Sample records for scattering light source

  1. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model

    PubMed Central

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077

  2. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    PubMed

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.

  3. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    NASA Astrophysics Data System (ADS)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  4. Particle measurement systems and methods

    DOEpatents

    Steele, Paul T [Livermore, CA

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  6. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, William C.

    2001-01-01

    The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system comprises a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media.

  7. A Novel Effect of Scattered-Light Interference in Misted Mirrors

    ERIC Educational Resources Information Center

    Bridge, N. James

    2005-01-01

    Interference rings can be observed in mirrors clouded by condensation, even in diffuse lighting. The effect depends on individual droplets acting as point sources by refracting light into the mirror, so producing coherent wave-trains which are reflected and then scattered again by diffraction round the same source droplet. The secondary wave-train…

  8. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOEpatents

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  9. Polarization from Thomson scattering of the light of a spherical, limb-darkened star

    NASA Technical Reports Server (NTRS)

    Rudy, R. J.

    1979-01-01

    The polarized flux produced by the Thomson scattering of the light of a spherical, limb-darkened star by optically thin, extrastellar regions of electrons is calculated and contrasted to previous models which treated the star as a point source. The point-source approximation is found to be valid for scattering by particles more than a stellar radius from the surface of the star but is inappropriate for those lying closer. The specific effect of limb darkening on the fractional polarization of the total light of a system is explored. If the principal source of light is the unpolarized flux of the star, the polarization is nearly independent of limb darkening.

  10. Analytical close-to-source investigation for an isotropic point source in an unbounded, anisotropically scattering medium

    NASA Astrophysics Data System (ADS)

    Rinzema, Kees; ten Bosch, Jaap J.; Ferwerda, Hedzer A.; Hoenders, Bernhard J.

    1995-01-01

    The diffusion approximation, which is often used to describe the propagation of light in biological tissues, is only good at a sufficient distance from sources and boundaries. Light- tissue interaction is however most intense in the region close to the source. It would therefore be interesting to study this region more closely. Although scattering in biological tissues is predominantly forward peaked, explicit solutions to the transport equation have only been obtained in the case of isotropic scattering. Particularly, for the case of an isotropic point source in an unbounded, isotropically scattering medium the solution is well known. We show that this problem can also be solved analytically if the scattering is no longer isotropic, while everything else remains the same.

  11. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov; Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993; James, Robert H.

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearlymore » 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.« less

  12. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, W.C.

    1999-07-06

    The present invention relates an apparatus and method for creating a bright, uniform source of partially coherent radiation for illuminating a pattern, in order to replicate an image of said pattern with a high degree of acuity. The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system includes a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media. 7 figs.

  13. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, William C.

    1999-01-01

    The present invention relates an apparatus and method for creating a bright, uniform source of partially coherent radiation for illuminating a pattern, in order to replicate an image of said pattern with a high degree of acuity. The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system includes a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media.

  14. Fiberoptic spectrophotometer

    DOEpatents

    Tans, Petrus P.; Lashof, Daniel A.

    1986-01-01

    A device for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated.

  15. Light scattering regimes along the optical axis in turbid media

    NASA Astrophysics Data System (ADS)

    Campbell, S. D.; O'Connell, A. K.; Menon, S.; Su, Q.; Grobe, R.

    2006-12-01

    We inject an angularly collimated laser beam into a scattering medium of a nondairy creamer-water solution and examine the distribution of the scattered light along the optical axis as a function of the source-detector spacing. The experimental and simulated data obtained from a Monte Carlo simulation suggest four regimes characterizing the transition from unscattered to diffusive light. We compare the data also with theoretical predictions based on a first-order scattering theory for regions close to the source, and with diffusionlike theories for larger source-detector spacings. We demonstrate the impact of the measurement process and the effect of the unavoidable absorption of photons by the detection fiber on the light distribution inside the medium. We show that the range of validity of these theories can depend on the experimental parameters such as the diameter and acceptance angle of the detection fiber.

  16. Biological cell classification by multiangle light scattering

    DOEpatents

    Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.

    1975-06-03

    The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.

  17. Multiple scattering contribution to the diffuse light of a night sky: A model which embraces all orders of scattering

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav

    2018-02-01

    The mechanism in which multiple scattering influences the radiance of a night sky has been poorly quantified until recently, or even completely unknown from the theoretical point of view. In this paper, the relative contribution of higher-scattering radiances to the total sky radiance is treated analytically for all orders of scattering, showing that a fast and accurate numerical solution to the problem exists. Unlike a class of ray tracing codes in which CPU requirements increase tremendously with each new scattering mode, the solution developed here requires the same processor time for each scattering mode. This allows for rapid estimation of higher-scattering radiances and residual error that is otherwise unknown if these radiances remain undetermined. Such convergence testing is necessary to guarantee accuracy and the stability of the numerical predictions. The performance of the method developed here is demonstrated in a set of numerical experiments aiming to uncover the relative importance of higher-scattering radiances at different distances from a light source. We have shown, that multiple scattering effects are generally low if distance to the light source is below 30 km. At large distances the multiple scattering can become important at the dark sky elements situated opposite to the light source. However, the brightness at this part of sky is several orders of magnitude smaller than that of a glowing dome of light over a city, so we do not expect that a partial increase or even doubling the radiance of otherwise dark sky elements can noticeably affect astronomical observations or living organisms (including humans). Single scattering is an appropriate approximation to the sky radiance of a night sky in the vast majority of cases.

  18. Fiberoptic spectrophotometer

    DOEpatents

    Tans, P.P.; Lashof, D.A.

    1986-12-23

    A device is described for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated. 6 figs.

  19. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    PubMed

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  20. Polar nephelometer for atmospheric particulate studies

    NASA Technical Reports Server (NTRS)

    Hansen, M. Z.; Evans, W. H.

    1980-01-01

    A polar nephelometer for use in studying atmospheric aerosols was developed. The nephelometer detects molecular scatter from air and measures scattering from very clean air using pure molecular scattering for calibration. A compact system using a folded light path with an air cooled argon laser for the light source was designed. A small, sensitive detector unit permits easy angular rotation for changing the scattering angle. A narrow detector field of view of + or - 1/4 degree of scattering along with a single wavelength of incident light is used to minimize uncertainties in the scattering theory. The system is automated for data acquisition of the scattering matrix elements over an angular range from 2 degrees to 178 degrees of scattering. Both laser output and detector sensitivity are monitored to normalize the measured light scattering.

  1. System for diffusing light from an optical fiber or light guide

    DOEpatents

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  2. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shumei; Zang, Qing, E-mail: zangq@ipp.ac.cn; Han, Xiaofeng

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump systemmore » can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.« less

  3. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.

  4. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  5. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling

    PubMed Central

    Wang, Haomin; Wang, Le; Xu, Xiaoji G.

    2016-01-01

    Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360

  6. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2017-06-14

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  7. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-05-10

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  8. Local Intensity Enhancements in Spherical Microcavities: Implications for Photonic Chemical and Biological Sensors

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.

    2005-01-01

    In this report, we summarize recent findings regarding the use spherical microcavities in the amplification of light that is inelastically scattered by either fluorescent or Raman-active molecules. This discussion will focus on Raman scattering, with the understanding that analogous processes apply to fluorescence. Raman spectra can be generated through the use of a very strong light source that stimulates inelastic light scattering by molecules, with the scattering occurring at wavelengths shifted from that of the source and being most prominent at shifts associated with the molecules natural vibrational frequencies. The Raman signal can be greatly enhanced by exposing a molecule to the intense electric fields that arise near surfaces (typically of gold or silver) exhibiting nanoscale roughness. This is known as surface-enhanced Raman scattering (SERS). SERS typically produces gain factors of 103 - 106, but under special conditions, factors of 1010 - 1014 have been achieved.

  9. Advanced Compton scattering light source R&D at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F; Anderson, S G; Anderson, G

    2010-02-16

    We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less

  10. Evaluation of paraxial forward scattering from intraocular lens with increased surface light scattering using goniophotometry and Hartmann-Shack wavefront aberrometry.

    PubMed

    Minami, Keiichiro; Maruyama, Yoko; Mihashi, Toshifumi; Miyata, Kazunori; Oshika, Tetsuro

    2017-03-01

    To evaluate the influence of increases in light scattering on intraocular lens (IOL) surfaces on paraxial forward scattering using goniophotometry and Hartmann-Shack wavefront aberrometry. Surface light scattering was reproduced experimentally by acceleratedly aging 4 intraocular lenses by 0, 3, 5, and 10 years each. Light scattering from both IOL surfaces was measured using Scheimpflug photography. The paraxial forward scattering from the aged IOLs was measured using a goniophotometer with a halogen light source (wavelength: 350-850 nm) and telecentric optics, and changes in the maximum intensity and full width at 10% of maximum intensity (FW10%) were evaluated. The influences on the retina image were examined using a Hartmann-Shack aberrometer (wavelength: 840 nm). The contrast and difference from the point spread function of the central centroids were evaluated. The mean surface light scattering from both IOL surfaces ranged from 30.0 to 118.3 computer compatible tape (CCT) and increased with each aging year. Evaluations using the goniophotometer and the Hartmann-Shack aberrometer showed no significant change in the paraxial forward scattering with the aging year (P > .45, Kruskal-Wallis test), and no association with the surface light scattering intensity was found (P > .75, Spearman rank correlation). This experimental study using aged IOLs demonstrated that surface light scattering does not influence paraxial forward scattering.

  11. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  12. DARK-FIELD ILLUMINATION SYSTEM

    DOEpatents

    Norgren, D.U.

    1962-07-24

    A means was developed for viewing objects against a dark background from a viewing point close to the light which illuminates the objects and under conditions where the back scattering of light by the objects is minimal. A broad light retro-directing member on the opposite side of the objects from the light returns direct light back towards the source while directing other light away from the viewing point. The viewing point is offset from the light and thus receives only light which is forwardly scattered by an object while returning towards the source. The object is seen, at its true location, against a dark background. The invention is particularly adapted for illuminating and viewing nuclear particle tracks in a liquid hydrogen bubble chamber through a single chamber window. (AEC)

  13. Propagation of laser beams in scattering media.

    PubMed

    Zuev, V E; Kabanov, M V; Savelev, B A

    1969-01-01

    Experimental investigations have been undertaken of some aspects of the propagation of helium-neon gas laser radiation at lambda = 0.63 micro for different scattering media (artificial water fogs, wood smokes, model media). It has been shown that the attenuation coefficients practically coincide when coherent and incoherent radiation is scattered. The applicability limits of Bouguer-Beer's law for describing the attenuation of radiation in scattering media are investigated and the intensity of multiple forward-scattered light for different geometrical parameters of the source and radiation receiver are measured. The applicability of single scattering theory formulas for describing forward-scattered light intensity are discussed.

  14. Laser light scattering review

    NASA Technical Reports Server (NTRS)

    Schaetzel, Klaus

    1989-01-01

    Since the development of laser light sources and fast digital electronics for signal processing, the classical discipline of light scattering on liquid systems experienced a strong revival plus an enormous expansion, mainly due to new dynamic light scattering techniques. While a large number of liquid systems can be investigated, ranging from pure liquids to multicomponent microemulsions, this review is largely restricted to applications on Brownian particles, typically in the submicron range. Static light scattering, the careful recording of the angular dependence of scattered light, is a valuable tool for the analysis of particle size and shape, or of their spatial ordering due to mutual interactions. Dynamic techniques, most notably photon correlation spectroscopy, give direct access to particle motion. This may be Brownian motion, which allows the determination of particle size, or some collective motion, e.g., electrophoresis, which yields particle mobility data. Suitable optical systems as well as the necessary data processing schemes are presented in some detail. Special attention is devoted to topics of current interest, like correlation over very large lag time ranges or multiple scattering.

  15. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fiber for prostate PDT

    PubMed Central

    Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.

    2013-01-01

    Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149

  16. System for the measurement of ultra-low stray light levels. [determining the adequacy of large space telescope systems

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.; Griner, D. B.; Hurd, W. A.; Shelton, G. B.; Hunt, G. H.; Fannin, B. B.; Brealt, R. P.; Hawkins, C. A. (Inventor)

    1978-01-01

    An apparatus is described for measuring the effectiveness of stray light suppression light shields and baffle arrangements used in optical space experiments and large space telescopes. The light shield and baffle arrangement and a telescope model are contained in a vacuum chamber. A source of short, high-powered light energy illuminates portions of the light shield and baffle arrangement and reflects a portion of same to a photomultiplier tube by virtue of multipath scattering. The resulting signal is transferred to time-channel electronics timed by the firing of the high energy light source allowing time discrimination of the signal thereby enabling the light scattered and suppressed by the model to be distinguished from the walls and holders around the apparatus.

  17. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  18. Ultrasound modulation of bioluminescence generated inside a turbid medium

    NASA Astrophysics Data System (ADS)

    Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.

    2017-03-01

    In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.

  19. The STIS CCD Spectroscopic Line Spread Functions

    NASA Technical Reports Server (NTRS)

    Gull, T.; Lindler, D.; Tennant, D.; Bowers, C.; Grady, C.; Hill, R. S.; Malumuth, E.

    2002-01-01

    We characterize the spectroscopic line spread functions of the spectroscopic CCD modes for high contrast objects. Our long range goal is to develop tools that accurately extract spectroscopic information of faint, point or extended sources in the vicinity of bright, point sources at separations approaching the realizable angular limits of HST with STIS. Diffracted and scattered light due to the HST optics, and scattered light effects within the STIS are addressed. Filter fringing, CCD fringing, window reflections, and scattering within the detector and other effects are noted. We have obtained spectra of several reference stars, used for flux calibration or for coronagraphic standards, that have spectral distributions ranging from very red to very blue. Spectra of each star were recorded with the star in the aperture and with the star blocked by either the F1 or F2 fiducial. Plots of the detected starlight along the spatial axis of the aperture are provided for four stars. With the star in the aperture, the line spread function is quite noticeable. Placing the star behind one of the fiducials cuts the scattered light and the diffracted light, is detectable even out to 1OOOOA. When the star is placed behind either fiducial, the scattered and diffracted light components, at three arcseconds displacement from the star, are below lop6 the peak of the star at wavelengths below 6000A; at the same angular distance, scattered light does contaminate the background longward of 6000A up to a level of 10(exp -5).

  20. Locally-enhanced light scattering by a monocrystalline silicon wafer

    NASA Astrophysics Data System (ADS)

    Ma, Li; Zhang, Pan; Li, Zhen-Hua; Liu, Chun-Xiang; Li, Xing; Zhan, Zi-Jun; Ren, Xiao-Rong; He, Chang-Wei; Chen, Chao; Cheng, Chuan-Fu

    2018-03-01

    We study the optical properties of light scattering by a monocrystalline silicon wafer, by using transparent material to replicate its surface structure and illuminating a fabricated sample with a laser source. The experimental results show that the scattering field contains four spots of concentrated intensity with high local energy, and these spots are distributed at the four vertices of a square with lines of intensity linking adjacent spots. After discussing simulations of and theory about the formation of this light scattering, we conclude that the scattering field is formed by the effects of both geometrical optics and physical optics. Moreover, we calculate the central angle of the spots in the light field, and the result indicates that the locally-enhanced intensity spots have a definite scattering angle. These results may possibly provide a method for improving energy efficiency within mono-Si based solar cells.

  1. Method and apparatus for determining the physical properties of materials using dynamic light scattering techniques

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S. (Inventor)

    1992-01-01

    A system for determining the physical properties of materials through the use of dynamic light scattering is disclosed. The system includes a probe, a laser source for directing a laser beam into the probe, and a photodetector for converting scattered light detected by the probe into electrical signals. The probe includes at least one optical fiber connected to the laser source and a second optical fiber connected to the photodetector. Each of the fibers may adjoin a gradient index microlens which is capable of providing a collimated laser beam into a scattering medium. The position of the second optical fiber with respect to the optical axis of the probe determines whether homodyne or self-beating detection is provided. Self-beating detection may be provided without a gradient index microlens. This allows a very small probe to be constructed which is insertable through a hypodermic needle or the like into a droplet extending from such a needle. A method of detecting scattered light through the use of a collimated, Gaussian laser beam is also provided. A method for controlling the waist and divergence of the optical field emanating from the free end of an optical fiber is also provided.

  2. Single Crystal Diffuse Neutron Scattering

    DOE PAGES

    Welberry, Richard; Whitfield, Ross

    2018-01-11

    Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less

  3. Single Crystal Diffuse Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welberry, Richard; Whitfield, Ross

    Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less

  4. Surface roughness measurement in the submicrometer range using laser scattering

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Quan, Chenggen; Tay, C. J.; Shang, H. M.

    2000-06-01

    A technique for measuring surface roughness in the submicrometer range is developed. The principle of the method is based on laser scattering from a rough surface. A telecentric optical setup that uses a laser diode as a light source is used to record the light field scattered from the surface of a rough object. The light intensity distribution of the scattered band, which is correlated to the surface roughness, is recorded by a linear photodiode array and analyzed using a single-chip microcomputer. Several sets of test surfaces prepared by different machining processes are measured and a method for the evaluation of surface roughness is proposed.

  5. Investigation of light scattering as a technique for detecting discrete soot particles in a luminous flame

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.

  6. Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid.

    PubMed

    Lavigne, Claire; Durand, Gérard; Roblin, Antoine

    2006-12-20

    Light scattering in the atmosphere by particles and molecules gives rise to an aureole surrounding the source image that tends to reduce the contrast of the source with respect to the background. However, UV scattering phase functions of the haze droplets present a very important forward peak. The spreading of a detected signal in the UV is not as important as in the case of a clear atmosphere where Rayleigh scattering predominates. This physical property has to be taken into account to evaluate the potential of UV radiation as an aircraft landing aid under low visibility conditions. Different results characterizing UV runway lights, simulations of UV radiation propagation in the atmosphere, and the use of a simple detection algorithm applied to one particular sensor are presented.

  7. Confocal retinal imaging using a digital light projector with a near infrared VCSEL source

    NASA Astrophysics Data System (ADS)

    Muller, Matthew S.; Elsner, Ann E.

    2018-02-01

    A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1" LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging.

  8. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOEpatents

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  9. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential tomore » be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.« less

  10. Source apportionment of visual impairment during the California regional PM 10/PM 2.5 air quality study

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Ying, Qi; Kleeman, Michael J.

    2009-12-01

    Gases and particulate matter predictions from the UCD/CIT air quality model were used in a visibility model to predict source contributions to visual impairment in the San Joaquin Valley (SJV), the southern portion of California's Central Valley, during December 2000 and January 2001. Within the SJV, daytime (0800-1700 PST) light extinction was dominated by scattering associated with airborne particles. Measured daytime particle scattering coefficients were compared to predicted values at approximately 40 locations across the SJV after correction for the increased temperature and decreased relative humidity produced by "smart heaters" placed upstream of nephelometers. Mean fractional bias and mean fractional error were -0.22 and 0.65, respectively, indicating reasonable agreement between model predictions and measurements. Particulate water, nitrate, organic matter, and ammonium were the major particulate species contributing to light scattering in the SJV. Daytime light extinction in the SJV averaged between December 25, 2000 and January 7, 2001 was mainly associated with animal ammonia sources (28%), diesel engines (18%), catalyst gasoline engines (9%), other anthropogenic sources (9%), and wood smoke (7%) with initial and boundary conditions accounting for 13%. The source apportionment results from this study apply to wintertime conditions when airborne particulate matter concentrations are typically at their annual maximum. Further study would be required to quantify source contributions to light extinction in other seasons.

  11. X-Ray Scattering Echoes and Ghost Halos from the Intergalactic Medium: Relation to the Nature of AGN Variability

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2015-05-01

    X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 μ m, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ∼ 1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (≳ 3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: {{N}ech}∼ {{10}3}({{ν }fb}/y{{r}-1}), where {{ν }fb} is the characteristic frequency of feedback events capable of dimming an AGN quickly.

  12. Propagation and scattering of optical light beams in free space, in atmosphere and in biological media

    NASA Astrophysics Data System (ADS)

    Sahin, Serkan

    With their first production implemented around 1960's, lasers have afterwards proven to be excellent light sources in building the technology. Subsequently, it has been shown that the extraordinary properties of lasers are related to their coherence properties. Recent developments in optics make it possible to synthesize partially coherent light beams from fully coherent ones. In the last several decades it was seen that using partially coherent light sources may be advantageous, in the areas such as laser surface processing, fiber and free-space optical communications, and medical diagnostics. In this thesis, I study extensively the generation, the propagation in different media, and the scattering of partially coherent light beams with respect to their spectral polarization and coherence states. For instance, I analyze the evolution of recently introduced degree of cross-polarization of light fields in free space; then develop a novel partially coherent light source which acquires and keeps a flat intensity profile around the axis at any distance in the far field; and investigate the interaction of electromagnetic random light with the human eye lens. A part of the thesis treats the effect of atmospheric turbulence on random light beams. Due to random variations in the refractive index, atmospheric turbulence modulates all physical and statistical properties of propagating beams. I have explored the possibility of employing the polarimetric domain of the beam for scintillation reduction, which positively affects the performance of free-space communication systems. I also discuss novel techniques for the sensing of rough targets in the turbulent atmosphere by polarization and coherence properties of light. The other contribution to the thesis is the investigation of light scattering from deterministic or random collections of particles, within the validity of first Born approximation. In the case of a random collection, I introduce and model the new quantity (named pair-structure function) describing correlations among particles, the knowledge of which is necessary for the rigorous predictions of scattered radiation's statistics. Also, by introducing the multi-Gaussian family of functions for scattering potentials, we demonstrate a realistic model for semi-hard edges of particles and bubblelike particles.

  13. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, Stanley E.; Livingston, Ronald R.; Prather, William S.

    1995-01-01

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  14. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  15. Bidirectional light-scattering image processing method for high-concentration jet sprays

    NASA Astrophysics Data System (ADS)

    Shimizu, I.; Emori, Y.; Yang, W.-J.; Shimoda, M.; Suzuki, T.

    1985-01-01

    In order to study the distributions of droplet size and volume density in high-concentration jet sprays, a new technique is developed, which combines the forward and backward light scattering method and an image processing method. A pulsed ruby laser is used as the light source. The Mie scattering theory is applied to the results obtained from image processing on the scattering photographs. The time history is obtained for the droplet size and volume density distributions, and the method is demonstrated by diesel fuel sprays under various injecting conditions. The validity of the technique is verified by a good agreement in the injected fuel volume distributions obtained by the present method and by injection rate measurements.

  16. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST).

    PubMed

    Jacobson, C M; Borchardt, M T; Den Hartog, D J; Falkowski, A F; Morton, L A; Thomas, M A

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  17. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  18. Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source.

    PubMed

    Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Aizawa, Kento; Inoue, Tsutomu; Okamura, Hidekazu; Ikemoto, Yuka

    2011-06-20

    In order to obtain broadband near-field infrared (IR) spectra, a Fourier-transform IR spectrometer (FT-IR) and a ceramic light source were used with a scattering-type scanning near-field optical microscope (s-SNOM). To suppress the background (far-field) scattering, the distance between the scattering probe and the sample was modulated with frequency Ω by a piezo-electric actuator, and the Ω component was extracted from the signal with a lock-in detection. With Ω=30 kHz, a peak-to-peak modulation amplitude of 198 nm, and a probe with smooth surface near the tip, broadband near-field IR spectra could be obtained in the 1200-2500 cm(-1).

  19. Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light.

    PubMed

    Taira, Yoshitaka; Hayakawa, Takehito; Katoh, Masahiro

    2017-07-10

    Inverse Thomson scattering is a well-known radiation process that produces high-energy photons both in nature and in the laboratory. Nonlinear inverse Thomson scattering occurring inside an intense light field is a process which generates higher harmonic photons. In this paper, we theoretically show that the higher harmonic gamma-ray produced by nonlinear inverse Thomson scattering of circularly polarized light is a gamma-ray vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding nonlinear inverse Thomson scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma-ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. Nonlinear inverse Thomson scattering is a promising radiation process for realizing a gamma-ray vortex source based on currently available laser and accelerator technologies, which would be an indispensable tool for exploring gamma-ray vortex science.

  20. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    PubMed

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  1. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, D.; Barbrel, B.; Falcone, R. W.

    2015-05-15

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability ofmore » spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.« less

  2. Nighttime image dehazing using local atmospheric selection rule and weighted entropy for visible-light systems

    NASA Astrophysics Data System (ADS)

    Park, Dubok; Han, David K.; Ko, Hanseok

    2017-05-01

    Optical imaging systems are often degraded by scattering due to atmospheric particles, such as haze, fog, and mist. Imaging under nighttime haze conditions may suffer especially from the glows near active light sources as well as scattering. We present a methodology for nighttime image dehazing based on an optical imaging model which accounts for varying light sources and their glow. First, glow effects are decomposed using relative smoothness. Atmospheric light is then estimated by assessing global and local atmospheric light using a local atmospheric selection rule. The transmission of light is then estimated by maximizing an objective function designed on the basis of weighted entropy. Finally, haze is removed using two estimated parameters, namely, atmospheric light and transmission. The visual and quantitative comparison of the experimental results with the results of existing state-of-the-art methods demonstrates the significance of the proposed approach.

  3. Confocal Retinal Imaging Using a Digital Light Projector with a Near Infrared VCSEL Source

    PubMed Central

    Muller, Matthew S.; Elsner, Ann E.

    2018-01-01

    A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1″ LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging. PMID:29899586

  4. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    NASA Astrophysics Data System (ADS)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  5. Improved fiberoptic spectrophotometer

    DOEpatents

    Tans, P.P.; Lashof, D.A.

    1985-04-02

    The present invention allows for accurate spectrophotmetric comparison of the Raman scattering from a sample gas with the Raman scattering from a known gas via a novel fiber optic network. The need for complicated electronic of optical circuit balancing, control, or error compensation circuitry is eliminated. The laser cavity is split into two regions, one of which houses the plasma discharge and produces laser power, and the other of which is adapted to house tubes containing the gas samples. Light from the laser source is beamed simultaneously through samples of the reference gas and the unknown gas, and Raman-scattered light is emitted. The Raman-scattered light from the known and unknown mixtures is then alternately passed through a fiber optic network where the various wavelengths are spatially mixed. The mixed light is then passed into a system of light detectors, each of which are adapted to measure one of the wavelengths of light representing a constituent element of the gases. When the test is complete, each gas sample can be assigned a Raman-scattered profile from the data consisting of the ratios each of the constituent elements bear to each other. (LEW)

  6. Light fluence dosimetry in lung-simulating cavities

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.; Kim, Michele M.; Padawer, Jonah; Dimofte, Andreea; Potasek, Mary; Beeson, Karl; Parilov, Evgueni

    2018-02-01

    Accurate light dosimery is critical to ensure consistent outcome for pleural photodynamic therapy (pPDT). Ellipsoid shaped cavities with different sizes surrounded by turbid medium are used to simulate the intracavity lung geometry. An isotropic light source is introduced and surrounded by turbid media. Direct measurements of light fluence rate were compared to Monte Carlo simulated values on the surface of the cavities for various optical properties. The primary component of the light was determined by measurements performed in air in the same geometry. The scattered component was found by submerging the air-filled cavity in scattering media (Intralipid) and absorbent media (ink). The light source was located centrally with the azimuthal angle, but placed in two locations (vertically centered and 2 cm below the center) for measurements. Light fluence rate was measured using isotropic detectors placed at various angles on the ellipsoid surface. The measurements and simulations show that the scattered dose is uniform along the surface of the intracavity ellipsoid geometries in turbid media. One can express the light fluence rate empirically as φ =4S/As*Rd/(1- Rd), where Rd is the diffuse reflectance, As is the surface area, and S is the source power. The measurements agree with this empirical formula to within an uncertainty of 10% for the range of optical properties studied. GPU voxel-based Monte-Carlo simulation is performed to compare with measured results. This empirical formula can be applied to arbitrary geometries, such as the pleural or intraperitoneal cavity.

  7. Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean

    NASA Astrophysics Data System (ADS)

    Ealo, Marina; Alastuey, Andrés; Pérez, Noemí; Ripoll, Anna; Querol, Xavier; Pandolfi, Marco

    2018-01-01

    Further research is needed to reduce the existing uncertainties on the effect that specific aerosol particle sources have on light extinction and consequently on climate. This study presents a new approach that aims to quantify the mass scattering and absorption efficiencies (MSEs and MAEs) of different aerosol sources at urban (Barcelona - BCN), regional (Montseny - MSY) and remote (Montsec - MSA) background sites in the north-western (NW) Mediterranean. An analysis of source apportionment to the measured multi-wavelength light scattering (σsp) and absorption (σap) coefficients was performed by means of a multilinear regression (MLR) model for the periods 2009-2014, 2010-2014 and 2011-2014 at BCN, MSY and MSA respectively. The source contributions to PM10 mass concentration, identified by means of the positive matrix factorization (PMF) model, were used as dependent variables in the MLR model. With this approach we addressed both the effect that aerosol sources have on air quality and their potential effect on light extinction through the determination of their MSEs and MAEs. An advantage of the presented approach is that the calculated MSEs and MAEs take into account the internal mixing of atmospheric particles. Seven aerosol sources were identified at MSA and MSY, and eight sources at BCN. Mineral, aged marine, secondary sulfate, secondary nitrate and V-Ni bearing sources were common at the three sites. Traffic, industrial/metallurgy and road dust resuspension sources were isolated at BCN, whereas mixed industrial/traffic and aged organics sources were identified at MSY and MSA. The highest MSEs were observed for secondary sulfate (4.5 and 10.7 m2 g-1, at MSY and MSA), secondary nitrate (8.8 and 7.8 m2 g-1) and V-Ni bearing source (8 and 3.5 m2 g-1). These sources dominated the scattering throughout the year with marked seasonal trends. The V-Ni bearing source, originating mainly from shipping in the area under study, simultaneously contributed to both σsp and σap, being the second most efficient light-absorbing source in BCN (MAE = 0.9 m2 g-1). The traffic source at BCN and the industrial/traffic at MSY exhibited the highest MAEs (1.7 and 0.9 m2 g-1). These sources were major contributors to σap at BCN and MSY; however at MSA, secondary nitrate exerted the highest influence on σap (MAE = 0.4 m2 g-1). The sources which were predominantly composed of fine and relatively dark particles, such as industrial/traffic, aged organics and V-Ni, were simultaneously characterized by low single scattering albedo (SSA) and a high scattering Ångström exponent (SAE). Conversely, mineral and aged marine showed the lowest SAE and the highest SSA, being scattering the dominant process in the light extinction. The good agreement found between modelled and measured particle optical properties allowed the reconstruction of σsp and σap long-term series over the period 2004-2014 at MSY. Significant decreasing trends were found for the modelled σsp and σap (-4.6 and -4.1 % yr-1).

  8. Spatially-resolved probing of biological phantoms by point-radiance spectroscopy

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.

    2011-03-01

    Interstitial fiber-optic based strategies for therapy monitoring and assessment rely on detecting treatment-induced changes in the light distribution in biological tissues. We present an optical technique to identify spectrally and spatially specific tissue chromophores in highly scattering turbid media. Typical optical sensors measure non-directional light intensity (i.e. fluence) and require fiber translation (i.e. 3-5 positions), which is difficult to implement clinically. Point radiance spectroscopy is based on directional light collection (i.e. radiance) at a single point with a side-firing fiber that can be rotated up to 360°. A side firing fiber accepts light within a well-defined solid angle thus potentially providing an improved spatial resolution. Experimental measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43° cleaved fiber (i.e. radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid (i.e. scattering medium). Light was collected at 1-5° increments through 360°-segment. Gold nanoparticles, placed into a 3.5 mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a non-invasive optical modality for prostate cancer monitoring.

  9. Detection of light-matter interaction in the weak-coupling regime by quantum light

    NASA Astrophysics Data System (ADS)

    Bin, Qian; Lü, Xin-You; Zheng, Li-Li; Bin, Shang-Wu; Wu, Ying

    2018-04-01

    "Mollow spectroscopy" is a photon statistics spectroscopy, obtained by scanning the quantum light scattered from a source system. Here, we apply this technique to detect the weak light-matter interaction between the cavity and atom (or a mechanical oscillator) when the strong system dissipation is included. We find that the weak interaction can be measured with high accuracy when exciting the target cavity by quantum light scattered from the source halfway between the central peak and each side peak. This originally comes from the strong correlation of the injected quantum photons. In principle, our proposal can be applied into the normal cavity quantum electrodynamics system described by the Jaynes-Cummings model and an optomechanical system. Furthermore, it is state of the art for experiment even when the interaction strength is reduced to a very small value.

  10. High throughput optical scanner

    DOEpatents

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  11. Laser induced heat source distribution in bio-tissues

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Fan, Shifu; Zhao, Youquan

    2006-09-01

    During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.

  12. Particle size analysis in a turbid media with a single-fiber, optical probe while using a visible spectrometer

    DOEpatents

    Canpolat, Murat; Mourant, Judith R.

    2003-12-09

    Apparatus and method for measuring scatterer size in a dense media with only a single fiber for both light delivery and collection are disclosed. White light is used as a source and oscillations of the detected light intensities are measured as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition several properties of the probe relevant to tissue diagnosis are disclosed including the effects of absorption, a broad distribution of scatterers, and the depth probed.

  13. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  14. Novel Descattering Approach for Stereo Vision in Dense Suspended Scatterer Environments

    PubMed Central

    Nguyen, Chanh D. Tr.; Park, Jihyuk; Cho, Kyeong-Yong; Kim, Kyung-Soo; Kim, Soohyun

    2017-01-01

    In this paper, we propose a model-based scattering removal method for stereo vision for robot manipulation in indoor scattering media where the commonly used ranging sensors are unable to work. Stereo vision is an inherently ill-posed and challenging problem. It is even more difficult in the case of images of dense fog or dense steam scenes illuminated by active light sources. Images taken in such environments suffer attenuation of object radiance and scattering of the active light sources. To solve this problem, we first derive the imaging model for images taken in a dense scattering medium with a single active illumination close to the cameras. Based on this physical model, the non-uniform backscattering signal is efficiently removed. The descattered images are then utilized as the input images of stereo vision. The performance of the method is evaluated based on the quality of the depth map from stereo vision. We also demonstrate the effectiveness of the proposed method by carrying out the real robot manipulation task. PMID:28629139

  15. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The modelmore » of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.« less

  16. High-Energy Density science at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.

    2016-03-01

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. In recent experiments we have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on a scattering length comparable to the screening length. This technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.

  17. High-Energy Density science at the Linac Coherent Light Source

    DOE PAGES

    Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.

    2016-04-01

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. Recently, our experiments have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on amore » scattering length comparable to the screening length. Moreover, this technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.« less

  18. First scattered-light image of the debris disk around HD 131835 with the Gemini Planet Imager

    DOE PAGES

    Hung, Li -Wei; Duchêne, Gaspard; Arriaga, Pauline; ...

    2015-12-09

    Here, we present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ~15 Myr old A2IV star at a distance of ~120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission, in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ~75 to ~210 AU in the disk plane with roughlymore » flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.« less

  19. FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.

    2015-12-10

    We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,  in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flatmore » surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.« less

  20. Underwater Docking of Autonomous Undersea Vehicles Using Optical Terminal Guidance

    DTIC Science & Technology

    1997-10-01

    simply using a brighter beacon. Scattered light within the field-of-view is imaged almost equally into each of the four quadrants of a photodetector...received by adjacent quadrants a great deal of the forward scattered light can be rejected when the signals from the four quadrants are subsequently...employed to aim the nose of the vehicle at the light source because the illumination is equal in all four quadrants only when the tracker’s optical axis is

  1. Modelling of a laser-pumped light source for endoscopic surgery

    NASA Astrophysics Data System (ADS)

    Nadeau, Valerie J.; Elson, Daniel S.; Hanna, George B.; Neil, Mark A. A.

    2008-09-01

    A white light source, based on illumination of a yellow phosphor with a fibre-coupled blue-violet diode laser, has been designed and built for use in endoscopic surgery. This narrow light probe can be integrated into a standard laparoscope or inserted into the patient separately via a needle. We present a Monte Carlo model of light scattering and phosphorescence within the phosphor/silicone matrix at the probe tip, and measurements of the colour, intensity, and uniformity of the illumination. Images obtained under illumination with this light source are also presented, demonstrating the improvement in illumination quality over existing endoscopic light sources. This new approach to endoscopic lighting has the advantages of compact design, improved ergonomics, and more uniform illumination in comparison with current technologies.

  2. Study on the measurement system of the target polarization characteristics and test

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhu, Yong; Zhang, Su; Duan, Jin; Yang, Di; Zhan, Juntong; Wang, Xiaoman; Jiang, Hui-Lin

    2015-10-01

    The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields, the research on the polarization characteristics of target is particularly important. The research of the polarization reflection model was introduced in this paper, which describes the scattering vector light energy distribution in reflecting hemisphere polarization characteristics, the target polarization characteristics test system solutions was put forward, by the irradiation light source, measuring turntable and camera, etc, which illuminate light source shall direct light source, with laser light sources and xenon lamp light source, light source can be replaced according to the test need; Hemispherical structure is used in measuring circumarotate placed near its base material sample, equipped with azimuth and pitching rotation mechanism, the manual in order to adjust the azimuth Angle and high Angle observation; Measuring camera pump works, through the different in the way of motor control polaroid polarization test, to ensure the accuracy of measurement and imaging resolution. The test platform has set up by existing laboratory equipment, the laser is 532 nm, line polaroid camera, at the same time also set the sending and receiving optical system. According to the different materials such as wood, metal, plastic, azimuth Angle and zenith Angle in different observation conditions, measurement of target in the polarization scattering properties of different exposure conditions, implementation of hemisphere space pBRDF measurement.

  3. Zodiacal light as an indicator of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Weinberg, J. L.; Sparrow, J. G.

    1978-01-01

    The most striking feature of the night sky in the tropics is the zodiacal light, which appears as a cone in the west after sunset and in the east before sunrise. It is caused by sunlight scattered or absorbed by particles in the interplanetary medium. The zodiacal light is the only source of information about the integrated properties of the whole ensemble of interplanetary dust. The brightness and polarization in different directions and at different colors can provide information on the optical properties and spatial distribution of the scattering particles. The zodiacal light arises from two independent physical processes related to the scattering of solar continuum radiation by interplanetary dust and to thermal emission which arises from solar radiation that is absorbed by interplanetary dust and reemitted mainly at infrared wavelengths. Attention is given to observational parameters of zodiacal light, the methods of observation, errors and absolute calibration, and the observed characteristics of zodiacal light.

  4. Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.

    2011-07-01

    Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.

  5. Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy.

    PubMed

    Grabtchak, Serge; Palmer, Tyler J; Whelan, William M

    2011-07-01

    Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ∼43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.

  6. Low-Cost, High Efficiency, Silicon Based Photovoltaic Devices

    DTIC Science & Technology

    2015-08-27

    for photovoltaic applications. Figure 14: (a) Absorption and scattering efficiencies versus sizes of Au nanoparticle at 550 nm, (b) scattering...efficiency as a function of wavelength for different Au nanoparticles sizes . 32 Review of plasmonics light trapping for photovoltaic application...ensure that the irradiation variation was within 3%. The external quantum efficiency (EQE) system used a 300W Xenon light source with a spot size of 1mm

  7. Space telescope low scattered light camera - A model

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Kuper, T. G.; Shack, R. V.

    1982-01-01

    A design approach for a camera to be used with the space telescope is given. Camera optics relay the system pupil onto an annular Gaussian ring apodizing mask to control scattered light. One and two dimensional models of ripple on the primary mirror were calculated. Scattered light calculations using ripple amplitudes between wavelength/20 wavelength/200 with spatial correlations of the ripple across the primary mirror between 0.2 and 2.0 centimeters indicate that the detection of an object a billion times fainter than a bright source in the field is possible. Detection of a Jovian type planet in orbit about alpha Centauri with a camera on the space telescope may be possible.

  8. Elastic light single-scattering spectroscopy for detection of dysplastic tissues

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda

    2013-11-01

    Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.

  9. Feasibility Study of an Optical Caustic Plasmonic Light Scattering Sensor for Human Serum Anti-Dengue Protein E Antibody Detection

    PubMed Central

    García, Antonio A.; Pirez-Gomez, Miguel A.; Pech-Pacheco, José L.; Mendez-Galvan, Jorge F.; Machain-Williams, Carlos; Talavera-Aguilar, Lourdes; Espinosa-Carrillo, José H.; Duarte-Villaseñor, Miriam M.; Be-Ortiz, Christian; Espinosa-de los Monteros, Luz E.; Castillo-Pacheco, Ariel; Garcia-Rejon, Julian E.

    2017-01-01

    Antibody detection and accurate diagnosis of tropical diseases is essential to help prevent the spread of disease. However, most detection methods lack cost-effectiveness and field portability, which are essential features for achieving diagnosis in a timely manner. To address this, 3D-printed oblate spheroid sample chambers were fabricated to measure green light scattering of gold nanoparticles using an optical caustic focus to detect antibodies. Scattering signals of 20–200 nm gold nanoparticles using a green laser were compared to green light emitting diode (LED) light source signals and to Mie theory. The change in signal from 60 to 120 nm decreased in the order of Mie Theory > optical caustic scattering > 90° scattering. These results suggested that conjugating 60 nm gold nanoparticles and using an optical caustic system to detect plasmonic light scattering, would result in a sensitive test for detecting human antibodies in serum. Therefore, we studied the light scattering response of conjugated gold nanoparticles exposed to different concentrations of anti-protein E antibody, and a feasibility study of 10 human serum samples using dot blot and a handheld optical caustic-based sensor device. The overall agreement between detection methods suggests that the new sensor concept shows promise to detect gold nanoparticle aggregation in a homogeneous assay. Further testing and protocol optimization is needed to draw conclusions on the positive and negative predictive values for this new testing system. PMID:28817080

  10. Experimental light scattering by positionally-controlled small particles — Implications for Planetary Science

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Penttilä, A.; Maconi, G.; Kassamakov, I.; Martikainen, J.; Markkanen, J.; Vaisanen, T.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Electromagnetic scattering is a fundamental physical process that allows inferring characteristics of an object studied remotely. This possibility is enhanced by obtaining the light-scattering response at multiple wavelengths and viewing geometries, i.e., by considering a wider range of the phase angle (the angle between the incident light and the light reflected from the object) in the experiment. Within the ERC Advanced Grant project SAEMPL (http://cordis.europa.eu/project/rcn/107666_en.html) we have assembled an interdisciplinary group of scientists to develop a fully automated, 3D scatterometer that can measure scattered light at different wavelengths from small particulate samples. The setup comprises: (a) the PXI Express platform to synchronously record data from several photomultiplier tubes (PMTs); (b) a motorized rotation stage to precisely control the azimuthal angle of the PMTs around 360°; and (c) a versatile light source, whose wavelength, polarization, intensity, and beam shape can be precisely controlled. An acoustic levitator is used to hold the sample without touching it. The device is the first of its kind, since it measures controlled spectral angular scattering including all polarization effects, for an arbitrary object in the µm-cm size scale. It permits a nondestructive, disturbance-free measurement with control of the orientation and location of the scattering object. To demonstrate our approach we performed detailed measurements of light scattered by a Chelyabinsk LL5 chondrite particle, derived from the light-colored lithology sample of the meteorite. These measurements are cross-validated against the modeled light-scattering characteristics of the sample, i.e., the intensity and the degree of linear polarization of the reflected light, calculated with state-of-the-art electromagnetic techniques (see Muinonen et al., this meeting). We demonstrate a unique non-destructive approach to derive the optical properties of small grain samples which facilitates research on highly valuable planetary materials, such as samples returned from space missions or rare meteorites.

  11. Scattering and the Point Spread Function of the New Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Schreur, Julian J.

    1996-01-01

    Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called the total integrated scattering (TIS), and the fraction remaining is called the Strehl ratio. The angular distribution of the scattered light is called the angle resolved scattering (ARS), and it shows a strong spike centered on a scattering angle of zero, and a broad , less intense distribution at larger angles. It is this scattered light, and its effect on the point spread function which is the focus of this study.

  12. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE PAGES

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    2015-11-04

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  13. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  14. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    Magnon scattered light generally experiences a 90° rotation in polarization from the incident beam. The wave- vector selective BLS measurements...filters, phase locked microwave pulse sources, microwave and millimeter wave devices such as isolators, circulators, phase shifters, secure signal...Wave vector selective Brillouin light scattering measurements and analysis, " C. L. Ordofiez-Romero, B. A. Kalinikos, P. Krivosik, Wei Tong, P

  15. Studying Dust Scattering Halos with Galactic X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Beeler, Doreen; Corrales, Lia; Heinz, Sebastian

    2018-01-01

    Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.

  16. Cell light scattering characteristic numerical simulation research based on FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wan, Nan; Zhu, Hao; Weng, Lingdong

    2017-01-01

    In this study, finite-difference time-domain (FDTD) algorithm has been used to work out the cell light scattering problem. Before beginning to do the simulation contrast, finding out the changes or the differences between normal cells and abnormal cells which may be cancerous or maldevelopment is necessary. The preparation of simulation are building up the simple cell model of cell which consists of organelles, nucleus and cytoplasm and setting up the suitable precision of mesh. Meanwhile, setting up the total field scattering field source as the excitation source and far field projection analysis group is also important. Every step need to be explained by the principles of mathematic such as the numerical dispersion, perfect matched layer boundary condition and near-far field extrapolation. The consequences of simulation indicated that the position of nucleus changed will increase the back scattering intensity and the significant difference on the peak value of scattering intensity may result from the changes of the size of cytoplasm. The study may help us find out the regulations based on the simulation consequences and the regulations can be meaningful for early diagnosis of cancers.

  17. Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source

    NASA Astrophysics Data System (ADS)

    Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.

    2010-03-01

    We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.

  18. Physics of a rapid CD4 lymphocyte count with colloidal gold.

    PubMed

    Hansen, P; Barry, D; Restell, A; Sylvia, D; Magnin, O; Dombkowski, D; Preffer, F

    2012-03-01

    The inherent surface charges and small diameters that confer colloidal stability to gold particle conjugates (immunogold) are detrimental to rapid cell surface labeling and distinct cluster definition in flow cytometric light scatter assays. Although the inherent immunogold surface charge prevents self aggregation when stored in liquid suspension, it also slows binding to cells to timeframes of hours and inhibits cell surface coverage. Although the small diameter of immunogold particles prevents settling when in liquid suspension, small particles have small light scattering cross sections and weak light scatter signals. We report a new, small particle lyophilized immunogold reagent that maintains activity after 42°C storage for a year and can be rapidly dissolved into stable liquid suspension for use in labelling cells with larger particle aggregates that have enhanced scattering cross section. Labeling requires less than 1 min at 20°C, which is ∼30 times faster than customary fluorescent antibody labeling. The labeling step involves neutralizing the surface charge of immunogold and creating specifically bound aggregates of gold on the cell surface. This process provides distinct side-scatter cluster separation with blue laser light at 488 nm, which is further improved by using red laser light at 640 nm. Similar comparisons using LED light sources showed less improvement with red light, thereby indicating that coherent light scatter is of significance in enhancing side-scatter cluster separation. The physical principles elucidated here for this technique are compatible with most flow cytometers; however, future studies of its clinical efficacy should be of primary interest in point-of-care applications where robust reagents and rapid results are important. Copyright © 2011 International Society for Advancement of Cytometry.

  19. Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation

    PubMed Central

    Yang, Jiun-Chan; Ji, Jin; Hogle, James M.; Larson, Dale N.

    2009-01-01

    We performed multiplexed sensing on nanohole array devices to simultaneously obtain information on molecular absorption, scattering, and refractive-index change, which were distinguished by using different array structures with distinct optical behavior. Up to 25 arrays were fabricated within a 65 μm × 50 μm area to provide real-time information of the local surface environment. The performance of multiplexed sensing was examined by flowing NaCl, coomassie blue, bovine serum albumin, and liposome solutions that exhibit different visible light absorption / scattering properties and different refractive indices. Experimental artifacts from light source fluctuation, sample injections, and light scattering induced by aggregates in solutions were detected by monitoring superwavelength holes or nanohole arrays with different periodicity and hole diameters. PMID:19157848

  20. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)

    NASA Astrophysics Data System (ADS)

    Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju

    2018-01-01

    We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s-1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV-vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.

  1. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously to collect particles from the same airflow tube used to make the scattered-light measurements. A size distribution function is obtained by analysis of the particles collected by the impaction device. Calculated values of the angular variation of the scattered-light intensity are obtained by applying Mie scattering theory to the observed size distribution function and assuming different values of the complex index of refraction of the particles. The calculated values are then compared with data on the actual variation of the scattered-light intensity obtained with the polar nephelometer. The most probable value of the complex refractive index is that which provides the best fit between the experimental light scattering data and the parameters calculated from the observed size distribution function.

  2. Influence of non-line of sight luminescent emitters in visible light communication systems

    NASA Astrophysics Data System (ADS)

    Ghorai, Anaranya; Walvekar, Pratik; Nayak, Shreyas; Narayan, K. S.

    2018-01-01

    We introduce and demonstrate concepts which utilize the non-line of sight fraction of light incident on a detector assembly in a visible-light communication (VLC) system. In addition to ambient light, realistic enclosures where VLC is implemented consist of a sizable fraction of scattered and reflected light. We present results of VLC systems with detectors responding to contributions from the light source scattered off a surface embedded with fluorescent and phosphorescent emitters besides the direct line of sight signal. Contribution from the emitters takes a form of discernible fluctuations in the detector signal. The implication of our results from noise analysis of these fluctuations indicates the possibility of utilizing smart coatings to further tailor VLC capabilities.

  3. Optical properties of size-resolved particles at a Hong Kong urban site during winter

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Lai, Senchao; Lee, Shun-Cheng; Yau, Pui Shan; Huang, Yu; Cheng, Yan; Wang, Tao; Xu, Zheng; Yuan, Chao; Zhang, Yingyi

    2015-03-01

    Visibility degradation in Hong Kong is related to the city's serious air pollution problems. To investigate the aerosols' optical properties and their relationship with the chemical composition and size distribution of the particles, a monitoring campaign was conducted at an urban site in the early winter period (from October to December, 2010). The particle light scattering coefficient (Bsp) and absorption coefficient (Bap) were measured. Two collocated Micro-Orifice Uniform Deposit Impactor samplers (MOUDI110, MSP, USA) with nominal 50% cut-off aerodynamic diameters of 18, 10, 5.6, 3.2, 1.8, 1, 0.56, 0.32, 0.18, 0.1, and 0.056 μm were used to collect size-resolved particle samples. The average Bsp and Bap were 201.96 ± 105.82 Mm- 1 and 39.91 ± 19.16 Mm- 1, with an average single scattering albedo (ωo) of 0.82 ± 0.07. The theoretical method of light extinction calculation was used to determine the extinction of the size-resolved particulate matters (PM). The reconstructed light scattering coefficient correlated well with the measured scattering value in the Hong Kong urban area. Droplet mode (0.56-1.8 μm) particles contributed most to the particle light extinction (~ 69%). Organic matter, ammonium sulphate and elemental carbon were the key components causing visibility degradation in the droplet (0.56-1.8 μm) and condensation (0.1-0.56 μm) size ranges. Five sources contributing to particle light extinction have been identified using positive matrix factorisation (PMF). Traffic/engine exhausts and secondary aerosols accounted for ~ 36% and ~ 32% of particle light extinction, respectively, followed by sea salt (15%). The remaining sources, soil/fugitive dust and tire dust, contributed by ~ 10% and 7%, respectively, to particle light extinction.

  4. Lateral scattered light used to study laser light propagation in turbid media phantoms

    NASA Astrophysics Data System (ADS)

    Valdes, Claudia; Solarte, Efrain

    2010-02-01

    Laser light propagation in soft tissues is important because of the growing biomedical applications of lasers and the need to optically characterize the biological media. Following previous developments of the group, we have developed low cost models, Phantoms, of soft tissue. The process was developed in a clean room to avoid the medium contamination. Each model was characterized by measuring the refractive index, and spectral reflectance and transmittance. To study the laser light propagation, each model was illuminated with a clean beam of laser light, using sources such as He-Ne (632nm) and DPSSL (473 nm). Laterally scattered light was imaged and these images were digitally processed. We analyzed the intensity distribution of the scattered radiation in order to obtain details of the beam evolution in the medium. Line profiles taken from the intensity distribution surface allow measuring the beam spread, and to find expressions for the longitudinal (along the beam incident direction) and transversal (across the beam incident direction) intensities distributions. From these behaviors, the radiation penetration depth and the total coefficient of extinction have been determined. The multiple scattering effects were remarkable, especially for the low wavelength laser beam.

  5. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    DTIC Science & Technology

    2008-03-01

    ENY/08-M22 Abstract Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser -based flow characterization technique that consists of a narrow...linewidth laser , a molecular absorption filter, and a high resolution camera behind the filter to record images. Gases of different species have...different molecular scattering cross-sections that become apparent as they pass through the interrogating laser light source, and this difference is

  6. Laser control of natural disperse systems

    NASA Astrophysics Data System (ADS)

    Vlasova, Olga L.; Bezrukova, Alexandra G.

    2003-10-01

    Different water disperse systems were studied by integral (spectroturbidemetry) and differential light scattering method with a laser as a source of light. The investigation done concerns the state of kaolin dispersions at storage and under dilution as an example of mineral dispersion systems such as natural water. The role of some light scattering parameters for an optical analysis of water dispersions, like the dispersion of erythrocytes and bacterial cells -Escherichia coli is discussed. The results obtained can help to elaborate the methods for on-line optical control fo natural disperse systems (water, air) with mineral and biological particles.

  7. Polarization Control of Morphological Pattern Orientation During Light-Mediated Synthesis of Nanostructured Se–Te Films

    DOE PAGES

    Carim, Azhar I.; Batara, Nicolas A.; Premkumar, Anjali; ...

    2015-11-23

    The template-free growth of well ordered, highly anisotropic lamellar structures has been demonstrated during the photoelectrodeposition of Se–Te films, wherein the orientation of the pattern can be directed by orienting the linear polarization of the incident light. This control mechanism was investigated further herein by examining the morphologies of films grown photoelectrochemically using light from two simultaneous sources that had mutually different linear polarizations. Photoelectrochemical growth with light from two nonorthogonally polarized same-wavelength sources generated lamellar morphologies in which the long axes of the lamellae were oriented parallel to the intensity-weighted average polarization orientation. Simulations of light scattering at themore » solution–film interface were consistent with this observation. Computer modeling of these growths using combined full-wave electromagnetic and Monte Carlo growth simulations successfully reproduced the experimental morphologies and quantitatively agreed with the pattern orientations observed experimentally by considering only the fundamental light-material interactions during growth. Deposition with light from two orthogonally polarized same-wavelength as well as different-wavelength sources produced structures that consisted of two intersecting sets of orthogonally oriented lamellae in which the relative heights of the two sets could be varied by adjusting the relative source intensities. Simulations of light absorption were performed in analogous, idealized intersecting lamellar structures and revealed that the lamellae preferentially absorbed light polarized with the electric field vector along their long axes. In conclusion, these data sets cumulatively indicate that anisotropic light scattering and light absorption generated by the light polarization produces the anisotropic morphology and that the resultant morphology is a function of all illumination inputs despite differing polarizations.« less

  8. Electronic Holography with a Broad Spectrum Laser for Time Gated Imaging Through Highly Scattering Media.

    NASA Astrophysics Data System (ADS)

    Shih, Marian Pei-Ling

    The problem of optical imaging through a highly scattering volume diffuser, in particular, biological tissue, has received renewed interest in recent years because of a search for alternative imaging diagnostics in the optical wavelengths for the early detection of human breast cancer. This dissertation discusses the optical imaging of objects obscured by diffusers that contribute an otherwise overwhelming degree of multiple scatter. Many optical imaging techniques are based on the first-arriving light principle. These methods usually combine a transilluminating optical short pulse with a time windowing gate in order to form a flat shadowgraph image of absorbing objects either embedded within or hidden behind a scattering medium. The gate selectively records an image of the first-arriving light, while simultaneously rejecting the later-arriving scattered light. One set of the many implementations of the first -arriving light principle relies on the gating property of holography. This thesis presents several holographic optical gating experiments that demonstrate the role that the temporal coherence function of the illumination source plays in the imaging of all objects with short coherence length holography, with special emphasis on the application to image through diffusers and its resolution capabilities. Previous researchers have already successfully combined electronic holography, holography in which the recording medium is a two dimensional detector array instead of photographic film, with light-in-flight holography into a short coherence length holography method that images through various types of multiply scattering random media, including chicken breast tissue and wax. This thesis reports further experimental exploration of the short coherence holography method for imaging through severely scattering diffusers. There is a study on the effectiveness of spatial filtering of the first-arriving light, as well as a report of the imaging, by means of the short coherence holographic method, of an absorber through a living human hand. This thesis also includes both theoretical analyses and experimental results of a spectral dispersion holography system which, instead of optically synthesizing the broad spectrum illumination source that is used for the short coherence holography method, digitally synthesizes a broad spectrum hologram from a collection of single frequency component holograms. This system has the time gating properties of short coherence length holography, as well as experimentally demonstrated applications for imaging through multiply scattering media.

  9. Diffusing wave spectroscopy studies of gelling systems

    NASA Astrophysics Data System (ADS)

    Horne, David S.

    1991-06-01

    The recognition that the transmission of light through a concentrated, opaque system can be treated as a diffusion process has extended the application of photon correlation techniques to the study of particle size, mobility and interactions in such systems. Solutions of the photon diffusion equation are sensitive to the boundary conditions imposed by the geometry of the scattering apparatus. The apparatus, incorporating a bifurcated fiber optic bundle for light transmission between source, sample and detector, takes advantage of the particularly simple solution for a back-scattering configuration. Its ability to measure particle size using monodisperse polystyrene latices and to respond to concentration dependent particle interactions in a study of casein micelle mobility in skim and concentrated milks is demonstrated. Finally, the changes in dynamic light scattering behavior occurring during colloidal gel formation are described and discussed.

  10. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix

    PubMed Central

    Andreoli, Daria; Volpe, Giorgio; Popoff, Sébastien; Katz, Ori; Grésillon, Samuel; Gigan, Sylvain

    2015-01-01

    We present a method to measure the spectrally-resolved transmission matrix of a multiply scattering medium, thus allowing for the deterministic spatiospectral control of a broadband light source by means of wavefront shaping. As a demonstration, we show how the medium can be used to selectively focus one or many spectral components of a femtosecond pulse, and how it can be turned into a controllable dispersive optical element to spatially separate different spectral components to arbitrary positions. PMID:25965944

  11. Light Scattering Analysis of Irregularly Shaped Dust Particles: A Study Using 3-Dimensional Reconstructions from Focused Ion-Beam (FIB) Tomography and Q-Space Analysis

    NASA Astrophysics Data System (ADS)

    Ortiz-Montalvo, D. L.; Conny, J. M.

    2017-12-01

    We study the scattering properties of irregularly shaped ambient dust particles. The way in which they scatter and absorb light has implications for aerosol optical remote sensing and aerosol radiative forcing applications. However, understanding light scattering and absorption by non-spherical particles can be very challenging. We used focused ion-beam scanning electron microscopy and energy-dispersive x-ray spectroscopy (FIB-SEM-EDS) to reconstruct three-dimensional (3-D) configurations of dust particles collected from urban and Asian sources. The 3-D reconstructions were then used in a discrete dipole approximation method (DDA) to determine their scattering properties for a range of shapes, sizes, and refractive indices. Scattering properties where obtained using actual-shapes of the particles, as well as, (theoretical) equivalently-sized geometrical shapes like spheres, ellipsoids, cubes, rectangular prisms, and tetrahedrons. We use Q-space analysis to interpret the angular distribution of the scattered light obtained for each particle. Q-space analysis has been recently used to distinguish scattering by particles of different shapes, and it involves plotting the scattered intensity versus the scattering wave vector (q or qR) on a log-log scale, where q = 2ksin(θ/2), k = 2π/λ, and R = particle effective radius. Results from a limited number of particles show that when Q-space analysis is applied, common patterns appear that agree with previous Q-space studies done on ice crystals and other irregularly shaped particles. More specifically, we found similar Q-space regimes including a forward scattering regime of constant intensity when qR < 1, followed by the Guinier regime when qR ≈ 1, which is then followed by a complex power law regime with a -3 slope regime, a transition regime, and then a -4 slope regime. Currently, Q-space comparisons between actual- and geometric shapes are underway with the objective of determining which geometric shape best represents the angular distribution and magnitude of the scattered light. Current work also focuses on the effects of the imaginary part of the refractive index on the light scattering of our dust particles.

  12. Eliminating Unwanted Far-Field Excitation in Objective-Type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light

    PubMed Central

    Brunstein, Maia; Teremetz, Maxime; Hérault, Karine; Tourain, Christophe; Oheim, Martin

    2014-01-01

    Total internal reflection fluorescence microscopy (TIRFM) achieves subdiffraction axial sectioning by confining fluorophore excitation to a thin layer close to the cell/substrate boundary. However, it is often unknown how thin this light sheet actually is. Particularly in objective-type TIRFM, large deviations from the exponential intensity decay expected for pure evanescence have been reported. Nonevanescent excitation light diminishes the optical sectioning effect, reduces contrast, and renders TIRFM-image quantification uncertain. To identify the sources of this unwanted fluorescence excitation in deeper sample layers, we here combine azimuthal and polar beam scanning (spinning TIRF), atomic force microscopy, and wavefront analysis of beams passing through the objective periphery. Using a variety of intracellular fluorescent labels as well as negative staining experiments to measure cell-induced scattering, we find that azimuthal beam spinning produces TIRFM images that more accurately portray the real fluorophore distribution, but these images are still hampered by far-field excitation. Furthermore, although clearly measureable, cell-induced scattering is not the dominant source of far-field excitation light in objective-type TIRF, at least for most types of weakly scattering cells. It is the microscope illumination optical path that produces a large cell- and beam-angle invariant stray excitation that is insensitive to beam scanning. This instrument-induced glare is produced far from the sample plane, inside the microscope illumination optical path. We identify stray reflections and high-numerical aperture aberrations of the TIRF objective as one important source. This work is accompanied by a companion paper (Pt.2/2). PMID:24606927

  13. Use of polarization to separate on-axis scattered and unscattered light in red blood cells

    NASA Astrophysics Data System (ADS)

    Sardar, Dhiraj K.; Nemati, Babak; Barrera, Frederick J.

    1991-06-01

    The separation of on-axis scattered and unscattered transmission through turbid media has been a difficult experimental task in recent years. This study suggests the use of a polarimeter to filter out the contribution of scattered light to the net on-axis transmission. Red blood cells (RBC) were used to produce the scattering effect. The scattering level was varied by: (1) altering the distance of the detector from the sample, (2) using erythrocytes from three different species, e.g., the dog, goat, and human, which are know to have different RBC sizes, and (3) allowing the RBCs from each species to shrink and swell osmotically. An He-Ne laser was used as the source of the radiation so that data were obtained at a wavelength in the spectral region used in oximetry and hemoglobinometry. In each case, the difference in the scattering cross sections obtained for each sample, with and without polarization filtering, gave us a measure of the filtered scattered light. The results obtained were in close agreement with the expected contribution of scattered radiation to the net axial transmission. This method may be used effectively for all studies involving measurements of on-axis transmission through turbid media, such as biological tissue.

  14. Physical behaviour of anthropogenic light propagation into the nocturnal environment

    PubMed Central

    Aubé, Martin

    2015-01-01

    Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005 Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane. PMID:25780231

  15. Physical behaviour of anthropogenic light propagation into the nocturnal environment.

    PubMed

    Aubé, Martin

    2015-05-05

    Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005 Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Enhanced light harvesting of dye-sensitized solar cells with TiO2 microspheres as light scattering layer

    NASA Astrophysics Data System (ADS)

    Guan, Yingli; Song, Lixin; Zhou, Yangyang; Yin, Xin; Xie, Xueyao; Xiong, Jie

    2017-03-01

    Two kinds of TiO2 microspheres (TMS) with average diameter of 1500 nm but different surface were fabricated by solvothermal method from different Ti source. The effect of TMS on the light harvesting and photovoltaic performance of dye-sensitized solar cells (DSSCs)was investigated. The UV-Vis diffusion reflectance spectra and absorption spectra of N719 dye in detached solutions proved that the TMS showed dual functions of light scattering and dye-adsorption which was an important functional material in DSSCs. The results showed that the TMS made from titanium(IV) isopropoxide with rough surface (TMSR) exhibited better photovoltaic performance than that of TMS made from tetrabutyl titanate with smooth surface (TMSS). To further improve the photovoltaic performance, the double-layered DSSCs made of P25 as an underlayer and TMS as a light-scattering layer (P25-TMS) were fabricated. The photovoltaic performance of double-layered DSSCs was higher than that of the single-layered DSSCs with similar thickness. Especially, the DSSCs made of P25 as an underlayer and the TMSR as a light-scattering layer (P25-TMSR) had a highest power conversion efficiency of 7.62%. This was higher than that of single-layered TMSR-based cell (5.54%), P25-based cell (5.75%), and double-layered P25-TMSS-based cell (6.78%) with similar thickness. This was mainly attributed to the large specific surface area, superior light scattering ability, and fast electron transport of TMSR.

  17. Shaping the light for the investigation of depth-extended scattering media

    NASA Astrophysics Data System (ADS)

    Osten, W.; Frenner, K.; Pedrini, G.; Singh, A. K.; Schindler, J.; Takeda, M.

    2018-02-01

    Scattering media are an ongoing challenge for all kind of imaging technologies including coherent and incoherent principles. Inspired by new approaches of computational imaging and supported by the availability of powerful computers, spatial light modulators, light sources and detectors, a variety of new methods ranging from holography to time-of-flight imaging, phase conjugation, phase recovery using iterative algorithms and correlation techniques have been introduced and applied to different types of objects. However, considering the obvious progress in this field, several problems are still matter of investigation and their solution could open new doors for the inspection and application of scattering media as well. In particular, these open questions include the possibility of extending the 2d-approach to the inspection of depth-extended objects, the direct use of a scattering media as a simple tool for imaging of complex objects and the improvement of coherent inspection techniques for the dimensional characterization of incoherently radiating spots embedded in scattering media. In this paper we show our recent findings in coping with these challenges. First we describe how to explore depth-extended objects by means of a scattering media. Afterwards, we extend this approach by implementing a new type of microscope making use of a simple scatter plate as a kind of flat and unconventional imaging lens. Finally, we introduce our shearing interferometer in combination with structured illumination for retrieving the axial position of fluorescent light emitting spots embedded in scattering media.

  18. Visibility in the Netherlands during New Year's fireworks: The role of soot and salty aerosol products

    NASA Astrophysics Data System (ADS)

    ten Brink, Harry; Henzing, Bas; Otjes, René; Weijers, Ernie

    2018-01-01

    The visibility on New Year's nights in the Netherlands is low during stagnant weather. This is due to the scattering and absorption of light by the aerosol-smoke from the fireworks. We made an assessment of the responsible aerosol-species. The investigation took place during the New Year's night of 2009. Measurements were made at a regional site in the centre of the country away from specific local sources. An Integrating Nephelometer measured the light-scattering by the inherent compounds after removal of water from the aerosol by drying the air. The actual light-scattering was determined in an open-air scatterometer; it was a factor of five higher than the ;dry; value. The difference in actual and ;dry; light-scattering can only be explained by water-uptake of the salty hygroscopic components of the aerosol. This hypothesis is substantiated by measurements of the composition of the aerosol. The size-dependent concentrations of the salty ionic species were determined on-line with a MARGA-;sizer;. These components were for a large part in particles in the size range that most effectively scatter light. The ;dry; light-scattering was exerted by the inorganic salt components and the sooty carbonaceous material alike. However, the salty products from the fireworks are hygroscopic and take up water at the high relative humidities occurring that night. This explains the fivefold larger light-scattering by the wet ambient aerosol as compared to that by the dry aerosol in the integrating nephelometer. The visibility, which is the inverse of the open-air scattering, is thus indirectly governed by the salty products of the fireworks due to their uptake of water. Under stagnant weather conditions during New Year's nights in the Netherlands both the aerosol concentrations and the relative humidity are high; this implies that the ionic species govern the low visibilities in general, be it via their uptake of water.

  19. Reflected scatterometry for noninvasive interrogation of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Kim, Huisung; Doh, Iyll-Joon; Sturgis, Jennifer; Bhunia, Arun K.; Robinson, J. Paul; Bae, Euiwon

    2016-10-01

    A phenotyping of bacterial colonies on agar plates using forward-scattering diffraction-pattern analysis provided promising classification of several different bacteria such as Salmonella, Vibrio, Listeria, and E. coli. Since the technique is based on forward-scattering phenomena, light transmittance of both the colony and the medium is critical to ensure quality data. However, numerous microorganisms and their growth media allow only limited light penetration and render the forward-scattering measurement a challenging task. For example, yeast, Lactobacillus, mold, and several soil bacteria form colorful and dense colonies that obstruct most of the incoming light passing through them. Moreover, blood agar, which is widely utilized in the clinical field, completely blocks the incident coherent light source used in forward scatterometry. We present a newly designed reflection scatterometer and validation of the resolving power of the instrument. The reflectance-type instrument can acquire backward elastic scatter patterns for both highly opaque media and colonies and has been tested with three different bacterial genera grown on blood agar plates. Cross-validation results show a classification rate above 90% for four genera.

  20. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Hong-Wei; Lee, Jonghee; Hofmann, Simone; Hyun Kim, Yong; Müller-Meskamp, Lars; Lüssem, Björn; Wu, Chung-Chih; Leo, Karl; Gather, Malte C.

    2013-05-01

    The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W-1 and external quantum efficiencies of 33% (both at 1000 cd m-2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W-1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.

  1. X-ray Scattering Combined with Coordinate-Based Analyses for Applications in Natural and Artificial Photosynthesis

    PubMed Central

    Tiede, David M.; Mardis, Kristy L.; Zuo, Xiaobing

    2009-01-01

    Advances in x-ray light sources and detectors have created opportunities for advancing our understanding of structure and structural dynamics for supramolecular assemblies in solution by combining x-ray scattering measurement with coordinate-based modeling methods. In this review the foundations for x-ray scattering are discussed and illustrated with selected examples demonstrating the ability to correlate solution x-ray scattering measurements to molecular structure, conformation, and dynamics. These approaches are anticipated to have a broad range of applications in natural and artificial photosynthesis by offering possibilities for structure resolution for dynamic supramolecular assemblies in solution that can not be fully addressed with crystallographic techniques, and for resolving fundamental mechanisms for solar energy conversion by mapping out structure in light-excited reaction states. PMID:19636808

  2. Optical characterization limits of nanoparticle aggregates at different wavelengths using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Eriçok, Ozan Burak; Ertürk, Hakan

    2018-07-01

    Optical characterization of nanoparticle aggregates is a complex inverse problem that can be solved by deterministic or statistical methods. Previous studies showed that there exists a different lower size limit of reliable characterization, corresponding to the wavelength of light source used. In this study, these characterization limits are determined considering a light source wavelength range changing from ultraviolet to near infrared (266-1064 nm) relying on numerical light scattering experiments. Two different measurement ensembles are considered. Collection of well separated aggregates made up of same sized particles and that of having particle size distribution. Filippov's cluster-cluster algorithm is used to generate the aggregates and the light scattering behavior is calculated by discrete dipole approximation. A likelihood-free Approximate Bayesian Computation, relying on Adaptive Population Monte Carlo method, is used for characterization. It is found that when the wavelength range of 266-1064 nm is used, successful characterization limit changes from 21-62 nm effective radius for monodisperse and polydisperse soot aggregates.

  3. The Inherent Visible Light Signature of an Intense Underwater Ultraviolet Light Source Due to Combined Raman and Fluorescence Effects

    DTIC Science & Technology

    2000-01-01

    Humans cannot see ultraviolet light. The blue-sensitive cones in the retina would respond weakly to ultraviolet wavelengths if exposed to them, but...545, 1992. 3. C. S. Yentsch, and D. A. Phinney, " Autofluorescence and Raman scattering in the marine underwater environment," Ocean Optics X, SPIE

  4. Broadband near-field infrared spectroscopy with a high temperature plasma light source.

    PubMed

    Lahneman, D J; Huffman, T J; Xu, Peng; Wang, S L; Grogan, T; Qazilbash, M M

    2017-08-21

    Scattering-type scanning near-field optical microscopy (S-SNOM) has enormous potential as a spectroscopy tool in the infrared spectral range where it can probe phonon resonances and carrier dynamics at the nanometer lengths scales. However, its applicability is limited by the lack of practical and affordable table-top light sources emitting intense broadband infrared radiation in the 100 cm -1 to 2,500 cm -1 spectral range. This paper introduces a high temperature plasma light source that is both ultra-broadband and has much more radiant power in the infrared spectral range than conventional, table-top thermal light sources such as the globar. We implement this plasma lamp in our near-field optical spectroscopy set up and demonstrate its capability as a broadband infrared nano-spectroscopy light source by obtaining near-field infrared amplitude and phase spectra of the phonon resonances of SiO 2 and SrTiO 3 .

  5. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    NASA Astrophysics Data System (ADS)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  6. Coupling a versatile aerosol apparatus to a synchrotron: Vacuum ultraviolet light scattering, photoelectron imaging, and fragment free mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shu, Jinian; Wilson, Kevin R.; Ahmed, Musahid; Leone, Stephen R.

    2006-04-01

    An aerosol apparatus has been coupled to the Chemical Dynamics Beamline of the Advanced Light Source at Lawrence Berkeley National Laboratory. This apparatus has multiple capabilities for aerosol studies, including vacuum ultraviolet (VUV) light scattering, photoelectron imaging, and mass spectroscopy of aerosols. By utilizing an inlet system consisting of a 200μm orifice nozzle and aerodynamic lenses, aerosol particles of ˜50nm-˜1μm in diameter can be sampled directly from atmospheric pressure. The machine is versatile and can probe carbonaceous aerosols generated by a laboratory flame, nebulized solutions of biological molecules, hydrocarbon aerosol reaction products, and synthesized inorganic nanoparticles. The sensitivity of this apparatus is demonstrated by the detection of nanoparticles with VUV light scattering, photoelectron imaging, and charged particle detection. In addition to the detection of nanoparticles, the thermal vaporization of aerosols on a heater tip leads to the generation of intact gas phase molecules. This phenomenon coupled to threshold single photon ionization, accessible with tunable VUV light, allows for fragment-free mass spectrometry of complex molecules. The initial experiments with light scattering, photoelectron imaging, and aerosol mass spectrometry reported here serve as a demonstration of the design philosophy and multiple capabilities of the apparatus.

  7. Fast method of cross-talk effect reduction in biomedical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nowakowski, Maciej; Kolenderska, Sylwia M.; Borycki, Dawid; Wojtkowski, Maciej

    2016-03-01

    Optical imaging of biological samples or living tissue structures requires light delivery to a region of interest and then collection of scattered light or fluorescent light in order to reconstruct an image of the object. When the coherent illumination light enters bulky biological object, each of scattering center (single molecule, group of molecules or other sample feature) acts as a secondary light source. As a result, scattered spherical waves from these secondary sources interact with each other, generating cross-talk noise between optical channels (eigenmodes). The cross-talk effect have serious impact on the performance of the imaging systems. In particular it reduces an ability of optical system to transfer high spatial frequencies thereby reducing its resolution. In this work we present a fast method to eliminate all unwanted waves combination, that overlap at image plane, suppressing recovery of high spatial frequencies by using the spatio-temporal optical coherence manipulation (STOC, [1]). In this method a number of phase mask is introduced to illuminating beam by spatial light modulator in a time of single image acquisition. We use a digital mirror device (DMD) in order to rapid cross-talk noise reduction (up to 22kHz modulation frequency) when imaging living biological cells in vivo by using full-field microscopy setup with double pass arrangement. This, to our best knowledge, has never been shown before. [1] D. Borycki, M. Nowakowski, and M. Wojtkowski, Opt. Lett. 38, 4817 (2013).

  8. Mie Scattering of Growing Molecular Contaminants

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2007-01-01

    Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers and to produce many roughly hemispherical "islands" of contamination on the surface. The mathematics of the hemispherical scattering is simplified by introducing a Virtual source below the plane of the optic, in this case a mirror, allowing the use of Mie theory to produce a solution for the resulting sphere .in transmission. Experimentally, a fixed wavelength in the vacuum ultraviolet was used as the illumination source and scattered light from the polished and coated glass mirrors was detected at a fixed angle as the contamination islands grew in time.

  9. Nonlinear Brightness Optimization in Compton Scattering

    DOE PAGES

    Hartemann, Fred V.; Wu, Sheldon S. Q.

    2013-07-26

    In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. We discuss these effects, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force.

  10. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-07-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  11. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-01-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  12. The angular distribution of diffusely backscattered light

    NASA Astrophysics Data System (ADS)

    Vera, M. U.; Durian, D. J.

    1997-03-01

    The diffusion approximation predicts the angular distribution of light diffusely transmitted through an opaque slab to depend only on boundary reflectivity, independent of scattering anisotropy, and this has been verified by experiment(M.U. Vera and D.J. Durian, Phys. Rev. E 53) 3215 (1996). Here, by contrast, we demonstrate that the angular distribution of diffusely backscattered light depends on scattering anisotropy as well as boundary reflectivity. To model this observation scattering anisotropy is added to the diffusion approximation by a discontinuity in the photon concentration at the source point that is proportional to the average cosine of the scattering angle. We compare the resulting predictions with random walk simulations and with measurements of diffusely backscattered intensity versus angle for glass frits and aqueous suspensions of polystyrene spheres held in air or immersed in a water bath. Increasing anisotropy and boundary reflectivity each tend to flatten the predicted distributions, and for different combinations of anisotropy and reflectivity the agreement between data and predictions ranges from qualitatively to quantitatively good.

  13. Light-absorbing carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions

    EPA Science Inventory

    Carbonaceous aerosols are ubiquitous in the atmosphere and can directly affect Earth’s climate by absorbing and scattering incoming solar radiation. Both field and laboratory measurements have confirmed that biomass burning (BB) is an important primary source of light absorbing o...

  14. Scattering properties of ultrafast laser-induced refractive index shaping lenticular structures in hydrogels

    NASA Astrophysics Data System (ADS)

    Wozniak, Kaitlin T.; Germer, Thomas A.; Butler, Sam C.; Brooks, Daniel R.; Huxlin, Krystel R.; Ellis, Jonathan D.

    2018-02-01

    We present measurements of light scatter induced by a new ultrafast laser technique being developed for laser refractive correction in transparent ophthalmic materials such as cornea, contact lenses, and/or intraocular lenses. In this new technique, called intra-tissue refractive index shaping (IRIS), a 405 nm femtosecond laser is focused and scanned below the corneal surface, inducing a spatially-varying refractive index change that corrects vision errors. In contrast with traditional laser correction techniques, such as laser in-situ keratomileusis (LASIK) or photorefractive keratectomy (PRK), IRIS does not operate via photoablation, but rather changes the refractive index of transparent materials such as cornea and hydrogels. A concern with any laser eye correction technique is additional scatter induced by the process, which can adversely affect vision, especially at night. The goal of this investigation is to identify sources of scatter induced by IRIS and to mitigate possible effects on visual performance in ophthalmic applications. Preliminary light scattering measurements on patterns written into hydrogel showed four sources of scatter, differentiated by distinct behaviors: (1) scattering from scanned lines; (2) scattering from stitching errors, resulting from adjacent scanning fields not being aligned to one another; (3) diffraction from Fresnel zone discontinuities; and (4) long-period variations in the scans that created distinct diffraction peaks, likely due to inconsistent line spacing in the writing instrument. By knowing the nature of these different scattering errors, it will now be possible to modify and optimize the design of IRIS structures to mitigate potential deficits in visual performance in human clinical trials.

  15. 3D reconstruction of internal structure of animal body using near-infrared light

    NASA Astrophysics Data System (ADS)

    Tran, Trung Nghia; Yamamoto, Kohei; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2014-03-01

    To realize three-dimensional (3D) optical imaging of the internal structure of animal body, we have developed a new technique to reconstruct CT images from two-dimensional (2D) transillumination images. In transillumination imaging, the image is blurred due to the strong scattering in the tissue. We had developed a scattering suppression technique using the point spread function (PSF) for a fluorescent light source in the body. In this study, we have newly proposed a technique to apply this PSF for a light source to the image of unknown light-absorbing structure. The effectiveness of the proposed technique was examined in the experiments with a model phantom and a mouse. In the phantom experiment, the absorbers were placed in the tissue-equivalent medium to simulate the light-absorbing organs in mouse body. Near-infrared light was illuminated from one side of the phantom and the image was recorded with CMOS camera from another side. Using the proposed techniques, the scattering effect was efficiently suppressed and the absorbing structure can be visualized in the 2D transillumination image. Using the 2D images obtained in many different orientations, we could reconstruct the 3D image. In the mouse experiment, an anesthetized mouse was held in an acrylic cylindrical holder. We can visualize the internal organs such as kidneys through mouse's abdomen using the proposed technique. The 3D image of the kidneys and a part of the liver were reconstructed. Through these experimental studies, the feasibility of practical 3D imaging of the internal light-absorbing structure of a small animal was verified.

  16. An improved radiation metric. [for radiation pressure in strong gravitational fields

    NASA Technical Reports Server (NTRS)

    Noerdlinger, P. D.

    1976-01-01

    An improved radiation metric is obtained in which light rays make a small nonzero angle with the radius, thus representing a source of finite size. Kaufmann's previous solution is criticized. The stabilization of a scatterer near a source of gravitational field and radiation is slightly enhanced for sources of finite size.

  17. Patterns and properties of polarized light in air and water

    PubMed Central

    Cronin, Thomas W.; Marshall, Justin

    2011-01-01

    Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication. PMID:21282165

  18. Looking for Dust-Scattering Light Echoes

    NASA Astrophysics Data System (ADS)

    Mills, Brianna; Heinz, Sebastian; Corrales, Lia

    2018-01-01

    Galactic X-ray transient sources such as neutron stars or black holes sometimes undergo an outburst in X-rays. Ring structures have been observed around three such sources, produced by the X-ray photons being scattered by interstellar dust grains along our line of sight. These dust-scattering light echoes have proven to be a useful tool for measuring and constraining Galactic distances, mapping the dust structure of the Milky Way, and determining the dust composition in the clouds producing the echo. Detectable light echoes require a sufficient quantity of dust along our line of sight, as well as bright, short-lived Galactic X-ray flares. Using data from the Monitor of All-Sky X-ray Image (MAXI) on-board the International Space Station, we ran a peak finding algorithm in Python to look for characteristic flare events. Each flare was characterized by its fluence, the integrated flux of the flare over time. We measured the distribution of flare fluences to show how many observably bright flares were recorded by MAXI. This work provides a parent set for dust echo searches in archival X-ray data and will inform observing strategies with current and future X-ray missions such as Athena and Lynx.

  19. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Kubala, S. Z.; Borchardt, M. T.; Den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  20. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic.

    PubMed

    Kubala, S Z; Borchardt, M T; Den Hartog, D J; Holly, D J; Jacobson, C M; Morton, L A; Young, W C

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  1. Through-transmission laser welding of glass fibre composite: Experimental light scattering identification

    NASA Astrophysics Data System (ADS)

    Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam

    2018-05-01

    The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.

  2. High resolution Thomson scattering system for steady-state linear plasma sources

    NASA Astrophysics Data System (ADS)

    Lee, K. Y.; Lee, K. I.; Kim, J. H.; Lho, T.

    2018-01-01

    The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (Te) and its density (ne) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB6) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 1019 m-3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters Te and ne with the incoherent scattering spectrum.

  3. High resolution Thomson scattering system for steady-state linear plasma sources.

    PubMed

    Lee, K Y; Lee, K I; Kim, J H; Lho, T

    2018-01-01

    The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (T e ) and its density (n e ) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB 6 ) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 10 19 m -3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters T e and n e with the incoherent scattering spectrum.

  4. Prize for Industrial Applications of Physics Talk: The Inverse Scattering Problem and the role of measurements in its solution

    NASA Astrophysics Data System (ADS)

    Wyatt, Philip

    2009-03-01

    The electromagnetic inverse scattering problem suggests that if a homogeneous and non-absorbing object be illuminated with a monochromatic light source and if the far field scattered light intensity is known at sufficient scattering angles, then, in principle, one could derive the dielectric structure of the scattering object. In general, this is an ill-posed problem and methods must be developed to regularize the search for unique solutions. An iterative procedure often begins with a model of the scattering object, solves the forward scattering problem using this model, and then compares these calculated results with the measured values. Key to any such solution is instrumentation capable of providing adequate data. To this end, the development of the first laser based absolute light scattering photometers is described together with their continuing evolution and some of the remarkable discoveries made with them. For particles much smaller than the wavelength of the incident light (e.g. macromolecules), the inverse scattering problems are easily solved. Among the many solutions derived with this instrumentation are the in situ structure of bacterial cells, new drug delivery mechanisms, the development of new vaccines and other biologicals, characterization of wines, the possibility of custom chemotherapy, development of new polymeric materials, identification of protein crystallization conditions, and a variety discoveries concerning protein interactions. A new form of the problem is described to address bioterrorist threats. Over the many years of development and refinement, one element stands out as essential for the successes that followed: the R and D teams were always directed and executed by physics trained theorists and experimentalists. 14 Ph. D. physicists each made his/her unique contribution to the development of these evolving instruments and the interpretation of their results.

  5. Perils at the heart of the Milky Way: Systematic effects for studying low-luminosity accretion onto Sgr A*

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Mon, Brayden; Haggard, Daryl; Baganoff, Frederick K.; Garmire, Gordon; Degenaar, Nathalie; Reynolds, Mark

    2017-08-01

    The supermassive black hole at the center of our galaxy, Sgr A*, is surprisingly under-luminous. This problem has motivated a host of theoretical models to explain low-level radiatively inefficient accretion flows onto compact objects. We discuss how the Galactic Center sight line, which is optically thick to the scattering of soft X-rays (tau ~ 5), affects high resolution studies of the accretion flow around Sgr A*. X-ray light from compact objects in the dense GC environment is scattered by foreground dust, producing scattering echoes that are time delayed relative to the X-ray source's light curve. We discuss the scattering halo of SWIFT J174540.7-290015, which underwent the brightest X-ray outburst within 30’' of Sgr A*. Preliminary fits to the scattering halo suggest that a small amount of foreground dust, within 250 pc of the GC, affects the X-ray surface brightness profile within 10’' of any GC point source. The associated time delay is on the order of several hours, which is important for understanding the quiescent accretion flow of Sgr A*. We take advantage of the Chandra Galactic Center XVP dataset to explore the effect of the interstellar medium on the inferred characteristics of Sgr A*.

  6. Optimization of Compton Source Performance through Electron Beam Shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander; Yampolsky, Nikolai

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a waymore » so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.« less

  7. A novel methodology for radiative transfer in a planetary atmosphere. I - The functions a exponent m and b exponent m of anisotropic scattering

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.; Kalaba, R. E.

    1977-01-01

    The original problem of anisotropic scattering in an atmosphere illuminated by a unidirectional source is replaced by an analogous formulation where the incident light is omnidirectional. A radiative-transfer equation for the omnidirectional case is obtained in which the direction of illumination plays no role and the source-function analog, Sobolev's (1972) source function Phi exponent m, contains only a single integral term. For radiation incident on the top or the bottom of the atmosphere, this equation involves the functions b exponent m and h exponent m, respectively, with m corresponding to the order of the harmonic component of the scattered radiation field; these two functions are shown to be only one through some simple reciprocity relations. The transfer problem is then reformulated for the function a exponent m, in which case the source-function analog (Sobolev's function D exponent m) involves incident direction.

  8. Simulation comparison of aircraft landing performance in foggy conditions aided by different UV sensors.

    PubMed

    Lavigne, Claire; Durand, Gérard; Roblin, Antoine

    2009-04-20

    In the atmosphere pointlike sources are surrounded by an aureole due to molecular and aerosol scattering. UV phase functions of haze droplets have a very important forward peak that limits signal angular spreading in relation to the clear atmosphere case where Rayleigh scattering predominates. This specific property can be exploited using solar blind UV source detection as an aircraft landing aid under foggy conditions. Two methods have been used to compute UV light propagation, based on the Monte Carlo technique and a semi-empirical approach. Results obtained after addition of three types of sensor and UV runway light models show that an important improvement in landing conditions during foggy weather could be achieved by use of a solar blind UV intensified CCD camera with two stages of microchannel plates.

  9. Electromagnetic pulse scattering by a spacecraft nearing light speed.

    PubMed

    Garner, Timothy J; Lakhtakia, Akhlesh; Breakall, James K; Bohren, Craig F

    2017-08-01

    Humans will launch spacecraft that travel at an appreciable fraction of the speed of light. Spacecraft traffic will be tracked by radar. Scattering of pulsed electromagnetic fields by an object in uniform translational motion at relativistic speed may be computed using the frame-hopping technique. Pulse scattering depends strongly on the velocity, shape, orientation, and composition of the object. The peak magnitude of the backscattered signal varies by many orders of magnitude, depending on whether the object is advancing toward or receding from the source of the interrogating signal. The peak magnitude of the backscattered signal goes to zero as the object recedes from the observer at a speed very closely approaching light speed, rendering the object invisible to the observer. The energy scattered by an object in motion may increase or decrease relative to the energy scattered by the same object at rest. Both the magnitude and sign of the change depend on the velocity of the object, as well as on its shape, orientation, and composition. In some cases, the change in total scattered energy is greatest when the object is moving transversely to the propagation direction of the interrogating signal, even though the Doppler effect is strongest when the motion is parallel or antiparallel to the propagation direction.

  10. Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies.

    PubMed

    Steelman, Zachary A; Eldridge, Will J; Weintraub, Jacob B; Wax, Adam

    2017-12-01

    The refractive index (RI) of biological materials is a fundamental parameter for the optical characterization of living systems. Numerous light scattering technologies are grounded in a quantitative knowledge of the refractive index at cellular and subcellular scales. Recent work in quantitative phase microscopy (QPM) has called into question the widely held assumption that the index of the cell nucleus is greater than that of the cytoplasm, a result which disagrees with much of the current literature. In this work, we critically examine the measurement of the nuclear and whole-cell refractive index using QPM, validating that nuclear refractive index is lower than that of cytoplasm in four diverse cell lines and their corresponding isolated nuclei. We further examine Mie scattering and phase-wrapping as potential sources of error in these measurements, finding they have minimal impact. Finally, we use simulation to examine the effects of incorrect RI assumptions on nuclear morphology measurements using angle-resolved scattering information. Despite an erroneous assumption of the nuclear refractive index, accurate measurement of nuclear morphology was maintained, suggesting that light scattering modalities remain effective. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cavity Attenuated Phase Shift (CAPS) Monitor Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek, Arthur J.

    2016-04-01

    The CAPS PMex monitor is a cavity attenuated phase shift extinction instrument. It operates as an optical extinction spectrometer, using a visible-light-emitting diode (LED) as the light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector. Its efficacy is based on the fact that aerosols are broadband scatterers and absorbers of light.

  12. Influence of pump-field scattering on nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2005-04-01

    Optical parametric process occurring in a nonlinear planar waveguide can serve as a source of light with nonclassical properties. The properties of the generated fields are substantially modified by scattering of the nonlinearly interacting fields in a photonic-band-gap structure inside the waveguide. A general quantum model of linear operator amplitude corrections to the amplitude mean values and its numerical analysis provide conditions for efficient squeezed-light generation as well as generation of light with sub-Poissonian photon-number statistics. The destructive influence of phase mismatch of the nonlinear interaction can fully be compensated using a suitable photonic-band-gap structure inside the waveguide. Also an increase of the signal-to-noise ratio of the incident optical field can be reached in the waveguide.

  13. The rapid determination of fat and protein content in fresh raw milk using the laser light scattering technology

    NASA Astrophysics Data System (ADS)

    Xin, Qi; Zhi Ling, Hou; Jian Long, Tian; Zhu, Yu

    2006-08-01

    The aim was to develop a simple and rapid method for determination of fat and protein content in milk. Based on the laser light scattering theory, the ratio of the scattered light (at 90±0.05° scattering angles) intensity to the transmitted light intensity, which is called scattered-transmitted-ratio method, is adopted as the optical parameter representing the milk fat content and the protein content. In this way, the influence of the fluctuation of the power of the light source is eliminated and the accuracy of determination is improved accordingly. The system we use is real-time and can satisfy the challenging requirements of dairy farming. Results of this study indicate the feasibility of using this technology for fresh milk fat and protein analysis. The fat contents and protein contents of 50 milk samples determined by this method were consistent with the values obtained by the reference methods based on Rose-Gottlieb method and Kjeldahl determination of N method. In this paper, the operating principle of the instrument is introduced and the influence of the environmental conditions, such as the homogenization pressure and homogenization temperature, etc. on the result of the test is analyzed. Through data analysis, the concrete schemes for testing the fat using the curve fitting and testing the protein using the surface fitting technique are determined. Finally, the difference from the reference values of the test is discussed.

  14. Polarized Raman spectroscopy of bone tissue: watch the scattering

    NASA Astrophysics Data System (ADS)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-02-01

    Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.

  15. Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.

    PubMed

    Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang

    2015-10-27

    Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.

  16. Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz.

    PubMed

    Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Ikemoto, Yuka; Okamura, Hidekazu

    2012-05-07

    Infrared (IR) spectroscopy is a versatile analytical method and nano-scale spatial resolution could be achieved by scattering type near-field optical microscopy (s-SNOM). The spectral bandwidth was, however, limited to approximately 300 cm(-1) with a laser light source. In the present study, the development of a broadband mid-IR near-field spectroscopy with a ceramic light source is demonstrated. A much wider bandwidth (at least 3000 to 1000 cm(-1)) is achieved with a ceramic light source. The experimental data on quartz Si-O phonon resonance bands are well reproduced by theoretical simulations indicating the validity of the present broadband near-field IR spectroscopy.

  17. Detecting apoptosis using dynamic light scattering with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Mariampillai, Adrian; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-07-01

    A dynamic light scattering technique is implemented using optical coherence tomography (OCT) to measure the change in intracellular motion as cells undergo apoptosis. Acute myeloid leukemia cells were treated with cisplatin and imaged at a frame rate of 166 Hz using a 1300 nm swept-source OCT system at various times over a period of 48 h. Time correlation analysis of the speckle intensities indicated a significant increase in intracellular motion 24 h after treatment. This rise in intracellular motion correlated with histological findings of irregularly shaped and fragmented cells indicative of cell membrane blebbing and fragmentation.

  18. Contamination study

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Herren, Kenneth A.

    1990-09-01

    The time dependence of the angular reflectance from molecularly contaminated optical surfaces in the Vacuum Ultraviolet (VUV) is measured. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using non-coherent VUV sources with the predominant wavelengths being the Krypton resonance lines at 1236 and 1600 A. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (Bidirectional Reflectance Distribution Functions) experiment is described and details of the ongoing program to characterize optical materials exposed to the space environment is reported.

  19. NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal

    2016-07-27

    National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.

  20. Robert R. Wilson Prize III: Applications of Intrabeam Scattering Formulae to a Myriad of Accelerator Systems

    NASA Astrophysics Data System (ADS)

    Mtingwa, Sekazi K.

    2017-01-01

    We discuss our entree into accelerator physics and the problem of intrabeam scattering in particular. We focus on the historical importance of understanding intrabeam scattering for the successful operation of Fermilab's Accumulator and Tevatron and the subsequent hunt for the top quark, and its importance for successful operation of CERN's Large Hadron Collider that discovered the Higgs boson. We provide details on intrabeam scattering formalisms for hadron and electron beams at high energies, concluding with an Ansatz by Karl Bane that has applications to electron damping rings and synchrotron light sources.

  1. Double frequency of difference frequency signals for optical Doppler effect measuring velocity

    NASA Astrophysics Data System (ADS)

    Yang, Xiufang; Zhou, Renkui; Wei, W. L.; Wang, Xiaoming

    2005-12-01

    The mathematical model for measuring moving objects (including fluid body, rolled steel materials in the steel works, turbulent flow, vibration body, etc.) velocity or speed by non-contact method is established using light-wave Doppler effect in this paper. In terms of concrete conditions of different optical circuits, and with the correlated conditions substituted, it is easy to obtain the measurement velocity formulas related to optical circuits. An optical circuit layout of difference Doppler effect measuring velocity is suggested in this paper. The fine beam of light emitted by laser is divided into parallel two beam by spectroscope and mirror They are focused on the object point p by a condenser lens respectively. The object point p become a diffuse source. It scatter rays to every aspect. Some rays scattered by the diffuse source p are collected by a lens. Photoelectric detecter receive the lights collected by the lens. This optical circuit layout can realize the double frequency of difference frequency signals in a novel way.

  2. Investigation of light source and scattering medium related to vapor-screen flow visualization in a supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Snow, W. L.; Morris, O. A.

    1984-01-01

    Methods for increasing the radiant in light sheets used for vapor screen set-ups were investigated. Both high-pressure mercury arc lamps and lasers were considered. Pulsed operation of the air-cooled 1-kW lamps increased the light output but decreased reliability. An ellipsoidal mirror improved the output of the air-cooled lamps by concentrating the light but increased the complexity of the housing. Water-cooled-4-kW lamps coupled with high-aperture Fresnel lenses provided reasonable improvements over the air-cooled lamps. Fanned laser beams measurements of scattered light versus dew point made in conjunction with successful attempts to control the fluid injection. A number of smoke generators are described and test results comparing smoke and vapor screens are shown. Finally, one test included a periscope system to relay the image to a camera outside the flow.

  3. The Gaussian Plasma Lens in Astrophysics: Refraction

    NASA Astrophysics Data System (ADS)

    Clegg, Andrew W.; Fey, Alan L.; Lazio, T. Joseph W.

    1998-03-01

    We present the geometrical optics for refraction of a distant background radio source by an interstellar plasma lens, with specific application to a lens with a Gaussian profile of free-electron column density. The refractive properties of the lens are specified completely by a dimensionless parameter α, which is a function of the wavelength of observation, the free-electron column density through the lens, the lens-observer distance, and the diameter of the lens transverse to the line of sight. A lens passing between the observer and a background source, due to the relative motions of the observer, lens, and source, produces modulations in the light curve of the background source. Because plasma lenses are diverging, the light curve displays a minimum in the background source's flux density, formed when the lens is on-axis, surrounded by enhancements above the nominal (unlensed) flux density. The exact form of the light curve depends only upon the parameter α and the relative angular sizes of the source and lens as seen by the observer. Other effects due to lensing include the following: (1) the formation of caustic surfaces, upon which the apparent brightness of the background source becomes very large; (2) the possible creation of multiple images of the background source; and (3) angular position wander of the background source. If caustics are formed, the separation of the outer caustics can be used to constrain α, while the separation of the inner caustics can constrain the size of the lens. We apply our analysis to two sources, which have undergone extreme scattering events: (1) 0954+658, a source for which we can identify multiple caustics in its light curve, and (2) 1741-038, for which polarization observations were obtained during and after the scattering event. We find general agreement between modeled and observed light curves at 2.25 GHz, but poor agreement at 8.1 GHz. The discrepancies between the modeled and observed light curves may result from some combination of substructure within the lens, an anisotropic lens shape, a lens which only grazes the source rather than passing completely over it, or unresolved substructure within the extragalactic sources. Our analysis also allows us to place constraints on the physical characteristics of the lens. The inferred properties of the lens responsible for the scattering event toward 0954+658 (1741-038) are that it was 0.38 AU (0.065 AU) in diameter with a peak column density of 0.24 pc cm-3 (10-4 pc cm-3), an electron density within the lens of 105 cm-3 (300 cm-3), and a mass of 6.5 × 10-14 M⊙ (10-18 M⊙). The angular position wander caused by the lens was 250 mas (0.4 mas) at 2.25 GHz. In the case of 1741-038, we can place an upper limit of only 100 mG on the magnetic field within the lens.

  4. Dynamic light scattering measurements of mutual diffusion coefficients of water-rich 2-butoxyethanol/water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, T.M.; Pecora, R.

    1988-03-24

    The mutual diffusion coefficients of the water-rich region of the 2-butoxyethanol (BE)water system were measured by dynamic light scattering at 10, 25, and 40/sup 0/C. At mole fraction of BE greater than 0.02 (X/sub BE/ greater than or equal to 0.02), the results were in good agreement with the work of T. Kato. Below X/sub BE/ = 0.02 an anomalous diffusion region appeared with particles of apparent hydrodynamic radius of up to 1000 A being observed in agreement with the work of S. Kato et al. Further investigations using BE from different sources did not show the anomalous diffusion regionmore » and indicate that the possible presence of small amounts of contaminants in the BE is the source of this anomalous diffusion data« less

  5. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties.

    PubMed

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi

    2011-02-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.

  6. Raman Scattering by Molecular Hydrogen and Nitrogen in Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Oklopčić, Antonija; Hirata, Christopher M.; Heng, Kevin

    2016-11-01

    An important source of opacity in exoplanet atmospheres at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process—Raman scattering. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide information about atmospheric properties. Raman scattering affects the geometric albedo spectra of planets in the following ways. First, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Second, it shifts the wavelengths of spectral features in the reflected light causing the so-called Raman ghost lines. Raman scattering can also cause a broadband reduction of the albedo due to wavelength shifting of a stellar spectrum with red spectral index. Observing the Raman peaks in the albedo could be used to measure the column density of gas, thus providing constraints on the presence of clouds in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere, even molecules like H2 or N2, which do not have prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. In this paper, we investigate the effects of Raman scattering in hydrogen- and nitrogen-dominated atmospheres. We analyze the feasibility of detecting the signatures of Raman scattering with the existing and future observational facilities, and of using these signatures as probes of exoplanetary atmospheres.

  7. VizieR Online Data Catalog: Raman scattering cross sections for H2 (Oklopcic+,

    NASA Astrophysics Data System (ADS)

    Oklopcic, A.; Hirata, C. M.; Heng, K.

    2017-02-01

    An important source of opacity in exoplanet atmospheres at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process-Raman scattering. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide information about atmospheric properties. Raman scattering affects the geometric albedo spectra of planets in the following ways. First, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Second, it shifts the wavelengths of spectral features in the reflected light causing the so-called Raman ghost lines. Raman scattering can also cause a broadband reduction of the albedo due to wavelength shifting of a stellar spectrum with red spectral index. Observing the Raman peaks in the albedo could be used to measure the column density of gas, thus providing constraints on the presence of clouds in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere, even molecules like H2 or N2, which do not have prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. In this paper, we investigate the effects of Raman scattering in hydrogen- and nitrogen-dominated atmospheres. We analyze the feasibility of detecting the signatures of Raman scattering with the existing and future observational facilities, and of using these signatures as probes of exoplanetary atmospheres. (1 data file).

  8. Raman scattering by H2 and N2 in the atmospheres of exoplanets

    NASA Astrophysics Data System (ADS)

    Oklopcic, Antonija; Hirata, Christopher M.; Heng, Kevin

    2016-06-01

    Rayleigh scattering is an important source of opacity in the atmospheres of exoplanets at short optical and near-UV wavelengths. Raman scattering is an inelastic process related to Rayleigh scattering, but with a weaker cross section. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets. Raman scattering causes filling-in of absorption lines in the incident spectrum, thus producing sharp enhancements in the geometric albedo. It also shifts the wavelengths of spectral features in the reflected light causing the Raman ghost lines. Observing the albedo enhancements could be used to measure the column density of the scattering molecule and provide constrains on the presence of clouds and hazes in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere -- molecules like H2 or N2 which do not show prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. Here we present how these signatures of Raman scattering in hydrogen- and nitrogen-dominated atmospheres can be used as probes of atmospheric pressure, temperature and composition. We analyze the feasibility of detecting these features in the albedo spectra of nearby exoplanets with the existing and future observational facilities.

  9. Modeling of light distribution in the brain for topographical imaging

    NASA Astrophysics Data System (ADS)

    Okada, Eiji; Hayashi, Toshiyuki; Kawaguchi, Hiroshi

    2004-07-01

    Multi-channel optical imaging system can obtain a topographical distribution of the activated region in the brain cortex by a simple mapping algorithm. Near-infrared light is strongly scattered in the head and the volume of tissue that contributes to the change in the optical signal detected with source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. We report theoretical investigations on the spatial resolution of the topographic imaging of the brain activity. The head model for the theoretical study consists of five layers that imitate the scalp, skull, subarachnoid space, gray matter and white matter. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The source-detector pairs are one dimensionally arranged on the surface of the model and the distance between the adjoining source-detector pairs are varied from 4 mm to 32 mm. The change in detected intensity caused by the absorption change is obtained by Monte Carlo simulation. The position of absorption change is reconstructed by the conventional mapping algorithm and the reconstruction algorithm using the spatial sensitivity profiles. We discuss the effective interval between the source-detector pairs and the choice of reconstruction algorithms to improve the topographic images of brain activity.

  10. Ultrasound-mediation of self-illuminating reporters improves imaging resolution in optically scattering media

    PubMed Central

    Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.

    2018-01-01

    In vivo imaging of self-illuminating bio-and chemiluminescent reporters is used to observe the physiology of small animals. However, strong light scattering by biological tissues results in poor spatial resolution of the optical imaging, which also degrades the quantitative accuracy. To overcome this challenging problem, focused ultrasound is used to modulate the light from the reporter at the ultrasound frequency. This produces an ultrasound switchable light ‘beacon’ that reduces the influence of light scattering in order to improve spatial resolution. The experimental results demonstrate that apart from light modulation at the ultrasound frequency (AC signal at 3.5 MHz), ultrasound also increases the DC intensity of the reporters. This is shown to be due to a temperature rise caused by insonification that was minimized to be within acceptable mammalian tissue safety thresholds by adjusting the duty cycle of the ultrasound. Line scans of bio-and chemiluminescent objects embedded within a scattering medium were obtained using ultrasound modulated (AC) and ultrasound enhanced (DC) signals. Lateral resolution is improved by a factor of 12 and 7 respectively, as compared to conventional CCD imaging. Two chemiluminescent sources separated by ~10 mm at ~20 mm deep inside a 50 mm thick chicken breast have been successfully resolved with an average signal-to-noise ratio of approximately 8-10 dB. PMID:29675309

  11. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  12. A numerical experiment on light pollution from distant sources

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.

    2011-08-01

    To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.

  13. Analysis of phase conjugation in a turbid medium

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Cantero, Sergio; Tseng, Snow; DiMarzio, Charles A.

    2014-03-01

    The ability to focus light in most tissue degrades quickly with depth due to high optical scattering. Recently, researchers have found they can concentrate light tightly despite these scattering effects by using a guidestar and optical phase conjugation to focus light to greater distances in tissue. An optical or probe signal is transmitted through a scattering medium and its resulting wavefront is detected. The wavefront is then conjugated and utilized as a new optical source or delivery wave that focuses back to the guidestar's location with minimal scattering. The power in the delivery wave may be greatly increased for enhanced energy delivery at the focus. Modulation by an ultrasound (US) beam may be utilized to generate the guidestar dynamically and allow for US-resolution at depths of several millimeters. The delivery wave is successful at focusing light back at the guidestar because it creates constructive interference at the desired focus. However, if the phases of the field contributions change, we expect the delivered power at the focus to be reduced. This paper will analyze the robustness of this method when the probe beam is at one wavelength and the delivery wave is at another. This will allow us to characterize the deleterious effects of varying the phase contributions at the focus.

  14. Variable ratio beam splitter for laser applications

    NASA Technical Reports Server (NTRS)

    Brown, R. M.

    1971-01-01

    Beam splitter employing birefringent optics provides either widely different or precisely equal beam ratios, it can be used with laser light source systems for interferometry of lossy media, holography, scattering measurements, and precise beam ratio applications.

  15. Sources of background light on space based laser communications links

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2018-05-01

    We discuss the sources and levels of background light that should be expected on space based laser communication (lasercom) crosslinks and uplinks, as well as on downlinks to ground stations. The analyses are valid for both Earth orbiting satellites and inter-planetary links. Fundamental equations are derived suitable for first order system engineering analyses of potential lasercom systems. These divide sources of background light into two general categories: extended sources which fill the field of view of a receiver's optics, and point sources which cannot be resolved by the optics. Specific sources of background light are discussed, and expected power levels are estimated. For uplinks, reflected sunlight and blackbody radiation from the Earth dominates. For crosslinks, depending on specific link geometry, sources of background light may include the Sun in the field of view (FOV), reflected sunlight and blackbody radiation from planets and other bodies in the solar system, individual bright stars in the FOV, the amalgam of dim stars in the FOV, zodiacal light, and reflected sunlight off of the transmitting spacecraft. For downlinks, all of these potentially come into play, and the effects of the atmosphere, including turbulence, scattering, and absorption contribute as well. Methods for accounting for each of these are presented. Specific examples are presented to illustrate the relative contributions of each source for various link geometries.

  16. The Inclusion of Thermal Emissions Within the SASKTRAN Framework

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Bourassa, A. E.; Lloyd, N. D.; Degenstein, D. A.

    2013-12-01

    The SASKTRAN radiative transfer model developed at the University of Saskatchewan has a long heritage associated with simulations of spectrally dispersed limb scattered sunlight. Recent advancements in the SASKTRAN model have allowed for the inclusion of thermal emissions, as a new source of light, originating within the atmosphere and from the ground. Within the model these thermal emissions are then subsequently propagated through the atmosphere while being scattered and absorbed in the exact same fashion as if sunlight were the source of photons. This development allows for the use of the existing and elaborate SASKTRAN infrastructure in the near infrared where scattering of sunlight and thermal emissions contribute with similar fractions to the total intensity of any atmospheric radiance measurement. This paper details the changes to the SASKTRAN model required to accurately simulate scattered thermal emissions and presents results related to the remote sensing of atmospheric constituents such as carbon dioxide, carbon monoxide and methane from satellite platforms.

  17. Scattered light in a DMD based multi-object spectrometer

    NASA Astrophysics Data System (ADS)

    Fourspring, Kenneth D.; Ninkov, Zoran; Kerekes, John P.

    2010-07-01

    The DMD (Digital Micromirror Device) has an important future in both ground and space based multi-object spectrometers. A series of laboratory measurements have been performed to determine the scattered light properties of a DMD. The DMD under test had a 17 μm pitch and 1 μm gap between adjacent mirrors. Prior characterization of this device has focused on its use in DLP (TI Digital Light Processing) projector applications in which a whole pixel is illuminated by a uniform collimated source. The purpose of performing these measurements is to determine the limiting signal to noise ratio when utilizing the DMD as a slit mask in a spectrometer. The DMD pixel was determined to scatter more around the pixel edge and central via, indicating the importance of matching the telescope point spread function to the DMD. Also, the generation of DMD tested here was determined to have a significant mirror curvature. A maximum contrast ratio was determined at several wavelengths. Further measurements are underway on a newer generation DMD device, which has a smaller mirror pitch and likely different scatter characteristics. A previously constructed instrument, RITMOS (RIT Multi-Object Spectrometer) will be used to validate these scatter models and signal to noise ratio predications through imaging a star field.

  18. Correction of the spectral calibration of the Joint European Torus core light detecting and ranging Thomson scattering diagnostic using ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawke, J.; Scannell, R.; Maslov, M.

    2013-10-15

    This work isolated the cause of the observed discrepancy between the electron temperature (T{sub e}) measurements before and after the JET Core LIDAR Thomson Scattering (TS) diagnostic was upgraded. In the upgrade process, stray light filters positioned just before the detectors were removed from the system. Modelling showed that the shift imposed on the stray light filters transmission functions due to the variations in the incidence angles of the collected photons impacted plasma measurements. To correct for this identified source of error, correction factors were developed using ray tracing models for the calibration and operational states of the diagnostic. Themore » application of these correction factors resulted in an increase in the observed T{sub e}, resulting in the partial if not complete removal of the observed discrepancy in the measured T{sub e} between the JET core LIDAR TS diagnostic, High Resolution Thomson Scattering, and the Electron Cyclotron Emission diagnostics.« less

  19. Polarized electroluminescence from edge-emission organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Ran, G. Z.; Jiang, D. F.

    2011-01-01

    We report the experimental observation and measurement of the polarized electroluminescence from an edge-emission Si based- organic light emitting device (OLED) with a Sm/Au or Sm/Ag cathode. Light collected from the OLED edge comes from the scattering of the surface plasmon polaritons (SPPs) at the device boundary. This experiment shows that such Si-OLED can be an electrically excited SPP source on a silicon chip for optical interconnect based on SPPs.

  20. Enhanced photoluminescence intensity by modifying the surface nanostructure of Nd3+-doped (Pb, La)(Zr, Ti)O3 ceramics.

    PubMed

    Xu, Long; Zhang, Jingwen; Zhao, Hua; Sun, Haibin; Xu, Caixia

    2017-09-01

    Quasi-period cylindrical nanostructures with both diameters and intervals of about 100 nm are manufactured on the surfaces of Nd 3+ -doped lanthanum lead zirconate titanate ceramics by femtosecond laser irradiation under SF 6 atmosphere. A light-emission enhancement of more than 20 times is investigated, accompanied by an extremely long trailing-off time of light emission and lower threshold. A specific polarization state of the light emission is achieved and tuned by changing the incident regions of the pumping source. The increased absorption coefficient of the specimen is discussed based on multiple scattering and weak localization of light. In addition, both the scatterers provided by the laser-machined nanostructure and the recurrent photoinduced trapping and re-excitation process participated in the enhancement of the light emission. This Letter offers new insight to improve the luminescence property of laser materials, as well as to broaden the range of exploring the weak localization of light and random lasers.

  1. Optical Sensors Using Stimulated Brillouin Scattering

    NASA Technical Reports Server (NTRS)

    Christensen, Caleb A (Inventor); Zavriyev, Anton (Inventor)

    2017-01-01

    A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brillouin Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.

  2. Multi-contrast light profile microscopy for the depth-resolved imaging of the properties of multi-ply thin films.

    PubMed

    Power, J F

    2009-06-01

    Light profile microscopy (LPM) is a direct method for the spectral depth imaging of thin film cross-sections on the micrometer scale. LPM uses a perpendicular viewing configuration that directly images a source beam propagated through a thin film. Images are formed in dark field contrast, which is highly sensitive to subtle interfacial structures that are invisible to reference methods. The independent focusing of illumination and imaging systems allows multiple registered optical sources to be hosted on a single platform. These features make LPM a powerful multi-contrast (MC) imaging technique, demonstrated in this work with six modes of imaging in a single instrument, based on (1) broad-band elastic scatter; (2) laser excited wideband luminescence; (3) coherent elastic scatter; (4) Raman scatter (three channels with RGB illumination); (5) wavelength resolved luminescence; and (6) spectral broadband scatter, resolved in immediate succession. MC-LPM integrates Raman images with a wider optical and morphological picture of the sample than prior art microprobes. Currently, MC-LPM resolves images at an effective spectral resolution better than 9 cm(-1), at a spatial resolution approaching 1 microm, with optics that operate in air at half the maximum numerical aperture of the prior art microprobes.

  3. Parallelized Monte Carlo software to efficiently simulate the light propagation in arbitrarily shaped objects and aligned scattering media.

    PubMed

    Zoller, Christian Johannes; Hohmann, Ansgar; Foschum, Florian; Geiger, Simeon; Geiger, Martin; Ertl, Thomas Peter; Kienle, Alwin

    2018-06-01

    A GPU-based Monte Carlo software (MCtet) was developed to calculate the light propagation in arbitrarily shaped objects, like a human tooth, represented by a tetrahedral mesh. A unique feature of MCtet is a concept to realize different kinds of light-sources illuminating the complex-shaped surface of an object, for which no preprocessing step is needed. With this concept, it is also possible to consider photons leaving a turbid media and reentering again in case of a concave object. The correct implementation was shown by comparison with five other Monte Carlo software packages. A hundredfold acceleration compared with central processing units-based programs was found. MCtet can simulate anisotropic light propagation, e.g., by accounting for scattering at cylindrical structures. The important influence of the anisotropic light propagation, caused, e.g., by the tubules in human dentin, is shown for the transmission spectrum through a tooth. It was found that the sensitivity to a change in the oxygen saturation inside the pulp for transmission spectra is much larger if the tubules are considered. Another "light guiding" effect based on a combination of a low scattering and a high refractive index in enamel is described. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. 149 Sources and 15 Years Later: The Navy-NRAO Green Bank Interferometer Monitoring Program

    NASA Astrophysics Data System (ADS)

    Lazio, T. J. W.; Waltman, E. B.; Ghigo, F.; Johnston, K. J.

    2000-12-01

    Flux densities for 149 sources were monitored with the Green Bank Interferometer for durations ranging from 3 to 15 yrs, covering the interval 1979--1996, with most sources observed for 6 yrs. Observations were at two radio frequencies (approximately 2.5 and 8.2 GHz) and have a typical sampling of one flux density measurement every 2 days. We have used these light curves to conduct various variability analysis of the sources. We find suggestive, though not unambiguous evidence, that these sources have a common, broadband mechanism for intrinsic variations. We also find that the extrinsic variation is more consistent with radio-wave scattering in an extended medium rather than in a thin screen. The primary motivation for this monitoring program was the identification of extreme scattering events. In an effort to identify ESEs in a systematic manner, we have taken the wavelet transform of the light curves. We find 15 events in the light curves of 12 sources that we classify as probable ESEs. However, we also find that five ESEs previously identified from these data do not survive our wavelet selection criteria. Future identification of ESEs will probably continue to rely on both visual and systematic methods. We present examples of the light curves and variability analyses. Instructions for obtaining the data are also given. The GBI is a facility of the National Science Foundation and was operated by the National Radio Astronomy Observatory under contract to the USNO and NRL during these observations. A portion of this work was performed while TJWL held a National Research Council-NRL Research Associateship. Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  5. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    PubMed

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  6. Ocular forward light scattering and corneal backward light scattering in patients with dry eye.

    PubMed

    Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Asonuma, Sanae; Mitamura, Hayato; Oie, Yoshinori; Soma, Takeshi; Tsujikawa, Motokazu; Kawasaki, Satoshi; Nishida, Kohji

    2014-09-18

    To evaluate ocular forward light scattering and corneal backward light scattering in patients with dry eye. Thirty-five eyes in 35 patients with dry eye and 20 eyes of 20 healthy control subjects were enrolled. The 35 dry eyes were classified into two groups according to whether superficial punctate keratopathy in the central 6-mm corneal zone (cSPK) was present or not. Ocular forward light scattering was quantified with a straylight meter. Corneal backward light scattering from the anterior, middle, and posterior corneal parts was assessed with a corneal densitometry program using the Scheimpflug imaging system. Both dry eye groups had significantly higher intraocular forward light scattering than the control group (both P<0.05). The dry eye group with cSPK had significantly higher values in anterior and total corneal backward light scattering than the other two groups. Moderate positive correlations were observed between the cSPK score and corneal backward light scattering from the anterior cornea (R=0.60, P<0.001) and corneal backward light scattering from the total cornea (R=0.54, P<0.001); however, no correlation was found between cSPK score and ocular forward light scattering (R=0.01, P=0.932). Ocular forward light scattering and corneal backward light scattering from the anterior cornea were greater in dry eyes than in normal eyes. Increased corneal backward light scattering in dry eye at least partially results from cSPK overlying the optical zone. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  7. Holographic Cinematography And Its Applications

    NASA Astrophysics Data System (ADS)

    Smigielski, Paul

    1987-09-01

    We describe several applications of cineholography to objects scattering light by reflection: single-exposure cineholograms on 126-mm films at a repetition rate of 25 holograms per second for 3-D movies and for flight simulators applications, double-exposure cineholograms for medical and industrial applications (NDT). Limitations of cineholography are also described. The light source used for cineholograms recording is a frequency-doubled pulse YAG-laser.

  8. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Franz J. T.; Will, Stefan, E-mail: stefan.will@fau.de; Erlangen Graduate School in Advanced Optical Technologies

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiationmore » signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.« less

  9. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence.

    PubMed

    Huber, Franz J T; Altenhoff, Michael; Will, Stefan

    2016-05-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  10. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    NASA Astrophysics Data System (ADS)

    Huber, Franz J. T.; Altenhoff, Michael; Will, Stefan

    2016-05-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  11. The effects of inter-cavity separation on optical coupling in dielectric bispheres.

    PubMed

    Ashili, Shashanka P; Astratov, Vasily N; Sykes, E Charles H

    2006-10-02

    The optical coupling between two size-mismatched spheres was studied by using one sphere as a local source of light with whispering gallery modes (WGMs) and detecting the intensity of the light scattered by a second sphere playing the part of a receiver of electromagnetic energy. We developed techniques to control inter-cavity gap sizes between microspheres with ~30nm accuracy. We demonstrate high efficiencies (up to 0.2-0.3) of coupling between two separated cavities with strongly detuned eigenstates. At small separations (<1 microm) between the spheres, the mechanism of coupling is interpreted in terms of the Fano resonance between discrete level (true WGMs excited in a source sphere) and a continuum of "quasi"-WGMs with distorted shape which can be induced in the receiving sphere. At larger separations the spectra detected from the receiving sphere originate from scattering of the radiative modes.

  12. Plasmonic superfocusing on metallic tips for near-field optical imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Neacsu, Catalin C.; Olmon, Rob; Berweger, Samuel; Kappus, Alexandria; Kirchner, Friedrich; Ropers, Claus; Saraf, Lax; Raschke, Markus B.

    2008-03-01

    Realization of localized light sources through nonlocal excitation is important in the context of plasmon photonics, molecular sensing, and in particular near-field optical techniques. Here, the efficient conversion of propagating surface plasmons, launched on the shaft of a scanning probe tip, into localized plasmon at the apex provides a true nanoconfined light source. Focused ion beam milling is used to generate periodic surface nanostructures on the tip shaft that allow for tailoring the plasmon excitation. Using ultrashort visible and mid-IR transients the dynamics of the propagation and subsequent scattered emission is characterized. The strong field enhancement and spatial field confinement at the apex is demonstrated studying the coupling of the tip in near-field interaction with a flat sample surface. It is used in scattering near-field spectroscopic imaging (s-SNOM) to probe surface nanostructures with spatial resolution down to 10 nm.

  13. Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography.

    PubMed

    Safrani, Avner; Abdulhalim, Ibrahim

    2011-06-20

    Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.

  14. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    PubMed

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  15. Cavity-Enhanced Raman Spectroscopy for Food Chain Management

    PubMed Central

    Sandfort, Vincenz; Goldschmidt, Jens; Wöllenstein, Jürgen

    2018-01-01

    Comprehensive food chain management requires the monitoring of many parameters including temperature, humidity, and multiple gases. The latter is highly challenging because no low-cost technology for the simultaneous chemical analysis of multiple gaseous components currently exists. This contribution proposes the use of cavity enhanced Raman spectroscopy to enable online monitoring of all relevant components using a single laser source. A laboratory scale setup is presented and characterized in detail. Power enhancement of the pump light is achieved in an optical resonator with a Finesse exceeding 2500. A simulation for the light scattering behavior shows the influence of polarization on the spatial distribution of the Raman scattered light. The setup is also used to measure three relevant showcase gases to demonstrate the feasibility of the approach, including carbon dioxide, oxygen and ethene. PMID:29495501

  16. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  17. Generating Color from Polydisperse, Near Micron-Sized TiO2 Particles.

    PubMed

    Alam, Al-Mahmnur; Baek, Kyungnae; Son, Jieun; Pei, Yi-Rong; Kim, Dong Ha; Choy, Jin-Ho; Hyun, Jerome K

    2017-07-19

    Single particle Mie calculations of near micron-sized TiO 2 particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction. These extinction variations are apparent as visible colors for particles suspended in organic solvent at low concentration, or for a monolayer of particles supported on a transparent substrate viewed in front of a white light source. We further exploit the color variations on optical sensitivity to the surrounding environment to promote micron-sized TiO 2 particles as stable and robust agents for detecting the optical index of homogeneous media with high contrast sensitivities. Such distribution-modulated scattering properties provide TiO 2 particles an intriguing opportunity to impart color and optical sensitivity to their widespread electronic and chemical platforms such as antibacterial windows, catalysis, photocatalysis, optical sensors, and photovoltaics.

  18. Spectroscopy of light tetraquark states

    NASA Astrophysics Data System (ADS)

    Prelovsek, S.; Draper, T.; Lang, C. B.; Limmer, M.; Liu, K. F.; Mathur, N.; Mohler, D.

    We address the question whether the lightest scalar mesons sigma and kappa are tetraquarks, as is strongly supported by many phenomenological studies. We present a search for possible light tetraquark states with J^PC=0^++ and I=0, 1/2, 3/2, 2 on the lattice. The spectrum is determined using the generalized eigenvalue method with a number of tetraquark interpolators at the source and the sink. In all the channels, we unavoidably find lowest scattering states pi(k)pi(-k) or K(k)pi(-k) with back-to-back momentum k=0,2*pi/L,.. . However, we find an additional light state in the I=0 and I=1/2 channels, which may be related to the observed resonances sigma and kappa with a strong tetraquark component. In the exotic repulsive channels I=2 and I=3/2, where no resonance is observed, we find no light state in addition to the scattering states.

  19. Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.

    2018-05-01

    In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.

  20. Detailed modeling of the statistical uncertainty of Thomson scattering measurements

    NASA Astrophysics Data System (ADS)

    Morton, L. A.; Parke, E.; Den Hartog, D. J.

    2013-11-01

    The uncertainty of electron density and temperature fluctuation measurements is determined by statistical uncertainty introduced by multiple noise sources. In order to quantify these uncertainties precisely, a simple but comprehensive model was made of the noise sources in the MST Thomson scattering system and of the resulting variance in the integrated scattered signals. The model agrees well with experimental and simulated results. The signal uncertainties are then used by our existing Bayesian analysis routine to find the most likely electron temperature and density, with confidence intervals. In the model, photonic noise from scattered light and plasma background light is multiplied by the noise enhancement factor (F) of the avalanche photodiode (APD). Electronic noise from the amplifier and digitizer is added. The amplifier response function shapes the signal and induces correlation in the noise. The data analysis routine fits a characteristic pulse to the digitized signals from the amplifier, giving the integrated scattered signals. A finite digitization rate loses information and can cause numerical integration error. We find a formula for the variance of the scattered signals in terms of the background and pulse amplitudes, and three calibration constants. The constants are measured easily under operating conditions, resulting in accurate estimation of the scattered signals' uncertainty. We measure F ≈ 3 for our APDs, in agreement with other measurements for similar APDs. This value is wavelength-independent, simplifying analysis. The correlated noise we observe is reproduced well using a Gaussian response function. Numerical integration error can be made negligible by using an interpolated characteristic pulse, allowing digitization rates as low as the detector bandwidth. The effect of background noise is also determined.

  1. High Energy Studies of Astrophysical Dust

    NASA Astrophysics Data System (ADS)

    Corrales, Lia Racquel

    Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how information from a single scattering halo can be used in conjunction with X-ray spectroscopy to directly measure the dust-to-gas mass ratio, laying the groundwork for future scattering halo surveys. Distant quasars also produce X-rays that pierce the intergalactic medium. These sources invite the unique opportunity to search for extragalactic dust, whether distributed diffusely throughout intergalactic space, surrounding other galaxies, or occupying reservoirs of cool intergalactic gas. I review X-ray scattering in a cosmological context, examining the range and sensitivity of Chandra to detect the low surface brightness levels of intergalactic scattering. Of particular interest is large "grey" dust, which would cause systematic errors in precision cosmology experiments at a level comparable to the size of the error bars sought. This requires using the more exact Mie scattering treatment, which reduces the scattering cross-section for soft X-rays by a factor of about ten, compared to the Rayleigh-Gans approximation used for interstellar X-ray scattering studies. This allows me to relax the limit on intergalactic dust imposed by previous X-ray imaging of a z=4.3 quasar, QSO 1508+5714, which overestimated the scattering intensity. After implementing the Mie solution with the cosmological integral for scattering halo intensity, I found that intergalactic dust will scatter 1-3% of soft X-ray light. Unfortunately the wings of the Chandra PSF are brighter than the surface brightness expected for these intergalactic scattering halos. The X-ray signatures of intergalactic dust may only be visible if a distant quasar suddenly dimmed by a factor of 1000 or more, leaving behind an X-ray scattering echo, or "ghost" halo.

  2. The Thomson scattering diagnostic at Wendelstein 7-X and its performance in the first operation phase

    NASA Astrophysics Data System (ADS)

    Bozhenkov, S. A.; Beurskens, M.; Dal Molin, A.; Fuchert, G.; Pasch, E.; Stoneking, M. R.; Hirsch, M.; Höfel, U.; Knauer, J.; Svensson, J.; Trimino Mora, H.; Wolf, R. C.

    2017-10-01

    The optimized stellarator Wendelstein 7-X started operation in December 2015 with a 10 week limiter campaign. Divertor experiments will begin in the second half of 2017. The W7-X Thomson scattering system is an essential diagnostic for electron density and temperature profiles. In this paper the Thomson scattering diagnostic is described in detail, including its design, calibration, data evaluation and first experimental results. Plans for further development are also presented. The W7-X Thomson system is a Nd:YAG setup with up to five lasers, two sets of light collection lenses viewing the entire plasma cross-section, fiber bundles and filter based polychromators. To reduce hardware costs, two or three scattering volumes are measured with a single polychromator. The relative spectral calibration is carried out with the aid of a broadband supercontinuum light source. The absolute calibration is performed by observing Raman scattering in nitrogen. The electron temperatures and densities are recovered by Bayesian modelling. In the first campaign, the diagnostic was equipped for 10 scattering volumes. It provided temperature profiles comparable to those measured using an electron cyclotron emission diagnostic and line integrated densities within 10% of those from a dispersion interferometer.

  3. Stellar occultation of polarized light from circumstellar electrons. I - Flat envelopes viewed edge on

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Fox, Geoffrey K.

    1989-01-01

    The depolarizing and occultation effects of a finite spherical light source on the polarization of light Thomson-scattered from a flat circumstellar envelope seen edge-on are analyzed. The analysis shows that neglect of the finite size of the light source leads to a gross overestimate of the polarization for a given disk geometry. By including occultation and depolarization, it is found that B-star envelopes are necessarily highly flattened disk-type structures. For a disk viewed edge-on, the effect of occultation reduces the polarization more than the inclusion of the depolarization factor alone. Analysis of a one-dimensional plume leads to a powerful technique that permits the electron density distribution to be explicitly obtained from the polarimetric data.

  4. Light-scattering measurements of optical thin-film components at 157 and 193 nm

    NASA Astrophysics Data System (ADS)

    Gliech, Stefan; Steinert, Jorg; Duparre, Angela

    2002-06-01

    An instrument for total backscattering and forward-scattering measurements of optical coating components at 157 and 193 nm is described. The system is operated in both vacuum and nitrogen purge gas. An excimer laser as well as a deuterium lamp can be used as a radiation source. Suppression of the background signal level to 1 part in 106 permits measurements even of low-scatter samples such as superpolished substrates and antireflection coatings. Results of investigations of antireflective and highly reflective multilayers and CaF2 substrates reveal scattering from surface and interface roughness as well as from the volume of the substrate material. First steps to extend the instrument for angle-resolved scatter, transmittance, and reflectance measurements are described.

  5. On Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. III. Observational Signatures in Thermal Emission and Scattered Light

    NASA Astrophysics Data System (ADS)

    Hord, Blake; Lyra, Wladimir; Flock, Mario; Turner, Neal J.; Mac Low, Mordecai-Mark

    2017-11-01

    Recent observations of the protoplanetary disk around the Herbig Be star HD 100546 show two bright features in infrared (H and {L}{\\prime } bands) at about 50 au,with one so far unexplained. We explore the observational signatures of a high-mass planet causing shock heating in order to determine if it could be the source of the unexplained infrared feature in HD 100546. More fundamentally, we identify and characterize planetary shocks as an extra, hitherto ignored, source of luminosity in transition disks. The RADMC-3D code is used to perform dust radiative transfer calculations on the hydrodynamical disk models, including volumetric heating. A stronger shock heating rate by a factor of 20 would be necessary to qualitatively reproduce the morphology of the second infrared source. Instead, we find that the outer edge of the gap carved by the planet heats up by about 50% relative to the initial reference temperature, which leads to an increase in the scale height. The bulge is illuminated by the central star, producing a lopsided feature in scattered light, as the outer gap edge shows an asymmetry in density and temperature attributable to a secondary spiral arm launched not from the Lindblad resonances but from the 2:1 resonance. We conclude that high-mass planets lead to shocks in disks that may be directly observed, particularly at wavelengths of 10 μm or longer, but that they are more likely to reveal their presence in scattered light by puffing up their outer gap edges and exciting multiple spiral arms.

  6. A novel method for resonant inelastic soft X-ray scattering via photoelectron spectroscopy detection

    DOE PAGES

    Dakovski, Georgi L.; Lin, Ming-Fu; Damiani, Daniel S.; ...

    2017-10-05

    A method for measuring resonant inelastic X-ray scattering based on the conversion of X-ray photons into photoelectrons is presented in this paper. The setup is compact, relies on commercially available detectors, and offers significant flexibility. Finally, this method is demonstrated at the Linac Coherent Light Source with ~0.5 eV resolution at the cobalt L 3-edge, with signal rates comparable with traditional grating spectrometers.

  7. Applications of laser wakefield accelerator-based light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie; Thomas, Alec G. R.

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  8. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  9. Particle detection for patterned wafers of 100nm design rule by evanescent light illumination: analysis of evanescent light scattering using Finite-Difference Time-Domain (FDTD) method

    NASA Astrophysics Data System (ADS)

    Yoshioka, Toshie; Miyoshi, Takashi; Takaya, Yasuhiro

    2005-12-01

    To realize high productivity and reliability of the semiconductor, patterned wafers inspection technology to maintain high yield becomes essential in modern semiconductor manufacturing processes. As circuit feature is scaled below 100nm, the conventional imaging and light scattering methods are impossible to apply to the patterned wafers inspection technique, because of diffraction limit and lower S/N ratio. So, we propose a new particle detection method using annular evanescent light illumination. In this method, a converging annular light used as a light source is incident on a micro-hemispherical lens. When the converging angle is larger than critical angle, annular evanescent light is generated under the bottom surface of the hemispherical lens. Evanescent light is localized near by the bottom surface and decays exponentially away from the bottom surface. So, the evanescent light selectively illuminates the particles on the patterned wafer surface, because it can't illuminate the patterned wafer surface. The proposed method evaluates particles on a patterned wafer surface by detecting scattered evanescent light distribution from particles. To analyze the fundamental characteristics of the proposed method, the computer simulation was performed using FDTD method. The simulation results show that the proposed method is effective for detecting 100nm size particle on patterned wafer of 100nm lines and spaces, particularly under the condition that the evanescent light illumination with p-polarization and parallel incident to the line orientation. Finally, the experiment results suggest that 220nm size particle on patterned wafer of about 200nm lines and spaces can be detected.

  10. A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An

    2012-03-01

    Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Manvendra; Aiken, Allison; Berg, Larry K.

    We deployed Aerodyne Research Inc.’s first Cavity Attenuated Phase Shift extinction (CAPS PMex) monitor (built by Aerodyne) that measures light extinction by using a visible-light-emitting diode (LED) as a light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector in Cape Cod in 2012/13 for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Two-Column Aerosol Project (TCAP). The efficacy of this instrument is based on the fact that aerosols are broadband scatterers and absorbers of light. The input LED is square-wave modulated and passedmore » through the sample cell that distorts it due to exponential decay by aerosol light absorption and scattering; this is measured at the detector. The amount of phase shift of the light at the detector is used to determine the light extinction. This extinction measurement provides an absolute value, requiring no calibration. The goal was to compare the CAPS performance with direct measurements of absorption with ARM’s baseline photoacoustic soot spectrometer (PASS-3) and nephelometer instruments to evaluate its performance.« less

  12. The Light Curve of the Weakly Accreting T Tauri Binary KH 15D from 2005-2010: Insights into the Nature of its Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Herbst, William; LeDuc, Katherine; Hamilton, Catrina M.; Winn, Joshua N.; Ibrahimov, Mansur; Mundt, Reinhard; Johns-Krull, Christopher M.

    2010-12-01

    Photometry of the unique pre-main-sequence binary system KH 15D is presented, spanning the years 2005-2010. This system has exhibited photometric variations and eclipses over the last ~50 years that are attributed to the effect of a precessing circumbinary disk. Advancement of the occulting edge across the projection on the sky of the binary orbit has continued and the photospheres of both stars are now completely obscured at all times. The system has thus transitioned to a state in which it should be visible only by scattered light, and yet it continues to show a periodic variation on the orbital cycle with an amplitude exceeding 2 mag. This variation, which depends only on the binary phase and not on the height of either star above or below the occulting edge, has likely been present in the data since at least 1995. It can, by itself, account for the "shoulders" on the light curve prior to ingress and following egress, obviating to some degree the need for components of extant models such as a scattering halo around star A or forward scattering from a fuzzy disk edge. However, the spectroscopic evidence for some direct or forward scattered light from star A even when it was several stellar radii below the occulting edge shows that these components can probably not be fully removed, and raises the possibility that the occulting edge is currently more opaque than it was a decade ago, when the spectra were obtained. A plausible source for the variable scattering component is reflected light from the far side of a warped occulting disk. We have detected color changes in V - I of several tenths of a magnitude to both the blue and red that occur during times of minima. These may indicate the presence of a third source of light (faint star) within the system or a change in the reflectance properties of the disk as the portion being illuminated varies with the orbital motion of the stars. The data support a picture of the circumbinary disk as a geometrically thin, optically thick layer of perhaps millimeter- or centimeter-sized particles that has been sculpted by the binary stars and possibly other components into a decidedly nonplanar configuration. A simple (infinitely sharp) knife-edge model does a good job of accounting for all of the recent (2005-2010) occultation data when one allows for the scattered light component, the spottedness of star A, and variations from cycle to cycle in the location of the edge at the level of 0.1-0.2 stellar diameters.

  13. Coherent beam control through inhomogeneous media in multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Paudel, Hari Prasad

    Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a relatively large axial misalignment of the conjugate planes of the CDM and the aberrating interface. This dissertation advances the field of microscopy by providing new models and techniques for imaging deeply within strongly scattering tissue, and by describing new adaptive optics approaches to extending imaging FOV due to sample aberrations.

  14. Fluorescent image tracking velocimeter

    DOEpatents

    Shaffer, Franklin D.

    1994-01-01

    A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

  15. Assessment of indoor fine aerosol contributions from environmental tobacco smoke and cooking with a portable nephelometer.

    PubMed

    Brauer, M; Hirtle, R; Lang, B; Ott, W

    2000-01-01

    Personal monitoring studies have indicated that environmental tobacco smoke (ETS) and cooking are major indoor particulate sources in residential and nonindustrial environments. Continuous monitoring of fine particles improves exposure assessment by characterizing the effect of time-varying indoor sources. We evaluated a portable nephelometer as a continuous monitor of indoor particulate levels. Simultaneous sampling with the nephelometer and PM2.5 impactors was undertaken to determine the relationship between particle light scattering extinction coefficient (sigma(sp)) and particle mass concentration in field and environmental chamber settings. Chamber studies evaluated nephelometer measurements of ETS and particles produced from toasting bread and frying foods. Field measurements were conducted in 20 restaurants and bars with different smoking restrictions, and in five residential kitchens. Additional measurements compared the nephelometer to a different mass measurement method, a piezobalance, in a well-characterized residence where various foods were cooked and ETS was produced. Since the piezobalance provides 2-min average mass concentration measurements, these comparisons tested the ability of the nephelometer to measure transient particle concentration peaks and decay rate curves. We found that sigma(sp) and particle mass were highly correlated (R2 values of 0.63-0.98) over a large concentration range (5-1600 microg/m3) and for different particle sources. Piezobalance and gravimetric comparisons with the nephelometer indicated similar sigma(sp) vs. mass slopes (5.6 and 4.7 m2/g for piezobalance and gravimetric comparisons of ETS, respectively). Somewhat different sigma(sp) vs. particle mass slopes (1.9-5.6 m2/g) were observed for the different particle sources, reflecting the influence of particle composition on light scattering. However, in similar indoor environments, the relationship between particle light scattering and mass concentration was consistent enough to use independent nephelometer measurements as estimates of short-term mass concentrations. A method to use nephelometer measurements to determine particulate source strengths is derived and an example application is described.

  16. Development of high sensitivity and high speed large size blank inspection system LBIS

    NASA Astrophysics Data System (ADS)

    Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko

    2017-07-01

    The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.

  17. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  18. A versatile setup using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yujie, E-mail: styojm@physics.tamu.edu; Voronine, Dmitri V.; Sokolov, Alexei V.

    2015-08-15

    We report a versatile setup based on the femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering. The setup uses a femtosecond Ti:Sapphire oscillator source and a folded 4f pulse shaper, in which the pulse shaping is carried out through conventional optical elements and does not require a spatial light modulator. Our setup is simple in alignment, and can be easily switched between the collinear single-beam and the noncollinear two-beam configurations. We demonstrate the capability for investigating both transparent and highly scattering samples by detecting transmitted and reflected signals, respectively.

  19. Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection

    NASA Astrophysics Data System (ADS)

    Kilaru, M. K.; Cumby, B.; Heikenfeld, J.

    2009-01-01

    Corner cube and spherical retroreflectors are ubiquitous in conspicuity and range-finding applications since they reflect light back to the illumination source with unmatched efficiency. We report here a switchable electrowetting retroreflector platform that provides multiple novel features, including (a) using <0.5 μJ/cm2 electrical energy to switch from a light scattering state, (b) low loss and wide spectrum as limited only by the absorption spectrum of water, (c) use of ultrasimple self-assembly of 103-105 liquid lenslets/in.2 on a polymer/Al corner-cube substrate, and (d) change in retroreflected irradiance of >10:1 over a ±30° field of view.

  20. Interfacing Whispering-Gallery Microresonators and Free Space Light With Cavity Enhanced Rayleigh Scattering

    DTIC Science & Technology

    2014-09-17

    in deformed silica microspheres via free-space evanescent excitation. Optics Express 15, 16471–16477 (2007). 20. Peng, B. et al. Parity - time symmetric ...devices utilizing the concepts of parity - time symmetry20. Despite their great promises for photonic technologies, coupling light into and from WGMRs is...setup used in the experiments is depicted in Fig. 1b. It consists of a tunable external cavity laser and a fiber lens as the free-space light source

  1. Resonant soft X-ray scattering for polymer materials

    DOE PAGES

    Liu, Feng; Brady, Michael A.; Wang, Cheng

    2016-04-16

    Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less

  2. Large-aperture ground glass surface profile measurement using coherence scanning interferometry.

    PubMed

    Bae, Eundeok; Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo

    2017-01-23

    We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.

  3. A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies

    NASA Astrophysics Data System (ADS)

    Vincent, Benjamin; Tsikata, Sedina; Mazouffre, Stéphane; Minea, Tiberiu; Fils, Jérôme

    2018-05-01

    Incoherent Thomson scattering (ITS) has a long history of application for the determination of electron density and temperature in dense fusion plasmas, and in recent years, has been increasingly extended to studies in low-temperature plasma environments. In this work, the design and preliminary implementation of a new, sensitive and uniquely compact ITS platform known as Thomson scattering experiments for low temperature ion sources are described. Measurements have been performed on a hollow cathode plasma source, providing access to electron densities as low as 1016 m‑3 and electron temperatures of a few eV and below. This achievement has been made possible by the implementation of a narrow volume Bragg grating notch filter for the attenuation of stray light, a feature which guarantees compactness and reduced transmission losses in comparison to standard ITS platforms.

  4. Method and apparatus for determining fat content of tissue

    DOEpatents

    Weber, Thomas M.; Spletzer, Barry L.; Bryan, Jon R.; Dickey, Fred M.; Shagam, Richard N.; Gooris, Luc

    2001-01-01

    A method and apparatus for determining characteristics of tissue is disclosed. The method comprises supplying optical energy to a tissue and detecting at a plurality of locations consequent energy scattered by the tissue. Analysis of the scattered energy as taught herein provides information concerning the properties of the tissue, specifically information related to the fat and lean content and thickness of the tissue. The apparatus comprises a light source adapted to deliver optical energy to a tissue. A plurality of detectors can be mounted at different positions relative to the source to detect energy scattered by the tissue. A signal processor as taught herein can determine characteristics of the tissue from the signals from the detectors and locations of the detectors, specifically information related to the fat and lean content and thickness of the tissue.

  5. Non-label bioimaging utilizing scattering lights

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomonobu M.; Ichimura, Taro; Fujita, Hideaki

    2017-04-01

    Optical microscopy is an indispensable tool for medical and life sciences. Especially, the microscopes utilized with scattering light offer a detailed internal observation of living specimens in real time because of their non-labeling and non-invasive capability. We here focus on two kinds of scattering lights, Raman scattering light and second harmonic generation light. Raman scattering light includes the information of all the molecular vibration modes of the molecules, and can be used to distinguish types and/or state of cell. Second harmonic generation light is derived from electric polarity of proteins in the specimen, and enables to detect their structural change. In this conference, we would like to introduce our challenges to extract biological information from those scattering lights.

  6. Organic electroluminescent devices having improved light extraction

    DOEpatents

    Shiang, Joseph John [Niskayuna, NY

    2007-07-17

    Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.

  7. Imaging skin pathologies with polarized light: Empirical and theoretical studies

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, Jessica C.

    The use of polarized light imaging can facilitate the determination of skin cancer borders before a Mohs surgery procedure. Linearly polarized light that illuminates the skin is backscattered by superficial layers where cancer often arises and is randomized by the collagen fibers. The superficially backscattered light can be distinguished from the diffused reflected light using a detector analyzer that is sequentially oriented parallel and perpendicular to the source polarization. A polarized image pol = parallel - perpendicular / parallel + perpendicular is generated. This image has a higher contrast to the superficial skin layers than simple total reflectance images. Pilot clinical trials were conducted with a small hand-held device for the accumulation of a library of lesions to establish the efficacy of polarized light imaging in vivo. It was found that melanoma exhibits a high contrast to polarized light imaging as well as basal and sclerosing cell carcinoma. Mechanisms of polarized light scattering from different tissues and tissue phantoms were studied in vitro. Parameters such as depth of depolarization (DOD), retardance, and birefringence were studied in theory and experimentally. Polarized light traveling through different tissues (skin, muscle, and liver) depolarized after a few hundred microns. Highly birefringent materials such as skin (DOD = 300 mum 696nm) and muscle (DOD = 370 mum 696nm) depolarized light faster than less birefringent materials such as liver (DOD = 700 mum 696nm). Light depolarization can also be attributed to scattering. Three Monte Carlo programs for modeling polarized light transfer into scattering media were implemented to evaluate these mechanisms. Simulations conducted with the Monte Carlo programs showed that small diameter spheres have different mechanisms of depolarization than larger ones. The models also showed that the anisotropy parameter g strongly influences the depolarization mechanism. (Abstract shortened by UMI.)

  8. The Effect of Incident Light Polarization on Vegetation Bidirectional Reflectance Factor

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Thome, Kurt; Ranson, Kurtis J.; King, Michael D.; Butler, James J.

    2010-01-01

    The Laboratory-based Bidirectional Reflectance Factor (BRF) polarization study of vegetation is presented in this paper. The BRF was measured using a short-arc Xenon lamp/monochromator assembly producing an incoherent, tunable light source with a well-defined spectral bandpass at visible and near-infrared wavelengths of interest at 470 nm and 870 nm and coherent light source at 1.656 microns. All vegetation samples were measured using P and S linearly polarized incident light over a range of incident and scatter angles. By comparing these results, we quantitatively examine how the BRF of the samples depends on the polarization of the incident light. The differences are significant, depend strongly on the incident and scatter angles, and can be as high as 120% at 67 deg incident and 470nm. The global nature of Earth's processes requires consistent long-term calibration of all instruments involved in data retrieval. The BRF defines the reflection characteristics of Earth surface. It provides the reflectance of a target in a specific direction as a function of illumination and viewing geometry. The BRF is a function of wavelength and reflects the structural and optical properties of the surface. Various space and airborne radiometric and imaging remote sensing instruments are used in the remote sensing characterization of vegetation canopies and soils, oceans, or especially large pollution sources. The satellite data is validated through comparison with airborne, ground-based and laboratory-based data in an effort to fully understand the vegetation canopy reflectance, The Sun's light is assumed to be unpolarized at the top of the atmosphere; however it becomes polarized to some degree due to atmospheric effects by the time it reaches the vegetation canopy. Although there are numerous atmospheric correction models, laboratory data is needed for model verification and improvement.

  9. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  10. Climate logging with a new rapid optical technique at siple dome

    USGS Publications Warehouse

    Bay, R.C.; Price, P.B.; Clow, G.D.; Gow, A.J.

    2001-01-01

    The dust logger design is based on a decade of experience in the use of light sources to measure optical properties of deep Antarctic ice. Light is emitted at the top of the instrument by side-directed LEDs, scattered or absorbed by dust in the ice surrounding the borehole, and collected in a downhole-pointing photomultiplier tube (PMT) a meter below. With this method the ice is sampled at ambient pressure in a much larger volume than is the case in a core study, and the entire length can be logged in one day. In ice in which scattering is dominated by bubbles, the absorption from dust impurities is perceived as a drop in signal, whereas in bubble-free ice the scattering from dust increases the light collected. We report on results obtained in Siple Dome Hole A in December 2000. The instrument measured increases in dust concentration extending over many meters during glacial maxima, as well as narrow spikes due to ??? 1 cm thick ash and dust bands of volcanic origin. Monte Carlo simulation is employed to clarify data analysis and predict the capabilities of future designs.

  11. Near-IR Polarized Scattered Light Imagery of the DoAr 28 Transitional Disk

    NASA Technical Reports Server (NTRS)

    Rich, Evan A.; Wisiniewski, John P.; Mayama, Satoshi; Brandt, Timothy D.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Espaillat, Catherine; Serabyn, Eugene; Grady, Carol A.; hide

    2015-01-01

    We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0 double prime.10 (13 AU) out to 0double prime.50 (65 AU). This inner working angle is interior to the location of the system's gap inferred by previous studies using spectral energy distribution modeling (15 AU). We detected a candidate point source companion 1 double prime.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 degrees), 0.01 solar mass disk that has a partially depleted inner gap from the dust sublimation radius out to approximately 8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to a variety of mechanisms.

  12. Measurement of light transmission and fluence rate in mouse brain in vivo(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Macklin, John J.; Graves, Austin R.; Stujenske, Joseph M.; Hantman, Adam W.; Bittner, Katie C.

    2017-02-01

    Optogenetic experiments require light delivery, typically using fiber optics, to light-gated ion channels genetically targeted to specific brain regions. Understanding where light is—and isn't—in an illuminated brain can be a confounding factor in designing experiments and interpreting results. While the transmission of light, i.e. survival of forward-directed and forward-scattered light, has been extensively measured in vitro, light scattering can be significantly different in vivo due to blood flow and other factors. To measure irradiance in vivo, we constructed a pipette photodetector tipped with fluorescent quantum dots that function as a light transducer. The quantum dot fluorescence is collected by a waveguide and sent to a fiber-coupled spectrometer. The device has a small photo-responsive area ( 10 um x 15 um), enabling collection of micron-resolution irradiance profiles, and can be calibrated to determine irradiance with detection limits of 0.001 mW/mm2. The photodetector has the footprint of a micro-injection pipette, so can be inserted into almost any brain region with minimal invasiveness. With this detector, we determined transverse and axial irradiance profiles in mice across multiple brain regions at 5 source wavelengths spanning the visible spectrum. This profile data is compared to in vitro measurements obtained on tissue slices, and provides a means to derive scattering coefficients for specific brain regions in vivo. The detector is straightforward to fabricate and calibrate, is stable in air storage > 9 months, and can be easily installed in an electrophysiology setup, thereby enabling direct measurement of light spread under conditions used in optogenetics experiments.

  13. Two-Column Aerosol Project: Aerosol Light Extinction Measurements Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Manvendra; Aiken, Allison; Berg, Larry

    We deployed Aerodyne Research Inc.’s first Cavity Attenuated Phase Shift extinction (CAPS PMex) monitor (built by Aerodyne) that measures light extinction by using a visible-light-emitting diode (LED) as a light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector in Cape Cod in 2012/13 for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Two-Column Aerosol Project (TCAP). The efficacy of this instrument is based on the fact that aerosols are broadband scatterers and absorbers of light. The input LED is square-wave modulated and passedmore » through the sample cell that distorts it due to exponential decay by aerosol light absorption and scattering; this is measured at the detector. The amount of phase shift of the light at the detector is used to determine the light extinction. This extinction measurement provides an absolute value, requiring no calibration. The goal was to compare the CAPS performance with direct measurements of absorption with ARM’s baseline photoacoustic soot spectrometer (PASS-3) and nephelometer instruments to evaluate its performance.« less

  14. Apparatus for measuring particle properties

    DOEpatents

    Rader, Daniel J.; Castaneda, Jaime N.; Grasser, Thomas W.; Brockmann, John E.

    1998-01-01

    An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.

  15. A design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, J. H.; Lin, Z. Y.; Liu, P.

    2014-10-21

    Visible light communication has been widely investigated due to its larger bandwidth and higher bit rate, and it can combine with the indoor illumination system that makes it more convenient to carry out. Receiving and processing the visible light signal on chip request for nanophotonics devices performing well. However, conventional optical device cannot be used for light-on-chip integration at subwavelength dimensions due to the diffraction limit. Herein, we propose a design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication based on the interaction between Si nanoparticle and Au nanorod. This device integrates the uniquemore » scattering property of high-refractive index dielectric Si nanoparticles, whose scattering spectrum is dependent on the particle size, with the localized surface plasmon resonance of Au nanorod. We calculated the spectra collected by plane detector and near field distribution of nanostructure, and theoretically demonstrate that the proposed device can act as good receiver, amplifier and superlens during the visible light signal receiving and processing. Besides, unlike some other designs of nanoantenna devices focused less on how to detect the signals, our hybrid nanoantenna can realize the transfer between the scattering source and the detector effectively by Au nanorod waveguides. These findings suggest that the designed nanoplasmonic structure is expected to be used in on-chip nanophotonics as antenna, spectral splitter and demultiplexer for visible light communication.« less

  16. Eliminating Unwanted Far-Field Excitation in Objective-Type TIRF. Part II. Combined Evanescent-Wave Excitation and Supercritical-Angle Fluorescence Detection Improves Optical Sectioning

    PubMed Central

    Brunstein, Maia; Hérault, Karine; Oheim, Martin

    2014-01-01

    Azimuthal beam scanning makes evanescent-wave (EW) excitation isotropic, thereby producing total internal reflection fluorescence (TIRF) images that are evenly lit. However, beam spinning does not fundamentally address the problem of propagating excitation light that is contaminating objective-type TIRF. Far-field excitation depends more on the specific objective than on cell scattering. As a consequence, the excitation impurities in objective-type TIRF are only weakly affected by changes of azimuthal or polar beam angle. These are the main results of the first part of this study (Eliminating unwanted far-field excitation in objective-type TIRF. Pt.1. Identifying sources of nonevanescent excitation light). This second part focuses on exactly where up beam in the illumination system stray light is generated that gives rise to nonevanescent components in TIRF. Using dark-field imaging of scattered excitation light we pinpoint the objective, intermediate lenses and, particularly, the beam scanner as the major sources of stray excitation. We study how adhesion-molecule coating and astrocytes or BON cells grown on the coverslip surface modify the dark-field signal. On flat and weakly scattering cells, most background comes from stray reflections produced far from the sample plane, in the beam scanner and the objective lens. On thick, optically dense cells roughly half of the scatter is generated by the sample itself. We finally show that combining objective-type EW excitation with supercritical-angle fluorescence (SAF) detection efficiently rejects the fluorescence originating from deeper sample regions. We demonstrate that SAF improves the surface selectivity of TIRF, even at shallow penetration depths. The coplanar microscopy scheme presented here merges the benefits of beam spinning EW excitation and SAF detection and provides the conditions for quantitative wide-field imaging of fluorophore dynamics at or near the plasma membrane. PMID:24606929

  17. A diode laser-based velocimeter providing point measurements in unseeded flows using modulated filtered Rayleigh scattering (MFRS)

    NASA Astrophysics Data System (ADS)

    Jagodzinski, Jeremy James

    2007-12-01

    The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.

  18. Droplet-based immunoassay on a 'sticky' nanofibrous surface for multiplexed and dual detection of bacteria using smartphones.

    PubMed

    Nicolini, Ariana M; Fronczek, Christopher F; Yoon, Jeong-Yeol

    2015-05-15

    We have developed a rapid, sensitive, and specific droplet-based immunoassay for the detection of Escherichia coli and Salmonella within a single-pipetted sample. Polycaprolactone (PCL) electrospun fibers on indium-tin-oxide (ITO) glass provide a sufficient surface to render a non-slip droplet condition, and while the PCL fibers lend a local hydrophilicity (contact angle θ=74°) for sufficient sub-micron particle adhesion, air pockets within the fibers lend an apparent hydrophobicity. Overall, the contact angle of water on this electrospun surface is 119°, and the air pockets cause the droplet to be completely immobile and resistant to movement, protecting it from external vibration. By using both anti-E. coli conjugated, 510 nm diameter green fluorescent particles (480 nm excitation and 520 nm emission) and anti-Salmonella conjugated, 400 nm diameter red fluorescent particles (640 nm excitation and 690 nm emission), we can detect multiple targets in a single droplet. Using appropriate light sources guided by fiber optics, we determined a detection limit of 10(2) CFU mL(-1). Immunoagglutination can be observed under a fluorescence microscope. Fluorescence detection (at the emission wavelength) of immunoagglutination was maximum at 90° from the incident light, while light scattering (at the excitation wavelength) was still present and behaved similarly, indicating the ability of double detection, greatly improving credibility and reproducibility of the assay. A power function (light intensity) simulation of elastic Mie scatter confirmed that both fluorescence and light scattering were present. Due to the size of the fluorescent particles relative to their incident excitation wavelengths, Mie scatter conditions were observed, and fluorescence signals show a similar trend to light scattering signals. Smartphone detection was included for true portable detection, in which the high contact angle pinning of the droplet makes this format re-usable and re-configurable. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Advanced readout methods for superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    d'Errico, F.; Di Fulvio, A.

    2018-05-01

    Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited during the readout procedure to minimize shadowing effects between bubbles, which become severe when the latter are several thousands. The detector we used in this work is based on superheated C-318 (octafluorocyclobutane), emulsified in 100 μm ± 10% (1 SD) diameter drops in an inert matrix of approximately 150 ml. The detector was operated at room temperature and ambient pressure.

  20. A parallel bubble column system for the cultivation of phototrophic microorganisms.

    PubMed

    Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk

    2008-07-01

    An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).

  1. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  2. Conceptual design of a stray light facility for Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hellin, M. L.; Marcotte, S.; Mazy, E.; Versluys, J.; François, M.; Taccola, M.; Zuccaro Marchi, A.

    2017-11-01

    With the upcoming of TMA or FMA (Three or Four Mirrors Anastigmat) telescope design in Earth Observation system, stray light is a major contributor to the degradation of the image quality. Numerous sources of stray light can be identified and theoretically evaluated. Nevertheless in order to build a stray light model of the instrument, the Point Spread Function(s) of the instrument, i.e., the flux response of the instrument to the flux received at the instrument entrance from an infinite distant point source needs to be determined. This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.

  3. Scatter Measurements Made With Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Anthon, Erik W.

    1985-09-01

    The quality of optical surfaces is generally evaluated by how much light (normally visible light) is scattered by the surface. Most optical glasses and many coating materials are completely opaque to ultraviolet light (253.7 nm). Ultraviolet light tends to scatter much more than visible light. Scatter measurements made with ultraviolet light are therefore very sensitive and the scatter from second surfaces and from the interior (bulk) of the optical material is eliminated by the opacity. A novel scattermeter that operates with ultraviolet light has been developed. The construction and operation of this scattermeter will be described. Cleaning soon becomes the limiting factor when measuring the surfaces with very low level of scatter. Sensitivity to repeated cleaning has been investigated. Different surfaces are compared and uniformity of surfaces is measured by mapping a surface area with an x-y stage. Polished glass surfaces generally have much higher scatter than natural glass surfaces (fire polished, drawn or floated surfaces). Very low scatter levels have been found on thin drawn glass.

  4. Exploring the feasibility of focusing CW light through a scattering medium into closely spaced twin peaks via numerical solutions of Maxwell’s equations

    NASA Astrophysics Data System (ADS)

    Tseng, Snow H.; Chang, Shih-Hui

    2018-04-01

    Here we present a numerical simulation to analyze the effect of scattering on focusing light into closely-spaced twin peaks. The pseudospectral time-domain (PSTD) is implemented to model continuous-wave (CW) light propagation through a scattering medium. Simulations show that CW light can propagate through a scattering medium and focus into closely-spaced twin peaks. CW light of various wavelengths focusing into twin peaks with sub-diffraction spacing is simulated. In advance, light propagation through scattering media of various number densities is simulated to decipher the dependence of CW light focusing phenomenon on the scattering medium. The reported simulations demonstrate the feasibility of focusing CW light into twin peaks with sub-diffraction dimensions. More importantly, based upon numerical solutions of Maxwell’s equations, research findings show that the sub-diffraction focusing phenomenon can be achieved with scarce or densely-packed scattering media.

  5. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells

    NASA Astrophysics Data System (ADS)

    Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.

    2010-03-01

    We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.

  6. Laser-Based Remote Sensing of Explosives by a Differential Absorption and Scattering Method

    NASA Astrophysics Data System (ADS)

    Ayrapetyan, V. S.

    2018-01-01

    A multifunctional IR parametric laser system is developed and tested for remote detection and identification of atmospheric gases, including explosive and chemically aggressive substances. Calculations and experimental studies of remote determination of the spectroscopic parameters of the best known explosive substances TNT, RDX, and PETN are carried out. The feasibility of high sensitivity detection ( 1 ppm) of these substances with the aid of a multifunctional IR parametric light source by differential absorption and scattering is demonstrated.

  7. Time Dependence of Aerosol Light Scattering Downwind of Forest Fires

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Sedlacek, A. J., III; Wang, J.; Lewis, E. R.; Springston, S. R.; Chand, D.; Shilling, J.; Arnott, W. P.; Freedman, A.; Onasch, T. B.; Fortner, E.; Zhang, Q.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.

    2017-12-01

    In the first phase of BBOP (Biomass Burn Observation Project), a Department of Energy (DOE) sponsored study, wildland fires in the Pacific Northwest were sampled from the G-1 aircraft via sequences of transects that encountered emission whose age (time since emission) ranged from approximately 15 minutes to four hours. Comparisons between transects allowed us to determine the near-field time evolution of trace gases, aerosol particles, and optical properties. The fractional increase in aerosol concentration with plume age was typically less than a third of the fractional increase in light scattering. In some fires the increase in light scattering exceeded a factor of two. Two possible causes for the discrepancy between scattering and aerosol mass are i) the downwind formation of refractory tar balls that are not detected by the AMS and therefore contribute to scattering but not to aerosol mass and ii) changes to the aerosol size distribution. Both possibilities are considered. Our information on tar balls comes from an analysis of TEM grids. A direct determination of size changes is complicated by extremely high aerosol number concentrations that caused coincidence problems for the PCASP and UHSAS probes. We instead construct a set of plausible log normal size distributions and for each member of the set do Mie calculations to determine mass scattering efficiency (MSE), angstrom exponents, and backscatter ratios. Best fit size distributions are selected by comparison with observed data derived from multi-wavelength scattering measurements, an extrapolated FIMS size distribution, and mass measurements from an SP-AMS. MSE at 550 nm varies from a typical near source value of 2-3 to about 4 in aged air.

  8. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer

    PubMed Central

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A. Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-01-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm. PMID:23082292

  9. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    PubMed

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  10. The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Dina, G.; Kycia, S.

    2018-06-01

    The optical design for the high-energy x-ray diffraction and scattering beamline of the Brockhouse sector at the Canadian Light Source is described. The design is based on a single side-bounce silicon focusing monochromator that steers the central part of a high-field permanent magnet wiggler beam into the experimental station. Two different configurations are proposed: a higher energy resolution with vertical focusing and a lower energy resolution with horizontal and vertical focusing. The monochromator will have the possibility of mounting three crystals: one crystal optimized for 35 keV that focuses in the horizontal and vertical directions using reflection (1,1,1) and two other crystals both covering the energies above 40 keV: one with only vertical focusing and another one with horizontal and vertical focusing. The geometry of the last two monochromator crystals was optimized to use reflections (4,2,2) and (5,3,3) to cover the broad energy range from 40 to 95 keV.

  11. Apparatus for measuring particle properties

    DOEpatents

    Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.

    1998-08-11

    An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.

  12. Dual wavelength multiple-angle light scattering system for cryptosporidium detection

    NASA Astrophysics Data System (ADS)

    Buaprathoom, S.; Pedley, S.; Sweeney, S. J.

    2012-06-01

    A simple, dual wavelength, multiple-angle, light scattering system has been developed for detecting cryptosporidium suspended in water. Cryptosporidium is a coccidial protozoan parasite causing cryptosporidiosis; a diarrheal disease of varying severity. The parasite is transmitted by ingestion of contaminated water, particularly drinking-water, but also accidental ingestion of bathing-water, including swimming pools. It is therefore important to be able to detect these parasites quickly, so that remedial action can be taken to reduce the risk of infection. The proposed system combines multiple-angle scattering detection of a single and two wavelengths, to collect relative wavelength angle-resolved scattering phase functions from tested suspension, and multivariate data analysis techniques to obtain characterizing information of samples under investigation. The system was designed to be simple, portable and inexpensive. It employs two diode lasers (violet InGaN-based and red AlGaInP-based) as light sources and silicon photodiodes as detectors and optical components, all of which are readily available. The measured scattering patterns using the dual wavelength system showed that the relative wavelength angle-resolved scattering pattern of cryptosporidium oocysts was significantly different from other particles (e.g. polystyrene latex sphere, E.coli). The single wavelength set up was applied for cryptosporidium oocysts'size and relative refractive index measurement and differential measurement of the concentration of cryptosporidium oocysts suspended in water and mixed polystyrene latex sphere suspension. The measurement results showed good agreement with the control reference values. These results indicate that the proposed method could potentially be applied to online detection in a water quality control system.

  13. OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, F V; Albert, F; Anderson, G G

    2010-05-18

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less

  14. Lessons from Coronagraphic Imaging with HST that may apply to JWST

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Hines, Dean C.; Schneider, Glenn; McElwain, Michael W.

    2017-06-01

    One of the major capabilities offered by JWST is coronagraphic imaging from space, covering the near through mid-IR and optimized for study of planet formation and the evolution of planetary systems. Planning for JWST has resulted in expectations for instrument performance, observation strategies and data reduction approaches. HST with 20 years of coronagraphic imaging offers some experience which may be useful to those planning for JWST. 1) Real astronomical sources do not necessarily conform to expectations. Debris disks may be accompanied by more distant material, and some systems may be conspicuous in scattered light when offering only modest IR excesses. Proto-planetary disks are not constantly illuminated, and thus a single epoch observation of the source may not be sufficient to reveal everything about it. 2) The early expectation with NICMOS was that shallow, 2-roll observations would reveal a wealth of debris disks imaged in scattered light, and that only a limited set of PSF observations would be required. Instead, building up a library of spatially resolved disks in scattered light has proven to require alternate observing strategies, is still on-going, and has taken far longer than expected. 3) A wealth of coronagraphic options with an instrument may not be scientifically informative, unless there is a similar time investment in acquisition of calibration data in support of the science observations. 4) Finally, no one anticipated what can be gleaned from coronagraphic imaging. We should expect similar, unexpected, and ultimately revolutionary discoveries with JWST.

  15. Numerical study of photon migration in the presence of a void region using the radiative transfer and diffusion equations

    NASA Astrophysics Data System (ADS)

    Miyakawa, Erina; Fujii, Hiroyuki; Hattori, Kiyohito; Tatekura, Yuki; Kobayashi, Kazumichi; Watanabe, Masao

    2016-12-01

    Diffuse optical tomography (DOT), which is still under development, has a potential to enable non-invasive diagnoses of thyroid cancers in the human neck using the near-infrared light. This modality needs a photon migration model because scattered light is used. There are two types of photon migration models: the radiative transport equation (RTE) and diffusion equation (DE). The RTE can describe photon migration in the human neck with accuracy, while the DE enables an efficient calculation. For developing the accurate and efficient model of photon migration, it is crucial to investigate a condition where the DE holds in a scattering medium including a void region under the refractive-index mismatch at the void boundary because the human neck has a trachea (void region) and the refractive indices are different between the human neck and trachea. Hence, in this paper, we compare photon migration using the RTE with that using the DE in the medium. The numerical results show that the DE is valid under the refractive-index match at the void boundary even though the void region is near the source and detector positions. Under the refractive-index mismatch at the boundary, the numerical results using the DE disagree with those using the RTE when the void region is near the source and detector positions. This is probably because the anisotropy of the light scattering remains around the void boundary.

  16. Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling

    NASA Technical Reports Server (NTRS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.

    2013-01-01

    This paper investigates multiwavelength retrievals of median equivolumetric drop diameter D(sub 0) suitable for drizzle and light rain, through collocated 355-/527-nm Micropulse Lidar Network (MPLNET) observations collected during precipitation occurring 9 May 2012 at the Goddard Space Flight Center (GSFC) project site. By applying a previously developed retrieval technique for infrared bands, the method exploits the differential backscatter by liquid water at 355 and 527 nm for water drops larger than approximately 50 micrometers. In the absence of molecular and aerosol scattering and neglecting any transmission losses, the ratio of the backscattering profiles at the two wavelengths (355 and 527 nm), measured from light rain below the cloud melting layer, can be described as a color ratio, which is directly related to D(sub 0). The uncertainty associated with this method is related to the unknown shape of the drop size spectrum and to the measurement error. Molecular and aerosol scattering contributions and relative transmission losses due to the various atmospheric constituents should be evaluated to derive D(sub 0) from the observed color ratio profiles. This process is responsible for increasing the uncertainty in the retrieval. Multiple scattering, especially for UV lidar, is another source of error, but it exhibits lower overall uncertainty with respect to other identified error sources. It is found that the total error upper limit on D(sub 0) approaches 50%. The impact of this retrieval for long-term MPLNET monitoring and its global data archive is discussed.

  17. A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere. I - Theory. II - Application

    NASA Technical Reports Server (NTRS)

    Weng, Fuzhong

    1992-01-01

    A theory is developed for discretizing the vector integro-differential radiative transfer equation including both solar and thermal radiation. A complete solution and boundary equations are obtained using the discrete-ordinate method. An efficient numerical procedure is presented for calculating the phase matrix and achieving computational stability. With natural light used as a beam source, the Stokes parameters from the model proposed here are compared with the analytical solutions of Chandrasekhar (1960) for a Rayleigh scattering atmosphere. The model is then applied to microwave frequencies with a thermal source, and the brightness temperatures are compared with those from Stamnes'(1988) radiative transfer model.

  18. Specular, diffuse and polarized imagery of an oat canopy

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C.; De Venecia, Kurt J.

    1988-01-01

    Light, polarized by specular reflection, has been found to be an important part of the light scattered by several measured plant canopies. The authors investigate for one canopy the relative importance of specularly reflected sunlight, specularly reflected light from other sources including skylight, and diffusely upwelling light. Polarization images are used to gain increased understanding of the radiation transfer process in a plant canopy. Analysis of the results suggests that properly analyzed polarized remotely sensed data, acquired under specific atmospheric conditions by a specially designed sensor, potentially provide measures of physiological and morphological states of plants in a canopy.

  19. Laser Light Scattering with Multiple Scattering Suppression Used to Measure Particle Sizes

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tin, Padetha; Lock, James A.; Cannell, David S.; Smart, Anthony E.; Taylor, Thomas W.

    1999-01-01

    Laser light scattering is the technique of choice for noninvasively sizing particles in a fluid. The members of the Advanced Technology Development (ATD) project in laser light scattering at the NASA Lewis Research Center have invented, tested, and recently enhanced a simple and elegant way to extend the concentration range of this standard laboratory particle-sizing technique by several orders of magnitude. With this technique, particles from 3 nm to 3 mm can be measured in a solution. Recently, laser light scattering evolved to successfully size particles in both clear solutions and concentrated milky-white solutions. The enhanced technique uses the property of light that causes it to form tall interference patterns at right angles to the scattering plane (perpendicular to the laser beam) when it is scattered from a narrow laser beam. Such multiple-scattered light forms a broad fuzzy halo around the focused beam, which, in turn, forms short interference patterns. By placing two fiber optics on top of each other and perpendicular to the laser beam (see the drawing), and then cross-correlating the signals they produce, only the tall interference patterns formed by singly scattered light are detected. To restate this, unless the two fiber optics see the same interference pattern, the scattered light is not incorporated into the signal. With this technique, only singly scattered light is seen (multiple-scattered light is rejected) because only singly scattered light has an interference pattern tall enough to span both of the fiber-optic pickups. This technique is simple to use, easy to align, and works at any angle. Placing a vertical slit in front of the signal collection fibers enhanced this approach. The slit serves as an optical mask, and it significantly shortens the time needed to collect good data by selectively masking out much of the unwanted light before cross-correlation is applied.

  20. Measurement of power spectral density of broad-spectrum visible light with heterodyne near field scattering and its scalability to betatron radiation.

    PubMed

    Siano, M; Paroli, B; Chiadroni, E; Ferrario, M; Potenza, M A C

    2015-12-28

    We exploit the speckle field generated by scattering from a colloidal suspension to access both spatial and temporal coherence properties of broadband radiation. By applying the Wiener-Khinchine theorem to the retrieved temporal coherence function, information about the emission spectrum of the source is obtained in good agreement with the results of a grating spectrometer. Experiments have been performed with visible light. We prove more generally that our approach can be considered as a tool for modeling a variety of cases. Here we discuss how to apply such diagnostics to broad-spectrum betatron radiation produced in the laser-driven wakefield accelerator under development at SPARC LAB facility in Frascati.

  1. Cooperative scattering and radiation pressure force in dense atomic clouds

    NASA Astrophysics Data System (ADS)

    Bachelard, R.; Piovella, N.; Courteille, Ph. W.

    2011-07-01

    Atomic clouds prepared in “timed Dicke” states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.96.010501 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.

  2. Light Absorption of Stratospheric Aerosols: Long-Term Trend and Contribution by Aircraft

    NASA Technical Reports Server (NTRS)

    Pueschel , R. F.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    Measurements of aerosol light-absorption coefficients are useful for studies of radiative transfer and heating rates. Ogren appears to have published the first light- absorption coefficients in the stratosphere in 1981, followed by Clarke in 1983 and Pueschel in 1992. Because most stratospheric soot appears to be due to aircraft operations, application of an aircraft soot aerosol emission index to projected fuel consumption suggests a threefold increase of soot loading and light absorption by 2025. Together, those four data sets indicate an increase in mid-visible light extinction at a rate of 6 % per year. This trend is similar to the increase per year of sulfuric acid aerosol and of commercial fleet size. The proportionality between stepped-up aircraft operations above the tropopause and increases in stratospheric soot and sulfuric acid aerosol implicate aircraft as a source of stratospheric pollution. Because the strongly light-absorbing soot and the predominantly light-scattering sulfuric acid aerosol increase at similar rates, however, the mid-visible stratospheric aerosol single scatter albedo is expected to remain constant and not approach a critical value of 0.98 at which stratospheric cooling could change to warming.

  3. Study of optical techniques for the Ames unitary wind tunnels. Part 2: Light sheet and vapor screen

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    Light sheet and vapor screen methods have been studied with particular emphasis on those systems that have been used in large transonic and supersonic wind tunnels. The various fluids and solids used as tracers or light scatters and the methods for tracing generation have been studied. Light sources from high intensity lamps and various lasers have been surveyed. Light sheet generation and projection methods were considered. Detectors and location of detectors were briefly studied. A vapor screen system and a technique for location injection of tracers for the NASA Ames 9 by 7 foot Supersonic Wind Tunnel were proposed.

  4. Violet laser diodes as light sources for cytometry.

    PubMed

    Shapiro, H M; Perlmutter, N G

    2001-06-01

    Violet laser diodes have recently become commercially available. These devices emit 5-25 mW in the range of 395-415 nm, and are available in systems that incorporate the diodes with collimating optics and regulated power supplies in housing incorporating thermoelectric coolers, which are necessary to maintain stable output. Such systems now cost several thousand dollars, but are expected to drop substantially in price. Materials and Methods A 4-mW, 397-nm violet diode system was used in a laboratory-built flow cytometer to excite fluorescence of DAPI and Hoechst dyes in permeabilized and intact cells. Forward and orthogonal light scattering were also measured. DNA content histograms with good precision (G(0)/G(1) coefficient of variation 1.7%) were obtained with DAPI staining; precision was lower using Hoechst 33342. Hoechst 34580, with an excitation maximum nearer 400 nm, yielded the highest fluorescence intensity, but appeared to decompose after a short time in solution. Scatter signals exhibited relatively broad distributions. Violet laser diodes are relatively inexpensive, compact, efficient, and quiet light sources for DNA fluorescence measurement using DAPI and Hoechst dyes; they can also excite several other fluorescent probes. Copyright 2001 Wiley-Liss, Inc.

  5. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinke, I.; Lehmkühler, F., E-mail: felix.lehmkuehler@desy.de; Schroer, M. A.

    2016-06-15

    In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  6. Isotropic Huygens dipoles and multipoles with colloidal particles

    NASA Astrophysics Data System (ADS)

    Dezert, Romain; Richetti, Philippe; Baron, Alexandre

    2017-11-01

    Huygens sources are elements that scatter light in the forward direction as used in the Huygens-Fresnel principle. They have remained fictitious until recently when experimental systems have been fabricated. In this Rapid Communication, we propose isotropic meta-atoms that act as Huygens sources. Using clusters of plasmonic or dielectric colloidal particles, Huygens dipoles that resonate at visible frequencies can be achieved with scattering cross sections as high as five times the geometric cross section of the particle surpassing anything achievable with a hypothetical simple spherical particle. Examples are given that predict extremely broadband scattering in the forward direction over a 1000 nm wavelength range at optical frequencies. These systems are important to the fields of nanoantennas, metamaterials, and wave physics in general as well as any application that requires local control over the radiation properties of a system as in solar cells or biosensing.

  7. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources

    DOE PAGES

    Steinke, I.; Walther, M.; Lehmkühler, F.; ...

    2016-06-01

    In this study we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. Finally, as a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less

  8. A Potential Cyclotron Resonant Scattering Feature in the Ultraluminous X-Ray Source Pulsar NGC 300 ULX1 Seen by NuSTAR and XMM-Newton

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B. W.; Harrison, F. A.; Heida, M.; Kennea, J.; Kosec, P.; Lau, R. M.; Madsen, K. K.; Middleton, M. J.; Pinto, C.; Steiner, J. F.; Webb, N.

    2018-04-01

    Based on phase-resolved broadband spectroscopy using XMM-Newton and NuSTAR, we report on a potential cyclotron resonant scattering feature (CRSF) at E ∼ 13 keV in the pulsed spectrum of the recently discovered ultraluminous X-ray source (ULX) pulsar NGC 300 ULX1. If this interpretation is correct, the implied magnetic field of the central neutron star is B ∼ 1012 G (assuming scattering by electrons), similar to that estimated from the observed spin-up of the star, and also similar to known Galactic X-ray pulsars. We discuss the implications of this result for the connection between NGC 300 ULX1 and the other known ULX pulsars, particularly in light of the recent discovery of a likely proton cyclotron line in another ULX, M51 ULX-8.

  9. Polarization simulations of stellar wind bow-shock nebulae - I. The case of electron scattering

    NASA Astrophysics Data System (ADS)

    Shrestha, Manisha; Neilson, Hilding R.; Hoffman, Jennifer L.; Ignace, Richard

    2018-06-01

    Bow shocks and related density enhancements produced by the winds of massive stars moving through the interstellar medium provide important information regarding the motions of the stars, the properties of their stellar winds, and the characteristics of the local medium. Since bow-shock nebulae are aspherical structures, light scattering within them produces a net polarization signal even if the region is spatially unresolved. Scattering opacity arising from free electrons and dust leads to a distribution of polarized intensity across the bow-shock structure. That polarization encodes information about the shape, composition, opacity, density, and ionization state of the material within the structure. In this paper, we use the Monte Carlo radiative transfer code SLIP to investigate the polarization created when photons scatter in a bow-shock-shaped region of enhanced density surrounding a stellar source. We present results for electron scattering, and investigate the polarization behaviour as a function of optical depth, temperature, and source of photons for two different cases: pure scattering and scattering with absorption. In both regimes, we consider resolved and unresolved cases. We discuss the implications of these results as well as their possible use along with observational data to constrain the properties of observed bow-shock systems. In different situations and under certain assumptions, our simulations can constrain viewing angle, optical depth and temperature of the scattering region, and the relative luminosities of the star and shock.

  10. Bacterial Identification Using Light Scattering Measurements: a Preliminary Report

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1971-01-01

    The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.

  11. Scattering theory of stochastic electromagnetic light waves.

    PubMed

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  12. Biomembranes research using thermal and cold neutrons

    DOE PAGES

    Heberle, Frederick A.; Myles, Dean A. A.; Katsaras, John

    2015-08-01

    In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: “whatever the radiation from Be may be, it has most remarkable properties.” Where it concerns hydrogen-rich biological materials, the “most remarkable” property is the neutron’s differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, impartingmore » sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. Furthermore, this article describes recent biomembranes research using a variety of neutron scattering techniques.« less

  13. Anisotropic light scattering of individual sickle red blood cells.

    PubMed

    Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  14. The NGST and the Zodiacal Light in the Solar System

    NASA Technical Reports Server (NTRS)

    Gorkavyi, Nick; Ozernoy, Leonid; Mather, John; Taidakova, Tanya

    1999-01-01

    We develop a physical model of the zodiacal cloud incorporating the real dust sources of asteroidal, cometary, and kuiperoidal origin. Using the inferred distribution of the zodiacal dust, we compute its thermal emission and scattering at several wavelengths (1.25, 5, and 20 micron) as a function of NGST location assumed to be at 1 AU or 3 AU. Areas on the sky with a minimum of zodiacal light are determined.

  15. Sound field reproduction as an equivalent acoustical scattering problem.

    PubMed

    Fazi, Filippo Maria; Nelson, Philip A

    2013-11-01

    Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.

  16. A study of the polarization of light scattered by vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Woessner, P. N.

    1985-01-01

    This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. The intensity and polarization of light scattered by clover and grass in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of leaves were measured. The light transmitted through the leaves was found to be negatively polarized. The light scattered from the upper leaf surface was found to be positively polarized in a manner which could be accounted for qualitatively but not quantitatively by the Fresnel reflection coefficients modified by a shadowing function of the form cos sup2 (g/2), where g is the phase angle. Findings indicate that the polarization of light scattered by vegetation is a more complex process than previously thought, and that besides the surface-scattered component of light, the volume-scattered and multiply-scattered components also contribute significantly to the polarization.

  17. General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures.

    PubMed

    Chen, Yuntian; Zhang, Yan; Femius Koenderink, A

    2017-09-04

    We study semi-analytically the light emission and absorption properties of arbitrary stratified photonic structures with embedded two-dimensional magnetoelectric point scattering lattices, as used in recent plasmon-enhanced LEDs and solar cells. By employing dyadic Green's function for the layered structure in combination with the Ewald lattice summation to deal with the particle lattice, we develop an efficient method to study the coupling between planar 2D scattering lattices of plasmonic, or metamaterial point particles, coupled to layered structures. Using the 'array scanning method' we deal with localized sources. Firstly, we apply our method to light emission enhancement of dipole emitters in slab waveguides, mediated by plasmonic lattices. We benchmark the array scanning method against a reciprocity-based approach to find that the calculated radiative rate enhancement in k-space below the light cone shows excellent agreement. Secondly, we apply our method to study absorption-enhancement in thin-film solar cells mediated by periodic Ag nanoparticle arrays. Lastly, we study the emission distribution in k-space of a coupled waveguide-lattice system. In particular, we explore the dark mode excitation on the plasmonic lattice using the so-called array scanning method. Our method could be useful for simulating a broad range of complex nanophotonic structures, i.e., metasurfaces, plasmon-enhanced light emitting systems and photovoltaics.

  18. A new Monte Carlo code for light transport in biological tissue.

    PubMed

    Torres-García, Eugenio; Oros-Pantoja, Rigoberto; Aranda-Lara, Liliana; Vieyra-Reyes, Patricia

    2018-04-01

    The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.

  19. Low-resolution mapping of the effective attenuation coefficient of the human head: a multidistance approach applied to high-density optical recordings.

    PubMed

    Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele

    2017-04-01

    Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.

  20. Narrowly peaked forward light scattering on particulate media: II. Angular spreading of light scattered by polystyrene microspheres

    NASA Astrophysics Data System (ADS)

    Turcu, Ioan; Bratfalean, Radu; Neamtu, Silvia

    2008-07-01

    The adequacy of the effective phase function (EPF) used to describe the light scattered at small angles was tested on aqueous suspensions of polystyrene microspheres. Angular resolved light scattering measurements were performed on two types of latex suspension, which contained polystyrene spheres of 3 µm and 5 µm diameters, respectively. The experimental data were fitted with two EPF approximants. If the polystyrene spheres are at least 3 µm in diameter the quasi-ballistic light scattering process can be described relatively well by the EPF in a small angular range centered in the forward direction. The forward light scattering by macroscopic samples containing microspheres can be modeled relatively well if the true Mie single particle scattering phase function is replaced by a simpler Henyey-Greenstein dependence having the same width at half-height as the first scattering lobe.

  1. A study on independently using static and dynamic light scattering methods to determine the coagulation rate

    NASA Astrophysics Data System (ADS)

    Zhou, Hongwei; Xu, Shenghua; Mi, Li; Sun, Zhiwei; Qin, Yanming

    2014-09-01

    Absolute coagulation rate constants were determined by independently, instead of simultaneously, using static and dynamic light scattering with the requested optical factors calculated by T-matrix method. The aggregating suspensions of latex particles with diameters of 500, 700, and 900 nm, that are all beyond validity limit of the traditional Rayleigh-Debye-Gans approximation, were adopted. The results from independent static and dynamic light scattering measurements were compared with those by simultaneously using static and dynamic light scattering; and three of them show good consistency. We found, theoretically and experimentally, that for independent static light scattering measurements there are blind scattering angles at that the scattering measurements become impossible and the number of blind angles increases rapidly with particle size. For independent dynamic light scattering measurements, however, there is no such a blind angle at all. A possible explanation of the observed phenomena is also presented.

  2. Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions

    PubMed Central

    Chu, Benjamin; Fang, Dufei; Mao, Yimin

    2015-01-01

    The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340

  3. FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer.

    PubMed

    Kim, Jun-Whee; Jang, Ji-Hyang; Oh, Min-Cheol; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jae-Hyun; Lee, Jeong-Ik

    2014-01-13

    The light extraction efficiency of OLEDs with a nano-sized random scattering layer (RSL-OLEDs) was analyzed using the Finite Difference Time Domain (FDTD) method. In contrast to periodic diffraction patterns, the presence of an RSL suppresses the spectral shift with respect to the viewing angle. For FDTD simulation of RSL-OLEDs, a planar light source with a certain spatial and temporal coherence was incorporated, and the light extraction efficiency with respect to the fill factor of the RSL and the absorption coefficient of the material was investigated. The design results were compared to the experimental results of the RSL-OLEDs in order to confirm the usefulness of FDTD in predicting experimental results. According to our FDTD simulations, the light confined within the ITO-organic waveguide was quickly absorbed, and the absorption coefficients of ITO and RSL materials should be reduced in order to obtain significant improvement in the external quantum efficiency (EQE). When the extinction coefficient of ITO was 0.01, the EQE in the RSL-OLED was simulated to be enhanced by a factor of 1.8.

  4. Effects of interstellar dust scattering on the X-ray eclipses of the LMXB AX J1745.6-2901 in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne

    2018-07-01

    AX J1745.6-2901 is an eclipsing low-mass X-ray binary in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust-scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line of sight (LOS). The apparent dependence on the instruments is caused by different instrumental point spread functions. Our results can be used to assess the influence of dust-scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust-scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to the Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disc in-between.

  5. Multi-peaks scattering of light in glasses

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Vostrikova, L. I.

    2018-04-01

    Investigations of the multi-peaks scattering of the laser light on the micro-scale susceptibility gratings with small periodicities photo-induced in the various glass materials are presented. The observed pictures of the multi-peaks scattering of light in oxide samples show that the efficiencies of the processes of scattering can vary for the different chemical compositions. Experimental results are in agreement with the proposed theory of light scattering.

  6. Diffusing Wave Spectroscopy Used to Study Foams

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Durian, Douglas J.

    2000-01-01

    The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.

  7. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  8. RAMAN SCATTERING BY MOLECULAR HYDROGEN AND NITROGEN IN EXOPLANETARY ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oklopčić, Antonija; Hirata, Christopher M.; Heng, Kevin, E-mail: oklopcic@astro.caltech.edu

    2016-11-20

    An important source of opacity in exoplanet atmospheres at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process—Raman scattering. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide information about atmospheric properties. Raman scattering affects the geometric albedo spectra of planets in the following ways. First, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Second, it shifts the wavelengths of spectral features in the reflected lightmore » causing the so-called Raman ghost lines. Raman scattering can also cause a broadband reduction of the albedo due to wavelength shifting of a stellar spectrum with red spectral index. Observing the Raman peaks in the albedo could be used to measure the column density of gas, thus providing constraints on the presence of clouds in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere, even molecules like H{sub 2} or N{sub 2}, which do not have prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. In this paper, we investigate the effects of Raman scattering in hydrogen- and nitrogen-dominated atmospheres. We analyze the feasibility of detecting the signatures of Raman scattering with the existing and future observational facilities, and of using these signatures as probes of exoplanetary atmospheres.« less

  9. Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media

    NASA Astrophysics Data System (ADS)

    Shumyatsky, Pavel; Milione, Giovanni; Alfano, Robert R.

    2014-06-01

    Propagation effects of polarized Laguerre-Gaussian light with different orbital angular momentum (L) in turbid media are described. The optical memory effect in scattering media consisting of small and large size (compared to the wavelength) scatterers is investigated for scattered polarized light. Imaging using polarized laser modes with a varying orbital strength L-parameter was performed. The backscattered image quality (contrast) was enhanced by more than an order of magnitude using circularly polarized light when the concentration of scatterers was close to invisibility of the object.

  10. Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension

    NASA Astrophysics Data System (ADS)

    Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.

    2016-06-01

    A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.

  11. The development of a tunable, single-frequency ultraviolet laser source for UV filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.

    1995-01-01

    We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.

  12. Frequency mismatch in stimulated scattering processes: An important factor for the transverse distribution of scattered light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Zheng, Jian, E-mail: jzheng@ustc.edu.cn

    2016-06-15

    A 2D cylindrically symmetric model with inclusion of both diffraction and self-focus effects is developed to deal with the stimulated scattering processes of a single hotspot. The calculated results show that the transverse distribution of the scattered light is sensitive to the longitudinal profiles of the plasma parameters. The analysis of the evolution of the scattered light indicates that it is the frequency mismatch of coupling due to the inhomogeneity of plasmas that determines the transverse distribution of the scattered light.

  13. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    DOE PAGES

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; ...

    2015-04-11

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm⁻¹ electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  14. CARS molecular fingerprinting using a sub-nanosecond supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Kano, Hideaki; Akiyama, Toshihiro; Inoko, Akihito; Kobayashi, Tsubasa; Leproux, Philippe; Couderc, Vincent; Kaji, Yuichi; Oshika, Tetsuro

    2018-02-01

    We have visualized living cells and tissues using an ultrabroadband multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopic system by using a sub-nanosecond supercontinuum (SC) light source. Owing to the ultrabroadband spectral profile of the SC, we can generate multiplex CARS signals in the spectral range of 500-3800 cm-1, which covers the whole molecular fingerprint region, as well as the C-H and O-H stretching regions. Through the combination of the ultrabroadband multiplex CARS method with second harmonic generation (SHG) and third harmonic generation (THG) processes, we have successfully performed selective imaging of ciliary rootlet-composing Rootletin filaments in rat retina.

  15. Polarimetry - Scope on the 3.6-m Devasthal Optical Telescope

    NASA Astrophysics Data System (ADS)

    Joshi, Umesh Chandra; Ganesh, Shashikiran; Baliyan, Kiran Singh

    2018-04-01

    Polarization measurements are very helpful to understand the nature of some of the stellar and extra-galactic sources. Light from astronomical objects is in general polarized to some degree and its measurement gives additional information related to the magnetic field, the distribution of scattering material, the non-thermal nature of light, etc. Since the degree of polarization in the majority of astronomical sources is 1-5%, and polarimetry requires additional optics with respect to classical imaging, these measurements require much more photons to achieve a good signal-to-noise ratio for which the 3.6-m Devasthal Optical Telescope (DOT) facility is suitable.

  16. SLS-2 – the upgrade of the Swiss Light Source

    PubMed Central

    Streun, Andreas; Garvey, Terence; Rivkin, Lenny; Schlott, Volker; Schmidt, Thomas; Willmott, Philip; Wrulich, Albin

    2018-01-01

    An upgrade of the Swiss Light Source (SLS) is planned for 2021–2024 and includes the exchange of the existing storage ring by a new one providing about 40–50 times lower emittance in user operation mode. This will extend the performance of SLS in particular in the fields of coherent imaging, full-field tomography, soft X-ray angle-resolved photoelectron spectroscopy and resonant inelastic X-ray scattering. A science case and a conceptual design for the machine have been established. As a summary of these reports, the novel lattice design, undulator developments and scientific highlights are presented. PMID:29714174

  17. Real-time data-intensive computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkinson, Dilworth Y., E-mail: dyparkinson@lbl.gov; Chen, Xian; Hexemer, Alexander

    2016-07-27

    Today users visit synchrotrons as sources of understanding and discovery—not as sources of just light, and not as sources of data. To achieve this, the synchrotron facilities frequently provide not just light but often the entire end station and increasingly, advanced computational facilities that can reduce terabytes of data into a form that can reveal a new key insight. The Advanced Light Source (ALS) has partnered with high performance computing, fast networking, and applied mathematics groups to create a “super-facility”, giving users simultaneous access to the experimental, computational, and algorithmic resources to make this possible. This combination forms an efficientmore » closed loop, where data—despite its high rate and volume—is transferred and processed immediately and automatically on appropriate computing resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beamtime. We will describe our work at the ALS ptychography, scattering, micro-diffraction, and micro-tomography beamlines.« less

  18. Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp.

    PubMed

    van den Berg, Thomas J T P

    2018-01-01

    Much knowledge has been collected over the past 20 years about light scattering in the eye- in particular in the eye lens- and its visual effect, called straylight. It is the purpose of this review to discuss how these insights can be applied to understanding the slit lamp image. The slit lamp image mainly results from back scattering, whereas the effects on vision result mainly from forward scatter. Forward scatter originates from particles of about wavelength size distributed throughout the lens. Most of the slit lamp image originates from small particle scatter (Rayleigh scatter). For a population of middle aged lenses it will be shown that both these scatter components remove around 10% of the light from the direct beam. For slit lamp observation close to the reflection angles, zones of discontinuity (Wasserspalten) at anterior and posterior parts of the lens show up as rough surface reflections. All these light scatter effects increase with age, but the correlations with age, and also between the different components, are weak. For retro-illumination imaging it will be argued that the density or opacity seen in areas of cortical or posterior subcapsular cataract show up because of light scattering, not because of light loss. NOTES: (1) Light scatter must not be confused with aberrations. Light penetrating the eye is divided into two parts: a relatively small part is scattered, and removed from the direct beam. Most of the light is not scattered, but continues as the direct beam. This non-scattered part is the basis for functional imaging, but its quality is under the control of aberrations. Aberrations deflect light mainly over small angles (<1°), whereas light scatter is important because of the straylight effects over large angles (>1°), causing problems like glare and hazy vision. (2) The slit lamp image in older lenses and nuclear cataract is strongly influenced by absorption. However, this effect is greatly exaggerated by the light path lengths concerned. This obviates proper judgement of the functional importance of absorption, and hinders the appreciation of the Rayleigh nature of what is seen in the slit lamp image. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  19. High-precision measurement of the light response of BC-418 plastic scintillator to protons with energies from 100 keV to 10 MeV

    NASA Astrophysics Data System (ADS)

    Henzl, Vladimir; Daub, Brian; French, Jennifer; Matthews, June; Kovash, Michael; Wender, Stephen; Famiano, Michael; Koehler, Katrina; Yuly, Mark

    2010-11-01

    The determination of the light response of many organic scintillators to various types of radiation has been a subject of numerous experimental as well as theoretical studies in the past. But while the data on light response to particles with energies above 1 MeV are precise and abundant, the information on light response to very low energy particles (i.e. below 1 MeV) is scarce or completely missing. In this study we measured the light response of a BC-418 scintillator to protons with energies from 100 keV to 10 MeV. The experiment was performed at Weapons Neutron Research Facility at LANSCE, Los Alamos. The neutron beam from a spallation source is used to irradiate the active target made from BC-418 plastic scintillator. The recoiled protons detected in the active target are measured in coincidence with elastically scattered incident neutrons detected by and adjacent liquid scintillator. Time of flight of the incident neutron and the knowledge of scattering geometry allow for a kinematically complete and high-precision measurement of the light response as a function of the proton energy.

  20. Coronagraphic Notch Filter for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cohen, David; Stirbl, Robert

    2004-01-01

    A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are formed off axis - that is, away from the occulting spot - so that they become refocused onto the final image plane.

  1. Interpretation of light scattering and turbidity measurements in aggregated systems: effect of intra-cluster multiple-light scattering.

    PubMed

    Soos, Miroslav; Lattuada, Marco; Sefcik, Jan

    2009-11-12

    In this work we studied the effect of intracluster multiple-light scattering on the scattering properties of a population of fractal aggregates. To do so, experimental data of diffusion-limited aggregation for three polystyrene latexes with similar surface properties but different primary particle diameters (equal to 118, 420, and 810 nm) were obtained by static light scattering and by means of a spectrophotometer. In parallel, a population balance equation (PBE) model, which takes into account the effect of intracluster multiple-light scattering by solving the T-matrix and the mean-field version of T-matrix, was formulated and validated against time evolution of the root mean radius of gyration, , of the zero angle intensity of scattered light, I(0), and of the turbidity, tau. It was found that the mean-field version of the T-matrix theory is able to correctly predict the time evolution of all measured light scattering quantities for all sizes of primary particles without any adjustable parameter. The structure of the aggregates, characterized by fractal dimension, d(f), was independent of the primary particle size and equal to 1.7, which is in agreement with values found in literature. Since the mean-field version of the T-matrix theory used is rather complicated and requires advanced knowledge of cluster structure (i.e., the particle-particle correlation function), a simplified version of the light scattering model was proposed and tested. It was found that within the range of operating conditions investigated, the simplified version of the light scattering model was able to describe with reasonable accuracy the time evolution of all measured light scattering quantities of the cluster mass distribution (CMD) for all three sizes of primary particles and two values of the laser wavelength.

  2. Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep.

    PubMed

    Zylinski, Sarah; Johnsen, Sönke

    2011-11-22

    Animals in the lower mesopelagic zone (600-1,000 m depth) of the oceans have converged on two major strategies for camouflage: transparency and red or black pigmentation [1]. Transparency conveys excellent camouflage under ambient light conditions, greatly reducing the conspicuousness of the animal's silhouette [1, 2]. Transparent tissues are seldom perfectly so, resulting in unavoidable internal light scattering [2]. Under directed light, such as that emitted from photophores thought to function as searchlights [3-8], the scattered light returning to a viewer will be brighter than the background, rendering the animal conspicuous [2, 4]. At depths where bioluminescence becomes the dominant source of light, most animals are pigmented red or black, thereby reflecting little light at wavelengths generally associated with photophore emissions and visual sensitivities [3, 9-14]. However, pigmented animals are susceptible to being detected via their silhouettes [5, 9-11]. Here we show evidence for rapid switching between transparency and pigmentation under changing optical conditions in two mesopelagic cephalopods, Japetella heathi and Onychoteuthis banksii. Reflectance measurements of Japetella show that transparent tissue reflects twice as much light as pigmented tissue under direct light. This is consistent with a dynamic strategy to optimize camouflage under ambient and searchlight conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less

  4. Diffraction data of core-shell nanoparticles from an X-ray free electron laser

    DOE PAGES

    Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...

    2017-04-11

    X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less

  5. Static and dynamic light scattering by red blood cells: A numerical study.

    PubMed

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.

  6. Static and dynamic light scattering by red blood cells: A numerical study

    PubMed Central

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring. PMID:28472125

  7. Development of wide-angle 2D light scattering static cytometry

    NASA Astrophysics Data System (ADS)

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-10-01

    We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.

  8. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers.

    PubMed

    Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern

    2014-07-07

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference between the scanner's horizontally and vertically polarized light supply and with the limited directional acceptance of the scanner's light recording system.

  9. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.

    PubMed

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-09-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.

  10. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator

    NASA Astrophysics Data System (ADS)

    Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu

    2015-09-01

    In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.

  11. Improved Optics For Quasi-Elastic Light Scattering

    NASA Technical Reports Server (NTRS)

    Cheung, Harry Michael

    1995-01-01

    Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.

  12. Study of ZnO nanoparticles: Antibacterial property and light depolarization property using light scattering tool

    NASA Astrophysics Data System (ADS)

    Roy, Sanchita; Barua, Nilakshi; Buragohain, Alak K.; Ahmed, Gazi A.

    2013-03-01

    Investigations on treatment of ZnO nanoparticles on Staphylococcus aureus MTCC 737 strain was essentially made by using standard biochemical method. The anti-microbial assay against S. aureus, and time kill assay revealed the anti-bacterial activity of ZnO nanoparticles. We have substantiated this property of ZnO nanoparticles and light depolarization property by using light scattering tool. Light scattering measurements were carried out for ZnO, S. aureus, and ZnO treated S. aureus as a function of scattering angle at 543.5 and 632.8 nm wavelengths. This was done in order to find the scattering profile of the consequent product after the action of ZnO nanoparticles on bacteria by means of light scattering tool. S. aureus treated with ZnO nanoparticles showed closer agreement of the scattering profiles at both the wavelengths, however, the scattering profiles of ZnO nanoparticles and untreated S. aureus significantly varied for the two different laser wavelengths. It was also observed that there was higher intensity of scattering from all S. aureus treated with ZnO particles compared to the untreated ones. In our work, we have studied ZnO nanoparticles and the possibility of observing its anti-bacterial activity by using light scattering tool.

  13. Analysis and Application of the Bi-Directional Scatter Distribution Function of Photonic Crystals

    DTIC Science & Technology

    2009-03-01

    and reflected light ..................17 10. A CASI source box, showing the beam path, chopper , scaling photodetector, half-wave plate, and linear...off of a semi-reflective beam chopper , shown in Figure 10. Any variation in the output of the laser is detected by it, and the incident power is...box, showing the beam path, chopper , scaling photodetector, half-wave plate, and linear polarizers. 20 The CASI is not sensitive to ambient light

  14. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  15. Light scattering and light transmittance of cadaver eye-explanted intraocular lenses of different materials.

    PubMed

    Morris, Caleb; Werner, Liliana; Barra, Daniel; Liu, Erica; Stallings, Shannon; Floyd, Anne

    2014-01-01

    To evaluate light scattering and light transmittance in cadaver eye-explanted intraocular lenses (IOLs) manufactured from different materials. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Forty-nine pseudophakic cadaver eyes were selected according to IOL material/type and implantation duration, and the IOLs were explanted. Hydrophobic acrylic, hydrophilic acrylic, poly(methyl methacrylate) (PMMA), and silicone IOLs were included. Gross and light microscopy was performed for all IOLs. Light scattering was measured with an EAS 1000 Scheimpflug camera, and light transmittance was assessed using a Lambda 35 UV/Vis spectrophotometer (single-beam configuration with an RSA PE-20 integrating sphere). Analyses were performed at room temperature in the hydrated state and compared with analyses of controls. The highest levels of surface light scattering were measured for 3-piece hydrophobic acrylic, which was also the IOL type with the longest implantation duration among the Acrysof hydrophobic acrylic IOLs. Hydrophilic acrylic, PMMA, and silicone IOLs exhibited relatively low light-scattering levels. The lowest light-scattering levels were observed with PMMA IOLs (1-piece looped and 3-piece) and plate silicone IOLs, which represent the IOL types with the longest implantation duration in this series. Light transmittance values measured for all IOL types appeared to be similar to the values of the corresponding control IOLs. The phenomenon of surface light scattering (nanoglistenings) is more particularly related to hydrophobic acrylic IOLs and increases with implantation time. No significant effect of surface light scattering on IOL light transmittance was found. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation.

    PubMed

    Ahsan, Syed Saad; Pereyra, Brandon; Jung, Erica E; Erickson, David

    2014-10-20

    Most existing photobioreactors do a poor job of distributing light uniformly due to shading effects. One method by which this could be improved is through the use of internal wave-guiding structures incorporating engineered light scattering schemes. By varying the density of these scatterers, one can control the spatial distribution of light inside the reactor enabling better uniformity of illumination. Here, we compare a number of light scattering schemes and evaluate their ability to enhance biomass accumulation. We demonstrate a design for a gradient distribution of surface scatterers with uniform lateral scattering intensity that is superior for algal biomass accumulation, resulting in a 40% increase in the growth rate.

  17. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking.

    PubMed

    Picardi, Michela F; Zayats, Anatoly V; Rodríguez-Fortuño, Francisco J

    2018-03-16

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  18. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking

    NASA Astrophysics Data System (ADS)

    Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2018-03-01

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  19. Rugged fiber optic probe for raman measurement

    DOEpatents

    O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.

    1998-01-01

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  20. Spatially-and Temporally-Resolved Multi-Parameter Interferometric Rayleigh Scattering System and Method

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel (Inventor); Cutler, Andrew D. (Inventor); Danehy, Paul M. (Inventor)

    2015-01-01

    A system that simultaneously measures the translational temperature, bulk velocity, and density in gases by collecting, referencing, and analyzing nanosecond time-scale Rayleigh scattered light from molecules is described. A narrow-band pulsed laser source is used to probe two largely separated measurement locations, one of which is used for reference. The elastically scattered photons containing information from both measurement locations are collected at the same time and analyzed spectrally using a planar Fabry-Perot interferometer. A practical means of referencing the measurement of velocity using the laser frequency, and the density and temperature using the information from the reference measurement location maintained at constant properties is provided.

  1. Multiple-Fiber-Optic Probe For Light-Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh; Ansari, Rafat R.

    1996-01-01

    Multiple-fiber-optical probe developed for use in measuring light scattered at various angles from specimens of materials. Designed for both static and dynamic light-scattering measurements of colloidal dispersions. Probe compact, rugged unit containing no moving parts and remains stationary during operation. Not restricted to operation in controlled, research-laboratory environment. Positioned inside or outside light-scattering chamber. Provides simultaneous measurements at small angular intervals over range of angles, made to include small scattering angles by orienting probe in appropriate direction.

  2. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    NASA Astrophysics Data System (ADS)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  3. Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments

    NASA Astrophysics Data System (ADS)

    Kosmas, T. S.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2017-09-01

    We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated χ2-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.

  4. Picosecond Pulse Recirculation for High Average Brightness Thomson Scattering-based Gamma-ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. A.

    2009-06-12

    Pulse recirculation has been successfully demonstrated with the interaction laser system of LLNL's Thomson-Radiated Extreme X-ray (T-REX) source. The recirculation increased twenty-eight times the intensity of the light coming out of the laser system, demonstrating the capability of increasing the gamma-ray flux emitted by T-REX. The technical approach demonstrated could conceivably increase the average gamma-ray flux output by up to a hundred times.

  5. Characterization of diffraction gratings scattering in uv and ir for space applications

    NASA Astrophysics Data System (ADS)

    Achour, Sakina; Kuperman-Le Bihan, Quentin; Etcheto, Pierre

    2017-09-01

    The use of Bidirectional Scatter Distribution Function (BSDF) in space industry and especially when designing telescopes is a key feature. Indeed when speaking about space industry, one can immediately think about stray light issues. Those important phenomena are directly linked to light scattering. Standard BSDF measurement goniophotometers often have a resolution of about 0.1° and are mainly working in or close to the visible spectrum. This resolution is far too loose to characterize ultra-polished surfaces. Besides, wavelength range of BSDF measurements for space projects needs to be done far from visible range. How can we measure BSDF of ultra-polished surfaces and diffraction gratings in the UV and IR range with high resolution? We worked on developing a new goniophometer bench in order to be able to characterize scattering of ultra-polished surfaces and diffraction gratings used in everyday space applications. This ten meters long bench was developed using a collimated beam approach as opposed to goniophotometer using focused beam. Sources used for IR characterization were CO2 (10.6?m) and Helium Neon (3.39?m) lasers. Regarding UV sources, a collimated and spatially filtered UV LED was used. The detection was ensure by a photomultiplier coupled with synchronous detection as well as a MCT InSb detector. The so-built BSDF measurement instrument allowed us to measure BSDF of ultra-polished surfaces as well as diffraction gratings with an angular resolution of 0.02° and a dynamic of 1013 in the visible range. In IR as well as in UV we manage to get 109 with same angular resolution of 0.02°. The 1m arm and translation stages allows us to measure samples up to 200mm. Thanks to such a device allowing ultra-polished materials as well as diffraction gratings scattering characterization, it is possible to implement those BSDF measurements into simulation software and predict stray light issues. This is a big help for space industry engineers to apprehend stray light due to surface finishes and to delete those effects before the whole project is done. We are now thinking of possible improvement on our optical bench to try to get dynamic in IR and UV similar to what we have in visible range (e.g. 1013).

  6. Angular-dependent light scattering from cancer cells in different phases of the cell cycle.

    PubMed

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-10-10

    Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.

  7. Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chong, Shau Poh; Bernucci, Marcel T.; Borycki, Dawid; Radhakrishnan, Harsha; Srinivasan, Vivek J.

    2017-02-01

    Visible light is absorbed by intrinsic chromophores such as photopigment, melanin, and hemoglobin, and scattered by subcellular structures, all of which are potential retinal disease biomarkers. Recently, high-resolution quantitative measurement and mapping of hemoglobin concentrations was demonstrated using visible light Optical Coherence Tomography (OCT). Yet, most high-resolution visible light OCT systems adopt free-space, or bulk, optical setups, which could limit clinical applications. Here, the construction of a multi-functional fiber-optic OCT system for human retinal imaging with <2.5 micron axial resolution is described. A detailed noise characterization of two supercontinuum light sources with differing pulse repetition rates is presented. The higher repetition rate, lower noise, source is found to enable a sensitivity of 87 dB with 0.1 mW incident power at the cornea and a 98 microsecond exposure time. Using a broadband, asymmetric, fused single-mode fiber coupler designed for visible wavelengths, the sample arm is integrated into an ophthalmoscope platform, rendering it portable and suitable for clinical use. In vivo anatomical, Doppler, and spectroscopic imaging of the human retina is further demonstrated using a single oversampled B-scan. For spectroscopic fitting of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) content in the retinal vessels, a noise bias-corrected absorbance spectrum is estimated using a sliding short-time Fourier transform of the complex OCT signal and fit using a model of light absorption and scattering. This yielded path length (L) times molar concentration, LCHbO2 and LCHb. Based on these results, we conclude that high-resolution visible light OCT has potential for depth-resolved functional imaging of the eye.

  8. Asymmetric Flow-Field Flow Fractionation (AF4) of Aqueous C60 Aggregates with Dynamic Light Scattering Size and LC-MS

    EPA Science Inventory

    Current methods for the size determination of nanomaterials in aqueous suspension include dynamic or static light scattering and electron or atomic force microscopy techniques. Light scattering techniques are limited by poor resolution and the scattering intensity dependence on p...

  9. Laser Speckle Contrast Imaging: theory, instrumentation and applications.

    PubMed

    Senarathna, Janaka; Rege, Abhishek; Li, Nan; Thakor, Nitish V

    2013-01-01

    Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.

  10. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

    DTIC Science & Technology

    2009-01-01

    1491−1499, 1994. Gordon, H.R. and Tao Du, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi...from Emiliania huxleyi, Applied Optics, (2009). van de Hulst, H.C., 1957. Light Scattering by Small Particles, Wiley. Xu, Yu-lin, and Bo A.S...G.C. Boynton, Light scattering by coccoliths detached from Emiliania huxleyi, Applied Optics, (2009). [submitted, in revision] 6 m = 1.05

  11. Determination of morphological parameters of biological cells by analysis of scattered-light distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, D.E.

    1979-11-01

    The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less

  12. Influence of surface light scattering in hydrophobic acrylic intraocular lenses on laser beam transmittance.

    PubMed

    Shiraya, Tomoyasu; Kato, Satoshi; Minami, Keiichiro; Miyata, Kazunori

    2017-02-01

    The aim of this study was to experimentally examine the changes in the transmittances of photocoagulation lasers when surface light scattering increases in AcrySof intraocular lenses (IOLs). SA60AT IOLs (Alcon) were acceleratingly aging for 0, 3, 5, and 10 years to simulate surface light scattering, and the surface light-scattering intensities of both IOL surfaces were measured using a Scheimpflug photographer. The powers of laser beams that passed from a laser photocoagulator through the aged IOLs were measured at 532, 577, and 647 nm. Changes in the laser power and transmittance with the years of aging and the intensities of surface light scattering were examined. Although the intensity of surface light scattering increased with the years of aging, the laser power did not change with the years of aging (P > 0.30, Kruskal-Wallis test). There were no significant changes in the laser transmittance with the years of aging or the laser wavelength (P > 0.30 and 0.57, respectively). The intensity of surface light scattering revealed no significant association with the laser transmittance at any wavelength (P > 0.37, liner regression). The increases in the surface light scattering of the AcrySof IOLs would not influence retinal photocoagulation treatments for up to 10 years after implantation.

  13. A high rigor temperature, not sarcomere length, determines light scattering properties and muscle colour in beef M. sternomandibularis meat and muscle fibres.

    PubMed

    Hughes, J; Clarke, F; Purslow, P; Warner, R

    2018-05-18

    Beef meat colour is impacted by both myoglobin status and the light scattering properties of the muscle, and the specific causative scattering elements of the latter are still unknown. We hypothesize that stretching muscles during rigor will generate a structure which favours light scattering, by increasing the length of the I-band (longer sarcomeres) and that a high rigor temperature will cause protein reconfiguration, changing the muscle structure and promoting light scattering. Muscle fibre fragments were isolated from four beef M. sternomandibularis and subjected to stretching (plus, minus) and three incubation temperatures (5, 15, 35 °C). Reflectance confocal laser scanning microscopy (rCLSM) revealed sarcomere stretching alone was not solely responsible for light scattering development. A high rigor temperature (35 °C) was more favourable for light scattering. Stretching and taking muscle into rigor at 35 °C promoted transverse shrinkage of muscle fibres and increased light scattering and could be applied post-mortem (PM) to reduce the occurrence of problematic dark meat. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  14. Polarized light scattering as a probe for changes in chromosome structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, Daniel Benjamin

    1993-10-01

    Measurements and calculations of polarized light scattering are applied to chromosomes. Calculations of the Mueller matrix, which completely describes how the polarization state of light is altered upon scattering, are developed for helical structures related to that of chromosomes. Measurements of the Mueller matrix are presented for octopus sperm heads, and dinoflagellates. Comparisons of theory and experiment are made. A working theory of polarized light scattering from helices is developed. The use of the first Born approximation vs the coupled dipole approximation are investigated. A comparison of continuous, calculated in this work, and discrete models is also discussed. By comparingmore » light scattering measurements with theoretical predictions the average orientation of DNA in an octopus sperm head is determined. Calculations are made for the Mueller matrix of DNA plectonemic helices at UV, visible and X-ray wavelengths. Finally evidence is presented that the chromosomes of dinoflagellates are responsible for observed differential scattering of circularly-polarized light. This differential scattering is found to vary in a manner that is possibly correlated to the cell cycle of the dinoflagellates. It is concluded that by properly choosing the wavelength probe polarized light scattering can provide a useful tool to study chromosome structure.« less

  15. Double-layered liquid crystal light shutter for control of absorption and scattering of the light incident to a transparent display device

    NASA Astrophysics Data System (ADS)

    Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon

    2015-03-01

    Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.

  16. Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.

    1998-12-01

    We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.

  17. Evolution of Trace Gases and Particles Emitted by a Chaparral Fire in California

    DTIC Science & Technology

    2012-02-07

    length of 78 m and was then focused onto an MCT detector . The cell exchange time was about ten seconds when the flow con- trol valves were open and IR...through a 1064 nm Nd:YAG laser cavity where light scattered by the particles was measured by two avalanche photodiode detectors . Sufficiently light...collected with higher signal-to- noise . Smoke samples collected more than 1.8 km from the source showed signs of aging (O3 for- mation) and were not

  18. Laser light scattering from wood samples soaked in water or in benzyl benzoate

    NASA Astrophysics Data System (ADS)

    Simonaho, S.-P.; Tolonen, Y.; Rouvinen, J.; Silvennoinen, R.

    Laser light scattering from Scots pine (Pinus Sylvesteris L.) wood samples soaked in two different liquids, which were tap water and benzyl benzoate, has been experimentally investigated. Differences in the characteristics of the scattering pattern as function of the soaking time as well as the moisture effect in the orientation of scattering pattern has been experimentally investigated. The wood samples soaked in the test liquids altered the laser light scattering in along and across the grain directions. No correlation between the content of the water in the wood sample and the orientation of laser light scattering pattern was observed.

  19. Design and measurement technique of surface-enhanced Raman scattering for detection of bisphenol A

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Norhayati; Mat Salleh, Muhamad; Umar, Akrajas Ali; Shapter, Joseph George

    2017-06-01

    Surface-enhanced Raman scattering (SERS) is a highly sensitive measurement technique that provides Raman peaks at different Raman shift for different molecule structures. The SERS sensor is potentially used to detect food contamination and monitor environmental pollutants. A self-developed SERS system for specific analysis with low development cost is a challenging issue. This study attempts to develop a simple SERS sensor system for detection of bisphenol A (BPA) molecule using SERS substrate of silver nanoplate film. A SERS sensor system was developed, consisting of a light source to excite analyte molecules, Inphotonic Raman probe, sensor chamber and spectrophotometer as an analyser system. A duplex fibre optic is used to transmit light from the source to the probe and from the probe to the spectrophotometer. For SERS measurement, BPA detection was done by comparing the Raman signal spectra of the BPA on the quartz substrate and BPA on the silver nanoplate film. This SERS sensor successfully sensed BPA with SERS enhancement factor (EF) 5.55  ×  103 and a detection limit of BPA concentration at 1 mM.

  20. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.

    PubMed

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-05-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.

  1. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source

    PubMed Central

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-01-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103

  2. Light scatter on the surface of AcrySof intraocular lenses: part I. Analysis of lenses retrieved from pseudophakic postmortem human eyes.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David J

    2008-01-01

    To investigate the cause of light scatter measured on the surface of AcrySof intraocular lenses (Alcon Laboratories, Inc., Fort Worth, TX) retrieved from pseudophakic postmortem human eyes. Ten intraocular lenses (Alcon AcrySofModel MA60BM) were retrieved postmortem and analyzed for light scatter before and after removal of surface-bound biofilms. Six of the 10 lenses exhibited light scatter that was clearly above baseline levels. In these 6 lenses, both peak and average pixel density were reduced by approximately 80% after surface cleaning. The current study demonstrates that a coating deposited in vivo on the lens surface is responsible for the light scatter observed when incident light is applied.

  3. Fiber optic light-scattering measurement system for evaluation of embryo viability: light-scattering characteristics from live mouse embryo

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1997-06-01

    We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.

  4. Size-dependent longitudinal plasmon resonance wavelength and extraordinary scattering properties of Au nanobipyramids.

    PubMed

    Wang, Wenhao; Yu, Peng; Zhong, Zhiqin; Tong, Xin; Liu, Tianji; Li, Yanbo; Ashalley, Eric; Chen, Huanyang; Wu, Jiang; Wang, Zhiming

    2018-08-31

    Au nanobipyramids (NBPs) with sharp tips and narrow plasmon linewidths are ideal candidates for plasmonic applications. In this paper, we investigated the influencing factors of longitudinal plasmon resonance wavelength (LPRW) and scattering properties of single Au NBP by simulation. Compared with the volume, we establish the aspect ratio (length/width) as the dominant factor that affects the LPRW of Au NBPs. Plasmonic nanoparticles have been widely used for light-trapping enhancement in photovoltaics. To give a profound understanding of the superior light harvesting properties of Au NBPs, the near-field localization effect and far-field scattering mechanism of Au NBPs were investigated. Under the light injection at LPRW, the tip area shows near-field enhancement and the maximum scattering intensity appears on the side area of the waist owing to the remarkable optical absorption near the tips. Additionally, we confirm the fraction of light scattered into the substrate and angular distribution of the light scattered by the Au NBPs. The fraction of light scattered into the substrate reaches up to 97% from 400-1100 nm and preserves a broadband spectrum. This suggests that the NBP has a predominant forward scattering and reduced backward scattering. The excellent plasmonic scattering properties of Au NBPs are promising in photovoltaic devices and photothermal therapy.

  5. Spectro-Polarimetry of Fine-Grained Ice and Dust Surfaces Measured in the Laboratory to Study Solar System Objects and Beyond

    NASA Astrophysics Data System (ADS)

    Poch, O.; Cerubini, R.; Pommerol, A.; Thomas, N.; Schmid, H. M.; Potin, S.; Beck, P.; Schmitt, B.; Brissaud, O.; Carrasco, N.; Szopa, C.; Buch, A.

    2017-12-01

    The polarization of the light is very sensitive to the size, morphology, porosity and composition of the scattering particles. As a consequence, polarimetric observations could significantly complement observations performed in total light intensity, providing additional constraints to interpret remote sensing observations of Solar System and extra-solar objects. This presentation will focus on measurements performed in the laboratory on carefully characterized surface samples, providing reference data that can be used to test theoretical models and predict or interpret spectro-polarimetric observations. Using methods developed in the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern, we produce well-characterized and reproducible surfaces made of water ice particles having different grain sizes and porosities, as well as mineral/organic dusts, pure or mixed together, as analogues of planetary or small bodies surfaces. These surface samples are illuminated with a randomly polarized light source simulating the Sun. The polarization of their scattered light is measured at multiple phase angles and wavelengths, allowing to study the shape of the polarimetric phase curves and their spectral dependence, with two recently developed setups: The POLarimeter for Icy Samples (POLICES), at the University of Bern, allows the measurement of the weak polarization of ice surfaces from 400 to 800 nm, with direct application to icy satellites. Using a precision Stokes polarimeter, this setup is also used to study the spectral variations of circular polarization in the light scattered by biotic versus abiotic surfaces. The Spectrogonio radiometer with cHanging Angles for Detection Of Weak Signals (SHADOWS), at IPAG (University of Grenoble Alpes), measures linear polarization spectra from 0.35 to 5 μm in the light scattered by dark meteorite powders or icy samples, with application to primitive objects of the Solar System (asteroids, comets).

  6. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, L. B., E-mail: lbfletch@slac.stanford.edu; Galtier, E.; Gamboa, E. J.

    2016-11-15

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focusedmore » on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].« less

  7. Photovoltaic structures having a light scattering interface layer and methods of making the same

    DOEpatents

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  8. Light scatter on the surface of AcrySof intraocular lenses: part II. Analysis of lenses following hydrolytic stability testing.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David

    2008-01-01

    To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.

  9. Effective phase function of light scattered at small angles by polydisperse particulate media

    NASA Astrophysics Data System (ADS)

    Turcu, I.

    2008-06-01

    Particles with typical dimensions higher than the light wavelength and relative refraction indexes close to one, scatter light mainly in the forward direction where the scattered light intensity has a narrow peak. For particulate media accomplishing these requirements the light scattered at small angles in a far-field detecting set-up can be described analytically by an effective phase function (EPF) even in the multiple scattering regime. The EPF model which was built for monodispersed systems has been extended to polydispersed media. The main ingredients consist in the replacement of the single particle phase function and of the optical thickness with their corresponding averaged values. Using a Gamma particle size distribution (PSD) as a testing model, the effect of polydispersity was systematically investigated. The increase of the average radius or/and of the PSD standard deviation leads to the decrease of the angular spreading of the small angle scattered light.

  10. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre

    PubMed Central

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  11. Silicon Mie resonators for highly directional light emission from monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Cihan, Ahmet Fatih; Curto, Alberto G.; Raza, Søren; Kik, Pieter G.; Brongersma, Mark L.

    2018-05-01

    Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire.

  12. Voyager investigation of the cosmic diffuse background: Observations of rocket-studied locations with Voyager

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1994-01-01

    Attachments to this final report include 2 papers connected with the Voyager work: 'Voyager Observations of Dust Scattering Near the Coalsack Nebula' and 'Search for the Intergalactic Medium'. An appendix of 12 one-page write-ups prepared in connection with another program, UVISI, is also included. The one-page write-ups are: (1) Sky survey of UV point sources to 600 times fainter than previous (TD-1) survey; (2) Diffuse galactic light: starlight scattered from dust at high galactic latitude; (3) Optical properties of interstellar grains; (4) Fluorescence of molecular hydrogen in the interstellar medium; (5) Line emission from hot interstellar medium and/or hot halo of galaxy; (6) Integrated light of distant galaxies in the ultraviolet; (7) Intergalactic far-ultraviolet radiation field; (8) Radiation from recombining intergalactic medium; (9) Radiation from re-heating of intergalactic medium following recombination; (10) Radiation from radiative decay of dark matter candidates (neutrino, etc.); (11) Reflectivity of the asteroids in the Ultraviolet; and (12) Zodiacal light.

  13. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellentmore » training for students and postdoctoral scientists in the field.« less

  14. RELATIVISTIC THOMSON SCATTERING EXPERIMENT AT BNL - STATUS REPORT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POGORELSKY,I.V.; BEN ZVI,I.; KUSCHE,K.

    2001-12-03

    1.7 x 10{sup 8} x-ray photons per 3.5 ps pulse have been produced in Thomson scattering by focusing CO{sub 2} laser pulse on counter-propagating relativistic electron beam. We explore a possibility of further enhancement of process efficiency by propagating both beams in a plasma capillary. Conventional synchrotron light sources based on using giga-electron-volt electron synchrotron accelerators and magnetic wigglers generate x-ray radiation for versatile application in multi-disciplinary research. An intense laser beam causes relativistic electron oscillations similar to a wiggler. However, because the laser wavelength is thousand times shorter than a wiggler period, very moderate electron energy is needed tomore » produce hard x-rays via Thomson scattering. This allows using relatively compact mega-electron-volt linear accelerators instead of giga-electron-volt synchrotrons. Another important advantage of Thomson sources is a possibility to generate femtosecond x-ray pulses whereas conventional synchrotron sources have typically {approx}300 ps pulse duration. This promises to revolutionize x-ray research in chemistry, physics, and biology expanding it to ultra-fast processes. Thomson sources do not compete in repetition rate and average intensity with conventional light sources that operate at the megahertz frequency. However, Thomson sources have a potential to produce much higher photon numbers per pulse. This may allow developing a single shot exposure important for structural analysis of live biological objects. The BNL Thomson source is a user's experiment conducted at the Accelerator Test Facility since 1998 by an international collaboration in High Energy Physics. Since inception, the ATF source produces the record peak x-ray yield, intensity and brightness among other similar proof-of-principle demonstrations attempted elsewhere. Note that this result is achieved with a moderate laser power of 15 GW. A key to this achievement is in choosing right apparatus and efficient interaction geometry. We use a CO{sub 2} laser that delivers 10 times more photons per unit energy than the 1-{micro}m laser, a high-brightness linac, and the most energy-efficient backscattering interaction geometry. The purpose of this report is to give an update on new results obtained during this year and our near-term plans.« less

  15. View From a Megacity: Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City.

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Gaffney, J. S.; Marley, N. A.

    2006-12-01

    As part of the Megacity Impacts on Regional and Global Environments, MIRAGE-Mex deployment to Mexico City in the period of 30 days, March 2006, a suite of photoacoustic spectrometers (PAS) were installed to measure at ground level the light absorption and scattering by aerosols at four sites: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP), a suburban site at the Technological University of Tecamac, a rural site at "La Biznaga" ranch, and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 40 and 250 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed. Comparisons with TSI nephelometer scattering and Aetholemeter absorption measurements at the T0 site will be presented. We will present a broad overview of the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site. Insight on the dynamical connections will be discussed.

  16. The Status of the Taiwan Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. C.; Wang, J. P.; Chen, J. R.

    2010-06-23

    NSRRC has been operating a 1.5 GeV synchrotron light source, the Taiwan Light Source (TLS), for over 15 years and has established a large user community. For the future development of synchrotron radiation research in Taiwan, a feasibility study report to construct a 3.0 GeV low-emittance storage ring, the Taiwan Photon Source (TPS), was issued in July 2005. The government approval of the TPS project was obtained in December 2007 and the machine will be built at current site of NSRRC. The project has progressed steadily since and reached several major milestones now: the architect firm has finished the sitemore » plan and civil design, the accelerator design has been fixed, and purchase of long-lead items begins its course. The TPS storage ring has a circumference of 518.4 meters with a concentric booster of 496.8 meters. The storage ring adopted a 24-cell double-bend structure with a 1.6 nm-rad natural emittance. There are six 12-m and eighteen 7-m ID straights. For user research, five new beamlines have been selected for the Phase I operations: the micro protein crystallography, the materials sub-micron diffraction, the inelastic soft x-ray scattering, the coherent x-ray scattering, and the nano probe beamlines. The civil construction is getting ready to start. The commissioning of the TPS storage ring is targeted for 2013.« less

  17. Evolution of circular and linear polarization in scattering environments

    DOE PAGES

    van der Laan, John D.; Wright, Jeremy Benjamin; Scrymgeour, David A.; ...

    2015-12-02

    This study quantifies the polarization persistence and memory of circularly polarized light in forward-scattering and isotropic (Rayleigh regime) environments; and for the first time, details the evolution of both circularly and linearly polarized states through scattering environments. Circularly polarized light persists through a larger number of scattering events longer than linearly polarized light for all forward-scattering environments; but not for scattering in the Rayleigh regime. Circular polarization’s increased persistence occurs for both forward and backscattered light. The simulated environments model polystyrene microspheres in water with particle diameters of 0.1 μm, 2.0 μm, and 3.0 μm. The evolution of the polarizationmore » states as they scatter throughout the various environments are illustrated on the Poincaré sphere after one, two, and ten scattering events.« less

  18. Light scattering by marine algae: two-layer spherical and nonspherical models

    NASA Astrophysics Data System (ADS)

    Quirantes, Arturo; Bernard, Stewart

    2004-11-01

    Light scattering properties of algae-like particles are modeled using the T-matrix for coated scatterers. Two basic geometries have been considered: off-centered coated spheres and centered spheroids. Extinction, scattering and absorption efficiencies, plus scattering in the backward plane, are compared to simpler models like homogeneous (Mie) and coated (Aden-Kerker) models. The anomalous diffraction approximation (ADA), of widespread use in the oceanographic light-scattering community, has also been used as a first approximation, for both homogeneous and coated spheres. T-matrix calculations show that some light scattering values, such as extinction and scattering efficiencies, have little dependence on particle shape, thus reinforcing the view that simpler (Mie, Aden-Kerker) models can be applied to infer refractive index (RI) data from absorption curves. The backscattering efficiency, on the other hand, is quite sensitive to shape. This calls into question the use of light scattering techniques where the phase function plays a pivotal role, and can help explain the observed discrepancy between theoretical and experimental values of the backscattering coefficient in observed in oceanic studies.

  19. A Study of Brownian Motion Using Light Scattering

    ERIC Educational Resources Information Center

    Clark, Noel A.; Lunacek, Joseph H.

    1969-01-01

    Describes an apparatus designed to investigate molecular motion by means of light scattering. Light from a He-Ne laser is focused into a cell containing a suspension of polystyrene spheres. The scattered light, collected on the photosurface of a photomultiplier tube, is analyzed. The apparatus won first prize in Demonstration Lecture Apparatus in…

  20. Protein aggregation studied by forward light scattering and light transmission analysis

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.

    2007-12-01

    The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).

  1. Design and evaluation of an imaging spectrophotometer incorporating a uniform light source.

    PubMed

    Noble, S D; Brown, R B; Crowe, T G

    2012-03-01

    Accounting for light that is diffusely scattered from a surface is one of the practical challenges in reflectance measurement. Integrating spheres are commonly used for this purpose in point measurements of reflectance and transmittance. This solution is not directly applicable to a spectral imaging application for which diffuse reflectance measurements are desired. In this paper, an imaging spectrophotometer design is presented that employs a uniform light source to provide diffuse illumination. This creates the inverse measurement geometry to the directional illumination/diffuse reflectance mode typically used for point measurements. The final system had a spectral range between 400 and 1000 nm with a 5.2 nm resolution, a field of view of approximately 0.5 m by 0.5 m, and millimeter spatial resolution. Testing results indicate illumination uniformity typically exceeding 95% and reflectance precision better than 1.7%.

  2. Current-controlled light scattering and asymmetric plasmon propagation in graphene

    NASA Astrophysics Data System (ADS)

    Wenger, Tobias; Viola, Giovanni; Kinaret, Jari; Fogelström, Mikael; Tassin, Philippe

    2018-02-01

    We demonstrate that plasmons in graphene can be manipulated using a dc current. A source-drain current lifts the forward/backward degeneracy of the plasmons, creating two modes with different propagation properties parallel and antiparallel to the current. We show that the propagation length of the plasmon propagating parallel to the drift current is enhanced, while the propagation length for the antiparallel plasmon is suppressed. We also investigate the scattering of light off graphene due to the plasmons in a periodic dielectric environment and we find that the plasmon resonance separates in two peaks corresponding to the forward and backward plasmon modes. The narrower linewidth of the forward propagating plasmon may be of interest for refractive index sensing and the dc current control could be used for the modulation of mid-infrared electromagnetic radiation.

  3. Surface-enhanced Raman detection of CW agents in water using gold sol gel substrates

    NASA Astrophysics Data System (ADS)

    Premasiri, W. Ranjith; Clarke, Richard H.; Womble, M. Edward

    2002-02-01

    The development of a water analysis system capable of detecting both inanimate trace chemical contaminants and viable microbial contaminants has long been a project of interest to our group. The capability of detecting both chemical and biological agent sources in a single device configuration would clearly add to the value of such a product. In the present work, we describe results with chemical warfare agents from our efforts to produce a Raman system for the detection of both chemical and biological warfare agents in water. We utilize laser Raman light scattering and employ Surface Enhanced Raman Spectroscopy (SERS)on solid state gold sol-gel detectors combined with fiber optic collection of the enhanced light signal in the sampling system to augment the normally low intensity Raman Scattering signal from trace materials.

  4. Method of measuring blood oxygenation based on spectroscopy of diffusely scattered light

    NASA Astrophysics Data System (ADS)

    Kleshnin, M. S.; Orlova, A. G.; Kirillin, M. Yu.; Golubyatnikov, G. Yu.; Turchin, I. V.

    2017-05-01

    A new approach to the measurement of blood oxygenation is developed and implemented, based on an original two-step algorithm reconstructing the relative concentration of biological chromophores (haemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the radiation source. The numerical experiments and approbation of the proposed approach using a biological phantom have shown the high accuracy of the reconstruction of optical properties of the object in question, as well as the possibility of correct calculation of the haemoglobin oxygenation in the presence of additive noises without calibration of the measuring device. The results of the experimental studies in animals agree with the previously published results obtained by other research groups and demonstrate the possibility of applying the developed method to the monitoring of blood oxygenation in tumour tissues.

  5. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W.; College of Science, National University of Defense Technology, Changsha 410073; Zhuo, H. B.

    2013-10-21

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ∼160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ≥5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecondmore » physics.”.« less

  6. Statistical-thermodynamic model for light scattering from eye lens protein mixtures

    NASA Astrophysics Data System (ADS)

    Bell, Michael M.; Ross, David S.; Bautista, Maurino P.; Shahmohamad, Hossein; Langner, Andreas; Hamilton, John F.; Lahnovych, Carrie N.; Thurston, George M.

    2017-02-01

    We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model indicates that increased γ-γ attraction can raise γ-α mixture light scattering far more than it does for solutions of γ-crystallin alone, and can produce marked turbidity tens of degrees celsius above liquid-liquid separation.

  7. Chandra Shows New Way to Measure Cosmic Distances

    NASA Astrophysics Data System (ADS)

    2000-04-01

    Using NASA's Chandra X-ray Observatory, a team of scientists has attacked one of astronomy's oldest and thorniest problems, determining the distance to a cosmic object. Through measuring the distance to an X-ray source by observing the delay and smearing out of X-ray signals traversing 30,000 light years of interstellar gas and dust, Chandra "opened a new world," said Peter Predehl of the Max-Planck Institute, Garching, Germany, the lead author on a report to be published in the European journal, Astronomy and Astrophysics. "Geometrical distance measurements are of particular importance for astronomy. Now we have a new method that works for distant sources," Predehl said. One of the most crucial pieces of information needed in astronomy is the distance to the stars and galaxies. They are also among the most difficult to obtain because, with rare exceptions, astronomers cannot measure distance directly and must use a variety of ingenious but uncertain techniques. This new method relies on the scattering of X-rays by interstellar dust grains between a source and the Earth. Although the scattering material is different, the dust produces a halo, much like the halo around a traffic light on a foggy night. "When the light switches from red to green (or vice versa), the halo around the light is also slightly delayed," Predehl explained. "No one would use this delay for determining the distance to the traffic light, of course, (the delay is only a few billionths of a second). But if the 'traffic light' is 30,000 light years away, the delay is on the order 15 minutes. Using the excellent and unprecedented resolution of the Chandra observatory, we can distinguish between light which was 30,000 years on its way and other light which needed only a few minutes more. " Other members of the team included Vadim Burwitz and Joachim Trumper, also of the Max-Planck Institute, and Frits Paerels of Columbia University, New York. Trumper and a colleague proposed using this method 27 years ago, but it could not be applied until an X-ray observatory with Chandra's unique capability was available. The X-ray source Cygnus X-3 acts like a cosmic traffic light, or more appropriately, lighthouse. Its X-ray emission varies regularly with a 4.8 hour period, as a neutron star or black hole circles a nearby companion star. The radiation from the halo is delayed and smeared out, so the variations are damped. For the inner part of the halo, the damping is small, whereas for the outer part, the periodic variation is completely washed out. By observing the time delay and variations at different parts of the halo, the distance to the source can be determined. Seismologists use a similar method based on the propagation of sound waves through the Earth to determine the epicenters of earthquakes or to locate unusual geological formations. Predehl and colleagues observed Cygnus X-3 for 3.5 hours with Chandra using the Advanced CCD Imaging Spectrometer (ACIS). By analyzing the time variations in the halo, the astronomers determined that the distance to Cygnus X-3 is 30,000 light years, within about 20 percent accuracy. The accuracy was limited by the short observing time, which was less than the full 4.8 hour period of variation. The team hopes to refine this estimate in the near future as data from a longer observation of the source becomes available. The X-ray scattering method of measuring cosmic distances depends on the fact that X-rays, because of their high energies, are scattered through small angles by dust grains. It cannot be used with optical telescopes because visible light photons have lower energy and are scattered through much larger angles by the dust grains. In principle, the method could also work for nearby galaxies, such as the Small and Large Magellanic Clouds and the Andromeda Nebula. If so, it would help astronomers in their quest to understand the size and age of the universe, since it would provide an independent estimate of the size of the first steps on the cosmic distance ladder. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, Mass., and Penn State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. For images connected to this release, and to follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu/photo/2000/cygx399/index.html AND http://chandra.nasa.gov High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above.

  8. Synthesis and characterizations of nanoscale single crystal GaN grown by ion assisted gas source MBE

    NASA Astrophysics Data System (ADS)

    Cui, Bentao; Cohen, P. I.

    2004-03-01

    Nanoscale patterns could be induced by ion bombardment [1, 2]. In this study, an in-situ real time light scattering technique, combined with Reflection High Energy Electron Diffraction (RHEED), were used to study the surface morphology evolution during the ion beam assisted growth of GaN in a gas source MBE system. Ga was provided by a thermal effusion cell. Ammonia was used as the nitrogen source. A hot-filament Kaufman ion source was used to supply sub-KeV ion beams. Sapphire and MOCVD GaN templates were used as the substrates. A custom-designed Desorption Mass Spectrometer (DMS) was used to calibrate the growth temperature and determine the growth rate. Before growing GaN, the sapphire substrates were pretreated in an ion flux and then annealed for cleaning. The sapphire surface was then nitrided in ammonia at 1100K for about 10 min. After nitridation, a thin GaN buffer layer was prepared by a sequence of adsorption and annealing steps. During the growth, the short-range surface morphology and film quality were monitored in situ by RHEED. In a real-time way, the long-range surface morphology was monitored in-situ by light scattering technique. Photodiode array detector and CCD camera were used to record the reflected light scattering intensity and spectra profile respectively. Periodical patterns, such as ripple, have been observed during ion bombardment on GaN with or without growth. A linear theory (from Bradley and Harper 1988 [3]) has been modified to explain the dependence of ripple wavelength on ion species and ion energy. Partially supported by the National Science Foundation and the Air Force Office of Scientific Research. [1]. J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 82, 2330 (1998); J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 84, 5800 (2000). [2]. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt et al.. Science 285, 1551 (1999). [3]. R. M. Bradley and J. M. E. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988).

  9. Light scattering from an atomic gas under conditions of quantum degeneracy

    NASA Astrophysics Data System (ADS)

    Porozova, V. M.; Gerasimov, L. V.; Havey, M. D.; Kupriyanov, D. V.

    2018-05-01

    Elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate phase reveals a unique physical configuration of interacting light and matter waves. However, the joint coherent dynamics of the optical excitation induced by an incident photon is influenced by the presence of incoherent scattering channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Green's function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional geometry. The results are analyzed and compared with predictions of the conventional macroscopic Maxwell theory for light scattering from a nondegenerate atomic sample of the same density and size.

  10. An analysis of scattered light in low dispersion IUE spectra

    NASA Technical Reports Server (NTRS)

    Basri, G.; Clarke, J. T.; Haisch, B. M.

    1985-01-01

    A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.

  11. Even illumination in total internal reflection fluorescence microscopy using laser light.

    PubMed

    Fiolka, R; Belyaev, Y; Ewers, H; Stemmer, A

    2008-01-01

    In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode. 2007 Wiley-Liss, Inc

  12. A lamp light-emitting diode-induced fluorescence detector for capillary electrophoresis.

    PubMed

    Xu, Jing; Xiong, Yan; Chen, Shiheng; Guan, Yafeng

    2008-07-15

    A light-emitting diode-induced fluorescence detector (LED-FD) for capillary electrophoresis was constructed and evaluated. A lamp LED with an enhanced emission spectrum and a band pass filter was used as the excitation light source. Refractive index matching fluid (RIMF) was used in the detection cell to reduce scattering light and the noise level. The limit of detection (LOD) for fluorescein was 1.5 nM (SNR=3). The system exhibited linear responses in the range of 1 x 10(-8) to 5 x 10(-6)M (R=0.999). Application of the lamp LED-FD for the analysis of FITC-labeled ephedra herb extract by capillary electrophoresis was demonstrated.

  13. Analysis of human tissue optical scattering spectra for the purpose of breast cancer diagnostics using multi-layer perceptron

    NASA Astrophysics Data System (ADS)

    Nuzhny, Anton S.; Shumsky, Sergey A.; Korzhov, Alexey G.; Lyubynskaya, Tatiana E.

    2008-02-01

    Optical scattering spectra obtained in the clinical trials of breast cancer diagnostic system were analyzed for the purpose to detect in the dataflow the segments corresponding to malignant tissues. Minimal invasive probe with optical fibers inside delivers white light from the source and collects the scattering light while being moved through the tissue. The sampling rate is 100 Hz and each record contains the results of measurements of scattered light intensity at 184 fixed wavelength points. Large amount of information acquired in each procedure, fuzziness in criteria of 'cancer' family membership and data noisiness make neural networks to be an attractive tool for analysis of these data. To define the dividing rule between 'cancer' and 'non-cancer' spectral families a three-layer perceptron was applied. In the process of perceptron learning back propagation method was used to minimize the learning error. Regularization was done using the Bayesian approach. The learning sample was formed by the experts. End-to-end probability calculation throughout the procedure dataset showed reliable detection of the 'cancer' segments. Much attention was paid on the spectra of the tissues with high blood content. Often the reason is vessel injury caused by the penetrating optical probe. But also it can be a dense vessel net surrounding the malignant tumor. To make the division into 'cancer' and 'non-cancer' families for the tissues with high blood content a special perceptron was learnt exceptionally on such spectra.

  14. Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures.

    PubMed

    Xu, Min; Wu, Tao T; Qu, Jianan Y

    2008-01-01

    A unified Mie and fractal model for light scattering by biological cells is presented. This model is shown to provide an excellent global agreement with the angular dependent elastic light scattering spectroscopy of cells over the whole visible range (400 to 700 nm) and at all scattering angles (1.1 to 165 deg) investigated. Mie scattering from the bare cell and the nucleus is found to dominate light scattering in the forward directions, whereas the random fluctuation of the background refractive index within the cell, behaving as a fractal random continuous medium, is found to dominate light scattering at other angles. Angularly dependent elastic light scattering spectroscopy aided by the unified Mie and fractal model is demonstrated to be an effective noninvasive approach to characterize biological cells and their internal structures. The acetowhitening effect induced by applying acetic acid on epithelial cells is investigated as an example. The changes in morphology and refractive index of epithelial cells, nuclei, and subcellular structures after the application of acetic acid are successfully probed and quantified using the proposed approach. The unified Mie and fractal model may serve as the foundation for optical detection of precancerous and cancerous changes in biological cells and tissues based on light scattering techniques.

  15. Characterization of single particle aerosols by elastic light scattering at multiple wavelengths

    NASA Astrophysics Data System (ADS)

    Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.

    2018-03-01

    We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.

  16. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  17. Combined multispectral spatial frequency domain imaging and computed tomography system for intraoperative breast tumor margin assessment

    NASA Astrophysics Data System (ADS)

    McClatchy, D. M.; Rizzo, E. J.; Krishnaswamy, V.; Kanick, S. C.; Wells, W. A.; Paulsen, K. D.; Pogue, B. W.

    2017-02-01

    There is a dire clinical need for surgical margin guidance in breast conserving therapy (BCT). We present a multispectral spatial frequency domain imaging (SFDI) system, spanning the visible and near-infrared (NIR) wavelengths, combined with a shielded X-ray computed tomography (CT) system, designed for intraoperative breast tumor margin assessment. While the CT can provide a volumetric visualization of the tumor core and its spiculations, the co-registered SFDI can provide superficial and quantitative information about localized changes tissue morphology from light scattering parameters. These light scattering parameters include both model-based parameters of sub-diffusive light scattering related to the particle size scale distribution and also textural information of the high spatial frequency reflectance. Because the SFDI and CT components are rigidly fixed, a simple transformation can be used to simultaneously display the SFDI and CT data in the same coordinate system. This is achieved through the Visualization Toolkit (vtk) file format in the open-source Slicer medical imaging software package. In this manuscript, the instrumentation, data processing, and preliminary human specimen data will be presented. The ultimate goal of this work is to evaluate this technology in a prospective clinical trial, and the current limitations and engineering solutions to meet this goal will also be discussed.

  18. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  19. a Study of the Concentration Dependence of Macromolecular Diffusion Using Photon Correlation Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Marlowe, Robert Lloyd

    The dynamic light scattering technique of photon correlation spectroscopy has been used to investigate the dependence of the mutual diffusion coefficient of a macromolecular system upon concentration. The first part of the research was devoted to the design and construction of a single-clipping autocorrelator based on newly-developed integrated circuits. The resulting 128 channel instrument can perform real time autocorrelation for sample time intervals >(, )10 (mu)s, and batch processed autocorrelation for intervals down to 3 (mu)s. An improved design for a newer, all-digital autocorrelator is given. Homodyne light scattering experiments were then undertaken on monodisperse solutions of polystyrene spheres. The single-mode TEM(,oo) beam of an argon-ion laser ((lamda) = 5145 (ANGSTROM)) was used as the light source; all solutions were studied at room temperature. The scattering angle was varied from 30(DEGREES) to 110(DEGREES). Excellent agreement with the manufacturer's specification for the particle size was obtained from the photon correlation studies. Finally, aqueous solutions of the globular protein ovalbumin, ranging in concentration from 18.9 to 244.3 mg/ml, were illuminated under the same conditions of temperature and wavelength as before; the homodyne scattered light was detected at a fixed scattering angle of 30(DEGREES). The single-clipped photocount autocorrelation function was analyzed using the homodyne exponential integral method of Meneely et al. The resulting diffusion coefficients showed a general linear dependence upon concentration, as predicted by the generalized Stokes-Einstein equation. However, a clear peak in the data was evident at c (TURNEQ) 100 mg/ml, which could not be explained on the basis of a non -interacting particle theory. A semi-quantitative approach based on the Debye-Huckel theory of electrostatic interactions is suggested as the probable cause for the peak's rise, and an excluded volume effect for its decline.

  20. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  1. Polarization of Light from Leaves Measured from 0.5 - 1.6 mm

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Ustin, S. L.; Daughtry, C. S. T.; Walthal, C. L.; Greenberg, J. A.

    2006-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves. Insights into these properties gained at the leaf scale are necessary ultimately to accomplish the region and global scale environmental goals of the EOS era. While this scattered light may be described by the four components of the Stokes vector, (intensity, magnitude of line= polarization, angle of plane of linear polarization, and magnitude of circular polarization), significant progress has been achieved toward understanding only the first component, the intensity of the scattered light. Recent research shows that the magnitude of the linearly polarized light may be a significant part of the light scattered by some canopies. Thus, consideration of the second component may be necessary to obtain an unambiguous understanding of the canopy processes. We measured the intensity and the linear polarization of the light scattered by single leaves, testing the hypothesis that the polarization of the light scattered by each leaf was attributable to properties of the surfaces of the leaf and specifically did not depend upon the properties of the interior of the leaf. This research extends previous investigations limited to the single leaves of approximately 20 species typically found in the area of Lafayette, Indiana, to the leaves of 30 species representing monocots, dicots and ferns from six continents.

  2. Modeling of the Autofluorescence Spectra of the Crystalline Lens with Cataract Taking into Account Light Scattering

    NASA Astrophysics Data System (ADS)

    Shapovalov, K. A.; Salmin, V. V.; Lazarenko, V. I.; Gar‧kavenko, V. V.

    2017-05-01

    The model of the autofluorescence spectrum formation of a crystalline lens taking into account light scattering was presented. Cross sections of extinction, scattering and absorption were obtained numerically for models of normal crystalline lens and cataract according to the Mie theory for polydisperse systems. To validate the model, data on the autofluorescence spectra of the normal lens and cataracts were obtained using an experimental ophthalmologic spectrofluorometer with excitation by UV light emitting diodes. In the framework of the model, the influence of the lens light scattering on the shape of the luminescence spectrum was estimated. It was found that the changes in the fluorescence spectrum of lenses with cataracts can be completely interpreted by the light scattering.

  3. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques.

    PubMed

    Till, Ugo; Gaucher-Delmas, Mireille; Saint-Aguet, Pascale; Hamon, Glenn; Marty, Jean-Daniel; Chassenieux, Christophe; Payré, Bruno; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Violleau, Frédéric

    2014-12-01

    Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.

  4. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar

    2010-07-28

    We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broadermore » than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.« less

  5. Analytical model of diffuse reflectance spectrum of skin tissue

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.

    2014-01-01

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.

  6. Solvothermal Synthesis of Hierarchical TiO2 Microstructures with High Crystallinity and Superior Light Scattering for High-Performance Dye-Sensitized Solar Cells.

    PubMed

    Li, Zhao-Qian; Mo, Li-E; Chen, Wang-Chao; Shi, Xiao-Qiang; Wang, Ning; Hu, Lin-Hua; Hayat, Tasawar; Alsaedi, Ahmed; Dai, Song-Yuan

    2017-09-20

    In this article, hierarchical TiO 2 microstructures (HM-TiO 2 ) were synthesized by a simple solvothermal method adopting tetra-n-butyl titanate as the titanium source in a mixed solvent composed of N,N-dimethylformamide and acetic acid. Due to the high crystallinity and superior light-scattering ability, the resultant HM-TiO 2 are advantageous as photoanodes for dye-sensitized solar cells. When assembled to the entire photovoltaic device with C101 dye as a sensitizer, the pure HM-TiO 2 -based solar cells showed an ultrahigh photovoltage up to 0.853 V. Finally, by employing the as-obtained HM-TiO 2 as the scattering layer and optimizing the architecture of dye-sensitized solar cells, both higher photovoltage and incident photon-to-electron conversion efficiency value were harvested with respect to TiO 2 nanoparticles-based dye-sensitized solar cells, resulting in a high power conversion efficiency of 9.79%. This work provides a promising strategy to develop photoanode materials with outstanding photoelectric conversion performance.

  7. Determination of optical coefficients of biological tissue from a single integrating-sphere

    NASA Astrophysics Data System (ADS)

    Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang

    2012-01-01

    The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.

  8. Assessment of laser tracking and data transfer for underwater optical communications

    NASA Astrophysics Data System (ADS)

    Watson, Malcolm A.; Blanchard, Paul M.; Stace, Chris; Bhogul, Priya K.; White, Henry J.; Kelly, Anthony E.; Watson, Scott; Valyrakis, Manousos; Najda, Stephen P.; Marona, Lucja; Perlin, Piotr

    2014-10-01

    We report on an investigation into optical alignment and tracking for high bandwidth, laser-based underwater optical communication links. Link acquisition approaches (including scanning of narrow laser beams versus a wide-angle `beacon' approach) for different underwater laser-based communications scenarios are discussed. An underwater laserbased tracking system was tested in a large water flume facility using water whose scattering properties resembled that of a turbid coastal or harbour region. The lasers used were state-of-the-art, temperature-controlled, high modulation bandwidth gallium nitride (GaN) devices. These operate at blue wavelengths and can achieve powers up to ~100 mW. The tracking performance and characteristics of the system were studied as the light-scattering properties of the water were increased using commercial antacid (Maalox) solution, and the results are reported here. Optical tracking is expected to be possible even in high scattering water environments, assuming better components are developed commercially; in particular, more sensitive detector arrays. High speed data transmission using underwater optical links, based on blue light sources, is also reported.

  9. Electro-optic control of photographic imaging quality through ‘Smart Glass’ windows in optics demonstrations

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Paulins, Paulis

    2017-09-01

    An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30-80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises.

  10. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    PubMed Central

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898

  11. Light scattering properties of self-organized nanostructured substrates for thin-film solar cells.

    PubMed

    Mennucci, C; Del Sorbo, S; Pirotta, S; Galli, M; Andreani, L C; Martella, C; Giordano, M C; Buatier de Mongeot, F

    2018-06-01

    We investigate the scattering properties of novel kinds of nano-textured substrates, fabricated in a self-organized fashion by defocused ion beam sputtering. These substrates provide strong and broadband scattering of light and can be useful for applications in thin-film solar cells. In particular, we characterize the transmitted light in terms of haze and angle-resolved scattering, and we compare our results with those obtained for the commonly employed Asahi-U texture. The results indicate that the novel substrate has better scattering properties compared to reference Asahi-U substrates. We observe super-Lambertian light scattering behavior in selected spectral and angular regions due to the peculiar morphology of the nano-textured interface, which combines high aspect ratio pseudo random structures with a one-dimensional periodic pattern. The enhancement of light absorption observed in a prototype thin film semiconductor absorber grown on nano-textured glass with respect to an Asahi-U substrate further confirms the superior light trapping properties of the novel substrate.

  12. Coherent Multiple Light Scattering in Ultracold Atomic Rb

    NASA Astrophysics Data System (ADS)

    Kulatunga, Pasad; Sukenik, C. I.; Balik, Salim; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2003-05-01

    Wave transport in mesoscopic systems can be strongly influenced by coherent multiple scattering,which can lead to novel magneto-optic, transmission, and backscattering effects of light in atomic vapors. Although related to traditional studies of radiation trapping, in ultracold vapors negligible frequency or phase redistribution takes place in the scattering, and high-order coherent light scattering occurs. Among other things, this leads to enhancement of the influence of otherwise small non-resonant terms in the scattering amplitudes. We report investigation of multiple coherent light scattering from ultracold Rb atoms confined in a magneto-optic trap (MOT). In experimental studies, measurements are made of the angular, spectral, and polarization-dependent coherent backscattering profile of a low-intensity probe beam tuned near the F = 3 - F' = 4 hyperfine transition. The influence of higher probe beam intensity is also studied. In a theoretical study of angular intensity enhancement of backscattered light, we consider scattering orders up to 10 and a realistic and asymmetric Gaussian atom distribution in the MOT. Supported by NSF, NATO, and RFBR.

  13. Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique

    NASA Technical Reports Server (NTRS)

    Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.

    2003-01-01

    The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.

  14. Bidirectional scattering of light from tree leaves

    NASA Technical Reports Server (NTRS)

    Brakke, Thomas W.; Smith, James A.; Harnden, Joann M.

    1989-01-01

    A laboratory goniometer consisting of an He-Ne laser (632.8 nm), vertical leaf holder, and silicon photovoltaic detector was used to measure the bidirectional scattering (both transmittance and reflectance) of red oak and red maple. The illumination angles were 0, 30, and 60 deg, and the scattering was recorded approximately every 10 deg in the principal plane. The scattering profiles obtained show the non-Lambertian characteristics of the scattering, particularly for the off-nadir illumination directions. The transmitted light was more isotropic than the reflected light.

  15. Optical-beam wavefront control based on the atmospheric backscatter signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banakh, V A; Razenkov, I A; Rostov, A P

    2015-02-28

    The feasibility of compensating for aberrations of the optical-beam initial wavefront by aperture sounding, based on the atmospheric backscatter signal from an additional laser source with a different wavelength, is experimentally studied. It is shown that the adaptive system based on this principle makes it possible to compensate for distortions of the initial beam wavefront on a surface path in atmosphere. Specifically, the beam divergence decreases, while the level of the detected mean backscatter power from the additional laser source increases. (light scattering)

  16. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.

    PubMed

    Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto

    2011-09-15

    Optical tweezers can be used to manipulate small objects and cells. A trap can be used to fix the position of a particle during light scattering measurements. The places of two separately trapped particles can also be changed. In this Letter we present elastic light scattering measurements as a function of scattering angle when two trapped spheres are illuminated with a He-Ne laser. This setup is suitable for trapping noncharged homogeneous spheres. We also demonstrate measurement of light scattering patterns from two separately trapped red blood cells. Two different illumination schemes are used for both samples.

  17. Laser Rayleigh and Raman Diagnostics for Small Hydrogen/oxygen Rockets

    NASA Technical Reports Server (NTRS)

    Degroot, Wilhelmus A.; Zupanc, Frank J.

    1993-01-01

    Localized velocity, temperature, and species concentration measurements in rocket flow fields are needed to evaluate predictive computational fluid dynamics (CFD) codes and identify causes of poor rocket performance. Velocity, temperature, and total number density information have been successfully extracted from spectrally resolved Rayleigh scattering in the plume of small hydrogen/oxygen rockets. Light from a narrow band laser is scattered from the moving molecules with a Doppler shifted frequency. Two components of the velocity can be extracted by observing the scattered light from two directions. Thermal broadening of the scattered light provides a measure of the temperature, while the integrated scattering intensity is proportional to the number density. Spontaneous Raman scattering has been used to measure temperature and species concentration in similar plumes. Light from a dye laser is scattered by molecules in the rocket plume. Raman spectra scattered from major species are resolved by observing the inelastically scattered light with linear array mounted to a spectrometer. Temperature and oxygen concentrations have been extracted by fitting a model function to the measured Raman spectrum. Results of measurements on small rockets mounted inside a high altitude chamber using both diagnostic techniques are reported.

  18. Stand-alone scattering optical device using holographic photopolymer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Jongchan; Lee, KyeoReh; Park, YongKeun

    2016-03-01

    When a light propagates through highly disordered medium, its optical parameters such as amplitude, phase and polarization states are completely scrambled because of multiple scattering events. Since the multiple scattering is a fundamental optical process that contains extremely high degrees of freedom, optical information of a transmitted light is totally mingled. Until recently, the presence of multiple scattering in an inhomogeneous medium is considered as a major obstacle when manipulating a light transmitting through the medium. However, a recent development of wavefront shaping techniques enable us to control the propagation of light through turbid media; a light transmitting through a turbid medium can be effectively controlled by modulating the spatial profile of the incident light using spatial light modulator. In this work, stand-alone scattering optical device is proposed; a holographic photopolymer film, which is much economic compared to the other digital spatial light modulators, is used to record and reconstruct permanent wavefront to generate optical field behind a scattering medium. By employing our method, arbitrary optical field can be generated since the scattering medium completely mixes all the optical parameters which allow us to access all the optical information only by modulating spatial phase profile of the impinging wavefront. The method is experimentally demonstrated in both the far-field and near-field regime where it shows promising fidelity and stability. The proposed stand-alone scattering optical device will opens up new avenues for exploiting the randomness inherent in disordered medium.

  19. Split off-specular reflection and surface scattering from woven materials

    NASA Astrophysics Data System (ADS)

    Pont, Sylvia C.; Koenderink, Jan J.

    2003-03-01

    We measured radiance distributions for black lining cloth and copper gauze using the convenient technique of wrapping the materials around a circular cylinder, irradiating it with a parallel light source and collecting the scattered radiance by a digital camera. One family of parallel threads (weave or weft) was parallel to the cylinder generator. The most salient features for such glossy plane weaves are a splitting up of the reflection peak due to the wavy variations in local slopes of the threads around the cylinders and a surface scattering lobe due to the threads that run along the cylinder. These scattering characteristics are quite different from the (off-)specular peaks and lobes that were found before for random rough specular surfaces. The split off-specular reflection is due to the regular structures in our samples of man-made materials. We derived simple approximations for these reflectance characteristics using geometrical optics.

  20. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    DOE PAGES

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; ...

    2016-08-15

    Here, we present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen andmore » focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].« less

  1. Effect of the scattering delay on time-dependent photon migration in turbid media.

    PubMed

    Yaroslavsky, I V; Yaroslavsky, A N; Tuchin, V V; Schwarzmaier, H J

    1997-09-01

    We modified the diffusion approximation of the time-dependent radiative transfer equation to account for a finite scattering delay time. Under the usual assumptions of the diffusion approximation, the effect of the scattering delay leads to a simple renormalization of the light velocity that appears in the diffusion equation. Accuracy of the model was evaluated by comparison with Monte Carlo simulations in the frequency domain for a semi-infinite geometry. A good agreement is demonstrated for both matched and mismatched boundary conditions when the distance from the source is sufficiently large. The modified diffusion model predicts that the neglect of the scattering delay when the optical properties of the turbid material are derived from normalized frequency- or time-domain measurements should result in an underestimation of the absorption coefficient and an overestimation of the transport coefficient. These observations are consistent with the published experimental data.

  2. NASA Laser Light Scattering Advanced Technology Development Workshop, 1988

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Editor)

    1989-01-01

    The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.

  3. Utility of light scatter in the morphological analysis of sperm

    EPA Science Inventory

    We were able to differentiate the morphologically diverse sperm nuclei of four animal species by using an Ortho flow cytometer to detect the forward light scatter from a red (helium-neon) laser. Cytograms depicting the axial light loss and forward red scatter signals revealed uni...

  4. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

    DTIC Science & Technology

    2011-09-30

    coccoliths detached from Emiliania huxleyi, Limnology and Oceanography, 46, 1438−1454, 2001. Gordon, H.R., T.J. Smyth, W.M. Balch, and G.C. Boynton...Light scattering by coccoliths detached from Emiliania huxleyi, Applied Optics, (2009). PUBLICATIONS H.R. Gordon, Light scattering by randomly

  5. Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues.

    PubMed

    Tay, Benjamin Chia-Meng; Chow, Tzu-Hao; Ng, Beng-Koon; Loh, Thomas Kwok-Seng

    2012-09-01

    This study investigates the autocorrelation bandwidths of dual-window (DW) optical coherence tomography (OCT) k-space scattering profile of different-sized microspheres and their correlation to scatterer size. A dual-bandwidth spectroscopic metric defined as the ratio of the 10% to 90% autocorrelation bandwidths is found to change monotonically with microsphere size and gives the best contrast enhancement for scatterer size differentiation in the resulting spectroscopic image. A simulation model supports the experimental results and revealed a tradeoff between the smallest detectable scatterer size and the maximum scatterer size in the linear range of the dual-window dual-bandwidth (DWDB) metric, which depends on the choice of the light source optical bandwidth. Spectroscopic OCT (SOCT) images of microspheres and tonsil tissue samples based on the proposed DWDB metric showed clear differentiation between different-sized scatterers as compared to those derived from conventional short-time Fourier transform metrics. The DWDB metric significantly improves the contrast in SOCT imaging and can aid the visualization and identification of dissimilar scatterer size in a sample. Potential applications include the early detection of cell nuclear changes in tissue carcinogenesis, the monitoring of healing tendons, and cell proliferation in tissue scaffolds.

  6. New Thomson scattering diagnostic on RFX-mod.

    PubMed

    Alfier, A; Pasqualotto, R

    2007-01-01

    This article describes the completely renovated Thomson scattering (TS) diagnostic employed in the modified Reversed Field eXperiment (RFX-mod) since it restarted operation in 2005. The system measures plasma electron temperature and density profiles along an equatorial diameter, measuring in 84 positions with 7 mm spatial resolution. The custom built Nd:YLF laser produces a burst of 10 pulses at 50 Hz with energy of 3 J, providing ten profile measurements in a plasma discharge of about 300 ms duration. An optical delay system accommodates three scattering volumes in each of the 28 interference filter spectrometers. Avalanche photodiodes detect the Thomson scattering signals and allow them to be recorded by means of waveform digitizers. Electron temperature is obtained using an alternative relative calibration method, based on the use of a supercontinuum light source. Rotational Raman scattering in nitrogen has supplied the absolute calibration for the electron density measurements. During RFX-mod experimental campaigns in 2005, the TS diagnostic has demonstrated its performance, routinely providing reliable high resolution profiles.

  7. The distribution of the scattered laser light in laser-plate-target coupling

    NASA Astrophysics Data System (ADS)

    Xiao-bo, Nie; Tie-qiang, Chang; Dong-xian, Lai; Shen-ye, Liu; Zhi-jian, Zheng

    1997-04-01

    Theoretical and experimental studies of the angular distributions of scattered laser light in laser-Au-plate-target coupling are reported. A simple model that describes three-dimensional plasmas and scattered laser light is presented. The approximate shape of critical density surface has been given and the three-dimensional laser ray tracing is applied in the model. The theoretical results of the model are consistent with the experimental data for the scattered laser light in the polar angle range of 25° to 145° from the laser beam.

  8. Light scattering by magnons in whispering gallery mode cavities

    NASA Astrophysics Data System (ADS)

    Sharma, Sanchar; Blanter, Yaroslav M.; Bauer, Gerrit E. W.

    2017-09-01

    Brillouin light scattering is an established technique to study magnons, the elementary excitations of a magnet. Its efficiency can be enhanced by cavities that concentrate the light intensity. Here, we theoretically study inelastic scattering of photons by a magnetic sphere that supports optical whispering gallery modes in a plane normal to the magnetization. Magnons with low angular momenta scatter the light in the forward direction with a pronounced asymmetry in the Stokes and the anti-Stokes scattering strength, consistent with earlier studies. Magnons with large angular momenta constitute Damon-Eschbach modes which are shown to inelastically reflect light. The reflection spectrum contains either a Stokes or anti-Stokes peak, depending on the direction of the magnetization, a selection rule that can be explained by the chirality of the Damon-Eshbach magnons. The controllable energy transfer can be used to manage the thermodynamics of the magnet by light.

  9. Scaled-model guidelines for formation-flying solar coronagraph missions.

    PubMed

    Landini, Federico; Romoli, Marco; Baccani, Cristian; Focardi, Mauro; Pancrazzi, Maurizio; Galano, Damien; Kirschner, Volker

    2016-02-15

    Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a scaled model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.

  10. All-sky brightness monitoring of light pollution with astronomical methods.

    PubMed

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  11. New constraints on the disk characteristics and companion candidates around T Chamaeleontis with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Sissa, E.; Langlois, M.; Müller, A.; Ginski, C.; van Holstein, R. G.; Vigan, A.; Mesa, D.; Maire, A.-L.; Henning, Th.; Gratton, R.; Olofsson, J.; van Boekel, R.; Benisty, M.; Biller, B.; Boccaletti, A.; Chauvin, G.; Daemgen, S.; de Boer, J.; Desidera, S.; Dominik, C.; Garufi, A.; Janson, M.; Kral, Q.; Ménard, F.; Pinte, C.; Stolker, T.; Szulágyi, J.; Zurlo, A.; Bonnefoy, M.; Cheetham, A.; Cudel, M.; Feldt, M.; Kasper, M.; Lagrange, A.-M.; Perrot, C.; Wildi, F.

    2017-09-01

    Context. The transition disk around the T Tauri star T Cha possesses a large gap, making it a prime target for high-resolution imaging in the context of planet formation. Aims: We aim to find signs of disk evolutionary processes by studying the disk geometry and the dust grain properties at its surface, and to search for companion candidates. Methods: We analyze a set of VLT/SPHERE data at near-infrared and optical wavelengths. We performed polarimetric imaging of T Cha with IRDIS (1.6 μm) and ZIMPOL (0.5-0.9 μm), and obtained intensity images from IRDIS dual-band imaging with simultaneous spectro-imaging with IFS (0.9-1.3 μm). Results: The disk around T Cha is detected in all observing modes and its outer disk is resolved in scattered light with unprecedented angular resolution and signal-to-noise. The images reveal a highly inclined disk with a noticeable east-west brightness asymmetry. The significant amount of non-azimuthal polarization signal in the Uφ images, with a Uφ/Qφ peak-to-peak value of 14%, is in accordance with theoretical studies on multiple scattering in an inclined disk. Our optimal axisymmetric radiative transfer model considers two coplanar inner and outer disks, separated by a gap of 0.̋28 ( 30 au) in size, which is larger than previously thought. We derive a disk inclination of 69 deg and PA of 114 deg. In order to self-consistently reproduce the intensity and polarimetric images, the dust grains, responsible for the scattered light, need to be dominated by sizes of around ten microns. A point source is detected at an angular distance of 3.5'' from the central star. It is, however, found not to be co-moving. Conclusions: We confirm that the dominant source of emission is forward scattered light from the near edge of the outer disk. Our point source analysis rules out the presence of a companion with mass larger than 8.5 Mjup between 0.̋1 and 0.̋3. The detection limit decreases to 2 Mjup for 0.̋3 to 4.0''. Based on observations made with European Southern Observatory (ESO) telescopes at the Paranal Observatory in Chile, under program IDs 095.C-0298(B), 096.C-0248(B) and 096.C-0248(C).

  12. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf

    1995-03-01

    The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).

  13. The periodic very young source EC 53 reached its maximum brightness

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Antoniucci, S.; Lorenzetti, D.; Harutyunyan, A.; Licchelli, D.; Munari, U.

    2018-06-01

    In the framework of our EXor monitoring program dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring - Antoniucci et al. 2013 PPVI, Lorenzetti et al. 2007 ApJ 665, 1182; Lorenzetti et al. 2009 ApJ 693, 1056), we observed the object EC53 recently signaled by Johnston et al. (ATel #11614) as a strongly embedded source showing a sub-mm luminosity burst, They also provide H- and K-band observations detecting this brightness increase also in the near-IR, in the scattered light by the nebula surrounding a compact source, invisible at those wavelengths.

  14. Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate

    NASA Astrophysics Data System (ADS)

    Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.

    2008-08-01

    The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.

  15. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification

    PubMed Central

    Desroches, Joannie; Jermyn, Michael; Mok, Kelvin; Lemieux-Leduc, Cédric; Mercier, Jeanne; St-Arnaud, Karl; Urmey, Kirk; Guiot, Marie-Christine; Marple, Eric; Petrecca, Kevin; Leblond, Frédéric

    2015-01-01

    A detailed characterization study is presented of a Raman spectroscopy system designed to maximize the volume of resected cancer tissue in glioma surgery based on in vivo molecular tissue characterization. It consists of a hand-held probe system measuring spectrally resolved inelastically scattered light interacting with tissue, designed and optimized for in vivo measurements. Factors such as linearity of the signal with integration time and laser power, and their impact on signal to noise ratio, are studied leading to optimal data acquisition parameters. The impact of ambient light sources in the operating room is assessed and recommendations made for optimal operating conditions. In vivo Raman spectra of normal brain, cancer and necrotic tissue were measured in 10 patients, demonstrating that real-time inelastic scattering measurements can distinguish necrosis from vital tissue (including tumor and normal brain tissue) with an accuracy of 87%, a sensitivity of 84% and a specificity of 89%. PMID:26203368

  16. Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media

    NASA Astrophysics Data System (ADS)

    Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Tan, He-Ping

    2016-11-01

    A rapid computational method called generalized sourced multi-flux method (GSMFM) was developed to simulate outgoing radiative intensities in arbitrary directions at the boundary surfaces of absorbing, emitting, and scattering media which were served as input for the inverse analysis. A hybrid least-square QR decomposition-stochastic particle swarm optimization (LSQR-SPSO) algorithm based on the forward GSMFM solution was developed to simultaneously reconstruct multi-dimensional temperature distribution and absorption and scattering coefficients of the cylindrical participating media. The retrieval results for axisymmetric temperature distribution and non-axisymmetric temperature distribution indicated that the temperature distribution and scattering and absorption coefficients could be retrieved accurately using the LSQR-SPSO algorithm even with noisy data. Moreover, the influences of extinction coefficient and scattering albedo on the accuracy of the estimation were investigated, and the results suggested that the reconstruction accuracy decreased with the increase of extinction coefficient and the scattering albedo. Finally, a non-contact measurement platform of flame temperature field based on the light field imaging was set up to validate the reconstruction model experimentally.

  17. Light collection device for flame emission detectors

    DOEpatents

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  18. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.

  19. Study of Light Scattering in the Human Eye

    NASA Astrophysics Data System (ADS)

    Perez, I. Kelly; Bruce, N. C.; Valdos, L. R. Berriel

    2008-04-01

    In this paper we present a numerical model of the human eye to be used in studies of the scattering of light in different components of the eye's optical system. Different parts of the eye are susceptible to produce scattering for different reasons; age, illness or injury. For example, cataracts can appear in the human lens or injuries or fungi can appear on the cornea. The aim of the study is to relate the backscattered light, which is what doctors measure or detect, to the forward scattered light, which is what affects the patient's vision. We present the model to be used, the raytrace procedure and some preliminary results for the image on the retina without scattering.

  20. Weak scattering of scalar and electromagnetic random fields

    NASA Astrophysics Data System (ADS)

    Tong, Zhisong

    This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum, scattered from static media. The spatial distribution of these properties of scattered fields is shown to be substantially dependent on the correlation and polarization properties of incident fields and on the statistics of the refractive index distribution within the scatterers. Further, an example is considered which illustrates the usefulness of the electromagnetic scattering theory of random fields in the case when the scattering medium is a thin bio-tissue layer with the prescribed power spectrum of the refractive index fluctuations. The polarization state of the scattered light is shown to be influenced by correlation and polarization states of the illumination as well as by the particle size distribution of the tissue slice.

  1. Faraday effect on stimulated Raman scattering in the linear region

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.

    2018-04-01

    The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.

  2. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis

    NASA Astrophysics Data System (ADS)

    Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C.

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (˜285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition.

  3. Multiplexed high resolution soft x-ray RIXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Y.-D.; Voronov, D.; Warwick, T.

    2016-07-27

    High-resolution Resonance Inelastic X-ray Scattering (RIXS) is a technique that allows us to probe the electronic excitations of complex materials with unprecedented precision. However, the RIXS process has a low cross section, compounded by the fact that the optical spectrometers used to analyze the scattered photons can only collect a small solid angle and overall have a small efficiency. Here we present a method to significantly increase the throughput of RIXS systems, by energy multiplexing, so that a complete RIXS map of scattered intensity versus photon energy in and photon energy out can be recorded simultaneously{sup 1}. This parallel acquisitionmore » scheme should provide a gain in throughput of over 100.. A system based on this principle, QERLIN, is under construction at the Advanced Light Source (ALS).« less

  4. Design of Thomson scattering diagnostic system on J-TEXT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yinan; Gao, Li, E-mail: gaoli@hust.edu.cn; Huang, Jiefeng

    2016-11-15

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT atmore » present and in the near future. A detailed description of the system design is presented in this paper.« less

  5. Multiple-wavelength spectroscopic quantitation of light-absorbing species in scattering media

    DOEpatents

    Nathel, Howard; Cartland, Harry E.; Colston, Jr., Billy W.; Everett, Matthew J.; Roe, Jeffery N.

    2000-01-01

    An oxygen concentration measurement system for blood hemoglobin comprises a multiple-wavelength low-coherence optical light source that is coupled by single mode fibers through a splitter and combiner and focused on both a target tissue sample and a reference mirror. Reflections from both the reference mirror and from the depths of the target tissue sample are carried back and mixed to produce interference fringes in the splitter and combiner. The reference mirror is set such that the distance traversed in the reference path is the same as the distance traversed into and back from the target tissue sample at some depth in the sample that will provide light attenuation information that is dependent on the oxygen in blood hemoglobin in the target tissue sample. Two wavelengths of light are used to obtain concentrations. The method can be used to measure total hemoglobin concentration [Hb.sub.deoxy +Hb.sub.oxy ] or total blood volume in tissue and in conjunction with oxygen saturation measurements from pulse oximetry can be used to absolutely quantify oxyhemoglobin [HbO.sub.2 ] in tissue. The apparatus and method provide a general means for absolute quantitation of an absorber dispersed in a highly scattering medium.

  6. [Which colours can we hear?: light stimulation of the hearing system].

    PubMed

    Wenzel, G I; Lenarz, T; Schick, B

    2014-02-01

    The success of conventional hearing aids and electrical auditory prostheses for hearing impaired patients is still limited in noisy environments and for sounds more complex than speech (e. g. music). This is partially due to the difficulty of frequency-specific activation of the auditory system using these devices. Stimulation of the auditory system using light pulses represents an alternative to mechanical and electrical stimulation. Light is a source of energy that can be very exactly focused and applied with little scattering, thus offering perspectives for optimal activation of the auditory system. Studies investigating light stimulation of sectors along the auditory pathway have shown stimulation of the auditory system is possible using light pulses. However, further studies and developments are needed before a new generation of light stimulation-based auditory prostheses can be made available for clinical application.

  7. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates.

    PubMed

    Chen, Shuming; Kwok, Hoi Sing

    2010-01-04

    Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.

  8. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  9. X-Ray Structure determination of the Glycine Cleavage System Protein H of Mycobacterium tuberculosis Using An Inverse Compton Synchrotron X-Ray Source

    PubMed Central

    Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.

    2010-01-01

    Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333

  10. A Scattered Light Correction to Color Images Taken of Europa by the Galileo Spacecraft: Initial Results

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Valenti, M.

    2009-12-01

    Jupiter's moon Europa likely possesses an ocean of liquid water beneath its icy surface, but estimates of the thickness of the surface ice shell vary from a few kilometers to tens of kilometers. Color images of Europa reveal the existence of a reddish, non-ice component associated with a variety of geological features. The composition and origin of this material is uncertain, as is its relationship to Europa's various landforms. Published analyses of Galileo Near Infrared Mapping Spectrometer (NIMS) observations indicate the presence of highly hydrated sulfate compounds. This non-ice material may also bear biosignatures or other signs of biotic material. Additional spectral information from the Galileo Solid State Imager (SSI) could further elucidate the nature of the surface deposits, particularly when combined with information from the NIMS. However, little effort has been focused on this approach because proper calibration of the color image data is challenging, requiring both skill and patience to process the data and incorporate the appropriate scattered light correction. We are currently working to properly calibrate the color SSI data. The most important and most difficult issue to address in the analysis of multispectral SSI data entails using thorough calibrations and a correction for scattered light. Early in the Galileo mission, studies of the Galileo SSI data for the moon revealed discrepancies of up to 10% in relative reflectance between images containing scattered light and images corrected for scattered light. Scattered light adds a wavelength-dependent low-intensity brightness factor to pixels across an image. For example, a large bright geological feature located just outside the field of view of an image will scatter extra light onto neighboring pixels within the field of view. Scattered light can be seen as a dim halo surrounding an image that includes a bright limb, and can also come from light scattered inside the camera by dirt, edges, and the interfaces of lenses. Because of the wavelength dependence of this effect, a scattered light correction must be performed on any SSI multispectral dataset before quantitative spectral analysis can be done. The process involves using a point-spread function for each filter that helps determine the amount of scattered light expected for a given pixel based on its location and the model attenuation factor for that pixel. To remove scattered light for a particular image taken through a particular filter, the Fourier transform of the attenuation function, which is the point spread function for that filter, is convolved with the Fourier transform of the image at the same wavelength. The result is then filtered for noise in the frequency domain, and then transformed back to the spatial domain. This results in a version of the original image that would have been taken without the scattered light contribution. We will report on our initial results from this calibration.

  11. Light collection optimization for composite photoanode in dye-sensitized solar cells: Towards higher efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, X. Z.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn; Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control

    2015-06-14

    Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, wemore » simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.« less

  12. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes

    NASA Astrophysics Data System (ADS)

    O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.

    2017-11-01

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  13. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.

    PubMed

    O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D

    2017-11-24

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  14. Study of light scattering using C-Quant® in patients with Fuchs' endothelial dystrophy: A pilot study.

    PubMed

    Castaño-Martín, B; Gros-Otero, J; Martínez, J; Teus, M

    2017-11-01

    The purpose of this study was to determine the light scattering in patients with Fuchs' endothelial dystrophy without clinically significant corneal oedema, and evaluate its relationship with endothelial cell count, corneal thickness, and corneal biomechanical parameters. The values of light scattering were measured by C-Quant ® (Oculus Optikgeräte GmbH, Germany) in 32 eyes of 17 patients diagnosed with Fuchs' endothelial dystrophy without clinically significant corneal oedema. Corneal biomechanical properties were determined using ORA (ocular response) and Corvis ST ® (tonometry). A light scattering value outside the normal range was observed in 93.8% of eyes studied. No statistically significant association (P>.05) was found between the values of the measured light scattering by C-Quant ® and endothelial count, pachymetry, or corneal biomechanical properties. In this study, changes were found in the values of light scattering values of patients with corneal Fuchs' endothelial dystrophy. This change does not appear to correlate significantly with disease severity. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Theoretical Studies of Light Scattering from Solids, Films and Surfaces

    DTIC Science & Technology

    2011-05-18

    Quasiparticles for a quantum dot array in graphene and associated magnetoplasmons…………………………………………………………11...2DEG between a source and drain. 2.2.1 Quasiparticles for a quantum dot array in graphene and the associated magnetoplasmons We calculated the low

  16. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Sallis, Shawn; Fuchs, Oliver; Blum, Monika; Weinhardt, Lothar; Heske, Clemens; Pepper, John; Jones, Michael; Brown, Adam; Spucces, Adrian; Chow, Ken; Smith, Brian; Glans, Per-Anders; Chen, Yanxue; Yan, Shishen; Pan, Feng; Piper, Louis F. J.; Denlinger, Jonathan; Guo, Jinghua; Hussain, Zahid; Chuang, Yi-De; Yang, Wanli

    2017-03-01

    An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.

  17. POlarized Light Angle Reflectance Instrument I Polarized Incidence (POLAR:I)

    NASA Technical Reports Server (NTRS)

    Sarto, Anthony W.; Woldemar, Christopher M.; Vanderbilt, V. C.

    1989-01-01

    The light scattering properties of leaves are used as input data for models which mathematically describe the transport of photons within plant canopies. Polarization measurements may aid in the investigation of these properties. This paper describes an instrument for rapidly determining the bidirectional light scattering properties of leaves illuminated by linearly polarized light. Results for one species, magnolia, show large differences in the bidirectional light scattering properties depending whether or not the electric vector E is parallel to the foliage surface.

  18. Micro-LiDAR velocity, temperature, density, concentration sensor

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A. (Inventor); Danehy, Paul M. (Inventor)

    2010-01-01

    A light scatter sensor includes a sensor body in which are positioned a plurality of optical fibers. The sensor body includes a surface, in one end of each of the optical fibers terminates at the surface of the sensor body. One of the optical fibers is an illumination fiber for emitting light. A plurality of second optical fibers are collection fibers for collecting scattered light signals. A light sensor processor is connected to the collection fibers to detect the scattered light signals.

  19. Biomimetic MEMS sensor array for navigation and water detection

    NASA Astrophysics Data System (ADS)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  20. Light scattering and transmission measurement using digital imaging for online analysis of constituents in milk

    NASA Astrophysics Data System (ADS)

    Jain, Pranay; Sarma, Sanjay E.

    2015-05-01

    Milk is an emulsion of fat globules and casein micelles dispersed in an aqueous medium with dissolved lactose, whey proteins and minerals. Quantification of constituents in milk is important in various stages of the dairy supply chain for proper process control and quality assurance. In field-level applications, spectrophotometric analysis is an economical option due to the low-cost of silicon photodetectors, sensitive to UV/Vis radiation with wavelengths between 300 - 1100 nm. Both absorption and scattering are witnessed as incident UV/Vis radiation interacts with dissolved and dispersed constituents in milk. These effects can in turn be used to characterize the chemical and physical composition of a milk sample. However, in order to simplify analysis, most existing instrument require dilution of samples to avoid effects of multiple scattering. The sample preparation steps are usually expensive, prone to human errors and unsuitable for field-level and online analysis. This paper introduces a novel digital imaging based method of online spectrophotometric measurements on raw milk without any sample preparation. Multiple LEDs of different emission spectra are used as discrete light sources and a digital CMOS camera is used as an image sensor. The extinction characteristic of samples is derived from captured images. The dependence of multiple scattering on power of incident radiation is exploited to quantify scattering. The method has been validated with experiments for response with varying fat concentrations and fat globule sizes. Despite of the presence of multiple scattering, the method is able to unequivocally quantify extinction of incident radiation and relate it to the fat concentrations and globule sizes of samples.

  1. Relationship between light scattering and absorption due to cytochrome c oxidase reduction during loss of tissue viability in brains of rats

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2008-02-01

    We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.

  2. Bright-White Beetle Scales Optimise Multiple Scattering of Light

    NASA Astrophysics Data System (ADS)

    Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia

    2014-08-01

    Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.

  3. Assessment of ultrasound modulation of near infrared light on the quantification of scattering coefficient.

    PubMed

    Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K

    2010-07-01

    To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.

  4. Scattering rings in optically anisotropic porous silicon

    NASA Astrophysics Data System (ADS)

    Oton, C. J.; Gaburro, Z.; Ghulinyan, M.; Pancheri, L.; Bettotti, P.; Negro, L. Dal; Pavesi, L.

    2002-12-01

    We report the observation of strongly anisotropic scattering of laser light at oblique incidence on a (100)-oriented porous silicon layer. The scattered light forms cones tangent to the incident and reflected beams. The conical pattern is caused by scattering on the vertical walls of pores, which are straight along the layer thickness. The light cone defines structured light rings onto a screen normal to the cone axis. We explain the various structures by optical anisotropy of porous silicon. For the sample under analysis, we directly measure from the ring patterns a value of Δn/nord=8% of positive birefringence.

  5. Light propagation in dentin: influence of microstructure on anisotropy.

    PubMed

    Kienle, Alwin; Forster, Florian K; Diebolder, Rolf; Hibst, Raimund

    2003-01-21

    We investigated the dependence of light propagation in human dentin on its microstructure. The main scatterers in dentin are the tubules, the shape of which can be approximated as long cylinders. We calculated the scattering of electromagnetic waves by an infinitely long cylinder and applied the results in a Monte Carlo code that simulates the light propagation in a dentin slab considering multi-scattering. The theory was compared with goniometric measurements. A pronounced anisotropic scattering pattern was found experimentally and theoretically. In addition, intensity peaks were measured which are shown to be caused by light diffraction by the tubules.

  6. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic matter, and dust found for the ACE Asia aerosol are comparable to values estimated for ACE 1, Aerosols99, and INDOEX. Unique to the ACE Asia aerosol was the large mass fractions of dust, the dominance of dust in controlling the aerosol optical properties, and the interaction of dust with soot aerosol.

  7. Light sources and output couplers for a backlight with switchable emission angles

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Imai, Keita; Takagi, Yoshihiko

    2007-09-01

    For switching viewing angles of a liquid crystal display, we proposed to place a liquid crystal device between an LED and a light-guide of a backlight. The first key component for this configuration is a light source with electronically-controlled emission angles. Here, we construct such a device by stacking an optical film and a polymer-network liquid crystal (PNLC) cell on top of a chip-type LED. The optical film contains opaque parallel plates that limit the LED output in a narrow angular range. The PNLC cell either transmits or scatters the light emerging from the optical film. Experiment using a 15μm-thick PNLC cell shows that the angular distribution becomes 2.3 times wider by turning off the PNLC cell. We place this light source at one end of a light-guide so that the angular distribution of the light propagating inside is controlled. The second key component is some types of micro-strucrures built on the light-guide to out-couple the propagating light. We first attached various optical films on a light-guide surface. Although the angular distribution of the extracted light was switched successfully, light was mostly emitted into an oblique direction, approximately 60° from the plane normal. Next, we used a half-cylinder in place of the optical films. The curved surface of the cylinder was attached to the light-guide with a small amount of matching oil, which constituted an optical window. We measured that the angular distribution of the extracted light decreased to 35° FWHM from 62° FWHM by turning on the PNLC cell.

  8. Light scattering from normal and cervical cancer cells.

    PubMed

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong

    2017-04-20

    The light scattering characteristic plays a very important role in optic imaging and diagnostic applications. For optical detection of the cell, cell scattering characteristics have an extremely vital role. In this paper, we use the finite-difference time-domain (FDTD) algorithm to simulate the propagation and scattering of light in biological cells. The two-dimensional scattering cell models were set up based on the FDTD algorithm. The cell models of normal cells and cancerous cells were established, and the shapes of organelles, such as mitochondria, were elliptical. Based on these models, three aspects of the scattering characteristics were studied. First, the radar cross section (RCS) distribution curves of the corresponding cell models were calculated, then corresponding relationships between the size and the refractive index of the nucleus and light scattering information were analyzed in the three periods of cell canceration. The values of RCS increase positively with the increase of the nucleo-cytoplasmic ratio in the cancerous process when the scattering angle ranges from 0° to 20°. Second, the effect of organelles in the scattering was analyzed. The peak value of the RCS of cells with mitochondria is higher than the cells without mitochondria when the scattering angle ranges from 20° to 180°. Third, we demonstrated that the influence of cell shape is important, and the impact was revealed by the two typical ideal cells: round cells and oval cells. When the scattering angle ranges from 0° to 80°, the peak values and the frequencies of the appearance of the peaks from the two models are roughly similar. It can be concluded that: (1) the size of the nuclei and the change of the refractive index of cells have a certain impact on light scattering information of the whole cell; (2) mitochondria and other small organelles contribute to the cell light scattering characteristics in the larger scattering angle area; and (3) the change of the cell shape significantly influences the value of scattering peak and the deviation of scattering peak position. The results of the numerical simulation will guide subsequent experiments and early diagnosis of cervical cancer.

  9. Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.

    2001-11-01

    Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.

  10. Multispectral Near-Infrared Imaging of Composite Restorations in Extracted Teeth.

    PubMed

    Logan, Cooper M; Co, Katrina U; Fried, William A; Simon, Jacob C; Staninec, Michal; And, Daniel Fried; Darling, Cynthia L

    2014-02-20

    One major advantage of composite restoration materials is that they can be color matched to the tooth. However, this presents a challenge when composites fail and they need to be replaced. Dentists typically spend more time repairing and replacing composites than placing new restorations. Previous studies have shown that near-infrared imaging can be used to distinguish between sound enamel and decay due to the differences in light scattering. The purpose of this study was to use a similar approach and exploit differences in light scattering to attain high contrast between composite and tooth structure. Extracted human teeth with composites (n=16) were imaged in occlusal transmission mode at wavelengths of 1300-nm, 1460-nm and 1550-nm using an InGaAs image sensor with a tungsten halogen light source with spectral filters. All samples were also imaged in the visible range using a high definition 3D digital microscope. Our results indicate that NIR wavelengths at 1460-nm and 1550-nm, coincident with higher water absorption yield the highest contrast between dental composites and tooth structure.

  11. Multispectral near-infrared imaging of composite restorations in extracted teeth

    NASA Astrophysics Data System (ADS)

    Logan, Cooper M.; Co, Katrina U.; Fried, William A.; Simon, Jacob C.; Staninec, Michal; Fried, Daniel; Darling, Cynthia L.

    2014-02-01

    One major advantage of composite restoration materials is that they can be color matched to the tooth. However, this presents a challenge when composites fail and they need to be replaced. Dentists typically spend more time repairing and replacing composites than placing new restorations. Previous studies have shown that near-infrared imaging can be used to distinguish between sound enamel and decay due to the differences in light scattering. The purpose of this study was to use a similar approach and exploit differences in light scattering to attain high contrast between composite and tooth structure. Extracted human teeth with composites (n=16) were imaged in occlusal transmission mode at wavelengths of 1300-nm, 1460-nm and 1550-nm using an InGaAs image sensor with a tungsten halogen light source with spectral filters. All samples were also imaged in the visible range using a high definition 3D digital microscope. Our results indicate that NIR wavelengths at 1460-nm and 1550-nm, coincident with higher water absorption yield the highest contrast between dental composites and tooth structure.

  12. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source

    PubMed Central

    Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz

    2012-01-01

    In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less

  15. A fiber-coupled incoherent light source for ultra-precise optical trapping

    NASA Astrophysics Data System (ADS)

    Menke, Tim; Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Kaufman, Adam M.; Greiner, Markus

    2017-04-01

    The ability to engineer arbitrary optical potentials using spatial light modulation has opened up exciting possibilities in ultracold quantum gas experiments. Yet, despite the high trap quality currently achievable, interference-induced distortions caused by scattering along the optical path continue to impede more sensitive measurements. We present a design of a high-power, spatially and temporally incoherent light source that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.

  16. Ultraviolet radiation cataract: dose dependence

    NASA Astrophysics Data System (ADS)

    Soderberg, Per G.; Loefgren, Stefan

    1994-07-01

    Current safety limits for cataract development after acute exposure to ultraviolet radiation (UVR) are based on experiments analyzing experimental data with a quantal, effect-no effect, dose-response model. The present study showed that intensity of forward light scattering is better described with a continuous dose-response model. It was found that 3, 30 and 300 kJ/m2UVR300nm induces increased light scattering within 6 h. For all three doses the intensity of forward light scattering was constant after 6 h. The intensity of forward light scattering was proportional to the log dose of UVR300nm. There was a slight increase of the intensity of forward light scattering on the contralateral side in animals that received 300 kJ/m2. Altogether 72 Sprague-Dawley male rats were included. Half of the rats were exposed in vivo on one side to UVR300nm. The other half was kept as a control group, receiving the same treatment as exposed rats but without delivery of UVR300nm to the eye. Subgroups of the rats received either of the three doses. Rats were sacrificed at varying intervals after the exposure. The lenses were extracted and the forward light scattering was estimated. It is concluded that intensity of forward light scattering in the lens after exposure to UVR300nm should be described with a continuous dose-reponse model.

  17. Comparison of the thermal neutron scattering treatment in MCNP6 and GEANT4 codes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Marchix, A.; Letourneau, A.; Darpentigny, J.; Menelle, A.; Ott, F.; Schwindling, J.; Chauvin, N.

    2018-06-01

    To ensure the reliability of simulation tools, verification and comparison should be made regularly. This paper describes the work performed in order to compare the neutron transport treatment in MCNP6.1 and GEANT4-10.3 in the thermal energy range. This work focuses on the thermal neutron scattering processes for several potential materials which would be involved in the neutron source designs of Compact Accelerator-based Neutrons Sources (CANS), such as beryllium metal, beryllium oxide, polyethylene, graphite, para-hydrogen, light water, heavy water, aluminium and iron. Both thermal scattering law and free gas model, coming from the evaluated data library ENDF/B-VII, were considered. It was observed that the GEANT4.10.03-patch2 version was not able to account properly the coherent elastic process occurring in crystal lattice. This bug is treated in this work and it should be included in the next release of the code. Cross section sampling and integral tests have been performed for both simulation codes showing a fair agreement between the two codes for most of the materials except for iron and aluminium.

  18. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak.

    PubMed

    Berni, L A; Albuquerque, B F C

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  19. Charactrisation of particle assemblies by 3D cross correlation light scattering and diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2014-08-01

    To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.

  20. Accurate Size and Size-Distribution Determination of Polystyrene Latex Nanoparticles in Aqueous Medium Using Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation with Multi-Angle Light Scattering

    PubMed Central

    Kato, Haruhisa; Nakamura, Ayako; Takahashi, Kayori; Kinugasa, Shinichi

    2012-01-01

    Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS. PMID:28348293

  1. Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Siri Luthman, A.; E Bohndiek, Sarah

    2017-04-01

    Hyperspectral imaging (HSI) systems collect both spatial (morphological) and spectral (chemical) information from a sample. HSI can provide sensitive analysis for biological and medical applications, for example, simultaneously measuring reflectance and fluorescence properties of a tissue, which together with structural information could improve early cancer detection and tumour characterisation. Illumination uniformity is a critical pre-condition for quantitative data extraction from an HSI system. Non-uniformity can cause glare, specular reflection and unwanted shading, which negatively impact statistical analysis procedures used to extract abundance of different chemical species. Here, we model and evaluate several illumination systems frequently used in wide-field biomedical imaging to test their potential for HSI. We use the software LightTools and FRED. The analysed systems include: a fibre ring light; a light emitting diode (LED) ring; and a diffuse scattering dome. Each system is characterised for spectral, spatial, and angular uniformity, as well as transfer efficiency. Furthermore, an approach to measure uniformity using the Kullback-Leibler divergence (KLD) is introduced. The KLD is generalisable to arbitrary illumination shapes, making it an attractive approach for characterising illumination distributions. Although the systems are quite comparable in their spatial and spectral uniformity, the most uniform angular distribution is achieved using a diffuse scattering dome, yielding a contrast of 0.503 and average deviation of 0.303 over a ±60° field of view with a 3.9% model error in the angular domain. Our results suggest that conventional illumination sources can be applied in HSI, but in the case of low light levels, bespoke illumination sources may offer improved performance.

  2. X-ray Experiments for Students at the SLS Optics Beamline

    NASA Astrophysics Data System (ADS)

    Flechsig, U.; Als-Nielsen, J.; Jaggi, A.; Krempaský, J.; Oberta, P.; Spielmann, S.; van der Veen, J. F.

    2010-06-01

    We present a X-ray training course for students. The course covers fundamental properties of synchrotron radiation and basic techniques like scattering and absorption. We prepared ten experiments together with a tutorial. The whole course takes about a week. A first student group from the University of Copenhagen passed the course in June 2009. The experiments were performed at the optics beamline of the Swiss Light Source which can be part-time allocated for training purposes. Two experiments are described in more detail: scattering from a hanging drop of water turning into ice and measurement of the power of a pink synchrotron beam using a simple calorimeter.

  3. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays.

    PubMed

    You, David J; Park, Tu San; Yoon, Jeong-Yeol

    2013-02-15

    Semi-quantitative thyr oid stimulating hormone (TSH) lateral flow immunochromatographic assays (LFA) are used to screen for serum TSH concentration >5 mIUL(-1) (hypothyroidism). The LFA format, however, is unable to measure TSH in the normal range or detect suppressed levels of TSH (<0.4 mIU L(-1); hyperthyroidism). In fact, it does not provide quantitative TSH values at all. Obtaining quantitative TSH results, especially in the low concentration range, has until now required the use of centralized clinical laboratories which require specimen transport, specialized equipment and personnel, and result in increased cost and delays in the timely reporting of important clinical results. We have conducted a series of experiments to develop and validate an optical system and image analysis algorithm based upon a cell phone platform. It is able to provide point-of-care quantitative TSH results with a high level of sensitivity and reproducibility comparable to that of a clinical laboratory-based third-generation TSH immunoassay. Our research approach uses the methodology of the optimized Rayleigh/Mie scatter detection by taking into consideration the optical characteristics of a nitrocellulose membrane and gold nanoparticles on an LFA for quantifying TSH levels. Using a miniature spectrometer, LED light source, and optical fibers on a rotating benchtop apparatus, the light intensity from different angles of incident light and angles of detection to the LFA were measured. The optimum angles were found that the minimized Mie scattering from nitrocellulose membrane, consequently maximizes the Rayleigh scatter detection from the gold nanoparticles in the LFA bands. Using the results from the benchtop apparatus, a cell-phone-based apparatus was designed which utilized the embedded flash in the cell phone camera as the light source, piped the light with an optical fiber from the flash through a collimating lens to illuminate the LFA. Quantification of TSH was performed in an iOS application directly on the phone and verified using the code written in MATLAB. The limit of detection of the system was determined to be 0.31 mIU L(-1) (never achieved before on an LFA format), below the commonly accepted minimum concentration of 0.4 mIU L(-1) indicating clinical significance of hyperthyroidism. The system was further evaluated using human serum showing an accurate and reproducible platform for rapid and point-of-care quantification of TSH using a cell phone. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Literature survey for suppression of scattered light in large space telescopes

    NASA Technical Reports Server (NTRS)

    Tifft, W. G.; Fannin, B. B.

    1973-01-01

    A literature survey is presented of articles dealing with all aspects of predicting, measuring, and controlling unwanted scattered (stray) light. The survey is divided into four broad classifications: (1) existing baffle/telescope designs; (2) computer programs for the analysis/design of light suppression systems; (3) the mechanism, measurement, and control of light scattering; and (4) the advantages and problems introduced by the space environment for the operation of diffraction-limited optical systems.

  5. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Weiwei; Mei, Chao; Zeng, Xianghua, E-mail: xhzeng@yzu.edu.cn

    2016-03-14

    Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO{sub 2} photoanode ofmore » the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.« less

  6. Ultra-sensitive molecular detection using surface-enhanced Raman scattering on periodic metal-dielectric nanostructures

    NASA Astrophysics Data System (ADS)

    Nien, Chun; Li, Yi-Hsuan; Su, Vin-Cent; Kuan, Chieh-Hsiung

    2017-02-01

    Surface-enhanced Raman scattering (SERS) is a powerful technique for trace chemical analysis and single molecule detection in the application of biochemical monitoring and food safety due to its ability to enhance the Raman scattering of molecules near the metallic surface or nanostructures. Here, we present a comprehensive study of the SERS enhancement by the periodically nanostructured surface, where the thin film of silver is deposited onto the surface, except the sidewall of posts, of 1-D lamellar gratings with varying pitch to forming metal-dielectric composite nanostructures. By enhancing the localized and surface-propagating mode in the vicinity of the concaves, the SERS signal can be improved by amplifying the intensity of electric field and increasing the optical path length of the incident light. Experimental investigations show that the enhancement factor can be manipulated by varying the polarization of incident light and the pitch size of gratings. To demonstrate the SERS effects of the proposed structures, thin layers of benzoic acid, which is commonly used as a food preservative, are deposited on the SERS substrates by spin-coating a solution of benzoic acid and dried at room temperature. A Confocal Raman microscope with a 532 nm laser source is used to illuminate light and measure the Raman spectrum of benzoic acid. We demonstrate the Raman signal of benzoic acid can be enhanced on the order of 102 on the SERS substrates.

  7. Analysis of the scattering performance of human retinal tissue layers

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Gao, Zhisan; Ye, Haishui; Yuan, Qun

    2017-02-01

    Human retina is different from other ocular tissues, such as cornea, crystalline lens and vitreous because of high scattering performance. As an anisotropic tissue, we cannot neglect its impact on the polarization state of the scattered light. In this paper, Mie scattering and radiative transfer theory are applied to analyze the polarization state of backscattered light from four types of retinal tissues, including neural retina, retinal pigment epithelial (RPE), choroid and sclera. The results show that the most backscattered zones in different depths have almost the same electrical fields of Jones vector, which represents the polarization state of light, whether neural retina layer is under normal incidence or oblique incidence. Very little change occurs in the polarization of backscattered light compared to that of the incident light. Polarization distribution of backward scattered light from neural retina layer doesn't make apparent effects on polarization phase shifting in spectral domain OCT because its thickness is far less than photon mean free path, while other retinal tissues do not meet this rule.

  8. Study of resonance light scattering for remote optical probing

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; Morey, W. W.; St. Peters, R. L.; Silverstein, S. D.; Lapp, M.; White, D. R.

    1973-01-01

    Enhanced scattering and fluorescence processes in the visible and UV were investigated which will enable improved remote measurements of gas properties. The theoretical relationship between scattering and fluorescence from an isolated molecule in the approach to resonance is examined through analysis of the time dependence of re-emitted light following excitation of pulsed incident light. Quantitative estimates are developed for the relative and absolute intensities of fluorescence and resonance scattering. New results are obtained for depolarization of scattering excited by light at wavelengths within a dissociative continuum. The experimental work was performed in two separate facilities. One of these utilizes argon and krypton lasers, single moded by a tilted etalon, and a 3/4 meter double monochromator. This facility was used to determine properties of the re-emission from NO2, I2 and O3 excited by visible light. The second facility involves a narrow-line dye laser, and a 3/4 meter single monochromator. The dye laser produces pulsed light with 5 nsec pulse duration and 0.005 nm spectral width.

  9. Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City: Comparison with Las Vegas, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Miranda, G. P.; Gaffney, J. S.; Marley, N. A.

    2007-05-01

    Four photoacoustic spectrometers (PAS) for aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The four sites included: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP); a suburban site at the Technological University of Tecamac; a rural site at "La Biznaga" ranch; and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. A similar campaign was held in Las Vegas, Nevada, USA in January-February, 2003. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. Comparisons with TSI nephelometer scattering at the T0 site will be presented. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of Mexico City resulted in more direct solar radiation. Further insight on the meteorological connections will be discussed.

  10. FDTD scattered field formulation for scatterers in stratified dispersive media.

    PubMed

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  11. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOEpatents

    Dutton, G. Wayne

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90.degree. by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  12. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOEpatents

    Dutton, G.W.

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90[degree] by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle. 6 figs.

  13. Process and apparatus for sensing defects on a smooth cylindrical surface in tubing

    DOEpatents

    Dutton, G.W.

    1985-08-05

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90/sup 0/ by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  14. Light scattering properties of kidney epithelial cells and nuclei

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram

    2006-02-01

    Enlargement of mammalian cells nuclei due to the cancerous inflammation can be detected early through noninvasive optical techniques. We report on the results of cellular experiments, aimed towards the development of a fiber optic endoscopic probe used for precancerous detection of Barrett's esophagus. We previously presented white light scattering results from tissue phantoms (polystyrene polybead microspheres). In this paper, we discuss light scattering properties of epithelial MDCK (Madine-Darby Canine Kidney) cells and cell nuclei suspensions. A bifurcated optical fiber is used for experimental illumination and signal detection. The resulting scattering spectra from the cells do not exhibit the predicted Mie theory oscillatory behavior inherent to ideally spherical scatterers, such as polystyrene microspheres. However, we are able to demonstrate that the Fourier transform spectra of the cell suspensions are well correlated with the Fourier transform spectra of cell nuclei, concluding that the dominate scatterer in the backscattering region is the nucleus. This correlation experimentally illustrates that in the backscattering region, the cell nuclei are the main scatterer in the cells of the incident light.

  15. Scattered light characterization of FORTIS

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey

    2017-08-01

    We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.

  16. Determination of wood grain direction from laser light scattering pattern

    NASA Astrophysics Data System (ADS)

    Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo

    2004-01-01

    Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.

  17. High power narrow-band fiber-based ASE source.

    PubMed

    Schmidt, O; Rekas, M; Wirth, C; Rothhardt, J; Rhein, S; Kliner, A; Strecker, M; Schreiber, T; Limpert, J; Eberhardt, R; Tünnermann, A

    2011-02-28

    In this paper we describe a high power narrow-band amplified spontaneous emission (ASE) light source at 1030 nm center wavelength generated in an Yb-doped fiber-based experimental setup. By cutting a small region out of a broadband ASE spectrum using two fiber Bragg gratings a strongly constrained bandwidth of 12±2 pm (3.5±0.6 GHz) is formed. A two-stage high power fiber amplifier system is used to boost the output power up to 697 W with a measured beam quality of M2≤1.34. In an additional experiment we demonstrate a stimulated Brillouin scattering (SBS) suppression of at least 17 dB (theoretically predicted ~20 dB), which is only limited by the dynamic range of the measurement and not by the onset of SBS when using the described light source. The presented narrow-band ASE source could be of great interest for brightness scaling applications by beam combination, where SBS is known as a limiting factor.

  18. A young source of optical emission from distant radio galaxies.

    PubMed

    Hammer, F; Fèvre, O Le; Angonin, M C

    1993-03-25

    DISTANT radio galaxies provide valuable insights into the properties of the young Universe-they are the only known extended optical sources at high redshift and might represent an early stage in the formation and evolution of galaxies in general. This extended optical emission often has very complex morphologies, but the origin of the light is still unclear. Here we report spectroscopic observations for several distant radio galaxies (0.75≤ z ≤ 1.1) in which the rest-frame spectra exhibit featureless continua between 2,500 Å and 5,000 Å. We see no evidence for the break in the spectrum at 4,000 Å expected for an old stellar population 1-3 , and suggest that young stars or scattered emissions from the active nuclei are responsible for most of the observed light. In either case, this implies that the source of the optical emission is com-parable in age to the associated radio source, namely 10 7 years or less.

  19. Defect mapping system

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.

  20. Defect mapping system

    DOEpatents

    Sopori, B.L.

    1995-04-11

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.

  1. Side-emitting fiber optic position sensor

    DOEpatents

    Weiss, Jonathan D [Albuquerque, NM

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  2. Lattice QCD Calculation of Hadronic Light-by-Light Scattering.

    PubMed

    Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir

    2015-11-27

    We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.

  3. Improved determination of particulate absorption from combined filter pad and PSICAM measurements.

    PubMed

    Lefering, Ina; Röttgers, Rüdiger; Weeks, Rebecca; Connor, Derek; Utschig, Christian; Heymann, Kerstin; McKee, David

    2016-10-31

    Filter pad light absorption measurements are subject to two major sources of experimental uncertainty: the so-called pathlength amplification factor, β, and scattering offsets, o, for which previous null-correction approaches are limited by recent observations of non-zero absorption in the near infrared (NIR). A new filter pad absorption correction method is presented here which uses linear regression against point-source integrating cavity absorption meter (PSICAM) absorption data to simultaneously resolve both β and the scattering offset. The PSICAM has previously been shown to provide accurate absorption data, even in highly scattering waters. Comparisons of PSICAM and filter pad particulate absorption data reveal linear relationships that vary on a sample by sample basis. This regression approach provides significantly improved agreement with PSICAM data (3.2% RMS%E) than previously published filter pad absorption corrections. Results show that direct transmittance (T-method) filter pad absorption measurements perform effectively at the same level as more complex geometrical configurations based on integrating cavity measurements (IS-method and QFT-ICAM) because the linear regression correction compensates for the sensitivity to scattering errors in the T-method. This approach produces accurate filter pad particulate absorption data for wavelengths in the blue/UV and in the NIR where sensitivity issues with PSICAM measurements limit performance. The combination of the filter pad absorption and PSICAM is therefore recommended for generating full spectral, best quality particulate absorption data as it enables correction of multiple errors sources across both measurements.

  4. Intensity noise limit in a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    E Alekseev, A.; Tezadov, Ya A.; Potapov, V. T.

    2017-05-01

    In the present paper we perform, for the first time, the analysis of the average intensity noise power level at the output of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source. The origin of the considered intensity noise lies in random phase fluctuations of a semiconductor laser source field. These phase fluctuations are converted to intensity noise in the process of interference of backscattered light. This intensity noise inevitably emerges in every phase-OTDR spatial channel and limits its sensitivity to external phase actions. The analysis of intensity noise in a phase-OTDR was based on the study of a fiber scattered-light interferometer (FSLI) which is treated as the constituent part of OTDR. When considered independently, FSLI has a broad intensity noise spectrum at its output; when FSLI is treated as a part of a phase-OTDR, due to aliasing effect, the wide FSLI noise spectrum is folded within the spectral band, determined by the probe pulse repetition frequency. In the analysis one of the conventional phase-OTDR schemes with rectangular dual-pulse probe signal was considered, the FSLI, which corresponds to this OTDR scheme, has two scattering fiber segments with additional time delay introduced between backscattered fields. The average intensity noise power and resulting noise spectrum at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments and by the additional time delay between the scattering segments. The average intensity noise characteristics at the output of the corresponding phase-OTDR are determined by the analogous parameters: the source coherence, the lengths of the parts constituting the dual-pulse and the time interval which separates the parts of the dual-pulse. In the paper the expression for the average noise power spectral density (NPSD) at the output of FSLI was theoretically derived and experimentally verified. Based on the found average NPSD of FSLI, a simple relation connecting the phase-OTDR parameters and the limiting level of full average intensity noise power at its output was derived. This relation was verified by experimental measurement of the average noise power at the output of phase-OTDR. The limiting noise level, considered in the paper, determines the fundamental noise floor for the phase-OTDR with given parameters of the source coherence, probe pulse length and time delay between two pulses constituting the dual-pulse.

  5. Fiber optic light-scattering measurement system for evaluation of embryo viability: model experiment

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1996-05-01

    We evaluated the particle density detectability and particle size detectivity of our fiber-optic light-scattering measurement system. In order to prevent the multiple pregnancy on current in vitro fertilization-embryo transfer, we have aimed to develop a new quantitative and non- invasive method to select a single viable human embryo. We employed the measurement of mitochondria localization in an embryo, which may have the correlation with development ability. We applied the angular distribution measurement of the light-scattering intensity from the embryo to obtain the information originated from the mitochondria. The latex spheres with a diameter of 1.0 micrometers were used to simulate the scattering intensity of the mitochondria. The measurement probes of our system consisted of two fibers for illumination and sensing. They were arranged at a right angle to a microscope optical axis to measure the angular distribution of the light-scattering intensity. We observed that the light-scattering intensity increased monotonically in the range from 106 to 1010 particles per ml. Since the mitochondria density in a human embryo corresponded to 2.5 X 107 per ml in the measurement chamber, we may measure the mitochondria density in the human embryo. The angular dependence of light-scattering intensity changed with the sphere diameters. This result showed the possibility of the selective measurement of the mitochondria density in the embryo in spite of the presence of the other cell organelle. We think that our light-scattering measurement system might be applicable to the evaluation method for the embryo viability.

  6. Microscopic Imaging and Spectroscopy with Scattered Light

    PubMed Central

    Boustany, Nada N.; Boppart, Stephen A.; Backman, Vadim

    2012-01-01

    Optical contrast based on elastic scattering interactions between light and matter can be used to probe cellular structure and dynamics, and image tissue architecture. The quantitative nature and high sensitivity of light scattering signals to subtle alterations in tissue morphology, as well as the ability to visualize unstained tissue in vivo, has recently generated significant interest in optical scatter based biosensing and imaging. Here we review the fundamental methodologies used to acquire and interpret optical scatter data. We report on recent findings in this field and present current advances in optical scatter techniques and computational methods. Cellular and tissue data enabled by current advances in optical scatter spectroscopy and imaging stand to impact a variety of biomedical applications including clinical tissue diagnosis, in vivo imaging, drug discovery and basic cell biology. PMID:20617940

  7. Strain-induced three-photon effects

    NASA Astrophysics Data System (ADS)

    Jeong, Jae-Woo; Shin, Sung-Chul; Lyubchanskii, I. L.; Varyukhin, V. N.

    2000-11-01

    Strain-induced three-photon effects such as optical second-harmonic generation and hyper-Rayleigh light scattering, characterized by electromagnetic radiation at the double frequency of an incident light, are phenomenologically investigated by adopting a nonlinear photoelastic interaction. The relations between the strain and the nonlinear optical susceptibility for crystal surfaces with point symmetries of 4mm and 3m are described by a symmetry analysis of the nonlinear photoelastic tensor. We theoretically demonstrate a possibility of determining the strain components by measuring the rotational anisotropy of radiation at the second-harmonic frequency. Hyper-Rayleigh light scattering by dislocation strain is also described using a nonlinear photoelastic tensor. The angular dependencies of light scattered at the double frequency of an incident light for different scattering geometries are analyzed.

  8. Coupling control and optimization at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Wurtz, W. A.

    2018-06-01

    We present a detailed study using the skew quadrupoles in the Canadian Light Source storage ring lattice to control the parameters of a coupled lattice. We calculate the six-dimensional beam envelop matrix and use it to produce a variety of objective functions for optimization using the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. MOPSO produces a number of skew quadrupole configurations that we apply to the storage ring. We use the X-ray synchrotron radiation diagnostic beamline to image the beam and we make measurements of the vertical dispersion and beam lifetime. We observe satisfactory agreement between the measurements and simulations. These methods can be used to adjust phase space coupling in a rational way and have applications to fine-tuning the vertical emittance and Touschek lifetime and measuring the gas scattering lifetime.

  9. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Influence of the Rayleigh backscattering on the mode composition of radiation in multimode graded-index waveguides with a quadratic refractive-index profile

    NASA Astrophysics Data System (ADS)

    Esayan, G. L.; Krivoshlykov, S. G.

    1989-08-01

    A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).

  10. Anisotropic Light Scattering from Ferrofluids

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Vaishnava, Prem; Naik, Ratna; Lawes, Gavin; Tackett, Ron; Sudakar, C.

    2008-03-01

    We have investigated the light scattering in DC magnetic fields from aqueous suspensions of Fe3O4 nanoparticles coated with tetra methyl ammonium hydroxide and γ-Fe2O3 nanoparticles embedded in alginate hydrogel. For Fe3O4 ferrofluid, anomalous light scattering behavior was observed when light propagated both parallel and perpendicular to the magnetic fields. This behavior is attributed to the alignment and aggregation of the nanoparticles in chain-like structures. A very different light scattering behavior was observed for γ-Fe2O3 alginate sample where, under the similar conditions, the application of the magnetic field produced no structured change in scattering. We attribute this difference to the absence of chain-like structures and constrained mobility of iron nanoparticles in the alginate sample. The observation is in agreement with our relaxation and dissipative heating results^1 where both samples exhibited Neel relaxation but only the Fe3O4 ferrofluid showed Brownian relaxation. The results suggest that Brownian relaxation and nanoparticle mobility are important for producing non-linear light scattering in such systems. ^1P.P. Vaishnava, R. Tackett, A. Dixit, C. Sudakar, R. Naik, and G. Lawes, J. Appl. Phys. 102, 063914 (2007).

  11. A Framework for Testing Scientific Software: A Case Study of Testing Amsterdam Discrete Dipole Approximation Software

    NASA Astrophysics Data System (ADS)

    Shao, Hongbing

    Software testing with scientific software systems often suffers from test oracle problem, i.e., lack of test oracles. Amsterdam discrete dipole approximation code (ADDA) is a scientific software system that can be used to simulate light scattering of scatterers of various types. Testing of ADDA suffers from "test oracle problem". In this thesis work, I established a testing framework to test scientific software systems and evaluated this framework using ADDA as a case study. To test ADDA, I first used CMMIE code as the pseudo oracle to test ADDA in simulating light scattering of a homogeneous sphere scatterer. Comparable results were obtained between ADDA and CMMIE code. This validated ADDA for use with homogeneous sphere scatterers. Then I used experimental result obtained for light scattering of a homogeneous sphere to validate use of ADDA with sphere scatterers. ADDA produced light scattering simulation comparable to the experimentally measured result. This further validated the use of ADDA for simulating light scattering of sphere scatterers. Then I used metamorphic testing to generate test cases covering scatterers of various geometries, orientations, homogeneity or non-homogeneity. ADDA was tested under each of these test cases and all tests passed. The use of statistical analysis together with metamorphic testing is discussed as a future direction. In short, using ADDA as a case study, I established a testing framework, including use of pseudo oracles, experimental results and the metamorphic testing techniques to test scientific software systems that suffer from test oracle problems. Each of these techniques is necessary and contributes to the testing of the software under test.

  12. General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference.

    PubMed

    Huang, Xian-Rong; Peng, Ru-Wen

    2010-04-01

    Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.

  13. Thin optical display panel

    DOEpatents

    Veligdan, James Thomas

    1997-01-01

    An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.

  14. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berni, L. A.; Albuquerque, B. F. C.

    2010-12-15

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esferico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contributemore » to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.« less

  15. Resonance treatment using pin-based pointwise energy slowing-down method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sooyoung, E-mail: csy0321@unist.ac.kr; Lee, Changho, E-mail: clee@anl.gov; Lee, Deokjung, E-mail: deokjung@unist.ac.kr

    A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for {sup 238}U. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solutionmore » is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory.« less

  16. Retrieving the axial position of fluorescent light emitting spots by shearing interferometry

    NASA Astrophysics Data System (ADS)

    Schindler, Johannes; Schau, Philipp; Brodhag, Nicole; Frenner, Karsten; Osten, Wolfgang

    2016-12-01

    A method for the depth-resolved detection of fluorescent radiation based on imaging of an interference pattern of two intersecting beams and shearing interferometry is presented. The illumination setup provides the local addressing of the excitation of fluorescence and a coarse confinement of the excitation volume in axial and lateral directions. The reconstruction of the depth relies on the measurement of the phase of the fluorescent wave fronts. Their curvature is directly related to the distance of a source to the focus of the imaging system. Access to the phase information is enabled by a lateral shearing interferometer based on a Michelson setup. This allows the evaluation of interference signals even for spatially and temporally incoherent light such as emitted by fluorophors. An analytical signal model is presented and the relations for obtaining the depth information are derived. Measurements of reference samples with different concentrations and spatial distributions of fluorophors and scatterers prove the experimental feasibility of the method. In a setup optimized for flexibility and operating in the visible range, sufficiently large interference signals are recorded for scatterers placed in depths in the range of hundred micrometers below the surface in a material with scattering properties comparable to dental enamel.

  17. Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Moody, J.; Yang, S. T.

    2018-05-01

    Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light-changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.

  18. Retrieving the axial position of fluorescent light emitting spots by shearing interferometry.

    PubMed

    Schindler, Johannes; Schau, Philipp; Brodhag, Nicole; Frenner, Karsten; Osten, Wolfgang

    2016-12-01

    A method for the depth-resolved detection of fluorescent radiation based on imaging of an interference pattern of two intersecting beams and shearing interferometry is presented. The illumination setup provides the local addressing of the excitation of fluorescence and a coarse confinement of the excitation volume in axial and lateral directions. The reconstruction of the depth relies on the measurement of the phase of the fluorescent wave fronts. Their curvature is directly related to the distance of a source to the focus of the imaging system. Access to the phase information is enabled by a lateral shearing interferometer based on a Michelson setup. This allows the evaluation of interference signals even for spatially and temporally incoherent light such as emitted by fluorophors. An analytical signal model is presented and the relations for obtaining the depth information are derived. Measurements of reference samples with different concentrations and spatial distributions of fluorophors and scatterers prove the experimental feasibility of the method. In a setup optimized for flexibility and operating in the visible range, sufficiently large interference signals are recorded for scatterers placed in depths in the range of hundred micrometers below the surface in a material with scattering properties comparable to dental enamel.

  19. Temporal Quantum Correlations in Inelastic Light Scattering from Water.

    PubMed

    Kasperczyk, Mark; de Aguiar Júnior, Filomeno S; Rabelo, Cassiano; Saraiva, Andre; Santos, Marcelo F; Novotny, Lukas; Jorio, Ado

    2016-12-09

    Water is one of the most prevalent chemicals on our planet, an integral part of both our environment and our existence as a species. Yet it is also rich in anomalous behaviors. Here we reveal that water is a novel-yet ubiquitous-source for quantum correlated photon pairs at ambient conditions. The photon pairs are produced through Raman scattering, and the correlations arise from the shared quantum of a vibrational mode between the Stokes and anti-Stokes scattering events. We confirm the nonclassical nature of the produced photon pairs by showing that the cross-correlation and autocorrelations of the signals violate a Cauchy-Schwarz inequality by over 5 orders of magnitude. The unprecedented degree of violating the inequality in pure water, as well as the well-defined polarization properties of the photon pairs, points to its usefulness in quantum information.

  20. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis.

    PubMed

    Gann, E; Young, A T; Collins, B A; Yan, H; Nasiatka, J; Padmore, H A; Ade, H; Hexemer, A; Wang, C

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (∼285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition. © 2012 American Institute of Physics

Top