Sample records for scattering detection method

  1. Single-scan patient-specific scatter correction in computed tomography using peripheral detection of scatter and compressed sensing scatter retrieval

    PubMed Central

    Meng, Bowen; Lee, Ho; Xing, Lei; Fahimian, Benjamin P.

    2013-01-01

    Purpose: X-ray scatter results in a significant degradation of image quality in computed tomography (CT), representing a major limitation in cone-beam CT (CBCT) and large field-of-view diagnostic scanners. In this work, a novel scatter estimation and correction technique is proposed that utilizes peripheral detection of scatter during the patient scan to simultaneously acquire image and patient-specific scatter information in a single scan, and in conjunction with a proposed compressed sensing scatter recovery technique to reconstruct and correct for the patient-specific scatter in the projection space. Methods: The method consists of the detection of patient scatter at the edges of the field of view (FOV) followed by measurement based compressed sensing recovery of the scatter through-out the projection space. In the prototype implementation, the kV x-ray source of the Varian TrueBeam OBI system was blocked at the edges of the projection FOV, and the image detector in the corresponding blocked region was used for scatter detection. The design enables image data acquisition of the projection data on the unblocked central region of and scatter data at the blocked boundary regions. For the initial scatter estimation on the central FOV, a prior consisting of a hybrid scatter model that combines the scatter interpolation method and scatter convolution model is estimated using the acquired scatter distribution on boundary region. With the hybrid scatter estimation model, compressed sensing optimization is performed to generate the scatter map by penalizing the L1 norm of the discrete cosine transform of scatter signal. The estimated scatter is subtracted from the projection data by soft-tuning, and the scatter-corrected CBCT volume is obtained by the conventional Feldkamp-Davis-Kress algorithm. Experimental studies using image quality and anthropomorphic phantoms on a Varian TrueBeam system were carried out to evaluate the performance of the proposed scheme. Results: The scatter shading artifacts were markedly suppressed in the reconstructed images using the proposed method. On the Catphan©504 phantom, the proposed method reduced the error of CT number to 13 Hounsfield units, 10% of that without scatter correction, and increased the image contrast by a factor of 2 in high-contrast regions. On the anthropomorphic phantom, the spatial nonuniformity decreased from 10.8% to 6.8% after correction. Conclusions: A novel scatter correction method, enabling unobstructed acquisition of the high frequency image data and concurrent detection of the patient-specific low frequency scatter data at the edges of the FOV, is proposed and validated in this work. Relative to blocker based techniques, rather than obstructing the central portion of the FOV which degrades and limits the image reconstruction, compressed sensing is used to solve for the scatter from detection of scatter at the periphery of the FOV, enabling for the highest quality reconstruction in the central region and robust patient-specific scatter correction. PMID:23298098

  2. Real-time detection of laser-GaAs interaction process

    NASA Astrophysics Data System (ADS)

    Jia, Zhichao; Li, Zewen; Lv, Xueming; Ni, Xiaowu

    2017-05-01

    A real-time method based on laser scattering technology was used to detect the interaction process of GaAs with a 1080 nm laser. The detector collected the scattered laser beam from the GaAs wafer. The main scattering sources were back surface at first, later turn into front surface and vapor, so scattering signal contained much information of the interaction process. The surface morphologies of GaAs with different irradiation times were observed using an optical microscope to confirm occurrence of various phenomena. The proposed method is shown to be effective for the real-time detection of GaAs. By choosing a proper wavelength, the scattering technology can be promoted in detection of thicker GaAs wafer or other materials.

  3. Optical detection of tracer species in strongly scattering media.

    PubMed

    Brauser, Eric M; Rose, Peter E; McLennan, John D; Bartl, Michael H

    2015-03-01

    A combination of optical absorption and scattering is used to detect tracer species in a strongly scattering medium. An optical setup was developed, consisting of a dual-beam scattering detection scheme in which sample scattering beam overlaps with the characteristic absorption feature of quantum dot tracer species, while the reference scattering beam is outside any absorption features of the tracer. This scheme was successfully tested in engineered breakthrough tests typical of wastewater and subsurface fluid analysis, as well as in batch analysis of oil and gas reservoir fluids and biological samples. Tracers were detected even under highly scattering conditions, conditions in which conventional absorption or fluorescence methods failed.

  4. Method and apparatus for detecting and/or imaging clusters of small scattering centers in the body

    DOEpatents

    Perez-Mendez, V.; Sommer, F.G.

    1982-07-13

    An ultrasonic method and apparatus are provided for detecting and imaging clusters of small scattering centers in the breast wherein periodic pulses are applied to an ultrasound emitting transducer and projected into the body, thereafter being received by at least one receiving transducer positioned to receive scattering from the scattering center clusters. The signals are processed to provide an image showing cluster extent and location. 6 figs.

  5. Method and apparatus for detecting and/or imaging clusters of small scattering centers in the body

    DOEpatents

    Perez-Mendez, Victor; Sommer, Frank G.

    1982-01-01

    An ultrasonic method and apparatus are provided for detecting and imaging clusters of small scattering centers in the breast wherein periodic pulses are applied to an ultrasound emitting transducer and projected into the body, thereafter being received by at least one receiving transducer positioned to receive scattering from the scattering center clusters. The signals are processed to provide an image showing cluster extent and location.

  6. Novel laser Doppler flowmeter for pulpal blood flow measurements

    NASA Astrophysics Data System (ADS)

    Zang, De Yu; Millerd, James E.; Wilder-Smith, Petra B. B.; Arrastia-Jitosho, Anna-Marie A.

    1996-04-01

    We have proposed and experimentally demonstrated a new configuration of laser Doppler flowmetry for dental pulpal blood flow measurements. To date, the vitality of a tooth can be determined only by subjective thermal or electric tests, which are of questionable reliability and may induced pain in patient. Non-invasive techniques for determining pulpal vascular reactions to injury, treatment, and medication are in great demand. The laser Doppler flowmetry technique is non-invasive; however, clinical studies have shown that when used to measure pulpal blood flow the conventional back-scattering Doppler method suffers from low signal-to-noise ratio (SNR) and unreliable flux readings rendering it impossible to calibrate. A simplified theoretical model indicates that by using a forward scattered geometry the detected signal has a much higher SNR and can be calibrated. The forward scattered signal is readily detectable due to the fact that teeth are relatively thin organs with moderate optical loss. A preliminary experiment comparing forward scattered detection with conventional back- scattered detection was carried out using an extracted human molar. The results validated the findings of the simple theoretical model and clearly showed the utility of the forward scattering geometry. The back-scattering method had readings that fluctuated by as much as 187% in response to small changes in sensor position relative to the tooth. The forward scattered method had consistent readings (within 10%) that were independent of the sensor position, a signal-to-noise ratio that was at least 5.6 times higher than the back-scattering method, and a linear response to flow rate.

  7. Light Scattering based detection of food pathogens

    USDA-ARS?s Scientific Manuscript database

    The current methods for detecting foodborne pathogens are mostly destructive (i.e., samples need to be pretreated), and require time, personnel, and laboratories for analyses. Optical methods including light scattering based techniques have gained a lot of attention recently due to its their rapid a...

  8. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    NASA Astrophysics Data System (ADS)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  9. Feasibility Study of an Optical Caustic Plasmonic Light Scattering Sensor for Human Serum Anti-Dengue Protein E Antibody Detection

    PubMed Central

    García, Antonio A.; Pirez-Gomez, Miguel A.; Pech-Pacheco, José L.; Mendez-Galvan, Jorge F.; Machain-Williams, Carlos; Talavera-Aguilar, Lourdes; Espinosa-Carrillo, José H.; Duarte-Villaseñor, Miriam M.; Be-Ortiz, Christian; Espinosa-de los Monteros, Luz E.; Castillo-Pacheco, Ariel; Garcia-Rejon, Julian E.

    2017-01-01

    Antibody detection and accurate diagnosis of tropical diseases is essential to help prevent the spread of disease. However, most detection methods lack cost-effectiveness and field portability, which are essential features for achieving diagnosis in a timely manner. To address this, 3D-printed oblate spheroid sample chambers were fabricated to measure green light scattering of gold nanoparticles using an optical caustic focus to detect antibodies. Scattering signals of 20–200 nm gold nanoparticles using a green laser were compared to green light emitting diode (LED) light source signals and to Mie theory. The change in signal from 60 to 120 nm decreased in the order of Mie Theory > optical caustic scattering > 90° scattering. These results suggested that conjugating 60 nm gold nanoparticles and using an optical caustic system to detect plasmonic light scattering, would result in a sensitive test for detecting human antibodies in serum. Therefore, we studied the light scattering response of conjugated gold nanoparticles exposed to different concentrations of anti-protein E antibody, and a feasibility study of 10 human serum samples using dot blot and a handheld optical caustic-based sensor device. The overall agreement between detection methods suggests that the new sensor concept shows promise to detect gold nanoparticle aggregation in a homogeneous assay. Further testing and protocol optimization is needed to draw conclusions on the positive and negative predictive values for this new testing system. PMID:28817080

  10. Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors.

    PubMed

    Mindukshev, Igor; Gambaryan, Stepan; Kehrer, Linda; Schuetz, Claudia; Kobsar, Anna; Rukoyatkina, Natalia; Nikolaev, Viacheslav O; Krivchenko, Alexander; Watson, Steve P; Walter, Ulrich; Geiger, Joerg

    2012-07-01

    Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering. We developed a novel technique based on low angle light scattering registering changes in light scattering at a range of different angles in platelet suspensions during activation. The method proved to be highly sensitive for simultaneous real time detection of changes in size and shape of platelets during activation. Unlike commonly-used methods, the light scattering method could detect platelet shape change and aggregation in response to nanomolar concentrations of extracellular nucleotides. Furthermore, our results demonstrate that the advantages of the light scattering method make it a choice method for platelet receptor monitoring and for investigation of both murine and human platelets in disease models. Our data demonstrate the suitability and superiority of this new low angle light scattering method for comprehensive analyses of platelet receptors and functions. This highly sensitive, quantitative, and online detection of essential physiological, pathophysiological and pharmacological-response properties of human and mouse platelets is a significant improvement over conventional techniques.

  11. Apparatus and method for spectroscopic analysis of scattering media

    DOEpatents

    Strobl, Karlheinz; Bigio, Irving J.; Loree, Thomas R.

    1994-01-01

    Apparatus and method for spectroscopic analysis of scattering media. Subtle differences in materials have been found to be detectable from plots of intensity as a function of wavelength of collected emitted and scattered light versus wavelength of excitation light.

  12. Enhanced coupling of light into a turbid medium through microscopic interface engineering

    PubMed Central

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-01-01

    There are many optical detection and sensing methods used today that provide powerful ways to diagnose, characterize, and study materials. For example, the measurement of spontaneous Raman scattering allows for remote detection and identification of chemicals. Many other optical techniques provide unique solutions to learn about biological, chemical, and even structural systems. However, when these systems exist in a highly scattering or turbid medium, the optical scattering effects reduce the effectiveness of these methods. In this article, we demonstrate a method to engineer the geometry of the optical interface of a turbid medium, thereby drastically enhancing the coupling efficiency of light into the material. This enhanced optical coupling means that light incident on the material will penetrate deeper into (and through) the medium. It also means that light thus injected into the material will have an enhanced interaction time with particles contained within the material. These results show that, by using the multiple scattering of light in a turbid medium, enhanced light–matter interaction can be achieved; this has a direct impact on spectroscopic methods such as Raman scattering and fluorescence detection in highly scattering regimes. Furthermore, the enhanced penetration depth achieved by this method will directly impact optical techniques that have previously been limited by the inability to deposit sufficient amounts of optical energy below or through highly scattering layers. PMID:28701381

  13. Interference detection and correction applied to incoherent-scatter radar power spectrum measurement

    NASA Technical Reports Server (NTRS)

    Ying, W. P.; Mathews, J. D.; Rastogi, P. K.

    1986-01-01

    A median filter based interference detection and correction technique is evaluated and the method applied to the Arecibo incoherent scatter radar D-region ionospheric power spectrum is discussed. The method can be extended to other kinds of data when the statistics involved in the process are still valid.

  14. Optimization design of spectral discriminator for high-spectral-resolution lidar based on error analysis.

    PubMed

    Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao

    2017-03-06

    Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.

  15. Scatter correction for cone-beam computed tomography using self-adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Xie, Shi-Peng; Luo, Li-Min

    2012-06-01

    The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.

  16. Method and apparatus for determining the physical properties of materials using dynamic light scattering techniques

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S. (Inventor)

    1992-01-01

    A system for determining the physical properties of materials through the use of dynamic light scattering is disclosed. The system includes a probe, a laser source for directing a laser beam into the probe, and a photodetector for converting scattered light detected by the probe into electrical signals. The probe includes at least one optical fiber connected to the laser source and a second optical fiber connected to the photodetector. Each of the fibers may adjoin a gradient index microlens which is capable of providing a collimated laser beam into a scattering medium. The position of the second optical fiber with respect to the optical axis of the probe determines whether homodyne or self-beating detection is provided. Self-beating detection may be provided without a gradient index microlens. This allows a very small probe to be constructed which is insertable through a hypodermic needle or the like into a droplet extending from such a needle. A method of detecting scattered light through the use of a collimated, Gaussian laser beam is also provided. A method for controlling the waist and divergence of the optical field emanating from the free end of an optical fiber is also provided.

  17. Higher-Order Optical Modes and Nanostructures for Detection and Imaging Applications

    NASA Astrophysics Data System (ADS)

    Schultz, Zachary D.; Levin, Ira W.

    2010-08-01

    Raman spectroscopy offers a label-free, chemically specific, method of detecting molecules; however, the low cross-section attendant to this scattering process has hampered trace detection. The realization that scattering is enhanced at a metallic surface has enabled new techniques for spectroscopic and imaging analysis.

  18. A dual-wavelength overlapping resonance Rayleigh scattering method for the determination of chondroitin sulfate with nile blue sulfate

    NASA Astrophysics Data System (ADS)

    Cui, Zhiping; Hu, Xiaoli; Liu, Shaopu; Liu, Zhongfang

    2011-12-01

    A dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was developed to detect chondroitin sulfate (CS) with nile blue sulfate (NBS). At pH 3.0-4.0 Britton-Robinson (BR) buffer medium, CS interacted with NBS to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering (RRS), second order scattering (SOS) and frequence doubling scattering (FDS) appeared and their intensities were enhanced greatly. Their maximum wavelengths were located at 303 nm (RRS), 362 nm (RRS), 588 nm (SOS) and 350 nm (FDS), respectively. The scattering intensities of the three methods were proportional to the concentration of CS in certain ranges. The methods had high sensitivity and the detection limits were between 1.5 and 7.1 ng mL -1. The DWO-RRS method had the highest sensitivity with the detection limit being 1.5 ng mL -1. The characteristics of the spectra and optimal reaction conditions of RRS method were investigated. The effects of coexistent substances on the determination of CS were evaluated. Owing to the high sensitivity, RRS method had been applied to the determination of CS in eye drops with satisfactory results. The recovery range was between 99.4% and 104.6% and the relative standard deviation (RSD) was between 0.4% and 0.8%. In addition, the reasons for RRS enhancement were discussed and the shape of ion-association complex was characterized by atomic force microscopy (AFM).

  19. Optimal and adaptive methods of processing hydroacoustic signals (review)

    NASA Astrophysics Data System (ADS)

    Malyshkin, G. S.; Sidel'nikov, G. B.

    2014-09-01

    Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.

  20. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  1. Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom

    DOEpatents

    Johnston, Roger G.

    1988-01-01

    Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer.

  2. Apparatus and method for detection and characterization of particles using light scattered therefrom

    DOEpatents

    Johnston, R.G.

    1987-03-23

    Apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer. 13 figs.

  3. begin{center} MUSIC Algorithms for Rebar Detection

    NASA Astrophysics Data System (ADS)

    Leone, G.; Solimene, R.

    2012-04-01

    In this contribution we consider the problem of detecting and localizing small cross section, with respect to the wavelength, scatterers from their scattered field once a known incident field interrogated the scene where they reside. A pertinent applicative context is rebar detection within concrete pillar. For such a case, scatterers to be detected are represented by rebars themselves or by voids due to their lacking. In both cases, as scatterers have point-like support, a subspace projection method can be conveniently exploited [1]. However, as the field scattered by rebars is stronger than the one due to voids, it is expected that the latter can be difficult to be detected. In order to circumvent this problem, in this contribution we adopt a two-step MUltiple SIgnal Classification (MUSIC) detection algorithm. In particular, the first stage aims at detecting rebars. Once rebar are detected, their positions are exploited to update the Green's function and then a further detection scheme is run to locate voids. However, in this second case, background medium encompasses also the rabars. The analysis is conducted numerically for a simplified two-dimensional scalar scattering geometry. More in detail, as is usual in MUSIC algorithm, a multi-view/multi-static single-frequency configuration is considered [2]. Baratonia, G. Leone, R. Pierri, R. Solimene, "Fault Detection in Grid Scattering by a Time-Reversal MUSIC Approach," Porc. Of ICEAA 2011, Turin, 2011. E. A. Marengo, F. K. Gruber, "Subspace-Based Localization and Inverse Scattering of Multiply Scattering Point Targets," EURASIP Journal on Advances in Signal Processing, 2007, Article ID 17342, 16 pages (2007).

  4. [Heart rate variability study based on a novel RdR RR Intervals Scatter Plot].

    PubMed

    Lu, Hongwei; Lu, Xiuyun; Wang, Chunfang; Hua, Youyuan; Tian, Jiajia; Liu, Shihai

    2014-08-01

    On the basis of Poincare scatter plot and first order difference scatter plot, a novel heart rate variability (HRV) analysis method based on scatter plots of RR intervals and first order difference of RR intervals (namely, RdR) was proposed. The abscissa of the RdR scatter plot, the x-axis, is RR intervals and the ordinate, y-axis, is the difference between successive RR intervals. The RdR scatter plot includes the information of RR intervals and the difference between successive RR intervals, which captures more HRV information. By RdR scatter plot analysis of some records of MIT-BIH arrhythmias database, we found that the scatter plot of uncoupled premature ventricular contraction (PVC), coupled ventricular bigeminy and ventricular trigeminy PVC had specific graphic characteristics. The RdR scatter plot method has higher detecting performance than the Poincare scatter plot method, and simpler and more intuitive than the first order difference method.

  5. Multi-Scale Scattering Transform in Music Similarity Measuring

    NASA Astrophysics Data System (ADS)

    Wang, Ruobai

    Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.

  6. Trace Detection of Metalloporphyrin-Based Coordination Polymer Particles via Modified Surface-Enhanced Raman Scattering Assisted by Surface Metallization.

    PubMed

    Sun, Yu; Caravella, Alessio

    2016-01-01

    This study proposed a facile method to detect metalloporphyrin-based coordination polymer particles (Z-CPPs) in aqueous solution by modified surface-enhanced Raman scattering (SERS). The SERS-active particles are photodeposited on the surface of Z-CPPs, offering an enhanced Raman signal for the trace detection of Z-CPPs.

  7. X-ray coherent scattering tomography of textured material (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  8. Advanced Multi-frequency Inversion Methods for Classifying Acoustic Scatterers

    DTIC Science & Technology

    2001-09-30

    individual zooplankton taxa. For example, physonect siphonophore larvae with small gas­ filled pneumatophores (~0.20 mm) detected by the VPR appear...period. The white circles indicate the presence of physonect siphonophore larvae detected by the VPR. Note the coincidence of the distributions of...these organisms and layers of elevated scattering. The high scattering in the vicinity of siphonophore larvae at 43 kHz is believed to be an artifact

  9. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  10. Investigation on Beam-Blocker-Based Scatter Correction Method for Improving CT Number Accuracy

    NASA Astrophysics Data System (ADS)

    Lee, Hoyeon; Min, Jonghwan; Lee, Taewon; Pua, Rizza; Sabir, Sohail; Yoon, Kown-Ha; Kim, Hokyung; Cho, Seungryong

    2017-03-01

    Cone-beam computed tomography (CBCT) is gaining widespread use in various medical and industrial applications but suffers from substantially larger amount of scatter than that in the conventional diagnostic CT resulting in relatively poor image quality. Various methods that can reduce and/or correct for the scatter in the CBCT have therefore been developed. Scatter correction method that uses a beam-blocker has been considered a direct measurement-based approach providing accurate scatter estimation from the data in the shadows of the beam-blocker. To the best of our knowledge, there has been no record reporting the significance of the scatter from the beam-blocker itself in such correction methods. In this paper, we identified the scatter from the beam-blocker that is detected in the object-free projection data investigated its influence on the image accuracy of CBCT reconstructed images, and developed a scatter correction scheme that takes care of this scatter as well as the scatter from the scanned object.

  11. Visual detection of nucleic acids based on Mie scattering and the magnetophoretic effect.

    PubMed

    Zhao, Zichen; Chen, Shan; Ho, John Kin Lim; Chieng, Ching-Chang; Chen, Ting-Hsuan

    2015-12-07

    Visual detection of nucleic acid biomarkers is a simple and convenient approach to point-of-care applications. However, issues of sensitivity and the handling of complex bio-fluids have posed challenges. Here we report on a visual method detecting nucleic acids using Mie scattering of polystyrene microparticles and the magnetophoretic effect. Magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) were surface-functionalised with oligonucleotide probes, which can hybridise with target oligonucleotides in juxtaposition and lead to the formation of MMPs-targets-PMPs sandwich structures. Using an externally applied magnetic field, the magnetophoretic effect attracts the sandwich structure to the sidewall, which reduces the suspended PMPs and leads to a change in the light transmission via the Mie scattering. Based on the high extinction coefficient of the Mie scattering (∼3 orders of magnitude greater than that of the commonly used gold nanoparticles), our results showed the limit of detection to be 4 pM using a UV-Vis spectrometer or 10 pM by direct visual inspection. Meanwhile, we also demonstrated that this method is compatible with multiplex assays and detection in complex bio-fluids, such as whole blood or a pool of nucleic acids, without purification in advance. With a simplified operation procedure, low instrumentation requirement, high sensitivity and compatibility with complex bio-fluids, this method provides an ideal solution for visual detection of nucleic acids in resource-limited settings.

  12. The beam stop array method to measure object scatter in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lee, Haeng-hwa; Kim, Ye-seul; Park, Hye-Suk; Kim, Hee-Joung; Choi, Jae-Gu; Choi, Young-Wook

    2014-03-01

    Scattered radiation is inevitably generated in the object. The distribution of the scattered radiation is influenced by object thickness, filed size, object-to-detector distance, and primary energy. One of the investigations to measure scatter intensities involves measuring the signal detected under the shadow of the lead discs of a beam-stop array (BSA). The measured scatter by BSA includes not only the scattered radiation within the object (object scatter), but also the external scatter source. The components of external scatter source include the X-ray tube, detector, collimator, x-ray filter, and BSA. Excluding background scattered radiation can be applied to different scanner geometry by simple parameter adjustments without prior knowledge of the scanned object. In this study, a method using BSA to differentiate scatter in phantom (object scatter) from external background was used. Furthermore, this method was applied to BSA algorithm to correct the object scatter. In order to confirm background scattered radiation, we obtained the scatter profiles and scatter fraction (SF) profiles in the directions perpendicular to the chest wall edge (CWE) with and without scattering material. The scatter profiles with and without the scattering material were similar in the region between 127 mm and 228 mm from chest wall. This result indicated that the measured scatter by BSA included background scatter. Moreover, the BSA algorithm with the proposed method could correct the object scatter because the total radiation profiles of object scatter correction corresponded to original image in the region between 127 mm and 228 mm from chest wall. As a result, the BSA method to measure object scatter could be used to remove background scatter. This method could apply for different scanner geometry after background scatter correction. In conclusion, the BSA algorithm with the proposed method is effective to correct object scatter.

  13. Relevant Scatterers Characterization in SAR Images

    NASA Astrophysics Data System (ADS)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  14. Detection of Heterogeneous Small Inclusions by a Multi-Step MUSIC Method

    NASA Astrophysics Data System (ADS)

    Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni

    2014-05-01

    In this contribution the problem of detecting and localizing scatterers with small (in terms of wavelength) cross sections by collecting their scattered field is addressed. The problem is dealt with for a two-dimensional and scalar configuration where the background is given as a two-layered cylindrical medium. More in detail, while scattered field data are taken in the outermost layer, inclusions are embedded within the inner layer. Moreover, the case of heterogeneous inclusions (i.e., having different scattering coefficients) is addressed. As a pertinent applicative context we identify the problem of diagnose concrete pillars in order to detect and locate rebars, ducts and other small in-homogeneities that can populate the interior of the pillar. The nature of inclusions influences the scattering coefficients. For example, the field scattered by rebars is stronger than the one due to ducts. Accordingly, it is expected that the more weakly scattering inclusions can be difficult to be detected as their scattered fields tend to be overwhelmed by those of strong scatterers. In order to circumvent this problem, in this contribution a multi-step MUltiple SIgnal Classification (MUSIC) detection algorithm is adopted [1]. In particular, the first stage aims at detecting rebars. Once rebars have been detected, their positions are exploited to update the Green's function and to subtract the scattered field due to their presence. The procedure is repeated until all the inclusions are detected. The analysis is conducted by numerical experiments for a multi-view/multi-static single-frequency configuration and the synthetic data are generated by a FDTD forward solver. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] R. Solimene, A. Dell'Aversano and G. Leone, "MUSIC algorithms for rebar detection," J. of Geophysics and Engineering, vol. 10, pp. 1-8, 2013

  15. Real-time detection of bacterial spores using coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dogariu, A.; Goltsov, A.; Pestov, D.; Sokolov, A. V.; Scully, M. O.

    2008-02-01

    We demonstrate a realistic method for detection of anthrax-type spores in real time based on their chemical fingerprints using coherent anti-Stokes Raman scattering. Specifically, we demonstrate that coherent Raman scattering can be used to successfully identify spores with high accuracy and high selectivity in less than 50ms.

  16. A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Verdun, F. R.; Bosmans, H.; Rodríguez Pérez, S.; Marshall, N. W.

    2017-07-01

    This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.

  17. Method for detecting an image of an object

    DOEpatents

    Chapman, Leroy Dean; Thomlinson, William C.; Zhong, Zhong

    1999-11-16

    A method for detecting an absorption, refraction and scatter image of an object by independently analyzing, detecting, digitizing, and combining images acquired on a high and a low angle side of a rocking curve of a crystal analyzer. An x-ray beam which is generated by any suitable conventional apparatus can be irradiated upon either a Bragg type crystal analyzer or a Laue type crystal analyzer. Images of the absorption, refraction and scattering effects are detected, such as on an image plate, and then digitized. The digitized images are simultaneously solved, preferably on a pixel-by-pixel basis, to derive a combined visual image which has dramatically improved contrast and spatial resolution over an image acquired through conventional radiology methods.

  18. Biological cell classification by multiangle light scattering

    DOEpatents

    Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.

    1975-06-03

    The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.

  19. Optical method and apparatus for detection of defects and microstructural changes in ceramics and ceramic coatings

    DOEpatents

    Ellingson, William A.; Todd, Judith A.; Sun, Jiangang

    2001-01-01

    Apparatus detects defects and microstructural changes in hard translucent materials such as ceramic bulk compositions and ceramic coatings such as after use under load conditions. The beam from a tunable laser is directed onto the sample under study and light reflected by the sample is directed to two detectors, with light scattered with a small scatter angle directed to a first detector and light scattered with a larger scatter angle directed to a second detector for monitoring the scattering surface. The sum and ratio of the two detector outputs respectively provide a gray-scale, or "sum" image, and an indication of the lateral spread of the subsurface scatter, or "ratio" image. This two detector system allows for very high speed crack detection for on-line, real-time inspection of damage in ceramic components. Statistical image processing using a digital image processing approach allows for the quantative discrimination of the presence and distribution of small flaws in a sample while improving detection reliability. The tunable laser allows for the penetration of the sample to detect defects from the sample's surface to the laser's maximum depth of penetration. A layered optical fiber directs the incoming laser beam to the sample and transmits each scattered signal to a respective one of the two detectors.

  20. Foreign body detection in food materials using compton scattered x-rays

    NASA Astrophysics Data System (ADS)

    McFarlane, Nigel James Bruce

    This thesis investigated the application of X-ray Compton scattering to the problem of foreign body detection in food. The methods used were analytical modelling, simulation and experiment. A criterion was defined for detectability, and a model was developed for predicting the minimum time required for detection. The model was used to predict the smallest detectable cubes of air, glass, plastic and steel. Simulations and experiments were performed on voids and glass in polystyrene phantoms, water, coffee and muesli. Backscatter was used to detect bones in chicken meat. The effects of geometry and multiple scatter on contrast, signal-to-noise, and detection time were simulated. Compton scatter was compared with transmission, and the effect of inhomogeneity was modelled. Spectral shape was investigated as a means of foreign body detection. A signal-to-noise ratio of 7.4 was required for foreign body detection in food. A 0.46 cm cube of glass or a 1.19 cm cube of polystyrene were detectable in a 10 cm cube of water in one second. The minimum time to scan a whole sample varied as the 7th power of the foreign body size, and the 5th power of the sample size. Compton scatter inspection produced higher contrasts than transmission, but required longer measurement times because of the low number of photon counts. Compton scatter inspection of whole samples was very slow compared to production line speeds in the food industry. There was potential for Compton scatter in applications which did not require whole-sample scanning, such as surface inspection. There was also potential in the inspection of inhomogeneous samples. The multiple scatter fraction varied from 25% to 55% for 2 to 10 cm cubes of water, but did not have a large effect on the detection time. The spectral shape gave good contrasts and signal-to-noise ratios in the detection of chicken bones.

  1. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Shang, Li; Dong, Shaojun

    2008-03-01

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 × 10-7 M, 3.5 × 10-7 M, 4.1 × 10-7 M, and 7.7 × 10-7 M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.

  2. CH PLIF and PIV implementation using C-X (0,0) and intra-vibrational band filtered detection

    NASA Astrophysics Data System (ADS)

    Hammack, Stephen D.; Skiba, Aaron W.; Lee, Tonghun; Carter, Campbell D.

    2018-02-01

    This study demonstrates advancement in a low-pulse energy methylidyne (CH) planar laser-induced fluorescence (PLIF) method that facilitates its application alongside flows seeded for particle image velocimetry (PIV) or other particle scattering based methods, as well as in high scattering environments. The C-X (0,0) R-branch excitation and filtered detection are carefully selected such that the laser line frequency is heavily attenuated by an edge filter while allowing transmission of most of the (0,0) band fluorescence. There are strong OH A-X (0,0) lines in the vicinity, but they can be avoided or utilized through dye laser tuning. As a demonstration of efficacy, PIV is performed simultaneously with the PLIF imaging. Using the edge filter, particle scattering signal is reduced to sub-fluorescence levels, allowing for flame-front analysis. This achievement enables flame-front tracking at high repetition rates (due to the low-pulse energy required) in combination with a scattering method such as PIV or use in high scattering environments such as enclosed combustors or near burner surfaces.

  3. Direct detection of x-rays for protein crystallography employing a thick, large area CCD

    DOEpatents

    Atac, Muzaffer; McKay, Timothy

    1999-01-01

    An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction of the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce a image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

  4. Particle measurement systems and methods

    DOEpatents

    Steele, Paul T [Livermore, CA

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  5. A sensitive and selective resonance Rayleigh scattering method for quick detection of avidin using affinity labeling Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Huang, Xi; Fu, Xuan; Deng, Huan; Ma, Meihu; Cai, Zhaoxia

    2016-06-01

    Avidin is a glycoprotein with antinutritional property, which should be limited in daily food. We developed an affinity biosensor system based on resonance Rayleigh scattering (RRS) and using affinity biotin labeling Au nanoparticles (AuNPs). This method was selective and sensitive for quick avidin detection due to the avidin-biotin affinitive interaction. Under optimal conditions, RRS intensity of biotin-AuNPs increase linearly with an increasing concentration of avidin from 5 to 160 ng/mL. The lower limit of detection was 0.59 ng/mL. This rapid and selective avidin detection method was used in synthetic samples and egg products with recoveries of between 102.97 and 107.92%, thereby demonstrating the feasible and practical application of this assay.

  6. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering.

    PubMed

    He, Si; Wang, Xia; Xia, Runqiu; Jin, Weiqi; Liang, Jian'an

    2018-03-01

    A novel method to simulate the polarimetric infrared imaging of a synthetic sea surface with atmospheric Mie scattering effects is presented. The infrared emission, multiple reflections, and infrared polarization of the sea surface and the Mie scattering of aerosols are all included for the first time. At first, a new approach to retrieving the radiative characteristics of a wind-roughened sea surface is introduced. A two-scale method of sea surface realization and the inverse ray tracing of light transfer calculation are combined and executed simultaneously, decreasing the consumption of time and memory dramatically. Then the scattering process that the infrared light emits from the sea surface and propagates in the aerosol particles is simulated with a polarized light Monte Carlo model. Transformations of the polarization state of the light are calculated with the Mie theory. Finally, the polarimetric infrared images of the sea surface of different environmental conditions and detection parameters are generated based on the scattered light detected by the infrared imaging polarimeter. The results of simulation examples show that our polarimetric infrared imaging simulation can be applied to predict the infrared polarization characteristics of the sea surface, model the oceanic scene, and guide the detection in the oceanic environment.

  7. Research on the development of space target detecting system and three-dimensional reconstruction technology

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wei, Zhen; Song, Dawei; Sun, Wenfeng; Fan, Xiaoyan

    2016-11-01

    With the development of space technology, the number of spacecrafts and debris are increasing year by year. The demand for detecting and identification of spacecraft is growing strongly, which provides support to the cataloguing, crash warning and protection of aerospace vehicles. The majority of existing approaches for three-dimensional reconstruction is scattering centres correlation, which is based on the radar high resolution range profile (HRRP). This paper proposes a novel method to reconstruct the threedimensional scattering centre structure of target from a sequence of radar ISAR images, which mainly consists of three steps. First is the azimuth scaling of consecutive ISAR images based on fractional Fourier transform (FrFT). The later is the extraction of scattering centres and matching between adjacent ISAR images using grid method. Finally, according to the coordinate matrix of scattering centres, the three-dimensional scattering centre structure is reconstructed using improved factorization method. The three-dimensional structure is featured with stable and intuitive characteristic, which provides a new way to improve the identification probability and reduce the complexity of the model matching library. A satellite model is reconstructed using the proposed method from four consecutive ISAR images. The simulation results prove that the method has gotten a satisfied consistency and accuracy.

  8. Methodology for the passive detection and discrimination of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Shokhirev, Kirill N.; Konno, Daisei; Rossi, David C.; Richardson, Martin

    2013-05-01

    The standoff detection and discrimination of aerosolized biological and chemical agents has traditionally been addressed through LIDAR approaches, but sensor systems using these methods have yet to be deployed. We discuss the development and testing of an approach to detect these aerosols using the deployed base of passive infrared hyperspectral sensors used for chemical vapor detection. The detection of aerosols requires the inclusion of down welling sky and up welling ground radiation in the description of the radiative transfer process. The wavelength and size dependent ratio of absorption to scattering provides much of the discrimination capability. The approach to the detection of aerosols utilizes much of the same phenomenology employed in vapor detection; however, the sensor system must acquire information on non-line-of-sight sources of radiation contributing to the scattering process. We describe the general methodology developed to detect chemical or biological aerosols, including justifications for the simplifying assumptions that enable the development of a real-time sensor system. Mie scattering calculations, aerosol size distribution dependence, and the angular dependence of the scattering on the aerosol signature will be discussed. This methodology will then be applied to two test cases: the ground level release of a biological aerosol (BG) and a nonbiological confuser (kaolin clay) as well as the debris field resulting from the intercept of a cruise missile carrying a thickened VX warhead. A field measurement, conducted at the Utah Test and Training Range will be used to illustrate the issues associated with the use of the method.

  9. Coherent scattering noise reduction method with wavelength diversity detection for holographic data storage system

    NASA Astrophysics Data System (ADS)

    Nakamura, Yusuke; Hoshizawa, Taku; Takashima, Yuzuru

    2017-09-01

    A new method, wavelength diversity detection (WDD), for improving signal quality is proposed and its effectiveness is numerically confirmed. We consider that WDD is especially effective for high-capacity systems having low hologram diffraction efficiencies. In such systems, the signal quality is primarily limited by coherent scattering noise; thus, effective improvement of the signal quality under a scattering-limited system is of great interest. WDD utilizes a new degree of freedom, the spectrum width, and scattering by molecules to improve the signal quality of the system. We found that WDD improves the quality by counterbalancing the degradation of the quality due to Bragg mismatch. With WDD, a higher-scattering-coefficient medium can improve the quality. The result provides an interesting insight into the requirements for material characteristics, especially for a large-M/# material. In general, a larger-M/# material contains more molecules; thus, the system is subject to more scattering, which actually improves the quality with WDD. We propose a pathway for a future holographic data storage system (HDSS) using WDD, which can record a larger amount of data than a conventional HDSS.

  10. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficientmore » is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.« less

  11. A novel scattering switch-on detection technique for target-induced plasmon-coupling based sensing by single-particle optical anisotropy imaging.

    PubMed

    Peng, Lan; Cao, Xuan; Xiong, Bin; He, Yan; Yeung, Edward S

    2016-06-18

    We reported a novel scattering switch-on detection technique using flash-lamp polarization darkfield microscopy (FLPDM) for target-induced plasmon-coupling based sensing in homogeneous solution. With this method, we demonstrated sub-nM sensitivity for hydrogen sulfide (H2S) detection over a dynamic range of five orders of magnitude. This robust technique holds great promise for applications in toxic environmental pollutants and biological molecules.

  12. Small scatterers in the lower mantle observed at German broadband arrays

    USGS Publications Warehouse

    Thomas, C.; Weber, M.; Wicks, C.W.; Scherbaum, F.

    1999-01-01

    Seismograms of earthquakes from the South Pacific recorded at a German broadband array and network show precursors to PKPdf. These precursors mainly originate from off-path scattering of PKPab or a nearby PKPbc to P (for receiver-side scattering) or from scattering of P to PKPab or PKPbc on the PKPdf path (for source-side scattering). Standard array processing techniques based on plane wave approximations (such as vespagram or frequency-wavenumber analysis) are inadequate for investigating these precursors since scattered waves cannot be approximated as plane waves for arrays and networks larger than 300 x 300 km for short-period waves. We therefore develop a migration method to estimate the location of scatterers in the mantle, at the core-mantle boundary and at the top of the outer core. With our method we are able to find isolated scatterers at the source side and the receiver side, although the depth of the scatterer is not well constrained. However, from looking at the first possible arrival time of precursors at different depth and the region where scattering can take place (scattering volume), we believe that the location of the scatterers is in the lowermost mantle. Since we have detected scatterers in regions where ultralow-velocity zones have been discovered recently, we think that the precursor energy possibly originates from scattering at partial melt at the base of the mantle. Comparing results from broadband and band-pass-filtered data the detection of small-scale structure of the ultralow-velocity zones becomes possible. Copyright 1999 by the American Geophysical Union.

  13. Using late arriving photons for diffuse optical tomography of biological objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proskurin, S G

    2011-05-31

    The issues of detecting the inhomogeneities are studied aimed at mapping the distribution of absorption and scattering in soft tissues. A modification of the method of diffuse optical tomography is proposed for detecting directly and determining the region of spatial localisation of such absorbing and scattering inhomogeneities as a cyst, a hematoma, a tumour, as well as for measuring the degree of oxygenation or deoxygenation of blood, in which the late arriving photons that diffuse through the scattering object are used. (optical technologies in biophysics and medicine)

  14. The Effect of Sub-Aperture in DRIA Framework Applied on Multi-Aspect PolSAR Data

    NASA Astrophysics Data System (ADS)

    Xue, Feiteng; Yin, Qiang; Lin, Yun; Hong, Wen

    2016-08-01

    Multi-aspect SAR is a new remote sensing technology, achieves consecutive data in large look angle as platform moves. Multi- aspect observation brings higher resolution and SNR to SAR picture. Multi-aspect PolSAR data can increase the accuracy of target identify and classification because it contains the 3-D polarimetric scattering properties.DRIA(detecting-removing-incoherent-adding)framework is a multi-aspect PolSAR data processing method. In this method, the anisotropic and isotropic scattering is separated by maximum- likelihood ratio test. The anisotropic scattering is removed to gain a removal series. The isotropic scattering is incoherent added to gain a high resolution picture. The removal series describes the anisotropic scattering property and is used in features extraction and classification.This article focuses on the effect brought by difference of sub-aperture numbers in anisotropic scattering detection and removal. The more sub-apertures are, the less look angle is. Artificial target has anisotropic scattering because of Bragg resonances. The increase of sub-aperture number brings more accurate observation in azimuth though the quality of each single image may loss. The accuracy of classification in agricultural fields is affected by the anisotropic scattering brought by Bragg resonances. The size of the sub-aperture has a significant effect in the removal result of Bragg resonances.

  15. Method and apparatus for determining fat content of tissue

    DOEpatents

    Weber, Thomas M.; Spletzer, Barry L.; Bryan, Jon R.; Dickey, Fred M.; Shagam, Richard N.; Gooris, Luc

    2001-01-01

    A method and apparatus for determining characteristics of tissue is disclosed. The method comprises supplying optical energy to a tissue and detecting at a plurality of locations consequent energy scattered by the tissue. Analysis of the scattered energy as taught herein provides information concerning the properties of the tissue, specifically information related to the fat and lean content and thickness of the tissue. The apparatus comprises a light source adapted to deliver optical energy to a tissue. A plurality of detectors can be mounted at different positions relative to the source to detect energy scattered by the tissue. A signal processor as taught herein can determine characteristics of the tissue from the signals from the detectors and locations of the detectors, specifically information related to the fat and lean content and thickness of the tissue.

  16. Robust statistical reconstruction for charged particle tomography

    DOEpatents

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feye-Treimer, U., E-mail: feye-treimer@helmholtz-berlin.de; Treimer, W.

    Purpose: This theoretical work contains a detailed investigation of the potential and sensitivity of phase-based x-ray scattering for cancer detection in biopsies if cancer is in a very early stage of development. Methods: Cancer cells in their early stage of development differ from healthy ones mainly due to their faster growing cell nuclei and the enlargement of their densities. This growth is accompanied by an altered nucleus–plasma relation for the benefit of the cell nuclei, that changes the physical properties especially the index of refraction of the cell and the one of the cell nuclei. Interaction of radiation with mattermore » is known to be highly sensitive to small changes of the index of refraction of matter; therefore a detection of such changes of volume and density of cell nuclei by means of high angular resolved phase-based scattering of x rays might provide a technique to distinguish malignant cells from healthy ones ifthe cell–cell nucleus system is considered as a coherent phase shifting object. Then one can observe from a thin biopsy which represents a monolayer of cells (no multiple scattering) that phase-based x-ray scattering curves from healthy cells differ from those of cancer cells in their early stage of development. Results: Detailed calculations of x-ray scattering patterns from healthy and cancer cell nuclei yield graphs and numbers with which one can distinguish healthy cells from cancer ones, taking into account that both kinds of cells occur in a tissue within a range of size and density. One important result is the role and the influence of the (lateral) coherence width of the radiation on the scattering curves and the sensitivity of phase-based scattering for cancer detection. A major result is that a larger coherence width yields a larger sensitivity for cancer detection. Further import results are calculated limits for critical sizes and densities of cell nuclei in order to attribute the investigated tissue to be healthy or diseased. Conclusions: With this proposed method it should be in principle possible to detect cancer cells in apparently healthy tissues in biopsies and/or in samples of the far border region of abscised or excised tissues. Thus this method could support established methods in diagnostics of cancer-suspicious samples.« less

  18. Particle detection for patterned wafers of 100nm design rule by evanescent light illumination: analysis of evanescent light scattering using Finite-Difference Time-Domain (FDTD) method

    NASA Astrophysics Data System (ADS)

    Yoshioka, Toshie; Miyoshi, Takashi; Takaya, Yasuhiro

    2005-12-01

    To realize high productivity and reliability of the semiconductor, patterned wafers inspection technology to maintain high yield becomes essential in modern semiconductor manufacturing processes. As circuit feature is scaled below 100nm, the conventional imaging and light scattering methods are impossible to apply to the patterned wafers inspection technique, because of diffraction limit and lower S/N ratio. So, we propose a new particle detection method using annular evanescent light illumination. In this method, a converging annular light used as a light source is incident on a micro-hemispherical lens. When the converging angle is larger than critical angle, annular evanescent light is generated under the bottom surface of the hemispherical lens. Evanescent light is localized near by the bottom surface and decays exponentially away from the bottom surface. So, the evanescent light selectively illuminates the particles on the patterned wafer surface, because it can't illuminate the patterned wafer surface. The proposed method evaluates particles on a patterned wafer surface by detecting scattered evanescent light distribution from particles. To analyze the fundamental characteristics of the proposed method, the computer simulation was performed using FDTD method. The simulation results show that the proposed method is effective for detecting 100nm size particle on patterned wafer of 100nm lines and spaces, particularly under the condition that the evanescent light illumination with p-polarization and parallel incident to the line orientation. Finally, the experiment results suggest that 220nm size particle on patterned wafer of about 200nm lines and spaces can be detected.

  19. Proposal and verification numerical simulation for a microwave forward scattering technique at upper hybrid resonance for the measurement of electron gyroscale density fluctuations in the electron cyclotron frequency range in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Kawamori, E.; Igami, H.

    2017-11-01

    A diagnostic technique for detecting the wave numbers of electron density fluctuations at electron gyro-scales in an electron cyclotron frequency range is proposed, and the validity of the idea is checked by means of a particle-in-cell (PIC) numerical simulation. The technique is a modified version of the scattering technique invented by Novik et al. [Plasma Phys. Controlled Fusion 36, 357-381 (1994)] and Gusakov et al., [Plasma Phys. Controlled Fusion 41, 899-912 (1999)]. The novel method adopts forward scattering of injected extraordinary probe waves at the upper hybrid resonance layer instead of the backward-scattering adopted by the original method, enabling the measurement of the wave-numbers of the fine scale density fluctuations in the electron-cyclotron frequency band by means of phase measurement of the scattered waves. The verification numerical simulation with the PIC method shows that the technique has a potential to be applicable to the detection of electron gyro-scale fluctuations in laboratory plasmas if the upper-hybrid resonance layer is accessible to the probe wave. The technique is a suitable means to detect electron Bernstein waves excited via linear mode conversion from electromagnetic waves in torus plasma experiments. Through the numerical simulations, some problems that remain to be resolved are revealed, which include the influence of nonlinear processes such as the parametric decay instability of the probe wave in the scattering process, and so on.

  20. Resonance scattering spectra of micrococcus lysodeikticus and its application to assay of lysozyme activity.

    PubMed

    Jiang, Zhi-Liang; Huang, Guo-Xia

    2007-02-01

    Several methods, including turbidimetric and colorimetric methods, have been reported for the detection of lysozyme activity. However, there is no report about the resonance scattering spectral (RSS) assay, which is based on the catalytic effect of lysozyme on the hydrolysis of micrococcus lysodeikticus (ML) and its resonance scattering effect. ML has 5 resonance scattering peaks at 360 400, 420, 470, and 520 nm with the strongest one at 470 nm. The concentration of ML in the range of 2.0x10(6)-9.3x10(8) cells/ml is proportional to the RS intensity at 470 nm (I(470 nm)). A new catalytic RSS method has been proposed for 0.24-40.0 U/ml (or 0.012-2.0 mug/ml) lysozyme activity, with a detection limit (3sigma) of 0.014 U/ml (or 0.0007 microg/ml). Saliva samples were assayed by this method, and it is in agreement with the results of turbidimetric method. The slope, intercept and the correlation coefficient of the regression analysis of the 2 assays were 0.9665, -87.50, and 0.9973, respectively. The assay has high sensitivity and simplicity.

  1. Implementation of a custom time-domain firmware trigger for RADAR-based cosmic ray detection

    NASA Astrophysics Data System (ADS)

    Prohira, S.; Besson, D.; Kunwar, S.; Ratzlaff, K.; Young, R.

    2018-05-01

    Interest in Radio-based detection schemes for ultra-high energy cosmic rays (UHECR) has surged in recent years, owing to the potentially very low cost/detection ratio. The method of radio-frequency (RF) scatter has been proposed as potentially the most economical detection technology. Though the first dedicated experiment to employ this method, the Telescope Array RADAR experiment (TARA) reported no signal, efforts to develop more robust and sensitive trigger techniques continue. This paper details the development of a time-domain firmware trigger that exploits characteristics of the expected scattered signal from an UHECR extensive-air shower (EAS). The improved sensitivity of this trigger is discussed, as well as implementation in two separate field deployments from 2016 to 2017.

  2. Fast epi-detected broadband multiplex CARS and SHG imaging of mouse skull cells

    PubMed Central

    Capitaine, Erwan; Moussa, Nawel Ould; Louot, Christophe; Bardet, Sylvia M.; Kano, Hideaki; Duponchel, Ludovic; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2017-01-01

    We present a bimodal imaging system able to obtain epi-detected mutiplex coherent anti-Stokes Raman scattering (M-CARS) and second harmonic generation (SHG) signals coming from biological samples. We studied a fragment of mouse parietal bone and could detect broadband anti-Stokes and SHG responses originating from bone cells and collagen respectively. In addition we compared two post-processing methods to retrieve the imaginary part of the third-order nonlinear susceptibility related to the spontaneous Raman scattering. PMID:29359100

  3. Detectability limit and uncertainty considerations for laser induced fluorescence spectroscopy in flames

    NASA Technical Reports Server (NTRS)

    Daily, J. W.

    1978-01-01

    Laser induced fluorescence spectroscopy of flames is discussed, and derived uncertainty relations are used to calculate detectability limits due to statistical errors. Interferences due to Rayleigh scattering from molecules as well as Mie scattering and incandescence from particles have been examined for their effect on detectability limits. Fluorescence trapping is studied, and some methods for reducing the effect are considered. Fluorescence trapping places an upper limit on the number density of the fluorescing species that can be measured without signal loss.

  4. Interferometric detection of nanoparticles

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, Karen

    Interferometric surfaces enhance light scattering from nanoparticles through constructive interference of partial scattered waves. By placing the nanoparticles on interferometric surfaces tuned to a special surface phase interferometric condition, the particles are detectable in the dilute limit through interferometric image contrast in a heterodyne light scattering configuration, or through diffraction in a homodyne scattering configuration. The interferometric enhancement has applications for imaging and diffractive biosensors. We present a modified model based on Double Interaction (DI) to explore bead-based detection mechanisms using imaging, scanning and diffraction. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI). Double-resonant enhancement of light scattering leads to high-contrast detection of 100 nm radius gold nanoparticles on an interferometric surface. The double-resonance condition is achieved when resonance (or anti-resonance) from an asymmetric Fabry-Perot substrate coincides with the Mie resonance of the gold nanoparticle. The double-resonance condition is observed experimentally using molecular interferometric imaging (MI2). An invisibility condition is identified for which the gold nanoparticles are optically cloaked by the interferometric surface.

  5. Estimation of effective refractive index of birefringent particles using a combination of the immersion liquid method and light scattering.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik

    2008-04-01

    A method to detect the effective refractive index and concentration of birefringent pigments is suggested. The method is based on the utilization of the immersion liquid method and a multifunction spectrophotometer for the measurement of back scattered light. The method has applications in the measurement of the effective refractive index of pigments that are used, e.g., in the paper industry to improve the opacity of paper products.

  6. High performance liquid chromatography coupled with resonance Rayleigh scattering for the detection of three fluoroquinolones and mechanism study

    NASA Astrophysics Data System (ADS)

    Zhou, Mingqiong; Peng, Jingdong; He, Rongxing; He, Yuting; Zhang, Jing; Li, Aiping

    2015-02-01

    A reliable and versatile high performance liquid chromatography coupled with resonance Rayleigh scattering method was established for the determination of three fluoroquinolones, including levofloxacin, norfloxacin and enrofloxacin in water sample and human urine sample. In pH 4.4-4.6 Britton-Robinson buffer medium, the fluoroquinolones separated by high performance liquid chromatography could react with erythrosine to form 1:1 ion-association complexes, which could make contributions to the great enhancement of RRS. The resonance Rayleigh scattering signal was recorded at λex = λem = 330 nm. The resonance Rayleigh scattering spectral characteristics of the drugs and the experimental conditions such as pH, detection wavelength, erythrosine concentration, flow rate, the length of reaction tube were studied. Quantum chemistry calculation, Fourier transform infrared spectroscopy and absorption spectroscopy were used to discuss the reaction mechanism. The recoveries of samples added standard ranged from 97.53% to 102.00%, and the relative standard deviation was below 4.64%. The limit of detection (S/N = 3) of 0.05-0.12 μg mL-1 was reached, and the linear regression coefficients were all above 0.999. The proposed method was proved as a simple, low cost and high sensitivity method.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Mou, Xuanqin; Nishikawa, Robert M.

    Purpose: Small calcifications are often the earliest and the main indicator of breast cancer. Dual-energy digital mammography (DEDM) has been considered as a promising technique to improve the detectability of calcifications since it can be used to suppress the contrast between adipose and glandular tissues of the breast. X-ray scatter leads to erroneous calculations of the DEDM image. Although the pinhole-array interpolation method can estimate scattered radiations, it requires extra exposures to measure the scatter and apply the correction. The purpose of this work is to design an algorithmic method for scatter correction in DEDM without extra exposures.Methods: In thismore » paper, a scatter correction method for DEDM was developed based on the knowledge that scattered radiation has small spatial variation and that the majority of pixels in a mammogram are noncalcification pixels. The scatter fraction was estimated in the DEDM calculation and the measured scatter fraction was used to remove scatter from the image. The scatter correction method was implemented on a commercial full-field digital mammography system with breast tissue equivalent phantom and calcification phantom. The authors also implemented the pinhole-array interpolation scatter correction method on the system. Phantom results for both methods are presented and discussed. The authors compared the background DE calcification signals and the contrast-to-noise ratio (CNR) of calcifications in the three DE calcification images: image without scatter correction, image with scatter correction using pinhole-array interpolation method, and image with scatter correction using the authors' algorithmic method.Results: The authors' results show that the resultant background DE calcification signal can be reduced. The root-mean-square of background DE calcification signal of 1962 μm with scatter-uncorrected data was reduced to 194 μm after scatter correction using the authors' algorithmic method. The range of background DE calcification signals using scatter-uncorrected data was reduced by 58% with scatter-corrected data by algorithmic method. With the scatter-correction algorithm and denoising, the minimum visible calcification size can be reduced from 380 to 280 μm.Conclusions: When applying the proposed algorithmic scatter correction to images, the resultant background DE calcification signals can be reduced and the CNR of calcifications can be improved. This method has similar or even better performance than pinhole-array interpolation method in scatter correction for DEDM; moreover, this method is convenient and requires no extra exposure to the patient. Although the proposed scatter correction method is effective, it is validated by a 5-cm-thick phantom with calcifications and homogeneous background. The method should be tested on structured backgrounds to more accurately gauge effectiveness.« less

  8. Compton scatter tomography in TOF-PET

    NASA Astrophysics Data System (ADS)

    Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis

    2017-10-01

    Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.

  9. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  10. Sentinel lymph node detection by an optical method using scattered photons

    PubMed Central

    Tellier, Franklin; Ravelo, Rasata; Simon, Hervé; Chabrier, Renée; Steibel, Jérôme; Poulet, Patrick

    2010-01-01

    We present a new near infrared optical probe for the sentinel lymph node detection, based on the recording of scattered photons. A two wavelengths setup was developed to improve the detection threshold of an injected dye: the Patent Blue V dye. The method used consists in modulating each laser diode at a given frequency. A Fast Fourier Transform of the recorded signal separates both components. The signal amplitudes are used to compute relative Patent Blue V concentration. Results on the probe using phantoms model and small animal experimentation exhibit a sensitivity threshold of 3.2 µmol/L, which is thirty fold better than the eye visible threshold. PMID:21258517

  11. A simple and selective resonance Rayleigh scattering-energy transfer spectral method for determination of trace neomycin sulfate using Cu2O particle as probe

    NASA Astrophysics Data System (ADS)

    Ouyang, Huixiang; Liang, Aihui; Jiang, Zhiliang

    2018-02-01

    The stable Cu2O nanocubic (Cu2ONC) sol was prepared, based on graphene oxide (GO) catalysis of glucose-Fehling's reagent reaction, and its absorption and resonance Rayleigh scattering (RRS) spectra, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were examined. Using the as-prepared Cu2ONC as RRS probe, and coupling with the neomycin sulfate (NEO) complex reaction, a new, simple, sensitive and selective RRS-energy transfer (RRS-ET) method was established for detection of neomycin sulfate, with a linear range of 1.4-112 μM and a detection limit of 0.4 μM. The method has been applied to the detection of neomycin sulfate in samples with satisfactory results.

  12. A new method for spatial structure detection of complex inner cavities based on 3D γ-photon imaging

    NASA Astrophysics Data System (ADS)

    Xiao, Hui; Zhao, Min; Liu, Jiantang; Liu, Jiao; Chen, Hao

    2018-05-01

    This paper presents a new three-dimensional (3D) imaging method for detecting the spatial structure of a complex inner cavity based on positron annihilation and γ-photon detection. This method first marks carrier solution by a certain radionuclide and injects it into the inner cavity where positrons are generated. Subsequently, γ-photons are released from positron annihilation, and the γ-photon detector ring is used for recording the γ-photons. Finally, the two-dimensional (2D) image slices of the inner cavity are constructed by the ordered-subset expectation maximization scheme and the 2D image slices are merged to the 3D image of the inner cavity. To eliminate the artifact in the reconstructed image due to the scattered γ-photons, a novel angle-traversal model is proposed for γ-photon single-scattering correction, in which the path of the single scattered γ-photon is analyzed from a spatial geometry perspective. Two experiments are conducted to verify the effectiveness of the proposed correction model and the advantage of the proposed testing method in detecting the spatial structure of the inner cavity, including the distribution of gas-liquid multi-phase mixture inside the inner cavity. The above two experiments indicate the potential of the proposed method as a new tool for accurately delineating the inner structures of industrial complex parts.

  13. Rapid and sensitive detection of synthetic cannabinoids AMB-FUBINACA and α-PVP using surface enhanced Raman scattering (SERS)

    NASA Astrophysics Data System (ADS)

    Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.

    2018-04-01

    The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.

  14. Multiphoton Scattering Tomography with Coherent States.

    PubMed

    Ramos, Tomás; García-Ripoll, Juan José

    2017-10-13

    In this work we develop an experimental procedure to interrogate the single- and multiphoton scattering matrices of an unknown quantum system interacting with propagating photons. Our proposal requires coherent state laser or microwave inputs and homodyne detection at the scatterer's output, and provides simultaneous information about multiple-elastic and inelastic-segments of the scattering matrix. The method is resilient to detector noise and its errors can be made arbitrarily small by combining experiments at various laser powers. Finally, we show that the tomography of scattering has to be performed using pulsed lasers to efficiently gather information about the nonlinear processes in the scatterer.

  15. Research on characteristics of forward scattering light based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Jin, Wei-qi

    2008-03-01

    In ocean inspection, laser system has the advantages of high precision, high efficiency and being enacted on the temperature or salinity of seawater. It has been developed greatly in recent years. But it is not yet a mature inspection technique because of the complicacy of oceanic channel and water-scattering. There are many problems to be resolved. In this paper, the work principle and of general developing situation of ocean lidar techniques are introduced first. The author points out that the intense scattering and absorbing acting on light by water is the bottleneck to limit the development of ocean lidar. The Monet Carlo method is adopted finally to be a basal way of study in this paper after discussing several method of studying the light transmitting in seawater. Based on the theory of photon transmitted in the seawater and the particularity of underwater target detecting, we have studied the characters of laser scattering on underwater target surface and spatial and temporal characters of forward scattering. Starting from the particularity of underwater target detecting, a new model to describe the characters of laser scattering is presented. Based on this model, we developed the fast arithmetic, which enhanced the computation speed greatly and the precision was also assured. It made detecting real-time realizable. Basing on the Monte Carlo simulation and starting from the theory of photon transmitted in the seawater, we studied how the parameters of water quality and other systemic parameters affect the light forward scattering through seawater at spatial and temporal region and provided the theoretical sustentation of enhancing the SNR and operational distance.

  16. Application of time dependent Green's function method to scattering of elastic waves in anisotropic solids

    NASA Astrophysics Data System (ADS)

    Tewary, Vinod K.; Fortunko, Christopher M.

    The present, time-dependent 3D Green's function method resembles that used to study the propagation of elastic waves in a general, anisotropic half-space in the lattice dynamics of crystals. The method is used to calculate the scattering amplitude of elastic waves from a discontinuity in the half-space; exact results are obtained for 3D pulse propagation in a general, anisotropic half-space that contains either an interior point or a planar scatterer. The results thus obtained are applicable in the design of ultrasonic scattering experiments, especially as an aid in the definition of the spatial and time-domain transducer responses that can maximize detection reliability for specific categories of flaws in highly anisotropic materials.

  17. Determination of thermoelastic material properties by differential heterodyne detection of impulsive stimulated thermal scattering

    PubMed Central

    Verstraeten, B.; Sermeus, J.; Salenbien, R.; Fivez, J.; Shkerdin, G.; Glorieux, C.

    2015-01-01

    The underlying working principle of detecting impulsive stimulated scattering signals in a differential configuration of heterodyne diffraction detection is unraveled by involving optical scattering theory. The feasibility of the method for the thermoelastic characterization of coating-substrate systems is demonstrated on the basis of simulated data containing typical levels of noise. Besides the classical analysis of the photoacoustic part of the signals, which involves fitting surface acoustic wave dispersion curves, the photothermal part of the signals is analyzed by introducing thermal wave dispersion curves to represent and interpret their grating wavelength dependence. The intrinsic possibilities and limitations of both inverse problems are quantified by making use of least and most squares analysis. PMID:26236643

  18. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations.

    PubMed

    Correia, Manuel; Loeschner, Katrin

    2018-02-06

    We tested the suitability of asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) for detection of nanoplastics in fish. A homogenized fish sample was spiked with 100 nm polystyrene nanoparticles (PSNPs) (1.3 mg/g fish). Two sample preparation strategies were tested: acid digestion and enzymatic digestion with proteinase K. Both procedures were found suitable for degradation of the organic matrix. However, acid digestion resulted in large PSNPs aggregates/agglomerates (> 1 μm). The presence of large particulates was not observed after enzymatic digestion, and consequently it was chosen as a sample preparation method. The results demonstrated that it was possible to use AF4 for separating the PSNPs from the digested fish and to determine their size by MALS. The PSNPs could be easily detected by following their light scattering (LS) signal with a limit of detection of 52 μg/g fish. The AF4-MALS method could also be exploited for another type of nanoplastics in solution, namely polyethylene (PE). However, it was not possible to detect the PE particles in fish, due to the presence of an elevated LS background. Our results demonstrate that an analytical method developed for a certain type of nanoplastics may not be directly applicable to other types of nanoplastics and may require further adjustment. This work describes for the first time the detection of nanoplastics in a food matrix by AF4-MALS. Despite the current limitations, this is a promising methodology for detecting nanoplastics in food and in experimental studies (e.g., toxicity tests, uptake studies). Graphical abstract Basic concept for the detection of nanoplastics in fish by asymmetric flow field-flow fractionation coupled to multi-angle light scattering.

  19. A novel approach to simulate chest wall micro-motion for bio-radar life detection purpose

    NASA Astrophysics Data System (ADS)

    An, Qiang; Li, Zhao; Liang, Fulai; Chen, Fuming; Wang, Jianqi

    2016-10-01

    Volunteers are often recruited to serve as the detection targets during the research process of bio-radar life detection technology, in which the experiment results are highly susceptible to the physical status of different individuals (shape, posture, etc.). In order to objectively evaluate the radar system performance and life detection algorithms, a standard detection target is urgently needed. The paper first proposed a parameter quantitatively controllable system to simulate the chest wall micro-motion caused mainly by breathing and heart beating. Then, the paper continued to analyze the material and size selection of the scattering body mounted on the simulation system from the perspective of back scattering energy. The computational electromagnetic method was employed to determine the exact scattering body. Finally, on-site experiments were carried out to verify the reliability of the simulation platform utilizing an IR UWB bioradar. Experimental result shows that the proposed system can simulate a real human target from three aspects: respiration frequency, amplitude and body surface scattering energy. Thus, it can be utilized as a substitute for a human target in radar based non-contact life detection research in various scenarios.

  20. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device.

    PubMed

    Li, Dan; Lv, Di Y; Zhu, Qing X; Li, Hao; Chen, Hui; Wu, Mian M; Chai, Yi F; Lu, Feng

    2017-06-01

    Methods for the on-site analysis of food contaminants are in high demand. Although portable Raman spectroscopy is commonly used to test food on-site, it can be challenge to achieve this goal with rapid detection and inexpensive substrate. In this study, we detected trace food contaminants in samples of whole milk powder using the methods that combined chromatography with surface-enhanced Raman scattering detection (SERS). We developed a simple and efficient technique to fabricate the paper with chitosan-modified silver nanoparticles as a SERS-active substrate. The soaking time of paper and the concentration of chitosan solution were optimized for chromatographic separation and SERS detection. We then studied the separation properties for real applications including complex sample matrices, and detected melamine at 1mg/L, dicyandiamide at 100mg/L and sodium sulfocyanate at 10mg/L in whole milk powder. As such, our methods have great potential for field-based detection of milk contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Detection of diluted contaminants on chicken carcasses using a two-dimensional scatter plot based on a two-dimensional hyperspectral correlation spectrum.

    PubMed

    Wu, Wei; Chen, Gui-Yun; Wu, Ming-Qing; Yu, Zhen-Wei; Chen, Kun-Jie

    2017-03-20

    A two-dimensional (2D) scatter plot method based on the 2D hyperspectral correlation spectrum is proposed to detect diluted blood, bile, and feces from the cecum and duodenum on chicken carcasses. First, from the collected hyperspectral data, a set of uncontaminated regions of interest (ROIs) and four sets of contaminated ROIs were selected, whose average spectra were treated as the original spectrum and influenced spectra, respectively. Then, the difference spectra were obtained and used to conduct correlation analysis, from which the 2D hyperspectral correlation spectrum was constructed using the analogy method of 2D IR correlation spectroscopy. Two maximum auto-peaks and a pair of cross peaks appeared at 656 and 474 nm. Therefore, 656 and 474 nm were selected as the characteristic bands because they were most sensitive to the spectral change induced by the contaminants. The 2D scatter plots of the contaminants, clean skin, and background in the 474- and 656-nm space were used to distinguish the contaminants from the clean skin and background. The threshold values of the 474- and 656-nm bands were determined by receiver operating characteristic (ROC) analysis. According to the ROC results, a pixel whose relative reflectance at 656 nm was greater than 0.5 and relative reflectance at 474 nm was lower than 0.3 was judged as a contaminated pixel. A region with more than 50 pixels identified was marked in the detection graph. This detection method achieved a recognition rate of up to 95.03% at the region level and 31.84% at the pixel level. The false-positive rate was only 0.82% at the pixel level. The results of this study confirm that the 2D scatter plot method based on the 2D hyperspectral correlation spectrum is an effective method for detecting diluted contaminants on chicken carcasses.

  2. First Order Statistics of Speckle around a Scatterer Volume Density Edge and Edge Detection in Ultrasound Images.

    NASA Astrophysics Data System (ADS)

    Li, Yue

    1990-01-01

    Ultrasonic imaging plays an important role in medical imaging. But the images exhibit a granular structure, commonly known as speckle. The speckle tends to mask the presence of low-contrast lesions and reduces the ability of a human observer to resolve fine details. Our interest in this research is to examine the problem of edge detection and come up with methods for improving the visualization of organ boundaries and tissue inhomogeneity edges. An edge in an image can be formed either by acoustic impedance change or by scatterer volume density change (or both). The echo produced from these two kinds of edges has different properties. In this work, it has been proved that the echo from a scatterer volume density edge is the Hilbert transform of the echo from a rough impedance boundary (except for a constant) under certain conditions. This result can be used for choosing the correct signal to transmit to optimize the performance of edge detectors and characterizing an edge. The signal to noise ratio of the echo produced by a scatterer volume density edge is also obtained. It is found that: (1) By transmitting a signal with high bandwidth ratio and low center frequency, one can obtain a higher signal to noise ratio. (2) For large area edges, the farther the transducer is from the edge, the larger is the signal to noise ratio. But for small area edges, the nearer the transducer is to the edge, the larger is the signal to noise ratio. These results enable us to maximize the signal to noise ratio by adjusting these parameters. (3) The signal to noise ratio is not only related to the ratio of scatterer volume densities at the edge, but also related to the absolute value of scatterer volume densities. Some of these results have been proved through simulation and experiment. Different edge detection methods have been used to detect simulated scatterer volume density edges to compare their performance. A so-called interlaced array method has been developed for speckle reduction in the images formed by synthetic aperture focussing technique, and experiments have been done to evaluate its performance.

  3. A novel method for resonant inelastic soft X-ray scattering via photoelectron spectroscopy detection

    DOE PAGES

    Dakovski, Georgi L.; Lin, Ming-Fu; Damiani, Daniel S.; ...

    2017-10-05

    A method for measuring resonant inelastic X-ray scattering based on the conversion of X-ray photons into photoelectrons is presented in this paper. The setup is compact, relies on commercially available detectors, and offers significant flexibility. Finally, this method is demonstrated at the Linac Coherent Light Source with ~0.5 eV resolution at the cobalt L 3-edge, with signal rates comparable with traditional grating spectrometers.

  4. Microwave studies of weak localization and antilocalization in epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drabińska, Aneta; Kamińska, Maria; Wołoś, Agnieszka

    2013-12-04

    A microwave detection method was applied to study weak localization and antilocalization in epitaxial graphene sheets grown on both polarities of SiC substrates. Both coherence and scattering length values were obtained. The scattering lengths were found to be smaller for graphene grown on C-face of SiC. The decoherence rate was found to depend linearly on temperature, showing the electron-electron scattering mechanism.

  5. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)

    2009-01-01

    A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.

  6. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Tang, Shoou-Yu (Inventor)

    2011-01-01

    A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.

  7. Visual and light scattering spectrometric method for the detection of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Liang, Lijiao; Zhen, Shujun; Huang, Chengzhi

    2017-02-01

    A highly selective method was presented for colorimetric determination of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles (UTP-Au NPs) in this paper. Specific hydrogen-bonding interaction between uracil base (U) and melamine resulted in the aggregation of AuNPs, displaying variations of localized surface plasmon resonance (LSPR) features such as color change from red to blue and enhanced localized surface plasmon resonance light scattering (LSPR-LS) signals. Accordingly, the concentration of melamine could be quantified based on naked eye or a spectrometric method. This method was simple, inexpensive, environmental friendly and highly selective, which has been successfully used for the detection of melamine in pretreated liquid milk products with high recoveries.

  8. Blood cell counting and classification by nonflowing laser light scattering method

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Zhang, Zhenxi; Yang, Xinhui; Jiang, Dazong; Yeo, Joon Hock

    1999-11-01

    A new non-flowing laser light scattering method for counting and classifying blood cells is presented. A linear charge- coupled device with 1024 elements is used to detect the scattered light intensity distribution of the blood cells. A pinhole plate is combined with the CCD to compete the focusing of the measurement system. An isotropic sphere is used to simulate the blood cell. Mie theory is used to describe the scattering of blood cells. In order to inverse the size distribution of blood cells from their scattered light intensity distribution, Powell method combined with precision punishment method is used as a dependent model method for measurement red blood cells and blood plates. Non-negative constraint least square method combined with Powell method and precision punishment method is used as an independent model for measuring white blood cells. The size distributions of white blood cells and red blood cells, and the mean diameter of red blood cells are measured by this method. White blood cells can be divided into three classes: lymphocytes, middle-sized cells and neutrocytes according to their sizes. And the number of blood cells in unit volume can also be measured by the linear dependence of blood cells concentration on scattered light intensity.

  9. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    PubMed Central

    Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin

    2017-01-01

    A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively. PMID:28335508

  10. Simple Approach for the Rapid Detection of Alternariol in Pear Fruit by Surface-Enhanced Raman Scattering with Pyridine-Modified Silver Nanoparticles.

    PubMed

    Pan, Ting-Tiao; Sun, Da-Wen; Pu, Hongbin; Wei, Qingyi

    2018-03-07

    A simple method based on surface-enhanced Raman scattering (SERS) was developed for the rapid determination of alternariol (AOH) in pear fruits using an easily prepared silver-nanoparticle (AgNP) substrate. The AgNP substrate was modified by pyridine to circumvent the weak affinity of the AOH molecules to the silver surface and to improve the sensitivity of detection. Quantitative analysis was performed in AOH solutions at concentrations ranging from 3.16 to 316.0 μg/L, and the limit of detection was 1.30 μg/L. The novel method was also applied to the detection of AOH residues in pear fruits purchased from the market and in pear fruits that were artificially inoculated with Alternaria alternata. AOH was not found in any of the fresh fruit, whereas it resided in the rotten and inoculated fruits. Finally, the SERS method was cross validated against HPLC. It was revealed that the SERS method has great potential utility in the rapid detection of AOH in pear fruits and other agricultural products.

  11. Ground settlement monitoring from temporarily persistent scatterers between two SAR acquisitions

    USGS Publications Warehouse

    Lei, Z.; Xiaoli, D.; Guangcai, F.; Zhong, L.

    2009-01-01

    We present an improved differential interferometric synthetic aperture radar (DInSAR) analysis method that measures motions of scatterers whose phases are stable between two SAR acquisitions. Such scatterers are referred to as temporarily persistent scatterers (TPS) for simplicity. Unlike the persistent scatterer InSAR (PS-InSAR) method that relies on a time-series of interferograms, the new algorithm needs only one interferogram. TPS are identified based on pixel offsets between two SAR images, and are specially coregistered based on their estimated offsets instead of a global polynomial for the whole image. Phase unwrapping is carried out based on an algorithm for sparse data points. The method is successfully applied to measure the settlement in the Hong Kong Airport area. The buildings surrounded by vegetation were successfully selected as TPS and the tiny deformation signal over the area was detected. ??2009 IEEE.

  12. Dust-concentration measurement based on Mie scattering of a laser beam

    PubMed Central

    Yu, Xiaoyu; Shi, Yunbo; Wang, Tian; Sun, Xu

    2017-01-01

    To realize automatic measurement of the concentration of dust particles in the air, a theory for dust concentration measurement was developed, and a system was designed to implement the dust concentration measurement method based on laser scattering. In the study, the principle of dust concentration detection using laser scattering is studied, and the detection basis of Mie scattering theory is determined. Through simulation, the influence of the incident laser wavelength, dust particle diameter, and refractive index of dust particles on the scattered light intensity distribution are obtained for determining the scattered light intensity curves of single suspended dust particles under different characteristic parameters. A genetic algorithm was used to study the inverse particle size distribution, and the reliability of the measurement system design is proven theoretically. The dust concentration detection system, which includes a laser system, computer circuitry, air flow system, and control system, was then implemented according to the parameters obtained from the theoretical analysis. The performance of the designed system was evaluated. Experimental results show that the system performance was stable and reliable, resulting in high-precision automatic dust concentration measurement with strong anti-interference ability. PMID:28767662

  13. Condensation nucleation light scattering detection with ion chromatography for direct determination of glyphosate and its metabolite in water.

    PubMed

    You, Jing; Koropchak, John A

    2003-03-14

    An ion chromatography-condensation nucleation light scattering detection (IC-CNLSD) method was successfully used to directly analyze glyphosate, a polar pesticide, and aminomethylphosaphonic acid, the major metabolite of glyphosate, in water without need of pre-treatment or derivatization. CNLSD gave a LOD of 53 ng/ml for glyphosate, which is much lower than the maximum contaminant level of 700 ng/ml for drinking water issued by the US Environmental Protection Agency. Spiked analytes in different matrixes were tested. A diluted commercial herbicide containing glyphosate was also evaluated. Compared to other reported methods, the IC-CNLSD method has no need of sample derivatization, pre-concentration, and mobile phase conductivity suppression. It is simple, fast and inexpensive. IC-CNLSD is an ideal direct detection technique for such pesticides without chromophores or fluorophores.

  14. Study of coherent reflectometer for imaging internal structures of highly scattering media

    NASA Astrophysics Data System (ADS)

    Poupardin, Mathieu; Dolfi, Agnes

    1996-01-01

    Optical reflectometers are potentially useful tools for imaging internal structures of turbid media, particularly of biological media. To get a point by point image, an active imaging system has to distinguish light scattered from a sample volume and light scattered by other locations in the media. Operating this discrimination of light with reflectometers based on coherence can be realized in two ways: assuring a geometric selection or a temporal selection. In this paper we present both methods, showing in each case the influence of the different parameters on the size of the sample volume under the assumption of single scattering. We also study the influence on the detection efficiency of the coherence loss of the incident light resulting from multiple scattering. We adapt a model, first developed for atmospheric lidar in turbulent atmosphere, to get an analytical expression of this detection efficiency in the function of the optical coefficients of the media.

  15. Detection of Objects Hidden in Highly Scattering Media Using Time-Gated Imaging Methods

    NASA Technical Reports Server (NTRS)

    Galland, Pierre A.; Wang, L.; Liang, X.; Ho, P. P.; Alfano, R. R.

    2000-01-01

    Non-intrusive and non-invasive optical imaging techniques has generated great interest among researchers for their potential applications to biological study, device characterization, surface defect detection, and jet fuel dynamics. Non-linear optical parametric amplification gate (NLOPG) has been used to detect back-scattered images of objects hidden in diluted Intralipid solutions. To directly detect objects hidden in highly scattering media, the diffusive component of light needs to be sorted out from early arrived ballistic and snake photons. In an optical imaging system, images are collected in transmission or back-scattered geometry. The early arrival photons in the transmission approach, always carry the direct information of the hidden object embedded in the turbid medium. In the back-scattered approach, the result is not so forth coming. In the presence of a scattering host, the first arrival photons in back-scattered approach will be directly photons from the host material. In the presentation, NLOPG was applied to acquire time resolved back-scattered images under the phase matching condition. A time-gated amplified signal was obtained through this NLOPG process. The system's gain was approximately 100 times. The time-gate was achieved through phase matching condition where only coherent photons retain their phase. As a result, the diffusive photons, which were the primary contributor to the background, were removed. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.

  16. Characterization of target camouflage structures by means of different microwave imaging procedures

    NASA Astrophysics Data System (ADS)

    Inaebnit, Christian; John, Marc-Andre; Aulenbacher, Uwe; Akyol, Zeynrep; Hueppi, Rudolf; Wellig, Peter

    2009-05-01

    This paper presents two different test methods for camouflage layers (CL) like nets or foam based structures. The effectiveness of CL in preventing radar detection and recognition of targets depends on the interaction of CL properties as absorption and diffuse scattering with target specific scattering properties. This fact is taken into account by representing target backscattering as interference of different types of GTD contributions and evaluating the impact of CL onto these individual contributions separately. The first method investigates how a CL under test alters these individual scattering contributions and which "new" contributions are produced by "self-scattering" at the CL. This information is gained by applying ISAR imaging technique to a test structure with different types of scattering contributions. The second test method aims for separating the effects of absorption and "diffuse scattering" in case of a planar metallic plate covered by CL. For this, the equivalent source distribution in the plane of the CL is reconstructed from bistatic scattering data. Both test methods were verified by experimental results obtained from X-band measurements at different CL and proved to be well suited for an application specific evaluation of camouflage structures from different manufacturers.

  17. Holographic method for site-resolved detection of a 2D array of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes

    2016-08-01

    We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.

  18. Review and New Results of Local Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2011-10-01

    We briefly review various methods used in local helioseismology, and discuss our recent results on the acoustic waves scattered by sunspots. We use a deconvolution method to obtain the 2-D wavefunction of the scattered wave from the cross correlations between the incident wave and the signal at various points on the surface. The wavefunctions of scattered waves associated with various incident waves could be used to probe the sunspot. The interference fringes between the scattered wave and the incident wave are detected because the coherent time of the incident wave is of the order of wave period. These interference fringes play the same role as a hologram in optics. We demonstrate that these interference fringes (hologram) can be used to reconstruct the 2-D scattered wavefield of the sunspot.

  19. The threshold sensitivity of the molecular condensation nuclei detector

    NASA Astrophysics Data System (ADS)

    Kuptsov, Vladimir D.; Katelevsky, Vadim Y.; Valyukhov, Vladimir P.

    2015-05-01

    Molecular condensation nuclei (MCN) method is used in production engineering and process monitoring and relates to optical metrology methods of measuring the concentrations of various contaminants in the environment. Ultra high sensitivity of MCN method to a class of substances is determined by measuring the optical scattering aerosol particles, at the centers of which are located the detectable impurities molecules. This article investigates the influence of MCN manifestations coefficient (ratio of the concentration of aerosol particles to the concentration of molecules detectable impurities) on the sensitivity of the MCN detector. The MCN method is based on the application of various physicochemical processes to the flow of a gas containing impurities. As a result of these processes aerosol particle that are about 106 times larger than the original molecule of the impurity are produced. The ability of the aerosol particle to scatter incident light also increases ~1014 ÷1016 times compared with the original molecule and the aerosol particle with the molecule of the impurity in the center is easily detected by light scattering inside a photometer. By measuring of the light scattering intensity is determined concentration of chemical impurities in the air. An application nephelometric optical metrology scheme of light scattering by aerosol particles ensures stable operation of reliable and flexible measuring systems. Light scattering by aerosol particles is calculated on the basis of the Mie's theory as aerosol particle sizes comparable to the wavelength of the optical radiation. The experimental results are shown for detectable impurities of metal carbonyls. Gas analyzers based on the MCN method find application in industries with the possibility of highly toxic emissions into the atmosphere (carbonyl technology of metal coatings and products, destruction of chemical weapons, etc.), during storage and transportation of toxic substances, as well as in the inspection of large-scale objects. There are some perspective areas of use MCN detector: prevention of illegal use of dangerous substances, revealing of their origin and leakage paths by means of marking with special non-radioactive chemical compounds; investigation of large-scale atmospheric circulation with the help of marking substances; nondestructive inspection for highly efficient filters with indicating agent concentration and for the inspection of the devices of high level tightness (heat-exchangers of fast nuclear reactors).

  20. Enhanced second-harmonic-generation detection of collagen by means of optical wavefront shaping

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Throckmorton, Graham A.; Hokr, Brett H.; Yakovlev, Vladislav V.

    2016-03-01

    Second-harmonic generation (SHG) has proven to be an effective method to both image and detect structural variations in fibrillar collagen. The ability to detect these differences is especially useful in studying diseases like cancer and fibrosis.1 SHG techniques have historically been limited by their ability to penetrate and image through strongly scattering tissues. Recently, optical wavefront shaping has enabled light to be focused through highly scattering media such as biological tissue.2-4 This technology also enables us to examine the dependence of second harmonic generation on the spatial phase of the pump laser. Here, we demonstrate that wavefront shaping can be used to enhance the generation of second harmonic light from collagen fibrils even when scattering is low or non-existent.

  1. Advanced Multi-frequency Inversion Methods for Classifying Acoustic Scatterers

    DTIC Science & Technology

    2002-09-30

    layers and the presence of individual zooplankton taxa. For example, physonect siphonophore larvae with small gas­ filled pneumatophores (~0.20 mm...over an approximately 2h period. The white circles indicate the presence of physonect siphonophore larvae detected by the VPR. Note the coincidence...of the distributions of these organisms and layers of elevated scattering. The high scattering in the vicinity of siphonophore larvae at 43 kHz is

  2. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.

    PubMed

    Yang, Ching-Ching

    2016-01-01

    Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT), which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction. Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV). The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR). Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom. Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice.

  3. Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device.

    PubMed

    You, David J; Geshell, Kenneth J; Yoon, Jeong-Yeol

    2011-10-15

    Direct and sensitive detection of foodborne pathogens from fresh produce samples was accomplished using a handheld lab-on-a-chip device, requiring little to no sample processing and enrichment steps for a near-real-time detection and truly field-deployable device. The detection of Escherichia coli K12 and O157:H7 in iceberg lettuce was achieved utilizing optimized Mie light scatter parameters with a latex particle immunoagglutination assay. The system exhibited good sensitivity, with a limit of detection of 10 CFU mL(-1) and an assay time of <6 min. Minimal pretreatment with no detrimental effects on assay sensitivity and reproducibility was accomplished with a simple and cost-effective KimWipes filter and disposable syringe. Mie simulations were used to determine the optimal parameters (particle size d, wavelength λ, and scatter angle θ) for the assay that maximize light scatter intensity of agglutinated latex microparticles and minimize light scatter intensity of the tissue fragments of iceberg lettuce, which were experimentally validated. This introduces a powerful method for detecting foodborne pathogens in fresh produce and other potential sample matrices. The integration of a multi-channel microfluidic chip allowed for differential detection of the agglutinated particles in the presence of the antigen, revealing a true field-deployable detection system with decreased assay time and improved robustness over comparable benchtop systems. Additionally, two sample preparation methods were evaluated through simulated field studies based on overall sensitivity, protocol complexity, and assay time. Preparation of the plant tissue sample by grinding resulted in a two-fold improvement in scatter intensity over washing, accompanied with a significant increase in assay time: ∼5 min (grinding) versus ∼1 min (washing). Specificity studies demonstrated binding of E. coli O157:H7 EDL933 to only O157:H7 antibody conjugated particles, with no cross-reactivity to K12. This suggests the adaptability of the system for use with a wide variety of pathogens, and the potential to detect in a variety of biological matrices with little to no sample pretreatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Method and Apparatus for Measuring Near-Angle Scattering of Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A. (Inventor); Daugherty, Brian J. (Inventor); McClain, Stephen C. (Inventor); Macenka, Steven A. (Inventor)

    2013-01-01

    Disclosed herein is a method of determining the near angle scattering of a sample reflective surface comprising the steps of: a) splitting a beam of light having a coherence length of greater than or equal to about 2 meters into a sample beam and a reference beam; b) frequency shifting both the sample beam and the reference beam to produce a fixed beat frequency between the sample beam and the reference beam; c) directing the sample beam through a focusing lens and onto the sample reflective surface, d) reflecting the sample beam from the sample reflective surface through a detection restriction disposed on a movable stage; e) recombining the sample beam with the reference beam to form a recombined beam, followed by f) directing the recombined beam to a detector and performing heterodyne analysis on the recombined beam to measure the near-angle scattering of the sample reflective surface, wherein the position of the detection restriction relative to the sample beam is varied to occlude at least a portion of the sample beam to measure the near-angle scattering of the sample reflective surface. An apparatus according to the above method is also disclosed.

  5. The use of Compton scattering in detecting anomaly in soil-possible use in pyromaterial detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedin, Ahmad Firdaus Zainal; Ibrahim, Noorddin; Zabidi, Noriza Ahmad

    The Compton scattering is able to determine the signature of land mine detection based on dependency of density anomaly and energy change of scattered photons. In this study, 4.43 MeV gamma of the Am-Be source was used to perform Compton scattering. Two detectors were placed between source with distance of 8 cm and radius of 1.9 cm. Detectors of thallium-doped sodium iodide NaI(TI) was used for detecting gamma ray. There are 9 anomalies used in this simulation. The physical of anomaly is in cylinder form with radius of 10 cm and 8.9 cm height. The anomaly is buried 5 cm deep in the bed soil measuredmore » 80 cm radius and 53.5 cm height. Monte Carlo methods indicated the scattering of photons is directly proportional to density of anomalies. The difference between detector response with anomaly and without anomaly namely contrast ratio values are in a linear relationship with density of anomalies. Anomalies of air, wood and water give positive contrast ratio values whereas explosive, sand, concrete, graphite, limestone and polyethylene give negative contrast ratio values. Overall, the contrast ratio values are greater than 2 % for all anomalies. The strong contrast ratios result a good detection capability and distinction between anomalies.« less

  6. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  7. Optic-null space medium for cover-up cloaking without any negative refraction index materials

    PubMed Central

    Sun, Fei; He, Sailing

    2016-01-01

    With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology. PMID:27383833

  8. Optic-null space medium for cover-up cloaking without any negative refraction index materials.

    PubMed

    Sun, Fei; He, Sailing

    2016-07-07

    With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology.

  9. Novel PCR Assays Complement Laser Biosensor-Based Method and Facilitate Listeria Species Detection from Food.

    PubMed

    Kim, Kwang-Pyo; Singh, Atul K; Bai, Xingjian; Leprun, Lena; Bhunia, Arun K

    2015-09-08

    The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP), and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology). PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap) can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 10⁴ CFU/mL.

  10. Novel PCR Assays Complement Laser Biosensor-Based Method and Facilitate Listeria Species Detection from Food

    PubMed Central

    Kim, Kwang-Pyo; Singh, Atul K.; Bai, Xingjian; Leprun, Lena; Bhunia, Arun K.

    2015-01-01

    The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP), and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology). PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap) can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 104 CFU/mL. PMID:26371000

  11. A modified TEW approach to scatter correction for In-111 and Tc-99m dual-isotope small-animal SPECT.

    PubMed

    Prior, Paul; Timmins, Rachel; Petryk, Julia; Strydhorst, Jared; Duan, Yin; Wei, Lihui; Glenn Wells, R

    2016-10-01

    In dual-isotope (Tc-99m/In-111) small-animal single-photon emission computed tomography (SPECT), quantitative accuracy of Tc-99m activity measurements is degraded due to the detection of Compton-scattered photons in the Tc-99m photopeak window, which originate from the In-111 emissions (cross talk) and from the Tc-99m emission (self-scatter). The standard triple-energy window (TEW) estimates the total scatter (self-scatter and cross talk) using one scatter window on either side of the Tc-99m photopeak window, but the estimate is biased due to the presence of unscattered photons in the scatter windows. The authors present a modified TEW method to correct for total scatter that compensates for this bias and evaluate the method in phantoms and in vivo. The number of unscattered Tc-99m and In-111 photons present in each scatter-window projection is estimated based on the number of photons detected in the photopeak of each isotope, using the isotope-dependent energy resolution of the detector. The camera-head-specific energy resolutions for the 140 keV Tc-99m and 171 keV In-111 emissions were determined experimentally by separately sampling the energy spectra of each isotope. Each sampled spectrum was fit with a Linear + Gaussian function. The fitted Gaussian functions were integrated across each energy window to determine the proportion of unscattered photons from each emission detected in the scatter windows. The method was first tested and compared to the standard TEW in phantoms containing Tc-99m:In-111 activity ratios between 0.15 and 6.90. True activities were determined using a dose calibrator, and SPECT activities were estimated from CT-attenuation-corrected images with and without scatter-correction. The method was then tested in vivo in six rats using In-111-liposome and Tc-99m-tetrofosmin to generate cross talk in the area of the myocardium. The myocardium was manually segmented using the SPECT and CT images, and partial-volume correction was performed using a template-based approach. The rat heart was counted in a well-counter to determine the true activity. In the phantoms without correction for Compton-scatter, Tc-99m activity quantification errors as high as 85% were observed. The standard TEW method quantified Tc-99m activity with an average accuracy of -9.0% ± 0.7%, while the modified TEW was accurate within 5% of truth in phantoms with Tc-99m:In-111 activity ratios ≥0.52. Without scatter-correction, In-111 activity was quantified with an average accuracy of 4.1%, and there was no dependence of accuracy on the activity ratio. In rat myocardia, uncorrected images were overestimated by an average of 23% ± 5%, and the standard TEW had an accuracy of -13.8% ± 1.6%, while the modified TEW yielded an accuracy of -4.0% ± 1.6%. Cross talk and self-scatter were shown to produce quantification errors in phantoms as well as in vivo. The standard TEW provided inaccurate results due to the inclusion of unscattered photons in the scatter windows. The modified TEW improved the scatter estimate and reduced the quantification errors in phantoms and in vivo.

  12. Multi-Parameter Scattering Sensor and Methods

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S. (Inventor); Fischer, David G. (Inventor)

    2016-01-01

    Methods, detectors and systems detect particles and/or measure particle properties. According to one embodiment, a detector for detecting particles comprises: a sensor for receiving radiation scattered by an ensemble of particles; and a processor for determining a physical parameter for the detector, or an optimal detection angle or a bound for an optimal detection angle, for measuring at least one moment or integrated moment of the ensemble of particles, the physical parameter, or detection angle, or detection angle bound being determined based on one or more of properties (a) and/or (b) and/or (c) and/or (d) or ranges for one or more of properties (a) and/or (b) and/or (c) and/or (d), wherein (a)-(d) are the following: (a) is a wavelength of light incident on the particles, (b) is a count median diameter or other characteristic size parameter of the particle size distribution, (c) is a standard deviation or other characteristic width parameter of the particle size distribution, and (d) is a refractive index of particles.

  13. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Analysis and testing of a new method for drop size measurement using laser scatter interferometry

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Research was conducted on a laser light scatter detection method for measuring the size and velocity of spherical particles. The method is based upon the measurement of the interference fringe pattern produced by spheres passing through the intersection of two laser beams. A theoretical analysis of the method was carried out using the geometrical optics theory. Experimental verification of the theory was obtained by using monodisperse droplet streams. Several optical configurations were tested to identify all of the parametric effects upon the size measurements. Both off-axis forward and backscatter light detection were utilized. Simulated spray environments and fuel spray nozzles were used in the evaluation of the method. The measurements of the monodisperse drops showed complete agreement with the theoretical predictions. The method was demonstrated to be independent of the beam intensity and extinction resulting from the surrounding drops. Signal processing concepts were considered and a method was selected for development.

  15. Laser-Based Remote Sensing of Explosives by a Differential Absorption and Scattering Method

    NASA Astrophysics Data System (ADS)

    Ayrapetyan, V. S.

    2018-01-01

    A multifunctional IR parametric laser system is developed and tested for remote detection and identification of atmospheric gases, including explosive and chemically aggressive substances. Calculations and experimental studies of remote determination of the spectroscopic parameters of the best known explosive substances TNT, RDX, and PETN are carried out. The feasibility of high sensitivity detection ( 1 ppm) of these substances with the aid of a multifunctional IR parametric light source by differential absorption and scattering is demonstrated.

  16. Static and dynamic light scattering by red blood cells: A numerical study.

    PubMed

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.

  17. Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  18. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region.

    PubMed

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  19. Harmonic motion detection in a vibrating scattering medium.

    PubMed

    Urban, Matthew W; Chen, Shigao; Greenleaf, James

    2008-09-01

    Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10 degrees or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously.

  20. Harmonic Motion Detection in a Vibrating Scattering Medium

    PubMed Central

    Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.

    2008-01-01

    Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10° or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously. PMID:18986892

  1. Dual wavelength multiple-angle light scattering system for cryptosporidium detection

    NASA Astrophysics Data System (ADS)

    Buaprathoom, S.; Pedley, S.; Sweeney, S. J.

    2012-06-01

    A simple, dual wavelength, multiple-angle, light scattering system has been developed for detecting cryptosporidium suspended in water. Cryptosporidium is a coccidial protozoan parasite causing cryptosporidiosis; a diarrheal disease of varying severity. The parasite is transmitted by ingestion of contaminated water, particularly drinking-water, but also accidental ingestion of bathing-water, including swimming pools. It is therefore important to be able to detect these parasites quickly, so that remedial action can be taken to reduce the risk of infection. The proposed system combines multiple-angle scattering detection of a single and two wavelengths, to collect relative wavelength angle-resolved scattering phase functions from tested suspension, and multivariate data analysis techniques to obtain characterizing information of samples under investigation. The system was designed to be simple, portable and inexpensive. It employs two diode lasers (violet InGaN-based and red AlGaInP-based) as light sources and silicon photodiodes as detectors and optical components, all of which are readily available. The measured scattering patterns using the dual wavelength system showed that the relative wavelength angle-resolved scattering pattern of cryptosporidium oocysts was significantly different from other particles (e.g. polystyrene latex sphere, E.coli). The single wavelength set up was applied for cryptosporidium oocysts'size and relative refractive index measurement and differential measurement of the concentration of cryptosporidium oocysts suspended in water and mixed polystyrene latex sphere suspension. The measurement results showed good agreement with the control reference values. These results indicate that the proposed method could potentially be applied to online detection in a water quality control system.

  2. Probing multi-scale self-similarity of tissue structures using light scattering spectroscopy: prospects in pre-cancer detection

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya

    2013-02-01

    Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.

  3. A Compton scattering technique to determine wood density and locating defects in it

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tondon, Akash, E-mail: akashtondonnsl@gmail.com; Sandhu, B. S.; Singh, Bhajan

    A Compton scattering technique is presented to determine density and void location in the given wooden samples. The technique uses a well collimated gamma ray beam from {sup 137}Cs along with the NaI(Tl) scintillation detector. First, a linear relationship is established between Compton scattered intensity and known density of chemical compounds, and then density of the wood is determined from this linear relation. In another experiment, the ability of penetration of gamma rays is explored to detect voids in wooden (low Z) sample. The sudden reduction in the Compton scattered intensities agrees well with the position and size of voidsmore » in the wooden sample. It is concluded that wood density and the voids of size ∼ 4 mm and more can be detected easily by this method.« less

  4. Protein Analysis by Dynamic Light Scattering: Methods and Techniques for Students

    ERIC Educational Resources Information Center

    Lorber, Bernard; Fischer, Frederic; Bailly, Marc; Roy, Herve; Kern, Daniel

    2012-01-01

    Dynamic light scattering (DLS) analyses are routinely used in biology laboratories to detect aggregates in macromolecular solutions, to determine the size of proteins, nucleic acids, and complexes or to monitor the binding of ligands. This article is written for graduate and undergraduate students with access to DLS and for faculty members who…

  5. Comparison of optical and electrical investigations of meat ageing

    NASA Astrophysics Data System (ADS)

    Prokopyeva, Elena; Tománek, Pavel; Kocová, Lucie; Palai-Dany, Tomáš; Balík, Zdeněk.; Škarvada, Pavel; Grmela, Lubomír.

    2013-05-01

    Different ultrasonic, electromagnetic, electrical and optical methods are used for meat ageing detection. Muscles are turbid anisotropic media, they exhibit changes in electrical and optical properties according to the direction of the electrical and optical fields in the sample. The work assesses the feasibility of impedance measurements for meat ageing detection and their comparison with optical measurement of scattered light. The pork chop slices were used for their relative homogeneity. An investigation was carried out for the detection of the ageing of unpacked slices exposed directly to the air, and other packed in polyethylene bags. The electrical method is a promising method due to the possibility of getting much information and realizing cheap and fast enough measurement systems. The optical method allows measure the rotation of polarization plane in the range of 95 degrees within considered period. Nevertheless, further work has to be provided to determine closer relationships between optical scattering characteristics, electrical anisotropy in ageing-related tissue structural properties.

  6. Prediction of submarine scattered noise by the acoustic analogy

    NASA Astrophysics Data System (ADS)

    Testa, C.; Greco, L.

    2018-07-01

    The prediction of the noise scattered by a submarine subject to the propeller tonal noise is here addressed through a non-standard frequency-domain formulation that extends the use of the acoustic analogy to scattering problems. A boundary element method yields the scattered pressure upon the hull surface by the solution of a boundary integral equation, whereas the noise radiated in the fluid domain is evaluated by the corresponding boundary integral representation. Propeller-induced incident pressure field on the scatterer is detected by combining an unsteady three-dimensional panel method with the Bernoulli equation. For each frequency of interest, numerical results concern with sound pressure levels upon the hull and in the flowfield. The validity of the results is established by a comparison with a time-marching hydrodynamic panel method that solves propeller and hull jointly. Within the framework of potential-flow hydrodynamics, it is found out that the scattering formulation herein proposed is appropriate to successfully capture noise magnitude and directivity both on the hull surface and in the flowfield, yielding a computationally efficient solution procedure that may be useful in preliminary design/multidisciplinary optimization applications.

  7. In vivo measurement of the trabecular bone mineral density by coherent and Compton. gamma. -ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karellas, A.

    1984-01-01

    A photon scattering method for measuring the mineral density of trabecular bone (BMD) is described. By computing the ratio of the coherent to Compton scattered photons, the BMD can be measured accurately and without any significant interference by the surrounding tissue. This study shows theoretically and experimentally that an increase in the scatter angle, when using 60 keV photons from Am-241, results in a stronger power dependence on Z. This implies that by increasing the scatter angle, smaller changes in BMD can be detected, thus improving the sensitivity of the measurement. The dependence of the sensitivity on the energy ofmore » the incident photons was also investigated. A collimated beam of photons from 1200 mCi of Am-241 (60 keV) was used and the scattered photons were detected at a scatter angle of 71/sup 0/. The system was calibrated by using a new standard which contains bone mineral mixed homogeneously with a marrow simulating substance. This method was applied for the measurement of the calcaneal BMD in 21 normal volunteers and seven paraplegic patients. The BMD values for the normal group ranged from 170-300 mg/cm/sup 3/. The BMD for the paraplegics with injuries older than one year ranged from 90-150 mg/cm/sup 3/. This measurement has potential application in the diagnosis of early osteopenia and in monitoring the effect of various treatment regimens.« less

  8. MUSIC algorithms for rebar detection

    NASA Astrophysics Data System (ADS)

    Solimene, Raffaele; Leone, Giovanni; Dell'Aversano, Angela

    2013-12-01

    The MUSIC (MUltiple SIgnal Classification) algorithm is employed to detect and localize an unknown number of scattering objects which are small in size as compared to the wavelength. The ensemble of objects to be detected consists of both strong and weak scatterers. This represents a scattering environment challenging for detection purposes as strong scatterers tend to mask the weak ones. Consequently, the detection of more weakly scattering objects is not always guaranteed and can be completely impaired when the noise corrupting data is of a relatively high level. To overcome this drawback, here a new technique is proposed, starting from the idea of applying a two-stage MUSIC algorithm. In the first stage strong scatterers are detected. Then, information concerning their number and location is employed in the second stage focusing only on the weak scatterers. The role of an adequate scattering model is emphasized to improve drastically detection performance in realistic scenarios.

  9. Fiber optic light-scattering measurement system for evaluation of embryo viability: model experiment

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1996-05-01

    We evaluated the particle density detectability and particle size detectivity of our fiber-optic light-scattering measurement system. In order to prevent the multiple pregnancy on current in vitro fertilization-embryo transfer, we have aimed to develop a new quantitative and non- invasive method to select a single viable human embryo. We employed the measurement of mitochondria localization in an embryo, which may have the correlation with development ability. We applied the angular distribution measurement of the light-scattering intensity from the embryo to obtain the information originated from the mitochondria. The latex spheres with a diameter of 1.0 micrometers were used to simulate the scattering intensity of the mitochondria. The measurement probes of our system consisted of two fibers for illumination and sensing. They were arranged at a right angle to a microscope optical axis to measure the angular distribution of the light-scattering intensity. We observed that the light-scattering intensity increased monotonically in the range from 106 to 1010 particles per ml. Since the mitochondria density in a human embryo corresponded to 2.5 X 107 per ml in the measurement chamber, we may measure the mitochondria density in the human embryo. The angular dependence of light-scattering intensity changed with the sphere diameters. This result showed the possibility of the selective measurement of the mitochondria density in the embryo in spite of the presence of the other cell organelle. We think that our light-scattering measurement system might be applicable to the evaluation method for the embryo viability.

  10. Novel system for pulse radiolysis with multi-angle light scattering detection (PR-MALLS) - concept, construction and first tests

    NASA Astrophysics Data System (ADS)

    Kadlubowski, S.; Sawicki, P.; Sowinski, S.; Rokita, B.; Bures, K. D.; Rosiak, J. M.; Ulanski, P.

    2018-01-01

    Time-resolved pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is an effective method for rapidly generating free radicals and other transient species in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timescales ranging from picoseconds to seconds. When used for polymer solutions, pulse radiolysis can be coupled with light-scattering detection, creating a powerful tool for kinetic and mechanistic analysis of processes like degradation or cross-linking of macromolecules. Changes in the light scattering intensity (LSI) of polymer solutions are indicative of alterations in the molecular weight and/or in the radius of gyration, i.e., the dimensions and shape of the macromolecules. In addition to other detection methods, LSI technique provides a convenient tool to study radiation-induced alterations in macromolecules as a function of time after the pulse. Pulse radiolysis systems employing this detection mode have been so far constructed to follow light scattered at a single angle (typically the right angle) to the incident light beam. Here we present an advanced pulse radiolysis & multi-angle light-scattering-intensity system (PR-MALLS) that has been built at IARC and is currently in the phase of optimization and testing. Idea of its design and operation is described and preliminary results for radiation-induced degradation of pullulan as well as polymerization and crosslinking of poly(ethylene glycol) diacrylate are presented. Implementation of the proposed system provides a novel research tool, which is expected to contribute to the expansion of knowledge on free-radical reactions in monomer- and polymer solutions, by delivering precise kinetic data on changes in molecular weight and size, and thus allowing to formulate or verify reaction mechanisms. The proposed method is universal and can be applied for studying both natural and synthetic polymers. The developed system can be also valuable in studies of the border of biology and medicine, especially on radical reactions of biopolymers and their conformational transitions. Furthermore, capability to follow fast changes in mass and dimensions of nanobjects may be of significant importance for nanoscience and nanotechnology.

  11. Spin-orbit scattering visualized in quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Kohsaka, Y.; Machida, T.; Iwaya, K.; Kanou, M.; Hanaguri, T.; Sasagawa, T.

    2017-03-01

    In the presence of spin-orbit coupling, electron scattering off impurities depends on both spin and orbital angular momentum of electrons—spin-orbit scattering. Although some transport properties are subject to spin-orbit scattering, experimental techniques directly accessible to this effect are limited. Here we show that a signature of spin-orbit scattering manifests itself in quasiparticle interference (QPI) imaged by spectroscopic-imaging scanning tunneling microscopy. The experimental data of a polar semiconductor BiTeI are well reproduced by numerical simulations with the T -matrix formalism that include not only scalar scattering normally adopted but also spin-orbit scattering stronger than scalar scattering. To accelerate the simulations, we extend the standard efficient method of QPI calculation for momentum-independent scattering to be applicable even for spin-orbit scattering. We further identify a selection rule that makes spin-orbit scattering visible in the QPI pattern. These results demonstrate that spin-orbit scattering can exert predominant influence on QPI patterns and thus suggest that QPI measurement is available to detect spin-orbit scattering.

  12. Intercomparison of gamma scattering, gammatography, and radiography techniques for mild steel nonuniform corrosion detection

    NASA Astrophysics Data System (ADS)

    Priyada, P.; Margret, M.; Ramar, R.; Shivaramu, Menaka, M.; Thilagam, L.; Venkataraman, B.; Raj, Baldev

    2011-03-01

    This paper focuses on the mild steel (MS) corrosion detection and intercomparison of results obtained by gamma scattering, gammatography, and radiography techniques. The gamma scattering non-destructive evaluation (NDE) method utilizes scattered gamma radiation for the detection of corrosion, and the scattering experimental setup is an indigenously designed automated personal computer (PC) controlled scanning system consisting of computerized numerical control (CNC) controlled six-axis source detector system and four-axis job positioning system. The system has been successfully used to quantify the magnitude of corrosion and the thickness profile of a MS plate with nonuniform corrosion, and the results are correlated with those obtained from the conventional gammatography and radiography imaging measurements. A simple and straightforward reconstruction algorithm to reconstruct the densities of the objects under investigation and an unambiguous interpretation of the signal as a function of material density at any point of the thick object being inspected is described. In this simple and straightforward method the density of the target need not be known and only the knowledge of the target material's mass attenuation coefficients (composition) for the incident and scattered energies is enough to reconstruct the density of the each voxel of the specimen being studied. The Monte Carlo (MC) numerical simulation of the phenomena is done using the Monte Carlo N-Particle Transport Code (MCNP) and the quantitative estimates of the values of signal-to-noise ratio for different percentages of MS corrosion derived from these simulations are presented and the spectra are compared with the experimental data. The gammatography experiments are carried out using the same PC controlled scanning system in a narrow beam, good geometry setup, and the thickness loss is estimated from the measured transmitted intensity. Radiography of the MS plates is carried out using 160 kV x-ray machine. The digitized radiographs with a resolution of 50 μm are processed for the detection of corrosion damage in five different locations. The thickness losses due to the corrosion of the MS plate obtained by gamma scattering method are compared with those values obtained by gammatography and radiography techniques. The percentage thickness loss estimated at different positions of the corroded MS plate varies from 17.78 to 27.0, from 18.9 to 24.28, and from 18.9 to 24.28 by gamma scattering, gammatography, and radiography techniques, respectively. Overall, these results are consistent and in line with each other.

  13. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, William A.; Brada, Mark P.

    1995-01-01

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.

  14. Differential Multiphoton Laser Scanning Microscopy

    PubMed Central

    Field, Jeffrey J.; Sheetz, Kraig E.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Ding, Shi-you; Sylvester, Anne W.; Kleinfeld, David; Squier, Jeff A.

    2016-01-01

    Multifocal multiphoton microscopy (MMM) in the biological and medical sciences has become an important tool for obtaining high resolution images at video rates. While current implementations of MMM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for MMM in which imaging detection is not necessary (single element point detection is implemented), and is therefore fully compatible for use in imaging through scattering media. Further, we demonstrate that this method leads to a new type of MMM wherein it is possible to simultaneously obtain multiple images and view differences in excitation parameters in a single shot. PMID:27390511

  15. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    PubMed Central

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE. PMID:27447635

  16. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.

    PubMed

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-07-19

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE.

  17. Accelerated wavefront determination technique for optical imaging through scattering medium

    NASA Astrophysics Data System (ADS)

    He, Hexiang; Wong, Kam Sing

    2016-03-01

    Wavefront shaping applied on scattering light is a promising optical imaging method in biological systems. Normally, optimized modulation can be obtained by a Liquid-Crystal Spatial Light Modulator (LC-SLM) and CCD hardware iteration. Here we introduce an improved method for this optimization process. The core of the proposed method is to firstly detect the disturbed wavefront, and then to calculate the modulation phase pattern by computer simulation. In particular, phase retrieval method together with phase conjugation is most effective. In this way, the LC-SLM based system can complete the wavefront optimization and imaging restoration within several seconds which is two orders of magnitude faster than the conventional technique. The experimental results show good imaging quality and may contribute to real time imaging recovery in scattering medium.

  18. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    NASA Astrophysics Data System (ADS)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have been performed to reveal the time dependent nature of scattering patterns. The experimental work has been compared with simulation results and demonstrated the feasibility of extending this technique for microcolony identification. Lastly, a quantitative phase imaging technique based on the phase gradient driven intensity variation has been studied and implemented to render the 2D phase map of the colony sample.

  19. Ag/SiO2 surface-enhanced Raman scattering substrate for plasticizer detection

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Lin, Ming-Pin; Lin, Ting-Han; Su, Wei-Fang

    2018-04-01

    In this study, we demonstrated a simple method of fabricating a high-performance surface-enhanced Raman scattering (SERS) substrate. Monodispersive SiO2 colloidal spheres were self-assembled on a silicon wafer, and then a silver layer was coated on it to obtain a Ag/SiO2 SERS substrate. The Ag/SiO2 SERS substrates were used to detect three kinds of plasticizer with different concentrations, namely, including bis(2-ethylhexyl)phthalate (DEHP), benzyl butyl phthalate (BBP), and dibutyl phthalate (DBP). The enhancement of Raman scattering intensity caused by surface plasmon resonance can be observed using the Ag/SiO2 SERS substrates. The Ag/SiO2 SERS substrate with a 150-nm-thick silver layer can detect plasticizers, and it satisfies the detection limit of plasticizers at 100 ppm. The developed highly sensitive Ag/SiO2 SERS substrates show a potential for the design and fabrication of functional sensors to identify the harmful plasticizers that plastic products release in daily life.

  20. Generic Detection of Register Realignment

    NASA Astrophysics Data System (ADS)

    Ďurfina, Lukáš; Kolář, Dušan

    2011-09-01

    The register realignment is a method of binary obfuscation and it is used by malware writers. The paper introduces the method how register realignment can be recognized by analysis based on the scattered context grammars. Such an analysis includes exploration of bytes affected by realignment, finding new valid values for them, building the scattered context grammar and parse an obfuscated code by this grammar. The created grammar has LL property--an ability for parsing by this type of grammar.

  1. Generic Detection of Register Realignment

    NASA Astrophysics Data System (ADS)

    Durfina, Lukáš; Kolář, Dušan

    2011-09-01

    The register realignment is a method of binary obfuscation and it is used by malware writers. The paper introduces the method how register realignment can be recognized by analysis based on the scattered context grammars. Such an analysis includes exploration of bytes affected by realignment, finding new valid values for them, building the scattered context grammar and parse an obfuscated code by this grammar. The created grammar has LL property—an ability for parsing by this type of grammar.

  2. An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT

    NASA Astrophysics Data System (ADS)

    Poludniowski, G.; Evans, P. M.; Hansen, V. N.; Webb, S.

    2009-06-01

    A new method is proposed for scatter-correction of cone-beam CT images. A coarse reconstruction is used in initial iteration steps. Modelling of the x-ray tube spectra and detector response are included in the algorithm. Photon diffusion inside the imaging subject is calculated using the Monte Carlo method. Photon scoring at the detector is calculated using forced detection to a fixed set of node points. The scatter profiles are then obtained by linear interpolation. The algorithm is referred to as the coarse reconstruction and fixed detection (CRFD) technique. Scatter predictions are quantitatively validated against a widely used general-purpose Monte Carlo code: BEAMnrc/EGSnrc (NRCC, Canada). Agreement is excellent. The CRFD algorithm was applied to projection data acquired with a Synergy XVI CBCT unit (Elekta Limited, Crawley, UK), using RANDO and Catphan phantoms (The Phantom Laboratory, Salem NY, USA). The algorithm was shown to be effective in removing scatter-induced artefacts from CBCT images, and took as little as 2 min on a desktop PC. Image uniformity was greatly improved as was CT-number accuracy in reconstructions. This latter improvement was less marked where the expected CT-number of a material was very different to the background material in which it was embedded.

  3. Detecting a subsurface cylinder by a Time Reversal MUSIC like method

    NASA Astrophysics Data System (ADS)

    Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni

    2014-05-01

    In this contribution the problem of imaging a buried homogeneous circular cylinder is dealt with for a two-dimensional scalar geometry. Though the addressed geometry is extremely simple as compared to real world scenarios, it can be considered of interest for a classical GPR civil engineering applicative context: that is the subsurface prospecting of urban area in order to detect and locate buried utilities. A large body of methods for subsurface imaging have been presented in literature [1], ranging from migration algorithms to non-linear inverse scattering approaches. More recently, also spectral estimation methods, which benefit from sub-array data arrangement, have been proposed and compared in [2].Here a Time Reversal MUSIC (TRM) like method is employed. TRM has been initially conceived to detect point-like scatterers and then generalized to the case of extended scatterers [3]. In the latter case, no a priori information about the scatterers is exploited. However, utilities often can be schematized as circular cylinders. Here, we develop a TRM variant which use this information to properly tailor the steering vector while implementing TRM. Accordingly, instead of a spatial map [3], the imaging procedure returns the scatterer's parameters such as its center position, radius and dielectric permittivity. The study is developed by numerical simulations. First the free-space case is considered in order to more easily introduce the idea and the problem mathematical structure. Then the analysis is extended to the half-space case. In both situations a FDTD forward solver is used to generate the synthetic data. As usual in TRM, a multi-view/multi-static single-frequency configuration is considered and emphasis is put on the role played by the number of available sensors. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] A. Randazzo and R. Solimene, 'Development Of New Methods For The Solution Of Inverse Electromagnetic Scattering Problems By Buried Structures: State of the Art and Open Issues ,'in COST ACTION TU1208: CIVIL ENGINEERING APPLICATIONS OF GROUND PENETRATING RADAR, Proceedings of first Action's General Meeting, 2013. ISBN: 978-88-548-6191-6. [2] S. Meschino, L. Pajewski, M. Pastorino, A. Randazzo, G. Schettini, "Detection of subsurface metallic utilities by means of a SAP technique: Comparing MUSIC- and SVM-based approaches, Journal of Applied Geophysics, vol. 97, pp. 60-68, 2013. [3] E. A. Marengo, F. K. Gruber, F. Simonetti, 'Time-reversal MUSIC imaging of extended targets,' IEEE Trans Image Process. vol. 16, pp. 1967-84, 2007

  4. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    PubMed Central

    Hui, Jie; Li, Rui; Phillips, Evan H.; Goergen, Craig J.; Sturek, Michael; Cheng, Ji-Xin

    2016-01-01

    The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology. PMID:27069873

  5. Validity of Particle-Counting Method Using Laser-Light Scattering for Detecting Platelet Aggregation in Diabetic Patients

    NASA Astrophysics Data System (ADS)

    Nakadate, Hiromichi; Sekizuka, Eiichi; Minamitani, Haruyuki

    We aimed to study the validity of a new analytical approach that reflected the phase from platelet activation to the formation of small platelet aggregates. We hoped that this new approach would enable us to use the particle-counting method with laser-light scattering to measure platelet aggregation in healthy controls and in diabetic patients without complications. We measured agonist-induced platelet aggregation for 10 min. Agonist was added to the platelet-rich plasma 1 min after measurement started. We compared the total scattered light intensity from small aggregates over a 10-min period (established analytical approach) and that over a 2-min period from 1 to 3 min after measurement started (new analytical approach). Consequently platelet aggregation in diabetics with HbA1c ≥ 6.5% was significantly greater than in healthy controls by both analytical approaches. However, platelet aggregation in diabetics with HbA1c < 6.5%, i.e. patients in the early stages of diabetes, was significantly greater than in healthy controls only by the new analytical approach, not by the established analytical approach. These results suggest that platelet aggregation as detected by the particle-counting method using laser-light scattering could be applied in clinical examinations by our new analytical approach.

  6. Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, M.; Morimoto, M.; Shima, Y.

    2012-10-15

    In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TSmore » system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.« less

  7. Study on the interactions of antiemetic drugs and 12-tungstophosphoric acid by absorption and resonance Rayleigh scattering spectra and their analytical applications

    NASA Astrophysics Data System (ADS)

    Wang, Yaqiong; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2013-03-01

    In 0.1 mol L-1 HCl medium, antiemetic drugs (ATM), such as granisetron hydrochloride (GS) and tropisetron hydrochloride (TS), reacted with H3PW12O40·nH2O and formed 3:1 ion-association complex of [(ATM)3PW12O40], then self-aggregated into nanoparticles-[(ATM)3PW12O40]n with an average size of 100 nm. The reaction resulted in the enhancement of resonance Rayleigh scattering (RRS) and the absorption spectra. The increments of scattering intensity (ΔIRRS) and the change of absorbance (ΔA) were both directly proportional to the concentrations of ATM in certain ranges. Accordingly, two new RRS and spectrophotometric methods were proposed for ATM detection. The detection limits (3σ) of GS and TS were 3.2 ng mL-1 and 4.0 ng mL-1(RRS method), 112.5 ng mL-1 and 100.0 ng mL-1(spectrophotometric method). These two methods were applied to determine GS in orally disintegrating tablets and the results were in good agreement with the official method. The ground-state geometries and electronic structures of GS and TS were optimized by the hybrid density functional theory (DFT) method and the shape of [(ATM)3PW12O40]n was characterized by atomic force microscopy (AFM). Take the RRS method with higher sensitivity as an example, the reaction mechanism and the reasons for enhancement of scattering were discussed.

  8. Determination of thorium (IV) using isophthalaldehyde-tetrapyrrole as probe by resonance light scattering, second-order scattering and frequency-doubling scattering spectra

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Xue, Jinhua; Xiao, Xilin; Xu, Li; Jiang, Min; Peng, Pengcheng; Liao, Lifu

    2017-12-01

    The coordination reaction of thorium (IV) with a ditopic bidentate ligand to form supramolecular polymer was studied by resonance light scattering (RLS) spectra, second-order scattering (SOS) spectra and frequency-doubling scattering (FDS) spectra, respectively. The ditopic bidentate ligand is isophthalaldehyde-tetrapyrrole (IPTP). It was synthesized through a condensation reaction of isophthalaldehyde with pyrrole. The formation of supramolecular polymer results in remarkable intensity enhancements of the three light scattering signals. The maximum scattering wavelengths of RLS, FDS and SOS were 290, 568 and 340 nm, respectively. The reaction was used to establish new light scattering methods for the determination of thorium (IV) by using IPTP as probe. Under optimum conditions, the intensity enhancements of RLS, SOS and FDS were directly proportional to the concentration of thorium (IV) in the ranges of 0.01 to 1.2 μg mL- 1, 0.05 to 1.2 μg mL- 1 and 0.05 to 1.2 μg mL- 1, respectively. The detection limits were 0.003 μg mL- 1, 0.012 μg mL- 1 and 0.021 μg mL- 1, respectively. The methods were suitable for analyzing thorium (IV) in actual samples. The results show acceptable recoveries and precision compared with a reference method.

  9. Ellipsometry-like analysis of polarization state for micro cracks using stress-induced light scattering method

    NASA Astrophysics Data System (ADS)

    Sakata, Yoshitaro; Terasaki, Nao; Sakai, Kazufumi; Nonaka, Kazuhiro

    2016-03-01

    Fine polishing techniques, such as chemical mechanical polishing (CMP), are important to glass substrate manufacturing. When these techniques involve mechanical interaction in the form of friction between the abrasive and the substrate surface during polishing, latent flaws may form on the product. Fine polishing induced latent flaws in glass substrates may become obvious during a subsequent cleaning process if the glass surface is eroded away by chemical interaction with a cleaning liquid. Thus, latent flaws reduce product yield. A novel technique (the stress-induced light scattering method; SILSM) which was combined with light scattering method and stress effects was proposed for inspecting surface to detect polishing induced latent flaws. This method is able to distinguish between latent flaws and tiny particles on the surface. In this method, an actuator deforms a sample inducing stress effects around the tip of a latent flaw caused by the deformation, which in turn changes the refractive index of the material around the tip of the latent flaw because of the photoelastic effect. A CCD camera detects this changed refractive index as variations in light-scattering intensity. In this study, the changes in reflection coefficients and polarization states after application of stress to a glass substrate were calculated and evaluated qualitatively using Jones matrix-like ellipsometry. As the results, it was shown that change in the polarization states around the tip of latent flaw were evaluated between before and after applied stress, qualitatively.

  10. High resolution resonance ionization imaging detector and method

    DOEpatents

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  11. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisniega, A; Zbijewski, W; Stayman, J

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced formore » additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain trauma imaging at the point of care in sports and military applications. Research grant from Carestream Health. JY is an employee of Carestream Health.« less

  12. Change Detection Based on Persistent Scatterer Interferometry - a New Method of Monitoring Building Changes

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Kenduiywo, B. K.; Soergel, U.

    2016-06-01

    Persistent Scatterer Interferometry (PSI) is a technique to detect a network of extracted persistent scatterer (PS) points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC) points. On the other hand, incoherent change detection (ICD) relies on local comparison of multi-temporal images (e.g. image difference, image ratio) to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  13. Elastic electron scattering from the DNA bases cytosine and thymine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colyer, C. J.; Bellm, S. M.; Lohmann, B.

    2011-10-15

    Cross-section data for electron scattering from biologically relevant molecules are important for the modeling of energy deposition in living tissue. Relative elastic differential cross sections have been measured for cytosine and thymine using the crossed-beam method. These measurements have been performed for six discrete electron energies between 60 and 500 eV and for detection angles between 15 deg. and 130 deg. Calculations have been performed via the screen-corrected additivity rule method and are in good agreement with the present experiment.

  14. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Meng-Lei; Gao, Yu; Li, Yali; Li, Xueliang; Zhang, Huanjie; Han, Xiao Xia; Zhao, Bing; Su, Liang

    2018-05-01

    Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43 × 10- 8 mol·L- 1 with a relatively wider linear concentration range (1.0 × 10- 7-1.0 × 10- 4 mol·L- 1), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment.

  15. Biosensing via light scattering from plasmonic core-shell nanospheres coated with DNA molecules

    NASA Astrophysics Data System (ADS)

    Xie, Huai-Yi; Chen, Minfeng; Chang, Yia-Chung; Moirangthem, Rakesh Singh

    2017-05-01

    We present both experimental and theoretical studies for investigating DNA molecules attached on metallic nanospheres. We have developed an efficient and accurate numerical method to investigate light scattering from plasmonic nanospheres on a substrate covered by a shell, based on the Green's function approach with suitable spherical harmonic basis. Next, we use this method to study optical scattering from DNA molecules attached to metallic nanoparticles placed on a substrate and compare with experimental results. We obtain fairly good agreement between theoretical predictions and the measured ellipsometric spectra. The metallic nanoparticles were used to detect the binding with DNA molecules in a microfluidic setup via spectroscopic ellipsometry (SE), and a detectable change in ellipsometric spectra was found when DNA molecules are captured on Au nanoparticles. Our theoretical simulation indicates that the coverage of Au nanosphere by a submonolayer of DNA molecules, which is modeled by a thin layer of dielectric material (which may absorb light), can lead to a small but detectable spectroscopic shift in both the Ψ and Δ spectra with more significant change in Δ spectra in agreement with experimental results. Our studies demonstrated the ultrasensitive capability of SE for sensing submonolayer coverage of DNA molecules on Au nanospheres. Hence the spectroscopic ellipsometric measurements coupled with theoretical analysis via an efficient computation method can be an effective tool for detecting DNA molecules attached on Au nanoparticles, thus achieving label-free, non-destructive, and high-sensitivity biosensing with nanoscale resolution.

  16. Achieving Very Low Levels of Detection: An Improved Surface-Enhanced Raman Scattering Experiment for the Physical Chemistry Teaching Laboratory

    ERIC Educational Resources Information Center

    McMillan, Brian G.

    2016-01-01

    This experiment was designed and successfully introduced to complement the nanochemistry taught to undergraduate students in a useful and interesting way. Colloidal Ag nanoparticles were synthesized by a simple, room-temperature method, and the resulting suspension was then used to study the surface-enhanced Raman scattering (SERS) of methylene…

  17. The influence of the blood vessel diameter on the full scattering profile from cylindrical tissues: experimental evidence for the shielding effect.

    PubMed

    Feder, Idit; Duadi, Hamootal; Dreifuss, Tamar; Fixler, Dror

    2016-10-01

    Optical methods for detecting physiological state based on light-tissue interaction are noninvasive, inexpensive, simplistic, and thus very useful. The blood vessels in human tissue are the main cause of light absorbing and scattering. Therefore, the effect of blood vessels on light-tissue interactions is essential for optically detecting physiological tissue state, such as oxygen saturation, blood perfusion and blood pressure. We have previously suggested a new theoretical and experimental method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we will present experimental measurements of the full scattering profile of heterogenic cylindrical phantoms that include blood vessels. We show, for the first time that the vessel diameter influences the full scattering profile, and found higher reflection intensity for larger vessel diameters accordance to the shielding effect. For an increase of 60% in the vessel diameter the light intensity in the full scattering profile above 90° is between 9% to 40% higher, depending on the angle. By these results we claim that during respiration, when the blood-vessel diameter changes, it is essential to consider the blood-vessel diameter distribution in order to determine the optical path in tissues. A CT scan of the measured silicon-based phantoms. The phantoms contain the same blood volume in different blood-vessel diameters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Circular birefringence/dichroism measurement of optical scattering samples using amplitude-modulation polarimetry

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Chun; Lo, Yu-Lung; Phan, Quoc-Hung

    2018-03-01

    A method is proposed for extracting the circular birefringence (CB), circular dichroism (CD) and depolarization (Dep) properties of optical scattering samples using an amplitude-modulation polarimetry technique. The validity of the proposed method is demonstrated by extracting the CB property of pure glucose aqueous samples, the CB/Dep properties of glucose solutions containing 0.02% lipofundin particles, and the CD/Dep properties of chlorophyllin solutions containing suspended polystyrene microspheres. The results show that the proposed technique has the ability to detect pure glucose with a resolution of 66 mg/dL over a concentration range of 0-500 mg/dL. Moreover, the glucose concentration of the CB/Dep samples can be detected over the same range with a resolution of 168 mg/dL. Finally, the chlorophyllin concentration of the CD/Dep sample can be detected over the range of 0-200 μg/dL with a resolution of 6.5 × 10-5. In general, the results show that the proposed technique provides a reliable and accurate means of measuring the CB/CD properties of optical samples with scattering effects, and thus has significant potential for biological sensing applications.

  19. Optical readout of displacements of nanowires along two mutually perpendicular directions

    NASA Astrophysics Data System (ADS)

    Fu, Chenghua

    2017-05-01

    Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.

  20. A rapid detection method of Escherichia coli by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Peng, Yankun; Xu, Tianfeng

    2015-05-01

    Conventional microbiological detection and enumeration methods are time-consuming, labor-intensive, and giving retrospective information. The objectives of the present work are to study the capability of surface enhanced Raman scattering (SERS) to detect Escherichia coli (E. coli) using the presented silver colloidal substrate. The obtained results showed that the adaptive iteratively reweighed Penalized Least Squares (airPLS) algorithm could effectively remove the fluorescent background from original Raman spectra, and Raman characteristic peaks of 558, 682, 726, 1128, 1210 and 1328 cm-1 could be observed stably in the baseline corrected SERS spectra of all studied bacterial concentrations. The detection limit of SERS could be determined to be as low as 0.73 log CFU/ml for E. coli with the prepared silver colloidal substrate. The quantitative prediction results using the intensity values of characteristic peaks were not good, with the correlation coefficients of calibration set and cross validation set of 0.99 and 0.64, respectively.

  1. Method for identifying and probing phase transitions in materials

    DOEpatents

    Asay, Blaine W.; Henson, Bryan F.; Sander, Robert K.; Robinson, Jeanne M.; Son, Steven F.; Dickson, Peter M.

    2002-01-01

    The present invention includes a method for identifying and probing phase transitions in materials. A polymorphic material capable of existing in at least one non-centrosymmetric phase is interrogated with a beam of laser light at a chosen wavelength and frequency. A phase transition is induced in the material while it is interrogated. The intensity of light scattered by the material and having a wavelength equal to one half the wavelength of the interrogating laser light is detected. If the phase transition results in the production of a non-centrosymmetric phase, the intensity of this scattered light increases; if the phase transition results in the disappearance of a non-centrosymmetric phase, the intensity of this scattered light decreases.

  2. Modeling experimental plasma diagnostics in the FLASH code: Thomson scattering

    NASA Astrophysics Data System (ADS)

    Weide, Klaus; Flocke, Norbert; Feister, Scott; Tzeferacos, Petros; Lamb, Donald

    2017-10-01

    Spectral analysis of the Thomson scattering of laser light sent into a plasma provides an experimental method to quantify plasma properties in laser-driven plasma experiments. We have implemented such a synthetic Thomson scattering diagnostic unit in the FLASH code, to emulate the probe-laser propagation, scattering and spectral detection. User-defined laser rays propagate into the FLASH simulation region and experience scattering (change in direction and frequency) based on plasma parameters. After scattering, the rays propagate out of the interaction region and are spectrally characterized. The diagnostic unit can be used either during a physics simulation or in post-processing of simulation results. FLASH is publicly available at flash.uchicago.edu. U.S. DOE NNSA, U.S. DOE NNSA ASC, U.S. DOE Office of Science and NSF.

  3. Tumor response estimation in radar-based microwave breast cancer detection.

    PubMed

    Kurrant, Douglas J; Fear, Elise C; Westwick, David T

    2008-12-01

    Radar-based microwave imaging techniques have been proposed for early stage breast cancer detection. A considerable challenge for the successful implementation of these techniques is the reduction of clutter, or components of the signal originating from objects other than the tumor. In particular, the reduction of clutter from the late-time scattered fields is required in order to detect small (subcentimeter diameter) tumors. In this paper, a method to estimate the tumor response contained in the late-time scattered fields is presented. The method uses a parametric function to model the tumor response. A maximum a posteriori estimation approach is used to evaluate the optimal values for the estimates of the parameters. A pattern classification technique is then used to validate the estimation. The ability of the algorithm to estimate a tumor response is demonstrated by using both experimental and simulated data obtained with a tissue sensing adaptive radar system.

  4. Locating scatterers while drilling using seismic noise due to tunnel boring machine

    NASA Astrophysics Data System (ADS)

    Harmankaya, U.; Kaslilar, A.; Wapenaar, K.; Draganov, D.

    2018-05-01

    Unexpected geological structures can cause safety and economic risks during underground excavation. Therefore, predicting possible geological threats while drilling a tunnel is important for operational safety and for preventing expensive standstills. Subsurface information for tunneling is provided by exploratory wells and by surface geological and geophysical investigations, which are limited by location and resolution, respectively. For detailed information about the structures ahead of the tunnel face, geophysical methods are applied during the tunnel-drilling activity. We present a method inspired by seismic interferometry and ambient-noise correlation that can be used for detecting scatterers, such as boulders and cavities, ahead of a tunnel while drilling. A similar method has been proposed for active-source seismic data and validated using laboratory and field data. Here, we propose to utilize the seismic noise generated by a Tunnel Boring Machine (TBM), and recorded at the surface. We explain our method at the hand of data from finite-difference modelling of noise-source wave propagation in a medium where scatterers are present. Using the modelled noise records, we apply cross-correlation to obtain correlation gathers. After isolating the scattered arrivals in these gathers, we cross-correlate again and invert for the correlated traveltime to locate scatterers. We show the potential of the method for locating the scatterers while drilling using noise records due to TBM.

  5. Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics.

    PubMed

    Wang, Yang; Ruan, Qingyu; Lei, Zhi-Chao; Lin, Shui-Chao; Zhu, Zhi; Zhou, Leiji; Yang, Chaoyong

    2018-04-17

    Digital microfluidics (DMF) is a powerful platform for a broad range of applications, especially immunoassays having multiple steps, due to the advantages of low reagent consumption and high automatization. Surface enhanced Raman scattering (SERS) has been proven as an attractive method for highly sensitive and multiplex detection, because of its remarkable signal amplification and excellent spatial resolution. Here we propose a SERS-based immunoassay with DMF for rapid, automated, and sensitive detection of disease biomarkers. SERS tags labeled with Raman reporter 4-mercaptobenzoic acid (4-MBA) were synthesized with a core@shell nanostructure and showed strong signals, good uniformity, and high stability. A sandwich immunoassay was designed, in which magnetic beads coated with antibodies were used as solid support to capture antigens from samples to form a beads-antibody-antigen immunocomplex. By labeling the immunocomplex with a detection antibody-functionalized SERS tag, antigen can be sensitively detected through the strong SERS signal. The automation capability of DMF can greatly simplify the assay procedure while reducing the risk of exposure to hazardous samples. Quantitative detection of avian influenza virus H5N1 in buffer and human serum was implemented to demonstrate the utility of the DMF-SERS method. The DMF-SERS method shows excellent sensitivity (LOD of 74 pg/mL) and selectivity for H5N1 detection with less assay time (<1 h) and lower reagent consumption (∼30 μL) compared to the standard ELISA method. Therefore, this DMF-SERS method holds great potentials for automated and sensitive detection of a variety of infectious diseases.

  6. Inspection of lithographic mask blanks for defects

    DOEpatents

    Sommargren, Gary E.

    2001-01-01

    A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.

  7. Biomarker-specific conjugated nanopolyplexes for the active coloring of stem-like cancer cells

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Lee, Eugene; Choi, Jihye; Haam, Seungjoo; Suh, Jin-Suck; Yang, Jaemoon

    2016-06-01

    Stem-like cancer cells possess intrinsic features and their CD44 regulate redox balance in cancer cells to survive under stress conditions. Thus, we have fabricated biomarker-specific conjugated polyplexes using CD44-targetable hyaluronic acid and redox-sensible polyaniline based on a nanoemulsion method. For the most sensitive recognition of the cellular redox at a single nanoparticle scale, a nano-scattering spectrum imaging analyzer system was introduced. The conjugated polyplexes showed a specific targeting ability toward CD44-expressing cancer cells as well as a dramatic change in its color, which depended on the redox potential in the light-scattered images. Therefore, these polyaniline-based conjugated polyplexes as well as analytical processes that include light-scattering imaging and measurements of scattering spectra, clearly establish a systematic method for the detection and monitoring of cancer microenvironments.

  8. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  9. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, W.A.; Brada, M.P.

    1995-06-20

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.

  10. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil

    NASA Astrophysics Data System (ADS)

    Chen, Weigen; Zou, Jingxin; Wan, Fu; Fan, Zhou; Yang, Dingkun

    2018-03-01

    Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS) on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS) and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV) was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS) was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM) combined with particle swarm algorithm (PSO) was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.

  11. A New Clinical Instrument for The Early Detection of Cataract Using Dynamic Light Scattering and Corneal Topography

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Datiles, Manuel B., III; King, James F.

    2000-01-01

    A growing cataract can be detected at the molecular level using the technique of dynamic light scattering (DLS). However, the success of this method in clinical use depends upon the precise control of the scattering volume inside a patient's eye and especially during patient's repeat visits. This is important because the scattering volume (cross-over region between the scattered fight and incident light) inside the eye in a high-quality DLS set-up is very small (few microns in dimension). This precise control holds the key for success in the longitudinal studies of cataract and during anti-cataract drug screening. We have circumvented these problems by fabricating a new DLS fiber optic probe with a working distance of 40 mm and by mounting it inside a cone of a corneal analyzer. This analyzer is frequently used in mapping the corneal topography during PRK (photorefractive keratectomy) and LASIK (laser in situ keratomileusis) procedures in shaping of the cornea to correct myopia. This new instrument and some preliminary clinical tests on one of us (RRA) showing the data reproducibility are described.

  12. New clinical instrument for the early detection of cataract using dynamic light scattering and corneal topography

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Datiles, Manuel B., III; King, James F.

    2000-06-01

    A growing cataract can be detected at the molecular level using the technique of dynamic light scattering (DLS). However, the success of this method in clinical use depends upon the precise control of the scattering volume inside a patient's eye and especially during patient's repeat visits. This is important because the scattering volume (cross-over region between the scattered light and incident light) inside the eye in a high-quality DLS set-up is very small (few microns in dimension). This precise control holds the key for success in the longitudinal studies of cataract and during anti-cataract drug screening. We have circumvented these problems by fabricating a new DLS fiber optic probe with a working distance of 40 mm and by mounting it inside a cone of a corneal analyzer. This analyzer is frequently used in mapping the corneal topography during PRK (photorefractive keratectomy) and LASIK (laser in situ keratomileusis) procedures in shaping of the cornea to correct myopia. This new instrument and some preliminary clinical tests on one of us (RRA) showing the data reproducibility are described.

  13. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles (COINs).

    PubMed

    Shachaf, Catherine M; Elchuri, Sailaja V; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N; Mitchell, Dennis J; Zhang, Jingwu; Swartz, Kenneth B; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P

    2009-01-01

    Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  14. A Novel Method for Detection of Phosphorylation in Single Cells by Surface Enhanced Raman Scattering (SERS) using Composite Organic-Inorganic Nanoparticles (COINs)

    PubMed Central

    Shachaf, Catherine M.; Elchuri, Sailaja V.; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N.; Mitchell, Dennis J.; Zhang, Jingwu; Swartz, Kenneth B.; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P.

    2009-01-01

    Background Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. Methodology/Principal Findings To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using “Composite Organic-Inorganic Nanoparticles” (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Conclusions/Significance Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells. PMID:19367337

  15. Static and dynamic light scattering by red blood cells: A numerical study

    PubMed Central

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring. PMID:28472125

  16. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques.

    PubMed

    Till, Ugo; Gaucher-Delmas, Mireille; Saint-Aguet, Pascale; Hamon, Glenn; Marty, Jean-Daniel; Chassenieux, Christophe; Payré, Bruno; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Violleau, Frédéric

    2014-12-01

    Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.

  17. Application of nanomaterials in the bioanalytical detection of disease-related genes.

    PubMed

    Zhu, Xiaoqian; Li, Jiao; He, Hanping; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-12-15

    In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences. Copyright © 2015. Published by Elsevier B.V.

  18. HRO: A New Forward-Scatter Observation Method Using a Ham-Band Beacon

    NASA Astrophysics Data System (ADS)

    Maegawa, K.

    1999-02-01

    A new forward-scatter meteor observation method has been used since 1996 in Japan. It uses its own 50 W continuous wave beacon with a broad directivity antenna on 53.750 MHz. To compensate for the weak echo power from the beacon, observers use SSB mode receivers and narrow band echo detection methods with Fast Fourier Transform software on personal computers. More than 250000 echoes have been counted per year so far. >From these results, diurnal and seasonal variations have been derived and are presented and discussed here. This method (HRO) will continue to play a leading radio observation role in Japan for the future.

  19. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    NASA Astrophysics Data System (ADS)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  20. Subsidence detection by TerraSAR-X interferometry on a network of natural persistent scatterers and artificial corner reflectors

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Liu, Guoxiang; Li, Zhilin; Zhang, Rui; Jia, Hongguo; Wang, Xiaowen; Cai, Guolin

    2013-08-01

    The German satellite TerraSAR-X (TSX) is able to provide high-resolution synthetic aperture radar (SAR) images for mapping surface deformation by the persistent scatterer interferometry (PSI) technique. To extend the application of PSI in detecting subsidence in areas with frequent surface changes, this paper presents a method of TSX PSI on a network of natural persistent scatterers (NPSs) and artificial corner reflectors (CRs) deployed on site. We select a suburban area of southwest Tianjin (China) as the testing site where 16 CRs and 10 leveling points (LPs) are deployed, and utilize 13 TSX images collected over this area between 2009 and 2010 to extract subsidence by the method proposed. Two types of CRs are set around the fishponds and crop parcels. 6 CRs are the conventional ones, i.e., fixed CRs (FCRs), while 10 CRs are the newly-designed ones, i.e., so-called portable CRs (PCRs) with capability of repeatable installation. The numerical analysis shows that the PCRs have the higher temporal stability of radar backscattering than the FCRs, and both of them are better than the NPSs in performance of radar reflectivity. The comparison with the leveling data at the CRs and LPs indicates that the subsidence measurements derived by the TSX PSI method can reach up to a millimeter level accuracy. This demonstrates that the TSX PSI method based on a network of NPSs and CRs is useful for detecting land subsidence in cultivated lands.

  1. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    NASA Astrophysics Data System (ADS)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  2. The effects of compensation for scatter, lead X-rays, and high-energy contamination on tumor detectability and activity estimation in Ga-67 imaging

    NASA Astrophysics Data System (ADS)

    Fakhri, G. El; Kijewski, M. F.; Maksud, P.; Moore, S. C.

    2003-06-01

    Compton scatter, lead X-rays, and high-energy contamination are major factors affecting image quality in Ga-67 imaging. Scattered photons detected in one photopeak window include photons exiting the patient at energies within the photopeak, as well as higher energy photons which have interacted in the collimator and crystal and lost energy. Furthermore, lead X-rays can be detected in the main energy photopeak (93 keV). We have previously developed two energy-based methods, based on artificial neural networks (ANN) and on a generalized spectral (GS) approach to compensate for scatter, high-energy contamination, and lead X-rays in Ga-67 imaging. For comparison, we considered also the projections that would be acquired in the clinic using the optimal energy windows (WIN) we have reported previously for tumor detection and estimation tasks for the 93, 185, and 300 keV photopeaks. The aim of the present study is to evaluate under realistic conditions the impact of these phenomena and their compensation on tumor detection and estimation tasks in Ga-67 imaging. ANN and GS were compared on the basis of performance of a three-channel Hotelling observer (CHO), in detecting the presence of a spherical tumor of unknown size embedded in an anatomic background as well as on the basis of estimation of tumor activity. Projection datasets of spherical tumors ranging from 2 to 6 cm in diameter, located at several sites in an anthropomorphic torso phantom, were simulated using a Monte Carlo program that modeled all photon interactions in the patient as well as in the collimator and the detector for all decays between 91 and 888 keV. One hundred realistic noise realizations were generated from each very-low-noise simulated projection dataset. The presence of scatter degraded both CHO signal-to-noise ratio (SNR) and estimation accuracy. On average, the presence of scatter led to a 12% reduction in CHO SNR. Correcting for scatter further diminished CHO SNR but to a lesser extent with ANN (5% reduction) than with GS (12%). Both scatter corrections improved performance in activity estimation. ANN yielded better precision (1.8% relative standard deviation) than did GS (4%) but greater average bias (5.1% with ANN, 3.6% with GS).

  3. The method of intraoperative analysis of structural and metabolic changes in the area of tumor resection

    NASA Astrophysics Data System (ADS)

    Savelieva, Tatiana A.; Loshchenov, Victor B.; Volkov, Vladimir V.; Linkov, Kirill G.; Goryainov, Sergey A.; Potapov, Alexander A.

    2014-05-01

    The method of intraoperative analysis of tumor markers such as structural changes, concentrations of 5- ALA induced protoporphyrin IX and hemoglobin in the area of tissue resection was developed. A device for performing this method is a neurosurgical aspiration cannulae coupled with the fiber optic probe. The configuration of fibers at the end of cannulae was developed according to the results of numerical modeling of light distribution in biological tissues. The optimal distance between the illuminating and receiving fiber was found for biologically relevant interval of optical properties. On this particular distance the detected diffuse reflectance depends on scattering coefficient almost linearly. Array of optical phantoms containing hemoglobin, protoporphyrin IX and fat emulsion (as scattering media) in various concentrations was prepared to verify the method. The recovery of hemoglobin and protoporphyrin IX concentrations in the scattering media with an error less than 10% has been demonstrated. The fat emulsion concentration estimation accuracy was less than 12%. The first clinical test was carried out during glioblastoma multiforme resection in Burdenko Neurosurgery Institute and confirmed that sensitivity of this method is enough to detect investigated tumor markers in vivo. This method will allow intraoperative analysis of the structural and metabolical tumor markers directly in the zone of destruction of tumor tissue, thereby increasing the degree of radical removal and preservation of healthy tissue.

  4. Capillary-scale direct measurement of hemoglobin concentration of erythrocytes using photothermal angular light scattering.

    PubMed

    Kim, Uihan; Song, Jaewoo; Lee, Donghak; Ryu, Suho; Kim, Soocheol; Hwang, Jaehyun; Joo, Chulmin

    2015-12-15

    We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Study on the interaction between albendazole and eosin Y by fluorescence, resonance Rayleigh scattering and frequency doubling scattering spectra and their analytical applications

    NASA Astrophysics Data System (ADS)

    Tian, Fengling; Huang, Wei; Yang, Jidong; Li, Qin

    In pH 3.25-3.35 Britton-Robinson (BR) buffer solution, albendazole (ABZ) could react with eosin Y (EY) to form a 1:1 ion-association complex, which not only results in the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS). Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 356 nm. The detection limit for ABZ were 21.51 ng mL-1 for the fluorophotometry, 6.93 ng mL-1 for the RRS method and 12.89 ng mL-1 for the FDS method. Among them, the RRS method had the highest sensitivity. The experimental conditions were optimized and effects of coexisting substances were evaluated. Meanwhile, the influences of coexisting substances were tested. The methods have been successfully applied to the determination of ABZ in capsules and human urine samples. The composition and structure of the ion-association complex and the reaction mechanism were discussed.

  6. Space-time windowing of angle-beam wavefield data to characterize scattering from defects

    NASA Astrophysics Data System (ADS)

    Weng, Yu; Michaels, Jennifer E.

    2018-04-01

    The primary focus of ultrasonic nondestructive evaluation is defect detection and characterization. In particular, fatigue cracks emanating from fastener holes are commonly found in aerospace structures. Therefore, scattering of ultrasonic waves from crack-like notches is of practical interest. Here, angle-beam shear waves are used to interrogate notches in aluminum plates. In prior work, notch-scattering was characterized and quantified in the frequency-wavenumber domain, which has the undesirable effect of lumping all scattered shear wave energy from notches into a single energy curve. This present work focuses on developing space-time windowing methods to quantify notch-scattered energy directly in the time-space domain. Two strategies are developed. The first is to indirectly characterize notch-scattering via the change in scattering as compared to the undamaged through-hole. The second strategy is to directly track notch-scattered waves in the time-space domain and then quantify scattered energy by constructing energy-versus-direction curves. Both strategies provide a group of energy difference curves, which show how notch-scattering evolves as time progresses. Notch-scattering quantification results for different notch lengths are shown and discussed.

  7. Improved Time-Lapsed Angular Scattering Microscopy of Single Cells

    NASA Astrophysics Data System (ADS)

    Cannaday, Ashley E.

    By measuring angular scattering patterns from biological samples and fitting them with a Mie theory model, one can estimate the organelle size distribution within many cells. Quantitative organelle sizing of ensembles of cells using this method has been well established. Our goal is to develop the methodology to extend this approach to the single cell level, measuring the angular scattering at multiple time points and estimating the non-nuclear organelle size distribution parameters. The diameters of individual organelle-size beads were successfully extracted using scattering measurements with a minimum deflection angle of 20 degrees. However, the accuracy of size estimates can be limited by the angular range detected. In particular, simulations by our group suggest that, for cell organelle populations with a broader size distribution, the accuracy of size prediction improves substantially if the minimum angle of detection angle is 15 degrees or less. The system was therefore modified to collect scattering angles down to 10 degrees. To confirm experimentally that size predictions will become more stable when lower scattering angles are detected, initial validations were performed on individual polystyrene beads ranging in diameter from 1 to 5 microns. We found that the lower minimum angle enabled the width of this delta-function size distribution to be predicted more accurately. Scattering patterns were then acquired and analyzed from single mouse squamous cell carcinoma cells at multiple time points. The scattering patterns exhibit angular dependencies that look unlike those of any single sphere size, but are well-fit by a broad distribution of sizes, as expected. To determine the fluctuation level in the estimated size distribution due to measurement imperfections alone, formaldehyde-fixed cells were measured. Subsequent measurements on live (non-fixed) cells revealed an order of magnitude greater fluctuation in the estimated sizes compared to fixed cells. With our improved and better-understood approach to single cell angular scattering, we are now capable of reliably detecting changes in organelle size predictions due to biological causes above our measurement error of 20 nm, which enables us to apply our system to future studies of the investigation of various single cell biological processes.

  8. Fine-filter method for Raman lidar based on wavelength division multiplexing and fiber Bragg grating.

    PubMed

    Wang, Jun; Zheng, Jiao; Lu, Hong; Yan, Qing; Wang, Li; Liu, Jingjing; Hua, Dengxin

    2017-11-01

    Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.

  9. Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method.

    PubMed

    Fan, Qunfang; Cao, Jie; Liu, Ye; Yao, Bo; Mao, Qinghe

    2013-09-01

    The process of depositing nanoparticles onto tapered fiber probes with the laser-induced chemical deposition method (LICDM) and the surface-enhanced Raman scattering (SERS) detection performance of the prepared probes are experimentally investigated in this paper. Our results show that the nanoparticle-deposited tapered fiber probes prepared with the LICDM method depend strongly on the value of the cone angle. For small-angle tapered probes the nanoparticle-deposited areas are only focused at the taper tips, because the taper surfaces are mainly covered by a relatively low-intensity evanescent field. By lengthening the reaction time or increasing the induced power or solution concentration, it is still possible to deposit nanoparticles on small-angle tapers with the light-scattering effect. With 4-aminothiophenol as the testing molecule, it was found that for given preparation conditions, the cone angles for the tapered probes with the highest SERS spectral intensities for different excitation laser powers are almost the same. However, such an optimal cone angle is determined by the combined effects of both the localized surface plasmon resonance strength and the transmission loss generated by the nanoparticles deposited.

  10. Shape oscillations of acoustically levitated drops in water: Early research with Bob Apfel on modulated radiation pressure

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2004-05-01

    In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.

  11. Full wave two-dimensional modeling of scattering and inverse scattering for layered rough surfaces with buried objects

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Hao

    Efficient and accurate modeling of electromagnetic scattering from layered rough surfaces with buried objects finds applications ranging from detection of landmines to remote sensing of subsurface soil moisture. The formulation of a hybrid numerical/analytical solution to electromagnetic scattering from layered rough surfaces is first presented in this dissertation. The solution to scattering from each rough interface is sought independently based on the extended boundary condition method (EBCM), where the scattered fields of each rough interface are expressed as a summation of plane waves and then cast into reflection/transmission matrices. To account for interactions between multiple rough boundaries, the scattering matrix method (SMM) is applied to recursively cascade reflection and transmission matrices of each rough interface and obtain the composite reflection matrix from the overall scattering medium. The validation of this method against the Method of Moments (MoM) and Small Perturbation Method (SPM) is addressed and the numerical results which investigate the potential of low frequency radar systems in estimating deep soil moisture are presented. Computational efficiency of the proposed method is also discussed. In order to demonstrate the capability of this method in modeling coherent multiple scattering phenomena, the proposed method has been employed to analyze backscattering enhancement and satellite peaks due to surface plasmon waves from layered rough surfaces. Numerical results which show the appearance of enhanced backscattered peaks and satellite peaks are presented. Following the development of the EBCM/SMM technique, a technique which incorporates a buried object in layered rough surfaces by employing the T-matrix method and the cylindrical-to-spatial harmonics transformation is proposed. Validation and numerical results are provided. Finally, a multi-frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties using VHF/UHF band radar measurements is devised. The top soil dielectric constant is first determined using an L-band inversion algorithm. For the retrieval of subsurface properties, a time-domain inversion technique is employed together with a parameter optimization for the pulse shape of time delay echoes from VHF/UHF band radar observations. Numerical studies to investigate the accuracy of the proposed inversion technique in presence of errors are addressed.

  12. Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring

    NASA Technical Reports Server (NTRS)

    Diehl, S. R.; Smith, D. T.; Sydor, M.

    1979-01-01

    Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.

  13. Study on off-axis detection of pulsed laser in atmosphere

    NASA Astrophysics Data System (ADS)

    Liang, Weiwei

    2018-02-01

    Laser communication, designation, and ranging are point to point and have a high degree of specificity, current laser detection, such as laser warning receiver system, could detect the scattering laser from the off-axis distance by scattering track on natural aerosols, which is helpful to locate the laser source. However, the intensity of the scattering laser is extremely weak and affected by many factors, in order to evaluate the detection characteristic, a simplified model of off-axis detection for scattering laser in the lower atmosphere based on the Mie scattering theory is presented in this paper, the performances of the off-axis laser detection in different conditions such as off-axis distance, visibility, incidence angle, and delay time are investigated.

  14. Surface-enhanced Raman scattering spectroscopy characterization and identification of foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Liu, Yongliang; Chen, Yud-Ren; Nou, Xiangwu; Chao, Kaunglin

    2007-09-01

    Rapid and routine identification of foodborne bacteria are considerably important, because of bio- / agro- terrorism threats, public health concerns, and economic loss. Conventional, PCR, and immunoassay methods for the detection of bacteria are generally time-consuming, chemical reagent necessary and multi-step procedures. Fast microbial detection requires minimal sample preparation, permits the routine analysis of large numbers of samples with negligible reagent costs, and is easy to operate. Therefore, we have developed silver colloidal nanoparticle based surface-enhanced Raman scattering (SERS) spectroscopy as a potential tool for the rapid and routine detection of E. coli and L. monocytogenes. This study presents the further results of our examination on S. typhimonium, one of the most commonly outbreak bacteria, for the characteristic bands and subsequent identification.

  15. Detection of Multiple Pathogens in Serum Using Silica-Encapsulated Nanotags in a Surface-Enhanced Raman Scattering-Based Immunoassay.

    PubMed

    Neng, Jing; Li, Yina; Driscoll, Ashley J; Wilson, William C; Johnson, Patrick A

    2018-06-06

    A robust immunoassay based on surface-enhanced Raman scattering (SERS) has been developed to simultaneously detect trace quantities of multiple pathogenic antigens from West Nile virus, Rift Valley fever virus, and Yersinia pestis in fetal bovine serum. Antigens were detected by capture with silica-encapsulated nanotags and magnetic nanoparticles conjugated with polyclonal antibodies. The magnetic pull-down resulted in aggregation of the immune complexes, and the silica-encapsulated nanotags provided distinct spectra corresponding to each antigen captured. The limit of detection was ∼10 pg/mL in 20% fetal bovine serum, a significant improvement over previous studies in terms of sensitivity, level of multiplexing, and medium complexity. This highly sensitive multiplex immunoassay platform provides a promising method to detect various antigens directly in crude serum samples without the tedious process of sample preparation, which is desirable for on-site diagnostic testing and real-time disease monitoring.

  16. Radiative transfer modeling and analysis of spatially variant and coherent illumination for undersea object detection

    NASA Astrophysics Data System (ADS)

    Bailey, Bernard Charles

    Increasing the optical range of target detection and recognition continues to be an area of great interest in the ocean environment. Light attenuation limits radiative and information transfer for image formation in water. These limitations are difficult to surmount in conventional underwater imaging system design. Methods for the formation of images in scattering media generally rely upon temporal or spatial methodologies. Some interesting designs have been developed in an attempt to circumvent or overcome the scattering problem. This document describes a variation of the spatial interferometric technique that relies upon projected spatial gratings with subsequent detection against a coherent return signal for the purpose of noise reduction and image enhancement. A model is developed that simulates the projected structured illumination through turbid water to a target and its return to a detector. The model shows an unstructured backscatter superimposed on a structured return signal. The model can predict the effect on received signal to noise of variations in the projected spatial frequency and turbidity. The model has been extended to predict what a camera would actually see so that various noise reduction schemes can be modeled. Finally, some water tank tests are presented validating original hypothesis and model predictions. The method is advantageous in not requiring temporal synchronization between reference and signal beams and may use a continuous illumination source. Spatial coherency of the beam allows detection of the direct return, while scattered light appears as a noncoherent noise term. Both model and illumination method should prove to be valuable tools in ocean research.

  17. Detection and Tracking of Moving Targets Behind Cluttered Environments Using Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Dang, Vinh Quang

    Detection and tracking of moving targets (target's motion, vibration, etc.) in cluttered environments have been receiving much attention in numerous applications, such as disaster search-and-rescue, law enforcement, urban warfare, etc. One of the popular techniques is the use of stepped frequency continuous wave radar due to its low cost and complexity. However, the stepped frequency radar suffers from long data acquisition time. This dissertation focuses on detection and tracking of moving targets and vibration rates of stationary targets behind cluttered medium such as wall using stepped frequency radar enhanced by compressive sensing. The application of compressive sensing enables the reconstruction of the target space using fewer random frequencies, which decreases the acquisition time. Hardware-accelerated parallelization on GPU is investigated for the Orthogonal Matching Pursuit reconstruction algorithm. For simulation purpose, two hybrid methods have been developed to calculate the scattered fields from the targets through the wall approaching the antenna system, and to convert the incoming fields into voltage signals at terminals of the receive antenna. The first method is developed based on the plane wave spectrum approach for calculating the scattered fields of targets behind the wall. The method uses Fast Multiple Method (FMM) to calculate scattered fields on a particular source plane, decomposes them into plane wave components, and propagates the plane wave spectrum through the wall by integrating wall transmission coefficients before constructing the fields on a desired observation plane. The second method allows one to calculate the complex output voltage at terminals of a receiving antenna which fully takes into account the antenna effects. This method adopts the concept of complex antenna factor in Electromagnetic Compatibility (EMC) community for its calculation.

  18. Novel Raman Techniques for Imaging and Sensing

    NASA Astrophysics Data System (ADS)

    Edwards, Perry S.

    Raman scattering spectroscopy is extensively demonstrated as a label-free, chemically selective sensing and imaging technique for a multitude of chemical and biological applications. The ability to detect "fingerprint" spectral signatures of individual molecules, without the need to introduce chemical labelers, makes Raman scattering a powerful sensing technique. However, spectroscopy based on spontaneous Raman scattering traditionally suffers from inherently weak signals due to small Raman scattering cross-sections. Thus, considerable efforts have been put forth to find pathways towards enhancing Raman signals to bolster sensitivity for detecting small concentrations of molecules or particles. The development of coherent Raman techniques that can offer orders of magnitude increase in signal have garnered significant interest in recent years for their application in imaging; such techniques include coherent anti-Stokes Raman scattering and stimulated Raman scattering. Additionally, methods to enhance the local field of either the pump or generated Raman signal, such as through surface enhanced Raman scattering, have been investigated for their orders of magnitude improvement in sensitivity and single molecule sensing capability. The work presented in this dissertation describes novel techniques for performing high speed and highly sensitive Raman imaging as well as sensing applications towards bioimaging and biosensing. Coherent anti-Stokes Raman scattering (CARS) is combined with holography to enable recording of high-speed (single laser shot), wide field CARS holograms which can be used to reconstruct the both the amplitude and the phase of the anti-Stokes field therefore allowing 3D imaging. This dissertation explores CARS holography as a viable label-free bio-imaging technique. A Raman scattering particle sensing system is also developed that utilizes wave guide properties of optical fibers and ring-resonators to perform enhanced particle sensing. Resonator-enhanced particle sensing is experimentally examined as a new method for enhancing Raman scattering from particles interacting with circulating optical fields within both a fiber ring-cavity and whispering gallery mode microtoroid microresonators. The achievements described in this dissertation include: (1) Demonstration of the bio-imaging capability of CARS holography by recording of CARS holograms of subcellular components in live cancer (HeLa) cells. (2) Label-free Raman microparticle sensing using a tapered optical fibers. A tapered fiber can guide light to particles adsorbed on the surface of the taper to generate scattered Raman signal which can be collected by a microRaman detection system. (3) Demonstration of the proof of concept of resonator-enhanced Raman spectroscopy in a fiber ring resonator consisting of a section of fiber taper. (4) A method for locking the pump laser to the resonate frequencies of a resonator. This is demonstrated using a fiber ring resonator and microtoroid microresonators. (5) Raman scattered signal from particles adhered to microtoroid microresonators is acquired using 5 seconds of signal integration time and with the pump laser locked to a cavity resonance. (6) Theoretical analysis is performed that indicates resonator-enhanced Raman scattering from microparticles adhered to microresonators can be achieved with the pump laser locked to the frequency of a high-Q cavity resonant mode.

  19. Detection of Changes on and below the Surface in Epithelium Mucosal Tissue Structure using Scattered Light

    NASA Astrophysics Data System (ADS)

    Taslidere, Ezgi

    The aim of this work is to answer the question of whether it is possible to detect changes on and below the surface in epithelium tissue structure using light reflected from the tissue over an area (2-D scan) illuminated by an optical sensor (fiber) emitting light at either one wavelength or with white light. Towards that end we model the 2-D reflected scans using a Stochastic Decomposition Method (SDM). The emphasis in this work is on the novelty of the proposed model and its theoretical pinning and foundation. The model is biologically motivated by the stochastic textural nature of the tissue. We model the textural content (which relates to tissue morphology) that manifests itself in the 2-D scans. Unlike previous works that analyze the scattered signal at one spot at various wavelengths, our method statistically analyzes 2-D scans of light scattering data over an area, and extracts from the data features (SDM parameters) that change with changes in the tissue morphology. The examination of an area rather than a spot not only leads to a more reliable calculation of the extracted parameters using single techniques (e.g. nuclear size distribution), but it also leads to the computation of additional information embedded in the spatial texture that our decomposition technique arrives at by modeling the hidden correlations that are obtained only by interrogating a wide sample area. To the best of our knowledge, this is the first attempt at modeling the scattered light over an area using a stochastic decomposition model that allows for the assessment of correlation and textural characteristics that otherwise could not be revealed when the analysis of the scattering signal is a function of wavelength or angle. We also come up with a segmentation technique to raise a flag on the fly when a transition occurs between different mucosal architectures on the surface. The segmentation is based on a novel difference metric for detecting an abrupt change in the parameters extracted from SDM. This has a great potential to enhance the endoscopist's ability to locate and identify abnormal mucosal architectures and help the endoscopist's decision making for when and where to take biopsies. Finally, this work presents a meaningful comparison between existing point spectroscopy methods and our method on tissue phantom data as well as in vitro biological tissues and shows scenarios where the two methods are complimentary and other scenarios where our method will be able to detect changes in tissue morphology whereas point spectroscopy will not. The method is tested on simulation, tissue phantom data and animal tissue data collected from rat and rabbit colons in-vitro and shows great promise.

  20. Diffraction Pattern Analysis as an Optical Inspection Technique

    DTIC Science & Technology

    1991-08-01

    BACKGROUND Diameters of fiber samples have commonly been measured manually with an optical microscope. Marcuse and Presby developed an automatic...by analyzing the back-scattered light when a beam of laser light impinged upon the fiber [2]. Presby and Marcuse extended this back-scattering tech...be im- proved further in order to become a feasible method for detecting a small number of blocked openings in CRT screens. 20 REFERENCES 1. Marcuse

  1. Software design of control system of CCD side-scatter lidar

    NASA Astrophysics Data System (ADS)

    Kuang, Zhiqiang; Liu, Dong; Deng, Qian; Zhang, Zhanye; Wang, Zhenzhu; Yu, Siqi; Tao, Zongming; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Because of the existence of blind zone and transition zone, the application of backscattering lidar in near-ground is limited. The side-scatter lidar equipped with the Charge Coupled Devices (CCD) can separate the transmitting and receiving devices to avoid the impact of the geometric factors which is exited in the backscattering lidar and, detect the more precise near-ground aerosol signals continuously. Theories of CCD side-scatter lidar and the design of control system are introduced. The visible control of laser and CCD and automatic data processing method of the side-scatter lidar are developed by using the software of Visual C #. The results which are compared with the calibration of the atmospheric aerosol lidar data show that signals from the CCD side- scatter lidar are convincible.

  2. Tissue characterization with ballistic photons: counting scattering and/or absorption centres

    NASA Astrophysics Data System (ADS)

    Corral, F.; Strojnik, M.; Paez, G.

    2015-03-01

    We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach-Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path-integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.

  3. Analytically based photon scatter modeling for a multipinhole cardiac SPECT camera.

    PubMed

    Pourmoghaddas, Amir; Wells, R Glenn

    2016-11-01

    Dedicated cardiac SPECT scanners have improved performance over standard gamma cameras allowing reductions in acquisition times and/or injected activity. One approach to improving performance has been to use pinhole collimators, but this can cause position-dependent variations in attenuation, sensitivity, and spatial resolution. CT attenuation correction (AC) and an accurate system model can compensate for many of these effects; however, scatter correction (SC) remains an outstanding issue. In addition, in cameras using cadmium-zinc-telluride-based detectors, a large portion of unscattered photons is detected with reduced energy (low-energy tail). Consequently, application of energy-based SC approaches in these cameras leads to a higher increase in noise than with standard cameras due to the subtraction of true counts detected in the low-energy tail. Model-based approaches with parallel-hole collimator systems accurately calculate scatter based on the physics of photon interactions in the patient and camera and generate lower-noise estimates of scatter than energy-based SC. In this study, the accuracy of a model-based SC method was assessed using physical phantom studies on the GE-Discovery NM530c and its performance was compared to a dual energy window (DEW)-SC method. The analytical photon distribution (APD) method was used to calculate the distribution of probabilities that emitted photons will scatter in the surrounding scattering medium and be subsequently detected. APD scatter calculations for 99m Tc-SPECT (140 ± 14 keV) were validated with point-source measurements and 15 anthropomorphic cardiac-torso phantom experiments and varying levels of extra-cardiac activity causing scatter inside the heart. The activity inserted into the myocardial compartment of the phantom was first measured using a dose calibrator. CT images were acquired on an Infinia Hawkeye (GE Healthcare) SPECT/CT and coregistered with emission data for AC. For comparison, DEW scatter projections (120 ± 6 keV ) were also extracted from the acquired list-mode SPECT data. Either APD or DEW scatter projections were subtracted from corresponding 140 keV measured projections and then reconstructed with AC (APD-SC and DEW-SC). Quantitative accuracy of the activity measured in the heart for the APD-SC and DEW-SC images was assessed against dose calibrator measurements. The difference between modeled and acquired projections was measured as the root-mean-squared-error (RMSE). APD-modeled projections for a clinical cardiac study were also evaluated. APD-modeled projections showed good agreement with SPECT measurements and had reduced noise compared to DEW scatter estimates. APD-SC reduced mean error in activity measurement compared to DEW-SC in images and the reduction was statistically significant where the scatter fraction (SF) was large (mean SF = 28.5%, T-test p = 0.007). APD-SC reduced measurement uncertainties as well; however, the difference was not found to be statistically significant (F-test p > 0.5). RMSE comparisons showed that elevated levels of scatter did not significantly contribute to a change in RMSE (p > 0.2). Model-based APD scatter estimation is feasible for dedicated cardiac SPECT scanners with pinhole collimators. APD-SC images performed better than DEW-SC images and improved the accuracy of activity measurement in high-scatter scenarios.

  4. Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pang, Sean; Zhu, Zheyuan

    2017-05-01

    Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.

  5. Simultaneous determination of flavonoids, isochlorogenic acids and triterpenoids in Ilex hainanensis Using high performance liquid chromatography coupled with diode array and evaporative light scattering detection.

    PubMed

    Peng, Bo; Qiao, Chun-Feng; Zhao, Jing; Huang, Wei-Hua; Hu, De-Jun; Liu, Hua-Gang; Li, Shao-Ping

    2013-03-04

    A high performance liquid chromatography coupled with diode array and evaporative light scattering detection (HPLC-DAD-ELSD) method for simultaneous determination of eight major bioactive compounds including two flavonoids (rutin and eriodictyol-7-O-β-D-glucopyranoside), two isochlorogenic acids (isochlorogenic acid A and isochlorogenic acid C) and four triterpenoids (ilexhainanoside D, ilexsaponin A1, ilexgenin A and ursolic acid) in Ilex hainanensis has been developed for the first time. The 283 nm wavelength was chosen for determination of two flavonoids and two isochlorogenic acids. ELSD was applied to determine four triterpenoids. The analysis was performed on an Agilent Zorbax SB-C18 column (250 × 4.6 mm i.d., 5 µm) with gradient elution of 0.2% formic acid in water and acetonitrile. The method was validated for linearity, limit of detection, limit of quantification, precision, repeatability and accuracy. The proposed method has been successfully applied for simultaneous quantification of the analytes in four samples of Ilex hainanensis, which is helpful for quality control of this plant.

  6. Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers

    PubMed Central

    Smolsky, Joseph; Kaur, Sukhwinder; Hayashi, Chihiro; Batra, Surinder K.; Krasnoslobodtsev, Alexey V.

    2017-01-01

    Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS. PMID:28085088

  7. Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan

    2011-10-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.

  8. High-sensitivity detection of polysaccharide using phosphodiesters quaternary ammonium salt as probe by decreased resonance light scattering.

    PubMed

    Chen, Zhanguang; Liu, Guoliang; Chen, Maohuai; Wu, Mingyao

    2009-07-15

    Phosphodiesters quaternary ammonium salt (PQAS) displayed quite intense light scattering in aqueous solution under the optimum condition. In addition, the resonance light scattering (RLS) signal of PQAS was remarkably decreased after adding trace amount polysaccharide with the maximum peak located at 391 nm. It was found that the decreased RLS intensity of the PQAS-PPGL system (DeltaI(RLS)) was in proportion to PPGL concentration in the range of 0.1-30 ng mL(-1), with a lower detection limit of 0.05 ng mL(-1). Based on this rare decreased RLS phenomenon, the novel method of the determination of purified polysaccharide of Gracilaria Lemaneiformis (PPGL) at nanogram level was proposed in this contribution. The proposed approach was used to determine purified polysaccharide extracted from Gracilaria Lemaneiformis with satisfactory results. Compared with the reported polysaccharide assays, this proposed method has good selectivity, high sensitivity and is especially simple and convenient. Moreover, the mechanism of the reaction between PQAS and polysaccharide was investigated by RLS, fluorescence, and fluorescence lifetime spectra.

  9. Near surface illumination method to detect particle size information by optical calibration free remission measurements

    NASA Astrophysics Data System (ADS)

    Stocker, Sabrina; Foschum, Florian; Kienle, Alwin

    2017-07-01

    A calibration free method to detect particle size information is presented. A possible application for such measurements is the investigation of raw milk since there not only the fat and protein content varies but also the fat droplet size. The newly developed method is sensitive to the scattering phase function, which makes it applicable to many other applications, too. By simulating the light propagation by use of Monte Carlo simulations, a calibration free device can be developed from this principle.

  10. A RP-LC method with evaporative light scattering detection for the assay of simethicone in pharmaceutical formulations.

    PubMed

    Moore, Douglas E; Liu, Tina X; Miao, William G; Edwards, Alison; Elliss, Russell

    2002-09-05

    A reversed-phase liquid chromatographic method has been developed and validated for the determination of the polydimethylsiloxane (PDMS) component of Simethicone, which is used as an anti-foaming agent in pharmaceutical formulations. The method involves acidification to neutralise antacid components of the formulation, then a single extraction of the PDMS with dichloromethane. This is followed by separation with a reversed-phase column using an acetonitrile-chloroform solvent gradient, and quantification by an evaporative light scattering detector. An assay precision of 3% was achieved in intraday and interday determinations. No interference was found from the aluminium and magnesium hydroxide components of antacid formulations.

  11. Light‐scattering sensor for real‐time identification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae colonies on solid agar plate

    PubMed Central

    Huff, Karleigh; Aroonnual, Amornrat; Littlejohn, Amy E. Fleishman; Rajwa, Bartek; Bae, Euiwon; Banada, Padmapriya P.; Patsekin, Valery; Hirleman, E. Daniel; Robinson, J. Paul; Richards, Gary P.; Bhunia, Arun K.

    2012-01-01

    Summary The three most common pathogenic species of Vibrio, Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus, are of major concerns due to increased incidence of water‐ and seafood‐related outbreaks and illness worldwide. Current methods are lengthy and require biochemical and molecular confirmation. A novel label‐free forward light‐scattering sensor was developed to detect and identify colonies of these three pathogens in real time in the presence of other vibrios in food or water samples. Vibrio colonies grown on agar plates were illuminated by a 635 nm laser beam and scatter‐image signatures were acquired using a CCD (charge‐coupled device) camera in an automated BARDOT (BActerial Rapid Detection using Optical light‐scattering Technology) system. Although a limited number of Vibrio species was tested, each produced a unique light‐scattering signature that is consistent from colony to colony. Subsequently a pattern recognition system analysing the collected light‐scatter information provided classification in 1−2 min with an accuracy of 99%. The light‐scattering signatures were unaffected by subjecting the bacteria to physiological stressors: osmotic imbalance, acid, heat and recovery from a viable but non‐culturable state. Furthermore, employing a standard sample enrichment in alkaline peptone water for 6 h followed by plating on selective thiosulphate citrate bile salts sucrose agar at 30°C for ∼ 12 h, the light‐scattering sensor successfully detected V. cholerae, V. parahaemolyticus and V. vulnificus present in oyster or water samples in 18 h even in the presence of other vibrios or other bacteria, indicating the suitability of the sensor as a powerful screening tool for pathogens on agar plates. PMID:22613192

  12. Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate

    NASA Astrophysics Data System (ADS)

    Shan, Yufeng; Zheng, Zhihui; Liu, Jianjun; Yang, Yong; Li, Zhiyuan; Huang, Zhengren; Jiang, Dongliang

    2017-03-01

    Surface-enhanced Raman scattering technique, as a powerful tool to identify the molecular species, has been severely restricted to the noble metals. The surface-enhanced Raman scattering substrates based on semiconductors would overcome the shortcomings of metal substrates and promote development of surface-enhanced Raman scattering technique in surface science, spectroscopy, and biomedicine studies. However, the detection sensitivity and enhancement effects of semiconductor substrates are suffering from their weak activities. In this work, a semiconductor based on Nb2O5 is reported as a new candidate for highly sensitive surface-enhanced Raman scattering detection of dye molecules. The largest enhancement factor value greater than 107 was observed with the laser excitation at 633 and 780 nm for methylene blue detection. As far as literature review shows, this is in the rank of the highest sensitivity among semiconductor materials; even comparable to the metal nanostructure substrates with "hot spots". The impressive surface-enhanced Raman scattering activities can be attributed to the chemical enhancement dominated by the photo-induced charge transfer, as well as the electromagnetic enhancement, which have been supported by the density-functional-theory and finite element method calculation results. The chemisorption of dye on Nb2O5 creates a new highest occupied molecular orbital and lowest unoccupied molecular orbital contributed by both fragments in the molecule-Nb2O5 system, which makes the charge transfer more feasible with longer excitation wavelength. In addition, the electromagnetic enhancement mechanism also accounts for two orders of magnitude enhancement in the overall enhancement factor value. This work has revealed Nb2O5 nanoparticles as a new semiconductor surface-enhanced Raman scattering substrate that is able to replace noble metals and shows great potentials applied in the fields of biology related.

  13. Aqueous carrier waveguide in a flow cytometer

    DOEpatents

    Mariella, Jr., Raymond P.; van den Engh, Gerrit; Northrup, M. Allen

    1995-01-01

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified.

  14. Analysis of the multigroup model for muon tomography based threat detection

    NASA Astrophysics Data System (ADS)

    Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.

    2014-02-01

    We compare different algorithms for detecting a 5 cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5 cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.

  15. Positioning true coincidences that undergo inter-and intra-crystal scatter for a sub-mm resolution cadmium zinc telluride-based PET system

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Chinn, Garry; Levin, Craig S.

    2018-01-01

    The kinematics of Compton scatter can be used to estimate the interaction sequence of inter-crystal scatter interactions in 3D position-sensitive cadmium zinc telluride (CZT) detectors. However, in the case of intra-crystal scatter in a ‘cross-strip’ CZT detector slab, multiple anode and cathode strips may be triggered, creating position ambiguity due to uncertainty in possible combinations of anode-cathode pairings. As a consequence, methods such as energy-weighted centroid are not applicable to position the interactions. In practice, since the event position is uncertain, these intra-crystal scatters events are discarded. In this work, we studied using Compton kinematics and a ‘direction difference angle’ to provide a method to correctly identify the anode-cathode pair corresponding to the first interaction position in an intra-crystal scatter event. GATE simulation studies of a NEMA NU4 image quality phantom in a small animal positron emission tomography under development composed of 192, 40~mm×40~mm×5 mm CZT crystals shows that 47% of total numbers of multiple-interaction photon events (MIPEs) are intra-crystal scatter with a 100 keV lower energy threshold per interaction. The sensitivity of the system increases from 0.6 to 4.10 (using 10 keV as system lower energy threshold) by including rather than discarding inter- and intra-crystal scatter. The contrast-to-noise ratio (CNR) also increases from 5.81+/-0.3 to 12.53+/-0.37 . It was shown that a higher energy threshold limits the capability of the system to detect MIPEs and reduces CNR. Results indicate a sensitivity increase (4.1 to 5.88) when raising the lower energy threshold (10 keV to 100 keV) for the case of only two-interaction events. In order to detect MIPEs accurately, a low noise system capable of a low energy threshold (10 keV) per interaction is desired.

  16. Optical property retrievals of subvisual cirrus clouds from OSIRIS limb-scatter measurements

    NASA Astrophysics Data System (ADS)

    Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.

    2012-08-01

    We present a technique for retrieving the optical properties of subvisual cirrus clouds detected by OSIRIS, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Optical properties from an in-situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is demonstrated that the retrieved extinction profile models accurately the measured in-cloud radiances from OSIRIS. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.

  17. Scattering of circumferential waves in a cracked annulus

    NASA Astrophysics Data System (ADS)

    Valle, Christine; Qu, Jianmin; Jacobs, Laurence J.

    2000-05-01

    This paper considers guided waves propagating in the circumferential direction of an annulus with a radial crack, with the objective of developing an ultrasonic technique that can detect and characterize these cracks. Specifically, the finite element method is used to simulate the propagation and scattering of guided circumferential waves in a cracked annulus. This method fosters a better understanding of the wave fields, so that a transducer configuration used in the field can be optimized for crack detection/characterization. Both a point source (simulating laser generated ultrasound) and a distributed source (simulating a PZT transducer) are modeled and compared to corresponding experimental results. Animations (snapshots at different instants in time) of the strain energy field in the annulus are given for various combinations of load profiles, incident angles, and incident frequencies. Results of this paper provide the necessary design guidelines for developing nondestructive ultrasonic techniques for the detection/characterization of radial cracks in cylindrical pressure vessels, gas/oil pipes, and shaft/bearing systems.

  18. Digital Mammography with a Mosaic of CCD-Arrays

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); McAdoo, James A. (Inventor)

    1996-01-01

    The present invention relates generally to a mammography device and method and more particularly to a novel digital mammography device and method to detect microcalcifications of precancerous tissue. A digital mammography device uses a mosaic of electronic digital imaging arrays to scan an x-ray image. The mosaic of arrays is repositioned several times to expose different portions of the image, until the entire image is scanned. The data generated by the arrays during each exposure is stored in a computer. After the final exposure, the computer combines data of the several partial images to produce a composite of the original x-ray image. An aperture plate is used to reduce scatter and the overall exposure of the patient to x-rays. The novelty of this invention is that it provides a digital mammography device with large field coverage, high spatial resolution, scatter rejection, excellent contrast characteristics and lesion detectability under clinical conditions. This device also shields the patient from excessive radiation, can detect extremely small calcifications and allows manipulation and storage of the image.

  19. Library based x-ray scatter correction for dedicated cone beam breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Linxi; Zhu, Lei, E-mail: leizhu@gatech.edu

    Purpose: The image quality of dedicated cone beam breast CT (CBBCT) is limited by substantial scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose a library-based software approach to suppress scatter on CBBCT images with high efficiency, accuracy, and reliability. Methods: The authors precompute a scatter library on simplified breast models with different sizes using the GEANT4-based Monte Carlo (MC) toolkit. The breast is approximated as a semiellipsoid with homogeneous glandular/adipose tissue mixture. For scatter correctionmore » on real clinical data, the authors estimate the breast size from a first-pass breast CT reconstruction and then select the corresponding scatter distribution from the library. The selected scatter distribution from simplified breast models is spatially translated to match the projection data from the clinical scan and is subtracted from the measured projection for effective scatter correction. The method performance was evaluated using 15 sets of patient data, with a wide range of breast sizes representing about 95% of general population. Spatial nonuniformity (SNU) and contrast to signal deviation ratio (CDR) were used as metrics for evaluation. Results: Since the time-consuming MC simulation for library generation is precomputed, the authors’ method efficiently corrects for scatter with minimal processing time. Furthermore, the authors find that a scatter library on a simple breast model with only one input parameter, i.e., the breast diameter, sufficiently guarantees improvements in SNU and CDR. For the 15 clinical datasets, the authors’ method reduces the average SNU from 7.14% to 2.47% in coronal views and from 10.14% to 3.02% in sagittal views. On average, the CDR is improved by a factor of 1.49 in coronal views and 2.12 in sagittal views. Conclusions: The library-based scatter correction does not require increase in radiation dose or hardware modifications, and it improves over the existing methods on implementation simplicity and computational efficiency. As demonstrated through patient studies, the authors’ approach is effective and stable, and is therefore clinically attractive for CBBCT imaging.« less

  20. WE-DE-207B-12: Scatter Correction for Dedicated Cone Beam Breast CT Based On a Forward Projection Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L; Zhu, L; Vedantham, S

    2016-06-15

    Purpose: The image quality of dedicated cone-beam breast CT (CBBCT) is fundamentally limited by substantial x-ray scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose to suppress x-ray scatter in CBBCT images using a deterministic forward projection model. Method: We first use the 1st-pass FDK-reconstructed CBBCT images to segment fibroglandular and adipose tissue. Attenuation coefficients are assigned to the two tissues based on the x-ray spectrum used for imaging acquisition, and is forward projected to simulatemore » scatter-free primary projections. We estimate the scatter by subtracting the simulated primary projection from the measured projection, and then the resultant scatter map is further refined by a Fourier-domain fitting algorithm after discarding untrusted scatter information. The final scatter estimate is subtracted from the measured projection for effective scatter correction. In our implementation, the proposed scatter correction takes 0.5 seconds for each projection. The method was evaluated using the overall image spatial non-uniformity (SNU) metric and the contrast-to-noise ratio (CNR) with 5 clinical datasets of BI-RADS 4/5 subjects. Results: For the 5 clinical datasets, our method reduced the SNU from 7.79% to 1.68% in coronal view and from 6.71% to 3.20% in sagittal view. The average CNR is improved by a factor of 1.38 in coronal view and 1.26 in sagittal view. Conclusion: The proposed scatter correction approach requires no additional scans or prior images and uses a deterministic model for efficient calculation. Evaluation with clinical datasets demonstrates the feasibility and stability of the method. These features are attractive for clinical CBBCT and make our method distinct from other approaches. Supported partly by NIH R21EB019597, R21CA134128 and R01CA195512.The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less

  1. Library based x-ray scatter correction for dedicated cone beam breast CT

    PubMed Central

    Shi, Linxi; Karellas, Andrew; Zhu, Lei

    2016-01-01

    Purpose: The image quality of dedicated cone beam breast CT (CBBCT) is limited by substantial scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose a library-based software approach to suppress scatter on CBBCT images with high efficiency, accuracy, and reliability. Methods: The authors precompute a scatter library on simplified breast models with different sizes using the geant4-based Monte Carlo (MC) toolkit. The breast is approximated as a semiellipsoid with homogeneous glandular/adipose tissue mixture. For scatter correction on real clinical data, the authors estimate the breast size from a first-pass breast CT reconstruction and then select the corresponding scatter distribution from the library. The selected scatter distribution from simplified breast models is spatially translated to match the projection data from the clinical scan and is subtracted from the measured projection for effective scatter correction. The method performance was evaluated using 15 sets of patient data, with a wide range of breast sizes representing about 95% of general population. Spatial nonuniformity (SNU) and contrast to signal deviation ratio (CDR) were used as metrics for evaluation. Results: Since the time-consuming MC simulation for library generation is precomputed, the authors’ method efficiently corrects for scatter with minimal processing time. Furthermore, the authors find that a scatter library on a simple breast model with only one input parameter, i.e., the breast diameter, sufficiently guarantees improvements in SNU and CDR. For the 15 clinical datasets, the authors’ method reduces the average SNU from 7.14% to 2.47% in coronal views and from 10.14% to 3.02% in sagittal views. On average, the CDR is improved by a factor of 1.49 in coronal views and 2.12 in sagittal views. Conclusions: The library-based scatter correction does not require increase in radiation dose or hardware modifications, and it improves over the existing methods on implementation simplicity and computational efficiency. As demonstrated through patient studies, the authors’ approach is effective and stable, and is therefore clinically attractive for CBBCT imaging. PMID:27487870

  2. Size-exclusion chromatography of perfluorosulfonated ionomers.

    PubMed

    Mourey, T H; Slater, L A; Galipo, R C; Koestner, R J

    2011-08-26

    A size-exclusion chromatography (SEC) method in N,N-dimethylformamide containing 0.1 M LiNO(3) is shown to be suitable for the determination of molar mass distributions of three classes of perfluorosulfonated ionomers, including Nafion(®). Autoclaving sample preparation is optimized to prepare molecular solutions free of aggregates, and a solvent exchange method concentrates the autoclaved samples to enable the use of molar-mass-sensitive detection. Calibration curves obtained from light scattering and viscometry detection suggest minor variation in the specific refractive index increment across the molecular size distributions, which introduces inaccuracies in the calculation of local absolute molar masses and intrinsic viscosities. Conformation plots that combine apparent molar masses from light scattering detection with apparent intrinsic viscosities from viscometry detection partially compensate for the variations in refractive index increment. The conformation plots are consistent with compact polymer conformations, and they provide Mark-Houwink-Sakurada constants that can be used to calculate molar mass distributions without molar-mass-sensitive detection. Unperturbed dimensions and characteristic ratios calculated from viscosity-molar mass relationships indicate unusually free rotation of the perfluoroalkane backbones and may suggest limitations to applying two-parameter excluded volume theories for these ionomers. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.

  4. Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules.

    PubMed

    Liang, Jiajie; Liu, Hongwu; Huang, Caihong; Yao, Cuize; Fu, Qiangqiang; Li, Xiuqing; Cao, Donglin; Luo, Zhi; Tang, Yong

    2015-06-02

    Lowering the detection limit is critical to the design of bioassays required for medical diagnostics, environmental monitoring, and food safety regulations. The current sensitivity of standard color-based analyte detection limits the further use of enzyme-linked immunosorbent assays (ELISAs) in research and clinical diagnoses. Here, we demonstrate a novel method that uses the Raman signal as the signal-generating system of an ELISA and combines surface-enhanced Raman scattering (SERS) with silver nanoparticles aggregation for ultrasensitive analyte detection. The enzyme label of the ELISA controls the dissolution of Raman reporter-labeled silver nanoparticles through hydrogen peroxide and generates a strong Raman signal when the analyte is present. Using this assay, prostate-specific antigen (PSA) and the adrenal stimulant ractopamine (Rac) were detected in whole serum and urine at the ultralow concentrations of 10(-9) and 10(-6) ng/mL, respectively. The methodology proposed here could potentially be applied to other molecules detection as well as PSA and Rac.

  5. Method for detection of dental caries and periodontal disease using optical imaging

    DOEpatents

    Nathel, Howard; Kinney, John H.; Otis, Linda L.

    1996-01-01

    A method for detecting the presence of active and inactive caries in teeth and diagnosing periodontal disease uses non-ionizing radiation with techniques for reducing interference from scattered light. A beam of non-ionizing radiation is divided into sample and reference beams. The region to be examined is illuminated by the sample beam, and reflected or transmitted radiation from the sample is recombined with the reference beam to form an interference pattern on a detector. The length of the reference beam path is adjustable, allowing the operator to select the reflected or transmitted sample photons that recombine with the reference photons. Thus radiation scattered by the dental or periodontal tissue can be prevented from obscuring the interference pattern. A series of interference patterns may be generated and interpreted to locate dental caries and periodontal tissue interfaces.

  6. Separation and identification of neutral cereal lipids by normal phase high-performance liquid chromatography, using evaporative light-scattering and electrospray mass spectrometry for detection.

    PubMed

    Rocha, João M; Kalo, Paavo J; Ollilainen, Velimatti; Malcata, F Xavier

    2010-04-30

    A novel method was developed for the analysis of molecular species in neutral lipid classes, using separation by normal phase high-performance liquid chromatography, followed by detection by evaporative light-scattering and electrospray ionization tandem mass spectrometry. Monoacid standards, i.e. sterol esters, triacylglycerols, fatty acids, diacylglycerols, free sterols and monoacylglycerols, were separated to baseline on microbore 3 microm-silica gel columns. Complete or partial separation of molecular species in each lipid class permitted identification by automatic tandem mass spectrometry of ammonium adducts, produced via positive electrospray ionization. After optimization of the method, separation and identification of molecular species of various lipid classes was comprehensively tested by analysis of neutral lipids from the free lipid extract of maize flour. 2010 Elsevier B.V. All rights reserved.

  7. A polarization measurement method for the quantification of retardation in optic nerve fiber layer

    NASA Astrophysics Data System (ADS)

    Fukuma, Yasufumi; Okazaki, Yoshio; Shioiri, Takashi; Iida, Yukio; Kikuta, Hisao; Ohnuma, Kazuhiko

    2008-02-01

    The thickness measurement of the optic nerve fiber layer is one of the most important evaluations for carrying out glaucoma diagnosis. Because the optic nerve fiber layer has birefringence, the thickness can be measured by illuminating eye optics with circular polarized light and analyzing the elliptical rate of the detected polarized light reflected from the optic nerve fiber layer. In this method, the scattering light from the background and the retardation caused by the cornea disturbs the precise measurement. If the Stokes vector expressing the whole state of polarization can be detected, we can eliminate numerically the influence of the background scattering and of the retardation caused by the cornea. Because the retardation process of the eye optics can be represented by a numerical equation using the retardation matrix of each component and also the nonpolarized background scattering light, it can be calculated by using the Stokes vector. We applied a polarization analysis system that can detect the Stokes vector onto the fundus camera. The polarization analysis system is constructed with a CCD area image sensor, a linear polarizing plate, a micro phase plate array, and a circularly polarized light illumination unit. With this simply constructed system, we can calculate the retardation caused only by the optic nerve fiber layer and it can predict the thickness of the optic nerve fiber layer. We report the method and the results graphically showing the retardation of the optic nerve fiber layer without the retardation of the cornea.

  8. Evaluating Three Insar Time-Series Methods to Assess Creep Motion, Case Study: Masouleh Landslide in North Iran

    NASA Astrophysics Data System (ADS)

    Mirzaee, S.; Motagh, M.; Akbari, B.; Wetzel, H. U.; Roessner, S.

    2017-05-01

    Masouleh is one of the ancient cities located in a high mountainous area in Gilan province of northern Iran. The region is threatened by a hazardous landslide, which was last activated in 1998, causing 32 dead and 45 injured. Significant temporal decorrelation caused by dense vegetation coverage within the landslide area makes the use of Synthetic Aperture Radar Interferometry (InSAR) for monitoring landslide movement very challenging. In this paper, we investigate the capability of three InSAR time-series techniques for evaluating creep motion on Masouleh landslide. The techniques are Persistent Scatterer Interferometry (PSI), Small BAseline Subset (SBAS) and SqueeSAR. The analysis is done using a dataset of 33 TerraSAR-X images in SpotLight (SL) mode covering a period of 15 months between June 2015 and September 2016. Results show the distinguished capability of SqueeSAR method in comparison to 2 other techniques for assessing landslide movement. The final number of scatterers in the landslide body detected by PSI and SBAS are about 70 and 120 respectively while this increases to about 345 in SqueeSAR. The coherence of interferograms improved by about 37% for SqueeSAR as compared to SBAS. The same rate of displacement was observed in those regions where all the methods were able to detect scatterers. Maximum rates of displacement detected by SqueeSAR technique in the northern edge, older and younger part of the landslide body are about -39, -65 and -22 mm/y, respectively.

  9. A Multi-Step Approach to Assessing LIGO Test Mass Coatings

    NASA Astrophysics Data System (ADS)

    Glover, Lamar; Goff, Michael; Linker, Seth; Neilson, Joshua; Patel, Jignesh; Pinto, Innocenzo; Principe, Maria; Villarama, Ethan; Arriaga, Eddy; Barragan, Erik; Chao, Shiuh; Daneshgaran, Lara; DeSalvo, Riccardo; Do, Eric; Fajardo, Cameron

    2018-02-01

    Photographs of the LIGO Gravitational Wave detector mirrors illuminated by the standing beam were analyzed with an astronomical software tool designed to identify stars within images, which extracted hundreds of thousands of point-like scatterers uniformly distributed across the mirror surface, likely distributed through the depth of the coating layers. The sheer number of the observed scatterers implies a fundamental, thermodynamic origin during deposition or processing. If identified as crystallites, these scatterers would be a possible source of the mirror dissipation and thermal noise, which limit the sensitivity of observatories to Gravitational Waves. In order to learn more about the composition and location of the detected scatterers, a feasibility study is underway to develop a method that determines the location of the scatterers by producing a complete mapping of scatterers within test samples, including their depth distribution, optical amplitude distribution, and lateral distribution. Also, research is underway to accurately identify future materials and/or coating methods that possess the largest possible mechanical quality factor (Q). Current efforts propose a new experimental approach that will more precisely measure the Q of coatings by depositing them onto 100 nm Silicon Nitride membranes.

  10. Dark matter effective field theory scattering in direct detection experiments

    DOE PAGES

    Schneck, K.

    2015-05-01

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less

  11. Automatic Detection and Positioning of Ground Control Points Using TerraSAR-X Multiaspect Acquisitions

    NASA Astrophysics Data System (ADS)

    Montazeri, Sina; Gisinger, Christoph; Eineder, Michael; Zhu, Xiao xiang

    2018-05-01

    Geodetic stereo Synthetic Aperture Radar (SAR) is capable of absolute three-dimensional localization of natural Persistent Scatterer (PS)s which allows for Ground Control Point (GCP) generation using only SAR data. The prerequisite for the method to achieve high precision results is the correct detection of common scatterers in SAR images acquired from different viewing geometries. In this contribution, we describe three strategies for automatic detection of identical targets in SAR images of urban areas taken from different orbit tracks. Moreover, a complete work-flow for automatic generation of large number of GCPs using SAR data is presented and its applicability is shown by exploiting TerraSAR-X (TS-X) high resolution spotlight images over the city of Oulu, Finland and a test site in Berlin, Germany.

  12. Dark matter effective field theory scattering in direct detection experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discussmore » the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less

  13. Dark matter effective field theory scattering in direct detection experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less

  14. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOEpatents

    Sappey, Andrew D.

    1998-04-14

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  15. Fiber optic light-scattering measurement system for evaluation of embryo viability: light-scattering characteristics from live mouse embryo

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1997-06-01

    We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.

  16. Species Specific Bacterial Spore Detection Using Lateral-Flow Immunoassay with DPA-Triggered Tb Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2003-01-01

    A method of detecting bacterial spores incorporates (1) A method of lateral-flow immunoassay in combination with (2) A method based on the luminescence of Tb3+ ions to which molecules of dipicolinic acid (DPA) released from the spores have become bound. The present combination of lateral-flow immunoassay and DPA-triggered Tb luminescence was developed as a superior alternative to a prior lateral-flow immunoassay method in which detection involves the visual observation and/or measurement of red light scattered from colloidal gold nanoparticles. The advantage of the present combination method is that it affords both (1) High selectivity for spores of the species of bacteria that one seeks to detect (a characteristic of lateral-flow immunoassay in general) and (2) Detection sensitivity much greater (by virtue of the use of DPA-triggered Tb luminescence instead of gold nanoparticles) than that of the prior lateral-flow immunoassay method

  17. Refractive index sensor based on total scattering of plasmonic nanotube

    NASA Astrophysics Data System (ADS)

    Yao, Kaiqiang; Zeng, Qingbing; Hu, Zengrong; Zhan, Yaohui

    2018-03-01

    Plasmonic nanostructures can couple free space light into anultrafine space; therefore,they are employed extensively in the refractive index sensors to minimize the device size or further improve the detection sensitivity. In this work, the optical response of the plasmonic nanotube are investigated comprehensively by using full wave finite element method. With a subwavelength scale, the silver nanotube have prominent scattering peaks in the visible range, which is very suitable for observing through the dark field microscope. The geometric dependence of the scattering spectra and the sensing performance are evaluated carefully. Results show that the scattering peaks are in linear relationship to the circumstance refractive index and a sensitivity of 337 nm/RIUcan be achieved easily by such a plasmonicnanotube with an optimized size.

  18. A Stopped-Flow Apparatus with Light-Scattering Detection and Its Application to Biochemical Reactions

    PubMed Central

    Riesner, Detlev; Buenemann, Hans

    1973-01-01

    A stopped-flow apparatus utilizing light-scattering for following the progress of a reaction is described. The method is applicable to all reactions that result in a significant change of the average molecular weight. It was possible due to several modifications of a conventional stopped-flow system to obtain a sensitivity comparable to that of commercial instruments for static light-scattering measurements. Experiments on three reactions are reported: association and dissociation of mercury ligands with DNA, dissociation of the dimers of DNA-dependent RNA polymerase, and complex formation of tRNASer (yeast) with the cognate aminoacyl-tRNA synthetase. The changes in the intensities of the scattered light are calculated and compared with the measured amplitudes. PMID:4577138

  19. Manmade target extraction based on multistage decision and its application for change detection in polarimetric synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Cong, Runmin; Han, Ping; Li, Chongyi; He, Jiaji; Zhang, Zaiji

    2016-09-01

    Targets of interest are different in various applications in which manmade targets, such as aircraft, ships, and buildings, are given more attention. Manmade target extraction methods using synthetic aperture radar (SAR) images are designed in response to various demands, which include civil uses, business purposes, and military industries. This plays an increasingly vital role in monitoring, military reconnaissance, and precision strikes. Achieving accurate and complete results through traditional methods is becoming more challenging because of the scattered complexity of polarization in polarimetric synthetic aperture radar (PolSAR) image. A multistage decision-based method is proposed composed of power decision, dominant scattering mechanism decision, and reflection symmetry decision. In addition, the theories of polarimetric contrast enhancement, generalized Y decomposition, and maximum eigenvalue ratio are applied to assist the decision. Fully PolSAR data are adopted to evaluate and verify the approach. Experimental results show that the method can achieve an effective result with a lower false alarm rate and clear contours. Finally, on this basis, a universal framework of change detection for manmade targets is presented as an application of our method. Two sets of measured data are also used to evaluate and verify the effectiveness of the change-detection algorithm.

  20. Monitoring the Erosion of Hydrolytically-Degradable Nanogels via Multiangle Light Scattering Coupled to Asymmetrical Flow Field-Flow Fractionation

    PubMed Central

    Smith, Michael H.; South, Antoinette B.; Gaulding, Jeffrey C.; Lyon, L. Andrew

    2009-01-01

    We describe the synthesis and characterization of degradable nanogels that display bulk erosion under physiologic conditions (pH = 7.4, 37 °C). Erodible poly(N-isopropylmethacrylamide) nanogels were synthesized by copolymerization with N,O-(dimethacryloyl)hydroxylamine, a cross-linker previously used in the preparation of non-toxic and biodegradable bulk hydrogels. To monitor particle degradation, we employed multiangle light scattering and differential refractometry detection following asymmetrical flow field-flow fractionation. This approach allowed the detection of changes in nanogel molar mass and topology as a function of both temperature and pH. Particle erosion was evident from both an increase in nanogel swelling and a decrease in scattering intensity as a function of time. Following these analyses, the samples were recovered for subsequent characterization by direct particle tracking, which yields hydrodynamic size measurements and enables number density determination. Additionally, we confirmed the conservation of nanogel stimuli-responsivity through turbidity measurements. Thus, we have demonstrated the synthesis of degradable nanogels that erode under conditions and on timescales that are relevant for many drug delivery applications. The combined separation and light scattering detection method is demonstrated to be a versatile means to monitor erosion and should also find applicability in the characterization of other degradable particle constructs. PMID:20000662

  1. Seismic Characterizations of Fractures: Dynamic Diagnostics

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.

    2017-12-01

    Fracture geometry controls fluid flow in a fracture, affects mechanical stability and influences energy partitioning that affects wave scattering. Our ability to detect and monitor fracture evolution is controlled by the frequency of the signal used to probe a fracture system, i.e. frequency selects the scales. No matter the frequency chosen, some set of discontinuities will be optimal for detection because different wavelengths sample different subsets of fractures. The select subset of fractures is based on the stiffness of the fractures which in turn is linked to fluid flow. A goal is obtaining information from scales outside the optimal detection regime. Fracture geometry trajectories are a potential approach to drive a fracture system across observation scales, i.e. moving systems between effective medium and scattering regimes. Dynamic trajectories (such as perturbing stress, fluid pressure, chemical alteration, etc.) can be used to perturb fracture geometry to enhance scattering or give rise to discrete modes that are intimately related to the micro-structural evolution of a fracture. However, identification of these signal features will require methods for identifying these micro-structural signatures in complicated scattered fields. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  2. Detection of Prohibited Fish Drugs Using Silver Nanowires as Substrate for Surface-Enhanced Raman Scattering

    PubMed Central

    Song, Jia; Huang, Yiqun; Fan, Yuxia; Zhao, Zhihui; Yu, Wansong; Rasco, Barbara A.; Lai, Keqiang

    2016-01-01

    Surface-enhanced Raman scattering or surface-enhanced Raman spectroscopy (SERS) is a promising detection technology, and has captured increasing attention. Silver nanowires were synthesized using a rapid polyol method and optimized through adjustment of the molar ratio of poly(vinyl pyrrolidone) and silver nitrate in a glycerol system. Ultraviolet-visible spectrometry, X-ray diffraction, and transmission electron microscopy were used to characterize the silver nanowires. The optimal silver nanowires were used as a SERS substrate to detect prohibited fish drugs, including malachite green, crystal violet, furazolidone, and chloramphenicol. The SERS spectra of crystal violet could be clearly identified at concentrations as low as 0.01 ng/mL. The minimum detectable concentration for malachite green was 0.05 ng/mL, and for both furazolidone and chloramphenicol were 0.1 μg/mL. The results showed that the as-prepared Ag nanowires SERS substrate exhibits high sensitivity and activity. PMID:28335303

  3. Nanoporous Substrate with Mixed Nanoclusters for Surface Enhanced Raman Scattering.

    NASA Astrophysics Data System (ADS)

    Chang, Sehoon; Ko, Hyunhyub; Singamaneni, Srikanth; Gunawidjaja, Ray; Tsukruk, Vladimir

    2009-03-01

    Rapid detection of plastic and liquid explosives is an urgent need due to various societal and technological reasons. We employed a novel design of surface enhanced Raman scattering (SERS)-active substrate based on porous alumina membranes decorated with mixed nanoclusters of gold nanorods and nanoparticles. We demonstrated trace level detection of several important explosives such as dinitrotolene (DNT), trinitrotoluene (TNT), and hexamethylenetriperoxidediamine (HMTD) by fast, sensitive, reliable Raman spectroscopic method. We achieved near molecular-level detection (about 15˜ 30 molecules) of DNT and TNT utilizing the SERS substrate. However, trace level detection is challenging due to the lack of common optical signatures (fluorescence, absorption in UV-vis range) or chemical functionality of peroxide-based explosives such as HMTD. To overcome this, we employed photochemical decomposition approach and analyzed chemical fragments using SERS. We suggest that tailored polymer coating, mixed nanoclusters, and laser-induced photocatalytic decomposition are all critical for achieving this unprecedented sensitivity level..

  4. The ability of endotoxin adsorption during a longer duration of direct hemoperfusion with a polymyxin B-immobilized fiber column in patients with septic shock.

    PubMed

    Shimizu, Tomoharu; Obata, Toru; Sonoda, Hiromichi; Akabori, Hiroya; Tabata, Takahisa; Eguchi, Yutaka; Endo, Yoshihiro; Tani, Tohru

    2013-12-01

    The patients' hemodynamic conditions of septic shock due to intra-abdominal infection were improved by the longer duration of direct hemoperfusion with a polymyxin B-immobilized fiber column (PMX), reducing plasma endotoxins measured by the novel endotoxin detection method, named endotoxin scattering photometry (ESP) method; however, turbidimetric method could not detect endotoxins. We also observed the reduction in the endotoxin after passing through column by ESP method even after the longer duration of PMX. ESP method may more sensitively detect endotoxins than the ordinary turbidimetric method. Moreover, we demonstrated the ability of endotoxin adsorption in spite of the longer duration of PMX. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Study of the blue-green laser scattering from the rough sea surface with foams by the improved two-scale method

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Qi, Xiao; Han, Xiang'e.

    2015-10-01

    The characteristics of laser scattering from sea surface have a great influence on application performance, from submarine communication, laser detection to laser diffusion communication. Foams will appear when the wind speed exceeds a certain value, so the foam can be seen everywhere in the upper layer of the ocean. Aiming at the volume-surface composite model of rough sea surface with foam layer driven by wind, and the similarities and differences of scattering characteristics between blue-green laser and microwave, an improved two-scale method for blue-green laser to calculate the scattering coefficient is presented in this paper. Based on the improved two-scale rough surface scattering theory, MIE theory and VRT( vector radiative transfer ) theory, the relations between the foam coverage of the sea surface and wind speed and air-sea temperature difference are analyzed. Aiming at the Gauss sea surface in blue-green laser, the dependence of back- and bistatie-scattering coefficient on the incident and azimuth angle, the coverage of foams, as well as the wind speed are discussed in detail. The results of numerical simulations are compared and analyzed in this paper. It can be concluded that the foam layer has a considerable effect on the laser scattering with the increase of wind speed, especially for a large incident angle. Theoretical analysis and numerical simulations show that the improved two-scale method is reasonable and efficient.

  6. Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results

    NASA Astrophysics Data System (ADS)

    Eichmann, Kai-Uwe; Lelli, Luca; von Savigny, Christian; Sembhi, Harjinder; Burrows, John P.

    2016-03-01

    Cloud top heights (CTHs) are retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we present the retrieval code SCODA (SCIAMACHY cloud detection algorithm) based on a colour index method and test the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN show that the method is capable of detecting cloud tops down to about 5 km and very thin cirrus clouds up to the tropopause. Volcanic particles can be detected that occasionally reach the lower stratosphere. Upper tropospheric ice clouds are observable for a nadir cloud optical thickness (COT) ≥ 0.01, which is in the subvisual range. This detection sensitivity decreases towards the lowermost troposphere. The COT detection limit for a water cloud top height of 5 km is roughly 0.1. This value is much lower than thresholds reported for passive cloud detection methods in nadir-viewing direction. Low clouds at 2 to 3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosol particles interferes with the cloud particle scattering. We compare co-located SCIAMACHY limb and nadir cloud parameters that are retrieved with the Semi-Analytical CloUd Retrieval Algorithm (SACURA). Only opaque clouds (τN,c > 5) are detected with the nadir passive retrieval technique in the UV-visible and infrared wavelength ranges. Thus, due to the frequent occurrence of thin clouds and subvisual cirrus clouds in the tropics, larger CTH deviations are detected between both viewing geometries. Zonal mean CTH differences can be as high as 4 km in the tropics. The agreement in global cloud fields is sufficiently good. However, the land-sea contrast, as seen in nadir cloud occurrence frequency distributions, is not observed in limb geometry. Co-located cloud top height measurements of the limb-viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT are compared for the period from January 2008 to March 2012. The global CTH agreement of about 1 km is observed, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfere with the cloud retrieval and inhibit the detection of tropospheric clouds. The aerosol impact on cloud retrievals was studied for the volcanoes Kasatochi (August 2008), Sarychev Peak (June 2009), and Nabro (June 2011). Long-lasting aerosol scattering is detected after these events in the Northern Hemisphere for heights above 12.5 km in tropical and polar latitudes. Aerosol top heights up to about 22 km are found in 2009 and the enhanced lower stratospheric aerosol layer persisted for about 7 months. In August 2009 about 82 % of the lower stratosphere between 30 and 70° N was filled with scattering particles and nearly 50 % in October 2008.

  7. Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate

    PubMed Central

    Motulsky, Harvey J; Brown, Ronald E

    2006-01-01

    Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives. PMID:16526949

  8. Color model and method for video fire flame and smoke detection using Fisher linear discriminant

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Jie, Li; Jun, Fang; Yongming, Zhang

    2013-02-01

    Video fire detection is playing an increasingly important role in our life. But recent research is often based on a traditional RGB color model used to analyze the flame, which may be not the optimal color space for fire recognition. It is worse when we research smoke simply using gray images instead of color ones. We clarify the importance of color information for fire detection. We present a fire discriminant color (FDC) model for flame or smoke recognition based on color images. The FDC models aim to unify fire color image representation and fire recognition task into one framework. With the definition of between-class scatter matrices and within-class scatter matrices of Fisher linear discriminant, the proposed models seek to obtain one color-space-transform matrix and a discriminate projection basis vector by maximizing the ratio of these two scatter matrices. First, an iterative basic algorithm is designed to get one-component color space transformed from RGB. Then, a general algorithm is extended to generate three-component color space for further improvement. Moreover, we propose a method for video fire detection based on the models using the kNN classifier. To evaluate the recognition performance, we create a database including flame, smoke, and nonfire images for training and testing. The test experiments show that the proposed model achieves a flame verification rate receiver operating characteristic (ROC I) of 97.5% at a false alarm rate (FAR) of 1.06% and a smoke verification rate (ROC II) of 91.5% at a FAR of 1.2%, and lots of fire video experiments demonstrate that our method reaches a high accuracy for fire recognition.

  9. Microscale Concentration Measurements Using Laser Light Scattering Methods

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Miller, Fletcher

    2004-01-01

    The development of lab-on-a-chip devices for microscale biochemical assays has led to the need for microscale concentration measurements of specific analyses. While fluorescence methods are the current choice, this method requires developing fluorophore-tagged conjugates for each analyte of interest. In addition, fluorescent imaging is also a volume-based method, and can be limiting as smaller detection regions are required.

  10. Scatter correction in cone-beam CT via a half beam blocker technique allowing simultaneous acquisition of scatter and image information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ho; Xing Lei; Lee, Rena

    2012-05-15

    Purpose: X-ray scatter incurred to detectors degrades the quality of cone-beam computed tomography (CBCT) and represents a problem in volumetric image guided and adaptive radiation therapy. Several methods using a beam blocker for the estimation and subtraction of scatter have been proposed. However, due to missing information resulting from the obstruction of the blocker, such methods require dual scanning or dynamically moving blocker to obtain a complete volumetric image. Here, we propose a half beam blocker-based approach, in conjunction with a total variation (TV) regularized Feldkamp-Davis-Kress (FDK) algorithm, to correct scatter-induced artifacts by simultaneously acquiring image and scatter information frommore » a single-rotation CBCT scan. Methods: A half beam blocker, comprising lead strips, is used to simultaneously acquire image data on one side of the projection data and scatter data on the other half side. One-dimensional cubic B-Spline interpolation/extrapolation is applied to derive patient specific scatter information by using the scatter distributions on strips. The estimated scatter is subtracted from the projection image acquired at the opposite view. With scatter-corrected projections where this subtraction is completed, the FDK algorithm based on a cosine weighting function is performed to reconstruct CBCT volume. To suppress the noise in the reconstructed CBCT images produced by geometric errors between two opposed projections and interpolated scatter information, total variation regularization is applied by a minimization using a steepest gradient descent optimization method. The experimental studies using Catphan504 and anthropomorphic phantoms were carried out to evaluate the performance of the proposed scheme. Results: The scatter-induced shading artifacts were markedly suppressed in CBCT using the proposed scheme. Compared with CBCT without a blocker, the nonuniformity value was reduced from 39.3% to 3.1%. The root mean square error relative to values inside the regions of interest selected from a benchmark scatter free image was reduced from 50 to 11.3. The TV regularization also led to a better contrast-to-noise ratio. Conclusions: An asymmetric half beam blocker-based FDK acquisition and reconstruction technique has been established. The proposed scheme enables simultaneous detection of patient specific scatter and complete volumetric CBCT reconstruction without additional requirements such as prior images, dual scans, or moving strips.« less

  11. Fluctuation-Enhanced Sensing for Biological Agent Detection and Identification

    DTIC Science & Technology

    2009-01-01

    method for bacterium detection published earlier; sensing and evaluating the odors of microbes ; and spectral and amplitude distribution analysis of noise...REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Fluctuation-Enhanced Sensing for Biological Agent Detection and...evaluating the odors of microbes ; and spectral and amplitude distribution analysis of noise in light scattering to identify spores based on their

  12. Nanoparticle light scattering on interferometric surfaces

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, K.; Arif, K. M.; Savran, C. A.; Nolte, D. D.

    2011-03-01

    We present a model based on Mie Surface Double Interaction (MSDI) to explore bead-based detection mechanisms using imaging and scanning. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI).

  13. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  14. Scattering effect of submarine hull on propeller non-cavitation noise

    NASA Astrophysics Data System (ADS)

    Wei, Yingsan; Shen, Yang; Jin, Shuanbao; Hu, Pengfei; Lan, Rensheng; Zhuang, Shuangjiang; Liu, Dezhi

    2016-05-01

    This paper investigates the non-cavitation noise caused by propeller running in the wake of submarine with the consideration of scattering effect caused by submarine's hull. The computation fluid dynamics (CFD) and acoustic analogy method are adopted to predict fluctuating pressure of propeller's blade and its underwater noise radiation in time domain, respectively. An effective iteration method which is derived in the time domain from the Helmholtz integral equation is used to solve multi-frequency waves scattering due to obstacles. Moreover, to minimize time interpolation caused numerical errors, the pressure and its derivative at the sound emission time is obtained by summation of Fourier series. It is noted that the time averaging algorithm is used to achieve a convergent result if the solution oscillated in the iteration process. Meanwhile, the developed iteration method is verified and applied to predict propeller noise scattered from submarine's hull. In accordance with analysis results, it is summarized that (1) the scattering effect of hull on pressure distribution pattern especially at the frequency higher than blade passing frequency (BPF) is proved according to the contour maps of sound pressure distribution of submarine's hull and typical detecting planes. (2) The scattering effect of the hull on the total pressure is observable in noise frequency spectrum of field points, where the maximum increment is up to 3 dB at BPF, 12.5 dB at 2BPF and 20.2 dB at 3BPF. (3) The pressure scattered from hull is negligible in near-field of propeller, since the scattering effect surrounding analyzed location of propeller on submarine's stern is significantly different from the surface ship. This work shows the importance of submarine's scattering effect in evaluating the propeller non-cavitation noise.

  15. Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods

    NASA Astrophysics Data System (ADS)

    Pylaev, T. E.; Khanadeev, V. A.; Khlebtsov, B. N.; Dykman, L. A.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2011-07-01

    We introduce a new genosensing approach employing CTAB (cetyltrimethylammonium bromide)-coated positively charged colloidal gold nanoparticles (GNPs) to detect target DNA sequences by using absorption spectroscopy and dynamic light scattering. The approach is compared with a previously reported method employing unmodified CTAB-coated gold nanorods (GNRs). Both approaches are based on the observation that whereas the addition of probe and target ssDNA to CTAB-coated particles results in particle aggregation, no aggregation is observed after addition of probe and nontarget DNA sequences. Our goal was to compare the feasibility and sensitivity of both methods. A 21-mer ssDNA from the human immunodeficiency virus type 1 HIV-1 U5 long terminal repeat (LTR) sequence and a 23-mer ssDNA from the Bacillus anthracis cryptic protein and protective antigen precursor (pagA) genes were used as ssDNA models. In the case of GNRs, unexpectedly, the colorimetric test failed with perfect cigar-like particles but could be performed with dumbbell and dog-bone rods. By contrast, our approach with cationic CTAB-coated GNPs is easy to implement and possesses excellent feasibility with retention of comparable sensitivity—a 0.1 nM concentration of target cDNA can be detected with the naked eye and 10 pM by dynamic light scattering (DLS) measurements. The specificity of our method is illustrated by successful DLS detection of one-three base mismatches in cDNA sequences for both DNA models. These results suggest that the cationic GNPs and DLS can be used for genosensing under optimal DNA hybridization conditions without any chemical modifications of the particle surface with ssDNA molecules and signal amplification. Finally, we discuss a more than two-three-order difference in the reported estimations of the detection sensitivity of colorimetric methods (0.1 to 10-100 pM) to show that the existing aggregation models are inconsistent with the detection limits of about 0.1-1 pM DNA and that other explanations should be developed.

  16. Feasibility of in Vivo SAXS Imaging for Detection of Alzheiemer's Disease

    NASA Astrophysics Data System (ADS)

    Choi, Mina

    Small-angle x-ray scattering (SAXS) imaging has been proposed as a technique to characterize and selectively image structures based on electron density structure which allows for discriminating materials based on their scatter cross sections. This dissertation explores the feasibility of SAXS imaging for the detection of Alzheimer's disease (AD) amyloid plaques. The inherent scatter cross sections of amyloid plaque serve as biomarkers in vivo without the need of injected molecular tags. SAXS imaging can also assist in a better understanding of how these biomarkers play a role in Alzheimer's disease which in turn can lead to the development of more effective disease-modifying therapies. I implement simulations of x-ray transport using Monte Carlo methods for SAXS imaging enabling accurate calculation of radiation dose and image quality in SAXS-computed tomography (CT). I describe SAXS imaging phantoms with tissue-mimicking material and embedded scatter targets as a way of demonstrating the characteristics of SAXS imaging. I also performed a comprehensive study of scattering cross sections of brain tissue from measurements of ex-vivo sections of a wild-type mouse brain and reported generalized cross sections of gray matter, white matter, and corpus callosum obtained and registered by planar SAXS imaging. Finally, I demonstrate the ability of SAXS imaging to locate an amyloid fibril pellet within a brain section. This work contributes to novel application of SAXS imaging for Alzheimer's disease detection and studies its feasibility as an imaging tool for AD biomarkers.

  17. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  18. Coherent Rayleigh-Brillouin scattering for in situ detection of nanoparticles and large molecules in gas and plasma

    NASA Astrophysics Data System (ADS)

    Gerakis, A.; Shneider, M. N.; Stratton, B. C.; Santra, B.; Car, R.; Raitses, Y.

    2016-09-01

    Laser-based diagnostics methods, such as Spontaneous and Coherent Rayleigh and Rayleigh-Brillouin scattering (SRBS and CRBS), can be used for in-situ detection and characterization of nanoparticle shape and size as well as their concentration in an inert gas atmosphere. We recently developed and tested this advanced diagnostic at PPPL. It was shown that the signal intensity of the CRBS signal depends on the gas-nanoparticle mixture composition, density and the polarizabilities of the mixture components. The measured results agree well with theoretical predictions of Refs. In this work, we report the application of this diagnostic to monitor nucleation and growth of nanoparticles in a carbon arc discharge. In support of these measurements, A time-dependent density functional theory was used to compute the frequency-dependent polarizabilities of various nanostructures in order to predict the corresponding Rayleigh scattering intensities as well as light depolarization. Preliminary results of measurements demonstrate that CRBS is capable to detect nanoparticles in volume. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  19. A comparative study on methods of improving SCR for ship detection in SAR image

    NASA Astrophysics Data System (ADS)

    Lang, Haitao; Shi, Hongji; Tao, Yunhong; Ma, Li

    2017-10-01

    Knowledge about ship positions plays a critical role in a wide range of maritime applications. To improve the performance of ship detector in SAR image, an effective strategy is improving the signal-to-clutter ratio (SCR) before conducting detection. In this paper, we present a comparative study on methods of improving SCR, including power-law scaling (PLS), max-mean and max-median filter (MMF1 and MMF2), method of wavelet transform (TWT), traditional SPAN detector, reflection symmetric metric (RSM), scattering mechanism metric (SMM). The ability of SCR improvement to SAR image and ship detection performance associated with cell- averaging CFAR (CA-CFAR) of different methods are evaluated on two real SAR data.

  20. Investigation of the binding of AuNPs-6-mercaptopurine and the sensitive detection of 6-mercaptopurine using resonance Rayleigh light scattering.

    PubMed

    Li, Zhihong; Bi, Shuyun; Wang, Tianjiao; Wang, Yu; Zhou, Huifeng; Wu, Jun

    2017-06-01

    A highly sensitive method for the detection of 6-mercaptopurine (MP) by resonance Rayleigh light scattering (RLS) method was developed. Gold nanoparticles (AuNPs) were synthesized by a modified seed method and characterized using transmission electron microscopy (TEM). AuNPs were bound to MP via covalent bonding to form the MP-AuNPs complex, which increased the RLS intensity of MP at 347 nm (increased by 65.7%). Under optimum conditions, the magnitude of the enhanced RLS intensity for MP-AuNPs was proportional to MP concentration in the range 0.0681-1.702 μg mL -1 . The linear regression equation was represented as follows: ΔI RLS  = 9.31 + 82.42c (r = 0.9948). The limit of detection (LOD, 3σ) was 3.32 ng mL -1 . The system was applied successfully to detect MP in pharmaceuticals. MP recoveries were 99.9-101.7% with a relative standard deviation (RSD) (n = 5) of 0.59-0.77% for three synthetic samples, and 97.5-110.0% with an RSD of 0.98-2.10% (n = 5) for tablet samples. Copyright © 2016 John Wiley & Sons, Ltd.

  1. The νGeN experiment at the Kalinin Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Belov, V.; Brudanin, V.; Egorov, V.; Filosofov, D.; Fomina, M.; Gurov, Yu.; Korotkova, L.; Lubashevskiy, A.; Medvedev, D.; Pritula, R.; Rozova, I.; Rozov, S.; Sandukovsky, V.; Timkin, V.; Yakushev, E.; Yurkowski, J.; Zhitnikov, I.

    2015-12-01

    The ν GeN is new experiment at the Kalinin Nuclear Power Plant (KNPP) for detection of coherent Neutrino-Ge Nucleus elastic scattering. Recent neutrino and Dark Matter search experiments have revolutionized the detection of rear events, and rear events with low energies, in particular. Experiments have achieved sensitivities on the level of several events per hundred kg of detector material per day with energy thresholds from few hundred eV. This opens up a new unique possibility for experimental detection of neutrino-nucleus coherent scattering that has been considered to be impossible so far. The νGeN project uses low threshold high-purity Ge-detectors (HPGe) developed by JINR (Dubna, Russia) in collaboration with BSI (Baltic Scientific Instruments, Riga, Latvia) for creation of a setup designated for first observation of neutrino coherent scattering on Ge. As a powerful neutrino source the experiment will use electron antineutrinos from one of the power-generating units (reactor unit #3) of the KNPP. The coherent neutrino scattering will be observed using a differential method that compares 1) the spectra measured at the reactor operation and shut-down periods; 2) the spectra measured at different distances from the reactor core during the reactor operation. For a setup placed at a 10 m distance from the center of reactor core and with an energy threshold of 350 eV up to tens of events corresponding to neutrino coherent scattering on Ge are expected to be detected per day in the constructed setup with four HPGe low-energy-threshold detectors (~ 400 grams each). The setup sensitivity will be even more increased by using new detectors with total mass up to 5 kg.

  2. A novel method to detect shadows on multispectral images

    NASA Astrophysics Data System (ADS)

    Daǧlayan Sevim, Hazan; Yardımcı ćetin, Yasemin; Özışık Başkurt, Didem

    2016-10-01

    Shadowing occurs when the direct light coming from a light source is obstructed by high human made structures, mountains or clouds. Since shadow regions are illuminated only by scattered light, true spectral properties of the objects are not observed in such regions. Therefore, many object classification and change detection problems utilize shadow detection as a preprocessing step. Besides, shadows are useful for obtaining 3D information of the objects such as estimating the height of buildings. With pervasiveness of remote sensing images, shadow detection is ever more important. This study aims to develop a shadow detection method on multispectral images based on the transformation of C1C2C3 space and contribution of NIR bands. The proposed method is tested on Worldview-2 images covering Ankara, Turkey at different times. The new index is used on these 8-band multispectral images with two NIR bands. The method is compared with methods in the literature.

  3. High-Frequency Sound Interaction with Ocean Sediments and with Objects in the Vicinity of the Water/Sediment Interface and Mid-Frequency Shallow Water Propagation and Scattering

    DTIC Science & Technology

    2007-09-30

    combined with measured sediment properties, to test the validity of sediment acoustic models , and in particular the poroelastic (Biot) model . Addressing...TERM GOALS 1. Development of accurate models for acoustic scattering from, penetration into, and propagation within shallow water ocean sediments...2. Development of reliable methods for modeling acoustic detection of buried objects at subcritical grazing angles. 3. Improving our

  4. Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix.

    PubMed

    Heinze, Brian C; Gamboa, Jessica R; Kim, Keesung; Song, Jae-Young; Yoon, Jeong-Yeol

    2010-11-01

    This work presents the use of integrated, liquid core, optical waveguides for measuring immunoagglutination-induced light scattering in a microfluidic device, towards rapid and sensitive detection of avian influenza (AI) viral antigens in a real biological matrix (chicken feces). Mie scattering simulations were performed and tested to optimize the scattering efficiency of the device through proper scatter angle waveguide geometry. The detection limit is demonstrated to be 1 pg mL(-1) in both clean buffer and real biological matrix. This low detection limit is made possible through on-chip diffusional mixing of AI target antigens and high acid content microparticle assay reagents, coupled with real-time monitoring of immunoagglutination-induced forward Mie scattering via high refractive index liquid core optical waveguides in close proximity (100 μm) to the sample chamber. The detection time for the assay is <2 min. This device could easily be modified to detect trace levels of any biological molecules that antibodies are available for, moving towards a robust platform for point-of-care disease diagnostics.

  5. Resonance Rayleigh scattering method for highly sensitive detection of chitosan using aniline blue as probe

    NASA Astrophysics Data System (ADS)

    Zhang, Weiai; Ma, Caijuan; Su, Zhengquan; Bai, Yan

    2016-11-01

    This paper describes a highly sensitive and accurate approach using aniline blue (AB) (water soluble) as a probe to determine chitosan (CTS) through Resonance Rayleigh scattering (RRS). Under optimum experimental conditions, the intensities of RRS were linearly proportional to the concentration of CTS in the range from 0.01 to 3.5 μg/mL, and the limit of detection (LOD) was 6.94 ng/mL. Therefore, a new and highly sensitive method based on RRS for the determination of CTS has been developed. Furthermore, the effect of molecular weight of CTS and the effect of the degree of deacetylation of CTS on the accurate quantification of CTS was studied. The experimental data was analyzed by linear regression analysis, which indicated that the molecular weight and the degree of deacetylation of CTS had no statistical significance and this method could be used to determine CTS accurately. Meanwhile, this assay was applied for CTS determination in health products with satisfactory results.

  6. Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS)

    PubMed Central

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Mohan, Chandra; Shih, Wei-Chuan

    2015-01-01

    We report a novel reagent- and separation-free method for urine creatinine concentration measurement using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) plasmonic substrates, a label-free, multiplexed molecular sensing and imaging technique recently developed by us. The performance of this new technology is evaluated by the detection and quantification of creatinine spiked in three different liquids: creatinine in water, mixture of creatinine and urea in water, and creatinine in artificial urine within physiologically relevant concentration ranges. Moreover, the potential application of our method is demonstrated by creatinine concentration measurements in urine samples collected from a mouse model of nephritis. The limit of detection of creatinine was 13.2 nM (0.15 µg/dl) and 0.68 mg/dl in water and urine, respectively. Our method would provide an alternative tool for rapid, cost-effective, and reliable urine analysis for non-invasive diagnosis and monitoring of renal function. PMID:25798309

  7. Few-mode fiber detection for tissue characterization in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Eugui, Pablo; Lichtenegger, Antonia; Augustin, Marco; Harper, Danielle J.; Fialová, Stanislava; Wartak, Andreas; Hitzenberger, Christoph K.; Baumann, Bernhard

    2017-07-01

    A few-mode fiber based detection for OCT systems is presented. The capability of few-mode fibers for delivering light through different fiber paths enables the application of these fibers for angular scattering tissue character- ization. Since the optical path lengths traveled in the fiber change between the fiber modes, the OCT image information will be reconstructed at different depth positions, separating the directly backscattered light from the light scattered at other angles. Using the proposed method, the relation between the angle of reflection from the sample and the respective modal intensity distribution was investigated. The system was demonstrated for imaging ex-vivo brain tissue samples of patients with Alzheimer's disease.

  8. Aqueous carrier waveguide in a flow cytometer

    DOEpatents

    Mariella, R.P. Jr.; Engh, G. van den; Northrup, M.A.

    1995-12-12

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified. 6 figs.

  9. Root-cause estimation of ultrasonic scattering signatures within a complex textured titanium

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Na, Jeong K.; Freed, Shaun

    2016-02-01

    The nondestructive evaluation of polycrystalline materials has been an active area of research for many decades, and continues to be an area of growth in recent years. Titanium alloys in particular have become a critical material system used in modern turbine engine applications, where an evaluation of the local microstructure properties of engine disk/blade components is desired for performance and remaining life assessments. Current NDE methods are often limited to estimating ensemble material properties or detecting localized voids, inclusions, or damage features within a material. Recent advances in computational NDE and material science characterization methods are providing new and unprecedented access to heterogeneous material properties, which permits microstructure-sensing interactions to be studied in detail. In the present research, Integrated Computational Materials Engineering (ICME) methods and tools are being leveraged to gain a comprehensive understanding of root-cause ultrasonic scattering processes occurring within a textured titanium aerospace material. A combination of destructive, nondestructive, and computational methods are combined within the ICME framework to collect, holistically integrate, and study complex ultrasound scattering using realistic 2-dimensional representations of the microstructure properties. Progress towards validating the computational sensing methods are discussed, along with insight into the key scattering processes occurring within the bulk microstructure, and how they manifest in pulse-echo immersion ultrasound measurements.

  10. Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light

    NASA Astrophysics Data System (ADS)

    Vitkin, I. Alex; Laszlo, Richard D.; Whyman, Claire L.

    2002-02-01

    The use of polarized light for investigation of optically turbid systems has generated much recent interest since it has been shown that multiple scattering does not fully scramble the incident polarization states. It is possible under some conditions to measure polarization signals in diffusely scattered light, and use this information to characterize the structure or composition of the turbid medium. Furthermore, the idea of quantitative detection of optically active (chiral) molecules contained in such a system is attractive, particularly in clinical medicine where it may contribute to the development of a non-invasive method of glucose sensing in diabetic patients. This study uses polarization modulation and synchronous detection in the perpendicular and in the exact backscattering orientations to detect scattered light from liquid turbid samples containing varying amounts of L and D (left and right) isomeric forms of a chiral sugar. Polarization preservation increased with chiral concentrations in both orientations. In the perpendicular orientation, the optical rotation of the linearly polarized fraction also increased with the concentration of chiral solute, but in different directions for the two isomeric forms. There was no observed optical rotation in the exact backscattering geometry for either isomer. The presence of the chiral species is thus manifest in both detection directions, but the sense of the chiral asymmetry is not resolvable in retroreflection. The experiments show that useful information may be extracted from turbid chiral samples using polarized light.

  11. Particle size analysis in a turbid media with a single-fiber, optical probe while using a visible spectrometer

    DOEpatents

    Canpolat, Murat; Mourant, Judith R.

    2003-12-09

    Apparatus and method for measuring scatterer size in a dense media with only a single fiber for both light delivery and collection are disclosed. White light is used as a source and oscillations of the detected light intensities are measured as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition several properties of the probe relevant to tissue diagnosis are disclosed including the effects of absorption, a broad distribution of scatterers, and the depth probed.

  12. Performance-Enhancing Methods for Au Film over Nanosphere Surface-Enhanced Raman Scattering Substrate and Melamine Detection Application

    PubMed Central

    Wang, Jun Feng; Wu, Xue Zhong; Xiao, Rui; Dong, Pei Tao; Wang, Chao Guang

    2014-01-01

    A new high-performance surface-enhanced Raman scattering (SERS) substrate with extremely high SERS activity was produced. This SERS substrate combines the advantages of Au film over nanosphere (AuFON) substrate and Ag nanoparticles (AgNPs). A three order enhancement of SERS was observed when Rhodamine 6G (R6G) was used as a probe molecule to compare the SERS effects of the new substrate and commonly used AuFON substrate. These new SERS substrates can detect R6G down to 1 nM. The new substrate was also utilized to detect melamine, and the limit of detection (LOD) is 1 ppb. A linear relationship was also observed between the SERS intensity at Raman peak 682 cm−1 and the logarithm of melamine concentrations ranging from 10 ppm to 1 ppb. This ultrasensitive SERS substrate is a promising tool for detecting trace chemical molecules because of its simple and effective fabrication procedure, high sensitivity and high reproducibility of the SERS effect. PMID:24886913

  13. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application.

    PubMed

    Wang, Jun Feng; Wu, Xue Zhong; Xiao, Rui; Dong, Pei Tao; Wang, Chao Guang

    2014-01-01

    A new high-performance surface-enhanced Raman scattering (SERS) substrate with extremely high SERS activity was produced. This SERS substrate combines the advantages of Au film over nanosphere (AuFON) substrate and Ag nanoparticles (AgNPs). A three order enhancement of SERS was observed when Rhodamine 6G (R6G) was used as a probe molecule to compare the SERS effects of the new substrate and commonly used AuFON substrate. These new SERS substrates can detect R6G down to 1 nM. The new substrate was also utilized to detect melamine, and the limit of detection (LOD) is 1 ppb. A linear relationship was also observed between the SERS intensity at Raman peak 682 cm(-1) and the logarithm of melamine concentrations ranging from 10 ppm to 1 ppb. This ultrasensitive SERS substrate is a promising tool for detecting trace chemical molecules because of its simple and effective fabrication procedure, high sensitivity and high reproducibility of the SERS effect.

  14. Study on the ternary mixed ligand complex of palladium(II)-aminophylline-fluorescein sodium by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum and its analytical application.

    PubMed

    Chen, Peili; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli

    2011-01-01

    The interaction between palladium(II)-aminophylline and fluorescein sodium was investigated by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum. In pH 4.4 Britton-Robinson (BR) buffer medium, aminophylline (Ami) reacted with palladium(II) to form chelate cation([Pd(Ami)]2+), which further reacted with fluorescein sodium (FS) to form ternary mixed ligand complex [Pd(Ami)(FS)2]. As a result, resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering spectrum (FDS) were enhanced. The maximum scattering wavelengths of [Pd(Ami)(FS)2] were located at 300 nm (RRS), 650 nm (SOS) and 304 nm (FDS). The scattering intensities were proportional to the Ami concentration in a certain range and the detection limits were 7.3 ng mL(-1) (RRS), 32.9 ng mL(-1) (SOS) and 79.1 ng mL(-1) (FDS), respectively. Based on it, the new simple, rapid, and sensitive scattering methods have been proposed to determine Ami in urine and serum samples. Moreover, the formation mechanism of [Pd(Ami)(FS)2] and the reasons for enhancement of RRS were fully discussed. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  15. High-performance liquid chromatography assay of cysteine and homocysteine using fluorosurfactant-functionalized gold nanoparticles as postcolumn resonance light scattering reagents.

    PubMed

    Xiao, Qunyan; Gao, Huiling; Yuan, Qipeng; Lu, Chao; Lin, Jin-Ming

    2013-01-25

    Herein, a new postcolumn resonance light scattering (RLS) detection approach coupled with high-performance liquid chromatography (HPLC) was developed to detect cysteine and homocysteine. In the established system, the fluorosurfactant-capped gold nanoparticles (AuNPs) were first employed as postcolumn RLS reagents. The detection principle was based on the enhancement of RLS intensity of AuNPs upon the addition of cysteine/homocysteine. The RLS signals were detected by a common fluorescence detector at λ(EX)=λ(EM)=560 nm. The linear ranges for both cysteine and homocysteine were in the range of 5.0-50 μM. The detection limits were 5.9 pmol for cysteine and 12 pmol for homocysteine at a signal-to-noise ratio of 3. HPLC separation and RLS detection conditions were optimized in detail. The applicability of the proposed method has been validated by detecting cysteine and homocysteine in human urine samples. Recoveries from spiked urine samples were 95.0-103.0%. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Bino variations: Effective field theory methods for dark matter direct detection

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Robertson, Denis S.; Solon, Mikhail P.; Zurek, Kathryn M.

    2016-05-01

    We apply effective field theory methods to compute bino-nucleon scattering, in the case where tree-level interactions are suppressed and the leading contribution is at loop order via heavy flavor squarks or sleptons. We find that leading log corrections to fixed-order calculations can increase the bino mass reach of direct detection experiments by a factor of 2 in some models. These effects are particularly large for the bino-sbottom coannihilation region, where bino dark matter as heavy as 5-10 TeV may be detected by near future experiments. For the case of stop- and selectron-loop mediated scattering, an experiment reaching the neutrino background will probe thermal binos as heavy as 500 and 300 GeV, respectively. We present three key examples that illustrate in detail the framework for determining weak scale coefficients, and for mapping onto a low-energy theory at hadronic scales, through a sequence of effective theories and renormalization group evolution. For the case of a squark degenerate with the bino, we extend the framework to include a squark degree of freedom at low energies using heavy particle effective theory, thus accounting for large logarithms through a "heavy-light current." Benchmark predictions for scattering cross sections are evaluated, including complete leading order matching onto quark and gluon operators, and a systematic treatment of perturbative and hadronic uncertainties.

  17. Bino variations: Effective field theory methods for dark matter direct detection

    DOE PAGES

    Berlin, Asher; Robertson, Denis S.; Solon, Mikhail P.; ...

    2016-05-10

    We apply effective field theory methods to compute bino-nucleon scattering, in the case where tree-level interactions are suppressed and the leading contribution is at loop order via heavy flavor squarks or sleptons. We find that leading log corrections to fixed-order calculations can increase the bino mass reach of direct detection experiments by a factor of 2 in some models. These effects are particularly large for the bino-sbottom coannihilation region, where bino dark matter as heavy as 5–10 TeV may be detected by near future experiments. For the case of stop- and selectron-loop mediated scattering, an experiment reaching the neutrino backgroundmore » will probe thermal binos as heavy as 500 and 300 GeV, respectively. We present three key examples that illustrate in detail the framework for determining weak scale coefficients, and for mapping onto a low-energy theory at hadronic scales, through a sequence of effective theories and renormalization group evolution. For the case of a squark degenerate with the bino, we extend the framework to include a squark degree of freedom at low energies using heavy particle effective theory, thus accounting for large logarithms through a “heavy-light current.” Finally, benchmark predictions for scattering cross sections are evaluated, including complete leading order matching onto quark and gluon operators, and a systematic treatment of perturbative and hadronic uncertainties.« less

  18. Enhanced optical coupling and Raman scattering via microscopic interface engineering

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-11-01

    Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.

  19. Method for detection of dental caries and periodontal disease using optical imaging

    DOEpatents

    Nathel, H.; Kinney, J.H.; Otis, L.L.

    1996-10-29

    A method is disclosed for detecting the presence of active and inactive caries in teeth and diagnosing periodontal disease uses non-ionizing radiation with techniques for reducing interference from scattered light. A beam of non-ionizing radiation is divided into sample and reference beams. The region to be examined is illuminated by the sample beam, and reflected or transmitted radiation from the sample is recombined with the reference beam to form an interference pattern on a detector. The length of the reference beam path is adjustable, allowing the operator to select the reflected or transmitted sample photons that recombine with the reference photons. Thus radiation scattered by the dental or periodontal tissue can be prevented from obscuring the interference pattern. A series of interference patterns may be generated and interpreted to locate dental caries and periodontal tissue interfaces. 7 figs.

  20. Resonance light scattering determination of 6-mercaptopurine coupled with HPLC technique

    NASA Astrophysics Data System (ADS)

    Li, Ai Ping; Peng, Jing Dong; Zhou, MingQiong; Zhang, Jin

    2016-02-01

    A simple, fast, costless, sensitive and selective method of resonance light scattering coupled with HPLC was established for the determination of 6-mercaptopurine in human urine sample. In a Britton-Robinson buffer solution of pH 5.5, the formation of coordination complex between 6-mercaptopurine and metal palladium (II) led to enhance the RLS intensity of the system. The RLS signal was detected by fluorescence detector at λex = λem = 315 nm. The analytical parameters were provided by the coupled system, the linear of 6-mercaptopurine response from 0.0615 to 2.40 μg L- 1 and the limit of detection (S/N = 3) was 0.05 μg L- 1. The presented method has been applied to determine 6-mercaptopurine in human urine samples which obtained satisfactory results. Moreover, the reaction mechanism and possible reasons for enhancement of RLS were fully discussed.

  1. Surface-enhanced Raman scattering from graphene covered gold nanocap arrays

    NASA Astrophysics Data System (ADS)

    Long, Kailin; Luo, Xiaoguang; Nan, Haiyan; Du, Deyang; Zhao, Weiwei; Ni, Zhenhua; Qiu, Teng

    2013-11-01

    This work reports an efficient method to fabricate large-area flexible substrates for surface enhanced Raman scattering (SERS) application. Our technique is based on a single-step direct imprint process via porous anodic alumina stamps. Periodic hexagonal arrangements of porous anodic alumina stamps are transferred to the polyethylene terephthalate substrates by mechanically printing process. Printed nanocaps will turn into "hot spots" for electromagnetic enhancement with a deposited gold film by high vacuum evaporation. The gaps between the nanocaps are controllable with a tight correspondence to the thickness of the deposited gold, which dramatically influence the enhancement factor. After covered with a single-layer graphene sheet, the gold nanocap substrate can be further optimized with an extra enhancement of Raman signals, and it is available for the trace detection of probe molecules. This convenient, simple, and low-cost method of making flexible SERS-active substrates potentially opens a way towards biochemical analysis and disease detection.

  2. Resonance light scattering determination of 6-mercaptopurine coupled with HPLC technique.

    PubMed

    Li, Ai Ping; Peng, Jing Dong; Zhou, MingQiong; Zhang, Jin

    2016-02-05

    A simple, fast, costless, sensitive and selective method of resonance light scattering coupled with HPLC was established for the determination of 6-mercaptopurine in human urine sample. In a Britton-Robinson buffer solution of pH5.5, the formation of coordination complex between 6-mercaptopurine and metal palladium (II) led to enhance the RLS intensity of the system. The RLS signal was detected by fluorescence detector at λ(ex)=λ(em)=315 nm. The analytical parameters were provided by the coupled system, the linear of 6-mercaptopurine response from 0.0615 to 2.40 μg L(-1) and the limit of detection (S/N=3) was 0.05 μg L(-1). The presented method has been applied to determine 6-mercaptopurine in human urine samples which obtained satisfactory results. Moreover, the reaction mechanism and possible reasons for enhancement of RLS were fully discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots.

    PubMed

    Zou, Wen-Sheng; Sheng, Dong; Ge, Xin; Qiao, Jun-Qin; Lian, Hong-Zhen

    2011-01-01

    Rayleigh scattering (RS) as an interference factor to detection sensitivity in ordinary fluorescence spectrometry is always avoided in spite of considerable efforts toward the development of RS-based resonance Rayleigh scattering (RRS) and hyper-Rayleigh scattering (HRS) techniques. Here, combining advantages of quantum dots (QDs) including chemical modification of functional groups and the installation of recognition receptors at their surfaces with those of phosphorescence such as the avoidance of autofluorescence and scattering light, l-cys-capped Mn-doped ZnS QDs have been synthesized and used for room-temperature phosphorescence (RTP) to sense and for RS chemodosimetry to image ultratrace 2,4,6-trinitrotoluene (TNT) in water. The l-cys-capped Mn-doped ZnS QDs interdots aggregate with TNT species induced by the formation of Meisenheimer complexes (MHCs) through acid-base pairing interaction between l-cys and TNT, hydrogen bonding, and electrostatic interaction between l-cys intermolecules. Although the resultant MHCs may quench the fluorescence at 430 nm, interdots aggregation can greatly influence the light scattering property of the aqueous QDs system, and therefore, dominant RS enhancement at defect-related emission wavelength was observed under the excitation of violet light of Mn-doped ZnS QDs, which was applied in chemodosimetry to image TNT in water. Meanwhile, Mn-doped ZnS QDs also exhibited a highly selective response to the quenching of the (4)T(1)-(6)A(1) transition emission (RTP) and showed a very good linearity in the range of 0.0025-0.45 μM TNT with detection limit down to 0.8 nM and RSD of 2.3% (n = 5). The proposed methods are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.

  4. Towards optical brain imaging: getting light through a bone

    NASA Astrophysics Data System (ADS)

    Thompson, J. V.; Hokr, B. H.; Nodurft, D. T.; Yakovlev, V. V.

    2018-06-01

    Optical imaging and detection in biological samples is severely limited by scattering effects. In particular, optical techniques for measuring conditions beneath the skull and within the bone marrow hold significant promise when it comes to speed, sensitivity and specificity. However, the strong optical scattering due to bone hinders the realization of these methods. In this article, we propose a technique to enhance the transmittance of light through bone. This is achieved by injecting light below the top surface of the bone and utilizing multiple scattering to increase transmittance. This technique suggests that enhancements of 2-6 times may be realized by injection of light 1 mm below the surface of the bone. By enhancing the transmittance of light through bone, we will greatly improve our ability to utilize optical methods to better understand and diagnose conditions within biological media.

  5. Simultaneous determination of sucralose and related compounds by high-performance liquid chromatography with evaporative light scattering detection.

    PubMed

    Yan, Wenwu; Wang, Nani; Zhang, Peimin; Zhang, Jiajie; Wu, Shuchao; Zhu, Yan

    2016-08-01

    Sucralose is widely used in food and beverages as sweetener. Current synthesis approaches typically provide sucralose products with varying levels of related chlorinated carbohydrates which can affect the taste and flavor-modifying properties of sucralose. Quantification of related compounds in sucralose is often hampered by the lack of commercially available standards. In this work, nine related compounds were purified (purity>97%) and identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR), then a rapid and simple HPLC coupled with evaporative light scattering detection (ELSD) method has been developed for the simultaneous determination of sucralose and related compounds. Under optimized conditions, the method showed good linearity in the range of 2-600μgmL(-1) with determination coefficients R(2)⩾0.9990. Moreover, low limits of detection in the range of 0.5-2.0μgmL(-1) and good repeatability (RSD<3%, n=6) were obtained. Recoveries were from 96.8% to 101.2%. Finally, the method has been successfully applied to sucralose quality control and purification process monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A technique for simultaneous detection of individual vortex states of Laguerre-Gaussian beams transmitted through an aqueous suspension of microparticles

    NASA Astrophysics Data System (ADS)

    Khonina, S. N.; Karpeev, S. V.; Paranin, V. D.

    2018-06-01

    A technique for simultaneous detection of individual vortex states of the beams propagating in a randomly inhomogeneous medium is proposed. The developed optical system relies on the correlation method that is invariant to the beam wandering. The intensity distribution formed at the optical system output does not require digital processing. The proposed technique based on a multi-order phase diffractive optical element (DOE) is studied numerically and experimentally. The developed detection technique is used for the analysis of Laguerre-Gaussian vortex beams propagating under conditions of intense absorption, reflection, and scattering in transparent and opaque microparticles in aqueous suspensions. The performed experimental studies confirm the relevance of the vortex phase dependence of a laser beam under conditions of significant absorption, reflection, and scattering of the light.

  7. Identification of dominant scattering mechanism in epitaxial graphene on SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jingjing; Guo, Liwei, E-mail: lwguo@iphy.ac.cn, E-mail: chenx29@aphy.iphy.ac.cn; Jia, Yuping

    2014-05-05

    A scheme of identification of scattering mechanisms in epitaxial graphene (EG) on SiC substrate is developed and applied to three EG samples grown on SiC (0001), (112{sup ¯}0), and (101{sup ¯}0) substrates. Hall measurements combined with defect detection technique enable us to evaluate the individual contributions to the carrier scatterings by defects and by substrates. It is found that the dominant scatterings can be due to either substrate or defects, dependent on the substrate orientations. The EG on SiC (112{sup ¯}0) exhibits a better control over the two major scattering mechanisms and achieves the highest mobility even with a highmore » carrier concentration, promising for high performance graphene-based electronic devices. The method developed here will shed light on major aspects in governing carrier transport in EG to harness it effectively.« less

  8. A new method for the determination of very small Γγ partial widths

    NASA Astrophysics Data System (ADS)

    Cardella, Giuseppe; Acosta, Luis; Auditore, Lucrezia; Camaiani, Alberto; Filippo, Enrico De; Luca, Saverio De; Gelli, Nicla; Gnoffo, Brunilde; Favela, Francisco; Fornal, Bogdan; Lanzalone, Gaetano; Leoni, Silvia; Maiolino, Concetta; Martorana, Nunzia Simona; Nannini, Adriana; Norella, Sebastianella; Pagano, Angelo; Pagano, Emanuele Vincenzo; Papa, Massimo; Pirrone, Sara; Politi, Giuseppe; Porto, Francesco; Quattrocchi, Lucia; Rizzo, Francesca; Russotto, Paolo; Santonocito, Domenico; Trifirò, Antonio; Trimarchì, Marina

    2018-01-01

    We present a new method for the measurement of very small Γγ partial width that is important for the synthesis of elements in astrophysics. The method is based on the simultaneous detection of scattered beam, residual nucleus and decay γ rays. This method is optimized for the use of the CHIMERA detector at LNS. Experimental details are described.

  9. Impulsive Raman spectroscopy via precision measurement of frequency shift with low energy excitation.

    PubMed

    Raanan, Dekel; Ren, Liqing; Oron, Dan; Silberberg, Yaron

    2018-02-01

    Stimulated Raman scattering (SRS) has recently become useful for chemically selective bioimaging. It is usually measured via modulation transfer from the pump beam to the Stokes beam. Impulsive stimulated Raman spectroscopy, on the other hand, relies on the spectral shift of ultrashort pulses as they propagate in a Raman active sample. This method was considered impractical with low energy pulses since the observed shifts are very small compared to the excitation pulse bandwidth, spanning many terahertz. Here we present a new apparatus, using tools borrowed from the field of precision measurement, for the detection of low-frequency Raman lines via stimulated-Raman-scattering-induced spectral shifts. This method does not require any spectral filtration and is therefore an excellent candidate to resolve low-lying Raman lines (<200  cm -1 ), which are commonly masked by the strong Rayleigh scattering peak. Having the advantage of the high repetition rate of the ultrafast oscillator, we reduce the noise level by implementing a lock-in detection scheme with a wavelength shift sensitivity well below 100 fm. This is demonstrated by the measurement of low-frequency Raman lines of various liquid samples.

  10. Machine-learning model observer for detection and localization tasks in clinical SPECT-MPI

    NASA Astrophysics Data System (ADS)

    Parages, Felipe M.; O'Connor, J. Michael; Pretorius, P. Hendrik; Brankov, Jovan G.

    2016-03-01

    In this work we propose a machine-learning MO based on Naive-Bayes classification (NB-MO) for the diagnostic tasks of detection, localization and assessment of perfusion defects in clinical SPECT Myocardial Perfusion Imaging (MPI), with the goal of evaluating several image reconstruction methods used in clinical practice. NB-MO uses image features extracted from polar-maps in order to predict lesion detection, localization and severity scores given by human readers in a series of 3D SPECT-MPI. The population used to tune (i.e. train) the NB-MO consisted of simulated SPECT-MPI cases - divided into normals or with lesions in variable sizes and locations - reconstructed using filtered backprojection (FBP) method. An ensemble of five human specialists (physicians) read a subset of simulated reconstructed images, and assigned a perfusion score for each region of the left-ventricle (LV). Polar-maps generated from the simulated volumes along with their corresponding human scores were used to train five NB-MOs (one per human reader), which are subsequently applied (i.e. tested) on three sets of clinical SPECT-MPI polar maps, in order to predict human detection and localization scores. The clinical "testing" population comprises healthy individuals and patients suffering from coronary artery disease (CAD) in three possible regions, namely: LAD, LcX and RCA. Each clinical case was reconstructed using three reconstruction strategies, namely: FBP with no SC (i.e. scatter compensation), OSEM with Triple Energy Window (TEW) SC method, and OSEM with Effective Source Scatter Estimation (ESSE) SC. Alternative Free-Response (AFROC) analysis of perfusion scores shows that NB-MO predicts a higher human performance for scatter-compensated reconstructions, in agreement with what has been reported in published literature. These results suggest that NB-MO has good potential to generalize well to reconstruction methods not used during training, even for reasonably dissimilar datasets (i.e. simulated vs. clinical).

  11. Anisotropic Scattering Shadow Compensation Method for Remote Sensing Image with Consideration of Terrain

    NASA Astrophysics Data System (ADS)

    Wang, Qiongjie; Yan, Li

    2016-06-01

    With the rapid development of sensor networks and earth observation technology, a large quantity of high resolution remote sensing data is available. However, the influence of shadow has become increasingly greater due to the higher resolution shows more complex and detailed land cover, especially under the shadow. Shadow areas usually have lower intensity and fuzzy boundary, which make the images hard to interpret automatically. In this paper, a simple and effective shadow (including soft shadow) detection and compensation method is proposed based on normal data, Digital Elevation Model (DEM) and sun position. First, we use high accuracy DEM and sun position to rebuild the geometric relationship between surface and sun at the time the image shoot and get the hard shadow boundary and sky view factor (SVF) of each pixel. Anisotropic scattering assumption is accepted to determine the soft shadow factor mainly affected by diffuse radiation. Finally, an easy radiation transmission model is used to compensate the shadow area. Compared with the spectral detection method, our detection method has strict theoretical basis, reliable compensation result and minor affected by the image quality. The compensation strategy can effectively improve the radiation intensity of shadow area, reduce the information loss brought by shadow and improve the robustness and efficiency of the classification algorithms.

  12. Calculation model of the scattering polarization coherency matrix for a detection system of oil spills at sea.

    PubMed

    Xu, Jiang; Qian, Weixian; Chen, Qian; Zhou, Yang

    2018-02-10

    As a new analytical method to identify oil spills at sea, the main effect of a polarization measurement system is the scattering polarization information of different measured parts. To improve measurement accuracy, the scattering polarization characteristics of oil film and seawater were observed in this paper. A useful computational model, the scattering polarization coherency matrix (SPCM), was derived, which is a probabilistic mixture of the polarization coherency matrix. Combined with the Fresnel formula, the amplitude ratio and phase retardation were extracted to verify the scientific nature of the physical model. Experiments were performed, and the SPCM of the oil film and seawater were measured. In order to test the practicability of the model, we derived the degree of polarization from the SPCM and used it as the basis for identification of the actual oil spill at sea in the case of sunlight. Research indicated that the path of multiple scattering was in connection with the molecular structure and interactions of the medium. Under different measuring angles, the SPCM of the oil film and seawater have both differences and regularities; the experimental results indicate that it can be used for the rapid detection of an oil spill at sea, and the data are accurate and reliable.

  13. Acoustic and electromagnetic wave interaction in the detection and identification of buried objects

    NASA Astrophysics Data System (ADS)

    Lawrence, Daniel Edward

    2002-09-01

    In order to facilitate the development of a hybrid acoustic and electromagnetic (EM) system for buried object detection, a number of analytical solutions and a novel numerical technique are developed to analyze the complex interaction between acoustic and EM scattering. The essence of the interaction lies in the fact that identifiable acoustic properties of an object, such as acoustic resonances, can be observed in the scattered EM Doppler spectrum. Using a perturbation approach, analytical solutions are derived for the EM scattering from infinitely long circular cylinders, both metallic and dielectric, under acoustic vibration in a homogeneous background medium. Results indicate that both the shape variation and dielectric constant contribute to the scattered EM Doppler spectrum. To model the effect of a cylinder beneath an acoustically excited half-space, a new analytical solution is presented for EM scattering from a cylinder beneath a slightly rough surface. The solution is achieved by using plane-wave expansion of the fields and an iterative technique to account for the multiple interactions between the cylinder and rough surface. Following a similar procedure, a novel solution for elastic-wave scattering from a solid cylinder embedded in a solid half-space is developed and used to calculate the surface displacement. Simulations indicate that only a finite range of spatial surface frequencies, corresponding to surface roughness on the order of the EM wavelength; affect the EM scattering from buried objects and suggest that object detection can be improved if the acoustic excitation induces surface roughness outside this range. To extend the study to non-canonical scenarios, a novel numerical approach is introduced in which time-varying impedance boundary conditions (IBCs) are used in conjunction with the method of moments (MoM) to model the EM scattering from vibrating metallic objects of arbitrary shape. It is shown that the standard IBC provides a first order solution for TM polarization, but a second order IBC is needed for TE polarization. The crucial factor in the calculation of the potentially small Doppler components is that the time-varying nature of the cylinder boundary, contained within the surface impedance expressions, can be isolated from the unperturbed terms in the scattered field.

  14. Application of LASCA imaging for detection of disorders of blood microcirculation in chicken embryo, infected by Chlamydia trachomatis

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega; Subbotina, Irina; Filonova, Nadezhda; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Ulyanov, Sergey; Larionova, Olga; Feodorova, Valentina

    2018-04-01

    Methods of t-LASCA and s-LASCA imaging have been firstly adapted to the problem of monitoring of blood microcirculation in chicken embryo model. Set-up for LASCA imaging of chicken embryo is mounted. Disorders of blood microcirculation in embryonated chicken egg, infected by Chlamydia trachomatis, are detected. Speckle-imaging technique is compared with white-light ovoscopy and new method of laser ovoscopy, based on the scattering of coherent light, advantages of LASCA imaging for the early detection of developmental process of chlamydial agent is demonstrated.

  15. Rapid detection of methanol in artisanal alcoholic beverages

    NASA Astrophysics Data System (ADS)

    de Goes, R. E.; Muller, M.; Fabris, J. L.

    2015-09-01

    In the industry of artisanal beverages, uncontrolled production processes may result in contaminated products with methanol, leading to risks for consumers. Owing to the similar odor of methanol and ethanol, as well as their common transparency, the distinction between them is a difficult task. Contamination may also occur deliberately due to the lower price of methanol when compared to ethanol. This paper describes a spectroscopic method for methanol detection in beverages based on Raman scattering and Principal Component Analysis. Associated with a refractometric assessment of the alcohol content, the method may be applied in field for a rapid detection of methanol presence.

  16. Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering.

    PubMed

    Zhang, Yuanyuan; Yu, Wansong; Pei, Lu; Lai, Keqiang; Rasco, Barbara A; Huang, Yiqun

    2015-02-15

    Surface-enhanced resonance Raman scattering (SERRS) coupled with gold nanospheres was applied for rapid analysis of the hazardous substances malachite green (MG) and leucomalachite green (LMG) in fish muscle tissues. The lowest concentration of MG that could be detected was 0.5ngmL(-1) with high linear correlation (R(2)=0.970-0.998) between MG concentration and intensities of characteristic Raman peaks. A simplified sample preparation method taking less than 1h for recovering MG and LMG in fish fillets was developed for SERRS analysis, and 4-8 samples could be handled in parallel. MG and LMG could be detected in extracts of tilapia fish fillets at as low as 2ngg(-1) with SERRS and a simple principle component analysis method. For six other fish species, the lowest detectable concentration of MG ranged from 1ngg(-1) to 10ngg(-1). This study provides a new sensitive approach for the detection of trace amounts of the prohibited drugs MG and LMG in muscle food, which has the potential for rapidly screening a large number of samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Precision determination of electron scattering angle by differential nuclear recoil energy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liyanage, N.; Saenboonruang, K.

    2015-12-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less

  18. Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liyanage, Nilanga; Saenboonruang, Kiadtisak

    2015-09-01

    The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less

  19. Polarization recovery through scattering media.

    PubMed

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie

    2017-09-01

    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  20. Application of electrically invisible antennas to the Modulated Scatterer Technique

    DOE PAGES

    Crocker, Dylan A.; Donnell, Kristen M.

    2015-09-16

    The modulated scatterer technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers are dipoles centrally loaded with an element capable of modulation (e.g., a p-i-n diode). By modulating the load element, signals scattered from the MST scatterer are also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (MD; a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve themore » MD, the concept of electrically invisible antennas is applied to the design of MST scatterers. Our paper presents simulations and measurements of MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (a p-i-n diode in this case), while producing detectable scattering during the forward bias state (i.e., operate in an electrically visible state). Furthermore, the results using the new design show significant improvement to the MD of the scattered signal as compared with a traditional MST scatterer (i.e., dipole centrally loaded with a p-i-n diode).« less

  1. Characterization of Heavy Oxide Inorganic Scintillator Crystals for Direct Detection of Fast Neutrons Based on Inelastic Scattering

    DTIC Science & Technology

    2015-03-01

    HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DIRECT DETECTION OF FAST NEUTRONS BASED ON INELASTIC SCATTERING by Philip R. Rusiecki...HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DIRECT DETECTION OF FAST NEUTRONS BASED ON INELASTIC SCATTERING 6. AUTHOR(S) Philip R. Rusiecki 7...ABSTRACT (maximum 200 words) Heavy oxide inorganic scintillators may prove viable in the detection of fast neutrons based on the mechanism of

  2. X-ray scatter imaging of hepatocellular carcinoma in a mouse model using nanoparticle contrast agents

    DOE PAGES

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; ...

    2015-10-29

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form anmore » image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. As a result, the enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.« less

  3. Indoor detection of passive targets recast as an inverse scattering problem

    NASA Astrophysics Data System (ADS)

    Gottardi, G.; Moriyama, T.

    2017-10-01

    The wireless local area networks represent an alternative to custom sensors and dedicated surveillance systems for target indoor detection. The availability of the channel state information has opened the exploitation of the spatial and frequency diversity given by the orthogonal frequency division multiplexing. Such a fine-grained information can be used to solve the detection problem as an inverse scattering problem. The goal of the detection is to reconstruct the properties of the investigation domain, namely to estimate if the domain is empty or occupied by targets, starting from the measurement of the electromagnetic perturbation of the wireless channel. An innovative inversion strategy exploiting both the frequency and the spatial diversity of the channel state information is proposed. The target-dependent features are identified combining the Kruskal-Wallis test and the principal component analysis. The experimental validation points out the detection performance of the proposed method when applied to an existing wireless link of a WiFi architecture deployed in a real indoor scenario. False detection rates lower than 2 [%] have been obtained.

  4. Investigation of light scattering as a technique for detecting discrete soot particles in a luminous flame

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.

  5. Optical characterization of pancreatic normal and tumor tissues with double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Kiris, Tugba; Akbulut, Saadet; Kiris, Aysenur; Gucin, Zuhal; Karatepe, Oguzhan; Bölükbasi Ates, Gamze; Tabakoǧlu, Haşim Özgür

    2015-03-01

    In order to develop minimally invasive, fast and precise diagnostic and therapeutic methods in medicine by using optical methods, first step is to examine how the light propagates, scatters and transmitted through medium. So as to find out appropriate wavelengths, it is required to correctly determine the optical properties of tissues. The aim of this study is to measure the optical properties of both cancerous and normal ex-vivo pancreatic tissues. Results will be compared to detect how cancerous and normal tissues respond to different wavelengths. Double-integrating-sphere system and computational technique inverse adding doubling method (IAD) were used in the study. Absorption and reduced scattering coefficients of normal and cancerous pancreatic tissues have been measured within the range of 500-650 nm. Statistical significant differences between cancerous and normal tissues have been obtained at 550 nm and 630 nm for absorption coefficients. On the other hand; there were no statistical difference found for scattering coefficients at any wavelength.

  6. Two-dimensional interferometric Rayleigh scattering velocimetry using multibeam probe laser

    NASA Astrophysics Data System (ADS)

    Sheng, Wang; Jin-Hai, Si; Jun, Shao; Zhi-yun, Hu; Jing-feng, Ye; Jing-Ru, Liu

    2017-11-01

    In order to achieve the two-dimensional (2-D) velocity measurement of a flow field at extreme condition, a 2-D interferometric Rayleigh scattering (IRS) velocimetry using a multibeam probe laser was developed. The method using a multibeam probe laser can record the reference interference signal and the flow interference signal simultaneously. What is more, this method can solve the problem of signal overlap using the laser sheet detection method. The 2-D IRS measurement system was set up with a multibeam probe laser, aspherical lens collection optics, and a solid Fabry-Perot etalon. A multibeam probe laser with 0.5-mm intervals was formed by collimating a laser sheet passing through a cylindrical microlens arrays. The aspherical lens was used to enhance the intensity of the Rayleigh scattering signal. The 2-D velocity field results of a Mach 1.5 air flow were obtained. The velocity in the flow center is about 450 m/s. The reconstructed results fit well with the characteristic of flow, which indicate the validity of this technique.

  7. Time reversal optical tomography and decomposition methods for detection and localization of targets in highly scattering turbid media

    NASA Astrophysics Data System (ADS)

    Wu, Binlin

    New near-infrared (NIR) diffuse optical tomography (DOT) approaches were developed to detect, locate, and image small targets embedded in highly scattering turbid media. The first approach, referred to as time reversal optical tomography (TROT), is based on time reversal (TR) imaging and multiple signal classification (MUSIC). The second approach uses decomposition methods of non-negative matrix factorization (NMF) and principal component analysis (PCA) commonly used in blind source separation (BSS) problems, and compare the outcomes with that of optical imaging using independent component analysis (OPTICA). The goal is to develop a safe, affordable, noninvasive imaging modality for detection and characterization of breast tumors in early growth stages when those are more amenable to treatment. The efficacy of the approaches was tested using simulated data, and experiments involving model media and absorptive, scattering, and fluorescent targets, as well as, "realistic human breast model" composed of ex vivo breast tissues with embedded tumors. The experimental arrangements realized continuous wave (CW) multi-source probing of samples and multi-detector acquisition of diffusely transmitted signal in rectangular slab geometry. A data matrix was generated using the perturbation in the transmitted light intensity distribution due to the presence of absorptive or scattering targets. For fluorescent targets the data matrix was generated using the diffusely transmitted fluorescence signal distribution from the targets. The data matrix was analyzed using different approaches to detect and characterize the targets. The salient features of the approaches include ability to: (a) detect small targets; (b) provide three-dimensional location of the targets with high accuracy (~within a millimeter or 2); and (c) assess optical strength of the targets. The approaches are less computation intensive and consequently are faster than other inverse image reconstruction methods that attempt to reconstruct the optical properties of every voxel of the sample volume. The location of a target was estimated to be the weighted center of the optical property of the target. Consequently, the locations of small targets were better specified than those of the extended targets. It was more difficult to retrieve the size and shape of a target. The fluorescent measurements seemed to provide better accuracy than the transillumination measurements. In the case of ex vivo detection of tumors embedded in human breast tissue, measurements using multiple wavelengths provided more robust results, and helped suppress artifacts (false positives) than that from single wavelength measurements. The ability to detect and locate small targets, speedier reconstruction, combined with fluorophore-specific multi-wavelength probing has the potential to make these approaches suitable for breast cancer detection and diagnosis.

  8. A novel technique for finding gas bubbles in the nuclear waste containers using Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Dobrowolska, M.; Velthuis, J.; Frazão, L.; Kikoła, D.

    2018-05-01

    Nuclear waste is deposited for many years in the concrete or bitumen-filled containers. With time hydrogen gas is produced, which can accumulate in bubbles. These pockets of gas may result in bitumen overflowing out of the waste containers and could result in spread of radioactivity. Muon Scattering Tomography is a non-invasive scanning method developed to examine the unknown content of nuclear waste drums. Here we present a method which allows us to successfully detect bubbles larger than 2 litres and determine their size with a relative uncertainty resolution of 1.55 ± 0.77%. Furthermore, the method allows to make a distinction between a conglomeration of bubbles and a few smaller gas volumes in different locations.

  9. On the use of the Reciprocity Gap Functional in inverse scattering with near-field data: An application to mammography

    NASA Astrophysics Data System (ADS)

    Delbary, Fabrice; Aramini, Riccardo; Bozza, Giovanni; Brignone, Massimo; Piana, Michele

    2008-11-01

    Microwave tomography is a non-invasive approach to the early diagnosis of breast cancer. However the problem of visualizing tumors from diffracted microwaves is a difficult nonlinear ill-posed inverse scattering problem. We propose a qualitative approach to the solution of such a problem, whereby the shape and location of cancerous tissues can be detected by means of a combination of the Reciprocity Gap Functional method and the Linear Sampling method. We validate this approach to synthetic near-fields produced by a finite element method for boundary integral equations, where the breast is mimicked by the axial view of two nested cylinders, the external one representing the skin and the internal one representing the fat tissue.

  10. Observations Regarding Scatter Fraction and NEC Measurements for Small Animal PET

    NASA Astrophysics Data System (ADS)

    Yang, Yongfeng; Cherry, S. R.

    2006-02-01

    The goal of this study was to evaluate the magnitude and origin of scattered radiation in a small-animal PET scanner and to assess the impact of these findings on noise equivalent count rate (NECR) measurements, a metric often used to optimize scanner acquisition parameters and to compare one scanner with another. The scatter fraction (SF) was measured for line sources in air and line sources placed within a mouse-sized phantom (25 mm /spl phi//spl times/70 mm) and a rat-sized phantom (60 mm /spl phi//spl times/150 mm) on the microPET II small-animal PET scanner. Measurements were performed for lower energy thresholds ranging from 150-450 keV and a fixed upper energy threshold of 750 keV. Four different methods were compared for estimating the SF. Significant scatter fractions were measured with just the line source in the field of view, with the spatial distribution of these events consistent with scatter from the gantry and room environment. For mouse imaging, this component dominates over object scatter, and the measured SF is strongly method dependent. The environmental SF rapidly increases as the lower energy threshold decreases and can be more than 30% for an open energy window of 150-750 keV. The object SF originating from the mouse phantom is about 3-4% and does not change significantly as the lower energy threshold increases. The object SF for the rat phantom ranges from 10 to 35% for different energy windows and increases as the lower energy threshold decreases. Because the measured SF is highly dependent on the method, and there is as yet no agreed upon standard for animal PET, care must be exercised when comparing NECR for small objects between different scanners. Differences may be methodological rather than reflecting any relevant difference in the performance of the scanner. Furthermore, these results have implications for scatter correction methods when the majority of the detected scatter does not arise from the object itself.

  11. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  12. Scattering features for lung cancer detection in fibered confocal fluorescence microscopy images.

    PubMed

    Rakotomamonjy, Alain; Petitjean, Caroline; Salaün, Mathieu; Thiberville, Luc

    2014-06-01

    To assess the feasibility of lung cancer diagnosis using fibered confocal fluorescence microscopy (FCFM) imaging technique and scattering features for pattern recognition. FCFM imaging technique is a new medical imaging technique for which interest has yet to be established for diagnosis. This paper addresses the problem of lung cancer detection using FCFM images and, as a first contribution, assesses the feasibility of computer-aided diagnosis through these images. Towards this aim, we have built a pattern recognition scheme which involves a feature extraction stage and a classification stage. The second contribution relies on the features used for discrimination. Indeed, we have employed the so-called scattering transform for extracting discriminative features, which are robust to small deformations in the images. We have also compared and combined these features with classical yet powerful features like local binary patterns (LBP) and their variants denoted as local quinary patterns (LQP). We show that scattering features yielded to better recognition performances than classical features like LBP and their LQP variants for the FCFM image classification problems. Another finding is that LBP-based and scattering-based features provide complementary discriminative information and, in some situations, we empirically establish that performance can be improved when jointly using LBP, LQP and scattering features. In this work we analyze the joint capability of FCFM images and scattering features for lung cancer diagnosis. The proposed method achieves a good recognition rate for such a diagnosis problem. It also performs well when used in conjunction with other features for other classical medical imaging classification problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Development of batch producible hot embossing 3D nanostructured surface-enhanced Raman scattering chip technology

    NASA Astrophysics Data System (ADS)

    Huang, Chu-Yu; Tsai, Ming-Shiuan

    2017-09-01

    The main purpose of this study is to develop a batch producible hot embossing 3D nanostructured surface-enhanced Raman chip technology for high sensitivity label-free plasticizer detection. This study utilizing the AAO self-assembled uniform nano-hemispherical array barrier layer as a template to create a durable nanostructured nickel mold. With the hot embossing technique and the durable nanostructured nickel mold, we are able to batch produce the 3D Nanostructured Surface-enhanced Raman Scattering Chip with consistent quality. In addition, because of our SERS chip can be fabricated by batch processing, the fabrication cost is low. Therefore, the developed method is very promising to be widespread and extensively used in rapid chemical and biomolecular detection applications.

  14. Far-field detection of sub-wavelength Tetris without extra near-field metal parts based on phase prints of time-reversed fields with intensive background interference.

    PubMed

    Chen, Yingming; Wang, Bing-Zhong

    2014-07-14

    Time-reversal (TR) phase prints are first used in far-field (FF) detection of sub-wavelength (SW) deformable scatterers without any extra metal structure positioned in the vicinity of the target. The 2D prints derive from discrete short-time Fourier transform of 1D TR electromagnetic (EM) signals. Because the time-invariant intensive background interference is effectively centralized by TR technique, the time-variant weak indication from FF SW scatterers can be highlighted. This method shows a different use of TR technique in which the focus peak of TR EM waves is unusually removed and the most useful information is conveyed by the other part.

  15. Nanobarcoding: detecting nanoparticles in biological samples using in situ polymerase chain reaction

    PubMed Central

    Eustaquio, Trisha; Leary, James F

    2012-01-01

    Background Determination of the fate of nanoparticles (NPs) in a biological system, or NP biodistribution, is critical in evaluating an NP formulation for nanomedicine. Current methods to determine NP biodistribution are greatly inadequate, due to their limited detection thresholds. Herein, proof of concept of a novel method for improved NP detection based on in situ polymerase chain reaction (ISPCR), coined “nanobarcoding,” is demonstrated. Methods Nanobarcoded superparamagnetic iron oxide nanoparticles (NB-SPIONs) were characterized by dynamic light scattering, zeta potential, and hyperspectral imaging measurements. Cellular uptake of Cy5-labeled NB-SPIONs (Cy5-NB-SPIONs) was imaged by confocal microscopy. The feasibility of the nanobarcoding method was first validated by solution-phase PCR and “pseudo”-ISPCR before implementation in the model in vitro system of HeLa human cervical adenocarcinoma cells, a cell line commonly used for ISPCR-mediated detection of human papilloma virus (HPV). Results Dynamic light-scattering measurements showed that NB conjugation stabilized SPION size in different dispersion media compared to that of its precursor, carboxylated SPIONs (COOH-SPIONs), while the zeta potential became more positive after NB conjugation. Hyperspectral imaging confirmed NB conjugation and showed that the NB completely covered the SPION surface. Solution-phase PCR and pseudo-ISPCR showed that the expected amplicons were exclusively generated from the NB-SPIONs in a dose-dependent manner. Although confocal microscopy revealed minimal cellular uptake of Cy5-NB-SPIONs at 50 nM over 24 hours in individual cells, ISPCR detected definitive NB-SPION signals inside HeLa cells over large sample areas. Conclusion Proof of concept of the nanobarcoding method has been demonstrated in in vitro systems, but the technique needs further development before its widespread use as a standardized assay. PMID:23144562

  16. Polarization visualization of changes of anisotropic meat structure

    NASA Astrophysics Data System (ADS)

    Blokhina, Anastasia A.; Ryzhova, Victoria A.; Kleshchenok, Maksim A.; Lobanova, Anastasiya Y.

    2017-06-01

    The main aspect in developing methods for optical diagnostics and visualization of biological tissues using polarized radiation is the transformation analysis of the state of light polarization when it is scattered by the medium. The polarization characteristic spatial distributions of the detected scattered radiation, in particular the degree of depolarization, have a pronounced anisotropy. The presence of optical anisotropy can provide valuable additional information on the structural features of the biological object and its physiological status. Analysis of the polarization characteristics of the scattered radiation of biological tissues in some cases provides a qualitatively new results in the study of biological samples. These results can be used in medicine and food industry.

  17. Acoustic holograms of active regions

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2008-10-01

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  18. The Scattered Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Trujillo, C. A.; Jewitt, D. C.; Luu, J. X.

    1999-09-01

    We describe a continuing survey of the Kuiper Belt conducted at the 3.6-m Canada France Hawaii Telescope on Mauna Kea, Hawaii. The survey employs a 12288 x 8192 pixel CCD mosaic to image the sky to red magnitude 24. All detected objects are targeted for systematic follow-up observations, allowing us to determine their orbital characteristics. Three new members of the rare Scattered Kuiper Belt Object class have been identified, bringing the known population of such objects to four. The SKBOs are thought to have been scattered outward by Neptune, and are a potential source of the short-period comets. Using a Maximum Likelihood method, we place observational constraints on the total number and mass of the SKBOs.

  19. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  20. Hydrogen concentration analysis in clinopyroxene using proton-proton scattering analysis

    NASA Astrophysics Data System (ADS)

    Weis, Franz A.; Ros, Linus; Reichart, Patrick; Skogby, Henrik; Kristiansson, Per; Dollinger, Günther

    2018-02-01

    Traditional methods to measure water in nominally anhydrous minerals (NAMs) are, for example, Fourier transformed infrared (FTIR) spectroscopy or secondary ion mass spectrometry (SIMS). Both well-established methods provide a low detection limit as well as high spatial resolution yet may require elaborate sample orientation or destructive sample preparation. Here we analyze the water content in erupted volcanic clinopyroxene phenocrysts by proton-proton scattering and reproduce water contents measured by FTIR spectroscopy. We show that this technique provides significant advantages over other methods as it can provide a three-dimensional distribution of hydrogen within a crystal, making the identification of potential inclusions possible as well as elimination of surface contamination. The sample analysis is also independent of crystal structure and orientation and independent of matrix effects other than sample density. The results are used to validate the accuracy of wavenumber-dependent vs. mineral-specific molar absorption coefficients in FTIR spectroscopy. In addition, we present a new method for the sample preparation of very thin crystals suitable for proton-proton scattering analysis using relatively low accelerator potentials.

  1. Apple Mealiness Detection Using Hyperspectral Scattering Technique

    USDA-ARS?s Scientific Manuscript database

    Mealiness is a symptom of internal fruit disorder, which is characterized by abnormal softness and lack of free juice in the fruit. This research investigated the potential of hyperspectral scattering technique for detecting mealy apples. Spectral scattering profiles between 600 nm and 1,000 nm were...

  2. DEATH-STAR: Silicon and photovoltaic fission fragment detector arrays for light-ion induced fission correlation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.

    Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less

  3. DEATH-STAR: Silicon and Photovoltaic Fission Fragment Detector Arrays for Light-Ion Induced Fission Correlation Studies

    NASA Astrophysics Data System (ADS)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; Jovanovic, I.

    2017-05-01

    The Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE - E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution of 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.

  4. DEATH-STAR: Silicon and photovoltaic fission fragment detector arrays for light-ion induced fission correlation studies

    DOE PAGES

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; ...

    2017-02-20

    Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less

  5. Highly sensitive surface enhanced Raman scattering substrates based on Ag decorated Si nanocone arrays and their application in trace dimethyl phthalate detection

    NASA Astrophysics Data System (ADS)

    Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Cheng, Ying; Wang, Junzhuan; Shi, Yi; Xu, Dongsheng; Xin, Yu

    2015-01-01

    Wafer-scale three-dimensional (3D) surface enhancement Raman scattering (SERS) substrates were prepared using the plasma etching and ion sputtering methods that are completely compatible with well-established silicon device technologies. The substrates are highly sensitive with excellent uniformity and reproducibility, exhibiting an enhancement factor up to 1012 with a very low relative standard deviation (RSD) around 5%. These are attributed mainly to the uniform-distributed, multiple-type high-density hot spots originating from the structural characteristics of Ag nanoparticles (NPs) decorated Si nanocone (NC) arrays. We demonstrate that the trace dimethyl phthalate (DMP) at a concentration of 10-7 M can be well detected using this SERS substrate, showing that the AgNPs-decorated SiNC arrays can serve as efficient SERS substrates for phthalate acid esters (PAEs) detection with high sensitivity.

  6. Method and apparatus for inspecting reflection masks for defects

    DOEpatents

    Bokor, Jeffrey; Lin, Yun

    2003-04-29

    An at-wavelength system for extreme ultraviolet lithography mask blank defect detection is provided. When a focused beam of wavelength 13 nm is incident on a defective region of a mask blank, three possible phenomena can occur. The defect will induce an intensity reduction in the specularly reflected beam, scatter incoming photons into an off-specular direction, and change the amplitude and phase of the electric field at the surface which can be monitored through the change in the photoemission current. The magnitude of these changes will depend on the incident beam size, and the nature, extent and size of the defect. Inspection of the mask blank is performed by scanning the mask blank with 13 nm light focused to a spot a few .mu.m in diameter, while measuring the reflected beam intensity (bright field detection), the scattered beam intensity (dark-field detection) and/or the change in the photoemission current.

  7. Method and apparatus for detecting external cracks from within a metal tube

    DOEpatents

    Caffey, Thurlow W. H.

    2001-08-07

    A method and tool using a continuous electromagnetic wave from a transverse magnetic-dipole source with a coaxial electric-dipole receiver is described for the detection of external sidewall cracks and other anomalies in boiler tubes and other enclosures. The invention utilizes the concept of radar backscatter rather than eddy-currents or ultrasound, which are sometimes used in prior art crack-detection methods. A numerical study of the distribution of the fields shows that the direct transmission from the source to the receiver is reduced from that in free space. Further, if the diameter of the receiver dipole is made sufficiently small, it should be possible to detect cracks with a scattering loss of up to -40 dB in thin-walled boiler tubes.

  8. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses

    NASA Astrophysics Data System (ADS)

    Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan

    2013-03-01

    The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles.

  9. A LOW FREQUENCY SURVEY OF GIANT PULSES FROM THE CRAB PULSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eftekhari, T.; Stovall, K.; Dowell, J.

    2016-10-01

    We present a large survey of giant pulses from the Crab Pulsar as observed with the first station of the Long Wavelength Array. Automated methods for detecting giant pulses at low frequencies where scattering becomes prevalent are also explored. More than 1400 pulses were detected across four frequency bands between 20 and 84 MHz over a seven-month period beginning in 2013, with additional followup observations in late 2014 and early 2015. A handful of these pulses were detected simultaneously across all four frequency bands. We examine pulse characteristics, including pulse broadening and power law indices for amplitude distributions. We findmore » that the flux density increases toward shorter wavelengths, consistent with a spectral turnover at 100 MHz. Our observations uniquely span multiple scattering epochs, manifesting as a notable trend in the number of detections per observation. These results are characteristic of the variable interface between the synchrotron nebula and the surrounding interstellar medium.« less

  10. Simulations of Si-PIN photodiode based detectors for underground explosives enhanced by ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Yücel, Mete; Bayrak, Ahmet; Yücel, Esra Barlas; Ozben, Cenap S.

    2018-02-01

    Massive Ammonium Nitrate (NH4-NO3) based explosives buried underground are commonly used in terror attacks. These explosives can be detected using neutron scattering method with some limitations. Simulations are very useful tools for designing a possible detection system for these kind of explosives. Geant4 simulations were used for generating neutrons at 14 MeV energy and tracking them through the scattering off the explosive embedded in soil. Si-PIN photodiodes were used as detector elements in the design for their low costs and simplicity for signal readout electronics. Various neutron-charge particle converters were applied on to the surface of the photodiodes to increase the detection efficiency. Si-PIN photodiodes coated with 6LiF provided the best result for a certain energy interval. Energy depositions in silicon detector from all secondary particles generated including photons were taken into account to generate a realistic background. Humidity of soil, one of the most important parameter for limiting the detection, was also studied.

  11. Bayesian image reconstruction for improving detection performance of muon tomography.

    PubMed

    Wang, Guobao; Schultz, Larry J; Qi, Jinyi

    2009-05-01

    Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.

  12. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses

    PubMed Central

    Mudanyali, Onur; McLeod, Euan; Luo, Wei; Greenbaum, Alon; Coskun, Ahmet F.; Hennequin, Yves; Allier, Cédric P.; Ozcan, Aydogan

    2013-01-01

    The direct observation of nanoscale objects is a challenging task for optical microscopy because the scattering from an individual nanoparticle is typically weak at optical wavelengths. Electron microscopy therefore remains one of the gold standard visualization methods for nanoparticles, despite its high cost, limited throughput and restricted field-of-view. Here, we describe a high-throughput, on-chip detection scheme that uses biocompatible wetting films to self-assemble aspheric liquid nanolenses around individual nanoparticles to enhance the contrast between the scattered and background light. We model the effect of the nanolens as a spatial phase mask centred on the particle and show that the holographic diffraction pattern of this effective phase mask allows detection of sub-100 nm particles across a large field-of-view of >20 mm2. As a proof-of-concept demonstration, we report on-chip detection of individual polystyrene nanoparticles, adenoviruses and influenza A (H1N1) viral particles. PMID:24358054

  13. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up

    Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less

  14. Spectrometric microbiological analyzer

    NASA Astrophysics Data System (ADS)

    Schlager, Kenneth J.; Meissner, Ken E.

    1996-04-01

    Currently, there are four general approaches to microbiological analysis, i.e., the detection, identification and quantification of micro-organisms: (1) Traditional culturing and staining procedures, metabolic fermentations and visual morphological characteristics; (2) Immunological approaches employing microbe-specific antibodies; (3) Biotechnical techniques employing DNA probes and related genetic engineering methods; and (4) Physical measurement techniques based on the biophysical properties of micro-organisms. This paper describes an instrumentation development in the fourth of the above categories, physical measurement, that uses a combination of fluorometric and light scatter spectra to detect and identify micro-organisms at the species level. A major advantage of this approach is the rapid turnaround possible in medical diagnostic or water testing applications. Fluorometric spectra serve to define the biochemical characteristics of the microbe, and light scatter spectra the size and shape morphology. Together, the two spectra define a 'fingerprint' for each species of microbe for detection, identification and quantification purposes. A prototype instrument has been developed and tested under NASA sponsorship based on fluorometric spectra alone. This instrument demonstrated identification and quantification capabilities at the species level. The paper reports on test results using this instrument, and the benefits of employing a combination of fluorometric and light scatter spectra.

  15. Evaluation of the light scattering and the turbidity microtiter plate-based methods for the detection of the excipient-mediated drug precipitation inhibition.

    PubMed

    Petruševska, Marija; Urleb, Uroš; Peternel, Luka

    2013-11-01

    The excipient-mediated precipitation inhibition is classically determined by the quantification of the dissolved compound in the solution. In this study, two alternative approaches were evaluated, one is the light scattering (nephelometer) and other is the turbidity (plate reader) microtiter plate-based methods which are based on the quantification of the compound precipitate. Following the optimization of the nephelometer settings (beam focus, laser gain) and the experimental conditions, the screening of 23 excipients on the precipitation inhibition of poorly soluble fenofibrate and dipyridamole was performed. The light scattering method resulted in excellent correlation (r>0.91) between the calculated precipitation inhibitor parameters (PIPs) and the precipitation inhibition index (PI(classical)) obtained by the classical approach for fenofibrate and dipyridamole. Among the evaluated PIPs AUC100 (nephelometer) resulted in only four false positives and lack of false negatives. In the case of the turbidity-based method a good correlation of the PI(classical) was obtained for the PIP maximal optical density (OD(max), r=0.91), however, only for fenofibrate. In the case of the OD(max) (plate reader) five false positives and two false negatives were identified. In conclusion, the light scattering-based method outperformed the turbidity-based one and could be reliably used for identification of novel precipitation inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Biophotonic applications of eigenchannels in a scattering medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Moonseok; Choi, Wonjun; Choi, Youngwoon; Yoon, Changhyeong; Choi, Wonshik

    2016-03-01

    When waves travel through disordered media such as ground glass and skin tissues, they are scattered multiple times. Most of the incoming energy bounces back at the superficial layers and only a small fraction can penetrate deep inside. This has been a limiting factor for the working depth of various optical techniques. We present a systematic method to enhance wave penetration to the scattering media. Specifically, we measured the reflection matrix of a disordered medium with wide angular coverage for each orthogonal polarization states. From the reflection matrix, we identified reflection eigenchannels of the medium, and shaped the incident wave into the reflection eigenchannel with smallest eigenvalue, which we call anti-reflection mode. This makes reflectance reduced and wave penetration increased as a result of the energy conservation. We demonstrated transmission enhancement by more than a factor of 3 by the coupling of the incident waves to the anti-reflection modes. Based on the uneven distribution of eigenvalues of reflection eigenchannels, we further developed an iterative feedback control method for finding and coupling light to anti-reflection modes. Since this adaptive control method can keep up with sample perturbation, it promotes the applicability of exploiting reflection eigenchannels. Our approach of delivering light deep into the scattering media will contribute to enhancing the sensitivity of detecting objects hidden under scattering layers, which is universal problem ranging from geology to life science.

  17. Nonimaging speckle interferometry for high-speed nanometer-scale position detection.

    PubMed

    van Putten, E G; Lagendijk, A; Mosk, A P

    2012-03-15

    We experimentally demonstrate a nonimaging approach to displacement measurement for complex scattering materials. By spatially controlling the wavefront of the light that incidents on the material, we concentrate the scattered light in a focus on a designated position. This wavefront acts as a unique optical fingerprint that enables precise position detection of the illuminated material by simply measuring the intensity in the focus. By combining two fingerprints we demonstrate position detection along one in-plane dimension with a displacement resolution of 2.1 nm. As our approach does not require an image of the scattered field, it is possible to employ fast nonimaging detectors to enable high-speed position detection of scattering materials.

  18. In silico simulation of liver crack detection using ultrasonic shear wave imaging.

    PubMed

    Nie, Erwei; Yu, Jiao; Dutta, Debaditya; Zhu, Yanying

    2018-05-16

    Liver trauma is an important source of morbidity and mortality worldwide. A timely detection and precise evaluation of traumatic liver injury and the bleeding site is necessary. There is a need to develop better imaging modalities of hepatic injuries to increase the sensitivity of ultrasonic imaging techniques for sites of hemorrhage caused by cracks. In this study, we conduct an in silico simulation of liver crack detection and delineation using an ultrasonic shear wave imaging (USWI) based method. We simulate the generation and propagation of the shear wave in a liver tissue medium having a crack using COMSOL. Ultrasound radio frequency (RF) signal synthesis and the two-dimensional speckle tracking algorithm are applied to simulate USWI in a medium with randomly distributed scatterers. Crack detection is performed using the directional filter and the edge detection algorithm rather than the conventional inversion algorithm. Cracks with varied sizes and locations are studied with our method and the crack localization results are compared with the given crack. Our pilot simulation study shows that, by using USWI combined with a directional filter cum edge detection technique, the near-end edge of the crack can be detected in all the three cracks that we studied. The detection errors are within 5%. For a crack of 1.6 mm thickness, little shear wave can pass through it and the far-end edge of the crack cannot be detected. The detected crack lengths using USWI are all slightly shorter than the actual crack length. The robustness of our method in detecting a straight crack, a curved crack and a subtle crack of 0.5 mm thickness is demonstrated. In this paper, we simulate the use of a USWI based method for the detection and delineation of the crack in liver. The in silico simulation helps to improve understanding and interpretation of USWI measurements in a physical scattered liver medium with a crack. This pilot study provides a basis for improved insights in future crack detection studies in a tissue phantom or liver.

  19. Next-generation Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection

    DTIC Science & Technology

    2012-09-01

    Next-generation Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection by Mikella E. Farrell, Ellen L. Holthoff and Paul M...Surface Enhanced Raman Scattering (SERS) Substrates for Hazard Detection Mikella E. Farrell, Ellen L. Holthoff and Paul M. Pellegrino Sensors and...DD-MM-YYYY) September 2012 2. REPORT TYPE Reprint 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Next-generation Surface Enhanced Raman

  20. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  1. The Use of Spontaneous Raman Scattering for Hydrogen Leak Detection

    NASA Technical Reports Server (NTRS)

    Degroot, Wim A.

    1994-01-01

    A fiber optic probe has been built and demonstrated that utilizes back scattered spontaneous Raman spectroscopy to detect and identify gaseous species. The small probe, coupled to the laser and data acquisition equipment with optical fibers, has applications in gaseous leak detection and process monitoring. The probe design and data acquisition system are described. Raman scattering theory has been reviewed and the results of intensity calculations of hydrogen and nitrogen Raman scattering are given. Because the device is in its developmental stage, only preliminary experimental results are presented here. Intensity scans across the rotational-vibrational Raman lines of nitrogen and hydrogen are presented. Nitrogen at a partial pressure of 0.077 MPa was detected. Hydrogen at a partial pressure of 2 kPa approached the lower limit of detectability with the present apparatus. Potential instrument improvements that would allow more sensitive and rapid hydrogen detection are identified.

  2. Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates

    NASA Astrophysics Data System (ADS)

    Sharma, Vipul; Krishnan, Venkata

    2017-03-01

    Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS) has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.

  3. Nanotextured thin films for detection of chemicals by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Korivi, Naga; Jiang, Li; Ahmed, Syed; Nujhat, Nabila; Idrees, Mohanad; Rangari, Vijaya

    2017-11-01

    We report on the development of large area, nanostructured films that function as substrates for surface enhanced Raman scattering (SERS) detection of chemicals. The films are made of polyethylene terephthalate layers partially embedded with multi-walled carbon nanotubes and coated with a thin layer of gold. The films are fabricated by a facile method involving spin-coating, acid dip, and magnetron sputtering. The films perform effectively as SERS substrates when used in the detection of dye pollutants such as Congo red dye, with an enhancement factor of 1.1  ×  106 and a detection limit of 10-7 M which is the lowest reported for CR detection by freestanding SERS film substrates. The films have a long shelf life, and cost US0.20 per cm2 of active area, far less than commercially available SERS substrates. This is the first such work on the use of a polymer layer modified with carbon nanotubes to create a nano-scale texture and arbitrary ‘hot-spots’, contributing to the SERS effect.

  4. A simple resonance Rayleigh scattering method for determination of trace CA125 using immuno-AuRu nanoalloy as probe via ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Tang, Meiling; Wen, Guiqing; Luo, Yanghe; Liang, Aihui; Jiang, Zhiliang

    2015-01-01

    AuRu nanoalloy (GR) with Au/Ru molar ratio of 32/1 was prepared by the sodium borohydride reduction method. It was used to label the CA125 antibody (Ab) to obtain an immunonanoprobe (GRAb) for cancer antigen 125 (CA125). In pH 7.0 citric acid-Na2HPO4 buffer solution and irradiation of ultrasound, the probes were aggregated nonspecifically to big clusters that showed a strong resonance Rayleigh scattering (RRS) peak at 278 nm. Upon addition of CA125, GRAb reacted specifically with CA125 to form dispersive immunocomplexes of CA125-GRAb in the solution and this process enhanced by the ultrasonic cavitation effect, which led to the RRS intensity decreased greatly. The decreased RRS intensity was linear to the concentration of CA125 in the range of 1.3-80 U/mL, with a detection limit of 0.6 U/mL. The proposed method was applied to detect CA125 in real sample, with satisfactory results.

  5. Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements

    NASA Astrophysics Data System (ADS)

    Wiensz, J. T.; Degenstein, D. A.; Lloyd, N. D.; Bourassa, A. E.

    2013-01-01

    We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System), a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART) to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.

  6. Nonuniform distribution of phase noise in distributed acoustic sensing based on phase-sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Yu, Zhijie; Lu, Yang; Meng, Zhou

    2017-10-01

    A phase-sensitive optical time-domain reflectometry (∅-OTDR) implements distributed acoustic sensing (DAS) due to its ability for high sensitivity vibration measurement. Phase information of acoustic vibration events can be acquired by interrogation of the vibration-induced phase change between coherent Rayleigh scattering light from two points of the sensing fiber. And DAS can be realized when applying phase generated carrier (PGC) algorithm to the whole sensing fiber while the sensing fiber is transformed into a series of virtual sensing channels. Minimum detectable vibration of a ∅-OTDR is limited by phase noise level. In this paper, nonuniform distribution of phase noise of virtual sensing channels in a ∅-OTDR is investigated theoretically and experimentally. Correspondence between the intensity of Rayleigh scattering light and interference fading as well as polarization fading is analyzed considering inner interference of coherent Rayleigh light scattered from a multitude of scatters within pulse duration, and intensity noise related to the intensity of Rayleigh scattering light can be converted to phase noise while measuring vibration-induced phase change. Experiments are performed and the results confirm the predictions of the theoretical analysis. This study is essential for acquiring insight into nonuniformity of phase noise in DAS based on a ∅-OTDR, and would put forward some feasible methods to eliminate the effect of interference fading and polarization fading and optimize the minimum detectable vibration of a ∅-OTDR.

  7. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Ginski, C.; Stolker, T.; Pinilla, P.; Dominik, C.; Boccaletti, A.; de Boer, J.; Benisty, M.; Biller, B.; Feldt, M.; Garufi, A.; Keller, C. U.; Kenworthy, M.; Maire, A. L.; Ménard, F.; Mesa, D.; Milli, J.; Min, M.; Pinte, C.; Quanz, S. P.; van Boekel, R.; Bonnefoy, M.; Chauvin, G.; Desidera, S.; Gratton, R.; Girard, J. H. V.; Keppler, M.; Kopytova, T.; Lagrange, A.-M.; Langlois, M.; Rouan, D.; Vigan, A.

    2016-11-01

    Aims: We studied the well-known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk which may be indicative of disk evolutionary processes such as planet formation. Methods: We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. Results: We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation 270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is consistent with theoretical models of compact dust aggregates. We discuss the origin of the detected features and find that low mass (≤1 MJup) nascent planets are a possible explanation. Based on data collected at the European Southern Observatory, Chile (ESO Programs 096.C-0248, 096.C-0241, 077.C-0106).

  8. Imaging method based on attenuation, refraction and ultra-small-angle-scattering of x-rays

    DOEpatents

    Wernick, Miles N.; Chapman, Leroy Dean; Oltulu, Oral; Zhong, Zhong

    2005-09-20

    A method for detecting an image of an object by measuring the intensity at a plurality of positions of a transmitted beam of x-ray radiation emitted from the object as a function of angle within the transmitted beam. The intensity measurements of the transmitted beam are obtained by a crystal analyzer positioned at a plurality of angular positions. The plurality of intensity measurements are used to determine the angular intensity spectrum of the transmitted beam. One or more parameters, such as an attenuation property, a refraction property and a scatter property, can be obtained from the angular intensity spectrum and used to display an image of the object.

  9. Femtosecond ultrasonic spectroscopy using a piezoelectric nanolayer: Hypersound attenuation in vitreous silica films

    NASA Astrophysics Data System (ADS)

    Wen, Yu-Chieh; Guol, Shi-Hao; Chen, Hung-Pin; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2011-08-01

    We report ultra-broadband ultrasonic spectroscopy with an impedance-matched piezoelectric nanolayer, which enables optical generation and detection of a 730-fs acoustic pulse (the width of ten lattice constants). The bandwidth improvement facilitates THz laser ultrasonics to bridge the spectral gap between inelastic light and x-ray scatterings (0.1-1 THz) in the studies of lattice dynamics. As a demonstration, this method is applied to measure sound attenuation α in a vitreous SiO2 thin film. Our results extend the existing low-frequency data obtained by ultrasonic-based and light scattering methods and also show a α∝ f2 behavior for frequencies f up to 650 GHz.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demos, S G; Gandour-Edwards, R; Ramsamooj, R

    The feasibility of developing bladder cancer detection methods using intrinsic tissue optical properties is the focus of this investigation. In vitro experiments have been performed using polarized elastic light scattering in combination with tissue autofluorescence in the NIR spectral region under laser excitation in the green and red spectral regions. The experimental results obtained from a set of tissue specimens from 25 patients reveal the presence of optical fingerprint characteristics suitable for cancer detection with high contrast and accuracy. These photonic methods are compatible with existing endoscopic imaging modalities which make them suitable for in-vivo application.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, K., E-mail: kshitish@ucla.edu; Rhodes, T. L.; Crocker, N. A.

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak.more » A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.« less

  12. Characterization of seed nuclei in glucagon aggregation using light scattering methods and field-flow fractionation

    PubMed Central

    Hoppe, Cindy C; Nguyen, Lida T; Kirsch, Lee E; Wiencek, John M

    2008-01-01

    Background Glucagon is a peptide hormone with many uses as a therapeutic agent, including the emergency treatment of hypoglycemia. Physical instability of glucagon in solution leads to problems with the manufacture, formulation, and delivery of this pharmaceutical product. Glucagon has been shown to aggregate and form fibrils and gels in vitro. Small oligomeric precursors serve to initiate and nucleate the aggregation process. In this study, these initial aggregates, or seed nuclei, are characterized in bulk solution using light scattering methods and field-flow fractionation. Results High molecular weight aggregates of glucagon were detected in otherwise monomeric solutions using light scattering techniques. These aggregates were detected upon initial mixing of glucagon powder in dilute HCl and NaOH. In the pharmaceutically relevant case of acidic glucagon, the removal of aggregates by filtration significantly slowed the aggregation process. Field-flow fractionation was used to separate aggregates from monomeric glucagon and determine relative mass. The molar mass of the large aggregates was shown to grow appreciably over time as the glucagon solutions gelled. Conclusion The results of this study indicate that initial glucagon solutions are predominantly monomeric, but contain small quantities of large aggregates. These results suggest that the initial aggregates are seed nuclei, or intermediates which catalyze the aggregation process, even at low concentrations. PMID:18613970

  13. Noninvasive forward-scattering system for rapid detection, characterization, and identification of Listeria colonies: image processing and data analysis

    NASA Astrophysics Data System (ADS)

    Rajwa, Bartek; Bayraktar, Bulent; Banada, Padmapriya P.; Huff, Karleigh; Bae, Euiwon; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul

    2006-10-01

    Bacterial contamination by Listeria monocytogenes puts the public at risk and is also costly for the food-processing industry. Traditional methods for pathogen identification require complicated sample preparation for reliable results. Previously, we have reported development of a noninvasive optical forward-scattering system for rapid identification of Listeria colonies grown on solid surfaces. The presented system included application of computer-vision and patternrecognition techniques to classify scatter pattern formed by bacterial colonies irradiated with laser light. This report shows an extension of the proposed method. A new scatterometer equipped with a high-resolution CCD chip and application of two additional sets of image features for classification allow for higher accuracy and lower error rates. Features based on Zernike moments are supplemented by Tchebichef moments, and Haralick texture descriptors in the new version of the algorithm. Fisher's criterion has been used for feature selection to decrease the training time of machine learning systems. An algorithm based on support vector machines was used for classification of patterns. Low error rates determined by cross-validation, reproducibility of the measurements, and robustness of the system prove that the proposed technology can be implemented in automated devices for detection and classification of pathogenic bacteria.

  14. A new method of quantitative cavitation assessment in the field of a lithotripter.

    PubMed

    Jöchle, K; Debus, J; Lorenz, W J; Huber, P

    1996-01-01

    Transient cavitation seems to be a very important effect regarding the interaction of pulsed high-energy ultrasound with biologic tissues. Using a newly developed laser optical system we are able to determine the life-span of transient cavities (relative error less than +/- 5%) in the focal region of a lithotripter (Lithostar, Siemens). The laser scattering method is based on the detection of scattered laser light reflected during a bubble's life. This method requires no sort of sensor material in the pathway of the sound field. Thus, the method avoids any interference with bubble dynamics during the measurement. The knowledge of the time of bubble decay allows conclusions to be reached on the destructive power of the cavities. By combining the results of life-span measurements with the maximum bubble radius using stroboscopic photographs we found that the measured time of bubble decay and the predicted time using Rayleigh's law only differs by about 13% even in the case of complex bubble fields. It can be shown that the laser scattering method is feasible to assess cavitation events quantitatively. Moreover, it will enable us to compare different medical ultrasound sources that have the capability to generate cavitation.

  15. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Di; Li Yuhua; Wong, Molly D.

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signalmore » radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.« less

  16. Rapid scatter estimation for CBCT using the Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Sun, Mingshan; Maslowski, Alex; Davis, Ian; Wareing, Todd; Failla, Gregory; Star-Lack, Josh

    2014-03-01

    Scatter in cone-beam computed tomography (CBCT) is a significant problem that degrades image contrast, uniformity and CT number accuracy. One means of estimating and correcting for detected scatter is through an iterative deconvolution process known as scatter kernel superposition (SKS). While the SKS approach is efficient, clinically significant errors on the order 2-4% (20-40 HU) still remain. We have previously shown that the kernel method can be improved by perturbing the kernel parameters based on reference data provided by limited Monte Carlo simulations of a first-pass reconstruction. In this work, we replace the Monte Carlo modeling with a deterministic Boltzmann solver (AcurosCTS) to generate the reference scatter data in a dramatically reduced time. In addition, the algorithm is improved so that instead of adjusting kernel parameters, we directly perturb the SKS scatter estimates. Studies were conducted on simulated data and on a large pelvis phantom scanned on a tabletop system. The new method reduced average reconstruction errors (relative to a reference scan) from 2.5% to 1.8%, and significantly improved visualization of low contrast objects. In total, 24 projections were simulated with an AcurosCTS execution time of 22 sec/projection using an 8-core computer. We have ported AcurosCTS to the GPU, and current run-times are approximately 4 sec/projection using two GPU's running in parallel.

  17. Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible

    NASA Astrophysics Data System (ADS)

    Fruhnert, Martin; Monti, Alessio; Fernandez-Corbaton, Ivan; Alù, Andrea; Toscano, Alessandro; Bilotti, Filiberto; Rockstuhl, Carsten

    2016-06-01

    The scattering cancellation technique is a powerful tool to reduce the scattered field from electrically small objects in a specific frequency window. The technique relies on covering the object of interest with a shell that scatters light into a far field of equal strength as the object but with a phase shift of π . The resulting destructive interference prohibits its detection in measurements that probe the scattered light. Whereas at radio or microwave frequencies feasible designs have been proposed that allow us to tune the operational frequency upon request, similar capabilities have not yet been explored in the visible. However, such an ability is necessary to capitalize on the technique in many envisioned applications. Here, we solve the problem and study the use of small metallic nanoparticles with an ellipsoidal shape as the material from which the shell is made to build an isotropic geometry. Changing the aspect ratio of the ellipsoids allows us to change the operational frequency. The basic functionality is explored with two complementary analytical approaches. Additionally, we present a powerful multiscattering algorithm that can be used to perform full-wave simulations of clusters of arbitrary particles. We utilize this method to analyze the scattering of the presented designs numerically. Herein we provide useful guidelines for the fabrication of this cloak with self-assembly methods by investigating the effects of disorder.

  18. New Thomson scattering diagnostic on RFX-mod.

    PubMed

    Alfier, A; Pasqualotto, R

    2007-01-01

    This article describes the completely renovated Thomson scattering (TS) diagnostic employed in the modified Reversed Field eXperiment (RFX-mod) since it restarted operation in 2005. The system measures plasma electron temperature and density profiles along an equatorial diameter, measuring in 84 positions with 7 mm spatial resolution. The custom built Nd:YLF laser produces a burst of 10 pulses at 50 Hz with energy of 3 J, providing ten profile measurements in a plasma discharge of about 300 ms duration. An optical delay system accommodates three scattering volumes in each of the 28 interference filter spectrometers. Avalanche photodiodes detect the Thomson scattering signals and allow them to be recorded by means of waveform digitizers. Electron temperature is obtained using an alternative relative calibration method, based on the use of a supercontinuum light source. Rotational Raman scattering in nitrogen has supplied the absolute calibration for the electron density measurements. During RFX-mod experimental campaigns in 2005, the TS diagnostic has demonstrated its performance, routinely providing reliable high resolution profiles.

  19. Detection of the presence of Chlamydia trachomatis bacteria using diffusing wave spectroscopy with a small number of scatterers

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey; Ulianova, Onega; Filonova, Nadezhda; Moiseeva, Yulia; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Kalduzova, Irina; Larionova, Olga; Utz, Sergey; Feodorova, Valentina

    2018-04-01

    Theory of diffusing wave spectroscopy has been firstly adapted to the problem of rapid detection of Chlamydia trachomatis bacteria in blood samples of Chlamydia patients. Formula for correlation function of temporal fluctuations of speckle intensity is derived for the case of small number of scattering events. Dependence of bandwidth of spectrum on average number of scatterers is analyzed. Set-up for detection of the presence of C. trachomatis cells in aqueous suspension is designed. Good agreement between theoretical results and experimental data is shown. Possibility of detection of the presence of C. trachomatis cells in probing volume using diffusing wave spectroscopy with a small number of scatterers is successfully demonstrated for the first time.

  20. Light scattering properties of kidney epithelial cells and nuclei

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram

    2006-02-01

    Enlargement of mammalian cells nuclei due to the cancerous inflammation can be detected early through noninvasive optical techniques. We report on the results of cellular experiments, aimed towards the development of a fiber optic endoscopic probe used for precancerous detection of Barrett's esophagus. We previously presented white light scattering results from tissue phantoms (polystyrene polybead microspheres). In this paper, we discuss light scattering properties of epithelial MDCK (Madine-Darby Canine Kidney) cells and cell nuclei suspensions. A bifurcated optical fiber is used for experimental illumination and signal detection. The resulting scattering spectra from the cells do not exhibit the predicted Mie theory oscillatory behavior inherent to ideally spherical scatterers, such as polystyrene microspheres. However, we are able to demonstrate that the Fourier transform spectra of the cell suspensions are well correlated with the Fourier transform spectra of cell nuclei, concluding that the dominate scatterer in the backscattering region is the nucleus. This correlation experimentally illustrates that in the backscattering region, the cell nuclei are the main scatterer in the cells of the incident light.

  1. Scatter in Cargo Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Caggiano, Joseph A.; Runkle, Robert C.

    As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding. Detecting such objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beam, both in the cargo and surrounding objects, which degrades image contrast. Here, we work to determine the extent to which scatter plays a role in radiographic imaging of cargo containers.

  2. Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems.

    PubMed

    Johnson, Mitchell E; Landers, James P

    2004-11-01

    Laser-induced fluorescence is an extremely sensitive method for detection in chemical separations. In addition, it is well-suited to detection in small volumes, and as such is widely used for capillary electrophoresis and microchip-based separations. This review explores the detailed instrumental conditions required for sub-zeptomole, sub-picomolar detection limits. The key to achieving the best sensitivity is to use an excitation and emission volume that is matched to the separation system and that, simultaneously, will keep scattering and luminescence background to a minimum. We discuss how this is accomplished with confocal detection, 90 degrees on-capillary detection, and sheath-flow detection. It is shown that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary- or microchip-based separations. Analysis of these capabilities allows prediction of the optimal means of achieving ultrasensitive detection on microchips.

  3. Silver Nanoscale Hexagonal Column Chips for Detecting Cell-free DNA and Circulating Nucleosomes in Cancer Patients.

    PubMed

    Ito, Hiroaki; Hasegawa, Katsuyuki; Hasegawa, Yuuki; Nishimaki, Tadashi; Hosomichi, Kazuyoshi; Kimura, Satoshi; Ohba, Motoi; Yao, Hiroshi; Onimaru, Manabu; Inoue, Ituro; Inoue, Haruhiro

    2015-05-21

    Blood tests, which are commonly used for cancer screening, generally have low sensitivity. Here, we developed a novel rapid and simple method to generate silver nanoscale hexagonal columns (NHCs) for use in surface-enhanced Raman scattering (SERS). We reported that the intensity of SERS spectra of clinical serum samples obtained from gastrointestinal cancer patients is was significantly higher than that of SERS spectra of clinical serum samples obtained from non-cancer patients. We estimated the combined constituents on silver NHCs by using a field emission-type scanning electron microscope, Raman microscopes, and a 3D laser scanning confocal microscope. We obtained the Raman scattering spectra of samples of physically fractured cells and clinical serum. No spectra were obtained for chemically lysed cultured cells and DNA, RNA, and protein extracted from cultured cells. We believe that our method, which uses SERS with silver NHCs to detect circulating nucleosomes bound by methylated cell-free DNA, may be successfully implemented in blood tests for cancer screening.

  4. Light-scattering flow cytometry for identification and characterization of blood microparticles

    NASA Astrophysics Data System (ADS)

    Konokhova, Anastasiya I.; Yurkin, Maxim A.; Moskalensky, Alexander E.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2012-05-01

    We describe a novel approach to study blood microparticles using the scanning flow cytometer, which measures light scattering patterns (LSPs) of individual particles. Starting from platelet-rich plasma, we separated spherical microparticles from non-spherical plasma constituents, such as platelets and cell debris, based on similarity of their LSP to that of sphere. This provides a label-free method for identification (detection) of microparticles, including those larger than 1 μm. Next, we rigorously characterized each measured particle, determining its size and refractive index including errors of these estimates. Finally, we employed a deconvolution algorithm to determine size and refractive index distributions of the whole population of microparticles, accounting for largely different reliability of individual measurements. Developed methods were tested on a blood sample of a healthy donor, resulting in good agreement with literature data. The only limitation of this approach is size detection limit, which is currently about 0.5 μm due to used laser wavelength of 0.66 μm.

  5. Development, validation and application of a hydrophilic interaction liquid chromatography-evaporative light scattering detection based method for process control of hydrolysis of xylans obtained from different agricultural wastes.

    PubMed

    Li, Fangbing; Wang, Hui; Xin, Huaxia; Cai, Jianfeng; Fu, Qing; Jin, Yu

    2016-12-01

    Purified standards of xylooligosaccharides (XOSs) (DP2-6) were first prepared from a mixture of XOSs using solid phase extraction (SPE), followed by semi-preparative liquid chromatography both under hydrophilic interaction liquid chromatography (HILIC) modes. Then, an accurate quantitative analysis method based on hydrophilic interaction liquid chromatography-evaporative light scattering detection (HILIC-ELSD) was developed and validated for simultaneous determination of xylose (X1), xylobiose (X2), xylotriose (X3), xylotetraose (X4), xylopentaose (X5), and xylohexaose (X6). This developed HILIC-ELSD method was applied to the comparison of different hydrolysis methods for xylans and assessment of XOSs contents from different agricultural wastes. The result indicated that enzymatic hydrolysis was preferable with fewer by-products and high XOSs yield. The XOSs yield (48.40%) from sugarcane bagasse xylan was the highest, showing conversions of 11.21g X2, 12.75g X3, 4.54g X4, 13.31g X5, and 6.78g X6 from 100g xylan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Noninvasive identification of bladder cancer with sub-surface backscattered light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigio, I.J.; Mourant, J.R.; Boyer, J.

    1994-02-01

    A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. Absorption bands in the tissue also add useful complexity to the spectral data collected. The use of elastic scattering as themore » key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering as well as absorption. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g., as in skin cancer or cervical cancer). We report here specifically on its potential application in the detection of bladder cancer.« less

  7. Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2013-04-01

    Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.

  8. Research on energy transmission calculation problem on laser detecting submarine

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Li, Yingchao; Zhang, Lizhong; Wang, Chao; An, Yan

    2014-12-01

    The laser detection and identification is based on the method of using laser as the source of signal to scan the surface of ocean. If the laser detection equipment finds out the target, it will immediately reflect the returning signal, and then through receiving and disposing the returning signal by the receiving system, to realize the function of detection and identification. Two mediums channels should be though in the process of laser detection transmission, which are the atmosphere and the seawater. The energy loss in the process of water transport, mainly considering the surface reflection and scattering attenuation and internal attenuation factors such as seawater. The energy consumption though atmospheric transmission, mainly considering the absorption of atmospheric and the attenuation causing by scattering, the energy consumption though seawater transmission, mainly considering the element such as surface reflection, the attenuation of scattering and internal attenuation of seawater. On the basis of the analysis and research, through the mode of establishment of atmospheric scattering, the model of sea surface reflection and the model of internal attenuation of seawater, determine the power dissipation of emitting lasers system, calculates the signal strength that reaches the receiver. Under certain conditions, the total attenuation of -98.92 dB by calculation, and put forward the related experiment scheme by the use of Atmospheric analog channel, seawater analog channel. In the experiment of the theory, we use the simulation pool of the atmosphere and the sea to replace the real environment where the laser detection system works in this kind of situation. To start with, we need to put the target in the simulating seawater pool of 10 meters large and then control the depth of the target in the sea level. We, putting the laser detection system in position where it is 2 kilometers far from one side, secondly use the equipment to aim at the target in some distance. Lastly, by launching and detecting the signal of returning wave, identify the effect of the image produced by the system.

  9. On the use of a (252Cf-3He) assembly for landmine detection by the neutron back-scattering method.

    PubMed

    Elsheikh, N; Viesti, G; ElAgib, I; Habbani, F

    2012-04-01

    Experiments were carried out to optimize the performance of the neutron back-scattering (NBS) technique in landmine detection using an assembly consisting of three different layers placed above a (252)Cf neuron source, producing about 10(4)s(-1), in conjunction with a (3)He detector. The assembly was optimized experimentally. The selected assembly configuration was then examined against different (252)Cf stand-off distances and mine burial depths using dummy landmines. Furthermore, Monte Carlo simulations were performed to study the effect of the shield when a (252)Cf source in the range 10(4)-10(7)s(-1) was employed, and to optimize the geometry for future prototypes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles

    PubMed Central

    Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2017-01-01

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. PMID:27639623

  11. Radiography by selective detection of scatter field velocity components

    NASA Technical Reports Server (NTRS)

    Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Shedlock, Daniel (Inventor)

    2007-01-01

    A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.

  12. Light scattering techniques for the characterization of optical components

    NASA Astrophysics Data System (ADS)

    Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.

    2017-11-01

    The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.

  13. Aureole radiance field about a source in a scattering-absorbing medium.

    PubMed

    Zachor, A S

    1978-06-15

    A technique is described for computing the aureole radiance field about a point source in a medium that absorbs and scatters according to an arbitrary phase function. When applied to an isotropic source in a homogenous medium, the method uses a double-integral transform which is evaluated recursively to obtain the aureole radiances contributed by successive scattering orders, as in the Neumann solution of the radiative transfer equation. The normalized total radiance field distribution and the variation of flux with field of view and range are given for three wavelengths in the uv and one in the visible, for a sea-level model atmosphere assumed to scatter according to a composite of the Rayleigh and modified Henyey-Greenstein phase functions. These results have application to the detection and measurement of uncollimated uv and visible sources at short ranges in the lower atmosphere.

  14. Measuring momentum for charged particle tomography

    DOEpatents

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  15. Plasmonic nanoparticle scattering for color holograms

    PubMed Central

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-01-01

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field. PMID:25122675

  16. Plasmonic nanoparticle scattering for color holograms.

    PubMed

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-09-02

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field.

  17. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    NASA Astrophysics Data System (ADS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  18. Radiative Transfer and Satellite Remote Sensing of Cirrus Clouds Using FIRE-2-IFO Data

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under the support of the NASA grant, we have developed a new geometric-optics model (GOM2) for the calculation of the single-scattering and polarization properties for arbitrarily oriented hexagonal ice crystals. From comparisons with the results computed by the finite difference time domain (FDTD) method, we show that the novel geometric-optics can be applied to the computation of the extinction cross section and single-scattering albedo for ice crystals with size parameters along the minimum dimension as small as approximately 6. We demonstrate that the present model converges to the conventional ray tracing method for large size parameters and produces single-scattering results close to those computed by the FDTD method for size parameters along the minimum dimension smaller than approximately 20. We demonstrate that neither the conventional geometric optics method nor the Lorenz-Mie theory can be used to approximate the scattering, absorption, and polarization features for hexagonal ice crystals with size parameters from approximately 5 to 20. On the satellite remote sensing algorithm development and validation, we have developed a numerical scheme to identify multilayer cirrus cloud systems using AVHRR data. We have applied this scheme to the satellite data collected over the FIRE-2-IFO area during nine overpasses within seven observation dates. Determination of the threshold values used in the detection scheme are based on statistical analyses of these satellite data.

  19. X-ray studies of dynamic aging in an aluminum alloy subjected to severe plastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitdikov, V.D., E-mail: svil@mail.rb.ru; Laboratory for Mechanics of Bulk Nanomaterials, Saint Petersburg State University, 28 Universitetsky pr., Saint Petersburg 198504; Chizhov, P.S.

    In this work, X-ray scattering methods were applied for a quantitative characterization of the microstructure of an aluminum alloy of the Al–Mg–Si system during dynamic aging realized through the high pressure torsion technique. A qualitative and quantitative phase analysis of the alloy was performed, together with Al alloy lattice parameter determination. From the reflections broadening the effective size of the coherent scattering domains and the lattice microstrain were determined in the framework of the Halder–Wagner approach. Using the method of small-angle X-ray scattering, the quantitative characteristics of the size, shape and spatial distribution of the secondary phase particles formed inmore » the Al alloy during dynamic aging were established. In order to validate the obtained results, the method of small-angle X-ray scattering was preliminarily tested on similar samples after artificial aging and compared with the results from small-angle neutron diffraction widely known in literature. - Highlights: • Spherical fcc β-Mg2Si precipitates formed in Al 6201 alloy during dynamic aging in the course of severe plastic deformation. • The size, shape and distribution of the precipitates due to artificial and dynamic aging were revealed by SAXS method. • Monoclinic needle-like β' precipitates and Al5FeSi intermetallic phase were detected in 6201 alloy after T6 treatment.« less

  20. Sub-pixel accuracy thickness calculation of poultry fillets from scattered laser profiles

    NASA Astrophysics Data System (ADS)

    Jing, Hansong; Chen, Xin; Tao, Yang; Zhu, Bin; Jin, Fenghua

    2005-11-01

    A laser range imaging system based on the triangulation method was designed and implemented for online high-resolution thickness calculation of poultry fillets. A laser pattern was projected onto the surface of the chicken fillet for calculation of the thickness of the meat. Because chicken fillets are relatively loosely-structured material, a laser light easily penetrates the meat, and scattering occurs both at and under the surface. When laser light is scattered under the surface it is reflected back and further blurs the laser line sharpness. To accurately calculate the thickness of the object, the light transportation has to be considered. In the system, the Bidirectional Reflectance Distribution Function (BSSRDF) was used to model the light transportation and the light pattern reflected into the cameras. BSSRDF gives the reflectance of a target as a function of illumination geometry and viewing geometry. Based on this function, an empirical method has been developed and it has been proven that this method can be used to accurately calculate the thickness of the object from a scattered laser profile. The laser range system is designed as a sub-system that complements the X-ray bone inspection system for non-invasive detection of hazardous materials in boneless poultry meat with irregular thickness.

  1. Optimization of energy window and evaluation of scatter compensation methods in MPS using the ideal observer with model mismatch

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric

    2015-03-01

    In this work, we used the ideal observer (IO) and IO with model mismatch (IO-MM) applied in the projection domain and an anthropomorphic Channelized Hotelling Observer (CHO) applied to reconstructed images to optimize the acquisition energy window width and evaluate various scatter compensation methods in the context of a myocardial perfusion SPECT defect detection task. The IO has perfect knowledge of the image formation process and thus reflects performance with perfect compensation for image-degrading factors. Thus, using the IO to optimize imaging systems could lead to suboptimal parameters compared to those optimized for humans interpreting SPECT images reconstructed with imperfect or no compensation. The IO-MM allows incorporating imperfect system models into the IO optimization process. We found that with near-perfect scatter compensation, the optimal energy window for the IO and CHO were similar; in its absence the IO-MM gave a better prediction of the optimal energy window for the CHO using different scatter compensation methods. These data suggest that the IO-MM may be useful for projection-domain optimization when model mismatch is significant, and that the IO is useful when followed by reconstruction with good models of the image formation process.

  2. In vivo flow cytometry for blood cell analysis using differential epi-detection of forward scattered light

    NASA Astrophysics Data System (ADS)

    Paudel, Hari P.; Jung, Yookyung; Raphael, Anthony; Alt, Clemens; Wu, Juwell; Runnels, Judith; Lin, Charles P.

    2018-02-01

    The present standard of blood cell analysis is an invasive procedure requiring the extraction of patient's blood, followed by ex-vivo analysis using a flow cytometer or a hemocytometer. We are developing a noninvasive optical technique that alleviates the need for blood extraction. For in-vivo blood analysis we need a high speed, high resolution and high contrast label-free imaging technique. In this proceeding report, we reported a label-free method based on differential epi-detection of forward scattered light, a method inspired by Jerome Mertz's oblique back-illumination microscopy (OBM) (Ford et al, Nat. Meth. 9(12) 2012). The differential epi-detection of forward light gives phase contrast image at diffraction-limited resolution. Unlike reflection confocal microscopy (RCM), which detects only sharp refractive index variation and suffers from speckle noise, this technique is suitable for detection of subtle variation of refractive index in biological tissue and it provides the shape and the size of cells. A custom built high speed electronic detection circuit board produces a real-time differential signal which yields image contrast based on phase gradient in the sample. We recorded blood flow in-vivo at 17.2k lines per second in line scan mode, or 30 frames per second (full frame), or 120 frame per second (quarter frame) in frame scan mode. The image contrast and speed of line scan data recording show the potential of the system for noninvasive blood cell analysis.

  3. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry.

    PubMed

    Kaniu, M I; Angeyo, K H; Mwala, A K; Mangala, M J

    2012-06-04

    Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using (109)Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R(2)>0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g(-1) for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Coronal Holes and Solar f -Mode Wave Scattering Off Linear Boundaries

    NASA Astrophysics Data System (ADS)

    Hess Webber, Shea A.

    2016-11-01

    Coronal holes (CHs) are solar atmospheric features that have reduced emission in the extreme ultraviolet (EUV) spectrum due to decreased plasma density along open magnetic field lines. CHs are the source of the fast solar wind, can influence other solar activity, and track the solar cycle. Our interest in them deals with boundary detection near the solar surface. Detecting CH boundaries is important for estimating their size and tracking their evolution through time, as well as for comparing the physical properties within and outside of the feature. In this thesis, we (1) investigate CHs using statistical properties and image processing techniques on EUV images to detect CH boundaries in the low corona and chromosphere. SOHO/EIT data is used to locate polar CH boundaries on the solar limb, which are then tracked through two solar cycles. Additionally, we develop an edge-detection algorithm that we use on SDO/AIA data of a polar hole extension with an approximately linear boundary. These locations are used later to inform part of the helioseismic investigation; (2) develop a local time-distance (TD) helioseismology technique that can be used to detect CH boundary signatures at the photospheric level. We employ a new averaging scheme that makes use of the quasi-linear topology of elongated scattering regions, and create simulated data to test the new technique and compare results of some associated assumptions. This method enhances the wave propagation signal in the direction perpendicular to the linear feature and reduces the computational time of the TD analysis. We also apply a new statistical analysis of the significance of differences between the TD results; and (3) apply the TD techniques to solar CH data from SDO/HMI. The data correspond to the AIA data used in the edge-detection algorithm on EUV images. We look for statistically significant differences between the TD results inside and outside the CH region. In investigation (1), we found that the polar CH areas did not change significantly between minima, even though the magnetic field strength weakened. The results of (2) indicate that TD helioseismology techniques can be extended to make use of feature symmetry in the domain. The linear technique used here produces results that differ between a linear scattering region and a circular scattering region, shown using the simulated data algorithm. This suggests that using usual TD methods on scattering regions that are radially asymmetric may produce results with signatures of the anisotropy. The results of (1) and (3) indicate that the TD signal within our CH is statistically significantly different compared to unrelated quiet sun results. Surprisingly, the TD results in the quiet sun near the CH boundary also show significant differences compared to the separate quiet sun.

  5. Remote excitation and detection of surface-enhanced Raman scattering from graphene.

    PubMed

    Coca-López, Nicolás; Hartmann, Nicolai F; Mancabelli, Tobia; Kraus, Jürgen; Günther, Sebastian; Comin, Alberto; Hartschuh, Achim

    2018-06-07

    We demonstrate the remote excitation and detection of surface-enhanced Raman scattering (SERS) from graphene using a silver nanowire as a plasmonic waveguide. By investigating a nanowire touching a graphene sheet at only one terminal, we first show the remote excitation of SERS from graphene by propagating surface plasmon polaritons (SPPs) launched by a focused laser over distances on the order of 10 μm. Remote detection of SERS is then demonstrated for the same nanowire by detecting light emission at the distal end of the nanowire that was launched by graphene Raman scattering and carried to the end of the nanowire by SPPs. We then show that the transfer of the excitation and Raman scattered light along the nanowire can also be visualized through spectrally selective back focal plane imaging. Back focal plane images detected upon focused laser excitation at one of the nanowire's tips reveal propagating surface plasmon polaritons at the laser energy and at the energies of the most prominent Raman bands of graphene. With this approach the identification of remote excitation and detection of SERS for nanowires completely covering the Raman scatterer is achieved, which is typically not possible by direct imaging.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, H; Ding, H; Ziemer, B

    Purpose: To investigate the feasibility of energy calibration and energy response characterization of a photon counting detector using x-ray fluorescence. Methods: A comprehensive Monte Carlo simulation study was done to investigate the influence of various geometric components on the x-ray fluorescence measurement. Different materials, sizes, and detection angles were simulated using Geant4 Application for Tomographic Emission (GATE) Monte Carlo package. Simulations were conducted using 100 kVp tungsten-anode spectra with 2 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The fluorescence material was placed 300 mm away from both themore » x-ray source and the detector. For angular dependence measurement, the distance was decreased to 30 mm to reduce the simulation time. Compound materials, containing silver, barium, gadolinium, hafnium, and gold in cylindrical shape, were simulated. The object size varied from 5 to 100 mm in diameter. The angular dependence of fluorescence and scatter were simulated from 20° to 170° with an incremental step of 10° to optimize the fluorescence to scatter ratio. Furthermore, the angular dependence was also experimentally measured using a spectrometer (X-123CdTe, Amptek Inc., MA) to validate the simulation results. Results: The detection angle between 120° to 160° resulted in more optimal x-ray fluorescence to scatter ratio. At a detection angle of 120°, the object size did not have a significant effect on the fluorescence to scatter ratio. The experimental results of fluorescence angular dependence are in good agreement with the simulation results. The Kα and Kβ peaks of five materials could be identified. Conclusion: The simulation results show that the x-ray fluorescence procedure has the potential to be used for detector energy calibration and detector response characteristics by using the optimal system geometry.« less

  7. Heterodyne effect in Hybrid CARS

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei; Welch, George; Scully, Marlan

    2009-10-01

    We study the interaction between the resonant Raman signal and non-Raman field, either the concomitant nonresonant four-wave-mixing (FWM) background or an applied external field, in our recently developed scheme of coherent Anti-Stokes Raman scattering, a hybrid CARS. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the non-resonant FWM background while maximizing the Raman-resonant signal, and allows rapid and highly specific detection even in the presence of multiple scattering. We apply this method to non-invasive monitoring of blood glucose levels. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically-relevant glucose levels. We also study the interference between the CARS field and an external field (the local oscillator) by controlling their relative phase and amplitude. This control allows direct observation of the real and imaginary components of the third-order nonlinear susceptibility (χ^(3)) of the sample. We demonstrate that the heterodyne method can be used to amplify the signal and thus increase detection sensitivity.

  8. High-performance liquid chromatography study of gatifloxacin and sparfloxacin using erythrosine as post-column resonance Rayleigh scattering reagent and mechanism study.

    PubMed

    Pan, Ziyu; Peng, Jingdong; Zang, Xu; Peng, Huanjun; Xiao, Huan; Bu, Lingli; Chen, Fang; He, Yan; Chen, Yu; Wang, Xiang; Li, Shiyu; Chen, Yi

    2018-03-01

    Herein, a highly selective high-performance liquid chromatography (HPLC) coupled with resonance Rayleigh scattering (RRS) method was developed to detect gatifloxacin (GFLX) and sparfloxacin (SPLX). GFLX and SPLX were first separated by HPLC, then, in pH 4.4 Britton-Robinson (BR) buffer medium, protonic quaternary ammonia cation of GFLX and SPLX reacted with erythrosine (ERY) to form 1:1 ion-association complexes, which resulted in a significant enhancement of RRS signal. The experimental conditions of HPLC and post-column RRS have been investigated, including detection wavelength, flow rate, pH, reacting tube length and reaction temperature. Reaction mechanism were studied in detail by calculating the distribution fraction. The maximum RRS signals for GFLX and SPLX were recorded at λ ex  = λ em  = 330 nm. The detection limits were 3.8 ng ml -1 for GFLX and 17.5 ng ml -1 for SPLX at a signal-to-noise ratio of 3. The developed method was successfully applied to the determination of GFLX and SPLX in water samples. Recoveries from spiked water samples were 97.56-98.85%. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Study of ocean red tide multi-parameter monitoring technology based on double-wavelength airborne lidar system

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Wang, Xinming; Liang, Kun

    2010-10-01

    For monitoring and forecasting of the ocean red tide in real time, a marine environment monitoring technology based on the double-wavelength airborne lidar system is proposed. An airborne lidar is father more efficient than the traditional measure technology by the boat. At the same time, this technology can detect multi-parameter about the ocean red tide by using the double-wavelength lidar.It not only can use the infrared laser to detect the scattering signal under the water and gain the information about the red tise's density and size, but also can use the blue-green laser to detect the Brillouin scattering signal and deduce the temperature and salinity of the seawater.The red tide's density detecting model is firstly established by introducing the concept about the red tide scattering coefficient based on the Mie scattering theory. From the Brillouin scattering theory, the relationship about the blue-green laser's Brillouin scattering frequency shift value and power value with the seawater temperature and salinity is found. Then, the detecting mode1 of the saewater temperature and salinity can be established. The value of the red tide infrared scattering signal is evaluated by the simulation, and therefore the red tide particles' density can be known. At the same time, the blue-green laser's Brillouin scattering frequency shift value and power value are evaluated by simulating, and the temperature and salinity of the seawater can be known. Baed on the multi-parameters, the ocean red tide's growth can be monitored and forecasted.

  10. Design of practical alignment device in KSTAR Thomson diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J. H., E-mail: jhlee@nfri.re.kr; University of Science and Technology; Lee, S. H.

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broadmore » wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.« less

  11. Design of practical alignment device in KSTAR Thomson diagnostic.

    PubMed

    Lee, J H; Lee, S H; Yamada, I

    2016-11-01

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.

  12. Joint Services Electronics Program Progress Report.

    DTIC Science & Technology

    1982-09-30

    method has been successfully applied to scattering by submerged targets and to partially buried targets I0 . Other applications of our computational...The AES analyzer will enable us to detect possible contaminants on the sub- strate surface prior to MBR groqh as we have already done and to deter

  13. A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS-Fe3O4 for signal enrichment

    NASA Astrophysics Data System (ADS)

    Chen, Quansheng; Yang, Mingxiu; Yang, Xiaojing; Li, Huanhuan; Guo, Zhiming; Rahma, M. H.

    2018-01-01

    With growing concern on oil safety problems, developing a simple and sensitive method to detect Aflatoxin B1 (AFB1), a common mycotoxin in peanut oil, is very necessary. In this study, Surface-enhanced Raman Scattering (SERS) aptasensor was developed for ultrasensitive AFB1 detection using the amino-terminal AFB1 aptamer (NH2-DNA1); and thiol-terminal AFB1 complementary aptamer (SH-DNA2) conjugated magnetic-beads (CS-Fe3O4) as enrichment nanoprobe and AuNR@DNTB@Ag nanorods (ADANRs) as reporter nanoprobe respectively. 5,5‧-Dithiobis(2-nitrobenzoicacid) (DNTB) with large Raman scattering cross-section and no fluorescence interference was embedded in Au and Ag core/shell nanorods as Raman reporter molecules. CS-Fe3O4 possessed excellent biocompatibility and superparamagnetism for rapid signal enrichment. Therefore, NH2-DNA1-CS-Fe3O4 and SH-DNA2-ADANRs were fabricated via the hybrid reaction between aptamers and complementary aptamers. When there is AFB1, AFB1 would competitively combine with the NH2-DNA1-CS-Fe3O4 inducing the dissociation of SH-DNA2-ADANRs from CS-Fe3O4 and further decreasing the SERS signal. Based on this developed SERS aptasensor, a low limit of 0.0036 ng/mL and an effective linear detection range from 0.01 to 100 ng/mL with the correlation coefficient up to 0.986 for AFB1 detection were obtained. Moreover, the specificity of this SERS aptasensor was demonstrated by detecting other two mycotoxins and its accuracy for AFB1 detection in real peanut oil was further confirmed by standard addition recovery test.

  14. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling

    PubMed Central

    Wang, Haomin; Wang, Le; Xu, Xiaoji G.

    2016-01-01

    Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360

  15. Detecting Forward-Scattered Radio Signals from Atmospheric Meteors Using Low-Cost Software Defined Radio

    ERIC Educational Resources Information Center

    Snjegota, Ana; Rattenbury, Nicholas James

    2017-01-01

    The forward scattering of radio signals from atmospheric meteors is a known technique used to detect meteor trails. This article outlines the project that used the forward-scattering technique to observe the 2015 August, September, and October meteor showers, as well as sporadic meteors, in the Southern Hemisphere. This project can easily be…

  16. Automated detection of esophageal dysplasia in in vivo optical coherence tomography images of the human esophagus

    NASA Astrophysics Data System (ADS)

    Kassinopoulos, Michalis; Dong, Jing; Tearney, Guillermo J.; Pitris, Costas

    2018-02-01

    Catheter-based Optical Coherence Tomography (OCT) devices allow real-time and comprehensive imaging of the human esophagus. Hence, they provide the potential to overcome some of the limitations of endoscopy and biopsy, allowing earlier diagnosis and better prognosis for esophageal adenocarcinoma patients. However, the large number of images produced during every scan makes manual evaluation of the data exceedingly difficult. In this study, we propose a fully automated tissue characterization algorithm, capable of discriminating normal tissue from Barrett's Esophagus (BE) and dysplasia through entire three-dimensional (3D) data sets, acquired in vivo. The method is based on both the estimation of the scatterer size of the esophageal epithelial cells, using the bandwidth of the correlation of the derivative (COD) method, as well as intensity-based characteristics. The COD method can effectively estimate the scatterer size of the esophageal epithelium cells in good agreement with the literature. As expected, both the mean scatterer size and its standard deviation increase with increasing severity of disease (i.e. from normal to BE to dysplasia). The differences in the distribution of scatterer size for each tissue type are statistically significant, with a p value of < 0.0001. However, the scatterer size by itself cannot be used to accurately classify the various tissues. With the addition of intensity-based statistics the correct classification rates for all three tissue types range from 83 to 100% depending on the lesion size.

  17. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: I. Method and Terminology.

    PubMed

    Haller, Julian; Wilkens, Volker; Shaw, Adam

    2018-02-01

    A method to determine acoustic cavitation probabilities in tissue-mimicking materials (TMMs) is described that uses a high-intensity focused ultrasound (HIFU) transducer for both inducing and detecting the acoustic cavitation events. The method was evaluated by studying acoustic cavitation probabilities in agar-based TMMs with and without scatterers and for different sonication modes like continuous wave, single pulses (microseconds to milliseconds) and repeated burst signals. Acoustic cavitation thresholds (defined here as the peak rarefactional in situ pressure at which the acoustic cavitation probability reaches 50%) at a frequency of 1.06 MHz were observed between 1.1 MPa (for 1 s of continuous wave sonication) and 4.6 MPa (for 1 s of a repeated burst signal with 25-cycle burst length and 10-ms burst period) in a 3% (by weight) agar phantom without scatterers. The method and its evaluation are described, and general terminology useful for standardizing the description of insonation conditions and comparing results is provided. In the accompanying second part, the presented method is used to systematically study the acoustic cavitation thresholds in the same material for a range of sonication modes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Effective DQE (eDQE) for monoscopic and stereoscopic chest radiography imaging systems with the incorporation of anatomical noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, Sarah J.; Choudhury, Kingshuk Roy; Samei, Ehsan

    2013-09-15

    Purpose: Stereoscopic chest biplane correlation imaging (stereo/BCI) has been proposed as an alternative modality to single view chest x-ray (CXR). The metrics effective modulation transfer function (eMTF), effective normalized noise power spectrum (eNNPS), and effective detective quantum efficiency (eDQE) have been proposed as clinically relevant metrics for assessing clinical system performance taking into consideration the magnification and scatter effects. This study compared the metrics eMTF, eNNPS, eDQE, and detectability index for stereo/BCI and single view CXR under isodose conditions at two magnifications for two anthropomorphic phantoms of differing sizes.Methods: Measurements for the eMTF were taken for two phantom sizes withmore » an opaque edge test device using established techniques. The eNNPS was measured at two isodose conditions for two phantoms using established techniques. The scatter was measured for two phantoms using an established beam stop method. All measurements were also taken at two different magnifications with two phantoms. A geometrical phantom was used for comparison with prior results for CXR although the results for an anatomy free phantom are not expected to vary for BCI.Results: Stereo/BCI resulted in improved metrics compared to single view CXR. Results indicated that magnification can potentially improve the detection performance primarily due to the air gap which reduced scatter by ∼20%. For both phantoms, at isodose, eDQE(0) for stereo/BCI was ∼100 times higher than that for CXR. Magnification at isodose improved eDQE(0) by ∼10 times for stereo/BCI. Increasing the dose did not improve eDQE. The detectability index for stereo/BCI was ∼100 times better than single view CXR for all conditions. The detectability index was also not improved with increased dose.Conclusions: The findings indicate that stereo/BCI with magnification may improve detectability of subtle lung nodules compared to single view CXR. Results were improved with magnification for the smaller phantom but not for the larger phantom. The effective DQE and the detectability index did not improve with increasing dose.« less

  19. Meteoroid head echo polarization features studied by numerical electromagnetics modeling

    NASA Astrophysics Data System (ADS)

    Vertatschitsch, L. E.; Sahr, J. D.; Colestock, P.; Close, S.

    2011-12-01

    Meteoroid head echoes are radar returns associated with scatter from the dense plasma surrounding meteoroids striking the Earth's atmosphere. Such echoes are detected by high power, large aperture (HPLA) radars. Frequently such detections show large variations in signal strength that suggest constructive and destructive interference. Using the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR) we can also observe the polarization of the returns. Usually, scatter from head echoes resembles scatter from a small sphere; when transmitting right circular polarization (RC), the received signal consists entirely of left circular polarization (LC). For some detections, power is also received in the RC channel, which indicates the presence of a more complicated scattering process. Radar returns of a fragmenting meteoroid are simulated using a hard-sphere scattering model numerically evaluated in the resonant region of Mie scatter. The cross- and co-polar scattering cross-sections are computed for pairs of spheres lying within a few wavelengths, simulating the earliest stages of fragmentation upon atmospheric impact. The likelihood of detecting this sort of idealized fragmentation event is small, but this demonstrates the measurements that would result from such an event would display RC power comparable to LC power, matching the anomalous data. The resulting computations show that fragmentation is a consistent interpretation for these head echo radar returns.

  20. Signatures of Earth-scattering in the direct detection of Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris, E-mail: bkavanagh@lpthe.jussieu.fr, E-mail: catena@chalmers.se, E-mail: kouvaris@cp3.sdu.dk

    Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation of this 'Earth-scattering' effect in the regime where DM particles scatter at most once before reaching the detector. We perform the calculation self-consistently, taking into account not only those particles which are scattered away from the detector, but also those particles which are deflected towards the detector. Taking into account a realistic model of the Earth andmore » allowing for a range of DM-nucleon interactions, we present the EARTHSHADOW code, which we make publicly available, for calculating the DM velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth-scattering reduces the direct detection rate at certain detector locations while increasing the rate in others. The Earth's rotation induces a daily modulation in the rate, which we find to be highly sensitive to the detector latitude and to the form of the DM-nucleon interaction. These distinctive signatures would allow us to unambiguously detect DM and perhaps even identify its interactions in regions of the parameter space within the reach of current and future experiments.« less

  1. A microfluidic laser scattering sensor for label-free detection of waterborne pathogens

    NASA Astrophysics Data System (ADS)

    Wei, Huang; Yang, Limei; Li, Feng

    2016-10-01

    A microfluidic-based multi-angle laser scattering (MALS) sensor capable of acquiring scattering pattern of single particle is demonstrated. The size and relative refractive index (RI) of polystyrene (PS) microspheres were deduced with accuracies of 60 nm and 0.001 by analyzing the scattering patterns. We measured scattering patterns of waterborne parasites i.e., cryptosporidium parvum (c.parvum) and giardia lamblia (g.lamblia), and some other representative species in 1 L water within 1 hour, and the waterborne parasites were identified with accuracy better than 96% by classification of distinctive scattering patterns with a support-vector-machine (SVM) algorithm. The system provides a promising tool for label-free and rapid detection of waterborne parasites.

  2. A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.; Kim, W.; Sivathanu, Yudaya

    2007-01-01

    One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described.

  3. Decision-Level Fusion of Spatially Scattered Multi-Modal Data for Nondestructive Inspection of Surface Defects

    PubMed Central

    Heideklang, René; Shokouhi, Parisa

    2016-01-01

    This article focuses on the fusion of flaw indications from multi-sensor nondestructive materials testing. Because each testing method makes use of a different physical principle, a multi-method approach has the potential of effectively differentiating actual defect indications from the many false alarms, thus enhancing detection reliability. In this study, we propose a new technique for aggregating scattered two- or three-dimensional sensory data. Using a density-based approach, the proposed method explicitly addresses localization uncertainties such as registration errors. This feature marks one of the major of advantages of this approach over pixel-based image fusion techniques. We provide guidelines on how to set all the key parameters and demonstrate the technique’s robustness. Finally, we apply our fusion approach to experimental data and demonstrate its capability to locate small defects by substantially reducing false alarms under conditions where no single-sensor method is adequate. PMID:26784200

  4. Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes

    NASA Astrophysics Data System (ADS)

    Austwick, Martin R.; Clark, Benjamin; Mosse, Charles A.; Johnson, Kristie; Chicken, D. Wayne; Somasundaram, Santosh K.; Calabro, Katherine W.; Zhu, Ying; Falzon, Mary; Kocjan, Gabrijela; Fearn, Tom; Bown, Stephen G.; Bigio, Irving J.; Keshtgar, Mohammed R. S.

    2010-07-01

    A novel method for rapidly detecting metastatic breast cancer within excised sentinel lymph node(s) of the axilla is presented. Elastic scattering spectroscopy (ESS) is a point-contact technique that collects broadband optical spectra sensitive to absorption and scattering within the tissue. A statistical discrimination algorithm was generated from a training set of nearly 3000 clinical spectra and used to test clinical spectra collected from an independent set of nodes. Freshly excised nodes were bivalved and mounted under a fiber-optic plate. Stepper motors raster-scanned a fiber-optic probe over the plate to interrogate the node's cut surface, creating a 20×20 grid of spectra. These spectra were analyzed to create a map of cancer risk across the node surface. Rules were developed to convert these maps to a prediction for the presence of cancer in the node. Using these analyses, a leave-one-out cross-validation to optimize discrimination parameters on 128 scanned nodes gave a sensitivity of 69% for detection of clinically relevant metastases (71% for macrometastases) and a specificity of 96%, comparable to literature results for touch imprint cytology, a standard technique for intraoperative diagnosis. ESS has the advantage of not requiring a pathologist to review the tissue sample.

  5. Imaging characteristics of scintimammography using parallel-hole and pinhole collimators

    NASA Astrophysics Data System (ADS)

    Tsui, B. M. W.; Wessell, D. E.; Zhao, X. D.; Wang, W. T.; Lewis, D. P.; Frey, E. C.

    1998-08-01

    The purpose of the study is to investigate the imaging characteristics of scintimammography (SM) using parallel-hole (PR) and pinhole (PN) collimators in a clinical setting. Experimental data were acquired from a phantom that models the breast with small lesions using a low energy high resolution (LEHR) PR and a PN collimator. At close distances, the PN collimator provides better spatial resolution and higher detection efficiency than the PR collimator, at the expense of a smaller field-of-view (FOV). Detection of small breast lesions can be further enhanced by noise smoothing, field uniformity correction, scatter subtraction and resolution recovery filtering. Monte Carlo (MC) simulation data were generated from the 3D MCAT phantom that realistically models the Tc-99m sestamibi uptake and attenuation distributions in an average female patient. For both PR and PN collimation, the scatter to primary ratio (S/P) decreases from the base of the breast to the nipple and is higher in the left than right breast due to scatter of photons from the heart. Results from the study add to understanding of the imaging characteristics of SM using PR and PN collimators and assist in the design of data acquisition and image processing methods to enhance the detection of breast lesions using SM.

  6. A binned clustering algorithm to detect high-Z material using cosmic muons

    NASA Astrophysics Data System (ADS)

    Thomay, C.; Velthuis, J. J.; Baesso, P.; Cussans, D.; Morris, P. A. W.; Steer, C.; Burns, J.; Quillin, S.; Stapleton, M.

    2013-10-01

    We present a novel approach to the detection of special nuclear material using cosmic rays. Muon Scattering Tomography (MST) is a method for using cosmic muons to scan cargo containers and vehicles for special nuclear material. Cosmic muons are abundant, highly penetrating, not harmful for organic tissue, cannot be screened against, and can easily be detected, which makes them highly suited to the use of cargo scanning. Muons undergo multiple Coulomb scattering when passing through material, and the amount of scattering is roughly proportional to the square of the atomic number Z of the material. By reconstructing incoming and outgoing tracks, we can obtain variables to identify high-Z material. In a real life application, this has to happen on a timescale of 1 min and thus with small numbers of muons. We have built a detector system using resistive plate chambers (RPCs): 12 layers of RPCs allow for the readout of 6 x and 6 y positions, by which we can reconstruct incoming and outgoing tracks. In this work we detail the performance of an algorithm by which we separate high-Z targets from low-Z background, both for real data from our prototype setup and for MC simulation of a cargo container-sized setup. (c) British Crown Owned Copyright 2013/AWE

  7. Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range

    NASA Astrophysics Data System (ADS)

    Ney, Michael; Abdulhalim, Ibrahim

    2015-12-01

    Mueller matrix imaging sensitivity, to delicate water content changes in tissue associated with early stages of skin cancer, is demonstrated by numerical modeling to be enhanced by localized surface plasmon resonance (LSPR) effects at the terahertz (THz) range when InN nanoparticles (NPs) coated with Parylene-C are introduced into the skin. A skin tissue model tailored for THz wavelengths is established for a Monte Carlo simulation of polarized light propagation and scattering, and a comparative study based on simulated Mueller matrices is presented considering different NPs' parameters and insertion into the skin methods. The insertion of NPs presenting LSPR in the THz is demonstrated to enable the application of polarization-based sample characterization techniques adopted from the scattering dominated visible wavelengths domain for the, otherwise, relatively low scattering THz domain, where such approach is irrelevant without the NPs. Through these Mueller polarimetry techniques, the detection of water content variations in the tissue is made possible and with high sensitivity. This study yields a limit of detection down to 0.0018% for relative changes in the water content based on linear degree of polarization-an improvement of an order of magnitude relative to the limit of detection without NPs calculated in a previous ellipsometric study.

  8. Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range.

    PubMed

    Ney, Michael; Abdulhalim, Ibrahim

    2015-01-01

    Mueller matrix imaging sensitivity, to delicate water content changes in tissue associated with early stages of skin cancer, is demonstrated by numerical modeling to be enhanced by localized surface plasmon resonance (LSPR) effects at the terahertz (THz) range when InN nanoparticles (NPs) coated with Parylene-C are introduced into the skin. A skin tissue model tailored for THz wavelengths is established for a Monte Carlo simulation of polarized light propagation and scattering, and a comparative study based on simulated Mueller matrices is presented considering different NPs’ parameters and insertion into the skin methods. The insertion of NPs presenting LSPR in the THz is demonstrated to enable the application of polarization-based sample characterization techniques adopted from the scattering dominated visible wavelengths domain for the, otherwise, relatively low scattering THz domain, where such approach is irrelevant without the NPs. Through these Mueller polarimetry techniques, the detection of water content variations in the tissue is made possible and with high sensitivity. This study yields a limit of detection down to 0.0018% for relative changes in the water content based on linear degree of polarization--an improvement of an order of magnitude relative to the limit of detection without NPs calculated in a previous ellipsometric study.

  9. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity

    NASA Astrophysics Data System (ADS)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Hu, Guohua; Liu, Min; Chen, Peng; Cui, Yiping

    2014-01-01

    As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an ``elongate and capture'' procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis.As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an ``elongate and capture'' procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis. Electronic supplementary information (ESI) available: TEM images of individual MB@Au NPs, results of dynamic light scattering analysis and extinction spectrum obtained using colorimetry detection. See DOI: 10.1039/c3nr04942f

  10. MO-F-CAMPUS-I-04: Characterization of Fan Beam Coded Aperture Coherent Scatter Spectral Imaging Methods for Differentiation of Normal and Neoplastic Breast Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R; Albanese, K; Lakshmanan, M

    Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality formore » breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded aperture coherent scatter imaging a clinically viable method for breast cancer detection. United States Department of Homeland Security; Duke University Medical Center - Department of Radiology; Carl E Ravin Advanced Imaging Laboratories; Duke University Medical Physics Graduate Program.« less

  11. Results of edge scatter testing for a starshade mission

    NASA Astrophysics Data System (ADS)

    Casement, Suzanne; Warwick, Steve; Smith, Daniel; Ellis, Scott; Stover, John

    2016-07-01

    In the field of exoplanet detection and characterization, the use of a starshade, an external occulter in front of a telescope at large separations, has been identified as one of the highly promising methods to achieve the necessary high contrast imagery. Control of scattered sunlight from the edges of the starshade into the telescope has been identified as one of the key technology development areas in order to make the starshade feasible. Modeling of the scattered light has resulted in very different results so a campaign of experimentation with edge samples was undertaken to attempt to understand the discrepancies. Here, we present our results from the measurement of select samples of materials which would be suitable for manufacturing the starshade edge, and related models. We have focused on coating metallic samples for ease of fabrication: Titanium, Aluminum, and a Beryllium Copper alloy. Using standard machine shop methods, we fabricated samples which had sharp edges with radius of curvature (RoC) between 15 and 20 μm. We then had these samples coated by two suppliers to evaluate how well these coating types would conform to the edge and provide scatter suppression. The results of scatter measurements of these coated edge samples are presented. These scatter results have been incorporated into a new geometrical model in FRED which includes the details of the starshade mechanical model. This model predicts both the magnitude and distribution of the scattered sunlight in the image plane of a nominal telescope. We present these results, including a first effort at modeling the Solar System at 10 pc as seen by this mission architecture.

  12. Results of Edge Scatter Testing for a Starshade Mission

    NASA Astrophysics Data System (ADS)

    Smith, Daniel; Casement, L. Suzanne; Ellis, Scott; Stover, John; Warwick, Steve

    2017-01-01

    In the field of exoplanet detection and characterization, the use of a starshade, an external occulter in front of a telescope at large separations, has been identified as one of the highly promising methods to achieve the necessary high contrast imagery. Control of scattered sunlight from the edges of the starshade into the telescope has been identified as one of the key technology development areas in order to make the starshade feasible. Modeling of the scattered light has resulted in very different results so a campaign of experimentation with edge samples was undertaken to attempt to understand the discrepancies.Here, we present our results from the measurement of select samples of materials which would be suitable for manufacturing the starshade edge, and related models. We have focused on coating metallic samples for ease of fabrication: Titanium, Aluminum, and a Beryllium Copper alloy. Using standard machine shop methods, we fabricated samples which had sharp edges with radius of curvature (RoC) between 15 and 20 μm. We then had these samples coated by two suppliers to evaluate how well these coating types would conform to the edge and provide scatter suppression. The results of scatter measurements of these coated edge samples are presented. These scatter results have been incorporated into a new geometrical model in FRED which includes the details of the starshade mechanical model. This model predicts both the magnitude and distribution of the scattered sunlight in the image plane of a nominal telescope. We present these results, including a first effort at modeling the Solar System at 10 pc as seen by this mission architecture.

  13. Rapid Surface Enhanced Raman Scattering (SERS) Detection of Sibutramine Hydrochloride in Pharmaceutical Capsules with a β-Cyclodextrin- Ag/Polyvivnyl Alcohol Hydrogel Substrate.

    PubMed

    Ouyang, Lei; Jiang, Zuyan; Wang, Nan; Zhu, Lihua; Tang, Heqing

    2017-07-10

    Sibutramine hydrochloride (SH) is a banned weight-loss drug, but its illegal addition to health products is still rampant. This suggests a very urgent need for a fast and precise detection method for SH. Surface Enhanced Raman Scattering (SERS) is a promising candidate for this purpose, but the weak affinity between SH and bare metal limits its direct SERS detection. In the present work, β-cyclodextrin was capped in situ onto the surface of Ag nanoparticles to function as a scaffold to capture SH. The obtained Ag nanoparticles were encapsulated into polyvinyl alcohol (PVA) to fabricate a SERS active hydrogel with excellent reproducibility. A facile SERS strategy based on such substrate was proposed for trace SH quantification with a linear range of 7.0-150.0 µg·mL -1 , and a detection limit low to 3.0 µg·mL -1 . It was applied to analyze seven types of commercial slimming capsules with satisfactory results, showing good prospect for real applications.

  14. Rapid Surface Enhanced Raman Scattering (SERS) Detection of Sibutramine Hydrochloride in Pharmaceutical Capsules with a β-Cyclodextrin- Ag/Polyvivnyl Alcohol Hydrogel Substrate

    PubMed Central

    Ouyang, Lei; Jiang, Zuyan; Wang, Nan; Zhu, Lihua; Tang, Heqing

    2017-01-01

    Sibutramine hydrochloride (SH) is a banned weight-loss drug, but its illegal addition to health products is still rampant. This suggests a very urgent need for a fast and precise detection method for SH. Surface Enhanced Raman Scattering (SERS) is a promising candidate for this purpose, but the weak affinity between SH and bare metal limits its direct SERS detection. In the present work, β-cyclodextrin was capped in situ onto the surface of Ag nanoparticles to function as a scaffold to capture SH. The obtained Ag nanoparticles were encapsulated into polyvinyl alcohol (PVA) to fabricate a SERS active hydrogel with excellent reproducibility. A facile SERS strategy based on such substrate was proposed for trace SH quantification with a linear range of 7.0–150.0 µg·mL–1, and a detection limit low to 3.0 µg·mL−1. It was applied to analyze seven types of commercial slimming capsules with satisfactory results, showing good prospect for real applications. PMID:28698502

  15. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle.

    PubMed

    Dasary, Samuel S R; Senapati, Dulal; Singh, Anant Kumar; Anjaneyulu, Yerramilli; Yu, Hongtao; Ray, Paresh Chandra

    2010-12-01

    TNT is one of the most commonly used nitro aromatic explosives for landmines of military and terrorist activities. As a result, there is an urgent need for rapid and reliable methods for the detection of trace amount of TNT for screenings in airport, analysis of forensic samples, and environmental analysis. Driven by the need to detect trace amounts of TNT from environmental samples, this article demonstrates a label-free, highly selective, and ultrasensitive para-aminothiophenol (p-ATP) modified gold nanoparticle based dynamic light scattering (DLS) probe for TNT recognition in 100 pico molar (pM) level from ethanol:acetonitile mixture solution. Because of the formation of strong π-donor-acceptor interaction between TNT and p-ATP, para-aminothiophenol attached gold nanoparticles undergo aggregation in the presence of TNT, which changes the DLS intensity tremendously. A detailed mechanism for significant DLS intensity change has been discussed. Our experimental results show that TNT can be detected quickly and accurately without any dye tagging in 100 pM level with excellent discrimination against other nitro compounds.

  16. Unsupervised change detection of multispectral images based on spatial constraint chi-squared transform and Markov random field model

    NASA Astrophysics Data System (ADS)

    Shi, Aiye; Wang, Chao; Shen, Shaohong; Huang, Fengchen; Ma, Zhenli

    2016-10-01

    Chi-squared transform (CST), as a statistical method, can describe the difference degree between vectors. The CST-based methods operate directly on information stored in the difference image and are simple and effective methods for detecting changes in remotely sensed images that have been registered and aligned. However, the technique does not take spatial information into consideration, which leads to much noise in the result of change detection. An improved unsupervised change detection method is proposed based on spatial constraint CST (SCCST) in combination with a Markov random field (MRF) model. First, the mean and variance matrix of the difference image of bitemporal images are estimated by an iterative trimming method. In each iteration, spatial information is injected to reduce scattered changed points (also known as "salt and pepper" noise). To determine the key parameter confidence level in the SCCST method, a pseudotraining dataset is constructed to estimate the optimal value. Then, the result of SCCST, as an initial solution of change detection, is further improved by the MRF model. The experiments on simulated and real multitemporal and multispectral images indicate that the proposed method performs well in comprehensive indices compared with other methods.

  17. Identification of delamination interface in composite laminates using scattering characteristics of lamb wave: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh Kumar; Ramadas, C.; Balachandra Shetty, P.; Satyanarayana, K. G.

    2017-04-01

    Considering the superior strength properties of polymer based composites over metallic materials, they are being used in primary structures of aircrafts. However, these polymeric materials are much more complex in behaviour due to their structural anisotropy along with existence of different materials unlike in metallic alloys. These pose challenge in flaw detection, residual strength determination and life of a structure with their high susceptibility to impact damage in the form of delaminations/disbonds or cracks. This reduces load-bearing capability and potentially leads to structural failure. With this background, this study presents a method to identify location of delamination interface along thickness of a laminate. Both numerical and experimental studies have been carried out with a view to identify the defect, on propagation, mode conversion and scattering characteristics of fundamental anti-symmetric Lamb mode (Ao) when it passed through a semi-infinite delamination. Further, the reflection and transmission scattering coefficients based on power and amplitude ratios of the scattered waves have been computed. The methodology was applied on numerically simulated delaminations to illustrate the efficacy of the method. Results showed that it could successfully identify delamination interface.

  18. On the use of variable coherence in inverse scattering problems

    NASA Astrophysics Data System (ADS)

    Baleine, Erwan

    Even though most of the properties of optical fields, such as wavelength, polarization, wavefront curvature or angular spectrum, have been commonly manipulated in a variety of remote sensing procedures, controlling the degree of coherence of light did not find wide applications until recently. Since the emergence of optical coherence tomography, a growing number of scattering techniques have relied on temporal coherence gating which provides efficient target selectivity in a way achieved only by bulky short pulse measurements. The spatial counterpart of temporal coherence, however, has barely been exploited in sensing applications. This dissertation examines, in different scattering regimes, a variety of inverse scattering problems based on variable spatial coherence gating. Within the framework of the radiative transfer theory, this dissertation demonstrates that the short range correlation properties of a medium under test can be recovered by varying the size of the coherence volume of an illuminating beam. Nonetheless, the radiative transfer formalism does not account for long range correlations and current methods for retrieving the correlation function of the complex susceptibility require cumbersome cross-spectral density measurements. Instead, a variable coherence tomographic procedure is proposed where spatial coherence gating is used to probe the structural properties of single scattering media over an extended volume and with a very simple detection system. Enhanced backscattering is a coherent phenomenon that survives strong multiple scattering. The variable coherence tomography approach is extended in this context to diffusive media and it is demonstrated that specific photon trajectories can be selected in order to achieve depth-resolved sensing. Probing the scattering properties of shallow and deeper layers is of considerable interest in biological applications such as diagnosis of skin related diseases. The spatial coherence properties of an illuminating field can be manipulated over dimensions much larger than the wavelength thus providing a large effective sensing area. This is a practical advantage over many near-field microscopic techniques, which offer a spatial resolution beyond the classical diffraction limit but, at the expense of scanning a probe over a large area of a sample which is time consuming, and, sometimes, practically impossible. Taking advantage of the large field of view accessible when using the spatial coherence gating, this dissertation introduces the principle of variable coherence scattering microscopy. In this approach, a subwavelength resolution is achieved from simple far-zone intensity measurements by shaping the degree of spatial coherence of an evanescent field. Furthermore, tomographic techniques based on spatial coherence gating are especially attractive because they rely on simple detection schemes which, in principle, do not require any optical elements such as lenses. To demonstrate this capability, a correlated lensless imaging method is proposed and implemented, where both amplitude and phase information of an object are obtained by varying the degree of spatial coherence of the incident beam. Finally, it should be noted that the idea of using the spatial coherence properties of fields in a tomographic procedure is applicable to any type of electromagnetic radiation. Operating on principles of statistical optics, these sensing procedures can become alternatives for various target detection schemes, cutting-edge microscopies or x-ray imaging methods.

  19. Experimental status DVCS e p ---> e p gamma and e n ---> e n gamma at Jefferson Lab-Hall A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Ferdi

    2004-06-02

    The experiments E00-110 and E03-106 [1] propose to measure the Deep Virtual Compton Scattering process (DVCS) ep --> ep{gamma} and en --> en{gamma} in Hall A at Jefferson Lab with a 5.75 GeV longitudinally polarized electron beam. The exclusivity requires the High Resolution Spectrometer of the Hall A for the detection of the scattered electron ({Delta}p/p = 10^-4), an electromagnetic calorimeter for the detection of the real photon ({sigma}/E<5%) and a scintillator array for the detection of the third particle. A 1 GHz sampling system allows one to deal with pile-up as expected from running detectors at small angles andmore » high luminosity L = 10^37 cm^-2 s^-1. We will describe the apparatus and will explain the method to extract GPDs and evaluate the contributions from higher twists from the measurement of the cross-section difference.« less

  20. Evaluation of back scatter interferometry, a method for detecting protein binding in solution.

    PubMed

    Jepsen, S T; Jørgensen, T M; Zong, W; Trydal, T; Kristensen, S R; Sørensen, H S

    2015-02-07

    Back Scatter Interferometry (BSI) has been proposed to be a highly sensitive and versatile refractive index sensor usable for analytical detection of biomarker and protein interactions in solution. However the existing literature on BSI lacks a physical explanation of why protein interactions in general should contribute to the BSI signal. We have established a BSI system to investigate this subject in further detail. We contribute with a thorough analysis of the robustness of the sensor including unwanted contributions to the interferometric signal caused by temperature variation and dissolved gasses. We report a limit of the effective minimum detectability of refractive index at the 10(-7) level. Long term stability was examined by simultaneously monitoring the temperature inside the capillary revealing an average drift of 2.0 × 10(-7) per hour. Finally we show that measurements on protein A incubated with immunoglobulin G do not result in a signal that can be attributed to binding affinities as otherwise claimed in literature.

  1. Guiding the Design of Radiation Imagers with Experimentally Benchmarked Geant4 Simulations for Electron-Tracking Compton Imaging

    NASA Astrophysics Data System (ADS)

    Coffer, Amy Beth

    Radiation imagers are import tools in the modern world for a wide range of applications. They span the use-cases of fundamental sciences, astrophysics, medical imaging, all the way to national security, nuclear safeguards, and non-proliferation verification. The type of radiation imagers studied in this thesis were gamma-ray imagers that detect emissions from radioactive materials. Gamma-ray imagers goal is to localize and map the distribution of radiation within their specific field-of-view despite the fact of complicating background radiation that can be terrestrial, astronomical, and temporal. Compton imaging systems are one type of gamma-ray imager that can map the radiation around the system without the use of collimation. Lack of collimation enables the imaging system to be able to detect radiation from all-directions, while at the same time, enables increased detection efficiency by not absorbing incident radiation in non-sensing materials. Each Compton-scatter events within an imaging system generated a possible cone-surface in space that the radiation could have originated from. Compton imaging is limited in its reconstructed image signal-to-background due to these source Compton-cones overlapping with background radiation Compton-cones. These overlapping cones limit Compton imaging's detection-sensitivity in image space. Electron-tracking Compton imaging (ETCI) can improve the detection-sensitivity by measuring the Compton-scattered electron's initial trajectory. With an estimate of the scattered electron's trajectory, one can reduce the Compton-back-projected cone to a cone-arc, thus enabling faster radiation source detection and localization. However, the ability to measure the Compton-scattered electron-trajectories adds another layer of complexity to an already complex methodology. For a real-world imaging applications, improvements are needed in electron-track detection efficiency and in electron-track reconstruction. One way of measuring Compton-scattered electron-trajectories is with high-resolution Charged-Coupled Devices (CCDs). The proof-of-principle CCD-based ETCI experiment demonstrated the CCDs' ability to measure the Compton-scattered electron-tracks as a 2-dimensional image. Electron-track-imaging algorithms using the electron-track-image are able to determine the 3-dimensional electron-track trajectory within +/- 20 degrees. The work presented here is the physics simulations developed along side the experimental proof-of-principle experiment. The development of accurate physics modeling for multiple-layer CCDs based ETCI systems allow for the accurate prediction of future ETCI system performance. The simulations also enable quick development insights for system design, and they guide the development of electron-track reconstruction methods. The physics simulation efforts for this project looked closely at the accuracy of the Geant4 Monte Carlo methods for medium energy electron transport. In older version of Geant4 there were some discrepancies between the electron-tracking experimental measurements and the simulation results. It was determined that when comparing the electron dynamics of electrons at very high resolutions, Geant4 simulations must be fine tuned with careful choices for physics production cuts and electron physics stepping sizes. One result of this work is a CCDs Monte Carlo model that has been benchmarked to experimental findings and fully characterized for both photon and electron transport. The CCDs physics model now match to within 1 percent error of experimental results for scattered-electron energies below 500 keV. Following the improvements of the CCDs simulations, the performance of a realistic two-layer CCD-stack system was characterized. The realistic CCD-stack system looked at the effect of thin passive-layers on the CCDs' front face and back-contact. The photon interaction efficiency was calculated for the two-layer CCD-stack, and we found that there is a 90 percent probability of scattered-electrons from a 662 keV source to stay within a single active layer. This demonstrates the improved detection efficiency, which is one of the strengths of the CCDs' implementation as a ETCI system. The CCD-stack simulations also established that electron-tracks scattering from one CCDs layer to another could be reconstructed. The passive-regions on the CCD-stack mean that these inter-layer scattered-electron-tracks will always loose both angular information and energy information. Looking at the angular changes of these electrons scattering between the CCDs layers showed us there is not a strong energy dependence on the angular changes due to the passive-regions of the CCDs. The angular changes of the electron track are, for the most part, a function of the thickness of the thin back-layer of the CCDs. Lastly, an approach using CCD-stack simulations was developed to reconstruct the energy transport across dead-layers and its feasibility was demonstrated. Adding back this lost energy will limit the loss of energy resolution of the scatter-interactions. Energy resolution losses would negatively impacted the achievable image resolution from image reconstruction algorithms. Returning some of the energy back to the reconstructed electron-track will help retain the expected performance of the electron-track trajectory determination algorithm.

  2. Application of HPLC with ELSD Detection for the Assessment of Azelaic Acid Impurities in Liposomal Formulation

    PubMed Central

    Han, Stanislaw; Karlowicz-Bodalska, Katarzyna; Ozimek, Lukasz

    2013-01-01

    In the course of research and development of a new pharmaceutical formulation of azelaic acid in the liposomal form, we developed a rapid and accurate method for the detection of impurities using high-performance liquid chromatography. A chromatographic column from Merck (Purospher Star RP C18, 250–4 mm (5 μm) was used in the assay, and the mobile phase gradient consisted of three phases: A—methanol : water (5 : 95) + 1.5% (v/v) acetic acid; B—water : methanol (5 : 95) + 1.5% (v/v) acetic acid; and C—chloroform. Detection of the impurities and the active substance was performed by an evaporative light-scattering detector. The method was validated for selectivity, system precision, method precision, limit of detection, and response rates. The proposed method can be used to detect impurities in the liposomal formulation of azelaic acid. The method enables separation of azelaic acid from the identified and unidentified impurities and from the excipients used in the drug form. PMID:24228008

  3. Application of HPLC with ELSD detection for the assessment of azelaic acid impurities in liposomal formulation.

    PubMed

    Han, Stanislaw; Karlowicz-Bodalska, Katarzyna; Szura, Dorota; Ozimek, Lukasz; Musial, Witold

    2013-01-01

    In the course of research and development of a new pharmaceutical formulation of azelaic acid in the liposomal form, we developed a rapid and accurate method for the detection of impurities using high-performance liquid chromatography. A chromatographic column from Merck (Purospher Star RP C18, 250-4 mm (5 μm) was used in the assay, and the mobile phase gradient consisted of three phases: A--methanol : water (5 : 95) + 1.5% (v/v) acetic acid; B--water : methanol (5 : 95) + 1.5% (v/v) acetic acid; and C--chloroform. Detection of the impurities and the active substance was performed by an evaporative light-scattering detector. The method was validated for selectivity, system precision, method precision, limit of detection, and response rates. The proposed method can be used to detect impurities in the liposomal formulation of azelaic acid. The method enables separation of azelaic acid from the identified and unidentified impurities and from the excipients used in the drug form.

  4. Hyperspectral imaging technique for determination of pork freshness attributes

    NASA Astrophysics Data System (ADS)

    Li, Yongyu; Zhang, Leilei; Peng, Yankun; Tang, Xiuying; Chao, Kuanglin; Dhakal, Sagar

    2011-06-01

    Freshness of pork is an important quality attribute, which can vary greatly in storage and logistics. The specific objectives of this research were to develop a hyperspectral imaging system to predict pork freshness based on quality attributes such as total volatile basic-nitrogen (TVB-N), pH value and color parameters (L*,a*,b*). Pork samples were packed in seal plastic bags and then stored at 4°C. Every 12 hours. Hyperspectral scattering images were collected from the pork surface at the range of 400 nm to 1100 nm. Two different methods were performed to extract scattering feature spectra from the hyperspectral scattering images. First, the spectral scattering profiles at individual wavelengths were fitted accurately by a three-parameter Lorentzian distribution (LD) function; second, reflectance spectra were extracted from the scattering images. Partial Least Square Regression (PLSR) method was used to establish prediction models to predict pork freshness. The results showed that the PLSR models based on reflectance spectra was better than combinations of LD "parameter spectra" in prediction of TVB-N with a correlation coefficient (r) = 0.90, a standard error of prediction (SEP) = 7.80 mg/100g. Moreover, a prediction model for pork freshness was established by using a combination of TVB-N, pH and color parameters. It could give a good prediction results with r = 0.91 for pork freshness. The research demonstrated that hyperspectral scattering technique is a valid tool for real-time and nondestructive detection of pork freshness.

  5. Rapid detection and identification of energetic materials with surface enhanced raman spectrometry (SERS)

    DOEpatents

    Han, Thomas Yong-Jin; Valdez, Carlos A; Olson, Tammy Y; Kim, Sung Ho; Satcher, Jr., Joe H

    2015-04-21

    In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, wherein the plurality of organic molecules preferentially interact with one or more analytes when placed in proximity therewith. According to another embodiment, a method for detecting analytes includes contacting a fluid having one or more analytes of interest therein with a plurality of metal nanoparticles, each metal nanoparticle having a plurality of organic molecules tethered thereto, and detecting Raman scattering from an analyte of interest from the fluid, the analyte interacting with one or more of the plurality of organic molecules. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle, and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle. Other systems and methods for detecting analytes are also described.

  6. Surface-enhanced Raman scattering and DFT investigation of 1,5-diphenylcarbazide and its metal complexes with Ca(II), Mn(II), Fe(III) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Szabó, László; Herman, Krisztian; Mircescu, Nicoleta Elena; Tódor, István Szabolcs; Simon, Botond Lorand; Boitor, Radu Alex; Leopold, Nicolae; Chiş, Vasile

    2014-09-01

    In recent years, surface-enhanced Raman scattering (SERS) has become an increasingly viable method for the detection of metal ions, evidenced by the existing studies on metal complexes. In this study, 1,5-diphenylcarbazide (DPC) and its Ca(II), Mn(II), Fe(III) and Cu(II) complexes were investigated by FTIR/ATR, FT-Raman and surface-enhanced Raman spectroscopies. The hybrid B3LYP exchange-correlation functional was used for the molecular geometry optimizations, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations of the DPC molecule and its complexes. Based on experimental and theoretical data, we were able to accurately identify unique and representative features for each DPC-metal complex, features that enable the detection of said metal complexes in millimolar concentrations.

  7. Laboratory study of adsorption and deliquescence on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Nikolakakos, George; Whiteway, James A.

    2018-07-01

    A sample of the zeolitic mineral chabazite was subjected to a range of water vapor pressures and temperatures found on present day Mars. Laser Raman scattering was applied to detect the relative amounts of water and carbon dioxide adsorbed by the sample. Results show that zeolites are capable of adsorbing water from the atmosphere on diurnal time scales and that Raman scattering spectroscopy provides a promising method for detecting this process during a landed mission. When the water vapor pressure and temperature were sufficiently low, the zeolite sample also adsorbed carbon dioxide, resulting in the simultaneous adsorption of water and carbon dioxide on the surface mineral grains. Additional experiments were carried out using a mixture of magnesium perchlorate and chabazite. The sample of mixed surface material remained visually unchanged during water adsorption, but was found to darken during deliquescence.

  8. VCSEL fault location apparatus and method

    DOEpatents

    Keeler, Gordon A [Albuquerque, NM; Serkland, Darwin K [Albuquerque, NM

    2007-05-15

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  9. Fixed forced detection for fast SPECT Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cajgfinger, T.; Rit, S.; Létang, J. M.; Halty, A.; Sarrut, D.

    2018-03-01

    Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large ratio between the number of photons emitted and detected in the collimator. This work proposes a method to accelerate the simulations based on fixed forced detection (FFD) combined with an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the detection of a photon in each detector pixel weighted by the probability of emission (or scattering) and transmission to this pixel. The method was evaluated with numerical phantoms and on patient images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The overall computing time gain can reach up to five orders of magnitude. Source code and examples are available in the Gate V8.0 release.

  10. Fixed forced detection for fast SPECT Monte-Carlo simulation.

    PubMed

    Cajgfinger, T; Rit, S; Létang, J M; Halty, A; Sarrut, D

    2018-03-02

    Monte-Carlo simulations of SPECT images are notoriously slow to converge due to the large ratio between the number of photons emitted and detected in the collimator. This work proposes a method to accelerate the simulations based on fixed forced detection (FFD) combined with an analytical response of the detector. FFD is based on a Monte-Carlo simulation but forces the detection of a photon in each detector pixel weighted by the probability of emission (or scattering) and transmission to this pixel. The method was evaluated with numerical phantoms and on patient images. We obtained differences with analog Monte Carlo lower than the statistical uncertainty. The overall computing time gain can reach up to five orders of magnitude. Source code and examples are available in the Gate V8.0 release.

  11. Microbend fiber-optic chemical sensor

    DOEpatents

    Weiss, Jonathan D.

    2002-01-01

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  12. Automated high-speed Mueller matrix scatterometer.

    PubMed

    Delplancke, F

    1997-08-01

    A new scatterometer-polarimeter is described. It measures the angular distribution of intensity and of the complete Mueller matrix of light scattered by rough surfaces and particle suspensions. The measurement time is 1 s/scattering angle in the present configuration but can be reduced to a few milliseconds with modified electronics. The instrument uses polarization modulation and a Fourier analysis of four detected signals to obtain the 16 Mueller matrix elements. This method is particularly well suited to online, real time, industrial process control involving rough surfaces and large particle suspensions (an arithmetic roughness or particle diameter of >1 microm). Some results are given.

  13. Measurements of Euglena motion parameters by laser light scattering.

    PubMed Central

    Ascoli, C; Barbi, M; Frediani, C; Murè, A

    1978-01-01

    Measurements of Euglena gracilis motion parameters have been performed by the spectral analysis of the scattered laser light. Samples were oriented by a radiofrequency field to obtain easily interpretable spectra. Cell rotation frequency and flagellar beating frequency distributions were obtained from the homodyne spectra, whereas the Doppler lines obtained at small observation angles by heterodyne detection yielded the swimming speed distributions. We discuss the broadening of the heterodyne spectra at large angles of observation. An application of this method to the study of the photo-kinetic effect is also described. Images FIGURE 3 PMID:104747

  14. Fly Eye radar: detection through high scattered media

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Gorwara, Ashok

    2017-05-01

    Longer radio frequency waves better penetrating through high scattered media than millimeter waves, but imaging resolution limited by diffraction at longer wavelength. Same time frequency and amplitudes of diffracted waves (frequency domain measurement) provides information of object. Phase shift of diffracted waves (phase front in time domain) consists information about shape of object and can be applied for reconstruction of object shape or even image by recording of multi-frequency digital hologram. Spectrum signature or refracted waves allows identify the object content. Application of monopulse method with overlap closely spaced antenna patterns provides high accuracy measurement of amplitude, phase, and direction to signal source. Digitizing of received signals separately in each antenna relative to processor time provides phase/frequency independence. Fly eye non-scanning multi-frequency radar system provides simultaneous continuous observation of multiple targets and wide possibilities for stepped frequency, simultaneous frequency, chaotic frequency sweeping waveform (CFS), polarization modulation for reliable object detection. Proposed c-band fly eye radar demonstrated human detection through 40 cm concrete brick wall with human and wall material spectrum signatures and can be applied for through wall human detection, landmines, improvised explosive devices detection, underground or camouflaged object imaging.

  15. Electronic Holography with a Broad Spectrum Laser for Time Gated Imaging Through Highly Scattering Media.

    NASA Astrophysics Data System (ADS)

    Shih, Marian Pei-Ling

    The problem of optical imaging through a highly scattering volume diffuser, in particular, biological tissue, has received renewed interest in recent years because of a search for alternative imaging diagnostics in the optical wavelengths for the early detection of human breast cancer. This dissertation discusses the optical imaging of objects obscured by diffusers that contribute an otherwise overwhelming degree of multiple scatter. Many optical imaging techniques are based on the first-arriving light principle. These methods usually combine a transilluminating optical short pulse with a time windowing gate in order to form a flat shadowgraph image of absorbing objects either embedded within or hidden behind a scattering medium. The gate selectively records an image of the first-arriving light, while simultaneously rejecting the later-arriving scattered light. One set of the many implementations of the first -arriving light principle relies on the gating property of holography. This thesis presents several holographic optical gating experiments that demonstrate the role that the temporal coherence function of the illumination source plays in the imaging of all objects with short coherence length holography, with special emphasis on the application to image through diffusers and its resolution capabilities. Previous researchers have already successfully combined electronic holography, holography in which the recording medium is a two dimensional detector array instead of photographic film, with light-in-flight holography into a short coherence length holography method that images through various types of multiply scattering random media, including chicken breast tissue and wax. This thesis reports further experimental exploration of the short coherence holography method for imaging through severely scattering diffusers. There is a study on the effectiveness of spatial filtering of the first-arriving light, as well as a report of the imaging, by means of the short coherence holographic method, of an absorber through a living human hand. This thesis also includes both theoretical analyses and experimental results of a spectral dispersion holography system which, instead of optically synthesizing the broad spectrum illumination source that is used for the short coherence holography method, digitally synthesizes a broad spectrum hologram from a collection of single frequency component holograms. This system has the time gating properties of short coherence length holography, as well as experimentally demonstrated applications for imaging through multiply scattering media.

  16. Fast and simple method for determination of fatty acid methyl esters (FAME) in biodiesel blends using X-ray spectrometry.

    PubMed

    Sitko, Rafal; Zawisza, Beata; Kowalewska, Zofia; Kocot, Karina; Polowniak, Marzena

    2011-09-30

    The determination of fatty acid methyl esters (FAME) in diesel fuel blends is an important aspect of production and blending process as well as quality control of distribution operations. In this study, energy-dispersive X-ray fluorescence spectrometer (EDXRF) is used for the first time for determination of FAME in biodiesel blends. The principle of the method is based on intensity difference of X-ray radiation scattered from hydrocarbons and from FAME. The experiment shows that coherent and incoherent radiation, commonly applied for evaluation of the average atomic number of the sample with light matrix, cannot be applied for FAME determination. However, the application of scattered continuous radiation gives excellent correlation between FAME concentration and intensity of scattered radiation. The best results are obtained if continuum is collected in the range of energy between 10.5 and 15.0 keV for rhodium X-ray tube, operated at 35 kV. Linear relationship between the FAME concentration and the inverse of scattered continuous radiation is obtained with the correlation coefficients of 0.999. Standard deviation of measurement is ca. 0.46% (v/v) of FAME and detection limit is 1.2% (v/v) for 600 s counting time and 50% dead-time loss using Si-PIN detector. The investigation shows that crucial issue in determination of FAME in biodiesel blends using EDXRF spectrometer is the precision of measurements resulting from the counting statistics. Therefore, much better results (0.20% (v/v) standard deviation and 0.52% (v/v) detection limit) can be expected if higher intensity of primary radiation is applied and X-ray spectrum is collected by silicon drift detector of high input count rate. For concentration of FAME from 10 to 100% (v/v), the differences between reference method (Fourier transform infrared spectrometry) and the proposed method usually do not exceed 1% (v/v) of FAME. The proposed method is fast, simple and enables FAME determination in wide range of concentration up to 100% of FAME without any sample treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Vehicle license plate recognition in dense fog based on improved atmospheric scattering model

    NASA Astrophysics Data System (ADS)

    Tang, Chunming; Lin, Jun; Chen, Chunkai; Dong, Yancheng

    2018-04-01

    An effective method based on improved atmospheric scattering model is proposed in this paper to handle the problem of the vehicle license plate location and recognition in dense fog. Dense fog detection is performed firstly by the top-hat transformation and the vertical edge detection, and the moving vehicle image is separated from the traffic video image. After the vehicle image is decomposed into two layers: structure and texture layers, the glow layer is separated from the structure layer to get the background layer. Followed by performing the mean-pooling and the bicubic interpolation algorithm, the atmospheric light map of the background layer can be predicted, meanwhile the transmission of the background layer is estimated through the grayed glow layer, whose gray value is altered by linear mapping. Then, according to the improved atmospheric scattering model, the final restored image can be obtained by fusing the restored background layer and the optimized texture layer. License plate location is performed secondly by a series of morphological operations, connected domain analysis and various validations. Characters extraction is achieved according to the projection. Finally, an offline trained pattern classifier of hybrid discriminative restricted boltzmann machines (HDRBM) is applied to recognize the characters. Experimental results on thorough data sets are reported to demonstrate that the proposed method can achieve high recognition accuracy and works robustly in the dense fog traffic environment during 24h or one day.

  18. Detection of single nano-defects in photonic crystals between crossed polarizers.

    PubMed

    Grepstad, Jon Olav; Kaspar, Peter; Johansen, Ib-Rune; Solgaard, Olav; Sudbø, Aasmund

    2013-12-16

    We investigate, by simulations and experiments, the light scattering of small particles trapped in photonic crystal membranes supporting guided resonance modes. Our results show that, due to amplified Rayleigh small particle scattering, such membranes can be utilized to make a sensor that can detect single nano-particles. We have designed a biomolecule sensor that uses cross-polarized excitation and detection for increased sensitivity. Estimated using Rayleigh scattering theory and simulation results, the current fabricated sensor has a detection limit of 26 nm, corresponding to the size of a single virus. The sensor can potentially be made both cheap and compact, to facilitate use at point-of-care.

  19. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.

    PubMed

    Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.

  20. Scattering of aerosol particles by a Hermite-Gaussian beam in marine atmosphere.

    PubMed

    Huang, Qingqing; Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Liu, Songhua

    2017-07-01

    Based on the complex-source-point method and the generalized Lorenz-Mie theory, the scattering properties and polarization of aerosol particles by a Hermite-Gaussian (HG) beam in marine atmosphere is investigated. The influences of beam mode, beam width, and humidity on the scattered field are analyzed numerically. Results indicate that when the number of HG beam modes u (v) increase, the radar cross section of aerosol particles alternating appears at maximum and minimum values in the forward and backward scattering, respectively, because of the special petal-shaped distribution of the HG beam. The forward and backward scattering of aerosol particles decreases with the increase in beam waist. When beam waist is less than the radius of the aerosol particle, a minimum value is observed in the forward direction. The scattering properties of aerosol particles by the HG beam are more sensitive to the change in relative humidity compared with those by the plane wave and the Gaussian beam (GB). The HG beam shows superiority over the plane wave and the GB in detecting changes in the relative humidity of marine atmosphere aerosol. The effects of relative humidity on the polarization of the HG beam have been numerically analyzed in detail.

  1. Studies of porous anodic alumina using spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Stonaha, Paul

    The properties of a neutron make it a useful tool for use in scattering experiments. We have developed a method, dubbed SESAME, in which specially designed magnetic fields encode the scattering signal of a neutron beam into the beam's average Larmor phase. A geometry is presented that delivers the correct Larmor phase (to first order), and it is shown that reasonable variations of the geometry do not significantly affect the net Larmor phase. The solenoids are designed using an analytic approximation. Comparison of this approximate function with finite element calculations and Hall probe measurements confirm its validity, allowing for fast computation of the magnetic fields. The coils were built and tested in-house on the NBL-4 instrument, a polarized neutron reflectometer whose construction is another major portion of this work. Neutron scattering experiments using the solenoids are presented, and the scattering signal from porous anodic alumina is investigated in detail. A model using the Born Approximation is developed and compared against the scattering measurements. Using the model, we define the necessary degree of alignment of such samples in a SESAME measurement, and we show how the signal retrieved using SESAME is sensitive to range of detectable momentum transfer.

  2. [Simultaneous determination of five synthetic sweeteners in food by solid phase extraction-high performance liquid chromatography-evaporative light scattering detection].

    PubMed

    Liu, Fang; Wang, Yan; Wang, Yuhong; Zhou, Junyi; Yan, Chao

    2012-03-01

    A high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous determination of five synthetic sweeteners (acesulfame-K, saccharin sodium, sodium cyclamate, sucralose and aspartame) in food. The sweeteners were extracted by 0.1% (v/v) formic acid buffer solution. The extract of sample was cleaned up and concentrated with solid phase extraction (SPE) cartridge. Then the sweeteners were separated on a C18 column (3 microm) using 0.1% (v/v) formic acid buffer (adjusted to pH = 3.5 with aqueous ammonia solution)-methanol (61: 39, v/v) as mobile phase, and finally detected by ELSD. The results showed that the reasonable linearity was achieved for all the analytes over the range of 30 - 1000 mg/L with the correlation coefficients (r) greater than 0.997. The recoveries for the five sweeteners ranged from 85.6% to 109.0% at three spiked concentrations with the relative standard deviations (RSDs) lower than 4.0%. The limits of detection (LODs, S/N = 3) were 2.5 mg/L for both acesulfame-K and sucralose, 3 mg/L for saccharin sodium, 10 mg/L for sodium cyclamate, and 5 mg/L for aspartame. The method is simple, sensitive and low cost, and has been successfully applied to the simultaneous determination of the five synthetic sweeteners in food.

  3. Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles.

    PubMed

    Urey, Carlos; Weiss, Victor U; Gondikas, Andreas; von der Kammer, Frank; Hofmann, Thilo; Marchetti-Deschmann, Martina; Allmaier, Günter; Marko-Varga, György; Andersson, Roland

    2016-11-20

    For drug delivery, characterization of liposomes regarding size, particle number concentrations, occurrence of low-sized liposome artefacts and drug encapsulation are of importance to understand their pharmacodynamic properties. In our study, we aimed to demonstrate the applicability of nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyser (nES GEMMA) as a suitable technique for analyzing these parameters. We measured number-based particle concentrations, identified differences in size between nominally identical liposomal samples, and detected the presence of low-diameter material which yielded bimodal particle size distributions. Subsequently, we compared these findings to dynamic light scattering (DLS) data and results from light scattering experiments coupled to Asymmetric Flow-Field Flow Fractionation (AF4), the latter improving the detectability of smaller particles in polydisperse samples due to a size separation step prior detection. However, the bimodal size distribution could not be detected due to method inherent limitations. In contrast, cryo transmission electron microscopy corroborated nES GEMMA results. Hence, gas-phase electrophoresis proved to be a versatile tool for liposome characterization as it could analyze both vesicle size and size distribution. Finally, a correlation of nES GEMMA results with cell viability experiments was carried out to demonstrate the importance of liposome batch-to-batch control as low-sized sample components possibly impact cell viability. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D.; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2016-10-01

    A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer.

  5. Electron-Beam-Lithographed Nanostructures as Reference Materials for Label-Free Scattered-Light Biosensing of Single Filoviruses.

    PubMed

    Agrawal, Anant; Majdi, Joseph; Clouse, Kathleen A; Stantchev, Tzanko

    2018-05-23

    Optical biosensors based on scattered-light measurements are being developed for rapid and label-free detection of single virions captured from body fluids. Highly controlled, stable, and non-biohazardous reference materials producing virus-like signals are valuable tools to calibrate, evaluate, and refine the performance of these new optical biosensing methods. To date, spherical polymer nanoparticles have been the only non-biological reference materials employed with scattered-light biosensing techniques. However, pathogens like filoviruses, including the Ebola virus, are far from spherical and their shape strongly affects scattered-light signals. Using electron beam lithography, we fabricated nanostructures resembling individual filamentous virions attached to a biosensing substrate (silicon wafer overlaid with silicon oxide film) and characterized their dimensions with scanning electron and atomic force microscopes. To assess the relevance of these nanostructures, we compared their signals across the visible spectrum to signals recorded from Ebola virus-like particles which exhibit characteristic filamentous morphology. We demonstrate the highly stable nature of our nanostructures and use them to obtain new insights into the relationship between virion dimensions and scattered-light signal.

  6. Spectral study of interaction between chondroitin sulfate and nanoparticles and its application in quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Wei, Maojie; Zhang, Xiao; Zhao, Ting; Liu, Xiumei; Zhou, Guanglian

    2016-01-01

    In this work, the interaction between chondroitin sulfate (CS) and gold nanoparticles (GNPs) and silver nanoparticles (SNPs) was characterized for the first time. Plasma resonance scattering (PRS) and plasma resonance absorption (PRA) were used to investigate the characteristics of their spectrum. The results suggested that the CS with negative charge could interact with metal nanoparticles with negative charge and the adsorption of CS on the surface of SNPs was more regular than that of GNPs. The resonance scattering spectra also further confirmed the interaction between CS and SNPs. A new method for detection of CS based on the interaction was developed. CS concentrations in the range of 0.02-3.5 μg/mL were proportional to the decreases of absorbance of SNPs. Compared with other reported methods, the proposed method is simple and workable without complex process, high consumption and expensive equipments. The developed method was applied to the determination of the CS contents from different biological origins and the results were compared with those obtained by the method of Chinese Pharmacopeia. The effects of matrix in plasma and other glycosaminoglycans on the determination of CS were also investigated. The results showed that a small quantity of blood plasma had no effect on the determination of CS and when the concentration ratio of CS to heparin was more than 10:1, the influence of heparin on the detection of CS could be ignored. This work gave a specific research direction for the detection of CS in the presence of metal nanoparticles.

  7. Modelling the backscatter from spherical cavities in a solid matrix: Can an effective medium layer model mimic the scattering response?

    NASA Astrophysics Data System (ADS)

    Pinfield, Valerie J.; Challis, Richard E.

    2011-01-01

    Industrial applications are increasingly turning to modern composite layered materials to satisfy strength requirements whilst reducing component weight. An important group of such materials are fibre/resin composites in which long fibres are laid down in layers in a resin matrix. Whilst delamination flaws, where layers separate from each other, are detectable using traditional ultrasonic techniques, the presence of porosity in any particular layer is harder to detect. The reflected signal from a layered material can already be modelled successfully by using the acoustic impedance of the layers and summing reflections from layer boundaries. However, it is not yet known how to incorporate porosity into such a model. The aim of the work reported here was to model the backscatter from randomly distributed spherical cavities within one layer, and to establish whether an effective medium, with a derived acoustic impedance, could reproduce the characteristics of that scattering. Since effective medium models are much more readily implemented in simulations of multi-layer structures than scattering per se, it was felt desirable to simplify the scattering response into an effective medium representation. A model was constructed in which spherical cavities were placed randomly in a solid continuous matrix and the system backscattering response was calculated. The scattering from the cavities was determined by using the Rayleigh partial-wave method, and taking the received signal at the transducer to be equivalent to the far field limit. It was concluded that even at relatively low porosity levels, the received signal was still "layer-like" and an effective medium model was a good approximation for the scattering behaviour.

  8. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br

    2013-03-10

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{alpha} emission line. The collimation and scattering of this broad H{alpha} component was also revealed by fitting the [N II] {lambda}{lambda}6548, 6583 and H{alpha} emission linesmore » as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18 Degree-Sign {+-} 13 Degree-Sign and P.A. = 162 Degree-Sign {+-} 13 Degree-Sign ) along a direction perpendicular to the torus/disk (P.A. = 72 Degree-Sign {+-} 14 Degree-Sign ) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the H{alpha} emission line is visible and also why many previous studies detected no broad H{alpha}. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.« less

  9. Using white-light spectroscopy for size determination of tissue phantoms

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram

    2005-09-01

    Along with breast and cervical cancer, esophageal adenocarcinoma is one of the most common types of cancers. The characteristic features of pre-cancerous tissues are the increase in cell proliferation rate and cell nuclei enlargement, which both take place in the epithelium of human body surfaces. However, in the early stages of cancer these changes are very small and difficult to detect, even for expert pathologists. The aim of our research is to develop an optical probe for in vivo detection of nuclear size changes using white light scattering from cell nuclei. The probe will be employed through an endoscope and will be used for the medical examination of the esophagus. The proposed method of examination will be noninvasive, cheap, and specific, compared to a biopsy. Before the construction of this probe, we have developed theory to determine the nuclei size from the reflection data. In this first stage of our research, we compare experimental and theoretical scattered light intensities. Our theoretical model includes the values of scatterer size from which we can extract the nuclei size value. We first performed the study of polystyrene microspheres, acting as a tissue phantom. Spectral and angular distributions of scattered white light from tissue phantoms were studied. Experimental results show significant differences between the spectra of microspheres of different sizes and demonstrate almost linear relation between the number of spectral oscillations and the size of microspheres. Best results were achieved when the scattered light spectrum was collected at 30° to the normal of the sample surface. We present these research results in this paper. In ongoing work, normal and cancerous mammalian cell studies are being performed in order to determine cell nuclei size correlation with the size of microspheres through the light scattering spectrum observation.

  10. Optical diagnostics based on elastic scattering: Recent clinical demonstrations with the Los Alamos Optical Biopsy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigio, I.J.; Loree, T.R.; Mourant, J.

    1993-08-01

    A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact thatmore » many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength dependence of elastic scattering. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g. as in skin cancer or cervical cancer). It has been tested in vitro on animal and human tissue samples, and clinical testing in vivo is currently in progress.« less

  11. Excess wing in glass-forming glycerol and LiCl-glycerol mixtures detected by neutron scattering

    DOE PAGES

    Gupta, S.; Arend, N.; Lunkenheimer, P.; ...

    2015-01-22

    The relaxational dynamics in glass-forming glycerol and glycerol mixed with LiCl is investigated using different neutron scattering techniques. The performed neutron spin echo experiments, which extend up to relatively long relaxation time scales of the order of 10 ns, should allow for the detection of contributions from the so-called excess wing. This phenomenon, whose microscopic origin is controversially discussed, arises in a variety of glass formers and, until now, was almost exclusively investigated by dielectric spectroscopy and light scattering. In conclusion, we show here that the relaxational process causing the excess wing can also be detected by neutron scattering, whichmore » directly couples to density fluctuations.« less

  12. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles

    USDA-ARS?s Scientific Manuscript database

    A highly sensitive immunoassay based on surface-enhanced Raman scattering (SERS) spectroscopy has been developed for multiplex detection of surface envelope and capsid antigens of the viral zoonotic pathogens West Nile virus (WNV) and Rift Valley fever virus (RVFV). Detection was mediated by antibo...

  13. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    PubMed

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Quantitative evaluation of stone fragments in extracorporeal shock wave lithotripsy using a time reversal operator

    NASA Astrophysics Data System (ADS)

    Wang, Jen-Chieh; Zhou, Yufeng

    2017-03-01

    Extracorporeal shock wave lithotripsy (ESWL) has been used widely in the noninvasive treatment of kidney calculi. The fine fragments less than 2 mm in size can be discharged by urination, which determines the success of ESWL. Although ultrasonic and fluorescent imaging are used to localize the calculi, it's challenging to monitor the stone comminution progress, especially at the late stage of ESWL when fragments spread out as a cloud. The lack of real-time and quantitative evaluation makes this procedure semi-blind, resulting in either under- or over-treatment after the legal number of pulses required by FDA. The time reversal operator (TRO) method has the ability to detect point-like scatterers, and the number of non-zero eigenvalues of TRO is equal to that of the scatterers. In this study, the validation of TRO method to identify stones was illustrated from both numerical and experimental results for one to two stones with various sizes and locations. Furthermore, the parameters affecting the performance of TRO method has also been investigated. Overall, TRO method is effective in identifying the fragments in a stone cluster in real-time. Further development of a detection system and evaluation of its performance both in vitro and in vivo during ESWL is necessary for application.

  15. Two particle tracking and detection in a single Gaussian beam optical trap.

    PubMed

    Praveen, P; Yogesha; Iyengar, Shruthi S; Bhattacharya, Sarbari; Ananthamurthy, Sharath

    2016-01-20

    We have studied in detail the situation wherein two microbeads are trapped axially in a single-beam Gaussian intensity profile optical trap. We find that the corner frequency extracted from a power spectral density analysis of intensity fluctuations recorded on a quadrant photodetector (QPD) is dependent on the detection scheme. Using forward- and backscattering detection schemes with single and two laser wavelengths along with computer simulations, we conclude that fluctuations detected in backscattering bear true position information of the bead encountered first in the beam propagation direction. Forward scattering, on the other hand, carries position information of both beads with substantial contribution from the bead encountered first along the beam propagation direction. Mie scattering analysis further reveals that the interference term from the scattering of the two beads contributes significantly to the signal, precluding the ability to resolve the positions of the individual beads in forward scattering. In QPD-based detection schemes, detection through backscattering, thereby, is imperative to track the true displacements of axially trapped microbeads for possible studies on light-mediated interbead interactions.

  16. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles

    PubMed Central

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care. PMID:23689505

  17. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles.

    PubMed

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care.

  18. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens.

    PubMed

    Lau, Han Yih; Wang, Yuling; Wee, Eugene J H; Botella, Jose R; Trau, Matt

    2016-08-16

    Effective disease management strategies to prevent catastrophic crop losses require rapid, sensitive, and multiplexed detection methods for timely decision making. To address this need, a rapid, highly specific and sensitive point-of-care method for multiplex detection of plant pathogens was developed by taking advantage of surface-enhanced Raman scattering (SERS) labeled nanotags and recombinase polymerase amplification (RPA), which is a rapid isothermal amplification method with high specificity. In this study, three agriculturally important plant pathogens (Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum) were used to demonstrate potential translation into the field. The RPA-SERS method was faster, more sensitive than polymerase chain reaction, and could detect as little as 2 copies of B. cinerea DNA. Furthermore, multiplex detection of the three pathogens was demonstrated for complex systems such as the Arabidopsis thaliana plant and commercial tomato crops. To demonstrate the potential for on-site field applications, a rapid single-tube RPA/SERS assay was further developed and successfully performed for a specific target outside of a laboratory setting.

  19. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria

    PubMed Central

    Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Background Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. Methods We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe3O4@Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe3O4@Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe3O4@Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. Results The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0–11.0), a short assay time (<30 min), and a low detection limit (5×102 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus, and methicillin-resistant S. aureus. Conclusion This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis. PMID:29520142

  20. SU-F-J-200: An Improved Method for Event Selection in Compton Camera Imaging for Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackin, D; Beddar, S; Polf, J

    2016-06-15

    Purpose: The uncertainty in the beam range in particle therapy limits the conformality of the dose distributions. Compton scatter cameras (CC), which measure the prompt gamma rays produced by nuclear interactions in the patient tissue, can reduce this uncertainty by producing 3D images confirming the particle beam range and dose delivery. However, the high intensity and short time windows of the particle beams limit the number of gammas detected. We attempt to address this problem by developing a method for filtering gamma ray scattering events from the background by applying the known gamma ray spectrum. Methods: We used a 4more » stage Compton camera to record in list mode the energy deposition and scatter positions of gammas from a Co-60 source. Each CC stage contained a 4×4 array of CdZnTe crystal. To produce images, we used a back-projection algorithm and four filtering Methods: basic, energy windowing, delta energy (ΔE), or delta scattering angle (Δθ). Basic filtering requires events to be physically consistent. Energy windowing requires event energy to fall within a defined range. ΔE filtering selects events with the minimum difference between the measured and a known gamma energy (1.17 and 1.33 MeV for Co-60). Δθ filtering selects events with the minimum difference between the measured scattering angle and the angle corresponding to a known gamma energy. Results: Energy window filtering reduced the FWHM from 197.8 mm for basic filtering to 78.3 mm. ΔE and Δθ filtering achieved the best results, FWHMs of 64.3 and 55.6 mm, respectively. In general, Δθ filtering selected events with scattering angles < 40°, while ΔE filtering selected events with angles > 60°. Conclusion: Filtering CC events improved the quality and resolution of the corresponding images. ΔE and Δθ filtering produced similar results but each favored different events.« less

  1. [Experimental research of turbidity influence on water quality monitoring of COD in UV-visible spectroscopy].

    PubMed

    Tang, Bin; Wei, Biao; Wu, De-Cao; Mi, De-Ling; Zhao, Jing-Xiao; Feng, Peng; Jiang, Shang-Hai; Mao, Ben-Jiang

    2014-11-01

    Eliminating turbidity is a direct effect spectroscopy detection of COD key technical problems. This stems from the UV-visible spectroscopy detected key quality parameters depend on an accurate and effective analysis of water quality parameters analytical model, and turbidity is an important parameter that affects the modeling. In this paper, we selected formazine turbidity solution and standard solution of potassium hydrogen phthalate to study the turbidity affect of UV--visible absorption spectroscopy detection of COD, at the characteristics wavelength of 245, 300, 360 and 560 nm wavelength point several characteristics with the turbidity change in absorbance method of least squares curve fitting, thus analyzes the variation of absorbance with turbidity. The results show, In the ultraviolet range of 240 to 380 nm, as the turbidity caused by particle produces compounds to the organics, it is relatively complicated to test the turbidity affections on the water Ultraviolet spectra; in the visible region of 380 to 780 nm, the turbidity of the spectrum weakens with wavelength increases. Based on this, this paper we study the multiplicative scatter correction method affected by the turbidity of the water sample spectra calibration test, this method can correct water samples spectral affected by turbidity. After treatment, by comparing the spectra before, the results showed that the turbidity caused by wavelength baseline shift points have been effectively corrected, and features in the ultraviolet region has not diminished. Then we make multiplicative scatter correction for the three selected UV liquid-visible absorption spectroscopy, experimental results shows that on the premise of saving the characteristic of the Ultraviolet-Visible absorption spectrum of water samples, which not only improve the quality of COD spectroscopy detection SNR, but also for providing an efficient data conditioning regimen for establishing an accurate of the chemical measurement methods.

  2. Scatter in Cargo Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erin A. Miller; Joseph A. Caggiano; Robert C. Runkle

    As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beamin the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast. Here, we estimate the extent to which scattermore » plays a role in radiographic imaging of cargo containers. Stochastic transport simulations were performed to determine the details of the radiography equipment and surrounding environment, which are important in reproducing measured data and to investigate scatter magnitudes for typical cargo. We find that scatter plays a stronger role in cargo radiography than in typicalmedical imaging scenarios, even for low-density cargo, with scatter-toprimary ratios ranging from 0.14 for very low density cargo, to between 0.20 and 0.40 for typical cargo, and higher yet for dense cargo.« less

  3. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy

    PubMed Central

    Redler, Gage; Jones, Kevin C.; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C. H.

    2018-01-01

    Purpose Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. Methods To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Results Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Conclusions Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. PMID:29360151

  4. Estimation of biomedical optical properties by simultaneous use of diffuse reflectometry and photothermal radiometry: investigation of light propagation models

    NASA Astrophysics Data System (ADS)

    Fonseca, E. S. R.; de Jesus, M. E. P.

    2007-07-01

    The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.

  5. Evaluation of ultrasonic array imaging algorithms for inspection of a coarse grained material

    NASA Astrophysics Data System (ADS)

    Van Pamel, A.; Lowe, M. J. S.; Brett, C. R.

    2014-02-01

    Improving the ultrasound inspection capability for coarse grain metals remains of longstanding interest to industry and the NDE research community and is expected to become increasingly important for next generation power plants. A test sample of coarse grained Inconel 625 which is representative of future power plant components has been manufactured to test the detectability of different inspection techniques. Conventional ultrasonic A, B, and C-scans showed the sample to be extraordinarily difficult to inspect due to its scattering behaviour. However, in recent years, array probes and Full Matrix Capture (FMC) imaging algorithms, which extract the maximum amount of information possible, have unlocked exciting possibilities for improvements. This article proposes a robust methodology to evaluate the detection performance of imaging algorithms, applying this to three FMC imaging algorithms; Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and Decomposition of the Time Reversal Operator with Multiple Scattering (DORT MSF). The methodology considers the statistics of detection, presenting the detection performance as Probability of Detection (POD) and probability of False Alarm (PFA). The data is captured in pulse-echo mode using 64 element array probes at centre frequencies of 1MHz and 5MHz. All three algorithms are shown to perform very similarly when comparing their flaw detection capabilities on this particular case.

  6. The use of silver nanorod array based surface enhanced Raman scattering sensor for food safety applications

    USDA-ARS?s Scientific Manuscript database

    For the advancement of preventive strategies, it is critical to develop rapid and sensitive detection methods with nanotechnology for food safety applications. This article reports the recent development on the use of aligned silver nanorod (AgNR) arrays prepared by oblique angle deposition, as surf...

  7. Detective quantum efficiency of photon-counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanguay, Jesse, E-mail: jessetan@mail.ubc.ca; Yun, Seungman; Kim, Ho Kyung

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfermore » through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.« less

  8. High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation.

    PubMed

    Wilson, Robert H; Crouzet, Christian; Torabzadeh, Mohammad; Bazrafkan, Afsheen; Farahabadi, Maryam H; Jamasian, Babak; Donga, Dishant; Alcocer, Juan; Zaher, Shuhab M; Choi, Bernard; Akbari, Yama; Tromberg, Bruce J

    2017-10-01

    Quantifying rapidly varying perturbations in cerebral tissue absorption and scattering can potentially help to characterize changes in brain function caused by ischemic trauma. We have developed a platform for rapid intrinsic signal brain optical imaging using macroscopically structured light. The device performs fast, multispectral, spatial frequency domain imaging (SFDI), detecting backscattered light from three-phase binary square-wave projected patterns, which have a much higher refresh rate than sinusoidal patterns used in conventional SFDI. Although not as fast as "single-snapshot" spatial frequency methods that do not require three-phase projection, square-wave patterns allow accurate image demodulation in applications such as small animal imaging where the limited field of view does not allow single-phase demodulation. By using 655, 730, and 850 nm light-emitting diodes, two spatial frequencies ([Formula: see text] and [Formula: see text]), three spatial phases (120 deg, 240 deg, and 360 deg), and an overall camera acquisition rate of 167 Hz, we map changes in tissue absorption and reduced scattering parameters ([Formula: see text] and [Formula: see text]) and oxy- and deoxyhemoglobin concentration at [Formula: see text]. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) to quantify hemodynamics and scattering on temporal scales ([Formula: see text]) ranging from tens of milliseconds to minutes. We observe rapid concurrent spatiotemporal changes in tissue oxygenation and scattering during CA and following CPR, even when the cerebral electrical signal is absent. We conclude that square-wave SFDI provides an effective technical strategy for assessing cortical optical and physiological properties by balancing competing performance demands for fast signal acquisition, small fields of view, and quantitative information content.

  9. Development of a portable frequency-domain angle-resolved low coherence interferometry system

    NASA Astrophysics Data System (ADS)

    Pyhtila, John W.; Wax, Adam

    2007-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth, are a current clinical need. Random biopsy and subsequent diagnosis through histological analysis is the current gold standard in endoscopic surveillance for dysplasia. However, this approach only allows limited examination of the at-risk tissue and has the drawback of a long delay in time-to-diagnosis. In contrast, optical scattering spectroscopy methods offer the potential to assess cellular structure and organization in vivo, thus allowing for instantaneous diagnosis and increased coverage of the at-risk tissue. Angle-resolved low coherence interferometry (a/LCI), a novel scattering spectroscopy technique, combines the ability of low-coherence interferometry to isolate scattered light from sub-surface tissue layers with the ability of light scattering spectroscopy to obtain structural information on sub-wavelength scales, specifically by analyzing the angular distribution of the backscattered light. In application to examining tissue, a/LCI enables depthresolved quantitative measurements of changes in the size and texture of cell nuclei, which are characteristic biomarkers of dysplasia. The capabilities of a/LCI were demonstrated initially by detecting pre-cancerous changes in epithelial cells within intact, unprocessed, animal tissues. Recently, we have developed a new frequency-domain a/LCI system, with sub-second acquisition time and a novel fiber optic probe. Preliminary results using the fa/LCI system to examine human esophageal tissue in Barrett's esophagus patients demonstrate the clinical viability of the approach. In this paper, we present a new portable system which improves upon the design of the fa/LCI system to allow for higher quality data to be collected in the clinic. Accurate sizing of polystyrene microspheres and cell nuclei from ex vivo human esophageal tissue is presented. These results demonstrate the promise of a/LCI as a clinically viable diagnostic tool.

  10. Near-infrared surface-enhanced-Raman-scattering (SERS) mediated identification of single optically trapped, bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Gillespie, James B.; Pellegrino, Paul M.; Fell, Nicholas F., Jr.; Wood, Gary L.; Salamo, Gregory J.

    2003-03-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of several Bacillus species. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful biological agents. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman-Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of several bacterial spores in aqueous media have been measured using SERS substrates based on 60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 785-nm laser diode was used to capture/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the species identification of bacterial spores.

  11. Synthesis of silver/silver chloride/graphene oxide composite and its surface-enhanced Raman scattering activity and self-cleaning property

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Fei, Xiao; Cheng, Xiaonong; Yang, Juan

    2017-09-01

    Recently, silver nanoparticles decorated with graphene and graphene oxide (GO) sheets can be employed as surface-enhanced Raman scattering (SERS) substrates. However, their SERS activity on macromolecular compound detection is all one-time process. In order to solve this issue and decrease the cost of routine SERS detection, silver/silver chloride (Ag/AgCl) with photocatalytic activity under visible light was introduced. In this study, a novel, simple and clean approach is carried out for synthesis of the Ag/AgCl/GO composite. The Ag/AgCl colloidal solution is obtained by hydrothermal method and then mixed with GO solution to obtain the Ag/AgCl/GO composite using a facile electrostatic self-assembly method. Results showed that the Ag/AgCl/GO composite has the optimized SERS activity to Rhodamine 6G molecules with the maximum enhancement factor value of 3.8×107. Furthermore, the Ag/AgCl particles with high efficient and stable photocatalytic activity under visible light lead to an outstanding self-cleaning property of the Ag/AgCl/GO composite.

  12. Fourier-domain angle-resolved low coherence interferometry for clinical detection of dysplasia

    NASA Astrophysics Data System (ADS)

    Terry, Neil G.; Zhu, Yizheng; Wax, Adam

    2010-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth are a current clinical need, particularly in the esophagus. The currently accepted method of random biopsy and histological analysis provides only a limited examination of tissue in question while being coupled with a long time delay for diagnosis. Light scattering spectroscopy, in contrast, allows for inspection of the cellular structure and organization of tissue in vivo. Fourier-domain angle-resolved low-coherence interferometry (a/LCI) is a novel light scattering spectroscopy technique that provides quantitative depth-resolved morphological measurements of the size and optical density of the examined cell nuclei, which are characteristic biomarkers of dysplasia. Previously, clinical viability of the a/LCI system was demonstrated through analysis of ex vivo human esophageal tissue in Barrett's esophagus patients using a portable a/LCI, as was the development of a clinical a/LCI system. Data indicating the feasibility of the technique in other organ sites (colon, oral cavity) will be presented. We present an adaptation of the a/LCI system that will be used to investigate the presence of dysplasia in vivo in Barrett's esophagus patients.

  13. In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe.

    PubMed

    Zhang, Jing; Liang, Lijia; Guan, Xin; Deng, Rong; Qu, Huixin; Huang, Dianshuai; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-01

    A surface-enhanced Raman scattering (SERS) method for in situ detection and analysis of the intranuclear biomolecular information of a cell has been developed based on a small, biocompatible, nuclear-targeting alkyne-tagged deoxyribonucleic acid (DNA) probe (5-ethynyl-2'-deoxyuridine, EDU) that can specially accumulate in the cell nucleus during DNA replications to precisely locate the nuclear region without disturbance in cell biological activities and functions. Since the specific alkyne group shows a Raman peak in the Raman-silent region of cells, it is an interior label to visualize the nuclear location synchronously in real time when measuring the SERS spectra of a cell. Because no fluorescent-labeled dyes were used for locating cell nuclei, this method is simple, nondestructive, non- photobleaching, and valuable for the in situ exploration of vital physiological processes with DNA participation in cell organelles. Graphical abstract A universal strategy was developed to accurately locate the nuclear region and obtain precise molecular information of cell nuclei by SERS.

  14. A sensitive resveratrol assay with a simple probe methylene blue by resonance light scattering technique

    NASA Astrophysics Data System (ADS)

    Xiang, Haiyan; Dai, Kaijin; Luo, Qizhi; Duan, Wenjun; Xie, Yang

    2011-01-01

    A novel resonance light scattering (RLS) method was developed for the determination of resveratrol based on the interaction between resveratrol and methylene blue (MB). It was found that at pH 8.69, the weak RLS intensity of MB was remarkably enhanced by the addition of trace amount of resveratrol with the maximum peak located at 385.0 nm. Under the optimum conditions, a good linear relationship between the enhanced RLS intensities and the concentrations of resveratrol was obtained over the range of 2.0-14.0 μg ml -1 with the detection limit (3 σ) of 0.63 μg ml -1. The results of the analysis of resveratrol in synthetic samples and human urine are satisfactory, which showed it may provide a more sensitive, convenient, rapid and reproducible method for the detection of resveratrol, especially in biological and pharmaceutical field. In this work, the characteristics of RLS, absorption and fluorescence spectra of the resveratrol-MB system, the influencing factors and the optimum conditions of the reaction were investigated.

  15. Nano/Micro and Spectroscopic Approaches to Food Pathogen Detection

    NASA Astrophysics Data System (ADS)

    Cho, Il-Hoon; Radadia, Adarsh D.; Farrokhzad, Khashayar; Ximenes, Eduardo; Bae, Euiwon; Singh, Atul K.; Oliver, Haley; Ladisch, Michael; Bhunia, Arun; Applegate, Bruce; Mauer, Lisa; Bashir, Rashid; Irudayaraj, Joseph

    2014-06-01

    Despite continuing research efforts, timely and simple pathogen detection with a high degree of sensitivity and specificity remains an elusive goal. Given the recent explosion of sensor technologies, significant strides have been made in addressing the various nuances of this important global challenge that affects not only the food industry but also human health. In this review, we provide a summary of the various ongoing efforts in pathogen detection and sample preparation in areas related to Fourier transform infrared and Raman spectroscopy, light scattering, phage display, micro/nanodevices, and nanoparticle biosensors. We also discuss the advantages and potential limitations of the detection methods and suggest next steps for further consideration.

  16. A single step reversed-phase high performance liquid chromatography separation of polar and non-polar lipids.

    PubMed

    Olsson, Petter; Holmbäck, Jan; Herslöf, Bengt

    2014-11-21

    This paper reports a simple chromatographic system to separate lipids classes as well as their molecular species. By the use of phenyl coated silica as stationary phase in combination with a simple mobile phase consisting of methanol and water, all tested lipid classes elute within 30 min. Furthermore, a method to accurately predict retention times of specific lipid components for this type of chromatography is presented. Common detection systems were used, namely evaporative light scattering detection (ELSD), charged aerosol detection (CAD), electrospray mass spectrometry (ESI-MS), and UV detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    PubMed

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an inexpensive yet non-ideal Raman substrate. The assay sensitivity, which is in the low pM range, suggests that these SERS probe particles could be used for Raman labeling of cell or tissue samples in a polystyrene tissue culture plate. With continued development, this approach could be used for direct labeling of multiple cell surface biomarkers on strongly interfering substrate platforms.

  18. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept.

    PubMed

    Lee, Ho; Fahimian, Benjamin P; Xing, Lei

    2017-03-21

    This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method's performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.

  19. Co-elution effects can influence molar mass determination of large macromolecules with asymmetric flow field-flow fractionation coupled to multiangle light scattering.

    PubMed

    Perez-Rea, Daysi; Zielke, Claudia; Nilsson, Lars

    2017-07-14

    Starch and hence, amylopectin is an important biomacromolecule in both the human diet as well as in technical applications. Therefore, accurate and reliable analytical methods for its characterization are needed. A suitable method for analyzing macromolecules with ultra-high molar mass, branched structure and high polydispersity is asymmetric flow field-flow fractionation (AF4) in combination with multiangle light scattering (MALS) detection. In this paper we illustrate how co-elution of low quantities of very large analytes in AF4 may cause disturbances in the MALS data which, in turn, causes an overestimation of the size. Furthermore, it is shown how pre-injection filtering of the sample can improve the results. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High-performance computer aided detection system for polyp detection in CT colonography with fluid and fecal tagging

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Wang, Shijun; Kabadi, Suraj; Summers, Ronald M.

    2009-02-01

    CT colonography (CTC) is a feasible and minimally invasive method for the detection of colorectal polyps and cancer screening. Computer-aided detection (CAD) of polyps has improved consistency and sensitivity of virtual colonoscopy interpretation and reduced interpretation burden. A CAD system typically consists of four stages: (1) image preprocessing including colon segmentation; (2) initial detection generation; (3) feature selection; and (4) detection classification. In our experience, three existing problems limit the performance of our current CAD system. First, highdensity orally administered contrast agents in fecal-tagging CTC have scatter effects on neighboring tissues. The scattering manifests itself as an artificial elevation in the observed CT attenuation values of the neighboring tissues. This pseudo-enhancement phenomenon presents a problem for the application of computer-aided polyp detection, especially when polyps are submerged in the contrast agents. Second, general kernel approach for surface curvature computation in the second stage of our CAD system could yield erroneous results for thin structures such as small (6-9 mm) polyps and for touching structures such as polyps that lie on haustral folds. Those erroneous curvatures will reduce the sensitivity of polyp detection. The third problem is that more than 150 features are selected from each polyp candidate in the third stage of our CAD system. These high dimensional features make it difficult to learn a good decision boundary for detection classification and reduce the accuracy of predictions. Therefore, an improved CAD system for polyp detection in CTC data is proposed by introducing three new techniques. First, a scale-based scatter correction algorithm is applied to reduce pseudo-enhancement effects in the image pre-processing stage. Second, a cubic spline interpolation method is utilized to accurately estimate curvatures for initial detection generation. Third, a new dimensionality reduction classifier, diffusion map and local linear embedding (DMLLE), is developed for classification and false positives (FP) reduction. Performance of the improved CAD system is evaluated and compared with our existing CAD system (without applying those techniques) using CT scans of 1186 patients. These scans are divided into a training set and a test set. The sensitivity of the improved CAD system increased 18% on training data at a rate of 5 FPs per patient and 15% on test data at a rate of 5 FPs per patient. Our results indicated that the improved CAD system achieved significantly better performance on medium-sized colonic adenomas with higher sensitivity and lower FP rate in CTC.

  1. Apparatus and method for noninvasive particle detection using doppler spectroscopy

    DOEpatents

    Sinha, Dipen N.

    2016-05-31

    An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.

  2. Differential dynamic microscopy of bidisperse colloidal suspensions.

    PubMed

    Safari, Mohammad S; Poling-Skutvik, Ryan; Vekilov, Peter G; Conrad, Jacinta C

    2017-01-01

    Research tasks in microgravity include monitoring the dynamics of constituents of varying size and mobility in processes such as aggregation, phase separation, or self-assembly. We use differential dynamic microscopy, a method readily implemented with equipment available on the International Space Station, to simultaneously resolve the dynamics of particles of radius 50 nm and 1 μm in bidisperse aqueous suspensions. Whereas traditional dynamic light scattering fails to detect a signal from the larger particles at low concentrations, differential dynamic microscopy exhibits enhanced sensitivity in these conditions by accessing smaller wavevectors where scattering from the large particles is stronger. Interference patterns due to scattering from the large particles induce non-monotonic decay of the amplitude of the dynamic correlation function with the wavevector. We show that the position of the resulting minimum contains information on the vertical position of the particles. Together with the simple instrumental requirements, the enhanced sensitivity of differential dynamic microscopy makes it an appealing alternative to dynamic light scattering to characterize samples with complex dynamics.

  3. Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Liu, Shaoxiong; Guo, Yihong; Wu, Jian; He, Yonghong; Ma, Hui

    2014-10-01

    Polarization measurements are sensitive to the microstructure of tissues and can be used to detect pathological changes. Many tissues contain anisotropic fibrous structures. We obtain the local orientation of aligned fibrous scatterers using different groups of the backscattering Mueller matrix elements. Experiments on concentrically well-aligned silk fibers and unstained human papillary thyroid carcinoma tissues show that the m22, m33, m23, and m32 elements have better contrast but higher degeneracy for the extraction of orientation angles. The m12 and m13 elements show lower contrast, but allow us to determine the orientation angle for the fibrous scatterers along all directions. Moreover, Monte Carlo simulations based on the sphere-cylinder scattering model indicate that the oblique incidence of the illumination beam introduces some errors in the orientation angles obtained by both methods. Mapping the local orientation of anisotropic tissues may not only provide information on pathological changes, but can also give new leads to reduce the orientation dependence of polarization measurements.

  4. Fingerprints of quantum spin ice in Raman scattering

    NASA Astrophysics Data System (ADS)

    Perkins, Natalia

    Quantum spin liquids (QSLs) emerging in frustrated magnetic systems have been a fascinating and challenging subject in modern condensed matter physics for over four decades. In these systems the conventional ordering is suppressed and, instead, unusual behaviors strongly dependent on the topology of the system are observed. The difficulty in the experimental observation of QSLs comes from the fact that unlike the states with broken symmetry, the topological order characteristic of cannot be captured by a local order parameter and thus cannot be detected by local measurements. Identifying QSLs therefore requires reconsideration of experimental probes to find ones sensitive to features characteristic of topological order. The fractionalization of excitations associated with this order can offer signatures that can be probed by conventional methods such as inelastic neutron scattering, Raman or Resonant X-ray scattering experiments. In my talk I will discuss the possibility to use Raman scattering to probe the excitations of Quantum Spin Ice, a model which has long been believed to host a U(1) spin liquid ground state. NSF DMR-1511768.

  5. Evaluation of scattered light distributions of cw-transillumination for functional diagnostic of rheumatic disorders in interphalangeal joints

    NASA Astrophysics Data System (ADS)

    Prapavat, Viravuth; Schuetz, Rijk; Runge, Wolfram; Beuthan, Juergen; Mueller, Gerhard J.

    1995-12-01

    This paper presents in-vitro-studies using the scattered intensity distribution obtained by cw- transillumination to examine the condition of rheumatic disorders of interphalangeal joints. Inflammation of joints, due to rheumatic diseases, leads to changes in the synovial membrane, synovia composition and content, and anatomic geometrical variations. Measurements have shown that these rheumatic induced inflammation processes result in a variation in optical properties of joint systems. With a scanning system the interphalangeal joint is transilluminated with diode lasers (670 nm, 905 nm) perpendicular to the joint cavity. The detection of the entire distribution of the transmitted radiation intensity was performed with a CCD camera. As a function of the structure and optical properties of the transilluminated volume we achieved distributions of scattered radiation which show characteristic variations in intensity and shape. Using signal and image processing procedures we evaluated the measured scattered distributions regarding their information weight, shape and scale features. Mathematical methods were used to find classification criteria to determine variations of the joint condition.

  6. Apparatus and method for sensing motion in a microelectro-mechanical system

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.

    1999-01-01

    An apparatus and method are disclosed for optically sensing motion in a microelectromechanical system (also termed a MEMS device) formed by surface micromachining or LIGA. The apparatus operates by reflecting or scattering a light beam off a corrugated surface (e.g. gear teeth or a reference feature) of a moveable member (e.g. a gear, rack or linkage) within the MEMS device and detecting the reflected or scattered light. The apparatus can be used to characterize a MEMS device, measuring one or more performance characteristic such as spring and damping coefficients, torque and friction, or uniformity of motion of the moveable member. The apparatus can also be used to determine the direction and extent of motion of the moveable member; or to determine a particular mechanical state that a MEMS device is in. Finally, the apparatus and method can be used for providing feedback to the MEMS device to improve performance and reliability.

  7. Near-infrared surface-enhanced-Raman-scattering (SERS) mediated detection of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2003-08-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman-Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  8. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.

  9. Stepped-frequency GPR for utility line detection using polarization-dependent scattering

    NASA Astrophysics Data System (ADS)

    Jensen, Ole K.; Gregersen, Ole G.

    2000-04-01

    A GPR for detection of buried cables and pipes is developed by Ekko Dane Production in cooperation with Aalborg University. The appearance is a 'lawn mower' model including antennas, electronics and on-line data processing. A successful result is obtained by combining dedicated hardware and signal processing. The inherent signal to clutter ratio is bad, but making measurements at many polarization angles and subsequent signal processing improves the ratio. A simple model of the polarization dependence of the scattering from the target is used. The method is improved by combining the polarization filtering with averaging over small horizontal displacements. A stepped frequency measurement system is used. The method often implies long measurement times, but this problem is overcome by development of fast RF-electronics. Standard signal processors are used for real-time data processing. Several antenna array configurations are tested and optimized for low coupling between transmitter and receiver and for a short impulse response. A large number of tests have been made for different targets, e.g. metal cables and plastic pipes filled with air or water. Tests have been made under realistic ground conditions, including sand, wet clay, pavements and grass covered soil. The results show reliable detection even when the conditions are difficult.

  10. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane

    NASA Astrophysics Data System (ADS)

    Hong, Jangho; Kawashima, Ayato; Hamada, Noriaki

    2017-06-01

    In this study, we developed a facile fabrication method to access a highly reproducible plasmonic surface enhanced Raman scattering substrate via the immobilization of gold nanoparticles on an Ultrafiltration (UF) membrane using a suction technique. This was combined with a simple and rapid analyte concentration and detection method utilizing portable Raman spectroscopy. The minimum detectable concentrations for aqueous thiabendazole standard solution and thiabendazole in orange extract are 0.01 μg/mL and 0.125 μg/g, respectively. The partial least squares (PLS) regression plot shows a good linear relationship between 0.001 and 100 μg/mL of analyte, with a root mean square error of prediction (RMSEP) of 0.294 and a correlation coefficient (R2) of 0.976 for the thiabendazole standard solution. Meanwhile, the PLS plot also shows a good linear relationship between 0.0 and 2.5 μg/g of analyte, with an RMSEP value of 0.298 and an R2 value of 0.993 for the orange peel extract. In addition to the detection of other types of pesticides in agricultural products, this highly uniform plasmonic substrate has great potential for application in various environmentally-related areas.

  11. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review.

    PubMed

    Hakonen, Aron; Andersson, Per Ola; Stenbæk Schmidt, Michael; Rindzevicius, Tomas; Käll, Mikael

    2015-09-17

    Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent Boston Marathon bombing and nerve gas attacks on civilians in the Middle East. To prevent such tragic disasters, security personnel must be able to find, identify and deactivate the threats at multiple locations and levels. This involves major technical and practical challenges, such as detection of ultra-low quantities of hazardous compounds at remote locations for anti-terror purposes and monitoring of environmental sanitation of dumped or left behind toxic substances and explosives. Surface-enhanced Raman scattering (SERS) is one of todays most interesting and rapidly developing methods for label-free ultrasensitive vibrational "fingerprinting" of a variety of molecular compounds. Performance highlights include attomolar detection of TNT and DNT explosives, a sensitivity that few, if any, other technique can compete with. Moreover, instrumentation needed for SERS analysis are becoming progressively better, smaller and cheaper, and can today be acquired for a retail price close to 10,000 US$. This contribution aims to give a comprehensive overview of SERS as a technique for detection of explosives and chemical threats. We discuss the prospects of SERS becoming a major tool for convenient in-situ threat identification and we summarize existing SERS detection methods and substrates with particular focus on ultra-sensitive real-time detection. General concepts, detection capabilities and perspectives are discussed in order to guide potential users of the technique for homeland security and anti-warfare purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A methodology for evaluating detection performance of ultrasonic array imaging algorithms for coarse-grained materials.

    PubMed

    Van Pamel, Anton; Brett, Colin R; Lowe, Michael J S

    2014-12-01

    Improving the ultrasound inspection capability for coarse-grained metals remains of longstanding interest and is expected to become increasingly important for next-generation electricity power plants. Conventional ultrasonic A-, B-, and C-scans have been found to suffer from strong background noise caused by grain scattering, which can severely limit the detection of defects. However, in recent years, array probes and full matrix capture (FMC) imaging algorithms have unlocked exciting possibilities for improvements. To improve and compare these algorithms, we must rely on robust methodologies to quantify their performance. This article proposes such a methodology to evaluate the detection performance of imaging algorithms. For illustration, the methodology is applied to some example data using three FMC imaging algorithms; total focusing method (TFM), phase-coherent imaging (PCI), and decomposition of the time-reversal operator with multiple scattering filter (DORT MSF). However, it is important to note that this is solely to illustrate the methodology; this article does not attempt the broader investigation of different cases that would be needed to compare the performance of these algorithms in general. The methodology considers the statistics of detection, presenting the detection performance as probability of detection (POD) and probability of false alarm (PFA). A test sample of coarse-grained nickel super alloy, manufactured to represent materials used for future power plant components and containing some simple artificial defects, is used to illustrate the method on the candidate algorithms. The data are captured in pulse-echo mode using 64-element array probes at center frequencies of 1 and 5 MHz. In this particular case, it turns out that all three algorithms are shown to perform very similarly when comparing their flaw detection capabilities.

  13. The difficulty of measuring the absorption of scattered sunlight by H2O and CO2 in volcanic plumes: A comment on Pering et al. “A novel and inexpensive method for measuring volcanic plume water fluxes at high temporal resolution,” Remote Sens. 2017, 9, 146

    USGS Publications Warehouse

    Kern, Christoph

    2017-01-01

    In their recent study, Pering et al. (2017) presented a novel method for measuring volcanic water vapor fluxes. Their method is based on imaging volcanic gas and aerosol plumes using a camera sensitive to the near-infrared (NIR) absorption of water vapor. The imaging data are empirically calibrated by comparison with in situ water measurements made within the plumes. Though the presented method may give reasonable results over short time scales, the authors fail to recognize the sensitivity of the technique to light scattering on aerosols within the plume. In fact, the signals measured by Pering et al. are not related to the absorption of NIR radiation by water vapor within the plume. Instead, the measured signals are most likely caused by a change in the effective light path of the detected radiation through the atmospheric background water vapor column. Therefore, their method is actually based on establishing an empirical relationship between in-plume scattering efficiency and plume water content. Since this relationship is sensitive to plume aerosol abundance and numerous environmental factors, the method will only yield accurate results if it is calibrated very frequently using other measurement techniques.

  14. Prediction of guided wave scattering by defects in rails using numerical modelling

    NASA Astrophysics Data System (ADS)

    Long, Craig S.; Loveday, Philip W.

    2014-02-01

    A guided wave based monitoring system for welded freight rail, has previously been developed. The current arrangement consists of alternating transmit and receive stations positioned roughly 1 km apart, and is designed to reliably detect complete breaks in a rail. Current research efforts are focused on extending this system to include a pulse-echo mode of operation in order to detect, locate, monitor and possibly characterize damage, before a complete break occurs. For monitoring and inspection applications, it is beneficial to be able to distinguish between scattering defects which do not represent damage (such as welds) and cracks which could result in rail breaks. In this paper we investigate the complex interaction between selected propagating modes and various weld and crack geometries in an attempt to relate scattering behaviour to defect geometry. An efficient hybrid method is employed which models the volume containing the defect with conventional solid finite elements, while the semi-infinite incoming and outgoing waveguides are accounted for using the SAFE method. Four candidate modes, suitable for long range propagation, are identified and evaluated. A weighted average reflection coefficient is used as a measure to quantify mode conversion between these four modes, and results are represented graphically in the form of reflection maps. The results show that it should be possible to distinguish between a large crack in the crown of the rail and a weld. We also show that there may be difficulties associated with reliably identifying cracks in the web as well as cracks in the crown which occur at a thermite weld. We suspect that it will be difficult to detect damage in the foot of the rail.

  15. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.

    PubMed

    Yi, Zi; Li, Xiao-Yan; Liu, Feng-Juan; Jin, Pei-Yan; Chu, Xia; Yu, Ru-Qin

    2013-05-15

    Surface-enhanced Raman scattering (SERS) has emerged as a promising spectroscopic technique for biosensing. However, to design a SERS-based biosensor, almost all currently used methods involve the time-consuming and complicated modification of the metallic nanoparticles with the Raman active dye and biorecognition element, which restricts their widespread applications. Herein, we report a label-free, homogeneous and easy-to-operate biosensing platform for the rapid, simple and sensitive SERS detection by using the unmodified gold nanoparticles (Au NPs). This strategy utilizes the difference in adsorption property of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) on citrate-coated Au NPs. In the presence of dsDNA, the aggregation of Au NPs takes place after adding salt solution because the dsDNA cannot adsorb on the Au NPs to protect them from salt-induced aggregation. Such aggregation gives rise to the plasmonic coupling of adjacent metallic NPs and turns on the enhancement of the Raman scattering, displaying a strong SERS signal. In contrast, the ssDNA can adsorb on the Au NPs surface through strong electrostatic attraction and protect them from salt-induced aggregation, showing a weak SERS signal. This approach is not only straightforward and simple in design but also rapid and convenient in operation. The feasibility and universality of the design have been demonstrated successfully by the detection of DNA and Hg(2+), and the assay possesses the superior signal-to-background ratio as high as ∼30 and excellent selectivity. The method can be extended to detect various analytes, such as other metal ions, proteins and small molecules by using the oligonucleotides that can selectively bind the analytes. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Looking for dark matter trails in colliding galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harvey, David; Robertson, Andrew; Massey, Richard; Kneib, Jean-Paul

    2017-02-01

    If dark matter interacts, even weakly, via non-gravitational forces, simulations predict that it will be preferentially scattered towards the trailing edge of the halo during collisions between galaxy clusters. This will temporarily create a non-symmetric mass profile, with a trailing overdensity along the direction of motion. To test this hypothesis, we fit (and subtract) symmetric haloes to the weak gravitational data of 72 merging galaxy clusters observed with the Hubble Space Telescope. We convert the shear directly into excess κ and project in to a one-dimensional profile. We generate numerical simulations and find that the one-dimensional profile is well described with simple Gaussian approximations. We detect the weak lensing signal of trailing gas at a 4σ confidence, finding a mean gas fraction of Mgas/Mdm = 0.13 ± 0.035. We find no evidence for scattered dark matter particles with an estimated scattering fraction of f = 0.03 ± 0.05. Finally, we find that if we can reduce the statistical error on the positional estimate of a single dark matter halo to <2.5 arcsec, then we will be able to detect a scattering fraction of 10 per cent at the 3σ level with current surveys. This potentially interesting new method can provide an important independent test for other complimentary studies of the self-interaction cross-section of dark matter.

  17. Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman-active gold nanoparticles

    USDA-ARS?s Scientific Manuscript database

    A model paramagnetic nanoparticle (MNP) assay is demonstrated for surface-enhanced Raman scattering (SERS) detection of DNA oligonucleotides derived from the West Nile virus (WNV) genome. Detection is based on the capture of WNV target sequences by hybridization with complementary oligonucleotide pr...

  18. Dark matter candidates and methods for detecting them

    NASA Technical Reports Server (NTRS)

    Raffelt, G. G.

    1992-01-01

    A number of experiments employing Ge and Si ionization detectors have excluded large regions in the plane of masses and scattering cross-sections for weakly-interacting dark matter (DM) candidates. It is judged that, before a realistic detection experiment for supersymmetric DM candidates can be conducted, significant development efforts will have to be completed for suitable cryogenic or ionization detectors. Pilot experiments have demonstrated the feasibility of axion searches with microwave cavities, but these are at least two orders of magnitude too low in sensitivity.

  19. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  20. Comparative Study of Speckle Filtering Methods in PolSAR Radar Images

    NASA Astrophysics Data System (ADS)

    Boutarfa, S.; Bouchemakh, L.; Smara, Y.

    2015-04-01

    Images acquired by polarimetric SAR (PolSAR) radar systems are characterized by the presence of a noise called speckle. This noise has a multiplicative nature, corrupts both the amplitude and phase images, which complicates data interpretation, degrades segmentation performance and reduces the detectability of targets. Hence, the need to preprocess the images by adapted filtering methods before analysis.In this paper, we present a comparative study of implemented methods for reducing speckle in PolSAR images. These developed filters are: refined Lee filter based on the estimation of the minimum mean square error MMSE, improved Sigma filter with detection of strong scatterers based on the calculation of the coherency matrix to detect the different scatterers in order to preserve the polarization signature and maintain structures that are necessary for image interpretation, filtering by stationary wavelet transform SWT using multi-scale edge detection and the technique for improving the wavelet coefficients called SSC (sum of squared coefficients), and Turbo filter which is a combination between two complementary filters the refined Lee filter and the wavelet transform SWT. One filter can boost up the results of the other.The originality of our work is based on the application of these methods to several types of images: amplitude, intensity and complex, from a satellite or an airborne radar, and on the optimization of wavelet filtering by adding a parameter in the calculation of the threshold. This parameter will control the filtering effect and get a good compromise between smoothing homogeneous areas and preserving linear structures.The methods are applied to the fully polarimetric RADARSAT-2 images (HH, HV, VH, VV) acquired on Algiers, Algeria, in C-band and to the three polarimetric E-SAR images (HH, HV, VV) acquired on Oberpfaffenhofen area located in Munich, Germany, in P-band.To evaluate the performance of each filter, we used the following criteria: smoothing homogeneous areas, preserving edges and polarimetric information.Experimental results are included to illustrate the different implemented methods.

Top