the PW S matrix in which all terms have a direct physical interpretation. This is a long sort-after goal in reaction dynamics, and in particular for the state-to-state F + H2 reaction. (3) The first definitive test is reported for the accuracy of a uniform semiclassical (asymptotic) CAM theory for a DCS based on the Watson transformation. The parametrized S matrix obtained in contribution (2) is used in both

  10. Angular distributions of molecular Auger electrons: The case of C 1s Auger emission in CO

    SciTech Connect

    Semenov, S. K.; Kuznetsov, V. V.; Cherepkov, N. A.; Bolognesi, P.; Feyer, V.; Lahmam-Bennani, A.; Casagrande, M. E. Staicu; Avaldi, L.

    2007-03-15

    The results of a study of the Auger-electron-photoelectron angular correlations in the case of the C 1s ionization of the CO molecule are presented and compared with theoretical calculations in the Hartree-Fock approximation based on the two-step model. The measurements have been performed at two photon energies, 305 and 318 eV, respectively, and at three angles of photoelectron emission relative to the light polarization vector: namely, 0 degree sign , 30 degree sign , and 60 degree sign . A general agreement is found between theory and experiment for the coincidence angular distributions and the relative magnitudes of the Auger-electron-photoelectron angular correlations. However, both experiment and theory show that the Auger-electron-photoelectron angular correlations are not sufficiently sensitive to the details of the Auger-electron wave function to allow a 'complete' Auger experiment in molecules. On the other hand, our calculations demonstrate that the Auger-electron angular distribution measured in the molecular frame is very sensitive to the individual contributions of different partial waves of the Auger electron. Therefore we conclude that the complete experiment for the Auger decay in molecules can be realized only measuring the Auger-electron angular distributions in the molecular frame.

  11. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    SciTech Connect

    Chen, Hong; Duan, Lian; Lan, Hui; Wang, Xinbing Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  12. Calculation of reflectance distribution using angular spectrum convolution in mesh-based computer generated hologram.

    PubMed

    Yeom, Han-Ju; Park, Jae-Hyeung

    2016-08-22

    We propose a method to obtain a computer-generated hologram that renders reflectance distributions of individual mesh surfaces of three-dimensional objects. Unlike previous methods which find phase distribution inside each mesh, the proposed method performs convolution of angular spectrum of the mesh to obtain desired reflectance distribution. Manipulation in the angular spectrum domain enables its application to fully-analytic mesh based computer generated hologram, removing the necessity for resampling of the spatial frequency grid. It is also computationally inexpensive as the convolution can be performed efficiently using Fourier transform. In this paper, we present principle, error analysis, simulation, and experimental verification results of the proposed method.

  13. Intensity and polarization of light scattered by size distributions of randomly oriented nonspherical particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, M. I.; Travis, L. D.

    1993-01-01

    Calculations of light scattering by small particles are important in many diverse fields of science and engineering. In many cases of practical interest, scattering particles are nonspherical and are distributed over sizes and orientations. However, accurate light scattering computations for ensembles of nonspherical particles are difficult and time-consuming, and the literature in which such calculations are reported is rather scarce. In this paper, the T-matrix approach, as extended recently to randomly oriented particles, is used to calculate rigorously light scattering by size distributions of randomly oriented axially symmetric particles. To model the variation of particle sizes in real ensembles, we use a power law distribution typical of some terrestrial aerosols. Contour plots of intensity and degree of linear polarization for polydisperse prolate and oblate spheroids of different aspect ratios and effective equivalent-sphere size parameters from 0 to 10 are calculated and compared with calculations for equivalent spheres. The angular scattering behavior of nonspherical polydispersions is found to be greatly different from that of spheres, while the scattering properties of oblate and prolate spheroids of the same aspect ratio are similar. With increasing particle size, both intensity and polarization become more shape-dependent. In general, nonspherical particles are stronger side scatterers and weaker backscatterers than equivalent spheres. With increasing aspect ratio of nonspherical particles polarization tends to be predominantly positive. Possible effects of particle nonsphericity on optical remote sensing of atmospheric aerosols are discussed.

  14. Detection of lung nodules in chest digital tomosynthesis (CDT): effects of the different angular dose distribution

    NASA Astrophysics Data System (ADS)

    Jo, Byungdu; Lee, Youngjin; Kim, Dohyeon; Lee, Dong-Hoon; Jin, Seong-Soo; Mu, Shou-Chih; Kim, Hye-Mi; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) is a recently introduced new imaging modality for better detection of high- and smallcontrast lung nodules compared to conventional X-ray radiography. In CDT system, several projection views need to be acquired with limited angular range. The acquisition of insufficient number of projection data can degrade the reconstructed image quality. This image degradation easily affected by acquisition parameters such as angular dose distribution, number of projection views and reconstruction algorithm. To investigate the imaging characteristics, we evaluated the impact of the angular dose distribution on image quality by simulation studies with Geant4 Application for Tomographic Emission (GATE). We designed the different angular dose distribution conditions. The results showed that the contrast-to-noise ratio (CNR) improves when exposed the higher dose at central projection views than peripheral views. While it was found that increasing angular dose distribution at central views improved lung nodule detectability, although both peripheral regions slightly suffer from image noise due to low dose distribution. The improvements of CNR by using proposed image acquisition technique suggest possible directions for further improvement of CDT system for lung nodule detection with high quality imaging capabilities.

  15. Angular distribution of atoms ejected by laser ablation of different metals

    SciTech Connect

    Konomi, I.; Motohiro, T.; Asaoka, T.

    2009-07-01

    Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm{sup 2}) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos{sup n} theta distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.

  16. Projectile-breakup-induced fission-fragment angular distributions in the 6Li+232Th reaction

    NASA Astrophysics Data System (ADS)

    Pal, A.; Santra, S.; Chattopadhyay, D.; Kundu, A.; Ramachandran, K.; Tripathi, R.; Roy, B. J.; Nag, T. N.; Sawant, Y.; Sarkar, D.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2017-08-01

    Background: Experimental anisotropy in fission-fragment (FF) angular distribution in reactions involving weakly bound stable projectiles with actinide targets are enhanced compared to statistical saddle-point model (SSPM) predictions. Contributions from breakup- or transfer-induced fission to total fission are cited as possible reasons for such enhancement. Purpose: To identify the breakup- or transfer-induced fission channels in 6Li+232Th reaction and to investigate their effects on FF angular anisotropy. Methods: The FF angular distributions have been measured exclusively at three beam energies (28, 32, and 36 MeV) around the Coulomb barrier in coincidence with projectile breakup fragments like α , d , and p using Si strip detectors. The angular anisotropy obtained for different exclusive breakup- or transfer-induced fission channels are compared with that for total fission. SSPM and pre-equilibrium fission models have been employed to obtain theoretical FF angular anisotropy. Results: Angular anisotropy of the fission fragments produced by different transfer- or breakup-induced fission reactions have been obtained separately in the rest frame of respective recoiling nuclei. Some of these anisotropies were found to be stronger than those of the inclusive fission. Overall angular distributions of transfer or breakup fission, integrated over all possible recoil angles with weight factor proportional to differential cross section of the complementary breakup fragment emitted in coincidence in all possible directions, were obtained. It was observed that the overall FF angular anisotropy for each of these fission channels is less than or equal to the anisotropy of total fission at all the measured energies. Assuming isotropic out-of-plane correlations between the fission fragments and light-charged particles, the overall breakup- or transfer-induced fission fragment angular distributions do not explain the observed enhancement in FF anisotropy of total fission. Pre

  17. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The

  18. SPECIAL ISSUE DEVOTED TO MULTIPLE RADIATION SCATTERING IN RANDOM MEDIA: Angular structure of radiation scattered by a dispersive layer with a high concentration of optically soft particles

    NASA Astrophysics Data System (ADS)

    Berdnik, V. V.; Loiko, V. A.

    2006-11-01

    A method describing the propagation of radiation in concentrated dispersive media with optically soft particles is developed. The results of analysis of the angular structure of radiation scattered in the forward and backward semispheres depending on the direction of layer illumination, its optical thickness, concentration and the size of optically soft particles, are presented. The transport theory is used to describe the propagation of radiation. The equation of radiation transport is solved by the doubling method with the help of spline approximation averaged over the azimuth of scattering indicatrix in a unit volume. The parameters of the unit volume were determined by using the Mie theory and the interference approximation taking into account the collective scattering effects at a high concentration of particles.

  19. Angular distribution of emitted electrons in sodium clusters: A semiclassical approach

    SciTech Connect

    Giglio, E.; Reinhard, P.-G.; Suraud, E.

    2003-04-01

    We present a theoretical study of the angular distribution of emitted electrons of a sodium cluster, irradiated by short and intense laser pulses. While the polarization of the excitation field tends to focus a directional emission, the dynamical correlations tend to thermalize the electrons, giving rise to a more isotropic ionization. The competition between these processes is investigated using a semiclassical model Vlasov-Uehling-Uhlenbeck, where the dynamical correlations are taken in account by the electron-electron correlations in the Markovian approximation, the widely known Uehling-Uhlenbeck collision term. The results are compared to a semiclassical pure mean-field propagation (Vlasov equation) to work out the influence of dynamical correlations on the angular distribution of the electron emission. The trends with laser intensity and frequency are explored. The time evolution of the angular distributions shows that direct emission processes are stronger in the early phase of the processs, while isotropic thermal emission dominates later.

  20. Effects of laser polarization on photoelectron angular distribution through laser-induced continuum structure

    SciTech Connect

    Buica, Gabriela; Nakajima, Takashi

    2005-11-15

    We theoretically investigate the effects of laser polarization on the photoelectron angular distribution through laser-induced continuum structure. We focus on a polarization geometry where the probe and dressing lasers are both linearly polarized and change the relative polarization angle between them. We find that the total ionization yield and the branching ratio into different ionization channels change as a function of the relative polarization angle, and accordingly the photoelectron angular distribution is altered. We present specific results for the 4p{sub 1/2}-6p{sub 1/2} and 4p{sub 3/2}-6p{sub 3/2} systems of the K atom and show that the change of the polarization angle leads to a significant modification of the photoelectron angular distribution.

  1. Model-independent constraints on the shape parameters of dilepton angular distributions

    NASA Astrophysics Data System (ADS)

    Faccioli, Pietro; Lourenço, Carlos; Seixas, João; Wöhri, Hermine K.

    2011-03-01

    The coefficients determining the dilepton decay angular distribution of vector particles obey certain positivity constraints and a rotation-invariant identity. These relations are a direct consequence of the covariance properties of angular momentum eigenstates and are independent of the production mechanism. The Lam-Tung relation can be derived as a particular case, simply recognizing that the Drell-Yan dilepton is always produced transversely polarized with respect to one or more quantization axes. The dilepton angular distribution continues to be characterized by a frame-independent identity also when the Lam-Tung relation is violated. Moreover, the violation can be easily characterized by measuring a one-dimensional distribution depending on one shape coefficient.

  2. Laboratory measurements of the angular light-scattering properties of internally mixed organic and sea-salt aerosol particles using polar nephelometry

    NASA Astrophysics Data System (ADS)

    Curtis, D. B.; Tinilau, S. S.

    2013-12-01

    Aerosol particles play an important, but relatively poorly understood, role in Earth's climate. Sea-salt aerosol is one of the most prevalent naturally occurring aerosols and is therefore expected to have a large effect on climate by scattering incoming solar radiation back to space. While sea-salt aerosol has been thought to be mainly composed of sodium chloride and other salts, measurements have shown the presence of biogenic organic compounds, such as glucose, in primary sea-salt aerosol particles. In addition, the sea-salt aerosol particles can become coated by secondary organics from anthropogenic activities. In order to better understand the potential climate effects of internally mixed organic and sea-salt particles, the angular scattering properties of laboratory-generated aerosols were measured at a wavelength of 532 nm using polar nephelometry. The polar nephelometer collected scattered light with an elliptical mirror and focused it across a linear CCD detector. The instrument was therefore capable of measuring the scattering intensity as a function of scattering angle (the phase function). Two incident polarizations were studied, parallel and perpendicular to the scattering plane, which were then used to calculate the degree of linear polarization. The scattering measurements along with size distribution measurements were used to retrieve the refractive index of the particles by comparison with Mie theory. Particles were generated from solutions of sodium chloride with varying concentrations of organics such as glucose and oxalic acid. In addition, particles generated from authentic sea-water were studied for comparison. Preliminary results indicate that the effective refractive indices of the mixed particles differ significantly from pure sodium chloride and do not follow simple mixing rules used to calculate refractive index from individual components.

  3. Laboratory measurements of the angular light-scattering properties of internally mixed organic and sea-salt aerosol particles using polar nephelometry

    NASA Astrophysics Data System (ADS)

    Cai, C.; Kelly, J. T.; Kaduwela, A.; Avise, J. C.; Jackson, B. S.; Yin, D.; Gurer, K.; Baker, K.; Oetjen, H.; Baidar, S.; Volkamer, R.; Ryerson, T. B.; Pollack, I. B.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; Warneke, C.; De Gouw, J. A.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Markovic, M. Z.; VandenBoer, T. C.; Murphy, J. G.; Weber, R.; Guha, A.; Gentner, D. R.; Goldstein, A. H.; McCauley, E.; Parrish, D. D.

    2011-12-01

    Aerosol particles play an important, but relatively poorly understood, role in Earth's climate. Sea-salt aerosol is one of the most prevalent naturally occurring aerosols and is therefore expected to have a large effect on climate by scattering incoming solar radiation back to space. While sea-salt aerosol has been thought to be mainly composed of sodium chloride and other salts, measurements have shown the presence of biogenic organic compounds, such as glucose, in primary sea-salt aerosol particles. In addition, the sea-salt aerosol particles can become coated by secondary organics from anthropogenic activities. In order to better understand the potential climate effects of internally mixed organic and sea-salt particles, the angular scattering properties of laboratory-generated aerosols were measured at a wavelength of 532 nm using polar nephelometry. The polar nephelometer collected scattered light with an elliptical mirror and focused it across a linear CCD detector. The instrument was therefore capable of measuring the scattering intensity as a function of scattering angle (the phase function). Two incident polarizations were studied, parallel and perpendicular to the scattering plane, which were then used to calculate the degree of linear polarization. The scattering measurements along with size distribution measurements were used to retrieve the refractive index of the particles by comparison with Mie theory. Particles were generated from solutions of sodium chloride with varying concentrations of organics such as glucose and oxalic acid. In addition, particles generated from authentic sea-water were studied for comparison. Preliminary results indicate that the effective refractive indices of the mixed particles differ significantly from pure sodium chloride and do not follow simple mixing rules used to calculate refractive index from individual components.

  4. Effect of the corrected ionization potential and spatial distribution on the angular and energy distribution in tunnel ionization

    SciTech Connect

    Petrović, V. M.; Miladinović, T. B.

    2016-05-15

    Within the framework of the Ammosov–Delone–Krainov theory, we consider the angular and energy distribution of outgoing electrons due to ionization by a circularly polarized electromagnetic field. A correction of the ground ionization potential by the ponderomotive and Stark shift is incorporated in both distributions. Spatial dependence is analyzed.

  5. Electron Scattering and Related Phenomena in Scattering with Angular Limitation Projection Electron Lithography (SCALPEL\\footnote{SCALPEL is a trademark of Lucent Technologies.})

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, Masis M.

    2000-12-01

    Scattering with angular limitation projection electron lithography (SCALPEL) is a unique charged-particle projection imaging technique that employs a scattering mask with the pattern segmented between supporting struts. An aperture installed in the back-focal plane of the projection lens filters out the electrons scattered at large angles in the patterned area of the mask producing a high contrast aerial image. Various scattering phenomena involved with the energetic (100 keV) electrons carrying the mask pattern information to the wafer through the projection optics are responsible for the aerial image formation in SCALPEL@. These phenomena can be grouped into three major categories: (i) electron elastic scattering in the mask responsible for the aerial image intensity and contrast; (ii) electron inelastic scattering in the mask-membrane that might have negative effects, such as membrane charging, beam chromatic blur generation, mask heating, etc.; (iii) Coulomb interactions of electrons in the beam (space charge effect) generating a beam blur that links the system throughput and resolution. Analytical models developed to describe and quantitatively evaluate these phenomena are briefly reviewed. The implication of these models to the design and optimization of the electron projection lithography systems are discussed.

  6. Angular distributions of the quenched energy flow from dijets with different radius parameters in CMS

    NASA Astrophysics Data System (ADS)

    McGinn, Christopher F.

    2016-12-01

    The flow of the quenched energy in imbalanced dijet events has been previously studied by transverse vector sum of charged particles with the CMS detector, namely the missing pT measurement. The results have led to new theoretical insights to order to explain the wide angle radiation. The missing pT technique has been improved so that it allows the study of angular distribution of the energy flow with respect to the dijet axis. The measurements are performed using different distance parameters R with the anti-kT clustering algorithm, which provide information about how the angular distribution of the quenched energy depends on the jet width.

  7. Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  8. Angular distribution of Auger electrons due to 3d-shell ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  9. Photon angular distribution and nuclear-state alignment in nuclear excitation by electron capture

    NASA Astrophysics Data System (ADS)

    Pálffy, Adriana; Harman, Zoltán; Surzhykov, Andrey; Jentschura, Ulrich D.

    2007-01-01

    The alignment of nuclear states resonantly formed in nuclear excitation by electron capture (NEEC) is studied by means of a density matrix technique. The vibrational excitations of the nucleus are described by a collective model and the electrons are treated in a relativistic framework. Formulas for the angular distribution of photons emitted in the nuclear relaxation are derived. We present numerical results for alignment parameters and photon angular distributions for a number of heavy elements in the case of E2 nuclear transitions. Our results are intended to help future experimental attempts to discern NEEC from radiative recombination, which is the dominant competing process.

  10. Angular distribution in the dissociation of H2O by swift heavy ions

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Stolterfoht, N.; Öhrn, Y.; Deumens, E.; Sabin, J. R.

    2006-05-01

    In this work, we present calculations of the angular distribution of the products of the dissociation of water molecules when bombarded with He^q+ for projectile energies between 1 and 5 keV. Here q=0,1,2 is the charge of the incoming ion. Our theoretical results are based on the Electron-Nuclear Dynamics formalism (END). We present results for the dissociation cross section, charge transfer cross section, the stopping cross section (nuclear and electronic) for the projectiles, and the angular distribution of He^q+, H, OH, and O. E. Deumens, A. Diz, R. Longo, and Y. "Ohrn, Rev. Mod. Phys. 66, 917 (1994).

  11. Measurement of sputtered beryllium yield and angular distribution during nanostructure growth in a helium plasma

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.; Alegre, D.; Baldwin, M. J.; Chrobak, C. P.; Doerner, R. P.; Miyamoto, M.; Nishijima, D.

    2017-09-01

    The angular distribution and sputtering yield of beryllium exposed to helium plasma are estimated from analysis of line-integrated 2D imaging of Be-I line emission in a steady-state linear plasma device. As the surface nanostructure forms during plasma exposure on a ˜100 s timescale (corresponding to a fluence of order 1020/cm2) from nearly mono-energetic ion bombardment, a narrowing of the beryllium sputtering angle and a significant (˜5×) drop in sputtering yield are observed. These trends are found to be qualitatively consistent with modeling taking into account the effect of the surface morphology on sputtering yield and angular distribution.

  12. Measurement of anisotropic angular distributions of photon energy spectra for I-125 brachytherapy sources.

    PubMed

    Unno, Yasuhiro; Yunoki, Akira; Kurosawa, Tadahiro; Yamada, Takahiro; Sato, Yasushi; Hino, Yoshio

    2012-09-01

    The angular distribution of photon energy spectra emitted from an I-125 brachytherapy source was measured using a specially designed jig in the range of ±70° in the plane of the long axis of the source. It is important to investigate the angular dependence of photon emissions from these sources for the calibration of the air kerma rate. The results show that the influence of the distributions between 0° and ±8° is small enough to allow a calibration using current primary instruments which have a large entrance window.

  13. Effects of transverse electron beam size on transition radiation angular distribution

    NASA Astrophysics Data System (ADS)

    Chiadroni, E.; Castellano, M.; Cianchi, A.; Honkavaara, K.; Kube, G.

    2012-05-01

    In this paper we consider the effect of the transverse electron beam size on the Optical Transition Radiation (OTR) angular distribution in case of both incoherent and coherent emission. Our results confute the theoretical argumentations presented first in Optics Communications 211, 109 (2002), which predicts a dependence of the incoherent OTR angular distribution on the beam size and emission wavelength. We present here theoretical and experimental data not only to validate the well-established Ginzburg-Frank theory, but also to show the impact of the transverse beam size in case of coherent emission.

  14. A Template Measurement of the Top Quark Angular Distribution Using Boosted Lepton + Jets Events

    NASA Astrophysics Data System (ADS)

    Eminizer, Nick; CMS Collaboration

    2017-01-01

    We present a template-based technique for measuring the angular distribution of top quark pairs decaying semileptonically using data collected by the CMS experiment at the LHC. The analysis is optimized for high-momentum ``boosted'' decays wherein the hadronically decaying top quark's jets become either partially or fully merged, and the final state lepton is not necessarily isolated from nearby jets. The technique can be used to examine multiple physics processes affecting the angular distribution of top pairs, including the parton-level top quark forward-backward asymmetry AFB and anomalous chromoelectric/chromomagnetic moments. CMS is the Compact Muon Solenoid experiment at the Large Hadron Collider.

  15. Angularly-resolved elastic scatter from single particles collected over a large solid angle and with high resolution

    NASA Astrophysics Data System (ADS)

    Aptowicz, Kevin B.; Chang, Richard K.

    2005-01-01

    Elastic light scattering from a single non-spherical particle of various morphologies has been measured simultaneously with a large angular range (90° < θ < 165° and 0° < phi < 360°) and with high angular resolution (1024 pixels in θ and 512 pixels in phi). Because the single-shot laser pulse is short (pulse duration of 70 ns), the tumbling and flowing particle can be treated as frozen in space. The large angle two-dimensional angular optical scattering (hereafter referred to as LA TAOS) intensity pattern, I(θ,phi), has been measured for a variety of particle morphology, such as the following: (1) single polystyrene latex (PSL) sphere; (2) cluster of PSL spheres; (3) single Bacillus subtilis (BG) spore; (4) cluster of BG spores; (5) dried aggregates of bio-aerosols as well as background clutter aerosols. All these measurements were made using the second harmonic of a Nd:YAG laser (0.532 μm). Islands structures in the LA TAOS patterns seem to be the prominent feature. Efforts are being made to extract metrics from these islands and compare them to theoretical results based on the T-matrix method.

  16. Discontinuity induced angular distribution of photon plasmon coupling

    SciTech Connect

    Brissinger, D; Lereu, Aude; Salomon, L; Charvolin, T; Cluzel, B; Dumas, C; Passian, Ali; de Fornel, F

    2011-01-01

    Metal-dielectric transitions are important structures that can display a host of optical characteristics including excitation of plasmons. Metal-dielectric discontinuities can furthermore support plasmon excitation without a severe condition on the incident angle of the exciting photons. Using a semi-infinite thin gold film, we study surface plasmon (SP) excitation and the associated electromagnetic near-field distribution by recording the resulting plasmon interference patterns. In particular, we measure interference periods involving SPs at the scanable metal/air interface and the buried metal/glass one. Supported by optical near-field simulations and experiments, we demonstrate that the metal/glass surface plasmon is observable over a wide range of incident angles encompassing values above and below the critical incident angle. As a result, it is shown that scanning near-field microscopy can provide quantitative evaluation of the real part of the buried surface plasmon wavevector.

  17. Scattering matrix theory for stochastic scalar fields.

    PubMed

    Korotkova, Olga; Wolf, Emil

    2007-05-01

    We consider scattering of stochastic scalar fields on deterministic as well as on random media, occupying a finite domain. The scattering is characterized by a generalized scattering matrix which transforms the angular correlation function of the incident field into the angular correlation function of the scattered field. Within the accuracy of the first Born approximation this matrix can be expressed in a simple manner in terms of the scattering potential of the scatterer. Apart from determining the angular distribution of the spectral intensity of the scattered field, the scattering matrix makes it possible also to determine the changes in the state of coherence of the field produced on scattering.

  18. Distributions of off-diagonal scattering matrix elements: Exact results

    SciTech Connect

    Nock, A. Kumar, S. Sommers, H.-J. Guhr, T.

    2014-03-15

    Scattering is a ubiquitous phenomenon which is observed in a variety of physical systems which span a wide range of length scales. The scattering matrix is the key quantity which provides a complete description of the scattering process. The universal features of scattering in chaotic systems is most generally modeled by the Heidelberg approach which introduces stochasticity to the scattering matrix at the level of the Hamiltonian describing the scattering center. The statistics of the scattering matrix is obtained by averaging over the ensemble of random Hamiltonians of appropriate symmetry. We derive exact results for the distributions of the real and imaginary parts of the off-diagonal scattering matrix elements applicable to orthogonally-invariant and unitarily-invariant Hamiltonians, thereby solving a long standing problem. -- Highlights: •Scattering problem in complex or chaotic systems. •Heidelberg approach to model the chaotic nature of the scattering center. •A novel route to the nonlinear sigma model based on the characteristic function. •Exact results for the distributions of off-diagonal scattering-matrix elements. •Universal aspects of the scattering-matrix fluctuations.

  19. Angular Momentum Distribution of Hot Gas and Implications for Disk Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Chen, D. N.; Jing, Y. P.; Yoshikaw, Kohji

    2003-11-01

    We study the angular momentum profiles both for dark matter and for gas within virialized halos using a statistical sample of halos drawn from cosmological hydrodynamics simulations. Three simulations have been analyzed: one is the nonradiative simulation and the other two have radiative cooling. We find that the gas component, on average, has a larger spin and contains a smaller fraction of mass with negative angular momentum than its dark matter counterpart in the nonradiative model. As to the cooling models, the gas component shares approximately the same spin parameter as its dark matter counterpart, but the hot gas has a higher spin and is more aligned in angular momentum than dark matter, while the opposite holds for the cold gas. After the mass of negative angular momentum is excluded, the angular momentum profile of the hot gas component approximately follows the universal function originally proposed by Bullock et al. for dark matter, though the shape parameter μ is much larger for hot gas and is comfortably in the range required by observations of disk galaxies. Since disk formation is related to the distribution of hot gas that will cool, our study may explain the fact that the disk component of observed galaxies contains a smaller fraction of low angular momentum material than dark matter in halos.

  20. Angular distributions of H-induced HD and D2 desorptions from the Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Inanaga, S.; Kiyonaga, T.; Rahman, F.; Khanom, F.; Namiki, A.; Lee, J.

    2006-02-01

    We measured angular distributions of HD and D2 molecules desorbed via the reactions H +D/Si(100)→HD [abstraction (ABS)] and H +D/Si(100)→D2 [adsorption-induced-desorption (AID)], respectively. It was found that the angular distribution of HD molecules desorbed along ABS is broader than that of D2 molecules desorbed along AID, i.e., the former could be fit with cos2.0±0.2θ, while the latter with cos5.0±0.5θ. This difference of the angular distributions between the two reaction paths suggests that their dynamic mechanisms are different. The observed cos2θ distribution for the ABS reaction was reproduced by the classical trajectory calculations over the London-Eyring-Polanyi-Sato potential-energy surfaces. The simulation suggests that the HD desorption along the ABS path takes place along the direction of Si-D bonds, but the apparent angular distribution is comprised of multiple components reflecting the different orientations of D-occupied Si dimers in the (2×1) and (1×2) double domain structures.

  1. Angular Distributions of Drell-Yan Dimuons at Fermilab E-906/SeaQuest

    NASA Astrophysics Data System (ADS)

    Ramson, Bryan; Fermilab E-906/SeaQuest Collaboration

    2015-10-01

    Transverse momentum dependent (TMD) parton distribution functions (PDF), fragmentation functions, and their necessary theoretical framework provide a rich foundation from which to build a more descriptive, quantitative understanding of QCD and hadron structure. Fortuitously, TMD sensitive analyses of leptonic angular distributions have been a fixture in Drell-Yan experiments since the π+W CERN NA-10 of the 1980's, with particular focus on the violation of the Lam-Tung relation through a non-zero cos (2 ϕ) modulation in the angular distributions of the final-state leptons. The cos (2 ϕ) modulation is sensitive to the correlation between the motion and spin of transversely polarized (anti)quarks within their encompassing unpolarized hadron, described by the Boer-Mulders TMD PDF. In the mid-1990's, Fermilab E-866/NuSea investigated angular distributions of p+p and p+d Drell-Yan and found that the relative strength of the cos (2 ϕ) modulation, as compared to pion-induced Drell-Yan, is reduced. Fermilab E-906/SeaQuest provides an ideal laboratory in which to measure the cos (2 ϕ) modulation at a higher target xBj than possible with E-866. Recent progress in the analysis of the angular distributions from SeaQuest Drell-Yan dimuons will be shown.

  2. Evolution of the angular distribution of laser-generated fast electrons due to resistive self-collimation

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Schmitz, H.

    2015-10-01

    The evolution of the angular distribution of laser-generated fast electrons propagating in dense plasmas is studied by 3D numerical simulations. As resistively generated magnetic fields can strongly influence and even pinch the fast electron beam, the question of the effect on the angular distribution is of considerable interest. It was conjectured that in the limit of strong collimation, there will only be minimal changes to the angular distribution, whereas the largest reduction in the angular distribution will occur where there is only modest pinching of the fast electron beam and the beam is able to expand considerably. The results of the numerical simulations indicate this conjecture.

  3. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-07-01

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.

  4. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    SciTech Connect

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-07-28

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.

  5. Angular distribution of undulator power for an arbitrary deflection parameter K

    SciTech Connect

    Kim, K.J.

    1985-08-01

    A calculation of the angular distribution of power generated from an undulator, integrated over all frequencies, is presented. The result, valid for any arbitrary value of the deflection parameter K, reduces to the known expressions in the cases K ..-->.. infinity and K ..-->.. 0.

  6. Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Greenberg, P. S.

    1994-01-01

    Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation

  7. The dijet mass spectrum and angular distributions with the D0 detector

    SciTech Connect

    Abachi, S.

    1996-07-01

    We present preliminary results from an analysis of dijet data collected during the 1994-95 Tevatron Collider run with an integrated luminosity of 91 pb{sup -1}. Measurements of dijet mass spectra and dijet angular distributions in {anti p}p collisions at {radical}s- = 1.8 TeV are compared with next-to-leading order QCD theory.

  8. On the angular and energy distribution of solar neutrons generated in P-P reactions

    NASA Technical Reports Server (NTRS)

    Efimov, Y. E.; Kocharov, G. E.

    1985-01-01

    The problem of high energy neutron generation in P-P reactions in the solar atmosphere is reconsidered. It is shown that the angular distribution of emitted neutrons is anisotropic and the energy spectrum of neutrons depends on the angle of neutron emission.

  9. Frequency mismatch in stimulated scattering processes: An important factor for the transverse distribution of scattered light

    SciTech Connect

    Gong, Tao; Zheng, Jian; Li, Zhichao; Yang, Dong; Ding, Yongkun; Hu, Guangyue; Zhao, Bin

    2016-06-15

    A 2D cylindrically symmetric model with inclusion of both diffraction and self-focus effects is developed to deal with the stimulated scattering processes of a single hotspot. The calculated results show that the transverse distribution of the scattered light is sensitive to the longitudinal profiles of the plasma parameters. The analysis of the evolution of the scattered light indicates that it is the frequency mismatch of coupling due to the inhomogeneity of plasmas that determines the transverse distribution of the scattered light.

  10. Unconventional application of the two-flux approximation for the calculation of the Ambartsumyan-Chandrasekhar function and the angular spectrum of the backward-scattered radiation for a semi-infinite isotropically scattering medium

    NASA Astrophysics Data System (ADS)

    Remizovich, V. S.

    2010-06-01

    It is commonly accepted that the Schwarzschild-Schuster two-flux approximation (1905, 1914) can be employed only for the calculation of the energy characteristics of the radiation field (energy density and energy flux density) and cannot be used to characterize the angular distribution of radiation field. However, such an inference is not valid. In several cases, one can calculate the radiation intensity inside matter and the reflected radiation with the aid of this simplest approximation in the transport theory. In this work, we use the results of the simplest one-parameter variant of the two-flux approximation to calculate the angular distribution (reflection function) of the radiation reflected by a semi-infinite isotropically scattering dissipative medium when a relatively broad beam is incident on the medium at an arbitrary angle relative to the surface. We do not employ the invariance principle and demonstrate that the reflection function exhibits the multiplicative property. It can be represented as a product of three functions: the reflection function corresponding to the single scattering and two identical h functions, which have the same physical meaning as the Ambartsumyan-Chandrasekhar function ( H) has. This circumstance allows a relatively easy derivation of simple analytical expressions for the H function, total reflectance, and reflection function. We can easily determine the relative contribution of the true single scattering in the photon backscattering at an arbitrary probability of photon survival Λ. We compare all of the parameters of the backscattered radiation with the data resulting from the calculations using the exact theory of Ambartsumyan, Chandrasekhar, et al., which was developed decades after the two-flux approximation. Thus, we avoid the application of fine mathematical methods (the Wiener-Hopf method, the Case method of singular functions, etc.) and obtain simple analytical expressions for the parameters of the scattered radiation

  11. Angular-dependent polarization-based plasmon light scattering for bioaffinity sensing

    NASA Astrophysics Data System (ADS)

    Aslan, Kadir; Lakowicz, Joseph R.; Geddes, Chris D.

    2005-12-01

    We describe an approach to affinity biosensing based on the depolarization of plasmon scatter of biotinylated-bovine serum albumin coated 20nm gold colloids crosslinked by streptavidin. Our model system employs nanoparticles which initially scatter incident light with P ≈1, in a Rayleigh-like manner. However, upon aggregation, the nanoparticles show a decreased polarization and an increased forward scatter, consistent with both plasmon near-field coupling and Mie like scatter, enabling large changes in polarization detectable at angles approaching 180°.

  12. Quadrupole effects in angular distributions of photoelectrons upon ionization of Kr by X-ray photons

    NASA Astrophysics Data System (ADS)

    Merem'yanin, A. V.; Chernov, V. E.; Gavrilov, G. E.; Naryshkin, Yu. G.; Zon, B. A.

    2017-05-01

    Implementation of promising control schemes for the intensity and position of X-ray-laser beams with a photon energy up to several tens of kiloelectronvolts requires knowledge of the angular dependence of cross sections for photoionization of noble gas atoms by hard photons. Estimates of quadrupole corrections to the cross section for photoionization of a Kr atom by X-ray photons with an energy of about 25 keV are reported in this paper. An analytic expression for the cross section of the process is parameterized in a compact form convenient for analyzing angular distributions with an arbitrary polarization of a photon beam.

  13. An alternative scheme of angular-dispersion analyzers for high-resolution medium-energy inelastic X-ray scattering.

    PubMed

    Huang, Xian Rong

    2011-11-01

    The development of medium-energy inelastic X-ray scattering optics with meV and sub-meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back-reflection angular-dispersion monochromator or analyzer, is analyzed. The results show that the multiple-beam diffraction effect together with transmission-induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four-bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV- to sub-meV-resolution inelastic X-ray scattering spectroscopy.

  14. Angular distribution of beam electrons in a source with arc plasma emitter

    NASA Astrophysics Data System (ADS)

    Kurkuchekov, V.; Astrelin, V.; Kandaurov, I.; Trunev, Yu

    2017-05-01

    Results on studying the angular characteristics of an electron beam, generated in a multi-aperture diode with an arc-discharge plasma emitter are reported. The main beam parameters were as follows: the electron energy up to 120 keV, the emission current up to 100 A, the pulse duration 0.1 - 0.3 ms, and the initial diameter ca. 8 cm. The beam was formed and transported to a metal target in an adiabatically converging magnetic field. The diagnostic technique based on an X-ray imaging of the profiles of individual beamlets passed through the pepperpot-like mask was developed and used to investigate an angular distribution of the beam electrons. The spatial resolution of the diagnostic was evaluated in a special test experiment and found to be not worse than 4 lp/cm at a 10 % contrast level. It was demonstrated that an angular distribution of the beam electrons fits well by the Gaussian function with the RMS width ∼ 0.067 rad. The data on the angular distribution measured with pepperpot diagnostic are in a good agreement with those obtained in the experiments on the beam passage through a magnetic mirror.

  15. Instability in the dense supernova neutrino gas with flavor-dependent angular distributions.

    PubMed

    Mirizzi, Alessandro; Serpico, Pasquale Dario

    2012-06-08

    The usual description of self-induced flavor conversions for neutrinos (ν's) in supernovae is based on the simplified assumption that all the ν's of the different species are emitted "half-isotropically" by a common neutrinosphere, in analogy to a blackbody emission. However, realistic supernova simulations show that ν angular distributions at decoupling are far from being half-isotropic and, above all, are flavor dependent. We show that flavor-dependent angular distributions may lead to crossing points in the angular spectra of different ν species (where F(ν(e))=F(ν(x)) and F(ν(e))=F(ν(x))) around which a new multiangle instability can develop. To characterize this effect, we carry out a linearized flavor stability analysis for different supernova neutrino angular distributions. We find that this instability can shift the onset of the flavor conversions toward low radii and produce a smearing of the splitting features found with trivial ν emission models. As a result the spectral differences among ν's of different flavors could be strongly reduced.

  16. Angular distribution of fusion products and x rays emitted by a small dense plasma focus machine

    SciTech Connect

    Castillo, F.; Herrera, J. J. E.; Gamboa, Isabel; Rangel, J.; Golzarri, J. I.; Espinosa, G.

    2007-01-01

    Time integrated measurements of the angular distributions of fusion products and x rays in a small dense plasma focus machine are made inside the discharge chamber, using passive detectors. The machine is operated at 37 kV with a stored energy of 4.8 kJ and a deuterium filling pressure of 2.75 torr. Distributions of protons and neutrons are measured with CR-39 Lantrack registered nuclear track detectors, on 1.8x0.9 cm{sup 2} chips, 500 {mu}m thick. A set of detectors was placed on a semicircular Teflon registered holder, 13 cm away from the plasma column, and covered with 15 {mu}m Al filters, thus eliminating tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. The angular distribution of x rays is also studied within the chamber with TLD-200 dosimeters. While the neutron angular distributions can be fitted by Gaussian curves mounted on constant pedestals and the proton distributions are strongly peaked, falling rapidly after {+-}40 deg. , the x-ray distributions show two maxima around the axis, presumably as a result of the collision of a collimated electron beam against the inner electrode, along the axis.

  17. Investigating the hohlraum radiation properties through the angular distribution of the radiation temperature

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Zhang, Huasen; Song, Peng; Zou, Shiyang; Zhu, Shaoping; Li, Sanwei; Li, Zhichao; Guo, Liang; Jiang, Shaoen; Ding, Yongkun

    2016-10-01

    The symmetric radiation drive is essential to the capsule implosion in the indirect drive fusion, but is hard to achieve due to the non-uniform radiation distribution inside the hohlraum. The non-uniform radiation properties of both vacuum and gas-filled hohlraums are studied by investigating the angular distribution of the radiation temperature. The non-uniform radiation distribution inside the hohlraum induces the variation of the radiation temperature between different view angles. The simulations show that both the angular distribution of the radiation temperature and the hohlraum radiation distribution can be affected by the electron heat flux. Comparisons between the experiments and simulations further indicate that the x-ray emission of the blow-off plasma is overestimated in the simulations when it stagnates around the hohlraum axis. The axial position of the laser spot can also be estimated by the angular distribution of the radiation temperature due to their sensitive dependence. The inferred laser spot moves closer to the laser entrance hole in the gas-filled hohlraum than that in the vacuum hohlraum, consisting with the x-ray images taken from the framing camera.

  18. Complex angular momenta approach for scattering problems in the presence of both monopoles and short range potentials

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio

    2016-10-01

    I analyze the quantum mechanical scattering off a topological defect (such as a Dirac monopole) as well as a Yukawa-like potential(s) representing the typical effects of strong interactions. This system, due to the presence of a short-range potential, can be analyzed using the powerful technique of the complex angular momenta which, so far, has not been employed in the presence of monopoles (nor of other topological solitons). Due to the fact that spatial spherical symmetry is achieved only up to internal rotations, the partial wave expansion becomes very similar to the Jacob-Wick helicity amplitudes for particles with spin. However, since the angular-momentum operator has an extra "internal" contribution, fixed cuts in the complex angular momentum plane appear. Correspondingly, the background integral in the Regge formula does not decrease for large values of |cos θ | (namely, large values of the Mandelstam variable s ). Hence, the experimental observation of this kind of behavior could be a direct signal of nontrivial topological structures in strong interactions. The possible relations of these results with the soft Pomeron are shortly analyzed.

  19. On the non-uniform distribution of the angular elements of near-Earth objects

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, Renu

    2014-02-01

    We examine the angular distributions of near-Earth objects (NEOs) which are often regarded as uniform. The apparent distribution of the longitude of ascending node, Ω, is strongly affected by well-known seasonal effects in the discovery rate of NEOs. The deviation from the expected π-periodicity in the apparent distribution of Ω indicates that its intrinsic distribution is slightly enhanced along a mean direction, Ω‾=111°; approximately 53% of NEOs have Ω values within ±90° of Ω‾. We also find that each subgroup of NEOs (Amors, Apollos and Atens) has different observational selection effects which cause different non-uniformities in the apparent distributions of their arguments of perihelion ω, and longitudes of perihelion ϖ. For their intrinsic distributions, our analysis reveals that the Apollo asteroids have non-uniform ω due to secular dynamics associated with inclination-eccentricity-ω coupling, and the Amors’ ϖ distribution is peaked towards the secularly forced eccentricity vector. The Apollos’ ω distribution is axial, favoring values near 0° and 180°; the two quadrants centered at 0° and 180° account for 55% of the Apollos’ ω values. The Amors’ ϖ distribution peaks near ϖ‾=4°; 61% of Amors have ϖ within ±90° of this peak. We show that these modest but statistically significant deviations from uniform random distributions of angular elements are owed to planetary perturbations, primarily Jupiter’s. It is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.

  20. Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.; Wang, Jyh-Chiang E.; Quataert, Sally A.; Berger, Andrew J.

    2010-05-01

    Integrated Raman and angular-scattering microscopy (IRAM) is a multimodal platform capable of noninvasively probing both the chemistry and morphology of a single cell without prior labeling. Using this system, we are able to detect activation-dependent changes in the Raman and elastic-scattering signals from CD8+ T cells stimulated with either Staphylococcal enterotoxin B (SEB) or phorbol myristate acetate (PMA). In both cases, results obtained from the IRAM instrument correlate well with results obtained from traditional fluorescence-based flow cytometry for paired samples. SEB-mediated activation was distinguished from resting state in CD8+ T cells by an increase in the number and mean size of small (~500-nm) elastic scatterers as well as a decrease in Raman bands, indicating changes in nuclear content. PMA-mediated activation induced a different profile in CD8+ T cells from SEB, showing a similar increase in small elastic scatterers but a different Raman change, with elevation of cellular protein and lipid bands. These results suggest the potential of this multimodal, label-free optical technique for studying processes in single cells.

  1. Effect of Orbital Angular Momentum on Valence-Quark Helicity Distributions

    SciTech Connect

    Harut Avakian; Stanley J. Brodsky; Alexandre Deur; Feng Yuan

    2007-08-01

    We study the quark helicity distributions at large x in perturbative QCD, taking into account contributions from the valence Fock states of the nucleon which have nonzero orbital angular momentum. These states are necessary to have a nonzero anomalous magnetic moment. We find that the quark orbital angular momentum contributes a large logarithm to the negative helicity quark distributions in addition to its power behavior, scaling as (1-x)^5\\log^2(1-x) in the limit of x\\to 1. Our analysis shows that the ratio of the polarized over unpolarized down quark distributions, \\Delta d/d, will still approach 1 in this limit. By comparing with the experimental data, we find that this ratio should cross zero at x\\approx 0.75.

  2. Angular distribution of electrons directly accelerated by an intense tightly focused laser pulse

    NASA Astrophysics Data System (ADS)

    Vais, O. E.; Bochkarev, S. G.; Ter-Avetisyan, S.; Bychenkov, V. Yu.

    2017-02-01

    We report a study of spectral and angular distributions of electrons directly accelerated from an ultrathin nanofoil by a tightly focused, relativistically intense laser pulse. The approach applied is based on a realistic model describing the focusing of radiation by an off-axis parabolic mirror, the field distribution being simulated with the help of Stratton – Chu integrals. We have compared spectral and angular electron distributions for laser pulses having Gaussian transverse and rectangular intensity profiles on the mirror at the same laser pulse energy. It is shown that in the case of a pulse with a rectangular intensity profile, the energy of fast electrons is higher and the emission angles are smaller than those in the case of a pulse with a Gaussian profile. Presented at ECLIM2016 (Moscow, 18 – 23 September 2016).

  3. Ion energy and angular distributions in inductively driven RF discharges in chlorine

    SciTech Connect

    Woodworth, J.R.; Riley, M.E.; Hamilton, T.W.

    1996-03-01

    In this paper, the authors report values of ion energy distributions and ion angular distributions measured at the grounded electrode of an inductively-coupled discharge in pure chlorine gas. The inductive drive in the GEC reference cell produced high plasma densities (10{sup 11}/cm{sup 3} electron densities) and stable plasma potentials. As a result, ion energy distributions typically consisted of a single peak well separated from zero energy. Mean ion energy varied inversely with pressure, decreasing from 13 to 9 eV as the discharge pressure increased from 20 to 60 millitorr. Half-widths of the ion angular distributions in these experiments varied from 6 to 7.5 degrees, corresponding to transverse energies from 0.13 to 0.21 eV. Ion energies gradually dropped with time, probably due to the buildup of contaminants on the chamber walls. Cell temperature also was an important variable, with ion fluxes to the lower electrode increasing and the ion angular distribution narrowing as the cell temperature increased. Plasmas discharges are widely used to etch semiconductors, oxides and metals in the fabrication of integrated circuits.

  4. Ion energy and angular distributions in inductively coupled Argon RF discharges

    SciTech Connect

    Woodworth, J.R.; Riley, M.E.; Meister, D.C.

    1996-03-01

    We report measurements of the energies and angular distributions of positive ions in an inductively coupled argon plasma in a GEC reference cell. Use of two separate ion detectors allowed measurement of ion energies and fluxes as a function of position as well as ion angular distributions on the discharge centerline. The inductive drive on our system produced high plasma densities (up to 10{sup 12}/cm{sup 3} electron densities) and relatively stable plasma potentials. As a result, ion energy distributions typically consisted of a single feature well separated from zero energy. Mean ion energy was independent of rf power and varied inversely with pressure, decreasing from 29 eV to 12 eV as pressure increased form 2.4 m Torr to 50 mTorr. Half-widths of the ion angular distributions in these experiments varied from 5 degrees to 12.5 degrees, or equivalently, transverse temperatures varied form 0.2 to 0.5 eV with the distributions broadening as either pressure or RF power were increased.

  5. Theoretical insights into highly transparent multi-sized conducting films with high-haze and wide-angular scattering for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Bai, Lisha; Liu, Bofei; Chen, Ze; Huang, Qian; Li, Baozhang; Zhang, Dekun; Sun, Jian; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2015-11-01

    Recent advances in light trapping schemes open up new gateways for enhancing the absorption of solar energy that approaches and overcomes the Yablonovitch 4n2 limit based on isotropic Lambertian scatterers. Achieving wide-angular scattering while maintaining a strong scattering intensity is the key to realize a Lambertian-like scatterer that may have a great potential to approach the absorption upper limit. However, few current light trapping strategies can experimentally extend the scattering angular domains in absorbers while maintaining a high scattering intensity. In this paper, we theoretically and experimentally investigate multi-sized transparent conducting oxide (TCO) films, which are comprised of micro-sized, magnetron-sputtered and chemically etched aluminum-doped zinc oxide (ZnO:Al), coated with metal organic chemical vapor deposition (MOCVD) deposited nano-sized, boron-doped zinc oxide (ZnO:B) pyramids. We demonstrate that the multi-sized TCOs in this study can efficiently increase the total transmittance in the visible spectral range, enhance the scattering intensity, successfully extend the scattering angular domains to 90°, and improve the short-circuit current density and power output of solar cells. The combination of these factors endows the TCOs with the significant potential for realizing a Lambertian-like scatterer. Accordingly, the multi-sized architecture may inspire fresh ideas for realizing more innovative light-trapping architectures.

  6. Flat bands in metamaterials based on angularly layered metal–dielectric scatterers

    NASA Astrophysics Data System (ADS)

    El-Jallal, Said; Torrent, Daniel

    2017-03-01

    In this work, we propose the realization of electromagnetic metamaterials in two and three dimensions by means of highly anisotropic rods and spheres. The two-dimensional case is deeply analyzed, and the realization of an anisotropic rod by means of angularly layered cylinders is proposed. The band structure of a periodic arrangement of angularly layered rods is computed, showing a low frequency band gap and some flat modes within it which increases as a function of the number of sectors in the cylinder. The system is studied by means of an effective medium approach, and it is found that the flat bands correspond to a sharp frequency region where the effective metamaterial is doubly negative. A perfect agreement is found between the dispersion curves obtained by means of the effective medium model and the full band structure computed by the finite element method. It is also found that only four sectors in the angularly layered cylinder are enough to obtain the desired double negativity, which is a promising result in view of the fabrication of the presented structures. Finally, the three-dimensional version of these materials is analyzed by means of anisotropic spheres, showing similar results.

  7. Semiclassical complex angular momentum theory and Pade reconstruction for resonances, rainbows, and reaction thresholds

    SciTech Connect

    Sokolovski, D.; Msezane, A.Z.

    2004-09-01

    A semiclassical complex angular momentum theory, used to analyze atom-diatom reactive angular distributions, is applied to several well-known potential (one-particle) problems. Examples include resonance scattering, rainbow scattering, and the Eckart threshold model. Pade reconstruction of the corresponding matrix elements from the values at physical (integral) angular momenta and properties of the Pade approximants are discussed in detail.

  8. Fragment Angular Distributions in Neutron-Induced Fission of w235U and 239Pu using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Kleinrath, Verena

    2014-09-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for 235U and even more so for 239Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. Analysis of in-beam data collected at the Los Alamos Neutron Science Center with a 239Pu/235U target will provide angular distributions as a function of incident neutron energy for these isotopes. Preliminary angular distributions for 235U and 239Pu using the NIFFTE time projection chamber will be presented. Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for 235U and even more so for 239Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. Analysis of in-beam data collected at the Los Alamos Neutron Science Center with a 239Pu/235U target will provide angular distributions as a function of incident neutron energy for these isotopes. Preliminary angular distributions for 235U and

  9. Effects of graded distribution of scattering centers on ballistic transport

    SciTech Connect

    Mitran, T. L.; Nemnes, G. A.; Ion, L.; Dragoman, Daniela

    2014-09-28

    The transmission coefficient of a two dimensional scattering region connected to ideal leads was calculated for the case of electrons interacting with an inhomogeneous distribution of repulsive or attractive scattering centers. The scattering centers with Gaussian profiles were positioned at regular intervals perpendicular to the transport direction, but were spaced according to a power law along this direction. The transmission function was obtained using a scattering formalism based on the R-matrix method. The simulations revealed that although, overall, the transmission coefficient decreases and becomes almost monotonously dependent on energy as the inhomogeneity of both attractive and repulsive scattering centers increases, the redistribution of transmission between open channels depends on the type of scattering centers.

  10. Electromagnetic backscattering from a random distribution of lossy dielectric scatterers

    NASA Technical Reports Server (NTRS)

    Lang, R. H.

    1980-01-01

    Electromagnetic backscattering from a sparse distribution of discrete lossy dielectric scatterers occupying a region 5 was studied. The scatterers are assumed to have random position and orientation. Scattered fields are calculated by first finding the mean field and then by using it to define an equivalent medium within the volume 5. The scatterers are then viewed as being embedded in the equivalent medium; the distorted Born approximation is then used to find the scattered fields. This technique represents an improvement over the standard Born approximation since it takes into account the attenuation of the incident and scattered waves in the equivalent medium. The method is used to model a leaf canopy when the leaves are modeled by lossy dielectric discs.

  11. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    SciTech Connect

    Bogdanov, O. V. Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-15

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantity is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.

  12. Angular distribution of photoelectrons from atomic oxygen, nitrogen and carbon. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Manson, S. J.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distributions of photoelectrons from atomic oxygen, nitrogen, and carbon are calculated. Both Hartree-Fock and Hartree-Slater (Herman-Skillman) wave functions are used for oxygen, and the agreement is excellent; thus only Hartree-Slater functions are used for carbon and nitrogen. The pitch-angle distribution of photoelectrons is discussed, and it is shown that previous approximations of energy-independent isotropic or sin squared theta distributions are at odds with the authors' results, which vary with energy. This variation with energy is discussed, as is the reliability of these calculations.

  13. The internal energy distribution of NO and N 2 scattering from defective surfaces

    NASA Astrophysics Data System (ADS)

    Pierro, William; Castejón, Henry J.

    2008-11-01

    The internal energy distribution of NO and N 2 scattering from a defective surfaces has been studied using classical molecular dynamics. Stochastic trajectory simulations were used to calculate the final rotational excitation, angular distribution and trapping probabilities of N 2 and NO scattering from clean Ag(1 1 1) surfaces, with adatoms and with vacancies. Calculations reproduce well the experimental results for NO and N 2 scattering from clean surfaces. NO undergoes more extensive rotational excitation than N 2 on clean and defective surfaces. Scattering is more inelastic on defective surfaces and adatoms defects appear to promote rotational excitation more efficiently than vacancies. Trapping exhibits a complex behavior. Dynamical corrugation causes trapping of NO on clean Ag(1 1 1) to exhibit a "crossover" behavior. That is, the value of n in the standard functional dependence of trapping on the incident energy, Eicos nθi, switches sign as the incident energy increases. This behavior is also observed in the case of N 2 scattering from a surface with adatoms, but in this case is caused by the static corrugation. It appears that the breaking of the 2-D symmetry of the surface (i.e. static corrugation) compensates for the lack of anisotropy in the interaction potential (i.e. dynamical corrugation) for N 2/Ag(1 1 1). Adatom defects increase trapping for NO molecules impinging on the surface with glancing trajectories while vacancies have the opposite effect.

  14. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    PubMed

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  15. Measurement of the angular distribution in anti-p p ---> psi(2S) ---> e+ e-

    SciTech Connect

    Ambrogiani, M.; Andreotti, M.; Argiro, S.; Bagnasco, S.; Baldini, W.; Bettoni, D.; Borreani, G.; Buzzo, A.; Calabrese, R.; Cester, R.; Cibinetto, G.; Dalpiaz, P.; Fan, X.; Garzoglio, G.; Gollwitzer, K.E.; Graham, M.; Hahn, A.; Hu, M.; Jin, S.; Joffe, D.; Kasper, J.; /Fermilab /INFN, Ferrara /Ferrara U. /INFN, Genoa /Genoa U. /INFN, Turin /Turin U. /Northwestern U. /UC, Irvine /Minnesota U.

    2004-12-01

    The authors present the first measurement of the angular distribution for the exclusive process {bar p}p {yields} {psi}(2S) {yields} e{sup +}e{sup -} based on a sample of 6844 events collected by the Fermilab E835 experiment. They find that the angular distribution is well described by the expected functional form dN/d cos {theta}* {proportional_to} 1 + {lambda} cos{sup 2} {theta}*, where {theta}* is the angle between the antiproton and the electron in the center of mass frame, with {lambda} = 0.67 {+-} 0.15(stat.) {+-} 0.04(sys.). The measured value for {lambda} implies a small but non zero {psi}(2S) helicity 0 formation amplitude in {bar p}p, comparable to what is observed in J/{psi} decays to baryon pairs.

  16. Near-threshold photoelectron angular distributions from two-photon resonant photoionization of He

    NASA Astrophysics Data System (ADS)

    O'Keeffe, P.; Mihelič, A.; Bolognesi, P.; Žitnik, M.; Moise, A.; Richter, R.; Avaldi, L.

    2013-01-01

    Two-photon resonant photoionization of helium is investigated both experimentally and theoretically. Ground state helium atoms are excited to the 1s4p, 1s5p and 1s6p 1P states by synchrotron radiation and ionized by a synchronized infrared pulsed picosecond laser. The photoelectron angular distributions of the emitted electrons are measured using a velocity map imaging (VMI) spectrometer. The measured asymmetry parameters of the angular distribution allow the phase differences and the ratios of the dipole matrix elements of the 1sɛs and 1sɛd channels to be determined. The experimental results agree with the calculated values obtained in a configuration-interaction calculation with a Coulomb-Sturmian basis set. The effects of the radiative decay of the intermediate state and the static electric field of the VMI spectrometer on the measurements are discussed.

  17. Sideways-peaked angular distributions in hadron-induced multifragmentation: Shock waves, geometry, or kinematics?

    SciTech Connect

    Hsi, W.; Kwiatkowski, K.; Wang, G.; Bracken, D.S.; Cornell, E.; Ginger, D.S.; Viola, V.E.; Yoder, N.R.; Korteling, R.G.; Gimeno-Nogues, F.; Ramakrishnan, E.; Rowland, D.; Yennello, S.J.; Huang, R.; Lynch, W.G.; Tsang, M.B.; Xi, H.; Breuer, H.; Morley, K.B.; Gushue, S.; Remsberg, L.P.; Friedman, W.A.; Botvina, A.

    1998-07-01

    Exclusive studies of sideways-peaked angular distributions for intermediate-mass fragments (IMFs) produced in hadron-induced reactions have been performed with the Indiana silicon sphere (ISiS) detector array. The effect becomes prominent for beam momenta above about 10thinspGeV/c. Both the magnitude of the effect and the peak angle increase as a function of fragment multiplicity and charge. When gated on IMF kinetic energy, the angular distributions evolve from forward peaked to nearly isotropic as the fragment energy decreases. Fragment-fragment correlation studies show no evidence for a preferred angle that might signal a fast dynamic breakup mechanism. Moving-source and intranuclear cascade simulations suggest a possible kinematic origin arising from significant transverse momentum imparted to the recoil nucleus during the fast cascade. A two-step cascade and statistical multifragmentation calculation is consistent with the data. {copyright} {ital 1998} {ital The American Physical Society}

  18. Drell-Yan Angular Distributions at the E906 SeaQuest Experiment

    NASA Astrophysics Data System (ADS)

    Kleinjan, David

    2016-09-01

    Measurement of Drell-Yan angular distributions in the Collins-Soper frame provide a unique study of QCD. Previous experimental results showed a violation of the Lam-Tung relation (1 - λ ≠ 2 ν). This violation could be described by a range of non-perturbative effects, including the naive T-odd Boer-Mulders TMD, which describes spin-momentum correlations in the nucleon. Presently, E906/SeaQuest experiment at Fermilab can measure Drell-Yan dimuon pairs produced from a 120 GeV unpolarized proton beam directed on various nuclear targets. The Drell-Yan angular distributions will be measured at higher-x than previous experiments, further disentangling the role the Boer-Mulders TMD and other non-perturbative effects play in the structure of the nucleon. SeaQuest.

  19. Effects due to adsorbed atoms upon angular and energy distributions of surface produced negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Wada, M.; Bacal, M.; Kasuya, T.; Kato, S.; Kenmotsu, T.; Sasao, M.

    2013-02-01

    Exposure to Cs added hydrogen discharge makes surface of plasma grid of a negative hydrogen ion source covered with Cs and hydrogen. A Monte-Carlo particle simulation code ACAT was run to evaluate the effects due to adsorbed Cs and H atoms upon the angular and energy distributions of H atoms leaving the surface. Accumulation of H atoms on the surface reduces particle reflection coefficients and the mean energy of backscattered H atoms. Angular distributions of H atoms reflected from the hydrogen covered surface tend to be under-cosine at lower energies. Desorption of adsorbed H atoms is more efficient for hydrogen positive ions than for Cs positive ions at lower incident energy. At higher energy more than 100 eV, Cs ions desorb adsorbed H atoms more efficiently than hydrogen ions.

  20. Photoelectron kinetic and angular distributions for the ionization of aligned molecules using a HHG source

    NASA Astrophysics Data System (ADS)

    Rouzée, Arnaud; Kelkensberg, Freek; Kiu Siu, Wing; Gademann, Georg; Lucchese, Robert R.; Vrakking, Marc J. J.

    2012-04-01

    We present an experimental and theoretical investigation of the angular distributions of electrons ejected in aligned molecules by extreme ultra-violet ionization using a high harmonic generation (HHG) source. Impulsive alignment in O2, N2 and CO molecules was achieved using a near-IR laser pulse and the photoelectron angular distribution after ionization by a fs harmonic comb composed of harmonic H11 to H29 (17.5-46 eV) was recorded at the maximum of both alignment and anti-alignment. The experiment reveals signatures that are specific for the electronic orbitals that are ionized as well as the onset of the influence of the molecular structure and is well reproduced by theoretical calculations based on the multichannel Schwinger configuration interaction method.

  1. Predicting photoemission intensities and angular distributions with real-time density-functional theory

    NASA Astrophysics Data System (ADS)

    Dauth, M.; Kümmel, S.

    2016-02-01

    Photoemission spectroscopy is one of the most frequently used tools for characterizing the electronic structure of condensed matter systems. We discuss a scheme for simulating photoemission from finite systems based on time-dependent density-functional theory. It allows for the first-principles calculation of relative electron binding energies, ionization cross sections, and anisotropy parameters. We extract these photoemission spectroscopy observables from Kohn-Sham orbitals propagated in real time. We demonstrate that the approach is capable of estimating photoemission intensities, i.e., peak heights. It can also reliably predict the angular distribution of photoelectrons. For the example of benzene we contrast calculated angular distribution anisotropy parameters to experimental reference data. Self-interaction free Kohn-Sham theory yields meaningful outer valence single-particle states in the right energetic order. We discuss how to properly choose the complex absorbing potential that is used in the simulations.

  2. Angular dependence of Raman scattering selection rules for long-wavelength optical phonons in short-period GaAs/AlAs superlattices

    SciTech Connect

    Volodin, V. A.; Sachkov, V. A.; Sinyukov, M. P.

    2016-07-15

    The angular dependence of Raman scattering selection rules for optical phonons in short-period (001) GaAs/AlAs superlattices is calculated and experimentally studied. Experiments are performed using a micro-Raman setup, in the scattering geometry with the wavevectors of the incident and scattered light lying in the plane of superlattices (so-called in-plane geometry). Phonon frequencies are calculated using the Born model taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra are calculated in the framework of the deformation potential and electro-optical mechanisms. Calculations show an angular dependence of the selection rules for optical phonons with different directions of the wavevectors. Drastic differences in the selection rules are found for experimental and calculated spectra. Presumably, these differences are due to the Fröhlich mechanism in Raman scattering for short-period superlattices.

  3. Adding a spin to Kerker's condition: angular tuning of directional scattering with designed excitation.

    PubMed

    Wei, Lei; Bhattacharya, Nandini; Paul Urbach, H

    2017-05-01

    We describe a method to control the directional scattering of a high-index dielectric nanosphere, which utilizes the unique focusing properties of an azimuthally polarized phase vortex and a radially polarized beam to independently excite inside the nanosphere a spinning magnetic dipole and a linearly polarized electric dipole mode normal to the magnetic dipole. We show that by simply adjusting the phase and amplitude of the field on the exit pupil of the optical system, the scattering of the nanosphere can be tuned to any direction within a plane, and the method works over a broad wavelength range.

  4. Retrieving orbital angular momentum distribution of light with plasmonic vortex lens

    PubMed Central

    Zhou, Hailong; Dong, Jianji; Zhang, Jihua; Zhang, Xinliang

    2016-01-01

    We utilize a plasmonic vortex lens (PVL) to retrieve the orbital angular momentum (OAM) distribution of light. The OAM modes are coupled to the surface plasmon polaritons (SPPs) in the form of various Bessel functions respectively. By decomposing the interference pattern of SPPs into these Bessel functions, we can retrieve the relative amplitude and the relative phase of input OAM modes simultaneously. Our scheme shows advantage in integration and can measure hybrid OAM states by one measurement. PMID:27255406

  5. Angular distributions for /sup 16/O(/gamma/,p)/sup 15/N at intermediate energies

    SciTech Connect

    Adams, G.S.; Kinney, E.R.; Matthews, J.L.; Sapp, W.W.; Soos, T.; Owens, R.O.; Turley, R.S.; Pignault, G.

    1988-12-01

    The photoproton knockout reaction on /sup 16/O leaving /sup 15/N in low-lying bound states has been observed over the photon energy range from 196 to 361 MeV. The angular distribution for the reaction populating the ground state of /sup 15/N develops sharp structure as the photon energy is increased but that for population of the excited states is smooth. The results are not explained by existing theoretical models.

  6. Angular velocity distribution of a granular planar rotator in a thermalized bath.

    PubMed

    Piasecki, J; Talbot, J; Viot, P

    2007-05-01

    The kinetics of a granular planar rotator with a fixed center undergoing inelastic collisions with bath particles is analyzed both numerically and analytically by means of the Boltzmann equation. The angular velocity distribution evolves from quasi-Gaussian in the Brownian limit to an algebraic decay in the limit of an infinitely light particle. In addition, we compare this model to that of a planar rotator with a free center and discuss the prospects for experimental confirmation of these results.

  7. Beta-ray angular distributions of spin aligned 8Li and 8B

    NASA Astrophysics Data System (ADS)

    Sumikama, T.; Iwakoshi, T.; Nagatomo, T.; Ogura, M.; Nakashima, Y.; Fujiwara, H.; Matsuta, K.; Minamisono, T.; Mihara, M.; Fukuda, M.; Minamisono, K.; Yamaguchi, T.

    2004-12-01

    The alignment correlation terms in the β-ray angular distributions from spin aligned 8Li and 8B have been measured precisely. The difference of these terms between the mirror pair is compared with the prediction. As a result, the G-parity violating induced tensor term is found to be small. The significant contribution from the second-forbidden matrix elements is shown by comparing with the β- α correlation coefficients.

  8. Molecular target and projectile angular scattering effects in stopping power and charge exchange at low-to-intermediate projectile energies

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Öhrn, Y.; Sabin, John R.; Deumens, E.

    2002-02-01

    We analyze the implications of the molecular structure of a target and the angular scattering effects on projectile-target collisions within the Electron-Nuclear Dynamics (END) approach. We show the suitability of the END method for the analysis of molecular scattering processes such as differential cross sections, charge exchange, and energy loss as required for the study of the stopping cross section. As a consequence of these effects, we show that the rovibronic energy loss becomes of greatest importance at low projectile energies. Furthermore, we find that the Bragg additivity rule and the linear-velocity dependence of the stopping cross section are not fulfilled at low projectile energies. Finally, we analyze the differences in the scattering processes for molecular and atomic targets, and show that in a transmission experiment with small exit window, the acceptance angle corresponds to different impact parameter selection for molecular targets than for atomic ones. Thus, the measured stopping cross section becomes a function of the acceptance angle of the experimental setup. We present results for hydrogen beams on H2 and N2 gas targets.

  9. Angular momentum distribution during the collapse of primordial star-forming clouds

    NASA Astrophysics Data System (ADS)

    Dutta, Jayanta

    2016-01-01

    It is generally believed that angular momentum is distributed during the gravitational collapse of the primordial star forming cloud. However, so far there has been little understanding of the exact details of the distribution. We use the modified version of the Gadget-2 code, a three-dimensional smoothed-particle hydrodynamics simulation, to follow the evolution of the collapsing gas in both idealized as well as more realistic minihalos. We find that, despite the lack of any initial turbulence and magnetic fields in the clouds the angular momentum profile follows the same characteristic power-law that has been reported in studies that employed fully self-consistent cosmological initial conditions. The fit of the power-law appears to be roughly constant regardless of the initial rotation of the cloud. We conclude that the specific angular momentum of the self-gravitating rotating gas in the primordial minihalos maintains a scaling relation with the gas mass as L ∝ M^{1.125}. We also discuss the plausible mechanisms for the power-law distribution.

  10. Angular distribution of GaAs sputtered under oblique Cs + bombardment

    NASA Astrophysics Data System (ADS)

    Verdeil, C.; Wirtz, T.; Scherrer, H.

    2009-08-01

    The angular distribution of Ga and As sputtered from Gallium Arsenide (1 0 0) by a Cs + ion beam was experimentally measured through a collector technique allowing modifications of the energy and incidence angle of the ion beam. The impact energy was varied in the range of 2-10 keV and the angle of incidence from 30° to 60°. The angular distributions of emitted matter are determined by means of SIMS depth profiles. Our series of experiments show an evolution of the preferential direction of emission as well as the spreading around this direction in function of the characteristics of the ion beam. The second objective is the study of the evolution of the stoichiometry of the deposit in function of the emission angle. A decrease of the As/Ga ratio around the preferential direction of emission and an increase of this ratio for oblique emission are observed for different conditions of primary bombardment. Considering that the angular distribution depends on the depth of origin, our results suggest that the Cs + bombardment changes the stoichiometry of the near-surface layers of the sample with an enrichment of As in the outmost layers while the sub-surface region is impoverished in As due to preferential sputtering.

  11. Angular ion species distribution in droplet-based laser-produced plasmas

    SciTech Connect

    Giovannini, Andrea Z.; Gambino, Nadia; Rollinger, Bob; Abhari, Reza S.

    2015-01-21

    The angular distribution of the ion species generated from a laser irradiated droplet target is measured. The employed instrument was an electrostatic energy analyzer with differential pumping. Singly and doubly charged ions were detected at an argon ambient gas pressure of 2 × 10{sup −2} mbar. The amount of Sn{sup +} and Sn{sup 2+} and their kinetic energy is measured from 45° to 120° from the laser axis. Sn{sup +} expands approximately isotropically, and Sn{sup 2+} expansion is peaked towards the incoming laser radiation. The singly charged ion kinetic energy is close to constant over the measurement range, while it decreases by around 30% for Sn{sup 2+}. A calibrated model of the ion expansion that includes recombinations correctly predicts the mean ion charge distribution. The model is able to qualitatively estimate the influence of the laser wavelength on the mean ion charge distribution. The results show a more pronounced isotropic distribution for shorter wavelengths, and a more forward-peaked distribution for longer wavelengths. The ion charge distribution expected without the ambient gas is estimated through the measured ion kinetic energy. The presence of the ambient gas results in a decrease of the mean ion charge state and a decrease in angular anisotropy.

  12. Kinetic Energy and Angular Distributions of He and Ar Atoms Evaporating from Liquid Dodecane.

    PubMed

    Patel, Enamul-Hasan; Williams, Mark A; Koehler, Sven P K

    2017-01-12

    We report both kinetic energy and angular distributions for He and Ar atoms evaporating from C12H26. All results were obtained by performing molecular dynamics simulations of liquid C12H26 with around 10-20 noble gas atoms dissolved in the liquid and by subsequently following the trajectories of the noble gas atoms after evaporation from the liquid. Whereas He evaporates with a kinetic energy distribution of (1.05 ± 0.03) × 2RT (corrected for the geometry used in experiments: (1.08 ± 0.03) × 2RT, experimentally obtained value: (1.14 ± 0.01) × 2RT), Ar displays a kinetic energy distribution that better matches a Maxwell-Boltzmann distribution at the temperature of the liquid ((0.99 ± 0.04) × 2RT). This behavior is also reflected in the angular distributions, which are close to a cosine distribution for Ar but slightly narrower, especially for faster atoms, in the case of He. This behavior of He is most likely due to the weak interaction potential between He and the liquid hydrocarbon.

  13. Angular distribution, kinetic energy distributions, and excitation functions of fast metastable oxygen fragments following electron impact of CO2

    NASA Technical Reports Server (NTRS)

    Misakian, M.; Mumma, M. J.; Faris, J. F.

    1975-01-01

    Dissociative excitation of CO2 by electron impact was studied using the methods of translational spectroscopy and angular distribution analysis. Earlier time of flight studies revealed two overlapping spectra, the slower of which was attributed to metastable CO(a3 pi) fragments. The fast peak is the focus of this study. Threshold energy, angular distribution, and improve time of flight measurements indicate that the fast peak actually consists of five overlapping features. The slowest of the five features is found to consist of metastable 0(5S) produced by predissociation of a sigma u + state of CO2 into 0(5S) + CO(a3 pi). Oxygen Rydberg fragments originating directly from a different sigma u + state are believed to make up the next fastest feature. Mechanisms for producing the three remaining features are discussed.

  14. Inspection of 56Fe γ-Ray angular distributions as a function of incident neutron energy using optical model approaches

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Ramirez, A. P.; Alcorn-Dominguez, D. K.; Hicks, S. F.; Peters, E. E.; McEllistrem, M. T.; Mukhopadhyay, S.; Yates, S. W.

    2017-09-01

    Neutron inelastic scattering cross sections measured directly through (n,n) or deduced from γ-ray production cross sections following inelastic neutron scattering (n,n'γ) are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator). For nuclear data applications, angle-integrated cross sections are desired over a wide range of fast neutron energies. Several days of experimental beam time are required for a data set at each incident neutron energy, which limits the number of angular distributions that can be measured in a reasonable amount of time. Approximations can be employed to generate cross sections with a higher energy resolution, since at 125o, the a2P2 term of the Legendre expansion is identically zero and the a4P4 is assumed to be very small. Provided this assumption is true, a single measurement at 125o would produce the γ-ray production cross section. This project tests these assumptions and energy dependences using the codes CINDY/SCAT and TALYS/ECIS06/SCAT. It is found that care must be taken when interpreting γ-ray excitation functions as cross sections when the incident neutron energy is < 1000 keV above threshold or before the onset of feeding.

  15. An experimental investigation of the angular scattering and backscattering behaviors of the simulated clouds of the outer planets

    NASA Technical Reports Server (NTRS)

    Sassen, K.

    1984-01-01

    A cryogenic, 50 liter volume Planetary Cloud Simulation Chamber has been constructed to permit the laboratory study of the cloud compositions which are likely to be found in the atmospheres of the outer planets. On the basis of available data, clouds composed of water ice, carbon dioxide, and liquid and solid ammonia and methane, both pure and in various mixtures, have been generated. Cloud microphysical observations have been permitted through the use of a cloud particle slide injector and photomicrography. Viewports in the lower chamber have enabled the collection of cloud backscattering data using 633 and 838 nm laser light, including linear depolarization ratios and complete Stokes parameterization. The considerable technological difficulties associated with the collection of angular scattering patterns within the chamber, however, could not be completely overcome.

  16. Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption

    NASA Astrophysics Data System (ADS)

    Tan, Hairen; Sivec, Laura; Yan, Baojie; Santbergen, Rudi; Zeman, Miro; Smets, Arno H. M.

    2013-04-01

    We show experimentally that the photocurrent of thin-film hydrogenated microcrystalline silicon (μc-Si:H) solar cells can be enhanced by 4.5 mA/cm2 with a plasmonic back reflector (BR). The light trapping performance is improved using plasmonic BR with broader angular scattering and lower parasitic absorption loss through tuning the size of silver nanoparticles. The μc-Si:H solar cells deposited on the improved plasmonic BR demonstrate a high photocurrent of 26.3 mA/cm2 which is comparable to the state-of-the-art textured Ag/ZnO BR. The commonly observed deterioration of fill factor is avoided by using μc-SiOx:H as the n-layer for solar cells deposited on plasmonic BR.

  17. Energy and angular distributions of electrons emitted by direct double auger decay.

    PubMed

    Viefhaus, Jens; Cvejanović, Slobodan; Langer, Burkhard; Lischke, Toralf; Prümper, Georg; Rolles, Daniel; Golovin, Alexander V; Grum-Grzhimailo, Alexei N; Kabachnik, Nikolai M; Becker, Uwe

    2004-02-27

    We have observed the direct L(2,3)MMM double Auger transition after photoionization of the 2p shell of argon by angle-resolved electron-electron coincidence spectroscopy. The process is responsible for about 20% of the observed Auger electron intensity. In contrast to the normal Auger lines, the spectra in double Auger decay show a continuous intensity distribution. The energy and angular distributions of the emitted electrons allow one to obtain information on the electron correlations giving rise to the double Auger process as well as the symmetry of the associated two-electron continuum state.

  18. Momentum angular mapping of enhanced Raman scattering of single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Rai, Padmnabh; Singh, Tapender; Brulé, Thibault; Bouhelier, Alexandre; Finot, Eric

    2017-07-01

    We perform momentum mapping of the Raman scattering of individual single-walled carbon nanotubes (SWNTs) or thin ropes of SWNTs enhanced by surface plasmons sustained by either a linear chain of nanoantennas or flower-shaped nanoparticles. The momentum spectroscopy of Raman scattering of the carbon nanotube (CNT) demonstrates the direct verification of momentum selection rules and identifies the characteristic bands of the molecules or the nanomaterials under scrutiny. The characteristic vibrational signatures of the D, G-, and G bands provide an isotropic response in k-space irrespective of the arrangement of the enhancing platform. However, other dispersive or double resonance bands, such as D-, D+, D', M, and iTOLA bands appear as a dipolar emission oriented towards the long axis of the CNT regardless of the CNT orientation but strongly depend on the patterning of enhancement of the electromagnetic field.

  19. Proximal distributions from angular correlations: a measure of the onset of coarse-graining.

    PubMed

    Dyer, Kippi M; Pettitt, B Montgomery

    2013-12-07

    In this work we examine and extend the theory of proximal radial distribution functions for molecules in solution. We point out two formal extensions, the first of which generalizes the proximal distribution function hierarchy approach to the complete, angularly dependent molecular pair distribution function. Second, we generalize from the traditional right-handed solute-solvent proximal distribution functions to the left-handed distributions. The resulting neighbor hierarchy convergence is shown to provide a measure of the coarse-graining of the internal solute sites with respect to the solvent. Simulation of the test case of a deca-alanine peptide shows that this coarse-graining measure converges at a length scale of approximately 5 amino acids for the system considered.

  20. Proximal distributions from angular correlations: A measure of the onset of coarse-graining

    NASA Astrophysics Data System (ADS)

    Dyer, Kippi M.; Pettitt, B. Montgomery

    2013-12-01

    In this work we examine and extend the theory of proximal radial distribution functions for molecules in solution. We point out two formal extensions, the first of which generalizes the proximal distribution function hierarchy approach to the complete, angularly dependent molecular pair distribution function. Second, we generalize from the traditional right-handed solute-solvent proximal distribution functions to the left-handed distributions. The resulting neighbor hierarchy convergence is shown to provide a measure of the coarse-graining of the internal solute sites with respect to the solvent. Simulation of the test case of a deca-alanine peptide shows that this coarse-graining measure converges at a length scale of approximately 5 amino acids for the system considered.

  1. Angular Broadening of Intraday Variable AGNs II. Interstellar and Intergalactic Scattering

    DTIC Science & Technology

    2008-01-01

    scattering from any possible intergalactic contribution, we have searched for pulsars within 1 of theAGNs in our sample.We find no pulsars this close to any...of our sources.Given the relatively low density of pulsars on the sky, a significantly larger sample of AGNs would be required in order to make such a...in pulsar dynamic spectra (Hill et al. 2005). We can also use the difference between the scintillating and nonscintillating sources to set

  2. Correlation of ultrasonic scatterer size estimates for the statistical analysis and optimization of angular compounding

    NASA Astrophysics Data System (ADS)

    Gerig, Anthony; Chen, Quan; Zagzebski, James; Varghese, Tomy

    2004-09-01

    Ultrasonic scatterer size estimates generally have large variances due to the inherent noise of spectral estimates used to calculate size. Compounding partially correlated size estimates associated with the same tissue, but produced with data acquired from different angles of incidence, is an effective way to reduce the variance without making dramatic sacrifices in spatial resolution. This work derives theoretical approximations for the correlation between these size estimates, and the coherence between their associated spectral estimates, as functions of ultrasonic system parameters. A Gaussian spatial autocorrelation function is assumed to adequately model scatterer shape. Both approximations compare favorably with simulation results, which consider validation near the focus. Utilization of the correlation/coherence expressions for statistical analysis and optimization is discussed. Approximations, such as the invariance of phase and amplitude terms with angle, are made to obtain closed-form solutions to the derived spectral coherence near the focus and permit analytical optimization analysis. Results indicate that recommended parameter adjustments for performance improvement generally depend upon whether, for the system under consideration, the primary source of change in total coherence with rotation is phase term variation due to the change in the relative position of scattering sites, or field amplitude term variation due to beam movement.

  3. Stochastic model of angular distributions of fragments originating from the fission of excited compound nuclei

    SciTech Connect

    Hiryanov, R. M.; Karpov, A. V.; Adeev, G. D.

    2008-08-15

    The anisotropy of angular distributions of fission fragments and the average multiplicity of prescission neutrons were calculated within a stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations. This approach was combined with a Monte Carlo algorithm for the degree of freedom K (projection of the total angular momentum I onto the fission axis). The relaxation time {tau}{sub K} in the coordinate K was considered as a free parameter of the model; it was estimated on the basis of a fit to experimental data on the anisotropy of angular distributions. Specifically, the relaxation time {tau}{sub K} was estimated at 2 x 10{sup -21} s for the compound nuclei {sup 224}Th and {sup 225}Pa and at 4 x 10{sup -21} s for the heavier nuclei {sup 248}Cf, {sup 254}Fm, and {sup 264}Rf. The potential energy was calculated on the basis of the liquid-drop model with allowance for finiteness of the range of nuclear forces and for the diffuseness of the nuclear surface. A modified one-body viscosity mechanism featuring a coefficient k{sub s} that takes into account the reduction of the contribution from the wall formula was used to describe collective-energy dissipation. The coefficient k{sub s} was also treated as a free parameter and was estimated at 0.5 on the basis of a fit to experimental data on the average prescission multiplicity of neutrons.

  4. Galactic disc profiles and a universal angular momentum distribution from statistical physics

    NASA Astrophysics Data System (ADS)

    Herpich, Jakob; Tremaine, Scott; Rix, Hans-Walter

    2017-06-01

    We show that the stellar surface brightness profiles in disc galaxies - observed to be approximately exponential - can be explained if radial migration efficiently scrambles the individual stars' angular momenta while conserving the circularity of the orbits and the total mass and angular momentum. In this case, the disc's distribution of specific angular momenta j should be near a maximum entropy state and therefore approximately exponential, dN ∝ \\exp (-j/< j\\rangle ) dj. This distribution translates to a surface density profile that is generally not an exponential function of radius: Σ (R) ∝ \\exp [-R/R_e({R})]/ (R R_e({R}))(1+d{ log v_c (R)}/ d{ log R}), for a rotation curve v∞(R) and R_e({R})≡ < j\\rangle /v_c (R). We show that such a profile matches the observed surface brightness profiles of disc-dominated galaxies just as well as the empirical exponential profile. Disc galaxies that exhibit population gradients cannot have fully reached a maximum-entropy state but appear to be close enough that their surface brightness profiles are well fit by this idealized model.

  5. Out-of-plane (e,2e) angular distributions and energy spectra of helium L = 0,1,2 autoionizing levels

    SciTech Connect

    Harak, B. A. de; Bartschat, K.; Martin, N. L. S.

    2010-12-15

    Angular distribution and spectral (e,2e) measurements are reported for the helium autoionizing levels (2s{sup 2}){sup 1}S, (2p{sup 2}){sup 1}D, and (2s2p){sup 1}P. A special out-of-plane geometry is used where the ejected electrons are emitted in a plane perpendicular to the scattered electron direction. The kinematics are chosen so that this plane contains the momentum-transfer direction. While the recoil peak almost vanishes in the angular distribution for direct ionization, it remains significant for the autoionizing levels and exhibits a characteristic shape for each orbital angular momentum L=0,1,2. A second-order model in the projectile-target interaction correctly reproduces the observed magnitudes of the recoil peaks, but is a factor of 2 too large in the central out-of-plane region. Observed (e,2e) energy spectra for the three resonances over the full angular range are well reproduced by the second-order calculation. Calculations using a first-order model fail to reproduce both the magnitudes of the recoil peaks and the spectral line profiles.

  6. Measurement of angular distribution of sound emission from training projectiles in subsonic flight

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Parthasarathy, S. P.; Harstad, K. G.; Back, L. H.

    1986-01-01

    Training projectiles with nose ring cavities that produce intense whistles in stationary free-jet tests were shot in a relatively straight-line trajectory. A ground based microphone was used to obtain the angular distribution of sound intensity produced from the subsonically flying projectile. Data reduction required calculation of Doppler and attenuation factors which were determined based on a non-linear trajectory. Also, the directional sensitivity of the microphone was measured and used in the data reduction. Significant angular variation of sound intensity produced from the projectile was found which can be used to plot an intensity contour map on the ground. A full-scale field test confirmed the validity of the aeroacoustic concept of producing a relatively intense whistle from the projectile, and the usefulness of a real-time data acquisition system.

  7. Core-Hole Molecular Frame X-Ray Photoelectron Angular Distributions as Molecular Geometry Probes

    NASA Astrophysics Data System (ADS)

    Trevisan, Cynthia; Williams, Joshua; Menssen, Adrian; Weber, Thorsten; Rescigno, Thomas; McCurdy, Clyde; Landers, Allen

    2014-05-01

    We present experimental and theoretical results for the angular dependence of electrons ejected from the core orbitals of ethane (C2H6) and tetrafluoromethane (CF4) in an effort to understand the origin of the imaging effect by which the molecular frame photoelectron angular distributions (MFPADs) for removing an electron from a 1s orbital effectively image the geometry of a class of molecules. At low energies, our calculations predict the same imaging effect in X2H6 previously found in CH4, H2O and NH3. By contrast, in experiment and calculations CF4 displays an anti-imaging effect, whereby the electron ejected by core photoionization has the tendency to avoid molecular bonds, if averaged over directions of polarization of the incident X-ray beam. Our measurements employ the COLTRIMS method and the calculations were performed with the Complex Kohn Variational method.

  8. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    NASA Astrophysics Data System (ADS)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Sen, Manibrata

    2017-02-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions, focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries that produce a crossing between the zenith-angle spectra of νe and bar nue. Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.

  9. Bidirectional Scattering Distribution Function (BSDF): A Systematized Bibliography

    PubMed Central

    Asmail, Clara

    1991-01-01

    In conjunction with the development of a bidirectional scattering metrology project, a large number of papers pertaining to the theory and measurement of bidirectional scattering from optical surfaces were collected and categorized. This collection includes papers that deal with various aspects of the bidirectional scattering distribution function (BSDF), its measurement, interpretation, use, and implications. Each paper is classified in one or more subject categories on the basis of its technical content. The subject categories are included just to serve as a key to the most salient characteristics of each paper cited. Because of the interest in this field, this bibliography is being published as a service to the public. PMID:28184111

  10. Ro-vibrational excitation, alignment and orientation distributions of fast non-dissociatively scattered molecules

    NASA Astrophysics Data System (ADS)

    Harder, R.; Snowdon, K. J.

    1997-12-01

    The ro-vibrational distribution of fast diatomic molecules scattered from an uncorrugated surface under strongly dissipative glancing incidence conditions is calculated. The classical trajectory simulation includes potential surface switching associated with hot-electron scattering processes. Both ro-vibrational excitation and strong alignment of the classical angular momentum vector in the surface plane ("cartwheel motion") are observed, independent of the occurrence of potential surface switching. Ro-vibrational excitation is enhanced strongly by transitions between potential surfaces. The resultant larger proportion of molecules in highly rotationally excited states leads to a higher fraction of cartwheel-aligned molecules in the scattered molecule ensemble. The molecules which dissociate in the simulation are characterised by surface normal peaked internuclear axis orientation distributions. This is in agreement with the results of recent experiments [A. Nesbitt et al., Surf. Sci. 331-333 (1995) 321]. We observe, in addition, an enhanced rotational population of "topspin" oriented molecules, which arises from differences in the surface parallel oriented friction forces acting on each atom of the molecule. Glancing incidence scattering from well-prepared close-packed metal surfaces would appear to provide an efficient, general method to obtain a beam of preferentially aligned fast neutral diatomic molecules.

  11. Angular distribution of thick-target bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on Ag

    SciTech Connect

    Gonzales, D.; Cavness, B.; Williams, S.

    2011-11-15

    Experimental results are presented comparing the intensities of the bremsstrahlung produced by electrons with initial energies ranging from 10 to 20 keV incident on a thick Ag target, measured at forward angles in the range of 0 degree sign to 55 degree sign . When the data are corrected for attenuation due to photon absorption within the target, the results indicate that the detected radiation is distributed anisotropically only at photon energies k that are approximately equal to the initial energy of the incident electrons E{sub 0}. The results of our experiments suggest that, as k/E{sub 0}{yields} 0, the detected radiation essentially becomes isotropic due primarily to the scattering of electrons within the target. A comparison to the theory of Kissel et al.[At. Data Nucl. Data Tables 28, 381 (1983)] suggests that the angular distribution of bremsstrahlung emitted by electrons incident on thick targets is similar to the angular distribution of bremsstrahlung emitted by electrons incident on free-atom targets only when k/E{sub 0}{approx_equal} 1. The experimental data also are in approximate agreement with the angular distribution predictions of the Monte Carlo program penelope.

  12. New Statistical Results on the Angular Distribution of Gamma-Ray Bursts

    SciTech Connect

    Balazs, Lajos G.; Horvath, Istvan; Vavrek, Roland

    2008-05-22

    We presented the results of several statistical tests of the randomness in the angular sky-distribution of gamma-ray bursts in BATSE Catalog. Thirteen different tests were presented based on Voronoi tesselation, Minimal spanning tree and Multifractal spectrum for five classes (short1, short2, intermediate, long1, long2) of gamma-ray bursts, separately. The long1 and long2 classes are distributed randomly. The intermediate subclass, in accordance with the earlier results of the authors, is distributed non-randomly. Concerning the short subclass earlier statistical tests also suggested some departure from the random distribution, but not on a high enough confidence level. The new tests presented in this article suggest also non-randomness here.

  13. Barrier distribution of quasi-elastic backward scattering

    SciTech Connect

    Mitsuoka, S.; Ikezoe, H.; Nishio, K.; Watanabe, Y.; Jeong, S. C.; Ishiyama, H.; Hirayama, Y.; Imai, N.; Miyatake, H.

    2009-05-04

    In order to study the nucleus-nucleus interaction in Pb-based cold fusion, we have measured excitation functions for quasi-elastic scattering of {sup 48}Ti, {sup 54}Cr, {sup 56}Fe, {sup 64}Ni, {sup 70}Zn and {sup 86}Kr projectiles on {sup 208}Pb target at backward angles. The barrier distributions were derived from the first derivative of measured quasi-elastic scattering cross sections relative to the Rutherford scattering cross section. The centroids of the barrier distributions show a deviation from several predicted barrier heights toward the low energy side. The shape of the barrier distributions is well reproduced by the results of a coupled-channel calculation taking account of the coupling effects of two phonon excitations of the quadrupole vibration for the projectiles and of the octupole vibration for the {sup 208}Pb target.

  14. Barrier distribution of quasi-elastic backward scattering

    NASA Astrophysics Data System (ADS)

    Mitsuoka, S.; Ikezoe, H.; Nishio, K.; Watanabe, Y.; Jeong, S. C.; Ishiyama, H.; Hirayama, Y.; Imai, N.; Miyatake, H.

    2009-05-01

    In order to study the nucleus-nucleus interaction in Pb-based cold fusion, we have measured excitation functions for quasi-elastic scattering of 48Ti, 54Cr, 56Fe, 64Ni, 70Zn and 86Kr projectiles on 208Pb target at backward angles. The barrier distributions were derived from the first derivative of measured quasi-elastic scattering cross sections relative to the Rutherford scattering cross section. The centroids of the barrier distributions show a deviation from several predicted barrier heights toward the low energy side. The shape of the barrier distributions is well reproduced by the results of a coupled-channel calculation taking account of the coupling effects of two phonon excitations of the quadrupole vibration for the projectiles and of the octupole vibration for the 208Pb target.

  15. Design method for a laser line beam shaper of a general 1D angular power distribution

    NASA Astrophysics Data System (ADS)

    Oved, E.; Oved, A.

    2016-05-01

    Laser line is a beam of laser, spanned in one direction using a beam shaper to form a fan of light. This illumination tool is important in laser aided machine vision, 3D scanners, and remote sensing. For some applications the laser line should have a specific angular power distribution. If the distribution is nonsymmetrical, the beam shaper is required to be nonsymmetrical freeform, and its design process using optical design software is time consuming due to the long optimization process which usually converges to some local minimum. In this paper we introduce a new design method of a single element refractive beam shaper of any predefined general 1D angular power distribution. The method makes use of a notion of "prism space", a geometrical representation of all double refraction prisms, and any 1D beam shaper can be described by a continuous curve in this space. It is shown that infinitely many different designs are possible for any given power distribution, and it is explained how an optimal design is selected among them, based on criteria such as high transmission, low surface slopes, robustness to manufacturing errors etc. The method is non-parametric and hence does not require initial guess of a functional form, and the resultant optical surfaces are described by a sequence of points, rather than by an analytic function.

  16. Measurement of angular distribution of neutron flux for the 6MeV race-track microtron based pulsed neutron source.

    PubMed

    Patil, B J; Chavan, S T; Pethe, S N; Krishnan, R; Dhole, S D

    2010-09-01

    The 6MeV race track microtron based pulsed neutron source has been designed specifically for the elemental analysis of short lived activation products, where the low neutron flux requirement is desirable. Electrons impinges on a e-gamma target to generate bremsstrahlung radiations, which further produces neutrons by photonuclear reaction in gamma-n target. The optimisation of these targets along with their spectra were estimated using FLUKA code. The measurement of neutron flux was carried out by activation of vanadium at different scattering angles. Angular distribution of neutron flux indicates that the flux decreases with increase in the angle and are in good agreement with the FLUKA simulation.

  17. Scattering by two-component random distributions of spheres.

    PubMed

    Burke, J E; Kays, T H; Kulp, J L; Twersky, V

    1968-12-01

    Theory and prototype (at wavelength lambda = 5 mm) partial coherence scattering data for optical applications in diagnostic measurements on two component suspensions or gases are presented. Results are given for equal volume mixtures of two sizes of moving randomly distributed large spheres for all realizable values of the fractional volume w (the fraction of the slab region container filled by scattering material). The relative index of refraction of the spheres was about 1.017, and their diameters were 6.52lambda and 3.33lambda (so that we used about eight times as many small spheres as large ones for each value of w). The spheres were of lightweight Styrofoam, and their motion arose from turbulent air streams (flowing through grids that form the top and bottom of a Styrofoam container), and the data were obtained in real time by processing the instantaneous phase quadrature components of the scattered field with an electronic analog computer. We give results for the forward scattered coherent phase, for the coherent, incoherent, and total intensities, and for the covariant magnitude and phase which (together with the incoherent intensity) provide the variances and covariance of the instantaneous phase quadrature components. We also consider certain reduced data records (from which the major effects of scatterer size and material have been eliminated) to indicate the dependence of the scattering on the fractional volume and to facilitate comparison with earlier data for distributions of identical spheres.

  18. The scattering matrix for size distributions of irregular particles

    NASA Astrophysics Data System (ADS)

    Moreno, F.; Vilaplana, R.; Muñoz, O.; Molina, A.

    2005-05-01

    We have performed extensive calculations to obtain the scattering matrix elements for a size distribution of irregularly-shaped, randomly oriented particles by the Discrete Dipole Approximation (DDA) method, at size parameters X<25. We have studied the effects of changing the porosity of the particles and their refractive index on the scattering properties. To study both the color at blue and red incident wavelengths. The results will be used in the future for the interpretation of polarimetric observations of cosmic dust and laboratory measurements of scattering matrices of dust samples in a new light scattering facility which is currently built at the Instituto de Astrofísica de Andalucía in Granada, Spain.

  19. Alpha-Particle Angular Distributions of At and Rn Isotopes and Their Relation to Nuclear Structure

    SciTech Connect

    NICOLE Collaboration and ISOLDE Collaboration

    1996-12-01

    We report on an extensive on-line nuclear orientation study of the angular distribution of {alpha} particles emitted in the favored decay of neutron deficient At and Rn nuclei near the {ital N}=126 shell closure. Surprisingly large anisotropies were observed, showing pronounced changes from one isotope to another. Comparing these data with several theoretical models shows that anisotropic {alpha} emission in favored decays from near-spherical nuclei can well be explained within the shell model, implying that it is mainly determined by the structure of the decaying nucleus. {copyright} {ital 1996 The American Physical Society.}

  20. Measurement of the Angular Distribution of the Electron from $W \\to e + \

    SciTech Connect

    Ramos, Manuel Martin

    1996-10-01

    The goal of this thesis is to scan the extensive literature dealing with the properties of the W and Z bosons. Iit is clear that, besides the measurements confirming the weak interactions theory, no specific work related to the angular distributions of the emerging particles from the leptonic decay of the boson has been done. The aim of the work is to obtain experimentally the values of α2, as function of the transverse momentum of the W, that appear in the expression 0.3 and to compare the values obtained with the theoretical predictions.

  1. Anomalous photoelectron angular distribution in ionization of Kr in intense ultraviolet laser fields

    NASA Astrophysics Data System (ADS)

    Nakano, Motoyoshi; Otobe, Tomohito; Itakura, Ryuji

    2017-06-01

    We investigate multiphoton ionization of Kr for the formation of the two spin-orbit split states 1/2 2P and 3/2 2P of Kr+ in intense ultraviolet femtosecond laser fields (λ ≈ 398 nm, τ ≈ 50 fs). As the laser intensity increases from 8 to 39 TW cm-2, the photoelectron angular distribution (PAD) exhibits the anomalous enhancement in the direction perpendicular to the laser polarization. With the support of the time-dependent density functional theory taking account of the spin-orbit interaction, the measured anomalous PAD is ascribed to the autoionization to 3/2 2P.

  2. A Large-alphabet Quantum Key Distribution Protocol Using Orbital Angular Momentum Entanglement

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Mei; Gong, Long-Yan; Li, Yong-Qiang; Yang, Hua; Sheng, Yu-Bo; Cheng, Wei-Wen

    2013-06-01

    We experimentally demonstrate a quantum key distribution protocol using entangled photon pairs in orbital angular momentum (OAM). Here Alice uses a fixed phase hologram to modulate her OAM state on one photon with a spatial light modulator (SLM), while Bob uses the designed N different phase holograms for his N-based keys on the other photon with his SLM. With coincidences, Alice can fully retrieve the keys sent by Bob without reconciliation. We report the experiment results with N = 3 and OAM eigenmodes |l = ±1>, and discuss the security from the light path and typical attacks.

  3. Angular distributions of sputtered atoms for low-energy heavy ions, medium ions and light ions

    NASA Astrophysics Data System (ADS)

    Yamamura, Yasunori; Mizuno, Yoshiyuki; Kimura, Hidetoshi

    1986-03-01

    The angular distributions of sputtered atoms for the near-threshold sputtering of heavy ions, medium ions, and light ions have been investigated by a few-collision model and the ACAT computer simulation code. For heavy-ion sputtering the preferential angle of sputtered atoms is about 50° which is measured from the surface normal, while in the case of the near-threshold light-ion sputtering the preferential angles are nearly equal to the surface normal and do not depend on angle of incidence. It is found that the agreement between the ACAT preferential angles and theoretical values due to a few-collision model is very good.

  4. Probing molecular frame photoelectron angular distributions via high-order harmonic generation from aligned molecules

    NASA Astrophysics Data System (ADS)

    Lin, C. D.; Jin, Cheng; Le, Anh-Thu; Lucchese, R. R.

    2012-10-01

    We analyse the theory of single photoionization (PI) and high-order harmonic generation (HHG) by intense lasers from aligned molecules. We show that molecular-frame photoelectron angular distributions can be extracted from these measurements. We also show that, under favourable conditions, the phase of PI transition dipole matrix elements can be extracted from the HHG spectra. Furthermore, by varying the polarization axis of the HHG generating laser with respect to the polarization axis of the aligning laser, it is possible to extract angle-dependent tunnelling ionization rates for different subshells of the molecules.

  5. Angular distribution of isothermal expansions of non-quasi-neutral plasmas into a vacuum

    NASA Astrophysics Data System (ADS)

    Yongsheng, Huang; Xiaojiao, Duan; Yijin, Shi; Xiaofei, Lan; Zhixin, Tan; Naiyan, Wang; Xiuzhang, Tang; Yexi, He

    2008-04-01

    A two dimensional planar model is developed for self-similar isothermal expansions of non-quasi-neutral plasmas into a vacuum of solid targets heated by ultraintense laser pulses. The angular ion distribution and the dependence of the maximum ion velocity on laser parameters and target thicknesses are predicted. Considering the self-generated magnetic field of plasma beams as a perturbation, the ion energy on edge at the ion opening angle has an increase of 2% relative to that on the front center. Therefore, the self-generated magnetic field of plasma beams is not large enough to interpret for the ring structures.

  6. Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.

    PubMed

    Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J

    2013-08-15

    Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical.

  7. Electroweak charge density distributions with parity-violating electron scattering

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Ren, Zhongzhou; Xu, Chang; Xu, Renli

    2013-11-01

    Parity-violating electron scattering (PVS) is an accurate and model-independent way to investigate the weak-charge density distributions of nuclei. In this paper, we study parity-violating electron scattering with the Helm model where the effects of spin-orbit currents on nuclear weak skins are taken into account. The conditions of two PVS measurements to constrain the surface thickness σW of Helm weak-charge densities are investigated. According to the plane wave Born approximation, Apv is expressed in terms of parameters of the corresponding Helm charge and weak-charge densities. After fitting the results of Apv calculated from the phase-shift analysis method where the Coulomb distortion effects are incorporated, an empirical formula in terms of Helm model parameters for calculating Apv is obtained. If two PVS measurements with different scattering angles are carried out, the modeled weak-charge density distributions with two parameters could be extracted from this empirical formula.

  8. Combining near-field hyperspectral imaging and far-field spectral-angular distribution to develop mid-field white LED optical models with spatial color deviation.

    PubMed

    Lee, Tsung-Xian; Lu, Tsung-Lin; Chen, Bo-Song

    2016-07-11

    The integration of spatial distribution of light intensity and color in the midfield is instrumental for LED optical design. On the basis of this rationale, we proposed an accurate and convenient method for developing white LED optical models. Near-field hyperspectral images and far-field spectral-angular distributions were integrated to illustrate changes in spatial light intensity and color distribution in the mid-field, to the exclusion of the absorption, conversion, and scattering of phosphors. The corresponding optical models were developed for three LED samples under different packaging conditions. Their normalized cross-correlation values for spatial light intensity and correlated-color-temperature distribution between simulation and measurement averaged as high as 0.995 and 0.99 respectively, which validated the accuracy and feasibility of the proposed method.

  9. Angular scattering of 1-50 keV ions through graphene and thin carbon foils: potential applications for space plasma instrumentation.

    PubMed

    Ebert, Robert W; Allegrini, Frédéric; Fuselier, Stephen A; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J

    2014-03-01

    We present experimental results for the angular scattering of ~1-50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ~0.5 μg cm(-2) carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm(-2) carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ(1/2), for ~3-5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm(-2) (~20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ~50 keV.

  10. Angular scattering of 1–50 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation

    SciTech Connect

    Ebert, Robert W.; Allegrini, Frédéric; Fuselier, Stephen A.; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J.

    2014-03-15

    We present experimental results for the angular scattering of ∼1–50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ∼0.5 μg cm{sup −2} carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm{sup −2} carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ{sub 1/2}, for ∼3–5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm{sup −2} (∼20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ∼50 keV.

  11. Interpretation of angular distributions of Z-boson production at colliders

    NASA Astrophysics Data System (ADS)

    Peng, Jen-Chieh; Chang, Wen-Chen; McClellan, Randall Evan; Teryaev, Oleg

    2016-07-01

    High precision data of dilepton angular distributions in γ* / Z production were reported recently by the CMS Collaboration covering a broad range of the dilepton transverse momentum, qT, up to ∼ 300 GeV. Pronounced qT dependencies of the λ and ν parameters, characterizing the cos2 ⁡ θ and cos ⁡ 2 ϕ angular distributions, were found. Violation of the Lam-Tung relation was also clearly observed. We show that the qT dependence of λ allows a determination of the relative contributions of the q q bar annihilation versus the qG Compton process. The violation of the Lam-Tung relation is attributed to the presence of a non-zero component of the q - q bar axis in the direction normal to the ;hadron plane; formed by the colliding hadrons. The magnitude of the violation of the Lam-Tung relation is shown to reflect the amount of this 'non-coplanarity;. The observed qT dependencies of λ and ν from the CMS and the earlier CDF data can be well described using this approach.

  12. W production at LHC: lepton angular distributions and reference frames for probing hard QCD

    NASA Astrophysics Data System (ADS)

    Richter-Was, E.; Was, Z.

    2017-02-01

    Precision tests of the Standard Model in the Strong and Electroweak sectors play a crucial role, among the physics program of LHC experiments. Because of the nature of proton-proton processes, observables based on the measurement of the direction and energy of final state leptons provide the most precise probes of such processes. In the present paper, we concentrate on the angular distribution of leptons from W → ℓ ν decays in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical harmonics of at most second order. We argue, that contrary to general belief often expressed in the literature, the full set of angular coefficients can be measured experimentally, despite the presence of escaping detection neutrino in the final state. There is thus no principle difference with respect to the phenomenology of the Z/γ → ℓ ^+ ℓ ^- Drell-Yan process. We show also, that with the proper choice of the reference frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or more high p_T jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. In this way, electroweak effects (dominated by the V-A nature of W couplings to fermions), can be better separated from the ones of strong interactions. The separation is convenient for the measurements interpretation.

  13. Time-energy mapping of photoelectron angular distribution: application to photoionization stereodynamics of nitric oxide.

    PubMed

    Suzuki, Yoshi-Ichi; Tang, Ying; Suzuki, Toshinori

    2012-05-28

    The time-energy mapping of the photoionization integral cross section and laboratory-frame photoelectron angular distribution is used to study photoionization stereodynamics of a diatomic molecule. The general theoretical formalism [Y. Suzuki and T. Suzuki, Mol. Phys., 2007, 105, 1675] is simplified for application to a diatomic molecule, and a high-resolution photoelectron imaging apparatus is used to determine the transition dipole moments and phase shifts of photoelectron partial waves in near-threshold and non-dissociative photoionization of NO from the A(2)Σ(+) state. The transition dipoles and phase shifts thus determined are in reasonable agreement with those by state-to-state photoionization experiment and Schwinger variational calculations. The difference of the phase shifts from those expected from the quantum defects of Rydberg states suggests occurrence of weak hybridization of different l-waves, in addition to the well-known s-d super complex. The circular dichroism in photoelectron angular distribution is also simulated from our results.

  14. Efficiency and Angular Distribution of Graphene-Plasmon Excitation by Electron Beam

    NASA Astrophysics Data System (ADS)

    Ochiai, Tetsuyuki

    2014-05-01

    We theoretically study the efficiency and angular distribution of a graphene-plasmon excitation by an electron beam. An electron beam incident on doped graphene induces the out-of-plane transition radiation and in-plane plasmon-polariton waves. At the same time the electron loses its kinetic energy by energy conservation. From the momentum-resolved energy-loss spectrum, we can determine how much kinetic energy of the electron is converted into the transition radiation and plasmon-polariton excitation. Numerical results are presented by changing the incident angle and electron velocity. We find that the graphene plasmon polariton of particular frequency can be excited by an electron beam of appropriate velocity. Moreover, a deeply tilted incidence of the electron beam very efficiently excites the graphene plasmon polariton with an angular distribution range from -30 to 30°. We also show that the transition radiation through graphene exhibits a peak at the threshold energy of the interband transition. These theoretical results are obtained under the local-response approximation of the optical conductivity as well as under the plasmon pole approximation. The results are also compared with those obtained in a thin metallic slab.

  15. Photoelectron angular distribution in two-pathway ionization of neon with femtosecond XUV pulses

    NASA Astrophysics Data System (ADS)

    Douguet, Nicolas; Gryzlova, Elena V.; Staroselskaya, Ekaterina I.; Bartschat, Klaus; Grum-Grzhimailo, Alexei N.

    2017-05-01

    We analyze the photoelectron angular distribution in two-pathway interference between nonresonant one-photon and resonant two-photon ionization of neon. We consider a bichromatic femtosecond XUV pulse whose fundamental frequency is tuned near the 2p53s atomic states of neon. The time-dependent Schrödinger equation is solved and the results are employed to compute the angular distribution and the associated anisotropy parameters at the main photoelectron line. We also employ a time-dependent perturbative approach, which allows obtaining information on the process for a large range of pulse parameters, including the steady-state case of continuous radiation, i.e., an infinitely long pulse. The results from the two methods are in relatively good agreement over the domain of applicability of perturbation theory. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.

  16. Interference oscillations in the angular distribution of laser-ionized electrons near ionization threshold.

    PubMed

    Arbó, D G; Yoshida, S; Persson, E; Dimitriou, K I; Burgdörfer, J

    2006-04-14

    We analyze the two-dimensional momentum distribution of electrons ionized by few-cycle laser pulses in the transition regime from multiphoton absorption to tunneling by solving the time-dependent Schrödinger equation and by a classical-trajectory Monte-Carlo simulation with tunneling (CTMC-T). We find a complex two-dimensional interference pattern that resembles above threshold ionization (ATI) rings at higher energies and displays Ramsauer-Townsend-type diffraction oscillations in the angular distribution near threshold. CTMC-T calculations provide a semiclassical explanation for the dominance of selected partial waves. While the present calculation pertains to hydrogen, we find surprising qualitative agreement with recent experimental data for rare gases [A. Rudenko, J. Phys. B 37, L407 (2004)].

  17. Search for Z' --> e+ e- using dielectron mass and angular distribution.

    PubMed

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-06-02

    We search for Z' bosons in dielectron events produced in pp collisions at square root of s = 1.96 TeV, using 0.45 fb(-1) of data accumulated with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. To identify the Z' --> e+ e- signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z' mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z', as well as on the contact-interaction mass scales for different helicity structure scenarios.

  18. Atomic ionization by intense laser pulses of short duration: Photoelectron energy and angular distributions

    SciTech Connect

    Dondera, M.

    2010-11-15

    We introduce an adequate integral representation of the wave function in the asymptotic region, valid for the stage postinteraction between a one-electron atom and a laser pulse of short duration, as a superposition of divergent radial spherical waves. Starting with this representation, we derive analytic expressions for the energy and angular distributions of the photoelectrons and we show their connection with expressions used before in the literature. Using our results, we propose a method to extract the photoelectron distributions from the time dependence of the wave function at large distances. Numerical results illustrating the method are presented for the photoionization of hydrogenlike atoms from the ground state and several excited states by extreme ultraviolet pulses with a central wavelength of 13.3 nm and several intensities around the value I{sub 0}{approx_equal}3.51x10{sup 16} W/cm{sup 2}.

  19. Quantum Key Distribution with High Order Fibonacci-like Orbital Angular Momentum States

    NASA Astrophysics Data System (ADS)

    Pan, Ziwen; Cai, Jiarui; Wang, Chuan

    2017-08-01

    The coding space in quantum communication could be expanded to high-dimensional space by using orbital angular momentum (OAM) states of photons, as both the capacity of the channel and security are enhanced. Here we present a novel approach to realize high-capacity quantum key distribution (QKD) by exploiting OAM states. The innovation of the proposed approach relies on a unique type of entangled-photon source which produces entangled photons with OAM randomly distributed among high order Fiboncci-like numbers and a new physical mechanism for efficiently sharing keys. This combination of entanglement with mathematical properties of high order Fibonacci sequences provides the QKD protocol immunity to photon-number-splitting attacks and allows secure generation of long keys from few photons. Unlike other protocols, reference frame alignment and active modulation of production and detection bases are unnecessary.

  20. First Results on Angular Distributions of Thermal Dileptons in Nuclear Collisions

    SciTech Connect

    Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Banicz, K.; Damjanovic, S.; Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.; Falco, A. de; Floris, M.; Masoni, A.; Puddu, G.; Serci, S.

    2009-06-05

    The NA60 experiment at the CERN Super Proton Synchrotron has studied dimuon production in 158A GeV In-In collisions. The strong excess of pairs above the known sources found in the complete mass region 0.2angular distributions. Using the Collins-Soper reference frame, the structure function parameters {lambda}, {mu}, and {nu} are measured to be zero, and the projected distributions in polar and azimuth angles are found to be uniform. The absence of any polarization is consistent with the interpretation of the excess dimuons as thermal radiation from a randomized system.

  1. Search for Z' ---> e+ e- using dielectron mass and angular distribution

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2006-02-01

    The authors search Z{prime} bosons in dielectron events produced in p{bar p} collisions at {radical}s = 1.96 TeV, using a 0.45 fb{sup -1} dataset accumulated with the CDF II detector at the Fermilab Tevatron. To identify the Z{prime} {yields} e{sup +}e{sup -} signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z{prime} mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z{prime}, as well as on the contact interaction mass scales for different helicity structure scenarios.

  2. Comparative Performance of the Photomultiplier Tube and the Silicon Avalanche Photodiode When Used as Detectors in Angular Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Kroner, D. O.; Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K.; Smythe, W. D.

    2014-12-01

    We report the results of a comparative study of two types of photometric detectors that are commonly used for, spacecraft, ground-based telescope, and laboratory observations in support of precise angular scattering investigations of the type described in a companion paper (Nelson et al., this meeting). The performance of the state of the art Hamamatsu C12703-01 Silicon Avalanche photodiode (SAD) was compared to that of the Hamamatsu R928 Photomultiplier tube (PMT). The Hamamatsu R928 evolved from a sequence of photometric detectors with a long history of use in support of laboratory and remote sensing studies, tracing backwards to include the RCA 1P21 and the RCA 931A. Two newly acquired SADs were bench tested along with a new R928 photomultiplier tube that was thermoelectrically cooled to -10 deg C. The SAD's employed electronic thermal compensation supplied by the manufacturer. The SADs and PMT measured electromagnetic radiation from solid-state lasers of wavelength 635 nm after the radiation was reflected from diffusely-scattering surfaces of varying albedos. The SADs were housed on tripods that were co-aligned with the PMT and laser. The photometric detectors were placed 4.3 meters from a reflecting disk. The disk was rotated to reduce the effect of laser speckle. All detectors in the experiment were equipped with notch filters that transmit light only of the wavelength emitted by the laser. Three SR830 DSP Lock-in Amplifiers were connected to the detectors and various setting configurations were compared in order to optimize signal to noise. Neutral Density filters (ND 0,3 and ND 0,9) were placed in the light path to determine the linearity in the response function of the detectors. We conclude that in this application SADs and PMTs produce comparable photometric precision and fidelity. SADs offer greater convenience because thermal compensation circuitry is integrated with the detector. This work was partially supported by NASA's Cassini Science

  3. The angular distribution of energetic electron and X-ray emissions from triggered lightning leaders

    NASA Astrophysics Data System (ADS)

    Schaal, M. M.; Dwyer, J. R.; Rassoul, H. K.; Hill, J. D.; Jordan, D. M.; Uman, M. A.

    2013-10-01

    We investigate individual X-ray bursts from lightning leaders to determine if energetic electrons at the source (and hence X-rays) are emitted isotropically or with some degree of anisotropy. This study was motivated by the work of Saleh et al. (2009), which found the falloff of X-rays in concentric radial annuli, covering all azimuthal directions in each annulus, from the lightning channel to be most consistent with an isotropic electron source. Here we perform a statistical analysis of angular and spatial distributions of X-rays measured by up to 21 NaI/PMT detectors at the International Center for Lightning Research and Testing site for 21 leader X-ray bursts from five leaders (including four dart-stepped leaders and one dart leader). Two procedures were used to complete this analysis. Procedure 1 found the first-order anisotropy, and procedure 2 tested whether or not the angular distribution was consistent with an isotropic distribution. Because higher-order anisotropies could be present in the data, a distribution that is not isotropic does not necessarily have a significant first-order anisotropy. Using these procedures, we find that at least 11 out of 21 X-ray bursts have a statistically significant first-order anisotropy, and hence those 11 are inconsistent with an isotropic emission. The remaining 10 bursts do not have significant first-order anisotropy. However, of those 10 bursts, 9 are inconsistent with isotropic emission, since they exhibit significant higher-order anisotropies. Since Saleh et al. (2009) did not consider anisotropies in the azimuthal direction, these new measurements of anisotropy do not necessarily contradict that work. Indeed, our analysis supports the finding that the X-ray emissions from lightning are inconsistent with a vertically downward beam. The level of anisotropy of the runaway electrons is important because it provides, in principle, information on the streamer zone in front of the leader and the electric field near the

  4. Quasi-elastic light scattering determination of the size distribution of extruded vesicles.

    PubMed

    Kölchens, S; Ramaswami, V; Birgenheier, J; Nett, L; O'Brien, D F

    1993-04-01

    The size distribution of phospholipid vesicles prepared by the freeze thaw-extrusion method were determined by the non-perturbing technique of quasi-elastic light scattering (QELS) and compared to latex particles of known size. Multiangle QELS experiments were performed to avoid errors due to the angular dependence of the scattering function of the particles. The experimentally determined autocorrelation function was analyzed by multiple mathematical procedures, i.e. single exponential, CUMULANT, exponential sampling, non-negatively constrained least square and CONTIN, in order to select suitable models for vesicle characterization. The most consistent results were obtained with CUMULANT, non-negatively constrained least square and CONTIN. In many instances single exponential analysis gave comparable results to these procedures, which indicates the vesicles have a narrow distribution of sizes. The influence of filter pore size, extrusion pressure and lipid concentration on the size and size distribution of extruded vesicles was determined. Extrusion through 100-, 200- and 400-nm pore size filters produced a unimodal distribution of vesicles, with somewhat smaller diameters as the extrusion pressure increased. The larger the filter pore size, the more dependent the vesicle size was on applied pressure. The observed vesicle size was independent of the lipid concentration between 0.1 and 10 mg ml-1.

  5. Simulation of infrared scattering from ice aggregates by use of a size-shape distribution of circular ice cylinders.

    PubMed

    Baran, Anthony J

    2003-05-20

    The scalar optical properties (extinction coefficient, mass extinction coefficient, single-scattering albedo, and asymmetry parameter) of a distribution of randomly oriented ice aggregates are simulated generally to well within 4% accuracy by use of a size-shape distribution of randomly oriented circular ice cylinders at wavelengths in the terrestrial window region. The single-scattering properties of the ice aggregates are calculated over the whole size distribution function by the finite-difference time-domain and improved geometric optics methods. The single-scattering properties of the size-shape distribution of circular ice cylinders are calculated by the T-matrix method supplemented by scattering solutions obtained from complex-angular-momentum theory. Moreover, radiative-transfer studies demonstrate that the maximum error in brightness temperature space when the size-shape distribution of circular ice cylinders is used to represent scattering from ice aggregates is only approximately 0.4 K The methodology presented should find wide applicability in remote sensing of ice cloud and parameterization of cirrus cloud scalar optical properties in climate models.

  6. Fuel areal density distributions derived from nuclear scattering signatures

    NASA Astrophysics Data System (ADS)

    Bionta, R. M.; Casey, D. T.; Cerjan, C. J.; Yeamans, C. B.; Gatu Johnson, M. G.

    2016-10-01

    The spatial variation of activities measured in the array of 20 Nuclear Activation Detectors mounted on the flanges around the NIF target chamber (FNADs) are correlated with asymmetries in the underlying fuel areal density of compressed ICF targets. The asymmetric areal density distributions cause variations in the neutron spectra with direction which are seen in the dsr (down scattered ratio) metric, the ratio of the number of 10-12 MeV neutrons to the number of 13-15 MeV neutrons. We show, using a simple physics based simulation of neutron scattering through an idealized non-uniform DT shell with a realistic neutron source, that for most shots an areal distribution can be found which reproduces both the FNAD activity and the dsr measurements. Furthermore, by linking the simulation to a Marquardt minimizer, we fit the areal distribution to a truncated set of spherical harmonics. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Electron back-scattered diffraction and nanoindentation analysis of nanostructured Al tubes processed by multipass tubular-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Mesbah, Mohsen; Faraji, Ghader; Bushroa, A. R.

    2016-03-01

    Microstructural evolution and mechanical properties of nanostructured 1060 aluminum alloy tubes processed by tubular-channel angular pressing (TCAP) process were investigated using electron back-scattered diffraction (EBSD), transmission electron microscopy (TEM) and nanoindentation analyzes. EBSD scans revealed a homogeneous ultrafine grained microstructure after the third passes of the TCAP process. Apart from that the mean grain sizes of the TCAP processed tubes were refined to 566 nm, 500 nm and 480 nm respectively after the first, second and third passes. The results showed that after the three TCAP passes, the grain boundaries with a high angle comprised 78% of all the boundaries. This is in comparison to the first pass processed sample that includes approximately 20% HAGBs. The TEM inspection afforded an appreciation of the role of very low-angle misorientation boundaries in the process of refining microstructure. Nanoindentation results showed that hardness was the smallest form of an unprocessed sample while the largest form of the processed sample after the three passes of TCAP indicated the highest resistant of the material. In addition, the module of elasticity of the TCAP processed samples was greater from that of the unprocessed sample.

  8. Optimized design for the scattering with angular limitation in projection electron-beam lithography based electron projection system

    SciTech Connect

    Xiu, K.; Gibson, J. M.

    2000-05-01

    We investigate the design for a scattering with angular limitation in projection electron-beam lithography (SCALPEL) based electron projection system with a demagnification of -4. By a ''field-flip'' process we can construct a doublet in which the magnetic field has a flat feature in most of the optic column but opposite sign at two sides connected by a sharp transition region. Such a theoretical model can give a near zero chromatic aberration of rotation and much smaller field curvature and astigmatism. Compared with the conventional doublet, the total image blur caused by aberrations at 1/(sq root)(2) mm off-axis distance and 1.5 mrad semiangle aperture at the mask side is about only 24 nm for a column length of 400 mm. A shorter column, less than the current 400 mm, is also favored for further reducing the total aberration. These guarantee that we can choose a much larger aperture angle (compared with present 0.5 mrad) and beam current density in such a SCALPEL projection system to achieve higher throughput while still maintaining current resolution. A practical issue for possible magnetic lens design is also discussed. (c) 2000 American Vacuum Society.

  9. Effect of transverse vibrations of fissile nuclei on the angular and spin distributions of low-energy fission fragments

    SciTech Connect

    Bunakov, V. E.; Kadmensky, S. G.; Lyubashevsky, D. E.

    2016-05-15

    It is shown that A. Bohr’s classic theory of angular distributions of fragments originating from low-energy fission should be supplemented with quantum corrections based on the involvement of a superposition of a very large number of angular momenta L{sub m} in the description of the relative motion of fragments flying apart along the straight line coincidentwith the symmetry axis. It is revealed that quantum zero-point wriggling-type vibrations of the fissile system in the vicinity of its scission point are a source of these angular momenta and of high fragment spins observed experimentally.

  10. Above-threshold ionization of noble gases in elliptically polarized fields: Effects of atomic polarization on photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, YanLan; Yu, ShaoGang; Lai, XuanYang; Liu, XiaoJun; Chen, Jing

    2017-06-01

    We theoretically investigate the atomic polarization effect on photoelectron angular distributions (PADs) in above-threshold ionization of noble gases with elliptically polarized laser fields at wavelength of 800 nm, ellipticity of 0.25, and intensity of 1.5 ×1014W/cm2 . Simulations based on a semiclassical model that includes both the ionic Coulomb potential and the atomic polarization effect show surprisingly little difference between PADs for Ar, Kr, and Xe, which is in good agreement with recent experimental observations. Our calculations reveal that the atomic polarization effect increases the distance of the tunnel exit point of the photoelectron to the parent ion and weakens the strength of the interaction between the parent ion and the photoelectron on its subsequent classical propagation. As a result, the forward-scattering electrons which contribute to the main lobes in PADs are substantially suppressed. Our results indicate that the insensitivity of PADs for Ar, Kr, and Xe may be closely related to the influence of the atomic polarization effect on the photoelectron dynamics in the strong laser field.

  11. Backscattering enhancement from a random distribution of large discrete spherical scatterers with a size distribution

    SciTech Connect

    Mandt, C.E.; Leung Tsang )

    1992-12-01

    The authors study backscattering enhancement from a sparse random distribution of large scatterers wtih a size distribution. Second-order multiple-scattering theory based on the Bethe-Salpeter equation is used to compute the scattered field. The second-order cyclical term is used to account for the enhancement. The effects of polarization are included by using the Mie theory to account for scattering by individual particles, and the result is then averaged over the size distribution. Comparisons are made with experimental data for the case of a slab medium of sparsely distributed dielectric spheres with average ka of 298 and moderate optical thickness. Agreement between theory and experiment is good for both the copolarized and the cross-polarized returns. The Mueller matrix is also derived, an the degree of polarization is computed for the same case. Results show that including the cyclical term reduces the degree of polarization of the computed backscattered return. 19 refs., 5 figs., 2 tabs.

  12. Role of scattering distribution functions in spacecraft contamination control practices

    NASA Technical Reports Server (NTRS)

    Carosso, P. A.; Carosso, N. J. P.

    1986-01-01

    A method for spacecraft optical surface contamination monitoring based on the bidirectional reflectance distribution function (BRDF) and the bidirectional transmittance distribution function (BTDF) is described. In the experimental set up, BRDF/BTDF measurements were made at 0.6328 microns using a 35-mW He-Ne laser light source. A correlation of the second order between BRDF and cleanliness levels was observed. It is suggested that bidirectional scattering distribution functions measured on witness mirrors can give information about contamination in clean rooms or vacuum chambers, and that they can be adopted to establish contamination control criteria.

  13. The Angular Distribution of Quiet-time ~20-300 keV Superhalo Electrons in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Yang, L.; Wang, L.; He, J.; Tu, C. Y.; Pei, Z.

    2014-12-01

    The angular distribution of solar wind superhalo electrons carries important information on the electron acceleration location and scattering in the interplanetary medium. Here we present a comprehensive study of the angular distribution of ~20-300 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet-time periods from 1995 January through 2013 December. For quiet-time intervals, we re-bin the observed electron pitch angle distributions into the outward-traveling and inward-traveling bins, according the direction of interplanetary magnetic field (IMF). The inward-outward anisotropy of superhalo electrons at energy E is defined as A = 2(fout - fin)/(fout + fin), where fout (fin) is the average flux of outward-traveling (inward-traveling) electrons. We find that among all the ~640 quiet-time intervals, ~5% have an A > 0.1 (referred to as "outward events"), ~5% have an A < -0.1 (referred to as "inward events"), and ~90% have an |A| ≤ 0.1 (referred to as "isotropic events"). Isotropic events show no clear correlation with solar wind parameters (nSW, Vsw and Tp), IMF and solar wind turbulence spectrum. Inward and outward events also have no association with the IMF and nSW. But the occurrence ratio of outward (inward) events over all the events, α, roughly decreases (increases) with increasing VSW. Moreover, for outward (inward) events, α roughly increases with ρe/ρTp, where ρTp is the solar wind thermal proton gyroradius that is related to the separation between the turbulence inertial and dissipation ranges. These results suggest that quite-time superhalo electrons are generally isotropic due to the wave-particle interaction in the interplanetary medium; outward-traveling (inward-traveling) superhalo electrons may come from the acceleration occurring beyond (within) 1 AU, probably by CIRs or turbulence. We will also present a case study of several quiet-time electron events with the anisotropy A increasing with the electron energy E.

  14. A self-consistent hybrid model of a dual frequency sheath: Ion energy and angular distributions

    SciTech Connect

    Dai Zhongling; Xu Xiang; Wang Younian

    2007-01-15

    This paper presents a self-consistent hybrid model including the fluid model which can describe the characteristics of collisional sheaths driven by dual radio-frequency (DF) sources and Monte Carlo (MC) method which can determine the ion energy and angular distributions incident onto the dual rf powered electrode. The charge-exchange collisions between ions and neutrals are included in the MC model in which a self-consistent instantaneous electric field obtained from the fluid model is adopted. In the simulation, the driven method we used is either the current-driven method or the voltage-driven method. In the current-driven method, the rf current sources are assumed to apply to an electrode, which is the so-called the equivalent circuit model and is used to self-consistently determine the relationship between the instantaneous sheath potential and the sheath thickness. In the voltage-driven method, however, the rf voltage sources are assumed to apply to an electrode. The dual rf sheath potential, sheath thickness, ion flux, ion energy distributions (IEDs), and ion angular distributions (IADs) are calculated for different parameters. The numerical solutions show that some external parameters such as the bias frequency and power of the lower-frequency source as well as gas pressure are crucial for determining the structure of collisional dual rf sheaths and the IEDs. The shapes of the IADs, however, are determined mainly by the gas pressure. Furthermore, it is found that the results from the different driven methods behave in the same way although there are some differences in some quantities.

  15. Production of black holes and their angular momentum distribution in models with split fermions

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan

    2006-05-01

    In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n-n¯ oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross section for the production of black holes and their angular momentum distribution in these models with “split” fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.

  16. Rotationally inelastic scattering of NO(A{sup 2}Σ{sup +}) + Ar: Differential cross sections and rotational angular momentum polarization

    SciTech Connect

    Sharples, Thomas R.; Luxford, Thomas F. M.; McKendrick, Kenneth G.; Costen, Matthew L.; Townsend, Dave

    2015-11-28

    We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A{sup 2}Σ{sup +}, v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm{sup −1}. We report differential cross sections for scattering into NO(A{sup 2}Σ{sup +}, v = 0, N′ = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N′. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.

  17. Energy and angular distributions of detached electrons in a solvable model of ion-atom collisions

    SciTech Connect

    Macek, J.H.; Ovchinnikov, S.Y. |; Solovev, E.A.

    1999-08-01

    Electron energy and angular distributions are computed for a model of atom{endash}negative-ion collisions. In this model, electron-atom interactions are represented by zero-range potentials in an approximation where two identical atoms move along straight-line classical trajectories in head-on collisions. Analytic expressions for the ionization amplitudes are interpreted in terms of Sturmian eigenvalues and eigenfunctions. At high velocity, the computed distributions exhibit direct excitation and continuum capture cusps in addition to the binary encounter ridge. At low velocities, a single feature corresponding to an electron distribution centered midway between the target and projectile emerges. For initial conditions corresponding to gerade symmetry a single broad peak appears, while for ungerade symmetry there is a node at the midpoint so that the peak splits into two parts. It is confirmed that the advanced adiabatic approximation gives an accurate description of the ungerade distribution at low and intermediate velocities. {copyright} {ital 1999} {ital The American Physical Society}

  18. Energy and angular distributions of detached electrons in a solvable model of ion-atom collisions

    SciTech Connect

    Macek, J.H.; Ovchinnikov, S.Y. Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 ); Solovev, E.A. )

    1999-08-01

    Electron energy and angular distributions are computed for a model of atom[endash]negative-ion collisions. In this model, electron-atom interactions are represented by zero-range potentials in an approximation where two identical atoms move along straight-line classical trajectories in head-on collisions. Analytic expressions for the ionization amplitudes are interpreted in terms of Sturmian eigenvalues and eigenfunctions. At high velocity, the computed distributions exhibit direct excitation and continuum capture cusps in addition to the binary encounter ridge. At low velocities, a single feature corresponding to an electron distribution centered midway between the target and projectile emerges. For initial conditions corresponding to gerade symmetry a single broad peak appears, while for ungerade symmetry there is a node at the midpoint so that the peak splits into two parts. It is confirmed that the advanced adiabatic approximation gives an accurate description of the ungerade distribution at low and intermediate velocities. [copyright] [ital 1999] [ital The American Physical Society

  19. A recursive regularization algorithm for estimating the particle size distribution from multiangle dynamic light scattering measurements

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yang, Kecheng; Li, Wei; Wang, Wanyan; Guo, Wenping; Xia, Min

    2016-07-01

    Conventional regularization methods have been widely used for estimating particle size distribution (PSD) in single-angle dynamic light scattering, but they could not be used directly in multiangle dynamic light scattering (MDLS) measurements for lack of accurate angular weighting coefficients, which greatly affects the PSD determination and none of the regularization methods perform well for both unimodal and multimodal distributions. In this paper, we propose a recursive regularization method-Recursion Nonnegative Tikhonov-Phillips-Twomey (RNNT-PT) algorithm for estimating the weighting coefficients and PSD from MDLS data. This is a self-adaptive algorithm which distinguishes characteristics of PSDs and chooses the optimal inversion method from Nonnegative Tikhonov (NNT) and Nonnegative Phillips-Twomey (NNPT) regularization algorithm efficiently and automatically. In simulations, the proposed algorithm was able to estimate the PSDs more accurately than the classical regularization methods and performed stably against random noise and adaptable to both unimodal and multimodal distributions. Furthermore, we found that the six-angle analysis in the 30-130° range is an optimal angle set for both unimodal and multimodal PSDs.

  20. Optofluidic distributed feedback lasers with evanescent pumping: Reduced threshold and angular dispersion analysis

    NASA Astrophysics Data System (ADS)

    Karl, Markus; Whitworth, Guy L.; Schubert, Marcel; Dietrich, Christof P.; Samuel, Ifor D. W.; Turnbull, Graham A.; Gather, Malte C.

    2016-06-01

    We demonstrate an evanescently pumped water-based optofluidic distributed feedback (DFB) laser with a record low pump threshold of ETH=520 n J . The low threshold results from an optimized mode shape, which is achieved by a low refractive index substrate, and from the use of a mixed-order DFB grating. Investigating the photonic band structure via angular dispersion analysis both above and below lasing threshold allows us to measure the refractive index of the liquid gain layer and to determine the device parameters such as the waveguide core layer thickness. We show that it is possible to tailor the divergence of the lasing emission by varying the number of second order grating periods used for outcoupling.

  1. Angular distribution and altitude dependence of atmospheric neutrons from 10 to 100 MeV

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Simmett, G. M.; White, R. S.

    1974-01-01

    The altitude dependence of atmospheric neutrons from ground level to 5 g/sq cm of residual atmosphere at neutron energies of 10 to 100 MeV is reported. Ground level measurements were taken at Cape Girardeau, Missouri, on Sept. 18, 1972. The other measurements were made during ascent and float on launch from Palestine, Texas, on Sept. 26, 1971. The intensity of both the downward- and the upward-moving neutrons is maximum at about 100 g/sq cm of residual atmosphere. Neutron angular distributions are reported from 20 to 80 deg and from 100 to 160 deg for 10- to 100-MeV neutrons. Omnidirectional fluxes at altitudes of 5, 50, 100, and 200 g/sq cm of residual atmosphere are in good agreement with recent theoretical calculations of Armstrong et al. (1973) in the three energy intervals of 10 to 30, 30 to 50, and 50 to 100 MeV.

  2. Photoelectron Angular Distribution Asymmetry Parameters for Photodetachment of Li^- and Al^-.

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Nan; Starace, Anthony F.

    1997-04-01

    Calculation of photoelectron angular distribution asymmetry parameters for photodetachment precesses is a more stringent test for theory than calculation of partial or total cross sections. Since asymmetry parameters involve ratios of transition matrix elements of different channels, they are particularly sensitive to the resonance behavior of transition matrix elements. We present the asymmetry parameters for photodetachment of Li^- (2s^2 ^1S) and Al^- (3s^23p^2 ^3P) using the eigenchannel R-matrix method(U.Fano and C.M. Lee, Phys. Rev. Lett. 31), 1573 (1973)^,(C.H. Greene, in Fundamental Processes of Atomic Dynamics,) edited by J.S. Briggs, H. Kleinpoppen, and H.O. Lutz (Plenum, New York, 1988), pp.105-127.. Our results are in good agreement with the available Al^- photodetachment measurements(A.M. Covington et al.), U of Nevada-Reno, private communication..

  3. Photoionization of He above the N =2 threshold. II. Angular distribution of photoelectrons and asymmetry parameter

    SciTech Connect

    Sanchez, I.; Martin, F. )

    1992-04-01

    We report theoretical calculations for the {beta}{sub 2{ital p}}-asymmetry parameter in the photoionization of He(1{ital s}{sup 2}) above the {ital N}=2 ionization threshold. We use an extension of a method recently proposed (I. Sanchez and F. Martin, Phys. Rev. A 44, 7318 (1991)) that makes use of a Feshbach partitioning of the final-state wave function and an {ital L}{sup 2} representation of the coupled continuum states. Partial differential cross sections at emission angles 0{degree} and 90{degree} are also provided. Our results are in good agreement with the experimental data, thus showing the accuracy of the present method to study electron angular-distribution properties.

  4. Angular distribution and altitude dependence of atmospheric neutrons from 10 to 100 MeV

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Simmett, G. M.; White, R. S.

    1974-01-01

    The altitude dependence of atmospheric neutrons from ground level to 5 g/sq cm of residual atmosphere at neutron energies of 10 to 100 MeV is reported. Ground level measurements were taken at Cape Girardeau, Missouri, on Sept. 18, 1972. The other measurements were made during ascent and float on launch from Palestine, Texas, on Sept. 26, 1971. The intensity of both the downward- and the upward-moving neutrons is maximum at about 100 g/sq cm of residual atmosphere. Neutron angular distributions are reported from 20 to 80 deg and from 100 to 160 deg for 10- to 100-MeV neutrons. Omnidirectional fluxes at altitudes of 5, 50, 100, and 200 g/sq cm of residual atmosphere are in good agreement with recent theoretical calculations of Armstrong et al. (1973) in the three energy intervals of 10 to 30, 30 to 50, and 50 to 100 MeV.

  5. Angular Distributions and Dalitz plots for C^6+ ionization of He

    NASA Astrophysics Data System (ADS)

    Otranto, Sebastian; Olson, Ronald; Fiol, Juan

    2006-05-01

    Single ionization fully differential cross sections for 2 MeV/amu C^6+ + He collisions are presented and analyzed using the classical trajectory Monte Carlo (CTMC) and Continuum Distorted Wave (CDW) models. The present theoretical results are compared with recent experimental data of Fischer et al [1]. The published experimental conditions are considered in the theoretical models. The inclusion of the thermal motion of the target atom leads to an improved description of the forward electron emission [2]. Moreover, we present cross sections in the plane perpendicular to that of the collision, for which experimental angular distributions have not been yet reported. Dalitz plots for single ionization fully differential cross sections in ion-atom collisions are presented and are used to help elucidate the collision dynamics. [1] D. Fischer, R. Moshammer, M. Schulz, A. Voitkiv and J. Ullrich, J. Phys. B: At. Mol. Opt. Phys. 36, 3555 (2003). [2] R. E. Olson and J. Fiol, Phys. Rev. Lett. 95, 263203 (2005).

  6. Angular distribution of electrons in multiphoton ionisation of polarised Lithium atoms

    NASA Astrophysics Data System (ADS)

    Klimova, Yu. A.; Marmo, S. I.; Meremianin, A. V.

    2013-09-01

    The asymmetry of the angular distributions of photoelectrons in the photoionisation of polarised alkali atoms is investigated. The general formulas for the amplitude of the multiphoton ionisation of np-states are given. In these formulas the dynamical and kinematical factors are explicitly separated. Our calculations within Fues model potential approach demonstrate that, under the experimental conditions essentially similar to those employed in [M. Schuricke, Ganjun Zhu, J. Steinmann, K. Simeonidis, I. Ivanov, A. Kheifets, A.N. Grum-Grzhimailo, K. Bartschat, A. Dorn, J. Ullrich, Phys. Rev. A 83 (2011) 023413(11)], the relative magnitude of the linear magnetic dichroism in three-photon ionisation of Li can be as large as 30%.

  7. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory.

    PubMed

    Liu, Yuan; Ning, Chuangang

    2015-10-14

    Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li(-), C(-), O(-), F(-), CH(-), OH(-), NH2 (-), O2 (-), and S2 (-) show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.

  8. Measurements of the Angular Distributions in the Decays B→K(*)μ+μ- at CDF

    DOE PAGES

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...

    2012-02-01

    We reconstruct the decays B → K(*) µ+µ- and measure their angular distributions in pp collisions at √s = 1.96 TeV using a data sample corresponding to an integrated luminosity of 6.8 fb-1. The transverse polarization asymmetry AT(2) and the time-reversal-odd charge-and-parity asymmetry Aim are measured for the first time, together with the K* longitudinal polarization fraction FL and the µ on forward-backward asymmetry AFB, for the decays B0→K*0µ+µ- and B0→K*+µ+µ-. Our results are among the most accurate to date and consistent with those from other experiments.

  9. Scattering of a laser beam on a wet blood smear and measurement of red cell size distribution

    NASA Astrophysics Data System (ADS)

    Yurchuk, Yu S.; Ustinov, V. D.; Nikitin, S. Yu; Priezzhev, A. V.

    2016-06-01

    We report an automated laser system that allows the red cell size distribution to be measured. Experiments are performed on laser light scattering by a suspension of oriented red blood cells (a wet blood smear). Based on an analysis of the angular distribution of light intensity in the diffraction pattern, we have restored the red cell size distribution. The average diameter of a red blood cell is determined with an error of less than 1%, and the spread of red blood cells in size - with an error of about 20%. We discuss the problems of photometry and processing of diffraction patterns, preparing blood samples and data processing algorithms, including methods for solving the inverse scattering problem.

  10. Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers

    SciTech Connect

    Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.

    2012-09-01

    We present a study of the spectral and angular dependence of scattered mid-infrared light from surfaces coated with explosives residues (TNT, RDX, and tetryl) detected at a 2 meter standoff distance. An external cavity quantum cascade laser provided tunable illumination between 7 and 8 µm. Important differences were identified in the spectral features between specular reflection and diffuse scattering which will impact most practical testing scenarios and complicate material identification. We discuss some of the factors influencing the dependence of observed spectra on the experimental geometry.

  11. Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Suter, Jonathan D.; Bernacki, Bruce; Phillips, Mark C.

    2012-09-01

    We present a study of the spectral and angular dependence of scattered mid-infrared light from surfaces coated with explosives residues (TNT, RDX, and tetryl) detected at a 2 m standoff distance. An external cavity quantum cascade laser provided tunable illumination between 7 and 8 μm. Important differences were identified in the spectral features between specular reflection and diffuse scattering which will impact most practical testing scenarios and complicate material identification. We discuss some of the factors influencing the dependence of observed spectra on the experimental geometry.

  12. Product angular distributions in the ultraviolet photodissociation of N{sub 2}O

    SciTech Connect

    McBane, George C.; Schinke, Reinhard

    2012-01-28

    The angular distribution of products from the ultraviolet photodissociation of nitrous oxide yielding O({sup 1}D) and N{sub 2}(X {Sigma}{sub g}{sup +1}) was investigated using classical trajectory calculations. The calculations modeled absorption only to the 2 {sup 1}A{sup '} electronic state but used surface-hopping techniques to model nonadiabatic transitions to the ground electronic state late in the dissociation. Observed values of the anisotropy parameter {beta}, which decrease as the product N{sub 2} rotational quantum number j increases, could be well reproduced. The relatively low observed {beta} values arise principally from nonaxial recoil due to the very strong bending forces present in the excited state. In the main part of the product rotational distribution near 203 nm, an unusual dynamical effect produces the decrease in {beta} with increasing j; nonaxial recoil effects remain approximately constant while higher j product molecules arise from parent molecules that had their transition dipole moments aligned more closely along the molecular axis. In both low and high j tails of the rotational distribution, the variations in {beta} with j are caused by changes in the extent of nonaxial recoil. In the high-j tail, additional torque present on the ground state potential energy surface following nonadiabatic transitions causes both the additional rotational excitation and the lower {beta} values.

  13. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions

    PubMed Central

    Sisniega, A.; Zbijewski, W.; Badal, A.; Kyprianou, I. S.; Stayman, J. W.; Vaquero, J. J.; Siewerdsen, J. H.

    2013-01-01

    Purpose: The proliferation of cone-beam CT (CBCT) has created interest in performance optimization, with x-ray scatter identified among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configurations suggests that not all configurations are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, efficacy of antiscatter grids, guide system design, and augment development of scatter correction. Methods: A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-panel detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-to-detector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuration was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70–280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment. Results: Variance reduction yielded improvements in MC simulation efficiency ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significant acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficiency). The benefit of a more extended geometry was evident by virtue of a larger air gap—e.g., for a 16 cm

  14. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions.

    PubMed

    Sisniega, A; Zbijewski, W; Badal, A; Kyprianou, I S; Stayman, J W; Vaquero, J J; Siewerdsen, J H

    2013-05-01

    The proliferation of cone-beam CT (CBCT) has created interest in performance optimization, with x-ray scatter identified among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configurations suggests that not all configurations are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, efficacy of antiscatter grids, guide system design, and augment development of scatter correction. A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-panel detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-to-detector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuration was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70-280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment. Variance reduction yielded improvements in MC simulation efficiency ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significant acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficiency). The benefit of a more extended geometry was evident by virtue of a larger air gap-e.g., for a 16 cm diameter object, the SPR reduced

  15. Analysis of the atmospheric aerosol size distribution information retrievable from near-limb angular radiance measurements taken on Mauna Loa, Hawaii

    SciTech Connect

    Grant, K.E.

    1981-12-01

    Angular radiance measurements of the near-limb solar aureole were analyzed for information regarding the light-scattering aerosol particles in the atmospheric column above Mauna Loa, Hawaii. The Mauna Loa Observatory, located at 19/sup 0/ 33' N latitude, 155/sup 0/ 35' W longitude, and 3460 metres elevation, is in unpolluted air above the easterly trade wind inversion and has been designated as a site for the Geophysical Monitoring for Climatic Change (GMCC) program. Circumsolar radiance and polarization measurements have been collected on Mauna Loa since 1963 by the High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR) as part of a program for the daily observation of the solar corona. Strip charts containing radiance measurements made from January 1976 through June 1978 were made available for this study. By the use of Mie scattering theory, generalized to treat the sun as a finite diameter light source with limb-darkening, a theoretical scattering matrix was calculated for observation angles between 17' and 300' measured from the center of the solar disk, and aerosol size parameters (2..pi..r/lambda) between 10 and 300. An information content criterion is presented, based on the expected relative norm of the measurement errors and on the eigenvalues of the radiance covariance matrix of the scattering matrix. The observed aureole radiance gradients and two test gradients were inverted to obtain aerosol size distributions using a constrained linear inversion algorithm.

  16. Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes.

    PubMed

    Chen, Xinjuan; Ji, Cheng; Xiang, Yong; Kang, Xiangning; Shen, Bo; Yu, Tongjun

    2016-05-16

    Angular distribution of polarized light and its effect on light extraction efficiency (LEE) in AlGaN deep-ultraviolet (DUV) light-emitting diodes (LEDs) are investigated in this paper. A united picture is presented to describe polarized light's emission and propagation processes. It is found that the electron-hole recombinations in AlGaN multiple quantum wells produce three kinds of angularly distributed polarized emissions and propagation process can change their intensity distributions. By investigation the change of angular distributions in 277nm and 215nm LEDs, this work reveals that LEE can be significantly enhanced by modulating the angular distributions of polarized light of DUV LEDs.

  17. Two dimensional expansion effects on angular distribution of 13.5 nm in-band extreme ultraviolet emission from laser-produced Sn plasma

    SciTech Connect

    Sequoia, K. L.; Tao, Y.; Yuspeh, S.; Burdt, R.; Tillack, M. S.

    2008-06-02

    The angular distribution of extreme ultraviolet emission at 13.5 nm within 2% bandwidth was characterized for laser irradiated, planar, Sn targets at prototypic conditions for a lithography system. We have found that two dimensional plasma expansion plays a key role in the distribution of in-band 13.5 nm emission under these conditions. The angular distribution was found to have two peaks at 45 deg. and 15 deg. This complex angular distribution arises from the shape of both the emitting plasma and the surrounding absorbing plasma. This research reveals that the detailed angular distribution can be important to the deduction of conversion efficiency.

  18. Asymmetric electron angular distributions in resonant dissociative photoionization of H{sub 2} with ultrashort xuv pulses

    SciTech Connect

    Perez-Torres, J. F.; Morales, F.; Martin, F.; Sanz-Vicario, J. L.

    2009-07-15

    Photoelectron angular distributions from fixed-in-space H{sub 2} molecules exposed to ultrashort xuv laser pulses have been evaluated. The theoretical method is based on the solution of the time-dependent Schroedinger equation in a basis of stationary states that include all electronic and vibrational degrees of freedom. Asymmetric angular distributions are observed as a consequence of the delayed ionization from the H{sub 2} doubly excited states, which induces interferences between gerade and ungerade ionization channels. The analysis of this asymmetry as a function of pulse duration can provide an estimate of the corresponding autoionization widths.

  19. Angular distribution of coherent Cherenkov radiation from a bunch passing through a vacuum channel in the dielectric target

    NASA Astrophysics Data System (ADS)

    Potylitsyn, A. P.; Gogolev, S. Yu.; Sukhikh, L. G.

    2017-07-01

    Coherent Cherenkov radiation (ChR) generated by an electron bunch passing through a vacuum channel in the dielectric target has been considered. Simulation of ChR characteristics has been carried out basing on polarization current method. Spectral-angular distributions of coherent ChR generated by the short electron bunches are presented for a flat target with a slit and a conical target with a vacuum channel. We demonstrate feasibility of using cesium iodide conical target for bunch length diagnostics. Bunch length of about 100 fs (rms) could be determined measuring the angular distribution of coherent ChR due to material frequency dispersion.

  20. Two-dimensional ion-imaging of fragment angular distributions after photolysis of state-selected and oriented triatomic molecules

    SciTech Connect

    Teule, J. M.; Hilgeman, M. H.; Janssen, M. H. M.; Chandler, D. W.; Taatjes, C. A.; Stolte, S.

    1997-01-15

    Photodissociation experiments of state-selected and oriented triatomics are presented. Selective ionization using REMPI in combination with two-dimensional ion-imaging allows us to measure both the internal energy and angular distribution of the fragments. The dissociation of N{sub 2}O is studied using one laser around 204 nm for both the dissociation of the molecule and the ionization of the fragments. The angular distributions of O({sup 1}D) and N{sub 2}(J) are presented and implications of these results on the dissociation dynamics are discussed.

  1. Two-dimensional ion-imaging of fragment angular distributions after photolysis of state-selected and oriented triatomic molecules

    SciTech Connect

    Teule, J.M.; Hilgeman, M.H.; Janssen, M.H.; Chandler, D.W.; Taatjes, C.A.; Stolte, S.

    1997-01-01

    Photodissociation experiments of state-selected and oriented triatomics are presented. Selective ionization using REMPI in combination with two-dimensional ion-imaging allows us to measure both the internal energy and angular distribution of the fragments. The dissociation of N{sub 2}O is studied using one laser around 204 nm for both the dissociation of the molecule and the ionization of the fragments. The angular distributions of O({sup 1}D) and N{sub 2}(J) are presented and implications of these results on the dissociation dynamics are discussed. {copyright} {ital 1997 American Institute of Physics.}

  2. Variable Mixed Orbital Character in the Photoelectron Angular Distribution of NO_{2}

    NASA Astrophysics Data System (ADS)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2017-06-01

    NO_{2} a key component of photochemical smog and an important species in the Earth's atmosphere, is an example of a molecule which exhibits significant mixed orbital character in the HOMO. In photoelectron experiments the geometric properties of the parent anion orbital are reflected in the photoelectron angular distribution (PAD), an area of research that has benefited largely from the ability of velocity-map imaging (VMI) to simultaneously record both the energetic and angular information, with 100% collection efficiency. Photoelectron spectra of NO_{2}^{-}, taken over a range of wavelengths (355nm-520nm) with the ANU's VMI spectrometer, reveal an anomalous jump in the anisotropy parameter near threshold. Consequently, the orbital behavior of NO_{2}^{-} appears to be quite different near threshold compared to detachment at higher photon energies. This surprising effect is due to the Wigner Threshold law, which causes p orbital character to dominate the photodetachment cross-section near threshold, before the mixed s/d orbital character becomes significant at higher electron kinetic energies. By extending recent work on binary character models to form a more general expression, the variable mixed orbital character of NO_{2}^{-} is able to be described. This study provides the first multi-wavelength NO_{2} anisotropy data, which is shown to be in decent agreement with much earlier zero-core model predictions of the anisotropy parameter. K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, J. Chem. Phys. 64, 1368, (1976). doi:10.1063/1.432404 D. Khuseynov, C. C. Blackstone, L. M. Culberson, and A. Sanov, J. Chem. Phys. 141, 124312, (2014). doi:10.1063/1.4896241 W. B. Clodius, R. M. Stehman, and S. B. Woo, Phys. Rev. A. 28, 760, (1983). doi:10.1103/PhysRevA.28.760 Research supported by the Australian Research Council Discovery Project Grant DP160102585

  3. Light scattering by hexagonal ice crystals with distributed inclusions

    NASA Astrophysics Data System (ADS)

    Panetta, R. Lee; Zhang, Jia-Ning; Bi, Lei; Yang, Ping; Tang, Guanlin

    2016-07-01

    Inclusions of air bubbles or soot particles have significant effects on the single-scattering properties of ice crystals, effects that in turn have significant impacts on the radiation budget of an atmosphere containing the crystals. This study investigates some of the single-scattering effects in the case of hexagonal ice crystals, including effects on the backscattering depolarization ratio, a quantity of practical importance in the interpretation of lidar observations. One distinguishing feature of the study is an investigation of scattering properties at a visible wavelength for a crystal with size parameter (x) above 100, a size regime where one expects some agreement between exact methods and geometrical optics methods. This expectation is generally borne out in a test comparison of how the sensitivity of scattering properties to the distribution of a given volume fraction of included air is represented using (i) an approximate Monte Carlo Ray Tracing (MCRT) method and (ii) a numerically exact pseudo-spectral time-domain (PSTD) method. Another distinguishing feature of the study is a close examination, using the numerically exact Invariant-Imbedding T-Matrix (II-TM) method, of how some optical properties of importance to satellite remote sensing vary as the volume fraction of inclusions and size of crystal are varied. Although such an investigation of properties in the x>100 regime faces serious computational burdens that force a large number of idealizations and simplifications in the study, the results nevertheless provide an intriguing glimpse of what is evidently a quite complex sensitivity of optical scattering properties to inclusions of air or soot as volume fraction and size parameter are varied.

  4. Generalized parton distributions from deep virtual compton scattering at CLAS

    DOE PAGES

    Guidal, M.

    2010-04-24

    Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form Factorsmore » $$H_{Im}$$ and $$\\tilde{H}_{Im}$$ with uncertainties, in average, of the order of 30%.« less

  5. Angular distribution of {alpha} particles from oriented {sup 253,254}Es and {sup 255}Fm nuclei

    SciTech Connect

    Severijns, N.; Golovko, V.V.; Kraev, I.S.; Phalet, T.; Belyaev, A.A.; Lukhanin, A.A.; Noga, V.I.; Erzinkyan, A.L.; Parfenova, V.P.; Eversheim, P.-D.; Herzog, P.; Tramm, C.; Filimonov, V.T.; Toporov, Yu.G.; Zotov, E.; Gurevich, G.M.; Rusakov, A.V.; Vyachin, V.N.; Zakoucky, D.

    2005-04-01

    The anisotropy in the angular distribution of {alpha} particles from oriented {sup 253,254}Es and {sup 255}Fm nuclei, which are among the strongest deformed {alpha} emitters, was measured. Large {alpha} anisotropies have been observed for all three nuclei. The results are compared with calculations based on {alpha}-particle tunneling through a deformed Coulomb barrier.

  6. Angular characteristics of the stimulated-Brillouin-scattering spectrum from a laser plasma with strong acoustic-wave damping

    SciTech Connect

    Saikia, P.

    1981-07-01

    The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic.

  7. On the Angular Distribution of Neutrons Protons and X-Rays from a Small Dense Plasma Focus Machine

    SciTech Connect

    Herrera, J.J.E.; Castillo, F.; Gamboa, I.; Rangel, R.; Espinosa, G.; Golzarri, J. I.

    2006-01-05

    Time integrated measurements of the angular distributions of neutrons, protons and X-rays are made, inside the discharge chamber of the FN-II device, using passive detectors. A set of detectors was placed on a semi-circular Teflon registered holder, 13 cm. around the plasma column, and covered with 15 {mu}m Al filters, thus eliminating energetic ions from the expansion of the discharge, as well as tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. It is found that the detectors on the upper side of the holder show two distinctively different distributions of track diameters. The distribution of the smaller ones, is sharper than that of the larger ones, and are presumably originated by a wide angle beam of protons. The distribution of the ones on the lower side of the holder, which can only be attributed to charged particles which result as a recoil of neutron collisions, are slightly shifted to larger diameters. The angular distribution of X-rays is also studied within the chamber with TLD-200 dosimeters. While the neutron and proton angular distributions can be fitted by single maximum distributions, the X-ray one shows two maxima around the axis.

  8. Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets

    NASA Astrophysics Data System (ADS)

    Turner, David M.; Niezgoda, Stephen R.; Kalidindi, Surya R.

    2016-10-01

    Chord length distributions (CLDs) and lineal path functions (LPFs) have been successfully utilized in prior literature as measures of the size and shape distributions of the important microscale constituents in the material system. Typically, these functions are parameterized only by line lengths, and thus calculated and derived independent of the angular orientation of the chord or line segment. We describe in this paper computationally efficient methods for estimating chord length distributions and lineal path functions for 2D (two dimensional) and 3D microstructure images defined on any number of arbitrary chord orientations. These so called fully angularly resolved distributions can be computed for over 1000 orientations on large microstructure images (5003 voxels) in minutes on modest hardware. We present these methods as new tools for characterizing microstructures in a statistically meaningful way.

  9. The Center-of-mass angular distribution of direct photons at $S^{(1/2)}$ = 1.8-TeV observed with the D0 detector

    SciTech Connect

    Rubinov, Paul Michael

    1995-12-01

    The study of center-of-mass angular distribution of direct photons produced in p$\\bar{p}$ collisions at √s = 1.8TeV with the D0 detector is described. The photons are detected and identified using a liquid argon calorimeter, with charged particle rejection provided by tracking chambers. The photons are restricted to the central region (n ≤ 0.75), but center-of-mass system for the hard scattering is reconstructed using the information from reconstructed jets. A method for avoiding possible bias due to edges of the calorimeter is presented. The background, due mainly to rare fragmentations of a jet into a leading neutral meson, are subtracted statistically using the expected variation in the longitudinal profile of the electromagnetic shower. The angular distribution in the range of η* from 0 to 1.5 (cos θ* from 0 to 0.9) is compared to next-to-leading order QCD predictions, and found to be in good agreement.

  10. Role of screening and angular distributions in resonant soft-x-ray emission of CO

    SciTech Connect

    Skytt, P.; Glans, P.; Gunnelin, K.

    1997-04-01

    In the present work the authors focus on two particular properties of resonant X-ray emission, namely core hole screening of the excited electron, and anisotropy caused by the polarization of the exciting synchrotron radiation. The screening of the core hole by the excited electron causes energy shifts and intensity variations in resonant spectra compared to the non-resonant case. The linear polarization of the synchrotron radiation and the dipole nature of the absorption process create a preferential alignment selection of the randomly oriented molecules in the case of resonant excitation, producing an anisotropy in the angular distribution of the emitted X-rays. The authors have chosen CO for this study because this molecule has previously served as a showcase for non-resonant X-ray emission, mapping the valence electronic structure differently according to the local selection rules. With the present work they take interest in how this characteristic feature of the spectroscopy is represented in the resonant case.

  11. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena.

    PubMed

    Ateshian, Gerard A; Rajan, Vikram; Chahine, Nadeen O; Canal, Clare E; Hung, Clark T

    2009-06-01

    Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissue's equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poisson's ratio from very low values in compression (approximately 0.02) to very high values in tension (approximately 2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (Ateshian, 2007, ASME J. Biomech. Eng., 129(2), pp. 240-249).

  12. Measurements of the angular distributions in the decays B→K(*)μ(+)μ(-) at CDF.

    PubMed

    Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wenzel, H; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S

    2012-02-24

    We report an indirect search for nonstandard model physics using the flavor-changing neutral current decays B→K(*)μ(+)μ(-). We reconstruct the decays and measure their angular distributions, as a function of q(2)=M(μμ)(2)c(2), where M(μμ) is the dimuon mass, in pp¯ collisions at √s=1.96 TeV using a data sample corresponding to an integrated luminosity of 6.8 fb(-1). The transverse polarization asymmetry A(T)(2) and the time-reversal-odd charge-and-parity asymmetry A(im) are measured for the first time, together with the K* longitudinal polarization fraction F(L) and the muon forward-backward asymmetry A(FB) for the decays B(0)→K(*0)μ(+)μ(-) and B(+)→K(*+)μ(+)μ(-). The B→K*μ(+)μ(-) forward-backward asymmetry in the most sensitive kinematic regime, 1≤q(2)<6 GeV(2)/c(2), is measured to be A(FB)=0.29(-0.23)(+0.20)(stat)±0.07(syst), the most precise result to date. No deviations from the standard model predictions are observed.

  13. Dissociative electron attachment to halogen molecules: Angular distributions and nonlocal effects

    NASA Astrophysics Data System (ADS)

    Fabrikant, I. I.

    2016-11-01

    We study dissociative electron attachment (DEA) to the ClF and F2 molecules. We formulate a method for calculation of partial resonance widths and calculate the angular distributions of the products in the ClF case using the local and nonlocal versions of the complex potential theory of DEA. They show the dominance of the p wave except in a narrow energy region close to zero energy. Comparison of the local and nonlocal DEA cross sections show that the former are smaller than the latter by a factor of 2 in the energy region important for calculation of thermal rate coefficients. This result is confirmed by comparison of the local and nonlocal calculations for F2. Only at low energies below 30 meV the local cross sections exceed nonlocal due to the 1 /E divergence of the local results. On the other hand, the thermal rate coefficients generated from the local cross sections agree better with experiment than those calculated from the nonlocal cross sections. The most likely reason for this disagreement is the overestimated resonance width in the region of internuclear distances close to the point of crossing between the neutral and anion potential-energy curves.

  14. Random walk with nonuniform angular distribution biased by an external periodic pulse

    NASA Astrophysics Data System (ADS)

    Acharyya, Aranyak

    2016-11-01

    We studied the motion of a random walker in two dimensions with nonuniform angular distribution biased by an external periodic pulse. Here, we analytically calculated the mean square displacement (end-to-end distance of a walk after n time steps), without bias and with bias. We determined the average x-component of the final displacement of the walker. Interestingly, we noted that for a particular periodicity of the bias, this average x-component of the final displacement becomes approximately zero. The average y-component of the final displacement is found to be zero for any perodicity of the bias, and its reason can be attributed to the nature of the probability density function of the angle (subtended by the displacement vector with the x-axis). These analytical results are also supported by computer simulations. The present study may be thought of as a model for arresting the bacterial motion (along a preferred direction) by an external periodic bias. This article will be useful for undergraduate students of physics, statistics and biology as an example of an interdisciplinary approach to understand a way to control bacterial motion.

  15. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory

    SciTech Connect

    Liu, Yuan; Ning, Chuangang

    2015-10-14

    Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li{sup −}, C{sup −}, O{sup −}, F{sup −}, CH{sup −}, OH{sup −}, NH{sub 2}{sup −}, O{sub 2}{sup −}, and S{sub 2}{sup −} show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.

  16. Modeling the Matrix of Articular Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena

    PubMed Central

    Ateshian, Gerard A.; Rajan, Vikram; Chahine, Nadeen O.; Canal, Clare E.; Hung, Clark T.

    2010-01-01

    Background Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. Method of approach In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. Results It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissue’s equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poisson’s ratio from very low values in compression (~0.02) to very high values in tension (~2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. Conclusions The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (G. A. Ateshian. J Biomech Eng, 129(2):240-9, 2007). PMID:19449957

  17. Energy and angular distributions of electron emission from diatomic molecules by bare ion impact

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Mandal, C. R.; Purkait, M.

    2015-06-01

    The three-Coulomb wave model has been used extensively to study the energy and angular distributions of double-differential cross sections (DDCS) of electron emissions from hydrogen and nitrogen molecules by bare ion impact at intermediate and high energies. In the present model, we have expressed the molecular triple differential cross section in terms of the corresponding atomic triple differential cross section multiplied by the occupation number and the average Rayleigh interference factor, which accounts for the two-center interference effect. Here we have used an active electron approximation of the molecule as a whole in the initial channel. To account for the effect of passive electrons, we have constructed a model potential that satisfies the initial conditions and the corresponding wavefunction has been calculated from the model Hamiltonian of the active electron in the target. In the final channel, we have used a hydrogenic model with an effective nuclear charge that is calculated from its binding energy. In this model, the correlated motion of the particles in the exit channel of the reaction is considered by an adequate product of three-Coulomb functions. The emitted electron, the incident projectile ion and the residual ion are considered to be in same plane. The obtained results are compared with other recent theoretical and experimental findings. There is an overall agreement of the calculations with the experimental data for electron emission cross sections.

  18. Analysis of THz generation through the asymmetry of photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaoyan; Wang, Xu; Lin, C. D.

    2017-03-01

    We analyze the mechanism of THz generation in a gas medium with intense two-color infrared lasers pulses. The dependence of the amplitude of THz emission on the relative phase between the fundamental color (800 nm) and its second harmonic (400 nm) is shown to be identical to the residual current as well as to the asymmetry of the above-threshold-ionization (ATI) photoelectrons along the left versus the right side of the linear polarization axis of the laser, thus confirming the validity of the semiclassical photocurrent model for the THz emission. We further analyze the even vs odd angular momentum distributions of the ATI electrons. The degree of overlap between the even-parity dominant electrons and the odd-parity dominant electrons within each ATI peak determines the strength of the THz emission, thus favoring the model that THz is generated through free-free transitions in the laser field. A model is also provided to obtain the same phase dependence as the four-wave mixing model.

  19. Isomer production ratios and the angular momentum distribution of fission fragments

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.; Jandel, M.

    2013-10-01

    Latest generation fission experiments provide an excellent testing ground for theoretical models. In this contribution we compare the measurements for 235U(nth,f), obtained with the Detector for Advanced Neutron Capture Experiments (DANCE) calorimeter at Los Alamos Neutron Science Center (LANSCE), with our full-scale simulation of the primary fragment de-excitation, using the recently developed cgmf code, based on a Monte Carlo implementation of the Hauser-Feshbach theoretical model. We compute the isomer ratios as a function of the initial angular momentum of the fission fragments, for which no direct information exists. Comparison with the available experimental data allows us to determine the initial spin distribution. We also study the dependence of the isomer ratio on the knowledge of the low-lying discrete spectrum input for nuclear fission reactions, finding a high degree of sensitivity. Finally, in the same Hauser-Feshbach approach, we calculate the isomer production ratio for thermal neutron capture on stable isotopes, where the initial conditions (spin, excitation energy, etc.) are well understood. We find that with the current parameters involved in Hauser-Feshbach calculations, we obtain up to a factor of 2 deviation from the measured isomer ratios.

  20. Remnant lipoprotein size distribution profiling via dynamic light scattering analysis.

    PubMed

    Chandra, Richa; Mellis, Birgit; Garza, Kyana; Hameed, Samee A; Jurica, James M; Hernandez, Ana V; Nguyen, Mia N; Mittal, Chandra K

    2016-11-01

    Remnant lipoproteins (RLP) are a metabolically derived subpopulation of triglyceride-rich lipoproteins (TRL) in human blood that are involved in the metabolism of dietary fats or triglycerides. RLP, the smaller and denser variants of TRL particles, are strongly correlated with cardiovascular disease (CVD) and were listed as an emerging atherogenic risk factor by the AHA in 2001. Varying analytical techniques used in clinical studies in the size determination of RLP contribute to conflicting hypotheses in regard to whether larger or smaller RLP particles contribute to CVD progression, though multiple pathways may exist. We demonstrated a unique combinatorial bioanalytical approach involving the preparative immunoseparation of RLP, and dynamic light scattering for size distribution analysis. This is a new facile and robust methodology for the size distribution analysis of RLP that in conjunction with clinical studies may reveal the mechanisms by which RLP cause CVD progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Light scattering by lunar-like particle size distributions

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1991-01-01

    A fundamental input to models of light scattering from planetary regoliths is the mean phase function of the regolith particles. Using the known size distribution for typical lunar soils, the mean phase function and mean linear polarization for a regolith volume element of spherical particles of any composition were calculated from Mie theory. The two contour plots given here summarize the changes in the mean phase function and linear polarization with changes in the real part of the complex index of refraction, n - ik, for k equals 0.01, the visible wavelength 0.55 micrometers, and the particle size distribution of the typical mature lunar soil 72141. A second figure is a similar index-phase surface, except with k equals 0.1. The index-phase surfaces from this survey are a first order description of scattering by lunar-like regoliths of spherical particles of arbitrary composition. They form the basis of functions that span a large range of parameter-space.

  2. The angular momentum distribution within haloes in different dark matter models

    NASA Astrophysics Data System (ADS)

    Chen, D. N.; Jing, Y. P.

    2002-10-01

    We study the angular momentum profile of dark matter haloes for a statistical sample drawn from a set of high-resolution cosmological simulations of 2563 particles. Two typical cold dark matter (CDM) models have been analysed, and the haloes are selected to have at least 3 × 104 particles in order to measure the angular momentumprofile reliably. In contrast with the recent claims of Bullock et al., we find that the degree of misalignment of angular momentum within a halo is very high. Approximately 50 per cent of haloes have more than 10 per cent of the halo mass in the mass of negative angular momentum j. After the mass of negative j is excluded, the cumulative mass function M(angular momentum profile of haloes in a warm dark matter (WDM) model and a self-interacting dark matter (SIDM) model. We find that the angular momentum profile of haloes in the WDM is statistically indistinguishable from that in the CDM model, but the angular momentum of haloes in the SIDM is reduced by the self-interaction of dark matter.

  3. Exclusive studies of angular distributions in GeV hadron-induced reactions with {sup 197}Au

    SciTech Connect

    Hsi, W.; Kwiatkowski, K.; Wang, G.; Bracken, D.S.; Cornell, E.; Ginger, D.S.; Viola, V.E.; Korteling, R.G.; Morley, K.B.; Huang, R.; Lynch, W.G.; Tsang, M.B.; Xi, H.; Gimeno-Nogues, F.; Ramakrishnan, E.; Rowland, D.; Yennello, S.J.; Breuer, H.; Gushue, S.; Remsberg, L.P.; Botvina, A.; Friedman, W.A.

    1999-09-01

    Exclusive studies of angular distributions for intermediate-mass fragments (IMFs) produced in GeV hadron-induced reactions have been performed with the Indiana Silicon Sphere (ISiS) 4{pi} detector array. Special emphasis has been given to understanding the origin of sideways peaking, which becomes prominent in the angular distributions for beam momenta above about 10 GeV/c. Both the magnitude of the effect and the peak angle increase as a function of fragment multiplicity and charge. When gated on IMF kinetic energy, the angular distributions evolve from forward-peaked to near isotropy as the fragment kinetic energy decreases. Fragment-fragment angular-correlation analyses show no obvious evidence for a dynamic mechanism that might signal shock wave effects or the breakup of exotic geometric shapes such as bubbles or toroids. Moving-source and intranuclear cascade simulations suggest that the observed sideways peaking is of kinematic origin, arising from significant transverse momentum imparted to the heavy recoil nucleus during the fast cascade stage of the collision. A two-step cascade and statistical multifragmentation calculation is consistent with this assumption. {copyright} {ital 1999} {ital The American Physical Society}

  4. Exclusive studies of angular distributions in GeV hadron-induced reactions with [sup 197]Au

    SciTech Connect

    Hsi, W.; Kwiatkowski, K.; Wang, G.; Bracken, D.S.; Cornell, E.; Ginger, D.S.; Viola, V.E. ); Korteling, R.G. V5A I56); Morley, K.B. ); Huang, R.; Lynch, W.G.; Tsang, M.B.; Xi, H. ); Gimeno-Nogues, F.; Ramakrishnan, E.; Rowland, D.; Yennello, S.J. ); Breuer, H. ); Gushue, S.; Remsberg, L.P. ); Botvin

    1999-09-01

    Exclusive studies of angular distributions for intermediate-mass fragments (IMFs) produced in GeV hadron-induced reactions have been performed with the Indiana Silicon Sphere (ISiS) 4[pi] detector array. Special emphasis has been given to understanding the origin of sideways peaking, which becomes prominent in the angular distributions for beam momenta above about 10 GeV/c. Both the magnitude of the effect and the peak angle increase as a function of fragment multiplicity and charge. When gated on IMF kinetic energy, the angular distributions evolve from forward-peaked to near isotropy as the fragment kinetic energy decreases. Fragment-fragment angular-correlation analyses show no obvious evidence for a dynamic mechanism that might signal shock wave effects or the breakup of exotic geometric shapes such as bubbles or toroids. Moving-source and intranuclear cascade simulations suggest that the observed sideways peaking is of kinematic origin, arising from significant transverse momentum imparted to the heavy recoil nucleus during the fast cascade stage of the collision. A two-step cascade and statistical multifragmentation calculation is consistent with this assumption. [copyright] [ital 1999] [ital The American Physical Society

  5. Measurements of partial cross sections and photoelectron angular distributions for the photodetachment of Fe- and Cu- at visible photon wavelengths

    NASA Astrophysics Data System (ADS)

    Covington, A. M.; Duvvuri, Srividya S.; Emmons, E. D.; Kraus, R. G.; Williams, W. W.; Thompson, J. S.; Calabrese, D.; Carpenter, D. L.; Collier, R. D.; Kvale, T. J.; Davis, V. T.

    2007-02-01

    Photodetachment cross sections and the angular distributions of photoelectrons produced by the single-photon detachment of the transition metal negative ions Fe- and Cu- have been measured at four discrete photon wavelengths ranging from 457.9 to 647.1nm (2.71-1.92eV) using a crossed-beams laser photodetachment electron spectrometry (LPES) apparatus. Photodetachment cross sections were determined by comparing the photoelectron yields from the photodetachment of Fe- to those of Cu- and C- , which have known absolute photodetachment cross sections. Using the measured photodetachment cross sections, radiative electron attachment cross sections were calculated using the principle of detailed balance. Angular distributions were determined by measurements of laboratory frame, angle-, and energy-resolved photoelectrons as a function of the angle between the linear laser polarization vector and the momentum vector of the collected photoelectrons. Values of the asymmetry parameter have been determined by nonlinear least-squares fits to these angular distributions. The measured asymmetry parameters are compared to predictions of photodetachment models including Cooper and Zare’s dipole approximation theory [J. Cooper and R. N. Zare, J. Chem. Phys. 48, 942 (1968)], and the angular momentum transfer theory developed by Fano and Dill [Phys. Rev. A 6, 185 (1972)].

  6. A generic π* shape resonance observed in energy-dependent photoelectron angular distributions from two-colour, resonant multiphoton ionization of difluorobenzene isomers.

    PubMed

    Staniforth, Michael; Daly, Steven; Reid, Katharine L; Powis, Ivan

    2013-08-14

    We present new evidence for the existence of a near threshold π* shape resonance as a common feature in the photoionization of each isomer of difluorobenzene. Experimentally, this is revealed by significant changes in the anisotropy of the photoelectron angular distributions (PADs) following the ionization of the optically aligned S1 state of these molecules at varying photon energies. Continuum multiple scattering Xα calculations reproduce this behaviour well, and allow the visualisation of the continuum shape resonances. The resonances are unusually narrow in energy (<1 eV), but nevertheless appear to extend right down to the ionization thresholds--exactly the low energy range typically accessed in laser-based resonance enhanced multiphoton ionization (REMPI) schemes. The anticipation of such pronounced energy dependence in the PADs and cross-sections sought for other molecules, and an ability to accurately predict such features, should be important for the reliable application and interpretation of experiments involving REMPI probing of those molecules.

  7. Diffraction pattern from thermal neutron incoherent elastic scattering and the holographic reconstruction of the coherent scattering length distribution

    SciTech Connect

    Sur, B.; Anghel, V.N.P.; Rogge, R.B.; Katsaras, J.

    2005-01-01

    The diffraction of spherical waves (S waves) interacting with a periodic scattering length distribution produces characteristic intensity patterns known as Kossel and Kikuchi lines (collectively called K lines). The K-line signal can be inverted to give the three-dimensional structure of the coherent scattering length distribution surrounding the source of S waves - a process known as 'Gabor holography' or, simply, 'holography'. This paper outlines a kinematical formulation for the diffraction pattern of monochromatic plane waves scattering from a mixed incoherent and coherent S-wave scattering length distribution. The formulation demonstrates that the diffraction pattern of plane waves incident on a sample with a uniformly random distribution of incoherent scatterers is the same as that from a sample with a single incoherent scatterer per unit cell. In practice, one can therefore reconstruct the holographic data from samples with numerous incoherent S-wave scatterers per unit cell. Thus atomic resolution thermal neutron holography is possible for materials naturally rich in incoherent thermal neutron scatterers, such as hydrogen (e.g., biological and polymeric materials). Additionally, holographic inversions from single-wavelength data have suffered from the so-called conjugate or twin-image problem. The formulation presented for holographic inversion - different from those used previously [e.g., T. Gog et al., Phys. Rev. Lett. 76, 3132 (1996)] - eliminates the twin-image problem for single-wavelength data.

  8. Disordered porous solids : from chord distributions to small angle scattering

    NASA Astrophysics Data System (ADS)

    Levitz, P.; Tchoubar, D.

    1992-06-01

    Disordered biphasic porous solids are examples of complex interfacial media. Small angle scattering strongly depends on the geometrical properties of the internal surface partitioning a porous system. Properties of the second derivative of the bulk autocorrelation function quantitatively defines the level of connection between the small angle scattering and the statistical properties of this interface. A tractable expression of this second derivative, involving the pore and the mass chord distribution functions, was proposed by Mering and Tchoubar (MT). Based on the present possibility to make a quantitative connection between imaging techniques and the small angle scattering, this paper tries to complete and to extend the MT approach. We first discuss how chord distribution functions can be used as fingerprints of the structural disorder. An explicit relation between the small angle scattering and these chord distributions is then proposed. In a third part, the application to different types of disorder is critically discussed and predictions are compared to available experimental data. Using image processing, we will consider three types of disorder : the long-range Debye randomness, the “ correlated " disorder with a special emphasis on the structure of a porous glass (the vycor), and, finally, complex structures where length scale invariance properties can be observed. Les solides poreux biphasiques sont des exemples de milieux interfaciaux complexes. La diffusion aux petits angles (SAS) dépend fortement des propriétés géométriques de l'interface partitionant le milieu poreux. Les propriétés de la dérivée seconde de la fonction d'autocorrélation de densité définit quantitativement le niveau de connection entre la diffusion aux petits angles et les caractéristiques statistiques de cette interface. Une expression utilisable de cette seconde dérivée, impliquant les distributions de cordes associées à la phase massique et au réseau de pores, fut

  9. Modeling angles in proteins and circular genomes using multivariate angular distributions based on multiple nonnegative trigonometric sums.

    PubMed

    Fernández-Durán, Juan José; Gregorio-Domínguez, María Mercedes

    2014-02-01

    Fernández-Durán, J. J. (2004): "Circular distributions based on nonnegative trigonometric sums," Biometrics, 60, 499-503, developed a family of univariate circular distributions based on nonnegative trigonometric sums. In this work, we extend this family of distributions to the multivariate case by using multiple nonnegative trigonometric sums to model the joint distribution of a vector of angular random variables. Practical examples of vectors of angular random variables include the wind direction at different monitoring stations, the directions taken by an animal on different occasions, the times at which a person performs different daily activities, and the dihedral angles of a protein molecule. We apply the proposed new family of multivariate distributions to three real data-sets: two for the study of protein structure and one for genomics. The first is related to the study of a bivariate vector of dihedral angles in proteins. In the second real data-set, we compare the fit of the proposed multivariate model with the bivariate generalized von Mises model of [Shieh, G. S., S. Zheng, R. A. Johnson, Y.-F. Chang, K. Shimizu, C.-C. Wang, and S.-L. Tang (2011): "Modeling and comparing the organization of circular genomes," Bioinformatics, 27(7), 912-918.] in a problem related to orthologous genes in pairs of circular genomes. The third real data-set consists of observed values of three dihedral angles in γ-turns in a protein and serves as an example of trivariate angular data. In addition, a simulation algorithm is presented to generate realizations from the proposed multivariate angular distribution.

  10. Angular and Linear Velocity Estimation for a Re-Entry Vehicle Using Six Distributed Accelerometers: Theory, Simulation and Feasibility

    SciTech Connect

    Clark, G

    2003-04-28

    This report describes a feasibility study. We are interested in calculating the angular and linear velocities of a re-entry vehicle using six acceleration signals from a distributed accelerometer inertial measurement unit (DAIMU). Earlier work showed that angular and linear velocity calculation using classic nonlinear ordinary differential equation (ODE) solvers is not practically feasible, due to mathematical and numerical difficulties. This report demonstrates the theoretical feasibility of using model-based nonlinear state estimation techniques to obtain the angular and linear velocities in this problem. Practical numerical and calibration issues require additional work to resolve. We show that the six accelerometers in the DAIMU are not sufficient to provide observability, so additional measurements of the system states are required (e.g. from a Global Positioning System (GPS) unit). Given the constraint that our system cannot use GPS, we propose using the existing on-board 3-axis magnetometer to measure angular velocity. We further show that the six nonlinear ODE's for the vehicle kinematics can be decoupled into three ODE's in the angular velocity and three ODE's in the linear velocity. This allows us to formulate a three-state Gauss-Markov system model for the angular velocities, using the magnetometer signals in the measurement model. This re-formulated model is observable, allowing us to build an Extended Kalman Filter (EKF) for estimating the angular velocities. Given the angular velocity estimates from the EKF, the three ODE's for the linear velocity become algebraic, and the linear velocity can be calculated by numerical integration. Thus, we do not need direct measurements of the linear velocity to provide observability, and the technique is mathematically feasible. Using a simulation example, we show that the estimator adds value over the numerical ODE solver in the presence of measurement noise. Calculating the velocities in the presence of

  11. Angular domain transillumination imaging optimization with an ultrafast gated camera.

    PubMed

    Vasefi, Fartash; Najiminaini, Mohamadreza; Ng, Eldon; Kaminska, Bozena; Chapman, Glenn H; Carson, Jeffery J L

    2010-01-01

    By employing high-aspect-ratio parallel microchannels as an angular filter, quasiballistic photons sensitive to internal structures in a turbid medium can be captured. Scattered photons exiting the turbid medium typically exhibit trajectories with random angles compared to the initial trajectory and are mostly rejected by the filter. However, angular filter arrays cannot differentiate between quasiballistic photons (early arriving) and photons that happen to attain a scattered trajectory that is within the acceptance angle (late arriving). Therefore, we have two objectives: (1) to experimentally characterize the angular distribution and proportion of minimally deviated quasiballistic photons and multiply scattered photons in a turbid medium and (2) to combine time and angular gating principles so that early and late arriving photons can be distinguished. From the angular distribution data, the angular filter with angular acceptance about 0.4 deg yields the highest image contrast for transillumination images. The use of angular domain imaging(ADI) with time-gating enables visualization of submillimeter absorbing objects with approximately seven times higher image contrast compared to ADI in a turbid medium with a scattering level of six times the reduced mean free path.

  12. Angular dependence of the pp elastic-scattering analyzing power between 0.8 and 2.8 GeV. II. Results for higher energies

    SciTech Connect

    Allgower, C.E.; Beddo, M.E.; Grosnick, D.P.; Kasprzyk, T.E.; Lopiano, D.; Spinka, H.M.; Ball, J.; Chamouard, P.; Combet, M.; Fontaine, J.; Kunne, R.; Sans, J.; Janout, Z.; Kalinnikov, V.A.; Khachaturov, B.A.; Matafonov, V.N.; Pisarev, I.L.; Popov, A.A.; Usov, Y.A.; Prokofiev, A.N.; Vikhrov, V.V.; Zhdanov, A.A.

    1999-11-01

    Measurements at 18 beam kinetic energies between 1975 and 2795 MeV and at 795 MeV are reported for the pp elastic-scattering single spin parameter A{sub ooon}=A{sub oono}=A{sub N}=P. The c.m. angular range is typically 60{endash}100{degree}. These results are compared to previous data from Saturne II and other accelerators. A search for energy-dependent structure at fixed c.m. angles is performed, but no rapid changes are observed. {copyright} {ital 1999} {ital The American Physical Society}

  13. Computational model for simulation of sequences of helicity and angular momentum transfer in turbid tissue-like scattering medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Meglinski, Igor

    2017-02-01

    Current report considers development of a unified Monte Carlo (MC) -based computational model for simulation of propagation of Laguerre-Gaussian (LG) beams in turbid tissue-like scattering medium. With a primary goal to proof the concept of using complex light for tissue diagnosis we explore propagation of LG beams in comparison with Gaussian beams for both linear and circular polarization. MC simulations of radially and azimuthally polarized LG beams in turbid media have been performed, classic phenomena such as preservation of the orbital angular momentum, optical memory and helicity flip are observed, detailed comparison is presented and discussed.

  14. The angular distributions of ultraviolet spectral irradiance at different solar elevation angles under clear sky conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Hu, LiWen; Wang, Fang; Gao, YanYan; Zheng, Yang; Wang, Yu; Liu, Yang

    2016-01-01

    To investigate the angular distributions of UVA, UVB, and effective UV for erythema and vitamin D (vitD) synthesis, the UV spectral irradiances were measured at ten inclined angles (from 0° to 90°) and seven azimuths (from 0° to 180°) at solar elevation angle (SEA) that ranged from 18.8° to 80° in Shanghai (31.22° N, 121.55° E) under clear sky and the albedo of ground was 0.1. The results demonstrated that in the mean azimuths and with the back to the sun, the UVA, UVB, and erythemally and vitD-weighted irradiances increased with the inclined angles and an increase in SEA. When facing toward the sun at 0°-60° inclined angles, the UVA first increased and then decreased with an increase in SEA; at other inclined angles, the UVA increased with SEA. At 0°-40° inclined angles, the UVB and erythemally and vitD-weighted irradiances first increased and then decreased with an increase in SEA, and their maximums were achieved at SEA 68.7°; at other inclined angles, the above three irradiances increased with an increase in SEA. The maximum UVA, UVB, and erythemally and vitD-weighted irradiances were achieved at an 80° inclined angle at SEA 80° (the highest in our measurements); the cumulative exposure of the half day achieved the maximum at a 60° inclined angle, but not on the horizontal. This study provides support for the assessment of human skin sun exposure.

  15. The angular distributions of ultraviolet spectral irradiance at different solar elevation angles under clear sky conditions.

    PubMed

    Liu, Yan; Hu, LiWen; Wang, Fang; Gao, YanYan; Zheng, Yang; Wang, Yu; Liu, Yang

    2016-01-01

    To investigate the angular distributions of UVA, UVB, and effective UV for erythema and vitamin D (vitD) synthesis, the UV spectral irradiances were measured at ten inclined angles (from 0° to 90°) and seven azimuths (from 0° to 180°) at solar elevation angle (SEA) that ranged from 18.8° to 80° in Shanghai (31.22° N, 121.55° E) under clear sky and the albedo of ground was 0.1. The results demonstrated that in the mean azimuths and with the back to the sun, the UVA, UVB, and erythemally and vitD-weighted irradiances increased with the inclined angles and an increase in SEA. When facing toward the sun at 0°-60° inclined angles, the UVA first increased and then decreased with an increase in SEA; at other inclined angles, the UVA increased with SEA. At 0°-40° inclined angles, the UVB and erythemally and vitD-weighted irradiances first increased and then decreased with an increase in SEA, and their maximums were achieved at SEA 68.7°; at other inclined angles, the above three irradiances increased with an increase in SEA. The maximum UVA, UVB, and erythemally and vitD-weighted irradiances were achieved at an 80° inclined angle at SEA 80° (the highest in our measurements); the cumulative exposure of the half day achieved the maximum at a 60° inclined angle, but not on the horizontal. This study provides support for the assessment of human skin sun exposure.

  16. Polarization Imaging over Sea Surface - A Method for Measurements of Stokes Components Angular Distribution

    NASA Astrophysics Data System (ADS)

    Freda, W.; Piskozub, J.; Toczek, H.

    2015-12-01

    This article describes a method for determining the angular distribution of light polarization over a roughened surface of the sea. Our method relies on measurements of the Stokes vector elements using a polarization imaging camera that operates using the Division of Focal Plane (DoFP) method. It uses special monochrome CCD array in which the neighbouring cells, instead of recording different colours (red green and blue), are equipped with micropolarizers of four directions (0, 45, 90 and 135 degrees). We combined the camera with a fish-eye lens of Field of View (FoV) > 180 deg. Such a large FoV allowed us to crop out the fragment of the frame along the circular horizon, showing a view covering all directions of the hemisphere. Because of complicated optical design of the fish-eye lens (light refraction on surfaces of parts of the lens) connected to the sensor we checked the accuracy of the measurement system. A method to determine the accuracy of measured polarization is based on comparison of the experimentally obtained rotation matrix with its theoretical form. Such a comparison showed that the maximum error of Stokes vector elements depended on zenith angle and reached as much as 24% for light coming from just above the horizon, but decreased rapidly with decreasing zenith angle to the value of 12% for the angles 10° off the edge of FoV. Moreover we present the preliminary results prepared over rough sea surface. These results include total intensity of light, Degree of Linear Polarization (DoLP) and their standard deviations. The results have been averaged over one thousand frames of a movie. These results indicate that the maximum polarization is observed near the reflection of the sun, and the signal coming from below the surface may be observed at zenith angles far from the vertical direction.

  17. Lidar measurements of cloud extinction coefficient distribution and its forward scattering phase function according to multiply scattered lidar returns

    NASA Technical Reports Server (NTRS)

    Qiu, Jinhuan; Huang, Qirong

    1992-01-01

    The study of the inversion algorithm for the single scatter lidar equation, for quantitative determination of cloud (or aerosol) optical properties, has received much attention over the last thirty years. Some of the difficulties associated with the solution of this equation are not yet solved. One problem is that a single scatter lidar equation has two unknowns. Because of this, the determination of the far-end boundary value, in the case of Klett's algorithm, is a problem if the atmosphere is optically inhomogeneous. Another difficulty concerns multiple scattering. There is a large error in the extinction distribution solution, in many cases, if only the single scattering component is considered, while neglecting the multiple scattering component. However, the use of multiple scattering in the remote sensing of aerosol or cloud optical properties is promising. In our early study, an inversion method for simultaneous determination of the cloud (or aerosol) Extinction Coefficient Distribution (ECD) and its Forward Scattering Phase Function (FSPF) was proposed according to multiply scattered lidar returns with two fields of view for the receiver. The method is based on a parameterized multiple scatter lidar equation. This paper is devoted to further numerical tests and an experimental study of lidar measurements of cloud ECD and FSPF using this method.

  18. Lidar measurements of cloud extinction coefficient distribution and its forward scattering phase function according to multiply scattered lidar returns

    NASA Technical Reports Server (NTRS)

    Qiu, Jinhuan; Huang, Qirong

    1992-01-01

    The study of the inversion algorithm for the single scatter lidar equation, for quantitative determination of cloud (or aerosol) optical properties, has received much attention over the last thirty years. Some of the difficulties associated with the solution of this equation are not yet solved. One problem is that a single scatter lidar equation has two unknowns. Because of this, the determination of the far-end boundary value, in the case of Klett's algorithm, is a problem if the atmosphere is optically inhomogeneous. Another difficulty concerns multiple scattering. There is a large error in the extinction distribution solution, in many cases, if only the single scattering component is considered, while neglecting the multiple scattering component. However, the use of multiple scattering in the remote sensing of aerosol or cloud optical properties is promising. In our early study, an inversion method for simultaneous determination of the cloud (or aerosol) Extinction Coefficient Distribution (ECD) and its Forward Scattering Phase Function (FSPF) was proposed according to multiply scattered lidar returns with two fields of view for the receiver. The method is based on a parameterized multiple scatter lidar equation. This paper is devoted to further numerical tests and an experimental study of lidar measurements of cloud ECD and FSPF using this method.

  19. Angular Distributions of High-Mass Dilepton Production in Hadron Collisions

    SciTech Connect

    McClellan, Randall Evan

    2016-01-01

    λ has been performed, and the remaining difficulties in extracting ν have been evaluated. Although the results are not yet publishable, significant progress has been made in developing this very challenging angular distributions analysis. A simple scheme for correcting for the angular acceptances of the spectrometer, trigger, and reconstruction has been developed and demonstrated. A generally applicable correction for the kinematically-dependent, rate-dependent reconstruction efficiency has been developed and applied to all current analyses on SeaQuest data. This rate-dependence correction was the first major hurdle in the path to publication of many preliminary SeaQuest results. The last remaining major correction for all analyses, but especially important for the angular parameter extraction, is the full characterization, rate-dependence correction, and subtraction of the combinatoric background contribution to the reconstructed dimuon sample. Independently, an intuitive, kinematic derivation of the single-event definitions of the Drell-Yan angular parameters has been developed under the assumption of unpolarized annihilating quarks within unpolarized nuclei. At O(αs), where the quarks remain co-planar with the hadrons in the photon rest frame, this kinematic method reproduces the Lam-Tung relation and derives an additional equality for µ2, which is only interpretable for single-event parameters. This method has been extended to the case of quark non- coplanarity, and the coplanar equalities become inequalities. A new equality was discovered, which should be obeyed by single-event parameters even in the case of a non-coplanar quark axis. The non-coplanar parameter relations have been used to derive constraints on the experimentally accessible values of λ and ν. These constraints are compared with existing data and have been found consistent, except in the cases where significant contributions from non-zero Boer-Mulders functions are expected. Finally, the

  20. Polarization of photons scattered by electrons in any spectral distribution

    SciTech Connect

    Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo

    2014-01-01

    On the basis of the quantum electrodynamics, we present a generic formalism of the polarization for beamed monochromatic photons scattered by electrons in any spectral distribution. The formulae reduce to the components of the Fano matrix when electrons are at rest. We mainly investigate the polarization in three scenarios, i.e., electrons at rest, isotropic electrons with a power-law spectrum, and thermal electrons. If the incident beam is polarized, the polarization is reduced significantly by isotropic electrons at large viewing angles; the degree of polarization caused by thermal electrons is about half of that caused by power-law electrons. If the incident bean is unpolarized, soft γ-rays can lead to about 15% polarization at viewing angles around π/4. For isotropic electrons, one remarkable feature is that the polarization as a function of the incident photon energy always peaks roughly at 1 MeV; this is valid for both the thermal and power-law cases. This feature can be used to distinguish the model of the inverse Compton scattering from that of the synchrotron radiation.

  1. High resolution Coulomb explosion spectra and angular distributions of fragment ions of N 2 in a femtosecond laser field

    NASA Astrophysics Data System (ADS)

    Shi, Mingyuan; Huang, Shaochuan; Xi, Wei; Liu, Zuoye; Du, Hongchuan; Ding, Baowei; Hu, Bitao

    2017-03-01

    Femtosecond laser field-induced ionization and Coulomb explosion are systematically investigated using high-resolution time-of-flight mass spectroscopy. Meanwhile a good alignment of the N2 is achieved geometrically. Based on the energy and momentum conservation laws, the events from different Coulomb explosion channels are identified accurately and further used to obtain the Kinetic Energy Release (KER) by the created molecular ion pairs and the angular distributions of the fragment ions. The KERs measured at laser intensities varying from 4 × 10^{14} W/cm2 to 2 × 10^{15} W/cm2 are found to stay constant. The angular distributions are measured at laser intensity of 9 × 10^{14} W/cm2. The atomic ions N+, N^{2+} and N^{3+} exhibit highly anisotropic distributions and for higher charge state, the angular distributions become narrower. With good exclusion of channel N(1,0), the non-zeroes normal to the laser polarization vector in channel N(1,1) still exist, which indicates the presence of geometric alignments (GA). The elusive shrink structure at θ=0° for channels N(1,1), N(1,2) and N(2,3) is observed, which implies that the non-sequential process exists, and the electron rescattering plays role in the ionization process.

  2. Angular distribution and recoil effect for 1 MeV Au+ ions through a Si3N4 thin foil

    SciTech Connect

    Jin, Ke; Zhu, Zihua; Manandhar, Sandeep; Liu, Jia; Chen, Chien-Hung; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai; Weber, William J; Zhang, Yanwen

    2014-01-01

    The Stopping and Range of Ions in Matter (SRIM) code has been widely used to predict nuclear stopping power and angular distribution of ion-solid collisions. However, experimental validation of the predictions is insufficient for slow heavy ions in nonmetallic compounds. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is applied to determine the angular distribution of 1 MeV Au ions after penetrating a Si3N4 foil with a thickness of ~100 nm. The exiting Au ions are collected by a Si wafer located ~14 mm behind the Si3N4 foil, and the resulting 2-dimensional distribution of Au ions on the Si wafer is measured by ToF-SIMS. The SRIM-predicted angular distribution of Au ions through the Si3N4 thin foil is compared with the measured results, indicating that SRIM slightly overestimates the nuclear stopping power by up to 10%. In addition, thickness reduction of the suspended Si3N4 foils induced by 1 MeV Au ion irradiation is observed with an average loss rate of ~107 atom/ion.

  3. Implementation of a new energy-angular distribution of particles emitted by deuteron induced nuclear reaction in transport simulations

    NASA Astrophysics Data System (ADS)

    Sauvan, Patrick; Koning, Arjan; Ogando, Francisco; Sanz, Javier

    2017-09-01

    MCUNED code is an MCNPX extension able to handle evaluated nuclear data library for light ion transport simulations. In this work the MCUNED code is improved to describe more accurately the neutron emission during deuteron induced nuclear reaction. This code update consists in introducing a new methodology to take into account the angular distribution of neutron produced by deuteron breakup reaction. To carry out this work a new formulation for the angular distribution of neutrons produced by breakup reaction has been proposed. The implementation of this new methodology requires the use of extra parameters which are provided by the nuclear code TALYS and stored in the ENDF file. This new methodology shows significant improvement in comparison with the former treatment of neutron emission kinematics, these results are in good agreement with experimental data.

  4. Unambiguous observation of F-atom core-hole localization in CF4 through body-frame photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.; Lucchese, R. R.; Gaire, B.; Menssen, A.; Schöffler, M. S.; Gatton, A.; Neff, J.; Stammer, P. M.; Rist, J.; Eckart, S.; Berry, B.; Severt, T.; Sartor, J.; Moradmand, A.; Jahnke, T.; Landers, A. L.; Williams, J. B.; Ben-Itzhak, I.; Dörner, R.; Belkacem, A.; Weber, Th.

    2017-01-01

    A dramatic symmetry breaking in K -shell photoionization of the CF4 molecule in which a core-hole vacancy is created in one of four equivalent fluorine atoms is displayed in the molecular frame angular distribution of the photoelectrons. Observing the photoejected electron in coincidence with an F+ atomic ion after Auger decay is shown to select the dissociation path where the core hole was localized almost exclusively on that atom. A combination of measurements and ab initio calculations of the photoelectron angular distribution in the frame of the recoiling CF3+ and F+ atoms elucidates the underlying physics that derives from the Ne-like valence structure of the F(1 s-1 ) core-excited atom.

  5. Stretched configuration of states as inferred from γ -ray angular distributions in 40Ar + 208Pb neutron transfer reactions

    NASA Astrophysics Data System (ADS)

    Čolović, P.; Szilner, S.; Corradi, L.; Mijatović, T.; Pollarolo, G.; Goasduff, A.; Montanari, D.; Chapman, R.; Fioretto, E.; Gadea, A.; Haas, F.; Jelavić Malenica, D.; Mărginean, N.; Mengoni, D.; Milin, M.; Montagnoli, G.; Scarlassara, F.; Smith, J. F.; Soić, N.; Stefanini, A. M.; Ur, C. A.; Valiente-Dobón, J. J.

    2017-08-01

    Angular distributions of γ -rays for selected transitions in 40, 41, 42Ar isotopes have been studied with the PRISMA magnetic spectrometer coupled to the CLARA γ array. These transitions were populated in Ar isotopes reached via neutron transfer in the 40Ar + 208Pb reaction. By comparison with the shape of the experimental angular distribution of the known E2 transitions we established more firmly the spin and parity of excited states. In particular, in 41Ar for the (11/2^-) state through the (11/2^-) → 7/2^- transition whose structure was discussed in terms of a phonon-fermion coupled state. The comparison with the expected fully aligned spin indicated that a high level of spin alignment has been reached.

  6. Unambiguous observation of F-atom core-hole localization in CF4 through body-frame photoelectron angular distributions

    DOE PAGES

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.; ...

    2017-01-17

    A dramatic symmetry breaking in K-shell photoionization of the CF4 molecule in which a core-hole vacancy is created in one of four equivalent fluorine atoms is displayed in the molecular frame angular distribution of the photoelectrons. In observing the photoejected electron in coincidence with an F+ atomic ion after Auger decay we see how selecting the dissociation path where the core hole was localized was almost exclusively on that atom. A combination of measurements and ab initio calculations of the photoelectron angular distribution in the frame of the recoiling CF3+ and F+ atoms elucidates the underlying physics that derives frommore » the Ne-like valence structure of the F(1s-1) core-excited atom.« less

  7. Molecular frame photoelectron angular distributions for core ionization of ethane, carbon tetrafluoride and 1,1-difluoroethylene

    DOE PAGES

    Menssen, A.; Trevisan, C. S.; Schöffler, M. S.; ...

    2016-02-15

    Molecular frame photoelectron angular distributions (MFPADs) are measured in this paper in electron–ion momentum imaging experiments and compared with complex Kohn variational calculations for carbon K-shell ionization of carbon tetrafluoride (CF4), ethane (C2H6) and 1,1-difluoroethylene (C2H2F2). While in ethane the polarization averaged MFPADs show a tendency at low energies for the photoelectron to be emitted in the directions of the bonds, the opposite effect is seen in CF4. A combination of these behaviors is seen in difluoroethylene where ionization from the two carbons can be distinguished experimentally because of their different K-shell ionization potentials. Excellent agreement is found between experimentmore » and simple static-exchange or coupled two-channel theoretical calculations. Finally, however, simple electrostatics do not provide an adequate explanation of the suggestively simple angular distributions at low electron ejection energies.« less

  8. Search for quark compositeness in dijet angular distributions from pp collisions at sqrt(s) = 7 TeV

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2012-05-01

    A search for quark compositeness using dijet angular distributions from pp collisions at sqrt(s) = 7 TeV is presented. The search has been carried out using a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS experiment at the LHC. Normalized dijet angular distributions have been measured for dijet invariant masses from 0.4 TeV to above 3 TeV and compared with a variety of contact interaction models, including those which take into account the effects of next-to-leading-order QCD corrections. The data are found to be in agreement with the predictions of perturbative QCD, and lower limits are obtained on the contact interaction scale, ranging from 7.5 up to 14.5 TeV at 95% confidence level.

  9. Angular distribution functions in the decays of the 3 D 3 state of charmonium originating from unpolarized overline{p}p collisions

    NASA Astrophysics Data System (ADS)

    Mok, Alex W. K.; Wong, Cheuk-Ping; Sit, Wai-Yu

    2012-10-01

    Using the helicity formalism, we calculate the combined angular distribution function of the two photons (γ1 and γ2) and electron ( e -) in the cascade process overline{p}pto {}^3{D_3}to {}^3{P_2}+{γ_1}to ( {ψ +{γ_2}} )+{γ_1}to ( {{e+}+{e-}} )+{γ_2}+{γ_1},when overline{p} and p are unpolarized. We also derive six different partially integrated angular distribution functions which give the angular distributions of one or two particles in the final state. Once the angular distributions are measured, our expressions will enable one to determine the relative magnitudes as well as the cosines of the relative phases of all the angular-momentum helicity amplitudes in the radiative decay processes 3 D 3 → 3 P 2 + γ1 and 3 P 2 → ψ + γ2.

  10. Tracking hole localization in K -shell and core-valence-excited acetylene photoionization via body-frame photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Rescigno, T. N.; Trevisan, C. S.; McCurdy, C. W.

    2015-02-01

    Asymmetry in the molecular-frame photoelectron angular distributions from core-hole- or core-valence-excited polyatomic targets with symmetry-equivalent atoms can provide direct evidence for core-hole localization. Using acetylene as an example, we contrast the small asymmetry that can be seen in direct core-level ionization, due to the competition between two competing pathways to the continuum, with ionization from core-valence-excited HCCH, which offers the prospect of observing markedly greater asymmetry.

  11. Angular distribution of hypersatellite and satellite radiation emitted after resonant transfer and excitation into U{sup 91+} ions

    SciTech Connect

    Zakowicz, S.; Harman, Z.; Gruen, N.; Scheid, W.

    2003-10-01

    In collisions of heavy few-electron projectile ions with light targets, an electron can be transferred from the target with the simultaneous excitation of a projectile electron. We study the angular distribution of deexcitation x rays following the resonant capture process. Our results are compared to experimental values of Ma et al. [Phys. Rev. A 68, 042712 (2003)] for collisions of U{sup 91+} ions with a hydrogen gas target.

  12. Rotational and angular distributions of NO products from NO-Rg(Rg = He, Ne, Ar) complex photodissociation

    DOE PAGES

    Heather L. Holmes-Ross; Hall, Gregory E.; Valenti, Rebecca J.; ...

    2016-01-29

    In this study, we present the results of an investigation into the rotational and angular distributions of the NO A~ state fragment following photodissociation of the NO-He, NO-Ne and NO-Ar van der Waals complexed excited via the A~ ← X~ transition. For each complex the dissociation is probed for several values of Ea, the available energy above the dissociation threshold.

  13. Rotational and angular distributions of NO products from NO-Rg(Rg = He, Ne, Ar) complex photodissociation

    SciTech Connect

    Heather L. Holmes-Ross; Hall, Gregory E.; Valenti, Rebecca J.; Yu, Hua -Gen; Lawrance, Warren D.

    2016-01-29

    In this study, we present the results of an investigation into the rotational and angular distributions of the NO A~ state fragment following photodissociation of the NO-He, NO-Ne and NO-Ar van der Waals complexed excited via the A~ ← X~ transition. For each complex the dissociation is probed for several values of Ea, the available energy above the dissociation threshold.

  14. Angular distribution of light emission from compound-eye cornea with conformal fluorescent coating

    NASA Astrophysics Data System (ADS)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2014-09-01

    The complex morphology of the apposition compound eyes of insects of many species provides them a wide angular field of view. This characteristic makes these eyes attractive for bioreplication as artificial sources of light. The cornea of a blowfly eye was conformally coated with a fluorescent thin film with the aim of achieving wide field-of-view emission. On illumination by shortwave-ultraviolet light, the conformally coated eye emitted visible light whose intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  15. Angular distributions of single- and double-electron capture in very-slow Ar sup 6+ -Ar collisions

    SciTech Connect

    Biedermann, C.; Levin, J.C.; Short, R.T.; Elston, S.B.; Gibbons, J.P.; Kimura, K.; Keller, N.; Sellin, I.A. . Dept. of Physics Oak Ridge National Lab., TN ); Cederquist, H.; Andersson, L.R.; Andersson, H.; Liljeby, L. )

    1990-01-01

    We have measured state-resolved angular distributions of one- and two-electron capture in 32 to 800 eV Ar{sup 6+} {minus} Ar collisions. The experimental energy-gain spectra show that single-electron capture mainly populates the 5s, 5p and 4f levels. We observe detailed structures in the corresponding angular distributions, but a final interpretation has to await a quantitative analysis of the collision dynamics. We tentatively ascribe the main features in the angular distribution of true double-electron capture at Q {approximately} 26 eV (4s4f and 4s5s) and Q {approximately} 42 eV (3d4d) to processes involving two consecutive one-electron transitions. For the transfer ionization process, we measure a Q-value of {approximately}eV, which we assign to autoionizing 4s5s (or 4s4f) levels. The 4s5s, 4s4f, and 3d4d levels all reside above the first ionization limit of Ar{sup 4+}, but we find that the 3d4d level stabilizes through radiative decay. 8 refs., 4 figs.

  16. Rotational and angular distributions of NO products from NO-Rg (Rg = He, Ne, Ar) complex photodissociation

    NASA Astrophysics Data System (ADS)

    Holmes-Ross, Heather L.; Valenti, Rebecca J.; Yu, Hua-Gen; Hall, Gregory E.; Lawrance, Warren D.

    2016-01-01

    We present the results of an investigation into the rotational and angular distributions of the NO A ˜ state fragment following photodissociation of the NO-He, NO-Ne, and NO-Ar van der Waals complexes excited via the A ˜ ←X ˜ transition. For each complex, the dissociation is probed for several values of Ea, the available energy above the dissociation threshold. For NO-He, the Ea values probed were 59, 172, and 273 cm-1; for NO-Ne they were 50 and 166 cm-1; and for NO-Ar they were 44, 94, 194, and 423 cm-1. The NO A ˜ state rotational distributions arising from NO-He are cold, with most products in low angular momentum states. NO-Ne leads to broader NO rotational distributions but they do not extend to the maximum possible given the energy available. In the case of NO-Ar, the distributions extend to the maximum allowed at that energy and show the unusual shapes associated with the rotational rainbow effect reported in previous studies. This is the only complex for which a rotational rainbow effect is observed at the chosen Ea values. Product angular distributions have also been measured for the NO A ˜ photodissociation product for the three complexes. NO-He produces nearly isotropic fragments, but the anisotropy parameter, β, for NO-Ne and NO-Ar photofragments shows a surprising change in sign from negative to positive as Ea increases within the unstructured excitation profile. Franck-Condon selection of a broader distribution of geometries including more linear geometries at lower excitation energies and more T-shaped geometries at higher energies can account for the changing recoil anisotropy. Two-dimensional wavepacket calculations are reported to model the rotational state distributions and the bound-continuum absorption spectra.

  17. Rotational and angular distributions of NO products from NO-Rg (Rg = He, Ne, Ar) complex photodissociation.

    PubMed

    Holmes-Ross, Heather L; Valenti, Rebecca J; Yu, Hua-Gen; Hall, Gregory E; Lawrance, Warren D

    2016-01-28

    We present the results of an investigation into the rotational and angular distributions of the NO à state fragment following photodissociation of the NO-He, NO-Ne, and NO-Ar van der Waals complexes excited via the à ← X̃ transition. For each complex, the dissociation is probed for several values of Ea, the available energy above the dissociation threshold. For NO-He, the Ea values probed were 59, 172, and 273 cm(-1); for NO-Ne they were 50 and 166 cm(-1); and for NO-Ar they were 44, 94, 194, and 423 cm(-1). The NO à state rotational distributions arising from NO-He are cold, with most products in low angular momentum states. NO-Ne leads to broader NO rotational distributions but they do not extend to the maximum possible given the energy available. In the case of NO-Ar, the distributions extend to the maximum allowed at that energy and show the unusual shapes associated with the rotational rainbow effect reported in previous studies. This is the only complex for which a rotational rainbow effect is observed at the chosen Ea values. Product angular distributions have also been measured for the NO à photodissociation product for the three complexes. NO-He produces nearly isotropic fragments, but the anisotropy parameter, β, for NO-Ne and NO-Ar photofragments shows a surprising change in sign from negative to positive as Ea increases within the unstructured excitation profile. Franck-Condon selection of a broader distribution of geometries including more linear geometries at lower excitation energies and more T-shaped geometries at higher energies can account for the changing recoil anisotropy. Two-dimensional wavepacket calculations are reported to model the rotational state distributions and the bound-continuum absorption spectra.

  18. The effects of compensator design on scatter distribution and magnitude: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Bootsma, G. J.; Verhaegen, F.; Jaffray, D. A.

    2011-03-01

    X-ray scatter has a significant impact on image quality in kV cone-beam CT (CBCT), its effects include: CT number inaccuracy, streak and cupping artifacts, and loss of contrast. Compensators provide a method for not only decreasing the magnitude of the scatter distribution, but also reducing the structure found in the scatter distribution. Recent Monte Carlo (MC) simulations examining X-ray scatter in CBCT projection images have shown that the scatter distribution in x-ray imaging contains structure largely induced by coherent scattering. In order to maximize the reduction of x-ray scatter induced artifacts a decrease in the magnitude and structure of the scatter distribution is sought through optimal compensator design. A flexible MC model that allows for separation of scattered and primary photons has been created to simulate the CBCT imaging process. The CBCT MC model is used to investigate the effectiveness of compensators in decreasing the magnitude and structure of the scatter distribution in CBCT projection images. The influence of the compensator designs on the scatter distribution are evaluated for different anatomy (abdomen, pelvis, and head and neck) and viewing angles using a voxelized anthropomorphic phantom. The effect of compensator material composition on the amount of contamination photons in an open field is also investigated.

  19. Phylogenetic analysis reveals a scattered distribution of autumn colours

    PubMed Central

    Archetti, Marco

    2009-01-01

    Background and Aims Leaf colour in autumn is rarely considered informative for taxonomy, but there is now growing interest in the evolution of autumn colours and different hypotheses are debated. Research efforts are hindered by the lack of basic information: the phylogenetic distribution of autumn colours. It is not known when and how autumn colours evolved. Methods Data are reported on the autumn colours of 2368 tree species belonging to 400 genera of the temperate regions of the world, and an analysis is made of their phylogenetic relationships in order to reconstruct the evolutionary origin of red and yellow in autumn leaves. Key Results Red autumn colours are present in at least 290 species (70 genera), and evolved independently at least 25 times. Yellow is present independently from red in at least 378 species (97 genera) and evolved at least 28 times. Conclusions The phylogenetic reconstruction suggests that autumn colours have been acquired and lost many times during evolution. This scattered distribution could be explained by hypotheses involving some kind of coevolutionary interaction or by hypotheses that rely on the need for photoprotection. PMID:19126636

  20. Vibronic coupling in the superoxide anion: the vibrational dependence of the photoelectron angular distribution.

    PubMed

    Van Duzor, Matthew; Mbaiwa, Foster; Wei, Jie; Singh, Tulsi; Mabbs, Richard; Sanov, Andrei; Cavanagh, Steven J; Gibson, Stephen T; Lewis, Brenton R; Gascooke, Jason R

    2010-11-07

    We present a comprehensive photoelectron imaging study of the O(2)(X  (3)Σ(g)(-),v(')=0-6)←O(2)(-)(X  (2)Π(g),v(")=0) and O(2)(a (1)Δ(g),v(')=0-4)←O(2)(-)(X  (2)Π(g),v(")=0) photodetachment bands at wavelengths between 900 and 455 nm, examining the effect of vibronic coupling on the photoelectron angular distribution (PAD). This work extends the v(')=1-4 data for detachment into the ground electronic state, presented in a recent communication [R. Mabbs, F. Mbaiwa, J. Wei, M. Van Duzor, S. T. Gibson, S. J. Cavanagh, and B. R. Lewis, Phys. Rev. A 82, 011401(R) (2010)]. Measured vibronic intensities are compared to Franck-Condon predictions and used as supporting evidence of vibronic coupling. The results are analyzed within the context of the one-electron, zero core contribution (ZCC) model [R. M. Stehman and S. B. Woo, Phys. Rev. A 23, 2866 (1981)]. For both bands, the photoelectron anisotropy parameter variation with electron kinetic energy, β(E), displays the characteristics of photodetachment from a d-like orbital, consistent with the π(g)(∗) 2p highest occupied molecular orbital of O(2)(-). However, differences exist between the β(E) trends for detachment into different vibrational levels of the X  (3)Σ(g)(-) and a (1)Δ(g) electronic states of O(2). The ZCC model invokes vibrational channel specific "detachment orbitals" and attributes this behavior to coupling of the electronic and nuclear motion in the parent anion. The spatial extent of the model detachment orbital is dependent on the final state of O(2): the higher the neutral vibrational excitation, the larger the electron binding energy. Although vibronic coupling is ignored in most theoretical treatments of PADs in the direct photodetachment of molecular anions, the present findings clearly show that it can be important. These results represent a benchmark data set for a relatively simple system, upon which to base rigorous tests of more sophisticated models.

  1. Vibronic coupling in the superoxide anion: The vibrational dependence of the photoelectron angular distribution

    NASA Astrophysics Data System (ADS)

    Van Duzor, Matthew; Mbaiwa, Foster; Wei, Jie; Singh, Tulsi; Mabbs, Richard; Sanov, Andrei; Cavanagh, Steven J.; Gibson, Stephen T.; Lewis, Brenton R.; Gascooke, Jason R.

    2010-11-01

    We present a comprehensive photoelectron imaging study of the O2(X Σg-3,v '=0-6)←O2-(X Π2g,v ″=0) and O2(aΔ1g,v '=0-4)←O2-(X Π2g,v ″=0) photodetachment bands at wavelengths between 900 and 455 nm, examining the effect of vibronic coupling on the photoelectron angular distribution (PAD). This work extends the v'=1-4 data for detachment into the ground electronic state, presented in a recent communication [R. Mabbs, F. Mbaiwa, J. Wei, M. Van Duzor, S. T. Gibson, S. J. Cavanagh, and B. R. Lewis, Phys. Rev. A 82, 011401-R (2010)]. Measured vibronic intensities are compared to Franck-Condon predictions and used as supporting evidence of vibronic coupling. The results are analyzed within the context of the one-electron, zero core contribution (ZCC) model [R. M. Stehman and S. B. Woo, Phys. Rev. A 23, 2866 (1981)]. For both bands, the photoelectron anisotropy parameter variation with electron kinetic energy, β(E ), displays the characteristics of photodetachment from a d-like orbital, consistent with the πg∗ 2p highest occupied molecular orbital of O2-. However, differences exist between the β(E ) trends for detachment into different vibrational levels of the X Σg-3 and a Δ1g electronic states of O2. The ZCC model invokes vibrational channel specific "detachment orbitals" and attributes this behavior to coupling of the electronic and nuclear motion in the parent anion. The spatial extent of the model detachment orbital is dependent on the final state of O2: the higher the neutral vibrational excitation, the larger the electron binding energy. Although vibronic coupling is ignored in most theoretical treatments of PADs in the direct photodetachment of molecular anions, the present findings clearly show that it can be important. These results represent a benchmark data set for a relatively simple system, upon which to base rigorous tests of more sophisticated models.

  2. On angularly perturbed Laplace equations in the unit ball of IR{sup n+2} and their distributional boundary values

    SciTech Connect

    Massopust, P.R.

    1997-08-01

    All solutions of an in its angular coordinates continuously perturbed Laplace-Beltrami equation in the open unit ball IB{sup n+2} {contained_in} IR{sup n+2}, n {ge} 1, are characterized. Moreover, it is shown that such pertubations yield distributional boundary values which are different from, but algebraically and topologically equivalent to, the hyperfunctions of Lions & Magenes. This is different from the case of radially perturbed Laplace-Beltrami operators (cf. [7]) where one has stability of distributional boundary values under such perturbations.

  3. Angular distributions of photoelectrons and interatomic-Coulombic-decay electrons from helium dimers: Strong dependence on the internuclear distance

    SciTech Connect

    Havermeier, T.; Kreidi, K.; Wallauer, R.; Voss, S.; Schoeffler, M.; Schoessler, S.; Foucar, L.; Neumann, N.; Titze, J.; Sann, H.; Kuehnel, M.; Voigtsberger, J.; Schmidt-Boecking, H.; Doerner, R.; Jahnke, T.; Sisourat, N.; Schoellkopf, W.; Grisenti, R. E.

    2010-12-15

    In the present paper, we show that the absorption of a single photon can singly ionize both atoms of a helium dimer (He{sub 2}): ionization with simultaneous excitation of one atom followed by de-excitation via interatomic Coulombic decay leads to the ejection of an electron from each of the the two atoms of the dimer. Using the Cold Target Recoil Ion Momentum Spectroscopy technique (COLTRIMS), we obtained angular distributions of these electrons in the laboratory frame and the molecular frame. We observe a pronounced variation of these distributions for different regions of kinetic-energy releases of the ions.

  4. Dependencies of lepton angular distribution coefficients on the transverse momentum and rapidity of Z bosons produced in p p collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Chen; McClellan, Randall Evan; Peng, Jen-Chieh; Teryaev, Oleg

    2017-09-01

    High precision data of lepton angular distributions for γ*/Z production in p p collisions at the LHC, covering broad ranges of dilepton transverse momenta (qT) and rapidity (y ), were recently reported. Strong qT dependencies were observed for several angular distribution coefficients, Ai, including A0-A4. Significant y dependencies were also found for the coefficients A1, A3 and A4, while A0 and A2 exhibit very weak rapidity dependence. Using an intuitive geometric picture, we show that the qT and y dependencies of the angular distributions coefficients can be well described.

  5. Angular and energy distribution of fragment ions in dissociative double photoionization of acetylene molecules at 39 eV

    SciTech Connect

    Alagia, M.; Callegari, C.; Richter, R.; Candori, P.; Falcinelli, S.; Vecchiocattivi, F.; Pirani, F.; Stranges, S.

    2012-05-28

    The two-body dissociation reactions of the dication, C{sub 2}H{sub 2}{sup 2+}, produced by 39.0 eV double photoionization of acetylene molecules, have been studied by coupling photoelectron-photoion-photoion coincidence and ion imaging techniques. The results provide the kinetic energy and angular distributions of product ions. The analysis of the results indicates that the dissociation leading to C{sub 2}H{sup +}+H{sup +} products occurs through a metastable dication with a lifetime of 108 {+-} 22 ns, and a kinetic energy release (KER) distribution exhibiting a maximum at {approx}4.3 eV with a full width at half maximum (FWHM) of about 60%. The reaction leading to CH{sub 2}{sup +}+C{sup +} occurs in a time shorter than the typical rotational period of the acetylene molecules (of the order of 10{sup -12} s). The KER distribution of product ions for this reaction, exhibits a maximum at {approx}4.5 eV with a FWHM of about 28%. The symmetric dissociation, leading to CH{sup +} + CH{sup +}, exhibits a KER distribution with a maximum at {approx}5.2 eV with a FWHM of 44%. For the first two reactions the angular distributions of ion products also indicate that the double photoionization of acetylene occurs when the neutral molecule is mainly oriented perpendicularly to the light polarization vector.

  6. Optimal angular dose distribution to acquire 3D and extra 2D images for digital breast tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu

    2015-08-01

    The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.

  7. CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-12-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilizes measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4 per cent. For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  8. State-selective influence of the Breit interaction on the angular distribution of emitted photons following dielectronic recombination

    NASA Astrophysics Data System (ADS)

    Amaro, Pedro; Shah, Chintan; Steinbrügge, Rene; Beilmann, Christian; Bernitt, Sven; López-Urrutia, José R. Crespo; Tashenov, Stanislav

    2017-02-01

    We report a measurement of K L L dielectronic recombination in charge states from Kr+34 through Kr+28 in order to investigate the contribution of the Breit interaction for a wide range of resonant states. Highly charged Kr ions were produced in an electron-beam ion trap, while the electron-ion collision energy was scanned over a range of dielectronic recombination resonances. The subsequent K α x rays were recorded both along and perpendicular to the electron-beam axis, which allowed the observation of the influence of the Breit interaction on the angular distribution of the x rays. Experimental results are in good agreement with distorted-wave calculations. We demonstrate, both theoretically and experimentally, that there is a strong state-selective influence of the Breit interaction that can be traced back to the angular and radial properties of the wave functions in the dielectronic capture.

  9. Interplay between theory and experiment for fission-fragment angular distributions from nuclei near the limits of stability

    NASA Astrophysics Data System (ADS)

    Freifelder, R.; Prakash, M.; Alexander, John M.

    1986-02-01

    We examine the application of transition-state theory for fission-fragment angular distributions to composite nuclei near the limits of stability. The possible roles of saddle-point and scission-point configurations are explored. For many heavy-ion reactions that involve large angular momenta, the observed anisotropies are between the predictions of the saddle-point and scisson-point models. Empirical correlations are shown between the effective moments of inertia and the spin and {Z 2}/{A} of the compound nucleus. These correlations provide evidence for a class of transition-state nuclei intermediate between saddle- and scission-point configurations. An important indication of these patterns is that the speed of collective deformation toward fission may well be slow enough to allow for statistical equilibrium in the tilting mode even for configurations well beyond the saddle point.

  10. Angular transmittance analysis of a novel thermotropic material.

    PubMed

    Yao, Jian

    2013-01-01

    This paper uses inverse adding-doubling (IAD) method and Monte Carlo method for the simulation of the spectral angular transmittance of a novel kind of thermotropic material at different temperatures. The results show that the collimated light takes the major part at the beginning of the switching process and the scattered light is negligible. However, the scattered light increased to high above 80% of the total transmitted light with the largest angle distribution of scattered light about 30 degrees as temperature elevated.

  11. Phonon Surface Scattering and Thermal Energy Distribution in Superlattices.

    PubMed

    Kothari, Kartik; Maldovan, Martin

    2017-07-17

    Thermal transport at small length scales has attracted significant attention in recent years and various experimental and theoretical methods have been developed to establish the reduced thermal conductivity. The fundamental understanding of how phonons move and the physical mechanisms behind nanoscale thermal transport, however, remains poorly understood. Here we move beyond thermal conductivity calculations and provide a rigorous and comprehensive physical description of thermal phonon transport in superlattices by solving the Boltzmann transport equation and using the Beckman-Kirchhoff surface scattering theory with shadowing to precisely describe phonon-surface interactions. We show that thermal transport in superlattices can be divided in two different heat transport modes having different physical properties at small length scales: layer-restricted and extended heat modes. We study how interface conditions, periodicity, and composition can be used to manipulate the distribution of thermal energy flow among such layer-restricted and extended heat modes. From predicted frequency and mean free path spectra of superlattices, we also investigate the existence of wave effects. The results and insights in this paper advance the fundamental understanding of heat transport in superlattices and the prospects of rationally designing thermal systems with tailored phonon transport properties.

  12. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1974-01-01

    The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.

  13. Angular correlation measurements for {sup 12}C{sup 12}C,{sup 12}C{sup 12}C 3{sup -} scattering

    SciTech Connect

    Wuosmaa, A.H.; Betts, R.R.; Freer, M.

    1995-08-01

    Previous studies of inelastic {sup 12}C + {sup 12}C scattering to a variety of final states identified significant resonance behavior in a number of different reaction channels. These resonances can be interpreted as either potential scattering resonances, or as population of cluster structures in the compound nucleus {sup 24}Mg, or as some interplay between the two mechanisms. Currently, for many of these resonances the situation remains unclear. One example is a large peak observed in the excitation function for the 3{sup -} - g.s. excitation, identified in previous work performed at the Daresbury Laboratory in England. This peak is observed at the same center-of-mass energy as one observed in the O{sub 2}{sup +}-O{sub 2}{sup +} inelastic scattering channel. That structure was suggested to correspond to exotic deformed configurations in the compound nucleus {sup 24}Mg. As the peak in the 3{sup -} + g.s. exit channel occurs at precisely the same energy as the purported resonance, it is tempting to associate the two. Before such an association can be confirmed or ruled out, further information must be obtained about the 3{sup -} + g.s. structure. In particular, it is important to determine the angular momenta that dominate the 3{sup -} + g.s. structure.

  14. High resolution Dopplerimetry of correlated angular and quantum state-resolved CO(2) scattering dynamics at the gas-liquid interface.

    PubMed

    Perkins, Bradford G; Nesbitt, David J

    2010-11-14

    Full three dimensional (3D) translational distributions for quantum state-resolved scattering dynamics at the gas-liquid interface are presented for experimental and theoretical studies of CO(2) + perfluorinated surfaces. Experimentally, high resolution absorption profiles are measured as a function of incident (θ(inc)) and scattering (θ(scat)) angles for CO(2) that has been scattered from a 300 K perfluorinated polyether surface (PFPE) with an incident energy of E(inc) = 10.6(8) kcal mol(-1). Line shape analysis of the absorption profiles reveals non-equilibrium dynamics that are characterized by trapping-desorption (TD) and impulsive scattering (IS) components, with each channel simply characterized by an effective "temperature" that compares very well with previous results from rotational state analysis [Perkins and Nesbitt, J. Phys. Chem. A, 2008, 112, 9324]. From a theoretical perspective, molecular dynamics (MD) simulations of CO(2) + fluorinated self-assembled monolayer surface (F-SAMs) yield translational probability distributions that are also compared with experimental results. Trajectories are parsed by θ(scat) and J, with the results rigorously corrected by flux-to-density transformation and providing comparisons in near quantitative agreement with experiment. 3D flux and velocity distributions obtained from MD simulations are also presented to illustrate the role of in- and out-of-plane scattering.

  15. EarthShadow: Calculator for dark matter particle velocity distribution after Earth-scattering

    NASA Astrophysics Data System (ADS)

    Kavanagh, Bradley; Catena, Riccardo; Kouvaris, Chris

    2016-11-01

    EarthShadow calculates the impact of Earth-scattering on the distribution of Dark Matter (DM) particles. The code calculates the speed and velocity distributions of DM at various positions on the Earth and also helps with the calculation of the average scattering probabilities. Tabulated data for DM-nuclear scattering cross sections and various numerical results, plots and animations are also included in the code package.

  16. Intensity distribution and impact of scatter for dual-source CT

    NASA Astrophysics Data System (ADS)

    Kyriakou, Yiannis; Kalender, Willi A.

    2007-12-01

    Apart from forward scatter, which is given for all CT scanners, dual-source CT (DSCT) is also affected by cross-scatter photons from the second tube-detector system arranged at 90°. We investigated the magnitude and distribution of scatter for DSCT and its impact on image quality. Simulations and measurements of homogeneous and anthropomorphic phantoms were conducted for a DSCT scanner (SOMATOM Definition, Siemens Medical Solutions, Forchheim, Germany) at tube voltages of 80 and 120 kV. The simulations of forward scatter were carried out using combined analytical and Monte Carlo simulation methods for a collimation of 19.2 mm for both tube-detector systems. Measurements of cross scatter were performed by switching one tube off, still reading out the corresponding detector. The relative scatter fractions and the distribution of cross scatter were registered for various imaging conditions. Additionally, a detailed noise analysis with respect to the correction of cross-scatter artifacts is provided to evaluate the performance of correction algorithms. The forward-scatter fraction increased with increasing phantom diameter from 0.02 up to 0.11 for PMMA phantoms of 80 to 400 mm diameter. For cross scatter, the mean intensity was equivalent to forward scatter for small phantoms but was larger for increased phantom size and resulted in severe artifacts in the reconstructed images. The outer dimensions and shape of the object are decisive for the cross-scatter intensity distribution whereas the influence of the degree of inhomogeneity of the respective phantom appears to be negligible. Scatter correction suppressed cross-scatter artifacts but increased noise as a function of the cross-scatter fraction. The magnitude of scatter is not negligible for DSCT systems and dedicated corrections are necessary for the assurance of unimpaired image quality.

  17. Estimation of guided wave scattering matrices from spatially distributed transducer arrays

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Michaels, Jennifer E.; Michaels, Thomas E.

    2013-01-01

    Because of their ability to travel relatively long distances with low attenuation, guided waves are being considered as a tool for the detection of defects in plate-like structures for aerospace, civil, and petrochemical applications. When a guided wave encounters a defect, a scattered field related to the characteristics of the defect is generated. The far field scattering behavior can be described by a scattering matrix that quantifies the amplitude of the scattered signal as a function of incident and scattered angles. Because of the mode and frequency dependence of guided waves interacting with defects, the scattering matrix is typically defined for specific guided wave modes (incident and scattered) at a designated frequency. Prior work has utilized finite element modeling and full wavefield scanning to estimate scattering matrices, but these approaches may be impractical because of either computational requirements or experimental issues. Here, we propose a methodology for estimating a scattering matrix based upon limited experimental data recorded from a spatially distributed transducer array. After applying baseline subtraction to extract changes in received signals resulting from the introduction of a scatterer, we further process differenced signals to obtain a limited number of scattering matrix data points corresponding to the incident and scattered angles for each transducer pair. We perform radial basis function interpolation of these initial points to estimate the complete scattering matrix and evaluate the efficacy of the proposed method via experiments with a glued-on linear scatterer.

  18. Mixed optical Cherenkov-Bremsstrahlung radiation in vicinity of the Cherenkov cone from relativistic heavy ions: Unusual dependence of the angular distribution width on the radiator thickness

    NASA Astrophysics Data System (ADS)

    Rozhkova, E. I.; Pivovarov, Yu. L.

    2016-07-01

    The Cherenkov radiation (ChR) angular distribution is usually described by the Tamm-Frank (TF) theory, which assumes that relativistic charged particle moves uniformly and rectilinearly in the optically transparent radiator. According to the TF theory, the full width at half maximum (FWHM) of the ChR angular distribution inversely depends on the radiator thickness. In the case of relativistic heavy ions (RHI) a slowing-down in the radiator may sufficiently change the angular distribution of optical radiation in vicinity of the Cherenkov cone, since there appears a mixed ChR-Bremsstrahlung radiation. As a result, there occurs a drastic transformation of the FWHM of optical radiation angular distribution in dependence on the radiator thickness: from inversely proportional (TF theory) to the linearly proportional one. In our paper we present the first analysis of this transformation taking account of the gradual velocity decrease of RHI penetrating through a radiator.

  19. Fragment Angular Distributions in Neutron-Induced Fission of {sup 235}U and {sup 239}Pu using a Time Projection Chamber

    SciTech Connect

    Kleinrath, Verena

    2015-07-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for {sup 235}U and even more so for {sup 239}Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. In-beam data collected at the Los Alamos Neutron Science Center with a {sup 235}U/{sup 239}Pu target during the 2014 run-cycle will provide angular distributions as a function of incident neutron energy for these isotopes. (LA-UR-1426972). (authors)

  20. Electrolyte distribution around two like-charged rods: their effective attractive interaction and angular dependent charge reversal.

    PubMed

    Jiménez-Angeles, Felipe; Odriozola, Gerardo; Lozada-Cassou, Marcelo

    2006-04-07

    A simple model for two like-charged parallel rods immersed in an electrolyte solution is considered. We derived the three point extension (TPE) of the hypernetted chain/mean spherical approximation (TPE-HNC/MSA) and Poisson-Boltzmann (TPE-PB) integral equations. We numerically solve these equations and compare them to our results of Monte Carlo (MC) simulations. The effective interaction force, F(T), the charge distribution profiles, rho(el)(x,y), and the angular dependent integrated charge function, P(theta), are calculated for this system. The analysis of F(T) is carried out in terms of the electrostatic and entropic (depletion) contributions, F(E) and F(C). We studied several cases of monovalent and divalent electrolytes, for which the ionic size and concentration are varied. We find good qualitative agreement between TPE-HNC/MSA and MC in all the cases studied. The rod-rod force is found to be attractive when immersed in large size, monovalent or divalent electrolytes. In general, the TPE-PB has poor agreement with the MC. For large monovalent and divalent electrolytes, we find angular dependent charge reversal charge inversion and polarizability. We discuss the intimate relationship between this angular dependent charge reversal and rod-rod attraction.

  1. Scattering of electromagnetic waves from a half-space of randomly distributed discrete scatterers and polarized backscattering ratio law

    NASA Technical Reports Server (NTRS)

    Zhu, P. Y.

    1991-01-01

    The effective-medium approximation is applied to investigate scattering from a half-space of randomly and densely distributed discrete scatterers. Starting from vector wave equations, an approximation, called effective-medium Born approximation, a particular way, treating Green's functions, and special coordinates, of which the origin is set at the field point, are used to calculate the bistatic- and back-scatterings. An analytic solution of backscattering with closed form is obtained and it shows a depolarization effect. The theoretical results are in good agreement with the experimental measurements in the cases of snow, multi- and first-year sea-ice. The root product ratio of polarization to depolarization in backscattering is equal to 8; this result constitutes a law about polarized scattering phenomena in the nature.

  2. Scattering of electromagnetic waves from a half-space of randomly distributed discrete scatterers and polarized backscattering ratio law

    NASA Technical Reports Server (NTRS)

    Zhu, P. Y.

    1991-01-01

    The effective-medium approximation is applied to investigate scattering from a half-space of randomly and densely distributed discrete scatterers. Starting from vector wave equations, an approximation, called effective-medium Born approximation, a particular way, treating Green's functions, and special coordinates, of which the origin is set at the field point, are used to calculate the bistatic- and back-scatterings. An analytic solution of backscattering with closed form is obtained and it shows a depolarization effect. The theoretical results are in good agreement with the experimental measurements in the cases of snow, multi- and first-year sea-ice. The root product ratio of polarization to depolarization in backscattering is equal to 8; this result constitutes a law about polarized scattering phenomena in the nature.

  3. Analysis of scattering statistics and governing distribution functions in optical coherence tomography

    PubMed Central

    Sugita, Mitsuro; Weatherbee, Andrew; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex

    2016-01-01

    The probability density function (PDF) of light scattering intensity can be used to characterize the scattering medium. We have recently shown that in optical coherence tomography (OCT), a PDF formalism can be sensitive to the number of scatterers in the probed scattering volume and can be represented by the K-distribution, a functional descriptor for non-Gaussian scattering statistics. Expanding on this initial finding, here we examine polystyrene microsphere phantoms with different sphere sizes and concentrations, and also human skin and fingernail in vivo. It is demonstrated that the K-distribution offers an accurate representation for the measured OCT PDFs. The behavior of the shape parameter of K-distribution that best fits the OCT scattering results is investigated in detail, and the applicability of this methodology for biological tissue characterization is demonstrated and discussed. PMID:27446689

  4. Two-dimensional resonances in Coulomb few body system and theory of electron energy and angular distribution

    SciTech Connect

    Ovchinnikov, S.Y.; Macek, J.H. |

    1994-12-31

    The two-dimensional resonances in the problem of two Coulomb centers are discussed. The ab initio calculation of electron energy and angular distributions of saddle-point and S-promotion electrons for ionization in proton-hydrogen atom collisions are presented. The calculation is based on an outgoing wave Sturmian expansion in the frequency domain. It goes beyond the usual Born-Oppenheimer separation of electron and nuclei motions and displays the ``{upsilon}/2`` peak and the continuum cusp, missing in previous theories.

  5. Partial cross sections and angular distributions of resonant and nonresonant valence photoemission of C{sub 60}

    SciTech Connect

    Korica, Sanja; Rolles, Daniel; Reinkoester, Axel; Viefhaus, Jens; Cvejanovic, Slobodan; Becker, Uwe; Langer, Burkhard

    2005-01-01

    We have performed high-resolution measurements of photoelectrons emitted from the valence shell of C{sub 60}, for both gas phase and solid state, in order to obtain branching ratios, partial cross sections, and the angular distribution anisotropy parameters of the two highest occupied molecular orbitals. The analysis is based on the Fourier transform of the cross-section oscillations and the results are corroborated by different theoretical models. In contrast to this good overall agreement between theory and experiment there is a striking disagreement with respect to predicted discrete resonance structures in the partial cross sections. Possible reasons for this behavior are discussed.

  6. A measurement of the angular distribution of the diffuse optical transmittance of etched nuclear tracks in CR-39

    SciTech Connect

    Vázquez-López, C.; Zendejas-Leal, B. E.; Bogard, James S; Golzarri, J. I.; Espinosa Garcia, Guillermo

    2009-01-01

    This paper presents a device to measure the angular distribution of the diffuse optical transmittance produced by etched nuclear tracks in polyallyl diglycol carbonate (PADC) detector. The device makes use of a stepper motor to move an array of four photodetectors around the sample in 1.8-degree steps. The integrated transmitted light was observed to increase monotonically with the etched track density in a range from zero to 2.8 x 10^5 per cm^2, using a neutron Am Be source.

  7. Angular distribution of sputtered particles and surface morphology: the case of beryllium under a krypton beam at various incidences

    NASA Astrophysics Data System (ADS)

    Fournier, P.-G.; Nourtier, A.; Shulga, V. I.; Ait El Fqih, M.

    2005-04-01

    A beryllium target is bombarded with 5 keV krypton ions at incidence angles of 0° and 70°. The sputtered material is collected on a Mylar cylindrical foil surrounding the target, the foil is cut into pieces and the deposit on them is measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). Experiment is combined with simulations using the computer code OKSANA. The method supplies accurate angular distributions of sputtered particles. The surface morphology is observed by scanning electron micrography. Depending on the incidence angle, sputtering forms craters and rippled areas or deep grooves. The resulting differences between simulations and experiment are explained qualitatively.

  8. Angular distortion and through-thickness residual stress distribution in the friction-stir processed 6061-T6 aluminum alloy

    SciTech Connect

    Woo, Wan Chuck; Choo, Hahn; Brown, D. W.; Feng, Zhili; Liaw, Peter K; Hubbard, Camden R

    2006-01-01

    Residual stresses were measured through the thickness of friction-stir processed (FSP) 6061-T6 aluminum-alloy plates using neutron diffraction. Two different specimens were prepared to study the relationship between residual stress distributions through the thickness of the plate and angular distortion: (Case 1) a plate processed with both stirring pin and tool shoulder, i.e., a typical FSP plate subjected to both plastic deformation and frictional heat, and (Case 2) a plate processed only with the tool shoulder, i.e., subjected mainly to the frictional heating. The measured residual stress profiles show relatively small through-thickness residual stress variations in Case 1, while there is a significant through-thickness residual stress variations in Case 2. The main cause of the geometric angular distortion could be related to the non-uniform distribution of the frictional heat generated by the tool shoulder leading to the asymmetric distributions of the residual stress through the thickness of the FSP plate.

  9. Development of Multi-Field of view-Multiple-Scattering-Polarization Lidar : analysis of angular resolved backscattered signals

    NASA Astrophysics Data System (ADS)

    Makino, T.; Okamoto, H.; Sato, K.; Tanaka, K.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Jin, Y.; Uchiyama, A.; Kudo, R.

    2014-12-01

    We have developed a new type of ground-based lidar, Multi-Field of view-Multiple-Scattering-Polarization Lidar (MFMSPL), to analyze multiple scattering contribution due to low-level clouds. One issue of the ground based lidar is the limitation of optical thickness of about 3 due to the strong attenuation in the lidar signals so that only the cloud bottom part can be observed. In order to overcome the problem, we have proposed the MFMSPL that has been designed to observe similar degree of multiple scattering contribution expected from space-borne lidar CALIOP on CALIPSO satellite. The system consists of eight detectors; four telescopes for parallel channels and four for perpendicular channels. The four pairs of telescope have been mounted with four different off-beam angles, ranging from -5 to 35mrad, where the angle is defined as the one between the direction of laser beam and the direction of telescope. Consequently, similar large foot print (100m) as CALIOP can be achieved in the MFMSPL observations when the altitude of clouds is located at about 1km. The use of multi-field of views enables to measure depolarization ratio from optically thick clouds. The outer receivers attached with larger angles generally detect backscattered signals from clouds located at upper altitudes due to the enhanced multiple scattering compared with the inner receiver that detects signals only from cloud bottom portions. Therefore the information of cloud microphysics from optically thicker regions is expected by the MFMSPL observations compared with the conventional lidar with small FOV. The MFMSPL have been continuously operated in Tsukuba, Japan since June 2014.Initial analyses have indicated expected performances from the theoretical estimation by backward Monte-Carlo simulations. The depolarization ratio from deeper part of the clouds detected by the receiver with large off-beam angle showed much larger values than those from the one with small angle. The calibration procedures

  10. A model of energy and angular distributions of fluxes to the substrate and resulting surface topology for plasma etching systems

    NASA Astrophysics Data System (ADS)

    Hoekstra, Robert John

    Plasma etching using high-density plasma (HDP) reactors is becoming predominant in the semiconductor fabrication industry due to its capability to produce highly anisotropic features at current and future linewidths (0.5 to 0.17 μm). The Computational Optical and Discharge Physics Group (CODPG) has developed a modularized computational simulation, the Hybrid Plasma Equipment Model (HPEM), to examine these systems. The two offline modules developed, the Plasma Chemistry Monte Carlo Model (PCMCM) and the Monte Carlo Feature Profile Model (MC-FPM), focus on the effect of the plasma on the wafer surface. Using the output from the main plasma simulation, the PCMCM self-consistently determines the energy and angular distributions of all plasma species at the wafer. This distribution information can then be used by the MC-FPM to determine the time evolution of etch features on the wafer based on an energy- and angular- dependent surface chemistry. This chemistry has been developed using experimental results by other researchers as described in this paper. An important process in semiconductor manufacturing is the etching of silicon and polysilicon for device fabrication. Chlorine-based chemistries are commonly used in industry today due to the capability of highly anisotropic feature etching allowing the necessary submicron feature production. In current HDP reactors, ``microtrench'' formation, sidewall slope, and charging effects play an important role in device performance. The MC-FPM has been used to examine the mechanisms, such as specular reflection and energy and angular dependence of etch yield, involved in the shaping of the etch feature. Parameterization of these mechanisms and comparison to experiment have allowed ``cradle- to-grave'' (reactor parameters to feature shape) predictive capability with the HPEM, PCMCM, and MC-FPM coupled models for HDP etching processes.

  11. Calculations of the anisotropy of the fission fragment angular distribution and neutron emission multiplicities prescission from Langevin dynamics

    SciTech Connect

    Jia Ying; Bao Jingdong

    2007-03-15

    The anisotropy of the fission fragment angular distribution defined at the saddle point and the neutron multiplicities emitted prior to scission for fissioning nuclei {sup 224}Th, {sup 229}Np, {sup 248}Cf, and {sup 254}Fm are calculated simultaneously by using a set of realistic coupled two-dimensional Langevin equations, where the (c,h,{alpha}=0) nuclear parametrization is employed. In comparison with the one-dimensional stochastic model without neck variation, our two-dimensional model produces results that are in better agreement with the experimental data, and the one-dimensional model is available only for low excitation energies. Indeed, to determine the temperature of the nucleus at the saddle point, we investigate the neutron emission during nucleus oscillation around the saddle point for different friction mechanisms. It is shown that the neutrons emitted during the saddle oscillation cause the temperature of a fissioning nuclear system at the saddle point to decrease and influence the fission fragment angular distribution.

  12. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    DOE PAGES

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; ...

    2016-03-26

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are n(i, f) similar to 10(4)-10(5). We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one canmore » infer the decay width in more realistic magnetic fields of 10(15) G, where n(i, f) similar to 10(12)-10(13), from the results for n(i, f) similar to 10(4)-10(5). The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  13. Photoelectron angular distributions for states of any mixed character: an experiment-friendly model for atomic, molecular, and cluster anions.

    PubMed

    Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei

    2014-09-28

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  14. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    SciTech Connect

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-03-26

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are n(i, f) similar to 10(4)-10(5). We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 10(15) G, where n(i, f) similar to 10(12)-10(13), from the results for n(i, f) similar to 10(4)-10(5). The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).

  15. Molecular frame photoelectron angular distributions for core ionization of ethane, carbon tetrafluoride and 1,1-difluoroethylene

    SciTech Connect

    Menssen, A.; Trevisan, C. S.; Schöffler, M. S.; Jahnke, T.; Bocharova, I.; Sturm, F.; Gehrken, N.; Gaire, B.; Gassert, H.; Zeller, S.; Voigtsberger, J.; Kuhlins, A.; Trinter, F.; Gatton, A.; Sartor, J.; Reedy, D.; Nook, C.; Berry, B.; Zohrabi, M.; Kalinin, A.; Ben-Itzhak, I.; Belkacem, A.; Dörner, R.; Weber, T.; Landers, A. L.; Rescigno, T. N.; McCurdy, C. W.; Williams, J. B.

    2016-02-15

    Molecular frame photoelectron angular distributions (MFPADs) are measured in this paper in electron–ion momentum imaging experiments and compared with complex Kohn variational calculations for carbon K-shell ionization of carbon tetrafluoride (CF4), ethane (C2H6) and 1,1-difluoroethylene (C2H2F2). While in ethane the polarization averaged MFPADs show a tendency at low energies for the photoelectron to be emitted in the directions of the bonds, the opposite effect is seen in CF4. A combination of these behaviors is seen in difluoroethylene where ionization from the two carbons can be distinguished experimentally because of their different K-shell ionization potentials. Excellent agreement is found between experiment and simple static-exchange or coupled two-channel theoretical calculations. Finally, however, simple electrostatics do not provide an adequate explanation of the suggestively simple angular distributions at low electron ejection energies.

  16. Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Leal-Cidoncha, E.; Durán, I.; Paradela, C.; Tarrío, D.; Leong, L. S.; Tassan-Got, L.; Audouin, L.; Altstadt, S.; Andrzejewski, J.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Lederer, C.; Leeb, H.; Lo Meo, S.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2016-03-01

    Neutron-induced fission cross sections of 238U and 235U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection effciency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data.

  17. Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

    SciTech Connect

    Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei

    2014-09-28

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO{sup −} photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  18. Measurement of Fuel Concentration Distribution in a Sooting Flame through Raman Scattering

    NASA Astrophysics Data System (ADS)

    Hayashida, Kazuhiro; Amagai, Kenji; Satoh, Keiji; Arai, Masataka

    Spontaneous Raman spectroscopy with KrF excimer laser was applied to obtain a fuel concentration distribution in a sooting flame. In the case of sooting flame, fluorescence from polycyclic aromatic hydrocarbons (PAH) and laser-induced incandescence (LII) from soot particles appeared with Raman scattering. These background emissions overlapped on the Raman scattering. In order to separate the Raman scattering and the background emissions, polarization property of laser-induced emissions was utilized. Since the background emissions were depolarized whereas the Raman scattering was highly polarized, it is possible to subtract the background emissions from the overlapping signal of the Raman scattering and the background emissions. Subtracting the emission signals for the electric vector of the laser light perpendicular and parallel to the direction of observation allows to extract the precise Raman signals. By using this technique, detailed fuel concentration distribution in sooting flames could be obtained based on Raman scattering.

  19. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  20. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  1. Rapid determination of the photometric bidirectional scatter distribution function by use of a near-field goniophotometer

    NASA Astrophysics Data System (ADS)

    Leloup, Frédéric B.; De Ketelaere, Ward; Audenaert, Jan; Hanselaer, Peter

    2014-02-01

    The bidirectional scatter distribution function (BSDF) characterizes the scattering properties of a material for any angle of illumination or viewing, and offers as such a complete description of the spatial optical characteristics of the surface. An accurate determination of the BSDF is important in many scientific domains, such as computer graphics, architectural and lighting design, and the field of material appearance characterization (e.g. the color and gloss properties). Many BSDF measuring instruments have been reported in the literature. The majority of these instruments are goniometric measurement devices, by use of which the BSDF is determined by scanning all incoming and outgoing light flux directions in sequence. For this, the sample, detector, and/or source perform relative individual movements. In result, the major restriction of this type of instruments constitutes the measurement time, which may run to the order of several hours depending on the accuracy (angular resolution) and the complexity (spectral coverage, absolute measurement capability, etc.) of the reported measurement data. This paper describes the results of a feasibility study, in which an alternative goniometric measurement system is designed, enabling to acquire the photometric BSDF in a full three-dimensional (3D) space, with a high mechanical angular resolution (0.1°) in a time efficient way (about 30 minutes). A near-field goniophotometer, originally intended to measure luminance intensity distributions and luminous fluxes of light sources and luminaires, was converted for this purpose. Besides a discussion of the design and the measurement procedure, test sample measurements are presented to illustrate the versatility of the device.

  2. Application of Heisenberg's S matrix program to the angular scattering of the state-to-state F + H2 reaction.

    PubMed

    Shan, Xiao; Connor, J N L

    2014-08-21

    This paper makes two applications of Heisenberg's S matrix program (HSMP) to the differential cross section (DCS) of the benchmark reaction F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H, at a relative translational energy of 0.119 eV (total energy, 0.3872 eV), where v, j, m are vibrational, rotational, and helicity quantum numbers, respectively, for the initial and final states. (1) The first application employs a "weak" version of HSMP in which no potential energy surface (PES) is employed. It uses four simple S matrix parametrizations, two of which are piecewise continuous, and two are piecewise discontinuous, developed earlier by X. Shan and J. N. L. Connor (J. Phys. Chem. A 2012, 116, 11414-11426) for the state-to-state H + D2 reaction. We find that the small-angle DCS is reproduced for only θR ≲ 10° when compared with the DCS for a numerical S matrix obtained in a large-scale quantum scattering computation using a PES. Here θR is the reactive scattering angle. (2) In our second application, we ask the question "Can simple modifications to the parametrized S matrix be made in order to extend the agreement to larger angles?" To answer this question, we adopt a "hybrid" version of HSMP, as outlined by Shan and Connor (Phys. Chem. Chem. Phys. 2011, 13, 8392-8406), which indirectly uses PES information. We make simple Gaussian-type modifications to both the modulus and argument of the S matrix. We then obtain agreement between the DCSs for the modified and numerical S matrices up to θR ≲ 70°, a significant improvement compared with θR ≲ 10° for the unmodified parametrizations. We find that modifying the argument but not the modulus, or modifying the modulus but not the argument, fails to extend the agreement to larger angles. A semiclassical analysis is used to prove that the enhanced small-angle scattering for the "modified-modulus-modified-argument" parametrized S matrix is an example of a forward glory.

  3. Characterization of scatter magnitude and distribution in dedicated breast computed tomography with bowtie filters

    PubMed Central

    Kontson, Kimberly; Jennings, Robert J.

    2014-01-01

    Abstract. Scatter contamination of projection images in cone-beam computed tomography (CT) degrades the image quality. The use of bowtie filters in dedicated breast CT can decrease this scatter contribution. Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to differences in path length in a projection were studied. These designs have been investigated in terms of their ability to reduce the scatter contamination in projection images acquired in a dedicated breast CT geometry. The scatter magnitude was measured as the scatter-to-primary ratio (SPR) using experimental and Monte Carlo techniques for various breast phantom diameters and tube voltages. The results show that a 55% reduction in the center SPR value could be obtained with the bowtie filter designs. On average, the bowtie filters reduced the center SPR by approximately 18% over all breast diameters. The distribution of the scatter was calculated at a range of different locations to produce scatter distribution maps for all three bowtie filter designs. With the inclusion of the bowtie filters, the scatter distribution was more uniform for all breast diameters. The results of this study will be useful in designing scatter correction methods and understanding the benefits of bowtie filters in dedicated breast CT. PMID:26158057

  4. Charm hadroproduction cross-section up to 100 TeV from measurements of the cosmic-ray muon angular distribution Results of the Mount Blanc experiment

    NASA Astrophysics Data System (ADS)

    Castellina, A.; Dettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Vernetto, S.; Bilokon, H.

    1985-02-01

    Accurate calculations of the angular distributions of underground conventional and prompt muons have been performed. The dependence of the angular enhancement functions on the primary spectrum, cross-sections, inclusive distributions, K/pi ratio and survival probability have been studied and found to be negligible. The results have been used to interpret the data from the Mont Blanc experiment in the depth range 4200-5800 hg/sq cm. Since the measurements extend over a limited angular range (lesser than 60 deg) the ratio between the flux of prompt to conventional muons of higher energy (greater than 1 TeV) is obtained with large associated statistical errors. In order to obtain the charm production cross-section in the energy region 50-100 TeV, accurate measurements over a very large angular range (greater than 70 deg) at depths higher than 5000 hg/sq cm are required.

  5. Angular distribution of different vibrational components of the X and B states reached after resonant Auger decay of core-excited H2O: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Hjelte, I.; Karlsson, L.; Svensson, S.; De Fanis, A.; Carravetta, V.; Saito, N.; Kitajima, M.; Tanaka, H.; Yoshida, H.; Hiraya, A.; Koyano, I.; Ueda, K.; Piancastelli, M. N.

    2005-02-01

    Vibrationally resolved spectra have been obtained for the lowest-lying cationic states XB12,AA12, and BB22 of the water molecule reached after participator resonant Auger decay of core-excited states. The angular distribution has been measured of the first four vibrational components of the X state in the photon energy regions including the O 1s →4a1 and the O 1s→2b2 core excitations, and for different portions of the vibrational envelope of the B state in the photon energy region including the O 1s→2b2 core excitation. For the X state, a large relative spread in β values of the different vibrational components is observed across both resonances. For the B state, a very different trend is observed for the high binding energy side and the low binding energy side of the related spectral feature as a function of photon energy. A theoretical method based on the scattering K matrix has been used to calculate both the photoabsorption spectrum and the β values, by taking both interference between direct and resonant photoemission and vibrational/lifetime interference into account. The numerical results show qualitative agreement with the trends detected in the experimental values and explain the conspicuous variations of the β values primarily in terms of coupling between direct and resonant photoemission by interaction terms of different sign for different final vibrational states.

  6. Temporal Distributions of Problem Behavior Based on Scatter Plot Analysis.

    ERIC Educational Resources Information Center

    Kahng, SungWoo; Iwata, Brian A.; Fischer, Sonya M.; Page, Terry J.; Treadwell, Kimberli R. H.; Williams, Don E.; Smith, Richard G.

    1998-01-01

    A large-scale analysis was conducted of problem behavior by observing 20 individuals living in residential facilities. Data were converted into scatter plot formats. When the data were transformed into aggregate "control charts," 12 of 15 sets of data revealed 30-minute intervals during which problem behavior was more likely to occur.…

  7. On The Distribution Of Angular Orbital Elements Of Near-earth Objects

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, R.

    2012-05-01

    The longitude of ascending node Ω and the argument of periapsis ω are expected to be randomly distributed for near-Earth objects (NEOs). However, the distribution of these angles for the Apollo, Amor and Aten subclasses, considered separately, shows some striking non-random features. We explain how these features arise due to observational biases. The distribution of Ω has maxima near 0 and 180° and is affected by observational difficulty due to the galactic plane at the opposition and other seasonal effects. The ω distributions of Aten and Amor subclasses have minima at 90° and 270° while Apollos have minima at 0 and 180°. This is explained by the greater detectability of NEOs at close approach to Earth. The longitude of perihelion Ω+ω also has a strongly non-random distribution that may be owed to actual dynamical effects. Understanding the distribution of unobserved NEOs will help to improve planning for the next generation of NEO surveys. A better understanding of the intrinsic distribution of NEOs is important for estimating the impact hazard at Earth; it is also important for understanding the impact history of the Moon and the terrestrial planets.

  8. 1 Tbit/inch2 Recording in Angular-Multiplexing Holographic Memory with Constant Signal-to-Scatter Ratio Schedule

    NASA Astrophysics Data System (ADS)

    Hosaka, Makoto; Ishii, Toshiki; Tanaka, Asato; Koga, Shogo; Hoshizawa, Taku

    2013-09-01

    We developed an iterative method for optimizing the exposure schedule to obtain a constant signal-to-scatter ratio (SSR) to accommodate various recording conditions and achieve high-density recording. 192 binary images were recorded in the same location of a medium in approximately 300×300 µm2 using an experimental system embedded with a blue laser diode with a 405 nm wavelength and an objective lens with a 0.85 numerical aperture. The recording density of this multiplexing corresponds to 1 Tbit/in.2. The recording exposure time was optimized through the iteration of a three-step sequence consisting of total reproduced intensity measurement, target signal calculation, and recording energy density calculation. The SSR of pages recorded with this method was almost constant throughout the entire range of the reference beam angle. The signal-to-noise ratio of the sampled pages was over 2.9 dB, which is higher than the reproducible limit of 1.5 dB in our experimental system.

  9. Angular distribution of particle fluxes in rotating systems. [application to plasmas in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.

    1976-01-01

    Charged-particle pitch-angle distributions at one point on a magnetic drift surface in a rapidly rotating axisymmetric mirroring system (such as Jupiter's magnetosphere would be in the absence of the 10-deg dipole tilt) are related to those at another point by Liouville's theorem. If the distribution function in the rotating frame is gyrotropic; i.e., if it is independent of the phase angle of the gyration, it is gyrotropic at all points on that drift surface. Examples are given of 'pancake', 'dumbbell', and isotropic distributions when they are observed from the nonrotating frame at different points on a drift surface.

  10. Measurements of Branching Fractions and CP Asymmetries and Studies of Angular Distributions for B to phi phi K Decays

    SciTech Connect

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D.A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D.J.; Hearty, C.; /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-15

    We present branching fraction and CP asymmetry measurements as well as angular studies of B {yields} {phi}{phi}K decays using 464 x 10{sup 6} B{bar B} events collected by the BABAR experiment. The branching fractions are measured in the {phi}{phi} invariant mass range below the {eta}{sub c} resonance (m{sub {phi}{phi}} < 2.85 GeV). We find {Beta}(B{sup +} {yields} {phi}{phi}K{sup +}) = (5.6 {+-} 0.5 {+-} 0.3) x 10{sup -6} and {Beta}(B{sup 0} {yields} {phi}{phi}K{sup 0}) = (4.5 {+-} 0.8 {+-} 0.3) x 10{sup -6}, where the first uncertaintiy is statistical and the second systematic. The measured direct CP asymmetries for the B{sup {+-}} decays are A{sub CP} = -0.10 {+-} 0.08 {+-} 0.02 below the {eta}{sub c} threshold (m{sub {phi}{phi}} < 2.85 GeV) and A{sub CP} = 0.09 {+-} 0.10 {+-} 0.02 in the {eta}{sub c} resonance region (m{sub {phi}{phi}} in [2.94,3.02] GeV). Angular distributions are consistent with J{sub P} = 0{sup -} in the {eta}{sub c} resonance region and favor J{sup P} = 0{sup +} below the {eta}{sub c} resonance.

  11. Molecular Frame Photoelectron Angular Distributions for Core Ionization of CF4 and C2H2F2

    NASA Astrophysics Data System (ADS)

    Trevisan, C. S.; Williams, J. B.; Menssen, A. J.; Rescigno, T. N.; Dorner, R.; McCurdy, C. W.

    2015-05-01

    We present experimental and theoretical results for the angular dependence of electrons ejected from the core orbitals of tetrafluoromethane (CF4) which display a tendency to avoid molecular bonds if averaged over directions of polarization of the incident X-ray beam, in contrast to earlier cases (CH4, H2O and NH3) studied by the same methods. To investigate whether the imaging effect can be used to detect the creation of core holes by photoionization from one of two atoms of the same type in a molecule, we computed and measured MFPADs of difluoroethylene (C2H2F2). Good agreement with the experimentally measured angular distributions show that the MFPADs contain the clear signature of the core-hole origin of the photoelectron, and validate the use of computed MFPADs as promising tools for the interpretation of such experiments. Our measurements employ the COLTRIMS method and the calculations were performed with the Complex Kohn Variational method. Work supported in part by the USDOE, Office of Science, Office of WDTS under the Visiting Faculty Program.

  12. The Angular Momentum Distribution and Baryon Content of Star-forming Galaxies at z ˜ 1-3

    NASA Astrophysics Data System (ADS)

    Burkert, A.; Förster Schreiber, N. M.; Genzel, R.; Lang, P.; Tacconi, L. J.; Wisnioski, E.; Wuyts, S.; Bandara, K.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R.; Dekel, A.; Fabricius, M.; Fossati, M.; Kulkarni, S.; Lutz, D.; Mendel, J. T.; Momcheva, I.; Nelson, E. J.; Naab, T.; Renzini, A.; Saglia, R.; Sharples, R. M.; Sternberg, A.; Wilman, D.; Wuyts, E.

    2016-08-01

    We analyze the angular momenta of massive star-forming galaxies (SFGs) at the peak of the cosmic star formation epoch (z ˜ 0.8-2.6). Our sample of ˜360 log(M */M ⊙) ˜ 9.3-11.8 SFGs is mainly based on the KMOS3D and SINS/zC-SINF surveys of Hα kinematics, and collectively provides a representative subset of the massive star-forming population. The inferred halo scale angular momentum distribution is broadly consistent with that theoretically predicted for their dark matter halos, in terms of mean spin parameter < λ > ˜ 0.037 and its dispersion (σ logλ ˜ 0.2). Spin parameters correlate with the disk radial scale and with their stellar surface density, but do not depend significantly on halo mass, stellar mass, or redshift. Our data thus support the long-standing assumption that on average, even at high redshifts, the specific angular momentum of disk galaxies reflects that of their dark matter halos (j d = j DM). The lack of correlation between λ × (j d /j DM) and the nuclear stellar density Σ*(1 kpc) favors a scenario where disk-internal angular momentum redistribution leads to “compaction” inside massive high-redshift disks. For our sample, the inferred average stellar to dark matter mass ratio is ˜2%, consistent with abundance matching results. Including the molecular gas, the total baryonic disk to dark matter mass ratio is ˜5% for halos near 1012 M ⊙, which corresponds to 31% of the cosmologically available baryons, implying that high-redshift disks are strongly baryon dominated. Based on observations obtained at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO Programme IDs 075.A-0466, 076.A-0527, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-0635, 081.B-0568, 081.A-0672, 082.A-0396, 183.A-0781, 087.A-0081, 088.A-0202, 088.A-0209, 091.A-0126, 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025).

  13. Three-Dimensional Model of the Scatterer Distribution in Cirrhotic Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Nakamura, Keigo; Hachiya, Hiroyuki

    2003-05-01

    Ultrasonic B-mode images are affected by changes in scatterer distribution. It is hard to estimate the relationship between the ultrasonic image and the tissue structure quantitatively because we cannot observe the continuous stages of liver cirrhosis tissue clinically, particularly the beginning stage. In this paper, we propose a three-dimensional modeling method of scatterer distribution for normal and cirrhotic livers to confirm the influence of the change in the form of scatterer distribution on echo information. The algorithm of the method includes parameters which determine the expansion of nodules and fibers. Using the B-mode images which are obtained from these scatterer distributions, we analyze the relationship between the changes in the form of biological tissue and the changes in the B-mode images during progressive liver cirrhosis.

  14. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Effects of Turbulent Aberrations on Probability Distribution of Orbital Angular Momentum for Optical Communication

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Xin; Cang, Ji

    2009-07-01

    Effects of atmospheric turbulence tilt, defocus, astigmatism and coma aberrations on the orbital angular momentum measurement probability of photons propagating in weak turbulent regime are modeled with Rytov approximation. By considering the resulting wave as a superposition of angular momentum eigenstates, the orbital angular momentum measurement probabilities of the transmitted digit are presented. Our results show that the effect of turbulent tilt aberration on the orbital angular momentum measurement probabilities of photons is the maximum among these four kinds of aberrations. As the aberration order increases, the effects of turbulence aberrations on the measurement probabilities of orbital angular momentum generally decrease, whereas the effect of turbulence defocus can be ignored. For tilt aberration, as the difference between the measured orbital angular momentum and the original orbital angular momentum increases, the orbital angular momentum measurement probability decreases.

  15. Angular distributions of electrons of energy E sub e greater than 0.06 MeV in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.; Vanallen, J. A.

    1975-01-01

    The results of an angular distribution analysis of the electron intensity data recorded near Jupiter for the period from 26 November to 14 December 1973 are presented. The data were from three directional particle detectors with effective integral electron energy thresholds of 0.06, 0.55, and 5.0 Mev, respectively. It was found that the central core of the magnetosphere, within 12 Jupiter radii, is dominated by pitch angle distributions strongly peaked at alpha = 90 deg, while the region from 12 to 25 Jupiter radii shows bidirectional and approximately equal maxima at alpha = 0 and 180 deg. Bidirectional angular distributions in the magnetodisc out to the radius of the magnetopause strongly suggest quasi-trapping on closed field lines as the predominant situation. Substantial field aligned, unidirectional streaming was detected on only two occasions. No distinctive effects on angular distributions were discerned near the L-shells of satellites.

  16. Two-photon state selection and angular momentum polarization probed by velocity map imaging: Application to H atom photofragment angular distributions from the photodissociation of two-photon state selected HCl and HBr

    SciTech Connect

    Manzhos, Sergei; Romanescu, Constantin; Loock, Hans-Peter; Underwood, Jonathan G.

    2004-12-15

    A formalism for calculating the angular momentum polarization of an atom or a molecule following two-photon excitation of a J-selected state is presented. This formalism is used to interpret the H atom photofragment angular distributions from single-photon dissociation of two-photon rovibronically state selected HCl and HBr prepared via a Q-branch transition. By comparison of the angular distributions measured using the velocity map imaging technique with the theoretical model it is shown that single-photon dissociation of two-photon prepared states can be used for pathway identification, allowing for the identification of the virtual state symmetry in the two-photon absorption and/or the symmetry of the dissociative state. It is also shown that under conditions of excitation with circularly polarized light, or for excitation via non-Q-branch transitions with linearly polarized light the angular momentum polarization is independent of the dynamics of the two-photon transition and analytically computable.

  17. Two-photon state selection and angular momentum polarization probed by velocity map imaging: application to H atom photofragment angular distributions from the photodissociation of two-photon state selected HCl and HBr.

    PubMed

    Manzhos, Sergei; Romanescu, Constantin; Loock, Hans-Peter; Underwood, Jonathan G

    2004-12-15

    A formalism for calculating the angular momentum polarization of an atom or a molecule following two-photon excitation of a J-selected state is presented. This formalism is used to interpret the H atom photofragment angular distributions from single-photon dissociation of two-photon rovibronically state selected HCl and HBr prepared via a Q-branch transition. By comparison of the angular distributions measured using the velocity map imaging technique with the theoretical model it is shown that single-photon dissociation of two-photon prepared states can be used for pathway identification, allowing for the identification of the virtual state symmetry in the two-photon absorption and/or the symmetry of the dissociative state. It is also shown that under conditions of excitation with circularly polarized light, or for excitation via non-Q-branch transitions with linearly polarized light the angular momentum polarization is independent of the dynamics of the two-photon transition and analytically computable.

  18. Example of scattering noise in radar data interpretation

    SciTech Connect

    Canavan, G.H.

    1996-10-01

    Radar data interpretation typically assumes well behaved, known particle distributions. Those assumptions are at variance with the unknown angular scattering characteristics of the particles measured. This note gives a simple example of how those characteristics complicate data interpretation.

  19. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  20. Angular distribution of [ital K] Auger electrons ejected by highly charged ions interacting with an Al(111) surface

    SciTech Connect

    Koehrbrueck, R.; Grether, M.; Spieler, A.; Stolterfoht, N. ); Page, R.; Saal, A.; Bleck-Neuhaus, J. )

    1994-08-01

    Secondary electron spectra of the H-like Ne[sup 9+] ion incident with impact energies of 135 eV up to 90 keV on a solid Al(111) surface were measured. The dependence of the [ital K] Auger electron yield on the angle of observation is studied in detail. It is found to be cosine like in case of the 90-keV Ne[sup 9+] ions and to be more and more isotropic at lower ion energies although a clear anisotropy remains. Information about the rates of the filling of the [ital L] and [ital K] shells inside the solid is obtained from a comparison of the measured angular distributions with the calculation of a two-step model for the successive filling of the [ital L] and [ital K] shells. The data show clear evidence for Auger electron emission from below the surface for ion energies as low as 135 eV.

  1. Installation for the study of the angular distribution of cosmic muons with super-high energies at large zenith angles

    NASA Technical Reports Server (NTRS)

    Borog, V. V.; Kirillov-Ugryumov, V. G.; Petrukhin, A. A.; Shestakov, V. V.

    1975-01-01

    An installation consisting of an ionization calorimeter and a counter hodoscope can be used to record cascade showers caused by the electromagnetic interactions of muons with superhigh energies in the cosmic ray horizontal flux. The direction of the muons is determined by a hodoscope consisting of 2196 counters. The information obtained makes it possible to restore the angular and energy distribution of the cosmic muons, which, in turn, makes it possible to determine the mechanism of their generation. The accuracy with which the angle of the passing particle is determined is discussed in detail in addition to the causes which can introduce distortions, such as shower accompaniment of neutrons, escape of shower electrons from the calorimeter, random coincidences, etc.

  2. Precision analysis of electron energy spectrum and angular distribution of neutron β- decay with polarized neutron and electron

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Höllwieser, R.; Troitskaya, N. I.; Wellenzohn, M.; Berdnikov, Ya. A.

    2017-05-01

    We give a precision analysis of the correlation coefficients of the electron energy spectrum and angular distribution of the β- decay and radiative β- decay of the neutron with polarized neutron and electron to order 10-3. The calculation of correlation coefficients is carried out within the standard model, with contributions of order 10-3 caused by the weak magnetism and proton recoil taken to next-to-leading order in the large proton mass expansion, and with radiative corrections of order α /π ˜10-3 calculated to leading order in the large proton mass expansion. The obtained results can be used for the planning of experiments on the search for contributions of order 10-4 of interactions beyond the standard model.

  3. Calculated mie scattering properties in the visible and infrared of measured los angeles aerosol size distributions.

    PubMed

    Harris, F S

    1972-11-01

    Aerosol size distributions of varying types selected from those measured in clear air, smog, and fog in the Los Angeles Basin have been used with Lorenz-Mie scattering theory to predict radiation scattering by aerosols. Eleven different indices of refraction were assumed for wavelengths from 0.488 microm to 8.4 microm for aerosol materials with varying humidity, and for water and quartz. The effect on the scattering by the type of size distribution and the complex index of refraction is shown as a function of the polarization parameters of polarization, polarization ratio, ellipticity, and the inclination angle of the polarization ellipse.

  4. Generalized parton distributions and Deeply Virtual Compton Scattering on proton at CLAS

    SciTech Connect

    R. De Masi

    2007-12-01

    Two measurements of target and beam spin asymmetries for the reaction ep→epγ were performed with CLAS at Jefferson Laboratory. Polarized 5.7 GeV electrons were impinging on a longitudinally polarized ammonia and liquid hydrogen target respectively. These measurements are sensitive to Generalized Parton Distributions. Sizable sin phi azimuthal angular dependences were observed in both experiments, indicating the dominance of leading twist terms and the possibility of extracting combinations of Generalized Parton Distributions on the nucleon.

  5. Fragment angular distribution in one- and two-color photodissociation by strong laser fields

    SciTech Connect

    Charron, E.; Giusti-Suzor, A.; Mies, F.H. Laboratoire de Chimie Physique, 11 rue Pierre et Marie Curie, 75231 Paris National Institute of Standards and Technology, Gaithersburg, Maryland 20899 )

    1994-02-01

    We present calculations for H[sub 2][sup +] photodissociation in intense short laser pulses where molecular rotation is fully included, resulting in the experimentally observed alignment of the photofragments. In addition, we show that by using a coherent superposition (phase-locked) of a fundamental radiation and its second harmonic, [ital a] [ital strong] [ital asymmetry] between the forwards and backwards proton distribution can be observed. Both the total dissociation probability and the asymmetry of the ion distribution are sensitive to the relative phase of the two colors and thus subject to coherent control.

  6. Dense medium radiative transfer theory for two scattering layers with a Rayleigh distribution of particle sizes

    SciTech Connect

    West, R.; Tsang, Leung; Winebrenner, D.P. )

    1993-03-01

    Dense medium radiative transfer theory is applied to a three-layer model consisting of two scattering layers overlying a homogeneous half space with a size distribution of particles in each layer. A model with a distribution of sizes gives quite different results than those obtained from a model with a single size. The size distribution is especially important in the low frequency limit when scattering is strongly dependent on particle size. The size distribution and absorption characteristics also affect the extinction behavior as a function of fractional volume. Theoretical results are also compared with experimental data. The sizes, permittivities, and densities used in the numerical illustrations are typical values for snow.

  7. Angular distribution of atoms emitted from a SrZrO{sub 3} target by laser ablation under different laser fluences and oxygen pressures

    SciTech Connect

    Konomi, I.; Motohiro, T.; Azuma, H.; Asaoka, T.; Nakazato, T.; Sato, E.; Shimizu, T.; Fujioka, S.; Sarukura, N.; Nishimura, H.

    2010-05-15

    Angular distributions of atoms emitted by laser ablation of perovskite-type oxide SrZrO{sub 3} have been investigated using electron probe microanalysis with wavelength-dispersive spectroscopy and charge-coupled device photography with an interference filter. Each constituent element has been analyzed as a two-modal distribution composed of a broad cos{sup m} {theta} distribution and a narrow cos{sup n} {theta} distribution. The exponent n characterizes the component of laser ablation while the exponent m characterizes that of thermal evaporation, where a larger n or m means a narrower angular distribution. In vacuum, O (n=6) showed a broader distribution than those of Sr (n=16) and Zr (n=17), and Sr{sup +} exhibited a spatial distribution similar to that of Sr. As the laser fluence was increased from 1.1 to 4.4 J/cm{sup 2}, the angular distribution of Sr became narrower. In the laser fluence range of 1.1-4.4 J/cm{sup 2}, broadening of the angular distribution of Sr was observed only at the fluence of 1.1 J/cm{sup 2} under the oxygen pressure of 10 Pa. Monte Carlo simulations were performed to estimate approximately the energy of emitted atoms, focusing on the broadening of the angular distribution under the oxygen pressure of 10 Pa. The energies of emitted atoms were estimated to be 1-20 eV for the laser fluence of 1.1 J/cm{sup 2}, and more than 100 eV for 2.2 and 4.4 J/cm{sup 2}.

  8. Distributions of /sup 35/S-sulfate and /sup 3/H-glucosamine in the angular region of the hamster: light and electron microscopic autoradiography

    SciTech Connect

    Ohnishi, Y.; Taniguchi, Y.

    1983-06-01

    The distribution of /sup 35/S-sulfate and /sup 3/H-glucosamine in the angular region of the hamster was studied by light and electron microscopic autoradiography following intraperitoneal injection of these compounds to hamsters. Exposed silver grains of /sup 35/S-sulfate were concentrated in the trabecular meshwork, sclera, and cornea, and grains of /sup 3/H-glucosamine were localized in the trabecular region. The radioactivity of both isotopes was observed in the Golgi apparatuses of the endothelial cells of the angular aqueous plexus and the trabecular meshwork. The grains were noted over the entire cytoplasm, except for the nucleus, and then were incorporated into the amorphous substance and collagen fibers in the region adjacent to the angular aqueous sinus. These results suggest that endothelial cells in the angular region synthesize and secrete the sulfated glycosaminoglycans and hyaluronic acid.

  9. Delay-time distribution in the scattering of time-narrow wave packets. (I)

    NASA Astrophysics Data System (ADS)

    Smilansky, Uzy

    2017-05-01

    This is the first of two subsequent publications where the probability distribution of delay-times in scattering of wave packets is discussed. The probability distribution is expressed in terms of the on-shell scattering matrix, the dispersion relation of the scattered beam and the wave packet envelope. In the monochromatic limit (poor time resolution) the mean delay-time coincides with the expression derived by Eisenbud and Wigner and generalized by Smith more than half a century ago. In the opposite limit, and within the semi-classical approximation, the resulting distribution coincides with the result obtained using classical mechanics or geometrical optics. The general expression interpolates smoothly between the two extremes. An application for the scattering of electromagnetic waves in networks of RF transmission lines will be discussed in the next paper to illustrate the method in an experimentally relevant context.

  10. Another face of Lorenz-Mie scattering: monodisperse distributions of spheres produce Lissajous-like patterns.

    PubMed

    Hoekstra, A G; Doornbos, R M; Deurloo, K E; Noordmans, H J; Grooth, B G; Sloot, P M

    1994-01-20

    The complete scattering matrix S of spheres was measured with a flow cytometer. The experimental equipment allows simultaneous detection of two scattering-matrix elements for every sphere in the distribution. Two-parameter scatterplots with x and y coordinates determined by the S(ll) + S(ij) and S(ll)-S(ij) values are measured. Samples of spheres with very narrow size distributions (< 1%) were analyzed with a FlowCytometer, and they produced unexpected two-parameter scatterplots. Instead of compact distributions we observed Lissajous-like loops. Simulation of the scatterplots, using Lorenz-Mie theory, shows that these loops are due not to experimental errors but to true Lorenz-Mie scattering. It is shown that the loops originate from the sensitivity of the scattered field on the radius of the spheres. This paper demonstrates that the interpretation of rare events and hidden features in flow cytometry needs reconsideration.

  11. Measurements of the angular distributions of muons from Υ decays in pp collisions at sqrt[s] = 1.96  TeV.

    PubMed

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-04-13

    The angular distributions of muons from Υ(1S,2S,3S) → μ+ μ- decays are measured using data from pp collisions at sqrt[s] = 1.96  TeV corresponding to an integrated luminosity of 6.7  fb(-1) and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum p(T) for Υ mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of Υ(3S) mesons. Within the kinematic range of Υ rapidity |y|<0.6 and p(T) up to 40  GeV/c, the angular distributions are found to be nearly isotropic.

  12. Measurements of the Angular Distributions of Muons from Υ Decays in pp̄ Collisions at √s=1.96 TeV

    SciTech Connect

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2012-04-11

    The angular distributions of muons from Υ(1S,2S,3S)→μ⁺μ⁻ decays are measured using data from pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for Υ mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of Υ(3S) mesons. Within the kinematic range of Υ rapidity |y|<0.6 and pT up to 40 GeV/c, the angular distributions are found to be nearly isotropic.

  13. Measurements of the Angular Distributions of Muons from Υ Decays in pp̄ Collisions at √s=1.96 TeV

    DOE PAGES

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...

    2012-04-11

    The angular distributions of muons from Υ(1S,2S,3S)→μ⁺μ⁻ decays are measured using data from pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ and collected with the CDF II detector at the Fermilab Tevatron. This analysis is the first to report the full angular distributions as functions of transverse momentum pT for Υ mesons in both the Collins-Soper and s-channel helicity frames. This is also the first measurement of the spin alignment of Υ(3S) mesons. Within the kinematic range of Υ rapidity |y|<0.6 and pT up to 40 GeV/c, the angular distributions are found to be nearlymore » isotropic.« less

  14. Utilizing angular distributions to measure the spin imparted to the continuum region of Gd nuclei by light-ion transfer reactions

    NASA Astrophysics Data System (ADS)

    Ross, T. J.; Beausang, C. W.; Hughes, R. O.; Allmond, J. M.; Angell, C. T.; Basunia, M. S.; Bleuel, D. L.; Burke, J. T.; Casperson, R. J.; Escher, J. E.; Fallon, P.; Hatarik, R.; Munson, J.; Paschalis, S.; Petri, M.; Phair, L.; Ressler, J. J.; Scielzo, N. D.; Thompson, I. J.

    2012-10-01

    Historically it has proven extremely difficult to probe the properties of low-spin highly-excited states far above the yrast line in the bound quasi-continuum. We present the first measurement of the initial spin distribution of this region, following (p,d) and (p,t) reactions on ^154Gd and ^158Gd targets. The 25 MeV proton beam was provided by the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. A silicon telescope array, STARS, was used to detect light ions. We find that the spin transferred increases with excitation energy. Between 3 and 8 MeV, assuming a single dominant angular momentum transfer component, the measured angular distribution for the (p,d) reactions are well reproduced by DWBA calculations for δL=4 transfer, whilst the (p,t) reactions are better characterized by δL=5. A weighted combination of DWBA calculations, agrees excellently with experimental angular distributions.

  15. pH-dependent structural change of reduced spinach plastocyanin studied by perturbed angular correlation of gamma-rays and dynamic light scattering.

    PubMed

    Sas, Klára Nárcisz; Haldrup, Anna; Hemmingsen, Lars; Danielsen, Eva; Øgendal, Lars Holm

    2006-06-01

    In this study the pH-dependent structural changes of reduced spinach plastocyanin were investigated using perturbed angular correlation (PAC) of gamma-rays and dynamic light scattering (DLS). PAC data of Ag-substituted plastocyanin indicated that the coordinating ligands are two histidine residues (His37, His87) and a cysteine residue (Cys84) in a planar configuration, whereas the methionine (Met92) found perpendicular to this plane is not a coordinating ligand at neutral pH. Two slightly different conformations with differences in the Cys-metal ion-His angles could be observed with PAC spectroscopy. At pH 5.3 a third coordination geometry appears which can be explained as the absence of the His87 residue and the coordination of Met92 as a ligand. With DLS the aggregation of reduced plastocyanin could be observed below pH 5.3, indicating that not only the metal binding site but also the aggregation properties of the protein change upon pH reduction. Both the structural changes at the metal binding site and the aggregation are shown to be reversible. These results support the hypothesis that the pH of the thylakoid lumen has to remain moderate during steady-state photosynthesis and indicate that low pH induced aggregation of plastocyanin might serve as a regulatory switch for photosynthesis.

  16. Single particle momentum and angular distributions in hadron-hadron collisions at ultrahigh energies

    NASA Technical Reports Server (NTRS)

    Chou, T. T.; Chen, N. Y.

    1985-01-01

    The forward-backward charged multiplicity distribution (P n sub F, n sub B) of events in the 540 GeV antiproton-proton collider has been extensively studied by the UA5 Collaboration. It was pointed out that the distribution with respect to n = n sub F + n sub B satisfies approximate KNO scaling and that with respect to Z = n sub F - n sub B is binomial. The geometrical model of hadron-hadron collision interprets the large multiplicity fluctuation as due to the widely different nature of collisions at different impact parameters b. For a single impact parameter b, the collision in the geometrical model should exhibit stochastic behavior. This separation of the stochastic and nonstochastic (KNO) aspects of multiparticle production processes gives conceptually a lucid and attractive picture of such collisions, leading to the concept of partition temperature T sub p and the single particle momentum spectrum to be discussed in detail.

  17. Potential for measurement of the distribution of DNA folds in complex environments using Correlated X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Schenk, Gundolf; Krajina, Brad; Spakowitz, Andrew; Doniach, Sebastian

    2016-12-01

    In vivo chromosomal behavior is dictated by the organization of genomic DNA at length scales ranging from nanometers to microns. At these disparate scales, the DNA conformation is influenced by a range of proteins that package, twist and disentangle the DNA double helix, leading to a complex hierarchical structure that remains undetermined. Thus, there is a critical need for methods of structural characterization of DNA that can accommodate complex environmental conditions over biologically relevant length scales. Based on multiscale molecular simulations, we report on the possibility of measuring supercoiling in complex environments using angular correlations of scattered X-rays resulting from X-ray free electron laser (xFEL) experiments. We recently demonstrated the observation of structural detail for solutions of randomly oriented metallic nanoparticles [D. Mendez et al., Philos. Trans. R. Soc. B 360 (2014) 20130315]. Here, we argue, based on simulations, that correlated X-ray scattering (CXS) has the potential for measuring the distribution of DNA folds in complex environments, on the scale of a few persistence lengths.

  18. Performance evaluation of a multiple-scattering Compton imager for distribution of prompt gamma-rays in proton therapy

    NASA Astrophysics Data System (ADS)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho

    2017-01-01

    The purpose of this study is to compare and evaluate the performance of a multiple-scattering Compton imager (MSCI) to measure prompt gamma-rays emitted during proton therapy. Because prompt gamma-rays are generated simultaneously during the proton beam delivery, the falloff position of the Bragg peak of the proton beam can be determined from the distribution of prompt gamma-rays. The detection system was designed using three CdZnTe detector layers that can track radiation of unknown energy on the basis of effective Compton scattering events. The simple back-projection, filtered back-projection, and maximum likelihood expectation maximization (MLEM) algorithms were applied for the reconstructed Compton images. The falloff positions of the Bragg peaks determined from individual MSCIs were compared with the theoretical values calculated using the Monte Carlo N-Particle eXtended code. Moreover, the performance of the MSCI was compared with that of a previously developed system based on a slit collimator gamma camera. In summary, the MSCI with the MLEM reconstruction algorithm was better than the other reconstruction methods in terms of the falloff position of the Bragg peak, the angular resolution, and the signal-to-noise ratio.

  19. Potential for measurement of the distribution of DNA folds in complex environments using Correlated X-ray Scattering

    PubMed Central

    Schenk, Gundolf; Krajina, Brad; Spakowitz, Andrew; Doniach, Sebastian

    2016-01-01

    In vivo chromosomal behavior is dictated by the organization of genomic DNA at length scales ranging from nanometers to microns. At these disparate scales, the DNA conformation is influenced by a range of proteins that package, twist and disentangle the DNA double helix, leading to a complex hierarchical structure that remains undetermined. Thus, there is a critical need for methods of structural characterization of DNA that can accommodate complex environmental conditions over biologically relevant length scales. Based on multiscale molecular simulations, we report on the possibility of measuring supercoiling in complex environments using angular correlations of scattered X-rays resulting from X-ray free electron laser (xFEL) experiments. We recently demonstrated the observation of structural detail for solutions of randomly oriented metallic nanoparticles [D. Mendez et al., Philos. Trans. R. Soc. B 360 (2014) 20130315]. Here, we argue, based on simulations, that correlated X-ray scattering (CXS) has the potential for measuring the distribution of DNA folds in complex environments, on the scale of a few persistence lengths. PMID:27127310

  20. Angular distribution of polarized spontaneous emissions and its effect on light extraction behavior in InGaN-based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Yuan, Gangcheng; Chen, Xinjuan; Yu, Tongjun; Lu, Huimin; Chen, Zhizhong; Kang, Xiangning; Wu, Jiejun; Zhang, Guoyi

    2014-03-01

    Angular intensity distributions of differently polarized light sources in multiple quantum wells (MQWs) and their effects on extraction behavior of spontaneous emission from light emitting diode (LED) chips have been studied. Theoretical calculation based on k.p approximation, ray tracing simulation and angular electroluminescence measurement were applied in this work. It is found that the electron-hole recombination in the InGaN MQWs produces a spherical distribution of an s-polarized source and a dumbbell-shaped p-polarized source. Light rays from different polarized sources experience different extraction processes, determining the polarization degree of electro-luminescence and extraction efficiency of LEDs.