Sample records for scattering quality factor

  1. Sensitivity of the diagnostic radiological index of protection to procedural factors in fluoroscopy.

    PubMed

    Jones, A Kyle; Pasciak, Alexander S; Wagner, Louis K

    2016-07-01

    To evaluate the sensitivity of the diagnostic radiological index of protection (DRIP), used to quantify the protective value of radioprotective garments, to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams to be used in measuring the DRIP. Monte Carlo simulations were performed to determine the shape of the scattered x-ray spectra incident on the operator in different clinical fluoroscopy scenarios, including interventional radiology and interventional cardiology (IC). Two clinical simulations studied the sensitivity of the scattered spectrum to gantry angle and patient size, while technical factors were varied according to measured automatic dose rate control (ADRC) data. Factorial simulations studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size, and beam quality for constant technical factors. Average energy (Eavg) was the figure of merit used to condense fluence in each energy bin to a single numerical index. Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affect the scattered spectrum indirectly through their effect on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in IC, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. The scattered spectrum striking the operator in fluoroscopy is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org

    Purpose: To evaluate the sensitivity of the diagnostic radiological index of protection (DRIP), used to quantify the protective value of radioprotective garments, to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams to be used in measuring the DRIP. Methods: Monte Carlo simulations were performed to determine the shape of the scattered x-ray spectra incident on the operator in different clinical fluoroscopy scenarios, including interventional radiology and interventional cardiology (IC). Two clinical simulations studied the sensitivity of the scattered spectrum to gantry angle and patient size, while technical factors were varied according tomore » measured automatic dose rate control (ADRC) data. Factorial simulations studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size, and beam quality for constant technical factors. Average energy (E{sub avg}) was the figure of merit used to condense fluence in each energy bin to a single numerical index. Results: Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affect the scattered spectrum indirectly through their effect on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in IC, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. Conclusions: The scattered spectrum striking the operator in fluoroscopy is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A; Pasciak, A; Wagner, L

    Purpose: To evaluate the sensitivity of the Diagnostic Radiological Index of Protection (DRIP) to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams (SMPB) to be used in measuring the DRIP. Methods: A series of clinical and factorial Monte Carlo simulations were conducted to determine the shape of the scattered X-ray spectra incident on the operator in different clinical fluoroscopy scenarios. Two clinical evaluations studied the sensitivity of the scattered spectrum to gantry angle and patient size while technical factors were varied according to measured automatic dose rate control (ADRC) data. Factorial evaluationsmore » studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size and beam quality for constant technical factors. Average energy was the figure of merit used to condense fluence in each energy bin to a single numerical index. Results: Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affected the scattered spectrum indirectly through their effects on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in interventional cardiology, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. Conclusion: The scattered spectrum striking the operator in fluoroscopy, and therefore the DRIP, is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle. These results will help determine an appropriate set of SMPB to be used for measuring the DRIP.« less

  4. Scattering images from autocorrelation functions of P-wave seismic velocity images: the case of Tenerife Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    García-Yeguas, A.; Sánchez-Alzola, A.; De Siena, L.; Prudencio, J.; Díaz-Moreno, A.; Ibáñez, J. M.

    2018-03-01

    We present a P-wave scattering image of the volcanic structures under Tenerife Island using the autocorrelation functions of P-wave vertical velocity fluctuations. We have applied a cluster analysis to total quality factor attenuation ( {Q}_t^{-1} ) and scattering quality factor attenuation ( {Q}_{PSc}^{-1} ) images to interpret the structures in terms of intrinsic and scattering attenuation variations on a 2D plane, corresponding to a depth of 2000 m, and check the robustness of the scattering imaging. The results show that scattering patterns are similar to total attenuation patterns in the south of the island. There are two main areas where patterns differ: at Cañadas-Teide-Pico Viejo Complex, high total attenuation and average-to-low scattering values are observed. We interpret the difference as induced by intrinsic attenuation. In the Santiago Ridge Zone (SRZ) region, high scattering values correspond to average total attenuation. In our interpretation, the anomaly is induced by an extended scatterer, geometrically related to the surficial traces of Garachico and El Chinyero historical eruptions and the area of highest seismic activity during the 2004-2008 seismic crises.

  5. A Caltech MURI Center for Quantum Networks

    DTIC Science & Technology

    2006-05-31

    the code. Thus the dimension of the code space is n5uPfAu5detD , ~64! where PfA denotes the Pfaffian, the square root of the deter- minant of the...material properties, such as bulk ab- sorption and surface scattering. However, as one moves to very small spheres with radius a&10 mm, the intrinsic...1550 nm, which yields a quality factor of Qbulk;3.8310 11. The quality factor due to surface scattering Qs.s. and ab- sorption by adsorbed water Qw has

  6. Deep Tissue Fluorescent Imaging in Scattering Specimens Using Confocal Microscopy

    PubMed Central

    Clendenon, Sherry G.; Young, Pamela A.; Ferkowicz, Michael; Phillips, Carrie; Dunn, Kenneth W.

    2015-01-01

    In scattering specimens, multiphoton excitation and nondescanned detection improve imaging depth by a factor of 2 or more over confocal microscopy; however, imaging depth is still limited by scattering. We applied the concept of clearing to deep tissue imaging of highly scattering specimens. Clearing is a remarkably effective approach to improving image quality at depth using either confocal or multiphoton microscopy. Tissue clearing appears to eliminate the need for multiphoton excitation for deep tissue imaging. PMID:21729357

  7. Monitoring muscle optical scattering properties during rigor mortis

    NASA Astrophysics Data System (ADS)

    Xia, J.; Ranasinghesagara, J.; Ku, C. W.; Yao, G.

    2007-09-01

    Sarcomere is the fundamental functional unit in skeletal muscle for force generation. In addition, sarcomere structure is also an important factor that affects the eating quality of muscle food, the meat. The sarcomere structure is altered significantly during rigor mortis, which is the critical stage involved in transforming muscle to meat. In this paper, we investigated optical scattering changes during the rigor process in Sternomandibularis muscles. The measured optical scattering parameters were analyzed along with the simultaneously measured passive tension, pH value, and histology analysis. We found that the temporal changes of optical scattering, passive tension, pH value and fiber microstructures were closely correlated during the rigor process. These results suggested that sarcomere structure changes during rigor mortis can be monitored and characterized by optical scattering, which may find practical applications in predicting meat quality.

  8. Scattering attenuation profile of the Moon: Implications for shallow moonquakes and the structure of the megaregolith

    NASA Astrophysics Data System (ADS)

    Gillet, K.; Margerin, L.; Calvet, M.; Monnereau, M.

    2017-01-01

    We report measurements of the attenuation of short period seismic waves in the Moon based on the quantitative analysis of envelope records of lunar quakes. Our dataset consists of waveforms corresponding to 62 events, including artificial and natural impacts, shallow moonquakes and deep moonquakes, recorded by the four seismometers deployed during Apollo missions 12, 14, 15 and 16. To quantify attenuation and distinguish between elastic (scattering) and inelastic (absorption) mechanisms we measure the time of arrival of the maximum of energy tmax and the coda quality factor Qc . The former is controlled by both scattering and absorption, while the latter is an excellent proxy for absorption. Consistent with the strong broadening of seismogram envelopes in the Moon, we employ diffusion theory in spherical geometry to model the propagation of seismic energy in depth-dependent scattering and absorbing media. To minimize the misfit between predicted and observed tmax for deep moonquakes and impacts, we employ a genetic algorithm and explore a large number of depth-dependent attenuation models quantified by the scattering quality factor Qsc or equivalently the wave diffusivity D, and the absorption quality factor Qi . The scattering and absorption profiles that best fit the data display very strong scattering attenuation (Qsc ≤ 10) or equivalently very low wave diffusivity (D ≈ 2 km2/s) in the first 10 km of the Moon. These values correspond to the most heterogeneous regions on Earth, namely volcanic areas. Below this surficial layer, the diffusivity rises very slowly up to a depth of approximately 80 km where Qsc and D exhibit an abrupt increase of about one order of magnitude. Below 100 km depth, Qsc increases rapidly up to approximately 2000 at a depth of about 150 km, a value similar to the one found in the Earth's mantle. By contrast, the absorption quality factor on the Moon Qi ≈ 2400 is about one order or magnitude larger than on Earth. Our results suggest the existence of an approximately 100 km thick megaregolith, which is much larger than what was previously thought. The rapid decrease of scattering attenuation below this depth is compatible with crack healing through viscoelastic mechanisms. Using our best attenuation model, we invert for the depth of shallow moonquakes based on the observed variation of tmax with epicentral distance. On average, they are found to originate from a depth of about 50 km ± 20 km, which suggests that these earthquakes are caused by the failure of deep faults in the brittle part of the Moon.

  9. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water.

    PubMed

    Simão, André G; Guimarães, Luiz G

    2016-01-01

    The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert's period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.

  10. Influence of scatter reduction method and monochromatic beams on image quality and dose in mammography.

    PubMed

    Moeckli, Raphaël; Verdun, Francis R; Fiedler, Stefan; Pachoud, Marc; Bulling, Shelley; Schnyder, Pierre; Valley, Jean-François

    2003-12-01

    In mammography, the image contrast and dose delivered to the patient are determined by the x-ray spectrum and the scatter to primary ratio S/P. Thus the quality of the mammographic procedure is highly dependent on the choice of anode and filter material and on the method used to reduce the amount of scattered radiation reaching the detector. Synchrotron radiation is a useful tool to study the effect of beam energy on the optimization of the mammographic process because it delivers a high flux of monochromatic photons. Moreover, because the beam is naturally flat collimated in one direction, a slot can be used instead of a grid for scatter reduction. We have measured the ratio S/P and the transmission factors for grids and slots for monoenergetic synchrotron radiation. In this way the effect of beam energy and scatter rejection method were separated, and their respective importance for image quality and dose analyzed. Our results show that conventional mammographic spectra are not far from optimum and that the use of a slot instead of a grid has an important effect on the optimization of the mammographic process. We propose a simple numerical model to quantify this effect.

  11. Light scattering techniques for the characterization of optical components

    NASA Astrophysics Data System (ADS)

    Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.

    2017-11-01

    The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.

  12. LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.

    2002-11-01

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.

  13. Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator

    NASA Astrophysics Data System (ADS)

    Liu, Rui-Shan; Jin, Wei-Liang; Yu, Xiao-Chong; Liu, Yong-Chun; Xiao, Yun-Feng

    2015-04-01

    We study Raman scattering of single nanoparticles coupled to a high-Q whispering-gallery microresonator. It is found that cavity resonances greatly enhance the Raman signal, and the enhancement factor is as high as 108. Unlike the noncavity case, the signal power exhibits a nonmonotonic dependence on particle size, and it reaches the maximum when the Rayleigh scattering loss and the cavity intrinsic loss are comparable. We further analyze how the Raman signal intensity is influenced by different parameters including cavity quality factors and taper-cavity coupling strength. The detection limit of observing single-nanoparticle Raman signal is discussed finally. As a potential application, this mechanism may provide an alternative way to detect specific biological targets without the need of precovered biorecognitions.

  14. Light scattering study of rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beuthan, J; Netz, U; Minet, O

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient {mu}{sub s}, absorption coefficient {mu}{sub a}, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the fingermore » cross section. Model tests of the quality of this reconstruction method show good results. (laser biology and medicine)« less

  15. A novel radiation detector for removing scattered radiation in chest radiography: Monte Carlo simulation-based performance evaluation

    NASA Astrophysics Data System (ADS)

    Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.

    2016-10-01

    Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.

  16. General Linewidth Formula for Steady-State Multimode Lasing in Arbitrary Cavities

    NASA Astrophysics Data System (ADS)

    Chong, Y. D.; Stone, A. Douglas

    2012-08-01

    A formula for the laser linewidth of arbitrary cavities in the multimode nonlinear regime is derived from a scattering analysis of the solutions to semiclassical laser theory. The theory generalizes previous treatments of the effects of gain and openness described by the Petermann factor. The linewidth is expressed using quantities based on the nonlinear scattering matrix, which can be computed from steady-state ab initio laser theory; unlike previous treatments, no passive cavity or phenomenological parameters are involved. We find that low cavity quality factor, combined with significant dielectric dispersion, can cause substantial deviations from the Shawlow-Townes-Petermann theory.

  17. Raman lasing in As₂S₃ high-Q whispering gallery mode resonators.

    PubMed

    Vanier, Francis; Rochette, Martin; Godbout, Nicolas; Peter, Yves-Alain

    2013-12-01

    We report the first observation of a nonlinear process in a chalcogenide microresonator. Raman scattering and stimulated Raman scattering leading to laser oscillation is observed in microspheres made of As₂S₃. The coupled pump power threshold is as low as 13 μW using a pump wavelength of 1550 nm. The quality factor of the chalcogenide microresonator is also the highest ever reported with Q>7×10(7).

  18. Scatter Measurements Made With Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Anthon, Erik W.

    1985-09-01

    The quality of optical surfaces is generally evaluated by how much light (normally visible light) is scattered by the surface. Most optical glasses and many coating materials are completely opaque to ultraviolet light (253.7 nm). Ultraviolet light tends to scatter much more than visible light. Scatter measurements made with ultraviolet light are therefore very sensitive and the scatter from second surfaces and from the interior (bulk) of the optical material is eliminated by the opacity. A novel scattermeter that operates with ultraviolet light has been developed. The construction and operation of this scattermeter will be described. Cleaning soon becomes the limiting factor when measuring the surfaces with very low level of scatter. Sensitivity to repeated cleaning has been investigated. Different surfaces are compared and uniformity of surfaces is measured by mapping a surface area with an x-y stage. Polished glass surfaces generally have much higher scatter than natural glass surfaces (fire polished, drawn or floated surfaces). Very low scatter levels have been found on thin drawn glass.

  19. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.

    PubMed

    Yang, Ching-Ching

    2016-01-01

    Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT), which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction. Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV). The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR). Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom. Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice.

  20. Comparison of techniques that use the single scattering model to compute the quality factor Q from coda waves

    USGS Publications Warehouse

    Novelo-Casanova, D. A.; Lee, W.H.K.

    1991-01-01

    Using simulated coda waves, the resolution of the single-scattering model to extract coda Q (Qc) and its power law frequency dependence was tested. The back-scattering model of Aki and Chouet (1975) and the single isotropic-scattering model of Sato (1977) were examined. The results indicate that: (1) The input Qc models are reasonably well approximated by the two methods; (2) almost equal Qc values are recovered when the techniques sample the same coda windows; (3) low Qc models are well estimated in the frequency domain from the early and late part of the coda; and (4) models with high Qc values are more accurately extracted from late code measurements. ?? 1991 Birkha??user Verlag.

  1. A Guide to the Librarian's Responsibility in Achieving Quality in Lighting and Ventilation.

    ERIC Educational Resources Information Center

    Mason, Ellsworth

    1967-01-01

    Quality, not intensity, is the keystone to good library lighting. The single most important problem in lighting is glare caused by extremely intense centers of light. Multiple interfiling of light rays is a factor required in library lighting. A fixture that diffuses light well is basic when light emerges from the fixture. It scatters widely,…

  2. Optical-to-optical interface device. [consisting of two transparent electrodes on glass substrates that enclose thin film photoconductor and thin layer of nematic liquid crystal

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.

    1973-01-01

    Studies were conducted on the performance of a photoactivated dc liquid crystal light valve. The dc light valve is a thin film device that consists of two transparent electrodes, deposited on glass substrates, that enclose a thin film photoconductor (cadmium sulfide) and a thin layer of a nematic liquid crystal that operates in the dynamic scattering mode. The work was directed toward application of the light valve to high resolution non-coherent light to coherent light image conversion. The goal of these studies was to improve the performance and quality of the already existing dc light valve device and to evaluate quantitatively the properties and performance of the device as they relate to the coherent optical data processing application. As a result of these efforts, device sensitivity was improved by a factor of ten, device resolution was improved by a factor of three, device lifetime was improved by two-orders of magnitude, undesirable secondary liquid crystal scattering effects were eliminated, the scattering characteristics of the liquid crystal were thoroughly documented, the cosmetic quality of the devices was dramatically improved, and the performance of the device was fully documented.

  3. Single-scan patient-specific scatter correction in computed tomography using peripheral detection of scatter and compressed sensing scatter retrieval

    PubMed Central

    Meng, Bowen; Lee, Ho; Xing, Lei; Fahimian, Benjamin P.

    2013-01-01

    Purpose: X-ray scatter results in a significant degradation of image quality in computed tomography (CT), representing a major limitation in cone-beam CT (CBCT) and large field-of-view diagnostic scanners. In this work, a novel scatter estimation and correction technique is proposed that utilizes peripheral detection of scatter during the patient scan to simultaneously acquire image and patient-specific scatter information in a single scan, and in conjunction with a proposed compressed sensing scatter recovery technique to reconstruct and correct for the patient-specific scatter in the projection space. Methods: The method consists of the detection of patient scatter at the edges of the field of view (FOV) followed by measurement based compressed sensing recovery of the scatter through-out the projection space. In the prototype implementation, the kV x-ray source of the Varian TrueBeam OBI system was blocked at the edges of the projection FOV, and the image detector in the corresponding blocked region was used for scatter detection. The design enables image data acquisition of the projection data on the unblocked central region of and scatter data at the blocked boundary regions. For the initial scatter estimation on the central FOV, a prior consisting of a hybrid scatter model that combines the scatter interpolation method and scatter convolution model is estimated using the acquired scatter distribution on boundary region. With the hybrid scatter estimation model, compressed sensing optimization is performed to generate the scatter map by penalizing the L1 norm of the discrete cosine transform of scatter signal. The estimated scatter is subtracted from the projection data by soft-tuning, and the scatter-corrected CBCT volume is obtained by the conventional Feldkamp-Davis-Kress algorithm. Experimental studies using image quality and anthropomorphic phantoms on a Varian TrueBeam system were carried out to evaluate the performance of the proposed scheme. Results: The scatter shading artifacts were markedly suppressed in the reconstructed images using the proposed method. On the Catphan©504 phantom, the proposed method reduced the error of CT number to 13 Hounsfield units, 10% of that without scatter correction, and increased the image contrast by a factor of 2 in high-contrast regions. On the anthropomorphic phantom, the spatial nonuniformity decreased from 10.8% to 6.8% after correction. Conclusions: A novel scatter correction method, enabling unobstructed acquisition of the high frequency image data and concurrent detection of the patient-specific low frequency scatter data at the edges of the FOV, is proposed and validated in this work. Relative to blocker based techniques, rather than obstructing the central portion of the FOV which degrades and limits the image reconstruction, compressed sensing is used to solve for the scatter from detection of scatter at the periphery of the FOV, enabling for the highest quality reconstruction in the central region and robust patient-specific scatter correction. PMID:23298098

  4. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    DOE PAGES

    Brookman, M. W.; Austin, M. E.; McLean, A. G.; ...

    2016-08-08

    Thomson scattering (TS) produces n e profiles from measurement of scattered laser beam intensity. In the case of Rayleigh scattering, it provides a first calibration of the relation n e / ITS, which depends on many factors (e.g. laser alignment and power, optics, and measurement systems). On DIII-D, the n e calibration is adjusted for each laser and optic path against an absolute n e measurement from a density-driven cutoff on the 48 channel 2nd harmonic X-mode electron cyclotron emission (ECE) system. This method has been used to calibrate Thompson densities from the edge to near the core (r/a >more » 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core. ECH also changes underlying MHD activity. Furthermore, on the removal of ECH power, cutoff penetrates in from the edge to the core and channels fall successively and smoothly into cutoff. This improves the quality of the TS n e calibration while minimizing wall loading.« less

  5. Visible and near-infrared bulk optical properties of raw milk.

    PubMed

    Aernouts, B; Van Beers, R; Watté, R; Huybrechts, T; Lammertyn, J; Saeys, W

    2015-10-01

    The implementation of optical sensor technology to monitor the milk quality on dairy farms and milk processing plants would support the early detection of altering production processes. Basic visible and near-infrared spectroscopy is already widely used to measure the composition of agricultural and food products. However, to obtain maximal performance, the design of such optical sensors should be optimized with regard to the optical properties of the samples to be measured. Therefore, the aim of this study was to determine the visible and near-infrared bulk absorption coefficient, bulk scattering coefficient, and scattering anisotropy spectra for a diverse set of raw milk samples originating from individual cow milkings, representing the milk variability present on dairy farms. Accordingly, this database of bulk optical properties can be used in future simulation studies to efficiently optimize and validate the design of an optical milk quality sensor. In a next step of the current study, the relation between the obtained bulk optical properties and milk quality properties was analyzed in detail. The bulk absorption coefficient spectra were found to mainly contain information on the water, fat, and casein content, whereas the bulk scattering coefficient spectra were found to be primarily influenced by the quantity and the size of the fat globules. Moreover, a strong positive correlation (r ≥ 0.975) was found between the fat content in raw milk and the measured bulk scattering coefficients in the 1,300 to 1,400 nm wavelength range. Relative to the bulk scattering coefficient, the variability on the scattering anisotropy factor was found to be limited. This is because the milk scattering anisotropy is nearly independent of the fat globule and casein micelle quantity, while it is mainly determined by the size of the fat globules. As this study shows high correlations between the sample's bulk optical properties and the milk composition and fat globule size, a sensor that allows for robust separation between the absorption and scattering properties would enable accurate prediction of the raw milk quality parameters. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.

    PubMed

    Temleitner, László; Pusztai, László; Schweika, Werner

    2007-08-22

    The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.

  7. Coherent scattering noise reduction method with wavelength diversity detection for holographic data storage system

    NASA Astrophysics Data System (ADS)

    Nakamura, Yusuke; Hoshizawa, Taku; Takashima, Yuzuru

    2017-09-01

    A new method, wavelength diversity detection (WDD), for improving signal quality is proposed and its effectiveness is numerically confirmed. We consider that WDD is especially effective for high-capacity systems having low hologram diffraction efficiencies. In such systems, the signal quality is primarily limited by coherent scattering noise; thus, effective improvement of the signal quality under a scattering-limited system is of great interest. WDD utilizes a new degree of freedom, the spectrum width, and scattering by molecules to improve the signal quality of the system. We found that WDD improves the quality by counterbalancing the degradation of the quality due to Bragg mismatch. With WDD, a higher-scattering-coefficient medium can improve the quality. The result provides an interesting insight into the requirements for material characteristics, especially for a large-M/# material. In general, a larger-M/# material contains more molecules; thus, the system is subject to more scattering, which actually improves the quality with WDD. We propose a pathway for a future holographic data storage system (HDSS) using WDD, which can record a larger amount of data than a conventional HDSS.

  8. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media

    NASA Astrophysics Data System (ADS)

    Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong

    2017-10-01

    Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.

  9. Feasibility and its characteristics of CO2 laser micromachining-based PMMA anti-scattering grid estimated by MCNP code simulation.

    PubMed

    Bae, Jun Woo; Kim, Hee Reyoung

    2018-01-01

    Anti-scattering grid has been used to improve the image quality. However, applying a commonly used linear or parallel grid would cause image distortion, and focusing grid also requires a precise fabrication technology, which is expensive. To investigate and analyze whether using CO2 laser micromachining-based PMMA anti-scattering grid can improve the performance of the grid at a lower cost. Thus, improvement of grid performance would result in improvement of image quality. The cross-sectional shape of CO2 laser machined PMMA is similar to alphabet 'V'. The performance was characterized by contrast improvement factor (CIF) and Bucky. Four types of grid were tested, which include thin parallel, thick parallel, 'V'-type and 'inverse V'-type of grid. For a Bucky factor of 2.1, the CIF of the grid with both the "V" and inverse "V" had a value of 1.53, while the thick and thick parallel types had values of 1.43 and 1.65, respectively. The 'V' shape grid manufacture by CO2 laser micromachining showed higher CIF than parallel one, which had same shielding material channel width. It was thought that the 'V' shape grid would be replacement to the conventional parallel grid if it is hard to fabricate the high-aspect-ratio grid.

  10. SU-G-JeP4-13: Continuous Intra-Fractional Monitoring of the Prostate Using Dynamic KV Collimation and Tube Current Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, D; Robar, J; Nova Scotia Health Authority, Halifax, NS

    Purpose: The focus of this work is to improve the available kV image quality for continuous intra-fraction monitoring of the prostate. This is investigated using a novel blade collimation system enabling modulated volume-of-interest (VOI) imaging of prostate fiducial markers. Methods: A four-blade dynamic kV collimator was used to track a VOI during gantry rotation. Planar image quality was investigated as a function of collimator dimension, while maintaining the same dose to isocenter, for a 22.2 cm diameter cylindrical water phantom with a 9 mm diameter bone insert. A sample prostate anatomy was defined in the planning system, including three fiducialmore » markers within the CTV. The VOI margin around each marker was set to be 2σ of the population covariance matrix characterizing prostate motion. DRRs were used to calculate the kV attenuation for each VOI as a function of angle. The optimal marker and tube current were determined using kV attenuation. Monte Carlo simulations were used to calculate the imaging dose to the phantom and MV scatter dose to the imaging panel. Results: Preliminary measurements show an increase in CNR by a factor of 1.3 with the VOI method, when decreasing from an 6×6 to 2×2 cm{sup 2} field. Attenuation calculations show a change in kV fluence at the detector by a factor of 21.6 with fiducial optimization; resultant tube current modulation increases maximum dose by a factor of 1.4 compared to no modulation. MV scatter contribution to the kV detector changes by approximately a factor of two over a complete gantry rotation. Conclusion: The dynamic collimation system allows single fiducial marker tracking at a very low dose, with reduction of scatter and improvement of image quality, compared to imaging the entire prostate. The approach is compatible with tube current modulation, which enables consistent image quality throughout the range of gantry rotation. This project was funded by Varian Medical Systems.« less

  11. Scatter correction for cone-beam computed tomography using self-adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Xie, Shi-Peng; Luo, Li-Min

    2012-06-01

    The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.

  12. Thomson scattering laser-electron X-ray source for reduction of patient radiation dose in interventional coronary angiography

    NASA Astrophysics Data System (ADS)

    Artyukov, I. A.; Dyachkov, N. V.; Feshchenko, R. M.; Polunina, A. V.; Popov, N. L.; Shvedunov, V. I.; Vinogradov, A. V.

    2017-05-01

    It was medical applications that stimulated F. Carrol in the early 1990s to start the research of on relativistic Thomson scattering X-ray sources, as a part of the infrastructure of the future society. The possibility to use such a source in interventional cardiology is discussed in this paper. The replacement of X-ray tube by relativistic Thomson scattering Xray source is predicted to lower the patient radiation dose by a factor of 3 while image quality remains the same. The required general characteristics of accelerator and laser units are found. They can be reached by existing technology. A semiempirical method for simulation of medical and technical parameters of interventional coronary angiography systems is suggested.

  13. Born scattering and inversion sensitivities in viscoelastic transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Moradi, Shahpoor; Innanen, Kristopher A.

    2017-11-01

    We analyse the scattering of seismic waves from anisotropic-viscoelastic inclusions using the Born approximation. We consider the specific case of Vertical Transverse Isotropic (VTI) media with low-loss attenuation and weak anisotropy such that second- and higher-order contributions from quality factors and Thomsen parameters are negligible. To accommodate the volume scattering approach, the viscoelastic VTI media is broken into a homogeneous viscoelastic reference medium with distributed inclusions in both viscoelastic and anisotropic properties. In viscoelastic reference media in which all propagations take place, wave modes are of P-wave type, SI-wave type and SII-wave type, all with complex slowness and polarization vectors. We generate expressions for P-to-P, P-to-SI, SI-to-SI and SII-to-SII scattering potentials, and demonstrate that they reduce to previously derived isotropic results. These scattering potential expressions are sensitivity kernels related to the Fréchet derivatives which provide the weights for multiparameter full waveform inversion updates.

  14. Protection layers on a superconducting microwave resonator toward a hybrid quantum system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongmin, E-mail: jongmin.lee@sandia.gov; Sandia National Laboratories, Albuquerque, New Mexico 87123; Park, Dong Hun, E-mail: leomac@umd.edu

    2015-10-07

    We propose a protection scheme of a superconducting microwave resonator to realize a hybrid quantum system, where cold neutral atoms are coupled with a single microwave photon through magnetic dipole interaction at an interface inductor. The evanescent field atom trap, such as a waveguide/nanofiber atom trap, brings both surface-scattered photons and absorption-induced broadband blackbody radiation which result in quasiparticles and a low quality factor at the resonator. A proposed multiband protection layer consists of pairs of two dielectric layers and a thin nanogrid conductive dielectric layer above the interface inductor. We show numerical simulations of quality factors and reflection/absorption spectra,more » indicating that the proposed multilayer structure can protect a lumped-element microwave resonator from optical photons and blackbody radiation while maintaining a reasonably high quality factor.« less

  15. Optical quality in central serous chorioretinopathy.

    PubMed

    Lee, Kyungmin; Sohn, Joonhong; Choi, Jong Gil; Chung, Sung Kun

    2014-12-02

    To assess optical quality and intraocular scattering using the Optical Quality Analysis System (OQAS) in central serous chorioretinopathy (CSC) and to determine the effects of retinal changes on optical quality. This was a prospective, case-control study. Participants were 29 patients with diagnosis of CSC. The control group consisted of the patients' unaffected eyes. Initial logMAR visual acuity, central macular thickness (by spectral domain optical coherence tomography), and optical quality parameters including modulation transfer function (MTF) cutoff frequency, Strehl (2-dimensional) ratio, and OQAS values at 100%, 20%, and 9% contrast levels were investigated. Objective scattering index (OSI) at 4.0-mm pupil size was assessed in both eyes by using the OQAS. After 3 months of treatment, which included observation and focal laser or injections of antivascular endothelial growth factor, every CSC-affected eye was followed. Main outcome measures were differences between clinical parameters of the CSC-affected eye and those of the control eye and changes in those parameters according to the clinical course of CSC over 3 months. In CSC-affected eyes, the MTF cutoff was significantly reduced (P = 0.01), and OSI was significantly increased (P = 0.03). As macular thickness decreased, OSI decreased but did not become normalized compared to the control eye, nor was it statistically significantly correlated with central macular thickness change. Retinal change affected optical quality and intraocular scatter. Therefore, when the severity of a cataract is assessed using the OQAS, retinal status should be considered when interpreting OQAS values. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  16. Frequency dependent Lg attenuation in south-central Alaska

    USGS Publications Warehouse

    McNamara, D.E.

    2000-01-01

    The characteristics of seismic energy attenuation are determined using high frequency Lg waves from 27 crustal earthquakes, in south-central Alaska. Lg time-domain amplitudes are measured in five pass-bands and inverted to determine a frequency-dependent quality factor, Q(f), model for south-central Alaska. The inversion in this study yields the frequency-dependent quality factor, in the form of a power law: Q(f) = Q0fη = 220(±30) f0.66(±0.09) (0.75≤f≤12Hz). The results from this study are remarkably consistent with frequency dependent quality factor estimates, using local S-wave coda, in south-central Alaska. The consistency between S-coda Q(f) and Lg Q(f) enables constraints to be placed on the mechanism of crustal attenuation in south-central Alaska. For the range of frequencies considered in this study both scattering and intrinsic attenuation mechanisms likely play an equal role.

  17. High quality factor GaAs microcavity with buried bullseye defects

    NASA Astrophysics Data System (ADS)

    Winkler, K.; Gregersen, N.; Häyrynen, T.; Bradel, B.; Schade, A.; Emmerling, M.; Kamp, M.; Höfling, S.; Schneider, C.

    2018-05-01

    The development of high quality factor solid-state microcavities with low mode volumes has paved the way towards on-chip cavity quantum electrodynamics experiments and the development of high-performance nanophotonic devices. Here, we report on the implementation of a new kind of solid-state vertical microcavity, which allows for confinement of the electromagnetic field in the lateral direction without deep etching. The confinement originates from a local elongation of the cavity layer imprinted in a shallow etch and epitaxial overgrowth technique. We show that it is possible to improve the quality factor of such microcavities by a specific in-plane bullseye geometry consisting of a set of concentric rings with subwavelength dimensions. This design results in a smooth effective lateral photonic potential and therefore in a reduction of lateral scattering losses, which makes it highly appealing for experiments in the framework of exciton-polariton physics demanding tight spatial confinement.

  18. Ionic scattering factors of atoms that compose biological molecules

    PubMed Central

    Matsuoka, Rei; Yamashita, Yoshiki; Yamane, Tsutomu; Kidera, Akinori; Maki-Yonekura, Saori

    2018-01-01

    Ionic scattering factors of atoms that compose biological molecules have been computed by the multi-configuration Dirac–Fock method. These ions are chemically unstable and their scattering factors had not been reported except for O−. Yet these factors are required for the estimation of partial charges in protein molecules and nucleic acids. The electron scattering factors of these ions are particularly important as the electron scattering curves vary considerably between neutral and charged atoms in the spatial-resolution range explored in structural biology. The calculated X-ray and electron scattering factors have then been parameterized for the major scattering curve models used in X-ray and electron protein crystallography and single-particle cryo-EM. The X-ray and electron scattering factors and the fitting parameters are presented for future reference. PMID:29755750

  19. WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Liu, T; Dong, X

    Purpose: Cone beam computed tomography (CBCT) imaging is on increasing demand for high-performance image-guided radiotherapy such as online tumor delineation and dose calculation. However, the current CBCT imaging has severe scatter artifacts and its current clinical application is therefore limited to patient setup based mainly on the bony structures. This study’s purpose is to develop a CBCT artifact correction method. Methods: The proposed scatter correction method utilizes the planning CT to improve CBCT image quality. First, an image registration is used to match the planning CT with the CBCT to reduce the geometry difference between the two images. Then, themore » planning CT-based prior information is entered into the Bayesian deconvolution framework to iteratively perform a scatter artifact correction for the CBCT mages. This technique was evaluated using Catphan phantoms with multiple inserts. Contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR), and the image spatial nonuniformity (ISN) in selected volume of interests (VOIs) were calculated to assess the proposed correction method. Results: Post scatter correction, the CNR increased by a factor of 1.96, 3.22, 3.20, 3.46, 3.44, 1.97 and 1.65, and the SNR increased by a factor 1.05, 2.09, 1.71, 3.95, 2.52, 1.54 and 1.84 for the Air, PMP, LDPE, Polystryrene, Acrylic, Delrin and Teflon inserts, respectively. The ISN decreased from 21.1% to 4.7% in the corrected images. All values of CNR, SNR and ISN in the corrected CBCT image were much closer to those in the planning CT images. The results demonstrated that the proposed method reduces the relevant artifacts and recovers CT numbers. Conclusion: We have developed a novel CBCT artifact correction method based on CT image, and demonstrated that the proposed CT-guided correction method could significantly reduce scatter artifacts and improve the image quality. This method has great potential to correct CBCT images allowing its use in adaptive radiotherapy.« less

  20. Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Takamura, T.; Nakajima, T.; Estellés, V.; Irie, H.; Kuze, H.; Campanelli, M.; Sinyuk, A.; Lee, S.-M.; Sohn, B. J.; Pandithurai, G.; Kim, S.-W.; Yoon, S. C.; Martinez-Lozano, J. A.; Hashimoto, M.; Devara, P. C. S.; Manago, N.

    2016-02-01

    SKYNET and Aerosol Robotic Network (AERONET) retrieved aerosol single scattering albedo (SSA) values of four sites, Chiba (Japan), Pune (India), Valencia (Spain), and Seoul (Korea), were compared to understand the factors behind often noted large SSA differences between them. SKYNET and AERONET algorithms are found to produce nearly same SSAs for similarity in input data, suggesting that SSA differences between them are primarily due to quality of input data due to different calibration and/or observation protocols as well as difference in quality assurance criteria. The most plausible reason for high SSAs in SKYNET is found to be underestimated calibration constant for sky radiance (ΔΩ). The disk scan method (scan area: 1° × 1° area of solar disk) of SKYNET is noted to produce stable wavelength-dependent ΔΩ values in comparison to those determined from the integrating sphere used by AERONET to calibrate sky radiance. Aerosol optical thickness (AOT) difference between them can be the next important factor for their SSA difference, if AOTs between them are not consistent. Inconsistent values of surface albedo while analyzing data of SKYNET and AERONET can also bring SSA difference between them, but the effect of surface albedo is secondary. The aerosol nonsphericity effect is found to be less important for SSA difference between these two networks.

  1. A Multi-Step Approach to Assessing LIGO Test Mass Coatings

    NASA Astrophysics Data System (ADS)

    Glover, Lamar; Goff, Michael; Linker, Seth; Neilson, Joshua; Patel, Jignesh; Pinto, Innocenzo; Principe, Maria; Villarama, Ethan; Arriaga, Eddy; Barragan, Erik; Chao, Shiuh; Daneshgaran, Lara; DeSalvo, Riccardo; Do, Eric; Fajardo, Cameron

    2018-02-01

    Photographs of the LIGO Gravitational Wave detector mirrors illuminated by the standing beam were analyzed with an astronomical software tool designed to identify stars within images, which extracted hundreds of thousands of point-like scatterers uniformly distributed across the mirror surface, likely distributed through the depth of the coating layers. The sheer number of the observed scatterers implies a fundamental, thermodynamic origin during deposition or processing. If identified as crystallites, these scatterers would be a possible source of the mirror dissipation and thermal noise, which limit the sensitivity of observatories to Gravitational Waves. In order to learn more about the composition and location of the detected scatterers, a feasibility study is underway to develop a method that determines the location of the scatterers by producing a complete mapping of scatterers within test samples, including their depth distribution, optical amplitude distribution, and lateral distribution. Also, research is underway to accurately identify future materials and/or coating methods that possess the largest possible mechanical quality factor (Q). Current efforts propose a new experimental approach that will more precisely measure the Q of coatings by depositing them onto 100 nm Silicon Nitride membranes.

  2. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D.

    PubMed

    Brookman, M W; Austin, M E; McLean, A G; Carlstrom, T N; Hyatt, A W; Lohr, J

    2016-11-01

    Thomson scattering produces n e profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n e ∝ I TS , which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n e calibration is adjusted against an absolute n e from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n e from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as "ECH pump-out" generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  3. Light scatter on the surface of AcrySof intraocular lenses: part II. Analysis of lenses following hydrolytic stability testing.

    PubMed

    Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David

    2008-01-01

    To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.

  4. Attenuation characteristics in eastern Himalaya and southern Tibetan Plateau: An understanding of the physical state of the medium

    NASA Astrophysics Data System (ADS)

    Singh, Sagar; Singh, Chandrani; Biswas, Rahul; Mukhopadhyay, Sagarika; Sahu, Himanshu

    2016-08-01

    Attenuation characteristics of the crust in the eastern Himalaya and the southern Tibetan Plateau are investigated using high quality data recorded by Himalayan Nepal Tibet Seismic Experiment (HIMNT) during 2001-2003. The present study aims to provide an attenuation model that can address the physical mechanism governing the attenuation characteristics in the underlying medium. We have studied the Coda wave attenuation (Qc) in the single isotropic scattering model hypothesis, S wave attenuation (Qs) by using the coda normalization method and intrinsic (Qi-1) and scattering (Qsc-1) quality factors by the multiple Lapse Time Window Analysis (MLTWA) method under the assumption of multiple isotropic scattering in a 3-D half space within the frequency range 2-12 Hz. All the values of Q exhibit frequency dependent nature for a seismically active area. At all the frequencies intrinsic absorption is predominant compared to scattering attenuation and seismic albedo (B0) are found to be lower than 0.5. The observed discrepancies between the observed and theoretical models can be corroborated by the depth-dependent velocity and attenuation structure as well as the assumption of a uniform distribution of scatterers. Our results correlate well with the existing geo-tectonic model of the area, which may suggest the possible existence of trapped fluids in the crust or its thermal nature. Surprisingly the underlying cause of high attenuation in the crust of eastern Himalaya and southern Tibet makes this region distinct from its adjacent western Himalayan segment. The results are comparable with the other regions reported globally.

  5. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in amore » circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the proposed scanning method and image reconstruction algorithm can effectively estimate the scatter in cone-beam projections and produce tomographic images of nearly scatter-free quality. The authors believe that the proposed method would provide a fast and efficient CBCT scanning option to various applications particularly including head-and-neck scan.« less

  6. Attenuation of Lg waves in the New Madrid seismic zone of the central United States using the coda normalization method

    NASA Astrophysics Data System (ADS)

    Nazemi, Nima; Pezeshk, Shahram; Sedaghati, Farhad

    2017-08-01

    Unique properties of coda waves are employed to evaluate the frequency dependent quality factor of Lg waves using the coda normalization method in the New Madrid seismic zone of the central United States. Instrument and site responses are eliminated and source functions are isolated to construct the inversion problem. For this purpose, we used 121 seismograms from 37 events with moment magnitudes, M, ranging from 2.5 to 5.2 and hypocentral distances from 120 to 440 km recorded by 11 broadband stations. A singular value decomposition (SVD) algorithm is used to extract Q values from the data, while the geometric spreading exponent is assumed to be a constant. Inversion results are then fitted with a power law equation from 3 to 12 Hz to derive the frequency dependent quality factor function. The final results of the analysis are QVLg (f) = (410 ± 38) f0.49 ± 0.05 for the vertical component and QHLg (f) = (390 ± 26) f0.56 ± 0.04 for the horizontal component, where the term after ± sign represents one standard error. For stations within the Mississippi embayment with an average sediment depth of 1 km around the Memphis metropolitan area, estimation of quality factor using the coda normalization method is not well-constrained at low frequencies (f < 3 Hz). There may be several reasons contributing to this issue, such as low frequency surface wave contamination, site effects, or even a change in coda wave scattering regime which can exacerbate the scatter of the data.

  7. Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method.

    PubMed

    Grimbergen, T W; van Dijk, E; de Vries, W

    1998-11-01

    A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range.

  8. Efficient scatter distribution estimation and correction in CBCT using concurrent Monte Carlo fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bootsma, G. J., E-mail: Gregory.Bootsma@rmp.uhn.on.ca; Verhaegen, F.; Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4

    2015-01-15

    Purpose: X-ray scatter is a significant impediment to image quality improvements in cone-beam CT (CBCT). The authors present and demonstrate a novel scatter correction algorithm using a scatter estimation method that simultaneously combines multiple Monte Carlo (MC) CBCT simulations through the use of a concurrently evaluated fitting function, referred to as concurrent MC fitting (CMCF). Methods: The CMCF method uses concurrently run MC CBCT scatter projection simulations that are a subset of the projection angles used in the projection set, P, to be corrected. The scattered photons reaching the detector in each MC simulation are simultaneously aggregated by an algorithmmore » which computes the scatter detector response, S{sub MC}. S{sub MC} is fit to a function, S{sub F}, and if the fit of S{sub F} is within a specified goodness of fit (GOF), the simulations are terminated. The fit, S{sub F}, is then used to interpolate the scatter distribution over all pixel locations for every projection angle in the set P. The CMCF algorithm was tested using a frequency limited sum of sines and cosines as the fitting function on both simulated and measured data. The simulated data consisted of an anthropomorphic head and a pelvis phantom created from CT data, simulated with and without the use of a compensator. The measured data were a pelvis scan of a phantom and patient taken on an Elekta Synergy platform. The simulated data were used to evaluate various GOF metrics as well as determine a suitable fitness value. The simulated data were also used to quantitatively evaluate the image quality improvements provided by the CMCF method. A qualitative analysis was performed on the measured data by comparing the CMCF scatter corrected reconstruction to the original uncorrected and corrected by a constant scatter correction reconstruction, as well as a reconstruction created using a set of projections taken with a small cone angle. Results: Pearson’s correlation, r, proved to be a suitable GOF metric with strong correlation with the actual error of the scatter fit, S{sub F}. Fitting the scatter distribution to a limited sum of sine and cosine functions using a low-pass filtered fast Fourier transform provided a computationally efficient and accurate fit. The CMCF algorithm reduces the number of photon histories required by over four orders of magnitude. The simulated experiments showed that using a compensator reduced the computational time by a factor between 1.5 and 1.75. The scatter estimates for the simulated and measured data were computed between 35–93 s and 114–122 s, respectively, using 16 Intel Xeon cores (3.0 GHz). The CMCF scatter correction improved the contrast-to-noise ratio by 10%–50% and reduced the reconstruction error to under 3% for the simulated phantoms. Conclusions: The novel CMCF algorithm significantly reduces the computation time required to estimate the scatter distribution by reducing the statistical noise in the MC scatter estimate and limiting the number of projection angles that must be simulated. Using the scatter estimate provided by the CMCF algorithm to correct both simulated and real projection data showed improved reconstruction image quality.« less

  9. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  10. Scattering Removal for Finger-Vein Image Restoration

    PubMed Central

    Yang, Jinfeng; Zhang, Ben; Shi, Yihua

    2012-01-01

    Finger-vein recognition has received increased attention recently. However, the finger-vein images are always captured in poor quality. This certainly makes finger-vein feature representation unreliable, and further impairs the accuracy of finger-vein recognition. In this paper, we first give an analysis of the intrinsic factors causing finger-vein image degradation, and then propose a simple but effective image restoration method based on scattering removal. To give a proper description of finger-vein image degradation, a biological optical model (BOM) specific to finger-vein imaging is proposed according to the principle of light propagation in biological tissues. Based on BOM, the light scattering component is sensibly estimated and properly removed for finger-vein image restoration. Finally, experimental results demonstrate that the proposed method is powerful in enhancing the finger-vein image contrast and in improving the finger-vein image matching accuracy. PMID:22737028

  11. Fabrication and testing of scatter plates for interferometry

    NASA Technical Reports Server (NTRS)

    Pour, J. J., Sr.; Pitts, J. R.

    1972-01-01

    Scatter plate interferometry has become a reliable method of measuring surface configurations of telescope mirrors and other optical components. The scatter plate used in an instrument should be of optimum quality if the surface it is being used to measure is to be of high accuracy. Tests were performed and results show that, although many scatter plates would function, few were of the optimum quality necessary. These few were of the 180 grit group, using 35- and 30-s exposures, which are figures derived from calculations.

  12. Anomalous Damping of a Microelectromechanical Oscillator in Superfluid ^{3}He-B.

    PubMed

    Zheng, P; Jiang, W G; Barquist, C S; Lee, Y; Chan, H B

    2016-11-04

    The mechanical resonance properties of a microelectromechanical oscillator with a gap of 1.25  μm was studied in superfluid ^{3}He-B at various pressures. The oscillator was driven in the linear damping regime where the damping coefficient is independent of the oscillator velocity. The quality factor of the oscillator remains low (Q≈80) down to 0.1T_{c}, 4 orders of magnitude less than the intrinsic quality factor measured in vacuum at 4 K. In addition to the Boltzmann temperature dependent contribution to the damping, a damping proportional to temperature was found to dominate at low temperatures. We propose a multiple scattering mechanism of the surface Andreev bound states to be a possible cause for the anomalous damping.

  13. Sensitivities Kernels of Seismic Traveltimes and Amplitudes for Quality Factor and Boundary Topography

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Zhao, L.; Ma, K.

    2010-12-01

    Finite-frequency approach enables seismic tomography to fully utilize the spatial and temporal distributions of the seismic wavefield to improve resolution. In achieving this goal, one of the most important tasks is to compute efficiently and accurately the (Fréchet) sensitivity kernels of finite-frequency seismic observables such as traveltime and amplitude to the perturbations of model parameters. In scattering-integral approach, the Fréchet kernels are expressed in terms of the strain Green tensors (SGTs), and a pre-established SGT database is necessary to achieve practical efficiency for a three-dimensional reference model in which the SGTs must be calculated numerically. Methods for computing Fréchet kernels for seismic velocities have long been established. In this study, we develop algorithms based on the finite-difference method for calculating Fréchet kernels for the quality factor Qμ and seismic boundary topography. Kernels for the quality factor can be obtained in a way similar to those for seismic velocities with the help of the Hilbert transform. The effects of seismic velocities and quality factor on either traveltime or amplitude are coupled. Kernels for boundary topography involve spatial gradient of the SGTs and they also exhibit interesting finite-frequency characteristics. Examples of quality factor and boundary topography kernels will be shown for a realistic model for the Taiwan region with three-dimensional velocity variation as well as surface and Moho discontinuity topography.

  14. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  15. Efficient and robust analysis of complex scattering data under noise in microwave resonators.

    PubMed

    Probst, S; Song, F B; Bushev, P A; Ustinov, A V; Weides, M

    2015-02-01

    Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which either require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.

  16. Abstract ID: 176 Geant4 implementation of inter-atomic interference effect in small-angle coherent X-ray scattering for materials of medical interest.

    PubMed

    Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo

    2018-01-01

    Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.

  17. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    PubMed Central

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  18. Evaluation of factors to convert absorbed dose calibrations from graphite to water for the NPL high-energy photon calibration service.

    PubMed

    Nutbrown, R F; Duane, S; Shipley, D R; Thomas, R A S

    2002-02-07

    The National Physical Laboratory (NPL) provides a high-energy photon calibration service using 4-19 MV x-rays and 60Co gamma-radiation for secondary standard dosemeters in terms of absorbed dose to water. The primary standard used for this service is a graphite calorimeter and so absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the launch of this service in 1988. Since then, it has been found that the differences in inherent filtration between the NPL LINAC and typical clinical machines are large enough to affect absorbed dose calibrations and, since 1992, calibrations have been performed in heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of tissue phantom ratio 20,10 (TPR20,10). This paper aims to evaluate these factors for all mega-voltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities and for 60Co y-radiation in two ways. The first method involves the use of the photon fluence-scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water and in graphite determined in these two ways agree with each other to within 0.2% (1sigma uncertainty). The best fit to both sets of results agrees with values determined in previous work to within 0.3% (1sigma uncertainty). It is found that the conversion factor is not sensitive to beam filtration.

  19. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov; Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993; James, Robert H.

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearlymore » 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.« less

  20. Alignment error envelopes for single particle analysis.

    PubMed

    Jensen, G J

    2001-01-01

    To determine the structure of a biological particle to high resolution by electron microscopy, image averaging is required to combine information from different views and to increase the signal-to-noise ratio. Starting from the number of noiseless views necessary to resolve features of a given size, four general factors are considered that increase the number of images actually needed: (1) the physics of electron scattering introduces shot noise, (2) thermal motion and particle inhomogeneity cause the scattered electrons to describe a mixture of structures, (3) the microscope system fails to usefully record all the information carried by the scattered electrons, and (4) image misalignment leads to information loss through incoherent averaging. The compound effect of factors 2-4 is approximated by the product of envelope functions. The problem of incoherent image averaging is developed in detail through derivation of five envelope functions that account for small errors in 11 "alignment" parameters describing particle location, orientation, defocus, magnification, and beam tilt. The analysis provides target error tolerances for single particle analysis to near-atomic (3.5 A) resolution, and this prospect is shown to depend critically on image quality, defocus determination, and microscope alignment. Copyright 2001 Academic Press.

  1. Attenuation Characteristics of the Armutlu Peninsula (NW Turkey) Using Coda Q

    NASA Astrophysics Data System (ADS)

    Yavuz, Evrim; Çaka, Deniz; Tunç, Berna; Woith, Heiko; Gottfried Lühr, Birger; Barış, Şerif

    2016-04-01

    Attenuation characteristic of seismic waves was determined using coda Q in the frame of MARsite (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). Data from 82 earthquakes recorded in 2013-2014 in the Armutlu Peninsula and its vicinity by 9 ARNET seismic stations were used for processing. The earthquake magnitudes (Ml) and depths vary from 1.5 to 3.7 and 1.2-16.9 km, respectively. Epicentral distances closer than 90 km were selected to ensure better signal-to-noise ratios. Lapse times between 20 seconds and 40 seconds at intervals of 5 seconds were used for the calculation of the coda wave quality factor. The coda windows were filtered at central frequencies of 1.5, 3, 6, 9 and 12 Hz bandpass filter. To obtain reliable results, only data with signal-to-noise ratios greater than 5 and correlation coefficents higher than 0.7 were used. The SEISAN software and one of its subroutines (CODAQ) were used for data processing and analyses. In the whole study area, Qc=(51±4)f^(0.91±0.04) for 20 seconds, Qc=(77±7)f^(0.80±0.04) for 30 seconds and Qc=(112±13)f^(0.72±0.06) for 40 seconds lapse times are obtained for coda wave quality factor. The observed quality factor is dependent on frequency and lapse time. The results indicate that the upper lithosphere is more heterogeneous and seismically more active than the lower lithosphere as expected in the region which is tectonically complex refering to the effects of the North Anatolian Fault Zone. By considering earthquake clusters and recorded stations, the scattering area was drawn. The intersection of the scattered areas for 20 seconds lapse time is covering all stations. Quality factor in 1 Hz and frequency dependent values were calculated separately and for the intersection of all scattered areas. Calculated Qo and n values of the intersection area are 50 and 0.89, respectively. Hence, the Qo and n values which are calculated using all stations and both values of the intersection area are very close to each other. Additionally, in the detailed review of TRML station which located in Yalova Province Termal District; Qc=(46±3)f^(0.97±0.04) for 20 seconds, Qc=(61±6)f^(1.03±0.06), for 30 seconds and Qc=(74±6)f^(1.06±0.05) for 40 seconds lapse times are obtained for coda wave quality factor. With these results, both the lower Qo values increasing with lapse times demonstrate high tectonic activity. Furthermore, the increasing n value with lapse times is conformable with the geothermal sources, next to the TRML station.

  2. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com; Austin, M. E.; McLean, A. G.

    2016-11-15

    Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoffmore » and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.« less

  3. Low dose scatter correction for digital chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Inscoe, Christina R.; Wu, Gongting; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2015-03-01

    Digital chest tomosynthesis (DCT) provides superior image quality and depth information for thoracic imaging at relatively low dose, though the presence of strong photon scatter degrades the image quality. In most chest radiography, anti-scatter grids are used. However, the grid also blocks a large fraction of the primary beam photons requiring a significantly higher imaging dose for patients. Previously, we have proposed an efficient low dose scatter correction technique using a primary beam sampling apparatus. We implemented the technique in stationary digital breast tomosynthesis, and found the method to be efficient in correcting patient-specific scatter with only 3% increase in dose. In this paper we reported the feasibility study of applying the same technique to chest tomosynthesis. This investigation was performed utilizing phantom and cadaver subjects. The method involves an initial tomosynthesis scan of the object. A lead plate with an array of holes, or primary sampling apparatus (PSA), was placed above the object. A second tomosynthesis scan was performed to measure the primary (scatter-free) transmission. This PSA data was used with the full-field projections to compute the scatter, which was then interpolated to full-field scatter maps unique to each projection angle. Full-field projection images were scatter corrected prior to reconstruction. Projections and reconstruction slices were evaluated and the correction method was found to be effective at improving image quality and practical for clinical implementation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M. A., E-mail: mabeck2@wisc.edu; Isaacs, J. A.; Booth, D.

    We describe the design and characterization of superconducting coplanar waveguide cavities tailored to facilitate strong coupling between superconducting quantum circuits and single trapped Rydberg atoms. For initial superconductor–atom experiments at 4.2 K, we show that resonator quality factors above 10{sup 4} can be readily achieved. Furthermore, we demonstrate that the incorporation of thick-film copper electrodes at a voltage antinode of the resonator provides a route to enhance the zero-point electric fields of the resonator in a trapping region that is 40 μm above the chip surface, thereby minimizing chip heating from scattered trap light. The combination of high resonator quality factor andmore » strong electric dipole coupling between the resonator and the atom should make it possible to achieve the strong coupling limit of cavity quantum electrodynamics with this system.« less

  5. Cotton fiber quality characterization with light scattering and fourier transform infrared techniques.

    PubMed

    Thomasson, J A; Manickavasagam, S; Mengüç, M P

    2009-03-01

    Fiber quality measurement is critical to assessing the value of a bale of cotton for various textile purposes. An instrument that could measure numerous cotton quality properties by optical means could be made simpler and faster than current fiber quality measurement instruments, and it might be more amenable to on-line measurement at processing facilities. To that end, a laser system was used to investigate cotton fiber samples with respect to electromagnetic scattering at various wavelengths, polarization angles, and scattering angles. A Fourier transform infrared (FT-IR) instrument was also used to investigate the transmission of electromagnetic energy at various mid-infrared wavelengths. Cotton samples were selected to represent a wide range of micronaire values. Varying the wavelength of the laser at a fixed polarization resulted in little variation in scattered light among the cotton samples. However, varying the polarization at a fixed wavelength produced notable variation, indicating that polarization might be used to differentiate among cotton samples with respect to certain fiber properties. The FT-IR data in the 12 to 22 microm range produced relatively large differences in the amount of scattered light among all samples, and FT-IR data at certain combinations of fixed wavelengths were highly linearly related to certain measures of cotton quality including micronaire.

  6. Seismic attenuation and scattering tomography of rock samples using stochastic wavefields: linking seismology, volcanology, and rock physics.

    NASA Astrophysics Data System (ADS)

    Fazio, Marco; De Siena, Luca; Benson, Phillip

    2016-04-01

    Seismic attenuation and scattering are two attributes that can be linked with porosity and permeability in laboratory experiments. When measuring these two quantities using seismic waveforms recorder at lithospheric and volcanic scales the areas of highest heterogeneity, as batches of melt and zones of high deformation, produce anomalous values of the measured quantities, the seismic quality factor and scattering coefficient. When employed as indicators of heterogeneity and absorption in volcanic areas these anomalous effects become strong indicators of magma accumulation and tectonic boundaries, shaping magmatic chambers and conduit systems. We perform attenuation and scattering measurements and imaging using seismic waveforms produced in laboratory experiments, at frequencies ranging between the kHz and MHz. As attenuation and scattering are measured from the shape of the envelopes, disregarding phases, we are able to connect the observations with the micro fracturing and petrological quantities previously measured on the sample. Connecting the imaging of dry and saturated samples via these novel attributes with the burst of low-period events with increasing saturation and deformation is a challenge. Its solution could plant the seed for better relating attenuation and scattering tomography measurements to the presence of fluids and gas, therefore creating a novel path for reliable porosity and permeability tomography. In particular for volcanoes, being able to relate attenuation/scattering measurements with low-period micro seismicity could deliver new data to settle the debate about if both source and medium can produce seismic resonance.

  7. Correlation between the signal-to-noise ratio improvement factor (KSNR) and clinical image quality for chest imaging with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Wood, T. J.; Saunderson, J. R.; Beavis, A. W.

    2015-12-01

    This work assessed the appropriateness of the signal-to-noise ratio improvement factor (KSNR) as a metric for the optimisation of computed radiography (CR) of the chest. The results of a previous study in which four experienced image evaluators graded computer simulated chest images using a visual grading analysis scoring (VGAS) scheme to quantify the benefit of using an anti-scatter grid were used for the clinical image quality measurement (number of simulated patients  =  80). The KSNR was used to calculate the improvement in physical image quality measured in a physical chest phantom. KSNR correlation with VGAS was assessed as a function of chest region (lung, spine and diaphragm/retrodiaphragm), and as a function of x-ray tube voltage in a given chest region. The correlation of the latter was determined by the Pearson correlation coefficient. VGAS and KSNR image quality metrics demonstrated no correlation in the lung region but did show correlation in the spine and diaphragm/retrodiaphragmatic regions. However, there was no correlation as a function of tube voltage in any region; a Pearson correlation coefficient (R) of  -0.93 (p  =  0.015) was found for lung, a coefficient (R) of  -0.95 (p  =  0.46) was found for spine, and a coefficient (R) of  -0.85 (p  =  0.015) was found for diaphragm. All demonstrate strong negative correlations indicating conflicting results, i.e. KSNR increases with tube voltage but VGAS decreases. Medical physicists should use the KSNR metric with caution when assessing any potential improvement in clinical chest image quality when introducing an anti-scatter grid for CR imaging, especially in the lung region. This metric may also be a limited descriptor of clinical chest image quality as a function of tube voltage when a grid is used routinely.

  8. Debye-Waller Factor in Neutron Scattering by Ferromagnetic Metals

    NASA Astrophysics Data System (ADS)

    Paradezhenko, G. V.; Melnikov, N. B.; Reser, B. I.

    2018-04-01

    We obtain an expression for the neutron scattering cross section in the case of an arbitrary interaction of the neutron with the crystal. We give a concise, simple derivation of the Debye-Waller factor as a function of the scattering vector and the temperature. For ferromagnetic metals above the Curie temperature, we estimate the Debye-Waller factor in the range of scattering vectors characteristic of polarized magnetic neutron scattering experiments. In the example of iron, we compare the results of harmonic and anharmonic approximations.

  9. Evaluation of electron mobility in InSb quantum wells by means of percentage-impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishima, T. D.; Edirisooriya, M.; Santos, M. B.

    2014-05-15

    In order to quantitatively analyze the contribution of each scattering factor toward the total carrier mobility, we use a new convenient figure-of-merit, named a percentage impact. The mobility limit due to a scattering factor, which is widely used to summarize a scattering analysis, has its own advantage. However, a mobility limit is not quite appropriate for the above purpose. A comprehensive understanding of the difference in contribution among many scattering factors toward the total carrier mobility can be obtained by evaluating percentage impacts of scattering factors, which can be straightforwardly calculated from their mobility limits and the total mobility. Ourmore » percentage impact analysis shows that threading dislocation is one of the dominant scattering factors for the electron transport in InSb quantum wells at room temperature.« less

  10. Investigating the use of an antiscatter grid in chest radiography for average adults with a computed radiography imaging system

    PubMed Central

    Wood, T J; Avery, G; Balcam, S; Needler, L; Smith, A; Saunderson, J R; Beavis, A W

    2015-01-01

    Objective: The aim of this study was to investigate via simulation a proposed change to clinical practice for chest radiography. The validity of using a scatter rejection grid across the diagnostic energy range (60–125 kVp), in conjunction with appropriate tube current–time product (mAs) for imaging with a computed radiography (CR) system was investigated. Methods: A digitally reconstructed radiograph algorithm was used, which was capable of simulating CR chest radiographs with various tube voltages, receptor doses and scatter rejection methods. Four experienced image evaluators graded images with a grid (n = 80) at tube voltages across the diagnostic energy range and varying detector air kermas. These were scored against corresponding images reconstructed without a grid, as per current clinical protocol. Results: For all patients, diagnostic image quality improved with the use of a grid, without the need to increase tube mAs (and therefore patient dose), irrespective of the tube voltage used. Increasing tube mAs by an amount determined by the Bucky factor made little difference to image quality. Conclusion: A virtual clinical trial has been performed with simulated chest CR images. Results indicate that the use of a grid improves diagnostic image quality for average adults, without the need to increase tube mAs, even at low tube voltages. Advances in knowledge: Validated with images containing realistic anatomical noise, it is possible to improve image quality by utilizing grids for chest radiography with CR systems without increasing patient exposure. Increasing tube mAs by an amount determined by the Bucky factor is not justified. PMID:25571914

  11. SU-F-J-211: Scatter Correction for Clinical Cone-Beam CT System Using An Optimized Stationary Beam Blocker with a Single Scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, X; Zhang, Z; Xie, Y

    Purpose: X-ray scatter photons result in significant image quality degradation of cone-beam CT (CBCT). Measurement based algorithms using beam blocker directly acquire the scatter samples and achieve significant improvement on the quality of CBCT image. Within existing algorithms, single-scan and stationary beam blocker proposed previously is promising due to its simplicity and practicability. Although demonstrated effectively on tabletop system, the blocker fails to estimate the scatter distribution on clinical CBCT system mainly due to the gantry wobble. In addition, the uniform distributed blocker strips in our previous design results in primary data loss in the CBCT system and leads tomore » the image artifacts due to data insufficiency. Methods: We investigate the motion behavior of the beam blocker in each projection and design an optimized non-uniform blocker strip distribution which accounts for the data insufficiency issue. An accurate scatter estimation is then achieved from the wobble modeling. Blocker wobble curve is estimated using threshold-based segmentation algorithms in each projection. In the blocker design optimization, the quality of final image is quantified using the number of the primary data loss voxels and the mesh adaptive direct search algorithm is applied to minimize the objective function. Scatter-corrected CT images are obtained using the optimized blocker. Results: The proposed method is evaluated using Catphan@504 phantom and a head patient. On the Catphan©504, our approach reduces the average CT number error from 115 Hounsfield unit (HU) to 11 HU in the selected regions of interest, and improves the image contrast by a factor of 1.45 in the high-contrast regions. On the head patient, the CT number error is reduced from 97 HU to 6 HU in the soft tissue region and image spatial non-uniformity is decreased from 27% to 5% after correction. Conclusion: The proposed optimized blocker design is practical and attractive for CBCT guided radiation therapy. This work is supported by grants from Guangdong Innovative Research Team Program of China (Grant No. 2011S013), National 863 Programs of China (Grant Nos. 2012AA02A604 and 2015AA043203), the National High-tech R&D Program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917)« less

  12. Dual-energy fluorescent x-ray computed tomography system with a pinhole design: Use of K-edge discontinuity for scatter correction

    PubMed Central

    Sasaya, Tenta; Sunaguchi, Naoki; Thet-Lwin, Thet-; Hyodo, Kazuyuki; Zeniya, Tsutomu; Takeda, Tohoru; Yuasa, Tetsuya

    2017-01-01

    We propose a pinhole-based fluorescent x-ray computed tomography (p-FXCT) system with a 2-D detector and volumetric beam that can suppress the quality deterioration caused by scatter components. In the corresponding p-FXCT technique, projections are acquired at individual incident energies just above and below the K-edge of the imaged trace element; then, reconstruction is performed based on the two sets of projections using a maximum likelihood expectation maximization algorithm that incorporates the scatter components. We constructed a p-FXCT imaging system and performed a preliminary experiment using a physical phantom and an I imaging agent. The proposed dual-energy p-FXCT improved the contrast-to-noise ratio by a factor of more than 2.5 compared to that attainable using mono-energetic p-FXCT for a 0.3 mg/ml I solution. We also imaged an excised rat’s liver infused with a Ba contrast agent to demonstrate the feasibility of imaging a biological sample. PMID:28272496

  13. Understanding critical factors for the quality and shelf-life of MAP fresh meat: a review.

    PubMed

    Singh, Preeti; Wani, Ali Abas; Saengerlaub, Sven; Langowski, Horst-Christian

    2011-02-01

    Due to increased demands for greater stringency in relation to hygiene and safety issues associated with fresh food products, coupled with ever-increasing demands by retailers for cost-effective extensions to product shelf-lives and the requirement to meet consumer expectations in relation to convenience and quality, the food packaging industry has rapidly developed to meet and satisfy expectations. One of the areas of research that has shown promise, and had success, is modified atmosphere packaging (MAP). The success of MAP-fresh meat depends on many factors including good initial product quality, good hygiene from the source plants, correct packaging material selection, the appropriate gas mix for the product, reliable packaging equipment, and maintenance of controlled temperatures and humidity levels. Advances in plastic materials and equipment have propelled advances in MAP, but other technological and logistical considerations are needed for successful MAP systems for raw chilled meat. Although several parameters critical for the quality of MA packed meat have been studied and each found to be crucial, understanding of the interactions between the parameters is needed. This review was undertaken to present the most comprehensive and current overview of the widely available, scattered information about the various integrated critical factors responsible for the quality and shelf life of MA packed meat with an interest to stimulate further research to optimize different quality parameters.

  14. Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.

    PubMed

    Hanaguri, T; Kohsaka, Y; Ono, M; Maltseva, M; Coleman, P; Yamada, I; Azuma, M; Takano, M; Ohishi, K; Takagi, H

    2009-02-13

    When electrons pair in a superconductor, quasi-particles develop an acute sensitivity to different types of scattering potential that is described by the appearance of coherence factors in the scattering amplitudes. Although the effects of coherence factors are well established in isotropic superconductors, they are much harder to detect in their anisotropic counterparts, such as high-superconducting-transition-temperature cuprates. We demonstrate an approach that highlights the momentum-dependent coherence factors in Ca2-xNaxCuO2Cl2. We used Fourier-transform scanning tunneling spectroscopy to reveal a magnetic-field dependence in quasi-particle scattering interference patterns that is sensitive to the sign of the anisotropic gap. This result is associated with the d-wave coherence factors and quasi-particle scattering off vortices. Our technique thus provides insights into the nature of electron pairing as well as quasi-particle scattering processes in unconventional superconductors.

  15. Robust scatter correction method for cone-beam CT using an interlacing-slit plate

    NASA Astrophysics Data System (ADS)

    Huang, Kui-Dong; Xu, Zhe; Zhang, Ding-Hua; Zhang, Hua; Shi, Wen-Long

    2016-06-01

    Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corrected slice images. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Aeronautical Science Fund of China (2014ZE53059), and Fundamental Research Funds for Central Universities of China (3102014KYJD022)

  16. Products of the SNPP VIIRS SD Screen Transmittance and the SD BRDFs From Both Yaw Maneuver and Regular On-Orbit Data

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2017-01-01

    To ensure data quality, the Earth-observing Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite regularly performs on-orbit radiometric calibration of its 22 spectral bands. The primary radiance source for the calibration of the VIIRS reflective solar bands (RSBs) is a sunlit onboard solar diffuser (SD).During the calibration process, sunlight goes through a perforated plate (the SD screen) and then strikes the SD. The sunlight, scattered off the SD of near-Lambertian property, is used for the calibration. Consequently, the spectral radiance of the scattered sunlight is proportional to the product of the SD screen transmittance and the SD bidirectional reflectance distribution function (BRDF) value at the observation direction. The BRDF value is decomposed to the product of its initial value at launch and a numerical degradation factor that quantifies the decrease from the initial value. The degradation factor is determined by an onboard SD stability monitor (SDSM). During the BRDF degradation factor determination process, the SDSM receives the SD scattered sunlight and the sunlight that goes through another perforated plate at almost the same time. The ratio of the signal strengths from the two observations is used to determine the BRDF degradation factor. Consequently, the RSB radiometric calibration requires the accurate knowledge of the product of the SD screen transmittance and the initial BRDF value as sensed by the RSB and the SDSM detectors. We use both yaw maneuver and a small portion of regular on-orbit data to determine the products.

  17. Evaluation of Optical Quality: Ocular Scattering and Aberrations in Eyes Implanted with Diffractive Multifocal or Monofocal Intraocular Lenses.

    PubMed

    Liao, Xuan; Lin, Jia; Tian, Jing; Wen, BaiWei; Tan, QingQing; Lan, ChangJun

    2018-06-01

    To compare objective optical quality, ocular scattering and aberrations of eyes implanted with an aspheric monofocal intraocular lens (IOL) or an aspheric apodized diffractive multifocal IOL three months after surgery. Prospective consecutive nonrandomized comparative cohort study. A total of 80 eyes from 57 cataract patients were bilaterally or unilaterally implanted with monofocal (AcrySof IQ SN60WF) or multifocal (AcrySof IQ ReSTOR SN6AD1) IOLs. Respectively, 40 eyes of 27 patients were implanted with monofocal IOLs, and 40 eyes of 30 patients were implanted with multifocal IOLs. Ocular high-order aberration (HOA) values were obtained using Hartmann-Shack aberrometer; objective scatter index (OSI), modulation transfer function (MTF) cutoff, Strehl ratio (SR), and contrast visual acuity OV at 100%, 20%, and 9% were measured using Objective Quality Analysis System II (OQAS II). Ocular aberrations performed similar in both groups (p > 0.05). However, significantly higher values of OSI and lower values of MTF cutoff, SR and OV were found in the SN6AD1 group (p < 0.05). Both ocular scattering and wave-front aberrations play essential role in retinal image quality, which may be overestimated when only aberrations were taken into account. Combining the effect of ocular scattering with HOA will result in a more accurate assessment of the visual and optical quality.

  18. A model of primary and scattered photon fluence for mammographic x-ray image quantification

    NASA Astrophysics Data System (ADS)

    Tromans, Christopher E.; Cocker, Mary R.; Brady, Michael, Sir

    2012-10-01

    We present an efficient method to calculate the primary and scattered x-ray photon fluence component of a mammographic image. This can be used for a range of clinically important purposes, including estimation of breast density, personalized image display, and quantitative mammogram analysis. The method is based on models of: the x-ray tube; the digital detector; and a novel ray tracer which models the diverging beam emanating from the focal spot. The tube model includes consideration of the anode heel effect, and empirical corrections for wear and manufacturing tolerances. The detector model is empirical, being based on a family of transfer functions that cover the range of beam qualities and compressed breast thicknesses which are encountered clinically. The scatter estimation utilizes optimal information sampling and interpolation (to yield a clinical usable computation time) of scatter calculated using fundamental physics relations. A scatter kernel arising around each primary ray is calculated, and these are summed by superposition to form the scatter image. Beam quality, spatial position in the field (in particular that arising at the air-boundary due to the depletion of scatter contribution from the surroundings), and the possible presence of a grid, are considered, as is tissue composition using an iterative refinement procedure. We present numerous validation results that use a purpose designed tissue equivalent step wedge phantom. The average differences between actual acquisitions and modelled pixel intensities observed across the adipose to fibroglandular attenuation range vary between 5% and 7%, depending on beam quality and, for a single beam quality are 2.09% and 3.36% respectively with and without a grid.

  19. Changes in the substrate of rivers in historic mining districts

    USGS Publications Warehouse

    Milhous, R.T.

    2004-01-01

    The restoration of rivers in watersheds with historic mining districts has become a topic of interest during the last decade. Rivers restoration in these areas is difficult because the mines and mills can be scattered over a wide area and often small. Many have also been abandoned. This paper presents two substrate related factors that are important in the evaluation of river restoration alternatives in watersheds with significance impacts from mines and mills most of which are old and abandoned. The two factors are 1) changes in the size distribution and specific weights of the substrate, and 2) the changes in quality of the interstecial waters caused by metals associated with the tailings in the substrate. The most important impacts of tailings from mills may be on the physical characteristics of the substrate (porosity) and on the quality of the pore waters. The measurements presented in this paper do show significant variation in the porosity in gravel bed rivers and in the quality of the pore waters. Copyright ASCE 2004.

  20. Monitoring cell culture media degradation using surface enhanced Raman scattering (SERS) spectroscopy.

    PubMed

    Calvet, Amandine; Ryder, Alan G

    2014-08-20

    The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2-8°C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y; Southern Medical University, Guangzhou; Bai, T

    2014-06-15

    Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections;more » 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research in Strategic Emerging Industry, Guangdong, China (2011A081402003)« less

  2. Research on the range side lobe suppression method for modulated stepped frequency radar signals

    NASA Astrophysics Data System (ADS)

    Liu, Yinkai; Shan, Tao; Feng, Yuan

    2018-05-01

    The magnitude of time-domain range sidelobe of modulated stepped frequency radar affects the imaging quality of inverse synthetic aperture radar (ISAR). In this paper, the cause of high sidelobe in modulated stepped frequency radar imaging is analyzed first in real environment. Then, the chaos particle swarm optimization (CPSO) is used to select the amplitude and phase compensation factors according to the minimum sidelobe criterion. Finally, the compensated one-dimensional range images are obtained. Experimental results show that the amplitude-phase compensation method based on CPSO algorithm can effectively reduce the sidelobe peak value of one-dimensional range images, which outperforms the common sidelobe suppression methods and avoids the coverage of weak scattering points by strong scattering points due to the high sidelobes.

  3. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - I: model and the case of Tenerife Island

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Del Pezzo, Edoardo; García-Yeguas, Araceli; Ibáñez, Jesús M.

    2013-12-01

    The complex volcanic system of Tenerife Island is known to have a highly heterogeneous character, as recently confirmed by velocity tomography. We present new information derived from intrinsic quality factor inverse maps (Qi-1), scattering quality factor inverse maps (Qs-1) and total quality factor inverse maps (Qt-1) obtained for the same region. The data set used in this work is the result of the analysis of an active seismic experiment carried out, using offshore shots (air guns) recorded at over 85 onshore seismic stations. The estimates of the attenuation parameters are based on the assumption that the seismogram energy envelopes are determined by seismic energy diffusion processes occurring inside the island. Diffusion model parameters, proportional to Qi-1 and to Qs-1, are estimated from the inversion of the energy envelopes for any source-receiver couple. They are then weighted with a new graphical approach based on a Gaussian space probability function, which allowed us to create `2-D probabilistic maps' representing the space distribution of the attenuation parameters. The 2-D images obtained reveal the existence of a zone in the centre of the island characterized by the lowest attenuation effects. This effect is interpreted as highly rigid and cooled rocks. This low-attenuation region is bordered by zones of high attenuation, associated with the recent historical volcanic activity. We calculate the transport mean free path obtaining a value of around 4 km for the frequency range 6-12 Hz. This result is two orders of magnitude smaller than values calculated for the crust of the Earth. An absorption length between 10 and 14 km is associated with the average intrinsic attenuation parameter. These values, while small in the context of tectonic regions, are greater than those obtained in volcanic regions such as Vesuvius or Merapi. Such differences may be explained by the magnitude of the region of study, over three times larger than the aforementioned study areas. This also implies deeper sampling of the crust, which is evidenced by a change in the values of seismic attenuation. One important observation is that scattering attenuation dominates over the intrinsic effects, Qi being at least twice the value of Qs.

  4. WE-AB-207A-08: BEST IN PHYSICS (IMAGING): Advanced Scatter Correction and Iterative Reconstruction for Improved Cone-Beam CT Imaging On the TrueBeam Radiotherapy Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Paysan, P; Brehm, M

    2016-06-15

    Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as theymore » pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative reconstruction substantially improves CBCT image quality. It is anticipated that clinically acceptable reconstruction times will result from a multi-GPU implementation (the algorithms are under active development and not yet commercially available). All authors are employees of and (may) own stock of Varian Medical Systems.« less

  5. MO-F-CAMPUS-I-04: Characterization of Fan Beam Coded Aperture Coherent Scatter Spectral Imaging Methods for Differentiation of Normal and Neoplastic Breast Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R; Albanese, K; Lakshmanan, M

    Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality formore » breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded aperture coherent scatter imaging a clinically viable method for breast cancer detection. United States Department of Homeland Security; Duke University Medical Center - Department of Radiology; Carl E Ravin Advanced Imaging Laboratories; Duke University Medical Physics Graduate Program.« less

  6. Control of crankshaft finish by scattering technique

    NASA Astrophysics Data System (ADS)

    Fontani, Daniela; Francini, Franco; Longobardi, Giuseppe; Sansoni, Paola

    2001-06-01

    The paper describes a new sensor dedicated to measure and check the surface quality of mechanical products. The results were obtained comparing the light scattered from two different ranges of angles by means of 16 photodiodes. The device is designed for obtaining valid data from curved surfaces as that of a crankshaft. Experimental measurements show that the ratio between scattered and reflected light intensity increases with the surface roughness. This device was developed for the off-tolerance detection of mechanical pieces in industrial production. Results of surface quality on crankshaft supplied by Renault were carried out.

  7. Retrieval of Aerosol Optical Properties from Ground-Based Remote Sensing Measurements: Aerosol Asymmetry Factor and Single Scattering Albedo

    NASA Astrophysics Data System (ADS)

    Qie, L.; Li, Z.; Li, L.; Li, K.; Li, D.; Xu, H.

    2018-04-01

    The Devaux-Vermeulen-Li method (DVL method) is a simple approach to retrieve aerosol optical parameters from the Sun-sky radiance measurements. This study inherited the previous works of retrieving aerosol single scattering albedo (SSA) and scattering phase function, the DVL method was modified to derive aerosol asymmetric factor (g). To assess the algorithm performance at various atmospheric aerosol conditions, retrievals from AERONET observations were implemented, and the results are compared with AERONET official products. The comparison shows that both the DVL SSA and g were well correlated with those of AERONET. The RMSD and the absolute value of MBD deviations between the SSAs are 0.025 and 0.015 respectively, well below the AERONET declared SSA uncertainty of 0.03 for all wavelengths. For asymmetry factor g, the RMSD deviations are smaller than 0.02 and the absolute values of MBDs smaller than 0.01 at 675, 870 and 1020 nm bands. Then, considering several factors probably affecting retrieval quality (i.e. the aerosol optical depth (AOD), the solar zenith angle, and the sky residual error, sphericity proportion and Ångström exponent), the deviations for SSA and g of these two algorithms were calculated at varying value intervals. Both the SSA and g deviations were found decrease with the AOD and the solar zenith angle, and increase with sky residual error. However, the deviations do not show clear sensitivity to the sphericity proportion and Ångström exponent. This indicated that the DVL algorithm is available for both large, non-spherical particles and spherical particles. The DVL results are suitable for the evaluation of aerosol direct radiative effects of different aerosol types.

  8. Environmental contamination due to shale gas development.

    PubMed

    Annevelink, M P J A; Meesters, J A J; Hendriks, A J

    2016-04-15

    Shale gas development potentially contaminates both air and water compartments. To assist in governmental decision-making on future explorations, we reviewed scattered information on activities, emissions and concentrations related to shale gas development. We compared concentrations from monitoring programmes to quality standards as a first indication of environmental risks. Emissions could not be estimated accurately because of incomparable and insufficient data. Air and water concentrations range widely. Poor wastewater treatment posed the highest risk with concentrations exceeding both Natural Background Values (NBVs) by a factor 1000-10,000 and Lowest Quality Standards (LQSs) by a factor 10-100. Concentrations of salts, metals, volatile organic compounds (VOCs) and hydrocarbons exceeded aquatic ecotoxicological water standards. Future research must focus on measuring aerial and aquatic emissions of toxic chemicals, generalisation of experimental setups and measurement technics and further human and ecological risk assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Corrections on energy spectrum and scatterings for fast neutron radiography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Liu, Shu-Quan; Bücherl, Thomas; Li, Hang; Zou, Yu-Bin; Lu, Yuan-Rong; Guo, Zhi-Yu

    2013-11-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM- II in Technische Universität München (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections.

  10. Characterization of Optical Properties of Desert Dust and Other Aerosols Using Postive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-12-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent. Especially from February to June the Ångström scattering exponent was clearly lower and scattering coefficients higher than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10- PM2.5) mass concentrations to characterise aerosols from different sources. Analysis revealed three clearly different types of sources, anthropogenic, BC source and desert dust. These factors have clearly different seasonal and diurnal variation. The contribution of desert dust factor was dominating from February to May, whereas the contribution of anthropogenic factor is quite steady over the whole year. We estimated the mass absorption and scattering efficiencies for the factors and they agreed well with earlier observations. Hence, this method could be used to distinguish aerosol source characteristics, at least in fairly simple cases.

  11. Quality Control System using Simple Implementation of Seven Tools for Batik Textile Manufacturing

    NASA Astrophysics Data System (ADS)

    Ragil Suryoputro, Muhammad; Sugarindra, Muchamad; Erfaisalsyah, Hendy

    2017-06-01

    In order to produce better products and mitigate defect in products, every company must implement a quality control system. Company will find means to implement a quality control system that is capable and reliable. One of the methods is using the simple implementation of the seven tools in quality control defects. The case studied in this research was the level of disability xyz grey fabric on a shuttle loom 2 on the Batik manufacturing company. The seven tools that include: flowchart, check sheet, histogram, scatter diagram combined with control charts, Pareto diagrams and fishbone diagrams (causal diagram). Check sheet results obtained types of defects in the grey fabric was woven xyz is warp, double warp, the warp break, double warp, empty warp, warp tenuous, ugly edges, thick warp, and rust. Based on the analysis of control chart indicates that the process is out of control. This can be seen in the graph control where there is still a lot of outlier data. Based on a scatter diagram shows a positive correlation between the percentage of disability and the number of production. Based on Pareto diagram, repair needs priority is for the dominant type of defect is warp (44%) and based on double warp value histogram is also the highest with a value of 23635.11 m. In addition, based on the analysis of the factors causing defect by fishbone diagram double warp or other types of defects originating from the materials, methods, machines, measurements, man and environment. Thus the company can take to minimize the prevention and repair of defects and improve product quality.

  12. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions

    PubMed Central

    Sisniega, A.; Zbijewski, W.; Badal, A.; Kyprianou, I. S.; Stayman, J. W.; Vaquero, J. J.; Siewerdsen, J. H.

    2013-01-01

    Purpose: The proliferation of cone-beam CT (CBCT) has created interest in performance optimization, with x-ray scatter identified among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configurations suggests that not all configurations are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, efficacy of antiscatter grids, guide system design, and augment development of scatter correction. Methods: A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-panel detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-to-detector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuration was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70–280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment. Results: Variance reduction yielded improvements in MC simulation efficiency ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significant acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficiency). The benefit of a more extended geometry was evident by virtue of a larger air gap—e.g., for a 16 cm diameter object, the SPR reduced from 1.5 for ADD = 12 cm (MSK geometry) to 1.1 for ADD = 22 cm (Head) and to 0.5 for ADD = 60 cm (C-arm). Grid efficiency was higher for configurations with shorter air gap due to a broader angular distribution of scattered photons—e.g., scatter rejection factor ∼0.8 for MSK geometry versus ∼0.65 for C-arm. Grids reduced cupping for all configurations but had limited improvement on scatter-induced streaks and resulted in a loss of CNR for the SA, Breast, and C-arm. Relative contribution of forward-directed scatter increased with a grid (e.g., Rayleigh scatter fraction increasing from ∼0.15 without a grid to ∼0.25 with a grid for the MSK configuration), resulting in scatter distributions with greater spatial variation (the form of which depended on grid orientation). Conclusions: A fast MC simulator combining GPU acceleration with variance reduction provided a systematic examination of a range of CBCT configurations in relation to scatter, highlighting the magnitude and spatial uniformity of individual scatter components, illustrating tradeoffs in CNR and artifacts and identifying the system geometries for which grids are more beneficial (e.g., MSK) from those in which an extended geometry is the better defense (e.g., C-arm head imaging). Compact geometries with an antiscatter grid challenge assumptions of slowly varying scatter distributions due to increased contribution of Rayleigh scatter. PMID:23635285

  13. X-ray magnetic circular dichroism measured at the Fe K-edge with a reduced intrinsic broadening: x-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements

    NASA Astrophysics Data System (ADS)

    Juhin, Amélie; Sainctavit, Philippe; Ollefs, Katharina; Sikora, Marcin; Filipponi, Adriano; Glatzel, Pieter; Wilhelm, Fabrice; Rogalev, Andrei

    2016-12-01

    X-ray magnetic circular dichroism is measured at the Fe K pre-edge in yttrium iron garnet using two different procedures that allow reducing the intrinsic broadening due to the 1s corehole lifetime. First, deconvolution of XMCD data measured in total fluorescence yield (TFY) with an extremely high signal-to-noise ratio enables a factor of 2.4 to be gained in the XMCD intensity. Ligand field multiplet calculations performed with different values of intrinsic broadening show that deconvolving such high quality XMCD data is similar to reducing the lifetime broadening from a 1s corehole to a 2p corehole. Second, MCD is measured by resonant inelastic x-ray scattering spectroscopy as a function of incident energy and emission energy. Selection of a fixed emission energy, instead of using the TFY, allows enhancing the MCD intensity up to a factor of  ˜4.7. However, this significantly changes the spectral shape of the XMCD signal, which cannot be interpreted any more as an absorption spectrum.

  14. Ultrafast Kα x-ray Thomson scattering from shock compressed lithium hydride

    DOE PAGES

    Kritcher, A. L.; Neumayer, P.; Castor, J.; ...

    2009-04-13

    Spectrally and temporally resolved x-ray Thomson scattering using ultrafast Ti Kα x rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 ns heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transitionmore » to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of 3 times solid density. The quality of data achieved in these experiments demonstrates the capability for single shot dynamic characterization of dense shock compressed matter. Here, the conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility, Lawrence Livermore National Laboratory.« less

  15. Hyperspectral imaging simulation of object under sea-sky background

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui

    2016-10-01

    Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.

  16. A brachytherapy photon radiation quality index Q(BT) for probe-type dosimetry.

    PubMed

    Quast, Ulrich; Kaulich, Theodor W; Álvarez-Romero, José T; Carlsson Tedgren, Sa; Enger, Shirin A; Medich, David C; Mourtada, Firas; Perez-Calatayud, Jose; Rivard, Mark J; Zakaria, G Abu

    2016-06-01

    In photon brachytherapy (BT), experimental dosimetry is needed to verify treatment plans if planning algorithms neglect varying attenuation, absorption or scattering conditions. The detector's response is energy dependent, including the detector material to water dose ratio and the intrinsic mechanisms. The local mean photon energy E¯(r) must be known or another equivalent energy quality parameter used. We propose the brachytherapy photon radiation quality indexQ(BT)(E¯), to characterize the photon radiation quality in view of measurements of distributions of the absorbed dose to water, Dw, around BT sources. While the external photon beam radiotherapy (EBRT) radiation quality index Q(EBRT)(E¯)=TPR10(20)(E¯) is not applicable to BT, the authors have applied a novel energy dependent parameter, called brachytherapy photon radiation quality index, defined as Q(BT)(E¯)=Dprim(r=2cm,θ0=90°)/Dprim(r0=1cm,θ0=90°), utilizing precise primary absorbed dose data, Dprim, from source reference databases, without additional MC-calculations. For BT photon sources used clinically, Q(BT)(E¯) enables to determine the effective mean linear attenuation coefficient μ¯(E) and thus the effective energy of the primary photons Eprim(eff)(r0,θ0) at the TG-43 reference position Pref(r0=1cm,θ0=90°), being close to the mean total photon energy E¯tot(r0,θ0). If one has calibrated detectors, published E¯tot(r) and the BT radiation quality correction factor [Formula: see text] for different BT radiation qualities Q and Q0, the detector's response can be determined and Dw(r,θ) measured in the vicinity of BT photon sources. This novel brachytherapy photon radiation quality indexQ(BT) characterizes sufficiently accurate and precise the primary photon's penetration probability and scattering potential. Copyright © 2016. Published by Elsevier Ltd.

  17. Library based x-ray scatter correction for dedicated cone beam breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Linxi; Zhu, Lei, E-mail: leizhu@gatech.edu

    Purpose: The image quality of dedicated cone beam breast CT (CBBCT) is limited by substantial scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose a library-based software approach to suppress scatter on CBBCT images with high efficiency, accuracy, and reliability. Methods: The authors precompute a scatter library on simplified breast models with different sizes using the GEANT4-based Monte Carlo (MC) toolkit. The breast is approximated as a semiellipsoid with homogeneous glandular/adipose tissue mixture. For scatter correctionmore » on real clinical data, the authors estimate the breast size from a first-pass breast CT reconstruction and then select the corresponding scatter distribution from the library. The selected scatter distribution from simplified breast models is spatially translated to match the projection data from the clinical scan and is subtracted from the measured projection for effective scatter correction. The method performance was evaluated using 15 sets of patient data, with a wide range of breast sizes representing about 95% of general population. Spatial nonuniformity (SNU) and contrast to signal deviation ratio (CDR) were used as metrics for evaluation. Results: Since the time-consuming MC simulation for library generation is precomputed, the authors’ method efficiently corrects for scatter with minimal processing time. Furthermore, the authors find that a scatter library on a simple breast model with only one input parameter, i.e., the breast diameter, sufficiently guarantees improvements in SNU and CDR. For the 15 clinical datasets, the authors’ method reduces the average SNU from 7.14% to 2.47% in coronal views and from 10.14% to 3.02% in sagittal views. On average, the CDR is improved by a factor of 1.49 in coronal views and 2.12 in sagittal views. Conclusions: The library-based scatter correction does not require increase in radiation dose or hardware modifications, and it improves over the existing methods on implementation simplicity and computational efficiency. As demonstrated through patient studies, the authors’ approach is effective and stable, and is therefore clinically attractive for CBBCT imaging.« less

  18. WE-DE-207B-12: Scatter Correction for Dedicated Cone Beam Breast CT Based On a Forward Projection Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L; Zhu, L; Vedantham, S

    2016-06-15

    Purpose: The image quality of dedicated cone-beam breast CT (CBBCT) is fundamentally limited by substantial x-ray scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose to suppress x-ray scatter in CBBCT images using a deterministic forward projection model. Method: We first use the 1st-pass FDK-reconstructed CBBCT images to segment fibroglandular and adipose tissue. Attenuation coefficients are assigned to the two tissues based on the x-ray spectrum used for imaging acquisition, and is forward projected to simulatemore » scatter-free primary projections. We estimate the scatter by subtracting the simulated primary projection from the measured projection, and then the resultant scatter map is further refined by a Fourier-domain fitting algorithm after discarding untrusted scatter information. The final scatter estimate is subtracted from the measured projection for effective scatter correction. In our implementation, the proposed scatter correction takes 0.5 seconds for each projection. The method was evaluated using the overall image spatial non-uniformity (SNU) metric and the contrast-to-noise ratio (CNR) with 5 clinical datasets of BI-RADS 4/5 subjects. Results: For the 5 clinical datasets, our method reduced the SNU from 7.79% to 1.68% in coronal view and from 6.71% to 3.20% in sagittal view. The average CNR is improved by a factor of 1.38 in coronal view and 1.26 in sagittal view. Conclusion: The proposed scatter correction approach requires no additional scans or prior images and uses a deterministic model for efficient calculation. Evaluation with clinical datasets demonstrates the feasibility and stability of the method. These features are attractive for clinical CBBCT and make our method distinct from other approaches. Supported partly by NIH R21EB019597, R21CA134128 and R01CA195512.The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less

  19. Library based x-ray scatter correction for dedicated cone beam breast CT

    PubMed Central

    Shi, Linxi; Karellas, Andrew; Zhu, Lei

    2016-01-01

    Purpose: The image quality of dedicated cone beam breast CT (CBBCT) is limited by substantial scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose a library-based software approach to suppress scatter on CBBCT images with high efficiency, accuracy, and reliability. Methods: The authors precompute a scatter library on simplified breast models with different sizes using the geant4-based Monte Carlo (MC) toolkit. The breast is approximated as a semiellipsoid with homogeneous glandular/adipose tissue mixture. For scatter correction on real clinical data, the authors estimate the breast size from a first-pass breast CT reconstruction and then select the corresponding scatter distribution from the library. The selected scatter distribution from simplified breast models is spatially translated to match the projection data from the clinical scan and is subtracted from the measured projection for effective scatter correction. The method performance was evaluated using 15 sets of patient data, with a wide range of breast sizes representing about 95% of general population. Spatial nonuniformity (SNU) and contrast to signal deviation ratio (CDR) were used as metrics for evaluation. Results: Since the time-consuming MC simulation for library generation is precomputed, the authors’ method efficiently corrects for scatter with minimal processing time. Furthermore, the authors find that a scatter library on a simple breast model with only one input parameter, i.e., the breast diameter, sufficiently guarantees improvements in SNU and CDR. For the 15 clinical datasets, the authors’ method reduces the average SNU from 7.14% to 2.47% in coronal views and from 10.14% to 3.02% in sagittal views. On average, the CDR is improved by a factor of 1.49 in coronal views and 2.12 in sagittal views. Conclusions: The library-based scatter correction does not require increase in radiation dose or hardware modifications, and it improves over the existing methods on implementation simplicity and computational efficiency. As demonstrated through patient studies, the authors’ approach is effective and stable, and is therefore clinically attractive for CBBCT imaging. PMID:27487870

  20. Condition on Ramond-Ramond fluxes for factorization of worldsheet scattering in anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2017-11-01

    Factorization of scattering is the hallmark of integrable 1 +1 dimensional quantum field theories. For factorization of scattering to be possible the set of masses and momenta must be conserved in any two-to-two scattering process. We use this fact to constrain the form of the Ramond-Ramond fluxes for integrable supergravity anti-de Sitter (AdS) backgrounds by analyzing tree-level scattering of two AdS bosons into two fermions on the worldsheet of a Berenstein-Maldacena-Nastase string. We find a condition which can be efficiently used to rule out integrability of AdS strings and therefore of the corresponding AdS/conformal field theory dualities, as we demonstrate for some simple examples.

  1. Longitudinal assessment of optical quality and intraocular scattering using the double-pass instrument in normal eyes and eyes with short tear breakup time.

    PubMed

    Kobashi, Hidenaga; Kamiya, Kazutaka; Yanome, Kyohei; Igarashi, Akihito; Shimizu, Kimiya

    2013-01-01

    To assess the longitudinal changes in optical quality including intraocular scattering in normal eyes and eyes with short tear breakup time (TBUT). We prospectively examined twenty eyes of 20 healthy subjects, and age-matched twenty eyes of 20 short TBUT subjects. The modulation transfer function (MTF) cutoff frequency, the Strehl ratio, and the objective scattering index (OSI) were quantitatively assessed using an Optical Quality Analysis System. We investigated the changes in these variables measured consecutively at the initial examination, 5, and 10 seconds without blinking. We also compared these variables in eyes with short TBUT with those in normal eyes. No significant differences in the MTF cutoff frequency, Strehl ratio, or OSI were detected over a 10-second period in normal eyes. These variables also became significantly degraded even over a 5-second period in eyes with short TBUT (p<0.01). We found significant differences in these variables at 5 and 10 seconds (p<0.05), but none immediately after the blink between normal and short TBUT eyes. Optical quality including intraocular scattering deteriorated significantly with time in eyes with short TBUT, whereas we found significant differences over a 10-second period in normal eyes. Eyes with short TBUT showed greater deterioration in optical quality after the blink than normal eyes. The longitudinal assessment of optical quality may be effective in distinguishing eyes with short TBUT from normal eyes.

  2. Effect of Multiple Scattering on the Compton Recoil Current Generated in an EMP, Revisited

    DOE PAGES

    Farmer, William A.; Friedman, Alex

    2015-06-18

    Multiple scattering has historically been treated in EMP modeling through the obliquity factor. The validity of this approach is examined here. A simplified model problem, which correctly captures cyclotron motion, Doppler shifting due to the electron motion, and multiple scattering is first considered. The simplified problem is solved three ways: the obliquity factor, Monte-Carlo, and Fokker-Planck finite-difference. Because of the Doppler effect, skewness occurs in the distribution. It is demonstrated that the obliquity factor does not correctly capture this skewness, but the Monte-Carlo and Fokker-Planck finite-difference approaches do. Here, the obliquity factor and Fokker-Planck finite-difference approaches are then compared inmore » a fuller treatment, which includes the initial Klein-Nishina distribution of the electrons, and the momentum dependence of both drag and scattering. It is found that, in general, the obliquity factor is adequate for most situations. However, as the gamma energy increases and the Klein-Nishina becomes more peaked in the forward direction, skewness in the distribution causes greater disagreement between the obliquity factor and a more accurate model of multiple scattering.« less

  3. Compton scatter tomography in TOF-PET

    NASA Astrophysics Data System (ADS)

    Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis

    2017-10-01

    Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.

  4. Investigation of scattering coefficients and anisotropy factors of human cancerous and normal prostate tissues using Mie theory

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Chen, Jun; Wang, Wubao

    2014-02-01

    The scattering coefficient, μs, the anisotropy factor, g, the scattering phase function, p(θ), and the angular dependence of scattering intensity distributions of human cancerous and normal prostate tissues were systematically investigated as a function of wavelength, scattering angle and scattering particle size using Mie theory and experimental parameters. The Matlab-based codes using Mie theory for both spherical and cylindrical models were developed and applied for studying the light propagation and the key scattering properties of the prostate tissues. The optical and structural parameters of tissue such as the index of refraction of cytoplasm, size of nuclei, and the diameter of the nucleoli for cancerous and normal human prostate tissues obtained from the previous biological, biomedical and bio-optic studies were used for Mie theory simulation and calculation. The wavelength dependence of scattering coefficient and anisotropy factor were investigated in the wide spectral range from 300 nm to 1200 nm. The scattering particle size dependence of μs, g, and scattering angular distributions were studied for cancerous and normal prostate tissues. The results show that cancerous prostate tissue containing larger size scattering particles has more contribution to the forward scattering in comparison with the normal prostate tissue. In addition to the conventional simulation model that approximately considers the scattering particle as sphere, the cylinder model which is more suitable for fiber-like tissue frame components such as collagen and elastin was used for developing a computation code to study angular dependence of scattering in prostate tissues. To the best of our knowledge, this is the first study to deal with both spherical and cylindrical scattering particles in prostate tissues.

  5. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong

    2015-08-01

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.

  6. Protein aggregation studied by forward light scattering and light transmission analysis

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.

    2007-12-01

    The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).

  7. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    PubMed

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  8. Scatter characterization and correction for simultaneous multiple small-animal PET imaging.

    PubMed

    Prasad, Rameshwar; Zaidi, Habib

    2014-04-01

    The rapid growth and usage of small-animal positron emission tomography (PET) in molecular imaging research has led to increased demand on PET scanner's time. One potential solution to increase throughput is to scan multiple rodents simultaneously. However, this is achieved at the expense of deterioration of image quality and loss of quantitative accuracy owing to enhanced effects of photon attenuation and Compton scattering. The purpose of this work is, first, to characterize the magnitude and spatial distribution of the scatter component in small-animal PET imaging when scanning single and multiple rodents simultaneously and, second, to assess the relevance and evaluate the performance of scatter correction under similar conditions. The LabPET™-8 scanner was modelled as realistically as possible using Geant4 Application for Tomographic Emission Monte Carlo simulation platform. Monte Carlo simulations allow the separation of unscattered and scattered coincidences and as such enable detailed assessment of the scatter component and its origin. Simple shape-based and more realistic voxel-based phantoms were used to simulate single and multiple PET imaging studies. The modelled scatter component using the single-scatter simulation technique was compared to Monte Carlo simulation results. PET images were also corrected for attenuation and the combined effect of attenuation and scatter on single and multiple small-animal PET imaging evaluated in terms of image quality and quantitative accuracy. A good agreement was observed between calculated and Monte Carlo simulated scatter profiles for single- and multiple-subject imaging. In the LabPET™-8 scanner, the detector covering material (kovar) contributed the maximum amount of scatter events while the scatter contribution due to lead shielding is negligible. The out-of field-of-view (FOV) scatter fraction (SF) is 1.70, 0.76, and 0.11% for lower energy thresholds of 250, 350, and 400 keV, respectively. The increase in SF ranged between 25 and 64% when imaging multiple subjects (three to five) of different size simultaneously in comparison to imaging a single subject. The spill-over ratio (SOR) increases with increasing the number of subjects in the FOV. Scatter correction improved the SOR for both water and air cold compartments of single and multiple imaging studies. The recovery coefficients for different body parts of the mouse whole-body and rat whole-body anatomical models were improved for multiple imaging studies following scatter correction. The magnitude and spatial distribution of the scatter component in small-animal PET imaging of single and multiple subjects simultaneously were characterized, and its impact was evaluated in different situations. Scatter correction improves PET image quality and quantitative accuracy for single rat and simultaneous multiple mice and rat imaging studies, whereas its impact is insignificant in single mouse imaging.

  9. Effects of the density and homogeneity in NIRS crop moisture estimation

    NASA Astrophysics Data System (ADS)

    Lenzini, Nicola; Rovati, Luigi; Ferrari, Luca

    2017-06-01

    Near-infrared spectroscopy (NIRS) is widely used in fruits and vegetables quality evaluation. This technique is also used for the analysis of alfalfa, a crop that occupies a position of great importance in the agricultural field. In particular for the storage, moisture content is a key parameter for the crops and for this reason its monitoring is very important during the harvesting phase. Usually optical methods like NIRS are well suitable in laboratory frameworks where the specimen is properly prepared, while their application during the harvesting phase presents several diffculties. A lot of influencing factors, such as density and degree of homogeneity can affect the moisture evaluation. In this paper we present the NIRS analysis of alfalfa specimens with different values of moisture and density, as well as the obtained results. To study scattering and absorption phenomena, the forward and backward scattered light from the sample have been spectrally analyzed.

  10. Relativistic Quark Model Based Description of Low Energy NN Scattering

    NASA Astrophysics Data System (ADS)

    Antalik, R.; Lyubovitskij, V. E.

    A model describing the NN scattering phase shifts is developed. Two nucleon interactions induced by meson exchange forces are constructed starting from π, η, η‧ pseudoscalar-, the ρ, ϕ, ω vector-, and the ɛ(600), a0, f0(1400) scalar — meson-nucleon coupling constants, which we obtained within a relativistic quantum field theory based quark model. Working within the Blankenbecler-Sugar-Logunov-Tavkhelidze quasipotential dynamics, we describe the NN phase shifts in a relativistically invariant way. In this procedure we use phenomenological form factor cutoff masses and effective ɛ and ω meson-nucleon coupling constants, only. Resulting NN phase shifts are in a good agreement with both, the empirical data, and the entirely phenomenological Bonn OBEP model fit. While the quality of our description, evaluated as a ratio of our results to the Bonn OBEP model χ2 ones is about 1.2, other existing (semi)microscopic results gave qualitative results only.

  11. X-Ray Form Factor, Attenuation and Scattering Tables

    National Institute of Standards and Technology Data Gateway

    SRD 66 X-Ray Form Factor, Attenuation and Scattering Tables (Web, free access)   This database collects tables and graphs of the form factors, the photoabsorption cross section, and the total attenuation coefficient for any element (Z <= 92).

  12. Morphology-dependent resonances of a microsphere-optical fiber system

    NASA Astrophysics Data System (ADS)

    Griffel, Giora; Arnold, Stephen; Taskent, Dogan; Serpengüzel, Ali; Connolly, John; Morris, Nancy

    1996-05-01

    Morphology-dependent resonances of microspheres sitting upon an index-matched single-mode fiber half-coupler are excited by a tunable 753-nm distributed-feedback laser. Resonance peaks in the scattering spectra and associated dips in the transmission spectra for the TE and TM modes are observed. We present a new model that describes this interaction in terms of the fiber-sphere coupling coefficient and the microsphere's intrinsic quality factor Q0 . This model enables us to obtain expressions for the finesse and the Q factor of the composite particle-fiber system, the resonance width, and the depth of the dips measured in the transmission spectra. Our model shows that index matching improves the coupling efficiency by more than a factor of 2 compared with that of a non-index-matched system.

  13. Morphology-dependent resonances of a microsphere-optical fiber system.

    PubMed

    Griffel, G; Arnold, S; Taskent, D; Serpengüzel, A; Connolly, J; Morris, N

    1996-05-15

    Morphology-dependent resonances of microspheres sitting upon an index-matched single-mode fiber half-coupler are excited by a tunable 753-nm distributed-feedback laser. Resonance peaks in the scattering spectra and associated dips in the transmission spectra for the TE and TM modes are observed. We present a new model that describes this interaction in terms of the fiber-sphere coupling coefficient and the microsphere's intrinsic quality factor Q(0). This model enables us to obtain expressions for the finesse and the Q factor of the composite particle-fiber system, the resonance width, and the depth of the dips measured in the transmission spectra. Our model shows that index matching improves the coupling efficiency by more than a factor of 2 compared with that of a non-index-matched system.

  14. Physics and Computational Methods for X-ray Scatter Estimation and Correction in Cone-Beam Computed Tomography

    NASA Astrophysics Data System (ADS)

    Bootsma, Gregory J.

    X-ray scatter in cone-beam computed tomography (CBCT) is known to reduce image quality by introducing image artifacts, reducing contrast, and limiting computed tomography (CT) number accuracy. The extent of the effect of x-ray scatter on CBCT image quality is determined by the shape and magnitude of the scatter distribution in the projections. A method to allay the effects of scatter is imperative to enable application of CBCT to solve a wider domain of clinical problems. The work contained herein proposes such a method. A characterization of the scatter distribution through the use of a validated Monte Carlo (MC) model is carried out. The effects of imaging parameters and compensators on the scatter distribution are investigated. The spectral frequency components of the scatter distribution in CBCT projection sets are analyzed using Fourier analysis and found to reside predominately in the low frequency domain. The exact frequency extents of the scatter distribution are explored for different imaging configurations and patient geometries. Based on the Fourier analysis it is hypothesized the scatter distribution can be represented by a finite sum of sine and cosine functions. The fitting of MC scatter distribution estimates enables the reduction of the MC computation time by diminishing the number of photon tracks required by over three orders of magnitude. The fitting method is incorporated into a novel scatter correction method using an algorithm that simultaneously combines multiple MC scatter simulations. Running concurrent MC simulations while simultaneously fitting the results allows for the physical accuracy and flexibility of MC methods to be maintained while enhancing the overall efficiency. CBCT projection set scatter estimates, using the algorithm, are computed on the order of 1--2 minutes instead of hours or days. Resulting scatter corrected reconstructions show a reduction in artifacts and improvement in tissue contrast and voxel value accuracy.

  15. Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media

    NASA Astrophysics Data System (ADS)

    Shumyatsky, Pavel; Milione, Giovanni; Alfano, Robert R.

    2014-06-01

    Propagation effects of polarized Laguerre-Gaussian light with different orbital angular momentum (L) in turbid media are described. The optical memory effect in scattering media consisting of small and large size (compared to the wavelength) scatterers is investigated for scattered polarized light. Imaging using polarized laser modes with a varying orbital strength L-parameter was performed. The backscattered image quality (contrast) was enhanced by more than an order of magnitude using circularly polarized light when the concentration of scatterers was close to invisibility of the object.

  16. Measurement of Total Scatter Factor for Stereotactic Cones with Plastic Scintillation Detector

    PubMed Central

    Chaudhari, Suresh H; Dobhal, Rishabh; Kinhikar, Rajesh A.; Kadam, Sudarshan S.; Deshpande, Deepak D.

    2017-01-01

    Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx™ linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be −1.3%, 1.9%, −0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show a high level of consistency within our data and compared well with published data. PMID:28405102

  17. Measurement of Total Scatter Factor for Stereotactic Cones with Plastic Scintillation Detector.

    PubMed

    Chaudhari, Suresh H; Dobhal, Rishabh; Kinhikar, Rajesh A; Kadam, Sudarshan S; Deshpande, Deepak D

    2017-01-01

    Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx ™ linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be -1.3%, 1.9%, -0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show a high level of consistency within our data and compared well with published data.

  18. Improvements of data quality of the LHD Thomson scattering diagnostics in high-temperature plasma experiments.

    PubMed

    Yamada, I; Narihara, K; Funaba, H; Hayashi, H; Kohmoto, T; Takahashi, H; Shimozuma, T; Kubo, S; Yoshimura, Y; Igami, H; Tamura, N

    2010-10-01

    In Large Helical Device (LHD) experiments, an electron temperature (T(e)) more than 15 keV has been observed by the yttrium-aluminum-garnet (YAG) laser Thomson scattering diagnostic. Since the LHD Thomson scattering system has been optimized for the temperature region, 50 eV≤T(e)≤10 keV, the data quality becomes worse in the higher T(e) region exceeding 10 keV. In order to accurately determine T(e) in the LHD high-T(e) experiments, we tried to increase the laser pulse energy by simultaneously firing three lasers. The technique enables us to decrease the uncertainties in the measured T(e). Another signal accumulation method was also tested. In addition, we estimated the influence of high-energy electrons on T(e) obtained by the LHD Thomson scattering system.

  19. Effect of temperature gradient on the optical quality of mercurous chloride crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Davies, D. K.; Gottlieb, M.; Henningsen, T.; Mazelsky, R.

    1989-01-01

    Single crystals of mercurous chloride were grown at temperature gradients of 8, 11 and 17 K/cm by the physical vapor transport method. The optical quality of these crystals was evaluated by measuring bulk scattering and inhomogeneity of refractive index by birefringence interferometry. It was observed that a high temperature gradient at the solid-vapor interface induced thermal stresses and crystals showed higher scattering and irregular fringes.

  20. Asymmetric flow field flow fractionation with light scattering detection - an orthogonal sensitivity analysis.

    PubMed

    Galyean, Anne A; Filliben, James J; Holbrook, R David; Vreeland, Wyatt N; Weinberg, Howard S

    2016-11-18

    Asymmetric flow field flow fractionation (AF 4 ) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF 4 primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2 (5-1) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF 4 instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2 (5-2) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF 4 instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2012-03-01

    A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution, mainly due to the increase in the contribution of coherent scatter with increased spatial variation. Scatter correction using MC-generated scatter distributions demonstrated significant improvement in cupping and streaks. Physical experimentation combined with GPU-accelerated MC simulation provided a sophisticated, yet practical approach in identifying low-dose acquisition techniques, optimizing scatter correction methods, and evaluating patientspecific dose.

  2. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  3. Aerosol Composition and Variability in Baltimore Measured during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Thornhill, K. L.; Winstead, E. L.; Diskin, G. S.; Chatfield, R. B.; Natraj, V.; Anderson, B. E.

    2012-12-01

    In order to relate satellite-based measurements of aerosols to ground-level air quality, the correlation between aerosol optical properties (wavelength-dependent scattering and absorption measured by satellites) and mass measurements of aerosol loading (i.e. PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type (such as composition, size, hygroscopicity, and mass scattering and absorption efficiencies) and to the surrounding atmosphere (such as temperature, relative humidity and altitude). The DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) project was designed to provide a unique dataset for determining variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Extensive in-situ profiling of the lower atmosphere in the Baltimore-Washington D.C. region was performed during fourteen flights during July 2011. Identical flight plans and profile locations throughout the campaign provide meaningful statistics for analysis. Measured aerosol mass was composed primarily of ammonium sulfate (campaign average of 36%) and water-soluble organics (58%). A distinct difference in composition was related to aerosol loading with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 60%). This composition shift causes a change in the water-uptake potential (hygroscopicity) of the aerosols with higher relative organic composition decreasing water-uptake. On average, sulfate mass increased during the day due to increased photochemistry, while organics decreased. Analysis of the linkage between aerosol loading and optical properties was also performed. The absorption by black carbon was dependent on the amount of organic coating with an increase in mass absorption efficiency from 7.5 m2/g for bare soot to 16 m2/g at an organic mass fraction of 70%. The organic fraction was also found to correlate with the absorption Angstrom exponent which is a solely optical measurement. This relationship allows for a possible understanding of aerosol composition based on solely-optical methods (such as satellite-based sensors). Comparison of aerosol composition to scattering indicated significant scattering from non-hydrophilic particles. The origin seemed to be hydrophobic organic material, and the scattering effects were roughly the same magnitude as the water-soluble organics. Such aerosols are not simulated in many air pollution models, and require more field study. 246 profiles were performed at six locations throughout the region. Variability in aerosol scattering (as a proxy for aerosol optical depth) amongst the six sites is dependent on variability in aerosol loading, composition, and relative humidity (the amount of water available for water uptake onto the aerosols). Aerosol loading was found to be the predominant source accounting for 68% on average of the measured variability in scattering with minor contributions from relative humidity (24%) and aerosol composition (8%).

  4. Measurement of absorbed dose with a bone-equivalent extrapolation chamber.

    PubMed

    DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B

    2002-03-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.

  5. Assessment of bruising in fruits using dynamic speckle

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Baldwin-Olguin, Guillermo; Rabal, Hector J.; Arizaga, Ricardo A.; Trivi, Marcelo

    2001-08-01

    When a rough surface changes, its optical properties change also and the scattered light shows intensity fluctuations named dynamic speckle. Fruits, even hard peel ones, shows a speckle activity that can be related to maturity, turgor, damage, aging, and mechanical properties. Many techniques have been sued to study these properties, most of them destructive ones. We present an application of dynamical speckle to the study of impact on apples and the analysis of bruises produced by them. The aim is to correlate physical properties of apples with quality factors.

  6. Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate.

    PubMed

    Rezaei, Ahmadreza; Salvo, Koen; Vahle, Thomas; Panin, Vladimir; Casey, Michael; Boada, Fernando; Defrise, Michel; Nuyts, Johan

    2017-07-24

    Scatter correction is typically done using a simulation of the single scatter, which is then scaled to account for multiple scatters and other possible model mismatches. This scaling factor is determined by fitting the simulated scatter sinogram to the measured sinogram, using only counts measured along LORs that do not intersect the patient body, i.e. 'scatter-tails'. Extending previous work, we propose to scale the scatter with a plane dependent factor, which is determined as an additional unknown in the maximum likelihood (ML) reconstructions, using counts in the entire sinogram rather than only the 'scatter-tails'. The ML-scaled scatter estimates are validated using a Monte-Carlo simulation of a NEMA-like phantom, a phantom scan with typical contrast ratios of a 68 Ga-PSMA scan, and 23 whole-body 18 F-FDG patient scans. On average, we observe a 12.2% change in the total amount of tracer activity of the MLEM reconstructions of our whole-body patient database when the proposed ML scatter scales are used. Furthermore, reconstructions using the ML-scaled scatter estimates are found to eliminate the typical 'halo' artifacts that are often observed in the vicinity of high focal uptake regions.

  7. NOTE: Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT

    NASA Astrophysics Data System (ADS)

    Sohlberg, A.; Watabe, H.; Iida, H.

    2008-07-01

    Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling 99mTc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.

  8. An iterative truncation method for unbounded electromagnetic problems using varying order finite elements

    NASA Astrophysics Data System (ADS)

    Paul, Prakash

    2009-12-01

    The finite element method (FEM) is used to solve three-dimensional electromagnetic scattering and radiation problems. Finite element (FE) solutions of this kind contain two main types of error: discretization error and boundary error. Discretization error depends on the number of free parameters used to model the problem, and on how effectively these parameters are distributed throughout the problem space. To reduce the discretization error, the polynomial order of the finite elements is increased, either uniformly over the problem domain or selectively in those areas with the poorest solution quality. Boundary error arises from the condition applied to the boundary that is used to truncate the computational domain. To reduce the boundary error, an iterative absorbing boundary condition (IABC) is implemented. The IABC starts with an inexpensive boundary condition and gradually improves the quality of the boundary condition as the iteration continues. An automatic error control (AEC) is implemented to balance the two types of error. With the AEC, the boundary condition is improved when the discretization error has fallen to a low enough level to make this worth doing. The AEC has these characteristics: (i) it uses a very inexpensive truncation method initially; (ii) it allows the truncation boundary to be very close to the scatterer/radiator; (iii) it puts more computational effort on the parts of the problem domain where it is most needed; and (iv) it can provide as accurate a solution as needed depending on the computational price one is willing to pay. To further reduce the computational cost, disjoint scatterers and radiators that are relatively far from each other are bounded separately and solved using a multi-region method (MRM), which leads to savings in computational cost. A simple analytical way to decide whether the MRM or the single region method will be computationally cheaper is also described. To validate the accuracy and savings in computation time, different shaped metallic and dielectric obstacles (spheres, ogives, cube, flat plate, multi-layer slab etc.) are used for the scattering problems. For the radiation problems, waveguide excited antennas (horn antenna, waveguide with flange, microstrip patch antenna) are used. Using the AEC the peak reduction in computation time during the iteration is typically a factor of 2, compared to the IABC using the same element orders throughout. In some cases, it can be as high as a factor of 4.

  9. Lasing in strongly scattering dielectric microstructures

    NASA Astrophysics Data System (ADS)

    Florescu, Lucia

    In the first part of this thesis, a detailed analysis of lasing in random multiple-light-scattering media with gain is presented. Random laser emission is analyzed using a time-dependent diffusion model for light propagating in the medium containing active atoms. We demonstrate the effects of scatterers to narrow the emission spectral linewidth and to shorten the emitted pulse duration at a specific threshold pump intensity. This threshold pump intensity decreases with scatterer density and excitation spot diameter, in excellent agreement with experimental results. The coherence properties of the random laser are studied using a generalized master equation. The random laser medium is treated as a collection of low quality-factor cavities, coupled by random photon diffusion. Laser-like coherence, on average, is demonstrated above a specific pumping threshold. We demonstrate that with stronger scattering, the pumping threshold for the transition from chaotic to isotropic coherent light emission decreases and enhanced optical coherence for the emitted light is achieved above threshold. The second part of this thesis presents a study of lasing in photonic crystals (PCs). The emission from an incoherently pumped atomic system in interaction with the electro-magnetic reservoir of a PC is analyzed using a set of generalized semiclassical Maxwell-Bloch equations. We demonstrate that the photonic band edge facilitates the enhancement of stimulated emission and the reduction of internal losses, leading to an important lowering of the laser threshold. In addition, an increase of the laser output at a photonic band edge is demonstrated. We next develop a detailed quantum theory of a coherently pumped two-level atom in a photonic band gap material, coupled to both a multi-mode wave-guide channel and a high-quality micro-cavity embedded within the PC. The cavity field characteristics are highly distinct from that of a corresponding high-Q cavity in ordinary vacuum. We demonstrate enhanced, inversionless, and nearly coherent light generation when the photon density of states (DOS) jump between the Mollow spectral components of atomic resonance fluorescence is large. In the case of a vanishing photon DOS on the lower Mollow sideband and no dipolar dephasing, the emitted photon statistics is Poissonian and the cavity field exhibits quadrature coherence.

  10. Advanced scatter search approach and its application in a sequencing problem of mixed-model assembly lines in a case company

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Wang, Wen-xi; Zhu, Ke-ren; Zhang, Chao-yong; Rao, Yun-qing

    2014-11-01

    Mixed-model assembly line sequencing is significant in reducing the production time and overall cost of production. To improve production efficiency, a mathematical model aiming simultaneously to minimize overtime, idle time and total set-up costs is developed. To obtain high-quality and stable solutions, an advanced scatter search approach is proposed. In the proposed algorithm, a new diversification generation method based on a genetic algorithm is presented to generate a set of potentially diverse and high-quality initial solutions. Many methods, including reference set update, subset generation, solution combination and improvement methods, are designed to maintain the diversification of populations and to obtain high-quality ideal solutions. The proposed model and algorithm are applied and validated in a case company. The results indicate that the proposed advanced scatter search approach is significant for mixed-model assembly line sequencing in this company.

  11. Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.

  12. Ab initio calculation of the ion feature in x-ray Thomson scattering.

    PubMed

    Plagemann, Kai-Uwe; Rüter, Hannes R; Bornath, Thomas; Shihab, Mohammed; Desjarlais, Michael P; Fortmann, Carsten; Glenzer, Siegfried H; Redmer, Ronald

    2015-07-01

    The spectrum of x-ray Thomson scattering is proportional to the dynamic structure factor. An important contribution is the ion feature which describes elastic scattering of x rays off electrons. We apply an ab initio method for the calculation of the form factor of bound electrons, the slope of the screening cloud of free electrons, and the ion-ion structure factor in warm dense beryllium. With the presented method we can calculate the ion feature from first principles. These results will facilitate a better understanding of x-ray scattering in warm dense matter and an accurate measurement of ion temperatures which would allow determining nonequilibrium conditions, e.g., along shock propagation.

  13. Explaining the Effect of a Grid by Using an Optical Analog to an X-ray Radiographic Imaging System

    ERIC Educational Resources Information Center

    Honnicke, M. G.; Gavinho, L.; Cusatis, C.

    2008-01-01

    Compton scattering and diffuse scattering degenerate the contrast in radiographic images. To avoid such scattering effects, a grid, between the patient and the film is currently used to improve the image quality. Teaching this topic to medical physics students requires demonstration experiments. In this paper, an optical analog to an x-ray…

  14. Determining appropriate imaging parameters for kilovoltage intrafraction monitoring: an experimental phantom study

    NASA Astrophysics Data System (ADS)

    Wallace, D.; Ng, J. A.; Keall, P. J.; O'Brien, R. T.; Poulsen, P. R.; Juneja, P.; Booth, J. T.

    2015-06-01

    Kilovoltage intrafraction monitoring (KIM) utilises the kV imager during treatment for real-time tracking of prostate fiducial markers. However, its effectiveness relies on sufficient image quality for the fiducial tracking task. To guide the performance characterisation of KIM under different clinically relevant conditions, the effect of different kV parameters and patient size on image quality, and quantification of MV scatter from the patient to the kV detector panel were investigated in this study. Image quality was determined for a range of kV acquisition frame rates, kV exposure, MV dose rates and patient sizes. Two methods were used to determine image quality; the ratio of kV signal through the patient to the MV scatter from the patient incident on the kilovoltage detector, and the signal-to-noise ratio (SNR). The effect of patient size and frame rate on MV scatter was evaluated in a homogeneous CIRS pelvis phantom and marker segmentation was determined utilising the Rando phantom with embedded markers. MV scatter incident on the detector was shown to be dependent on patient thickness and frame rate. The segmentation code was shown to be successful for all frame rates above 3 Hz for the Rando phantom corresponding to a kV to MV ratio of 0.16 and an SNR of 1.67. For a maximum patient dimension less than 36.4 cm the conservative kV parameters of 5 Hz at 1 mAs can be used to reduce dose while retaining image quality, where the current baseline kV parameters of 10 Hz at 1 mAs is shown to be adequate for marker segmentation up to a patient dimension of 40 cm. In conclusion, the MV scatter component of image quality noise for KIM has been quantified. For most prostate patients, use of KIM with 10 Hz imaging at 1 mAs is adequate however image quality can be maintained and imaging dose reduced by altering existing acquisition parameters.

  15. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    PubMed

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu

    2012-07-31

    Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that themore » LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.« less

  17. TU-F-CAMPUS-T-02: Risk Assessment of Scattered Neutrons for a Fetus From Proton Therapy of a Brain Tumor During Pregnancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Moteabbed, M

    Purpose: To determine the scattered neutron dose and the resulting risk for a fetus from proton therapy for brain tumors during pregnancy. Methods: Using the Monte Carlo platform TOPAS, the ICRP reference parameters based anthropomorphic pregnancy phantoms for three stages (3-, 6-, 9-month) were applied to evaluate the scattered neutron dose and dose equivalent. To calculate the dose equivalent, organ specific linear energy transfer (LET) based quality factor was used. Treatment plans from both passive scattering (PS) and pencil beam scanning (PBS) methods were considered in this study. Results: For pencil beam scanning, the neutron dose equivalent in the softmore » tissue of the fetus increases from 1.53x10−{sup 3} to 2.84x10−{sup 3} mSv per treatment Gy with increasing stage of gestation. This is due to scattered neutrons from the patient as the main contaminant source in PBS and a decrease in distance between the soft tissue of the fetus and GTV with increasing stage of gestation. For passive scattering, neutron dose equivalent to the soft tissue of the fetus shows a decrease from 0.17 to 0.13 mSv per treatment Gy in different stages, while the dose to the brain shows little difference around 0.18 mSv per treatment Gy because scattered neutrons from the treatment head contribute predominantly in passive scattering. Conclusion: The results show that the neutron dose to the fetus assuming a prescribed dose of 52.2 Gy is negligible for PBS, and is comparable to the scattered dose (0–10 mSv) from a head and neck CT scan for PS. It can be concluded that the dose to fetus is far lower than the thresholds of malformation, SMR and lethal death. The excess relative risk of childhood cancer induction would be increased by 0.48 and 0.103 using the Oxford Survey of Childhood Cancers and Japanese atomic model, respectively. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)« less

  18. High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid

    NASA Astrophysics Data System (ADS)

    Jia, Jin-Liang; Xu, Han-Hong; Zhang, Gui-Rong; Hu, Zhun; Xu, Bo-Qing

    2012-12-01

    Nearly monodisperse Au nanorods (NRs) with different aspect ratios were separated from home-synthesized polydisperse samples using a gradient centrifugation method. The morphology, size and its distribution, and photo-absorption property were analyzed by transmission electron microscopy, atomic force microscopy and UV-visible spectroscopy. Subsequently, using colloidal Au NRs (36.2 nm ×10.7 nm) with 97.4% yield after centrifugation and Au nanospheres (NSs) (22.9 ± 1.0 nm in diameter) with 97.6% yield as Au substrates, surface-enhanced Raman scattering (SERS) spectra of 2,4-dichlorophenoxyacetic acid (2,4-D) were recorded using laser excitation at 632.8 nm. Results show that surface enhancement factors (EF) for Au NRs and NSs are 6.2 × 105 and 5.7 × 104 using 1.0 × 10-6 M 2,4-D, respectively, illustrating that EF value is a factor of ˜10 greater for Au NRs substrates than for Au NSs substrates. As a result, large EF are a mainly result of chemical enhancement mechanisms. Thus, it is expected that Au NPs can find a comprehensive SERS application in the trace detection of pesticide residues.

  19. High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Jia, Jin-Liang; Xu, Han-Hong; Zhang, Gui-Rong; Hu, Zhun; Xu, Bo-Qing

    2012-12-14

    Nearly monodisperse Au nanorods (NRs) with different aspect ratios were separated from home-synthesized polydisperse samples using a gradient centrifugation method. The morphology, size and its distribution, and photo-absorption property were analyzed by transmission electron microscopy, atomic force microscopy and UV-visible spectroscopy. Subsequently, using colloidal Au NRs (36.2 nm ×10.7 nm) with 97.4% yield after centrifugation and Au nanospheres (NSs) (22.9 ± 1.0 nm in diameter) with 97.6% yield as Au substrates, surface-enhanced Raman scattering (SERS) spectra of 2,4-dichlorophenoxyacetic acid (2,4-D) were recorded using laser excitation at 632.8 nm. Results show that surface enhancement factors (EF) for Au NRs and NSs are 6.2 × 10(5) and 5.7 × 10(4) using 1.0 × 10(-6) M 2,4-D, respectively, illustrating that EF value is a factor of ~10 greater for Au NRs substrates than for Au NSs substrates. As a result, large EF are a mainly result of chemical enhancement mechanisms. Thus, it is expected that Au NPs can find a comprehensive SERS application in the trace detection of pesticide residues.

  20. Variance-reduction normalization technique for a compton camera system

    NASA Astrophysics Data System (ADS)

    Kim, S. M.; Lee, J. S.; Kim, J. H.; Seo, H.; Kim, C. H.; Lee, C. S.; Lee, S. J.; Lee, M. C.; Lee, D. S.

    2011-01-01

    For an artifact-free dataset, pre-processing (known as normalization) is needed to correct inherent non-uniformity of detection property in the Compton camera which consists of scattering and absorbing detectors. The detection efficiency depends on the non-uniform detection efficiency of the scattering and absorbing detectors, different incidence angles onto the detector surfaces, and the geometry of the two detectors. The correction factor for each detected position pair which is referred to as the normalization coefficient, is expressed as a product of factors representing the various variations. The variance-reduction technique (VRT) for a Compton camera (a normalization method) was studied. For the VRT, the Compton list-mode data of a planar uniform source of 140 keV was generated from a GATE simulation tool. The projection data of a cylindrical software phantom were normalized with normalization coefficients determined from the non-uniformity map, and then reconstructed by an ordered subset expectation maximization algorithm. The coefficient of variations and percent errors of the 3-D reconstructed images showed that the VRT applied to the Compton camera provides an enhanced image quality and the increased recovery rate of uniformity in the reconstructed image.

  1. Laplace Transform Based Radiative Transfer Studies

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.

    2006-12-01

    Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.

  2. Natural and anthropogenic factors affecting the groundwater quality in Serbia.

    PubMed

    Devic, Gordana; Djordjevic, Dragana; Sakan, Sanja

    2014-01-15

    Various chemometric techniques were used to analyze the quality of groundwater data sets. Seventeen water quality parameters: the cations Na, K, Ca, Mg, the anions Cl, SO4, NO3, HCO3 and nine trace elements Pb, As, Mn, Ni, Cu, Cd, Fe, Zn and Cr were measured at 66 different key sampling sites in ten representative areas (low land-Northern Autonomous Province of Serbia, Vojvodina and central Serbia) for the summer period of 2009. HCA grouped the sample sites into four clusters based on the similarities of the characteristics of the groundwater quality. DA showed two parameters, HCO3 and Zn, affording more than 90% correct assignments in the spatial analysis of four/three different regions in Serbia. Factor analysis was applied on the log-transformed data sets and allowed the identification of a reduced number of factors with hydrochemical meaning. The results showed severe pollution with Mn, As, NO3, Ni, Pb whereby anthropogenic origin of these contaminants was indicated. The pollution comes from both scattered point sources (industrial and urban effluent) and diffuse source agricultural activity. These samples may not be suitable for human consumption; the water quality belongs to class III/IV (contaminated). The Fe anomalies (7.1mg/L) in the water from the Vetrnica site can be attributed to natural sources, such as the dissolution of rock masses and rock fragments. The serious groundwater contamination with As (25.7-137.8 μg/L) in the area of Banat (Northern Autonomous Province of Serbia, Vojvodina) and a sample No. 9 at the Great Morava River requires urgent attention. © 2013.

  3. Scatter of X-rays on polished surfaces

    NASA Technical Reports Server (NTRS)

    Hasinger, G.

    1981-01-01

    In investigating the dispersion properties of telescope mirrors used in X-ray astronomy, the slight scattering characteristics of X-ray radiation by statistically rough surfaces were examined. The mathematics and geometry of scattering theory are described. The measurement test assembly is described and results of measurements on samples of plane mirrors are given. Measurement results are evaluated. The direct beam, the convolution of the direct beam and the scattering halo, curve fitting by the method of least squares, various autocorrelation functions, results of the fitting procedure for small scattering, and deviations in the kernel of the scattering distribution are presented. A procedure for quality testing of mirror systems through diagnosis of rough surfaces is described.

  4. Correction of autofluorescence intensity for epithelial scattering by optical coherence tomography: a phantom study

    NASA Astrophysics Data System (ADS)

    Pahlevaninezhad, H.; Lee, A. M. D.; Hyun, C.; Lam, S.; MacAulay, C.; Lane, P. M.

    2013-03-01

    In this paper, we conduct a phantom study for modeling the autofluorescence (AF) properties of tissue. A combined optical coherence tomography (OCT) and AF imaging system is proposed to measure the strength of the AF signal in terms of the scattering layer thickness and concentration. The combined AF-OCT system is capable of estimating the AF loss due to scattering in the epithelium using the thickness and scattering concentration calculated from the co-registered OCT images. We define a correction factor to account for scattering losses in the epithelium and calculate a scatteringcorrected AF signal. We believe the scattering-corrected AF will reduce the diagnostic false-positives rate in the early detection of airway lesions due to confounding factors such as increased epithelial thickness and inflammations.

  5. Clinical Evaluation of 68Ga-PSMA-II and 68Ga-RM2 PET Images Reconstructed With an Improved Scatter Correction Algorithm.

    PubMed

    Wangerin, Kristen A; Baratto, Lucia; Khalighi, Mohammad Mehdi; Hope, Thomas A; Gulaka, Praveen K; Deller, Timothy W; Iagaru, Andrei H

    2018-06-06

    Gallium-68-labeled radiopharmaceuticals pose a challenge for scatter estimation because their targeted nature can produce high contrast in these regions of the kidneys and bladder. Even small errors in the scatter estimate can result in washout artifacts. Administration of diuretics can reduce these artifacts, but they may result in adverse events. Here, we investigated the ability of algorithmic modifications to mitigate washout artifacts and eliminate the need for diuretics or other interventions. The model-based scatter algorithm was modified to account for PET/MRI scanner geometry and challenges of non-FDG tracers. Fifty-three clinical 68 Ga-RM2 and 68 Ga-PSMA-11 whole-body images were reconstructed using the baseline scatter algorithm. For comparison, reconstruction was also processed with modified sampling in the single-scatter estimation and with an offset in the scatter tail-scaling process. None of the patients received furosemide to attempt to decrease the accumulation of radiopharmaceuticals in the bladder. The images were scored independently by three blinded reviewers using the 5-point Likert scale. The scatter algorithm improvements significantly decreased or completely eliminated the washout artifacts. When comparing the baseline and most improved algorithm, the image quality increased and image artifacts were reduced for both 68 Ga-RM2 and for 68 Ga-PSMA-11 in the kidneys and bladder regions. Image reconstruction with the improved scatter correction algorithm mitigated washout artifacts and recovered diagnostic image quality in 68 Ga PET, indicating that the use of diuretics may be avoided.

  6. 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update

    PubMed Central

    Duff, Anthony P.; Durand, Dominique; Gabel, Frank; Hendrickson, Wayne A.; Hura, Greg L.; Jacques, David A.; Kirby, Nigel M.; Kwan, Ann H.; Pérez, Javier; Pollack, Lois; Ryan, Timothy M.; Sali, Andrej; Schneidman-Duhovny, Dina; Vachette, Patrice; Westbrook, John

    2017-01-01

    In 2012, preliminary guidelines were published addressing sample quality, data acquisition and reduction, presentation of scattering data and validation, and modelling for biomolecular small-angle scattering (SAS) experiments. Bio­molecular SAS has since continued to grow and authors have increasingly adopted the preliminary guidelines. In parallel, integrative/hybrid determination of biomolecular structures is a rapidly growing field that is expanding the scope of structural biology. For SAS to contribute maximally to this field, it is essential to ensure open access to the information required for evaluation of the quality of SAS samples and data, as well as the validity of SAS-based structural models. To this end, the preliminary guidelines for data presentation in a publication are reviewed and updated, and the deposition of data and associated models in a public archive is recommended. These guidelines and recommendations have been prepared in consultation with the members of the International Union of Crystallography (IUCr) Small-Angle Scattering and Journals Commissions, the Worldwide Protein Data Bank (wwPDB) Small-Angle Scattering Validation Task Force and additional experts in the field. PMID:28876235

  7. An investigation of accelerator head scatter and output factor in air.

    PubMed

    Ding, George X

    2004-09-01

    Our purpose in this study was to investigate whether the Monte Carlo simulation can accurately predict output factors in air. Secondary goals were to study the head scatter components and investigate the collimator exchange effect. The Monte Carlo code, BEAMnrc, was used in the study. Photon beams of 6 and 18 MV were from a Varian Clinac 2100EX accelerator and the measurements were performed using an ionization chamber in a mini-phantom. The Monte Carlo calculated in air output factors was within 1% of measured values. The simulation provided information of the origin and the magnitude of the collimator exchange effect. It was shown that the collimator backscatter to the beam monitor chamber played a significant role in the beam output factors. However the magnitude of the scattered dose contributions from the collimator at the isocenter is negligible. The maximum scattered dose contribution from the collimators was about 0.15% and 0.4% of the total dose at the isocenter for a 6 and 18 MV beam, respectively. The scattered dose contributions from the flattening filter at the isocenter were about 0.9-3% and 0.2-6% of the total dose for field sizes of 4x4 cm2-40x40 cm2 for the 6 and 18 MV beam, respectively. The study suggests that measurements of head scatter factors be done at large depth well beyond the depth of electron contamination. The insight information may have some implications for developing generalized empirical models to calculate the head scatter.

  8. Extrinsic extinction cross-section in the multiple acoustic scattering by fluid particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-04-01

    Cross-sections (and their related energy efficiency factors) are physical parameters used in the quantitative analysis of different phenomena arising from the interaction of waves with a particle (or multiple particles). Earlier works with the acoustic scattering theory considered such quadratic (i.e., nonlinear) quantities for a single scatterer, although a few extended the formalism for a pair of scatterers but were limited to the scattering cross-section only. Therefore, the standard formalism applied to viscous particles is not suitable for the complete description of the cross-sections and energy balance of the multiple-particle system because both absorption and extinction phenomena arise during the multiple scattering process. Based upon the law of the conservation of energy, this work provides a complete comprehensive analysis for the extrinsic scattering, absorption, and extinction cross-sections (i.e., in the far-field) of a pair of viscous scatterers of arbitrary shape, immersed in a nonviscous isotropic fluid. A law of acoustic extinction taking into consideration interparticle effects in wave propagation is established, which constitutes a generalized form of the optical theorem in multiple scattering. Analytical expressions for the scattering, absorption, and extinction cross-sections are derived for plane progressive waves with arbitrary incidence. The mathematical expressions are formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. The analysis shows that the multiple scattering cross-section depends upon the expansion coefficients of both scatterers in addition to an interference factor that depends on the interparticle distance. However, the extinction cross-section depends on the expansion coefficients of the scatterer located in a particular system of coordinates, in addition to the interference term. Numerical examples illustrate the analysis for two viscous fluid circular cylindrical cross-sections immersed in a non-viscous fluid. Computations for the (non-dimensional) scattering, absorption, and extinction cross-section factors are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes, and the physical properties of the particles. A symmetric behavior is observed for the dimensionless multiple scattering cross-section, while asymmetries arise for both the dimensionless absorption and extinction cross-sections with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of cross-section and energy efficiency factors in multiple acoustic scattering of plane waves of arbitrary incidence by a pair of scatterers. The results can be used as a priori information in the direct or inverse characterization of multiple scattering systems such as acoustically engineered fluid metamaterials with reconfigurable periodicities, cloaking devices, liquid crystals, and other applications.

  9. Inverse scattering pre-stack depth imaging and it's comparison to some depth migration methods for imaging rich fault complex structure

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal

    2012-06-01

    Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.

  10. Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate

    NASA Astrophysics Data System (ADS)

    Rezaei, Ahmadreza; Salvo, Koen; Vahle, Thomas; Panin, Vladimir; Casey, Michael; Boada, Fernando; Defrise, Michel; Nuyts, Johan

    2017-08-01

    Scatter correction is typically done using a simulation of the single scatter, which is then scaled to account for multiple scatters and other possible model mismatches. This scaling factor is determined by fitting the simulated scatter sinogram to the measured sinogram, using only counts measured along LORs that do not intersect the patient body, i.e. ‘scatter-tails’. Extending previous work, we propose to scale the scatter with a plane dependent factor, which is determined as an additional unknown in the maximum likelihood (ML) reconstructions, using counts in the entire sinogram rather than only the ‘scatter-tails’. The ML-scaled scatter estimates are validated using a Monte-Carlo simulation of a NEMA-like phantom, a phantom scan with typical contrast ratios of a 68Ga-PSMA scan, and 23 whole-body 18F-FDG patient scans. On average, we observe a 12.2% change in the total amount of tracer activity of the MLEM reconstructions of our whole-body patient database when the proposed ML scatter scales are used. Furthermore, reconstructions using the ML-scaled scatter estimates are found to eliminate the typical ‘halo’ artifacts that are often observed in the vicinity of high focal uptake regions.

  11. Electron scattering intensities and Patterson functions of Skyrmions

    NASA Astrophysics Data System (ADS)

    Karliner, M.; King, C.; Manton, N. S.

    2016-06-01

    The scattering of electrons off nuclei is one of the best methods of probing nuclear structure. In this paper we focus on electron scattering off nuclei with spin and isospin zero within the Skyrme model. We consider two distinct methods and simplify our calculations by use of the Born approximation. The first method is to calculate the form factor of the spherically averaged Skyrmion charge density; the second uses the Patterson function to calculate the scattering intensity off randomly oriented Skyrmions, and spherically averages at the end. We compare our findings with experimental scattering data. We also find approximate analytical formulae for the first zero and first stationary point of a form factor.

  12. Thermoelectric power factor enhancement by ionized nanoparticle scattering

    NASA Astrophysics Data System (ADS)

    Bahk, Je-Hyeong; Bian, Zhixi; Zebarjadi, Mona; Santhanam, Parthiban; Ram, Rajeev; Shakouri, Ali

    2011-08-01

    We show theoretically that the thermoelectric power factor can be enhanced in degenerate semiconductors when embedded nanoparticles donate carriers to the matrix and replace conventional impurity dopants as scattering centers. Nanoparticle scattering rates calculated by the partial wave method indicate a mobility enhancement over materials with equivalent doping by isolated ionized impurities while the Seebeck coefficient remains nearly intact. We find that the thermoelectric power factor of In0.53Ga0.47As from 300 K to 800 K is enhanced by 15% - 30% by nanoparticles 3-4 nm in diameter.

  13. Time course of optical quality and intraocular scattering after refractive lenticule extraction.

    PubMed

    Kamiya, Kazutaka; Shimizu, Kimiya; Igarashi, Akihito; Kobashi, Hidenaga

    2013-01-01

    To assess the time course of optical quality and intraocular scattering in relation to visual acuity after femtosecond lenticule extraction (FLEx) for the correction of myopia. This study evaluated 36 eyes of 36 patients with spherical equivalents of -4.38±1.53 D [mean ± standard deviation] who underwent FLEx. Before surgery, and 1 week and 1, 3 and 6 months after surgery, we assessed the modulation transfer function (MTF) cutoff frequency, Strehl ratio, objective scattering index (OSI), and OQAS values (OVs), using a double-pass instrument. We also investigated the relationship of the OSI with corrected distance visual acuity (CDVA) preoperatively and postoperatively. The mean changes in MTF cutoff frequency, Strehl ratio, OSI, OV100%, OV20%, and OV9% preoperatively and 6 months postoperatively were -5.51 ± 15.01, -0.03 ± 0.07, 0.35 ± 0.83, -0.17 ± 0.48, -0.14 ± 0.38, and -0.09 ± 0.22, respectively. We found no significant preoperative correlation between the OSI and logMAR CDVA (Spearman rank correlation coefficient r = 0.068, p = 0.69), and modest, but significant correlations 1 week and 1, 3, and 6 months postoperatively (r = 0.572, r = 0.562, r = 0.542, r = 0.540, p<0.001, respectively). FLEx induced a transient decrease in optical quality in association with an increase in intraocular scattering in the early postoperative period, possibly due to mild interface haze formation, but gradually recovered with time. It is suggested that this transient degradation in optical quality related to an increase in the intraocular scattering may result in a slight delay of CDVA recovery in the early postoperative period.

  14. Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films

    NASA Astrophysics Data System (ADS)

    Preissler, Natalie; Bierwagen, Oliver; Ramu, Ashok T.; Speck, James S.

    2013-08-01

    A comprehensive study of the room-temperature electrical and electrothermal transport of single-crystalline indium oxide (In2O3) and indium tin oxide (ITO) films over a wide range of electron concentrations is reported. We measured the room-temperature Hall mobility μH and Seebeck coefficient S of unintentionally doped and Sn-doped high-quality, plasma-assisted molecular-beam-epitaxy-grown In2O3 for volume Hall electron concentrations nH from 7×1016 cm-3 (unintentionally doped) to 1×1021 cm-3 (highly Sn-doped, ITO). The resulting empirical S(nH) relation can be directly used in other In2O3 samples to estimate the volume electron concentration from simple Seebeck coefficient measurements. The mobility and Seebeck coefficient were modeled by a numerical solution of the Boltzmann transport equation. Ionized impurity scattering and polar optical phonon scattering were found to be the dominant scattering mechanisms. Acoustic phonon scattering was found to be negligible. Fitting the temperature-dependent mobility above room temperature of an In2O3 film with high mobility allowed us to find the effective Debye temperature (ΘD=700 K) and number of phonon modes (NOPML=1.33) that best describe the polar optical phonon scattering. The modeling also yielded the Hall scattering factor rH as a function of electron concentration, which is not negligible (rH≈1.4) at nondegenerate electron concentrations. Fitting the Hall-scattering-factor corrected concentration-dependent Seebeck coefficient S(n) for nondegenerate samples to the numerical solution of the Boltzmann transport equation and to widely used, simplified equations allowed us to extract an effective electron mass of m*=(0.30±0.03)me (with free electron mass me). The modeled mobility and Seebeck coefficient based on polar optical phonon and ionized impurity scattering describes the experimental results very accurately up to electron concentrations of 1019 cm-3, and qualitatively explains a mobility plateau or local maximum around 1020 cm-3. Ionized impurity scattering with doubly charged donors best describes the mobility in our unintentionally doped films, consistent with oxygen vacancies as unintentional shallow donors, whereas singly charged donors best describe our Sn-doped films. Our modeling yields a (phonon-limited) maximum theoretical drift mobility and Hall mobility of μ=190 cm2/Vs and μH=270 cm2/Vs, respectively. Simplified equations for the Seebeck coefficient describe the measured values in the nondegenerate regime using a Seebeck scattering parameter of r=-0.55 (which is consistent with the determined Debye temperature), and provide an estimate of the Seebeck coefficient to lower electron concentrations. The simplified equations fail to describe the Seebeck coefficient around the Mott transition (nMott=5.5×1018 cm-3) from nondegenerate to degenerate electron concentrations, whereas the numerical modeling accurately describes this region.

  15. Improved scatter correction with factor analysis for planar and SPECT imaging

    NASA Astrophysics Data System (ADS)

    Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw

    2017-09-01

    Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user-independent approach for scatter correction in nuclear medicine.

  16. Investigation on Beam-Blocker-Based Scatter Correction Method for Improving CT Number Accuracy

    NASA Astrophysics Data System (ADS)

    Lee, Hoyeon; Min, Jonghwan; Lee, Taewon; Pua, Rizza; Sabir, Sohail; Yoon, Kown-Ha; Kim, Hokyung; Cho, Seungryong

    2017-03-01

    Cone-beam computed tomography (CBCT) is gaining widespread use in various medical and industrial applications but suffers from substantially larger amount of scatter than that in the conventional diagnostic CT resulting in relatively poor image quality. Various methods that can reduce and/or correct for the scatter in the CBCT have therefore been developed. Scatter correction method that uses a beam-blocker has been considered a direct measurement-based approach providing accurate scatter estimation from the data in the shadows of the beam-blocker. To the best of our knowledge, there has been no record reporting the significance of the scatter from the beam-blocker itself in such correction methods. In this paper, we identified the scatter from the beam-blocker that is detected in the object-free projection data investigated its influence on the image accuracy of CBCT reconstructed images, and developed a scatter correction scheme that takes care of this scatter as well as the scatter from the scanned object.

  17. Quasiparticle properties at microwave frequencies in the underdoped YBa2Cu3O7-δ thin films

    NASA Astrophysics Data System (ADS)

    Hsing, Lai

    2004-03-01

    Microstrip ring resonators with quality factor (Q) over 10^4 at temperature 5 K were fabricated using the double-side YBa_2Cu_3O_7-δ (YBCO) films deposited on LaAlO3 (LAO) substrates. By placing a narrow gap in the ring resonator, the original fundamental resonating mode (3.61 GHz) splits into two modes (1.80 GHz and 5.33 GHz) with distinct resonating frequencies. The samples allow us to determine the temperature and the frequency dependences of penetration depth and microwave conductivity for various underdoped-cuprates by using Drude formula and the modified two-fluid model. The natures of the order parameter of high-Tc superconductivity in the underdoped cases are shown to be of d-wave type in an exact manner. In particular, the Fermi-liquid correction factor α ^2 and the vertex correction factor β from the model, proposed by Wen and Lee, can be estimated that α ^2 is doping independent in the underdoped regime and β decreases as oxygen content is decreasing in our experiment data. All these results are independent of frequencies as well. The results reveal that the interaction between quasiparticles is insensitive dependence of the impurity concentrations due to oxygen deficiency on the CuO chain and the impurity potential for forward scattering approaches the same as back scattering with more oxygen deficiency.

  18. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive inmore » previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition scenarios. Parameters used in the phantom study weret{sub cup} for nonuniformity and contrast-to-noise ratio (CNR) for soft tissue visibility. Clinical scans were evaluated in an observer study in which four experienced radiotherapy technologists rated soft tissue visibility and uniformity of scans with and without the grid. Results: The proposed angle dependent gain correction algorithm suppressed the visible ring artifacts. Grid had a beneficial impact on nonuniformity, contrast to noise ratio, and Hounsfield unit accuracy for both scanning geometries. The nonuniformity reduced by 90% for head sized object and 91% for pelvic-sized object. CNR improved compared to no corrections on average by a factor 2.8 for the head sized object, and 2.2 for the pelvic sized phantom. Grid outperformed software correction alone, but adding additional software correction to the grid was overall the best strategy. In the observer study, a significant improvement was found in both soft tissue visibility and nonuniformity of scans when grid is used. Conclusions: The evaluated fiber-interspaced grid improved the image quality of the CBCT system for broad range of imaging conditions. Clinical scans show significant improvement in soft tissue visibility and uniformity without the need to increase the imaging dose.« less

  19. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.

    PubMed

    Stankovic, Uros; van Herk, Marcel; Ploeger, Lennert S; Sonke, Jan-Jakob

    2014-06-01

    Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition scenarios. Parameters used in the phantom study were t(cup) for nonuniformity and contrast-to-noise ratio (CNR) for soft tissue visibility. Clinical scans were evaluated in an observer study in which four experienced radiotherapy technologists rated soft tissue visibility and uniformity of scans with and without the grid. The proposed angle dependent gain correction algorithm suppressed the visible ring artifacts. Grid had a beneficial impact on nonuniformity, contrast to noise ratio, and Hounsfield unit accuracy for both scanning geometries. The nonuniformity reduced by 90% for head sized object and 91% for pelvic-sized object. CNR improved compared to no corrections on average by a factor 2.8 for the head sized object, and 2.2 for the pelvic sized phantom. Grid outperformed software correction alone, but adding additional software correction to the grid was overall the best strategy. In the observer study, a significant improvement was found in both soft tissue visibility and nonuniformity of scans when grid is used. The evaluated fiber-interspaced grid improved the image quality of the CBCT system for broad range of imaging conditions. Clinical scans show significant improvement in soft tissue visibility and uniformity without the need to increase the imaging dose.

  20. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  1. Improving accuracy of cell and chromophore concentration measurements using optical density

    PubMed Central

    2013-01-01

    Background UV–vis spectrophotometric optical density (OD) is the most commonly-used technique for estimating chromophore formation and cell concentration in liquid culture. OD wavelength is often chosen with little thought given to its effect on the quality of the measurement. Analysis of the contributions of absorption and scattering to the measured optical density provides a basis for understanding variability among spectrophotometers and enables a quantitative evaluation of the applicability of the Beer-Lambert law. This provides a rational approach for improving the accuracy of OD measurements used as a proxy for direct dry weight (DW), cell count, and pigment levels. Results For pigmented organisms, the choice of OD wavelength presents a tradeoff between the robustness and the sensitivity of the measurement. The OD at a robust wavelength is primarily the result of light scattering and does not vary with culture conditions; whereas, the OD at a sensitive wavelength is additionally dependent on light absorption by the organism’s pigments. Suitably robust and sensitive wavelengths are identified for a wide range of organisms by comparing their spectra to the true absorption spectra of dyes. The relative scattering contribution can be reduced either by measurement at higher OD, or by the addition of bovine serum albumin. Reduction of scattering or correlation with off-peak light attenuation provides for more accurate assessment of chromophore levels within cells. Conversion factors between DW, OD, and colony-forming unit density are tabulated for 17 diverse organisms to illustrate the scope of variability of these correlations. Finally, an inexpensive short pathlength LED-based flow cell is demonstrated for the online monitoring of growth in a bioreactor at culture concentrations greater than 5 grams dry weight per liter which would otherwise require off-line dilutions to obtain non-saturated OD measurements. Conclusions OD is most accurate as a time-saving proxy measurement for biomass concentration when light attenuation is dominated by scattering. However, the applicability of OD-based correlations is highly dependent on the measurement specifications (spectrophotometer model and wavelength) and culture conditions (media type; growth stage; culture stress; cell/colony geometry; presence and concentration of secreted compounds). These variations highlight the importance of treating literature conversion factors as rough approximations as opposed to concrete constants. There is an opportunity to optimize measurements of cell pigment levels by considering scattering and absorption-dependent wavelengths of the OD spectrum. PMID:24499615

  2. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisniega, A; Zbijewski, W; Stayman, J

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced formore » additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain trauma imaging at the point of care in sports and military applications. Research grant from Carestream Health. JY is an employee of Carestream Health.« less

  3. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering.

    PubMed

    Dvoynenko, Mykhaylo M; Wang, Juen-Kai

    2007-12-15

    The authors report two methods to determine electromagnetic and chemical enhancement factors in surface-enhanced Raman scattering (SERS), which are based on saturation property and decay dynamics of photoluminescence and concurrent measurements of photoluminescence and resonance Raman scattering intensities. Considerations for experimental implementation are discussed. This study is expected to facilitate the understanding of SERS mechanisms and the advancement of the usage of SERS in chemical and biological sensor applications.

  4. Neodymium glass laser with a phase conjugate mirror producing 220 J pulses at 0.02 Hz repetition rate.

    PubMed

    Kuzmin, A A; Khazanov, E A; Kulagin, O V; Shaykin, A A

    2014-08-25

    For pumping multipetawatt Ti:sapphire laser facilities we developed a compact repetitively pulsed laser based on neodymium phosphate glass with pulse energy of 220 J, pulse repetition rate of 0.02 Hz, beam diameter of 43 mm, aperture fill factor of 0.8, and FWHM pulse duration of 30 ns. The phase distortions of laser radiation were compensated by optical phase conjugation via stimulated Brillouin scattering. The depolarization was reduced to 0.4% using linear compensation methods. The beam quality was 2.5 x diffraction limit (150 µrad).

  5. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne

    2010-01-15

    Purpose: In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. Methods: Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector insidemore » a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. Results: The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with depth. Conclusions: The dose deposited immediately downstream of the primary field, in these cases, is dominated by internally produced neutrons; therefore, scattered and scanned fields may have similar risk of second cancer in this region. The authors confirm that there is a reduction in the out-of-field dose in active scanning but the effect decreases with depth. GEANT4 is suitable for simulating the dose deposited outside the primary field. The agreement with measurements is comparable to or better than the agreement reported for other implementations of Monte Carlo models. Depending on the position, the absorbed dose outside the primary field is dominated by contributions from primary protons that may or may not have scattered in the brass collimating devices. This is noteworthy as the quality factor of the low LET protons is well known and the relative dose risk in this region can thus be assessed accurately.« less

  6. Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering

    NASA Astrophysics Data System (ADS)

    Budd, H.; Bodek, A.; Arrington, J.

    2005-02-01

    We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of F(q). We show the that F(q) has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check F(q) extracted from neutrino scattering. (Presented by Howard Budd at NuInt04, Mar. 2004, Laboratori Nazionali del Gran Sasso - INFN - Assergi, Italy [ http://nuint04.lngs.infn.it/])

  7. Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique

    NASA Technical Reports Server (NTRS)

    Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.

    2003-01-01

    The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.

  8. Scattering from phase-separated vesicles. I. An analytical form factor for multiple static domains

    DOE PAGES

    Heberle, Frederick A.; Anghel, Vinicius N. P.; Katsaras, John

    2015-08-18

    This is the first in a series of studies considering elastic scattering from laterally heterogeneous lipid vesicles containing multiple domains. Unique among biophysical tools, small-angle neutron scattering can in principle give detailed information about the size, shape and spatial arrangement of domains. A general theory for scattering from laterally heterogeneous vesicles is presented, and the analytical form factor for static domains with arbitrary spatial configuration is derived, including a simplification for uniformly sized round domains. The validity of the model, including series truncation effects, is assessed by comparison with simulated data obtained from a Monte Carlo method. Several aspects ofmore » the analytical solution for scattering intensity are discussed in the context of small-angle neutron scattering data, including the effect of varying domain size and number, as well as solvent contrast. Finally, the analysis indicates that effects of domain formation are most pronounced when the vesicle's average scattering length density matches that of the surrounding solvent.« less

  9. High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.; Johnson, B. R.; Abitbol, M. H.

    Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less

  10. High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz

    DOE PAGES

    Jones, G.; Johnson, B. R.; Abitbol, M. H.; ...

    2017-05-29

    Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less

  11. SU-F-T-66: Characteristics of Electron Beams From Varian Trubeam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimofte, A; Kennedy, C; Zhu, T

    2016-06-15

    Purpose: The purpose of this study was to compare the electron beam data between Truebeam and 2300ix Varian accelerators for percent depth dose for broad beam and small circular cutouts, cone factors, head scatter factor as a function of cone size and SSD, phantom scatter factor, blocking factor, distance factor and virtual source position. Methods: Measurements were performed for Truebeam and 2300ix Varian accelerators. The main energies used were: 6, 9, 12, 16 and 20 MeV. PDD was measured at SSD = 100 cm for open beam and small circular cutouts (r = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0 andmore » 6.6cm) for different energies. Measurements to determine the head scatter factor (H) were done as a function of radius for six representative energies and five cone sizes (6, 10, 15, 20 and 25cm2). The phantom scatter factor (PSF) is defined as the ratio of blocking factor in water at reference depth and head scatter factor in air. PSF was measured as a function of radius and electron energy. Distance factor was measured for all energies and cones for three SSD’s (100, 110 and 120cm). Results: The percent depth dose (PDD) was measured for small cutouts of radius r = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0 and 5.6cm. Blocking factor (BF) was measured for Truebeam and 2300ix accelerators, for different circular cutouts and energies for a 10×10 cone. Cone factors were compared between the two accelerators for different energies and applicator sizes. Conclusion: Cone factors measured for the two accelerator types differ by up to 5% for the largest applicator size. Blocking factors differs by up to 3%, with the largest variation for the smallest field size (0.5cm). Distance factor for different SSD’s differ by up to 4.5%.« less

  12. Improved determination of particulate absorption from combined filter pad and PSICAM measurements.

    PubMed

    Lefering, Ina; Röttgers, Rüdiger; Weeks, Rebecca; Connor, Derek; Utschig, Christian; Heymann, Kerstin; McKee, David

    2016-10-31

    Filter pad light absorption measurements are subject to two major sources of experimental uncertainty: the so-called pathlength amplification factor, β, and scattering offsets, o, for which previous null-correction approaches are limited by recent observations of non-zero absorption in the near infrared (NIR). A new filter pad absorption correction method is presented here which uses linear regression against point-source integrating cavity absorption meter (PSICAM) absorption data to simultaneously resolve both β and the scattering offset. The PSICAM has previously been shown to provide accurate absorption data, even in highly scattering waters. Comparisons of PSICAM and filter pad particulate absorption data reveal linear relationships that vary on a sample by sample basis. This regression approach provides significantly improved agreement with PSICAM data (3.2% RMS%E) than previously published filter pad absorption corrections. Results show that direct transmittance (T-method) filter pad absorption measurements perform effectively at the same level as more complex geometrical configurations based on integrating cavity measurements (IS-method and QFT-ICAM) because the linear regression correction compensates for the sensitivity to scattering errors in the T-method. This approach produces accurate filter pad particulate absorption data for wavelengths in the blue/UV and in the NIR where sensitivity issues with PSICAM measurements limit performance. The combination of the filter pad absorption and PSICAM is therefore recommended for generating full spectral, best quality particulate absorption data as it enables correction of multiple errors sources across both measurements.

  13. Contrast enhanced imaging with a stationary digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Puett, Connor; Calliste, Jabari; Wu, Gongting; Inscoe, Christina R.; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2017-03-01

    Digital breast tomosynthesis (DBT) captures some depth information and thereby improves the conspicuity of breast lesions, compared to standard mammography. Using contrast during DBT may also help distinguish malignant from benign sites. However, adequate visualization of the low iodine signal requires a subtraction step to remove background signal and increase lesion contrast. Additionally, attention to factors that limit contrast, including scatter, noise, and artifact, are important during the image acquisition and post-acquisition processing steps. Stationary DBT (sDBT) is an emerging technology that offers a higher spatial and temporal resolution than conventional DBT. This phantom-based study explored contrast-enhanced sDBT (CE sDBT) across a range of clinically-appropriate iodine concentrations, lesion sizes, and breast thicknesses. The protocol included an effective scatter correction method and an iterative reconstruction technique that is unique to the sDBT system. The study demonstrated the ability of this CE sDBT system to collect projection images adequate for both temporal subtraction (TS) and dual-energy subtraction (DES). Additionally, the reconstruction approach preserved the improved contrast-to-noise ratio (CNR) achieved in the subtraction step. Finally, scatter correction increased the iodine signal and CNR of iodine-containing regions in projection views and reconstructed image slices during both TS and DES. These findings support the ongoing study of sDBT as a potentially useful tool for contrast-enhanced breast imaging and also highlight the significant effect that scatter has on image quality during DBT.

  14. Introduction to light and optical theories

    USDA-ARS?s Scientific Manuscript database

    Light scattering occurs as a result of the interaction of photons with matter, and it is dependent on the structure and chemical composition of the material. Over the past 15 years, significant progress and numerous applications in light scattering have been made for assessing properties, quality an...

  15. Design and performance evaluation of a high resolution IRI-microPET preclinical scanner

    NASA Astrophysics Data System (ADS)

    Islami rad, S. Z.; Peyvandi, R. Gholipour; lehdarboni, M. Askari; Ghafari, A. A.

    2015-05-01

    PET for small animal, IRI-microPET, was designed and built at the NSTRI. The scanner is made of four detectors positioned on a rotating gantry at a distance 50 mm from the center. Each detector consists of a 10×10 crystal matrix of 2×2×10 mm3 directly coupled to a PS-PMT. A position encoding circuit for specific PS-PMT has been designed, built and tested with a PD-MFS-2MS/s-8/14 data acquisition board. After implementing reconstruction algorithms (FBP, MLEM and SART) on sinograms, images quality and system performance were evaluated by energy resolution, timing resolution, spatial resolution, scatter fraction, sensitivity, RMS contrast and SNR parameters. The energy spectra were obtained for the crystals with an energy window of 300-700 keV. The energy resolution in 511 keV averaged over all modules, detectors, and crystals, was 23.5%. A timing resolution of 2.4 ns FWHM obtained by coincidence timing spectrum was measured with crystal LYSO. The radial and tangential resolutions for 18F (1.15-mm inner diameter) at the center of the field of view were 1.81 mm and 1.90 mm, respectively. At a radial offset of 5 mm, the FWHM values were 1.96 and 2.06 mm. The system scatter fraction was 7.1% for the mouse phantom. The sensitivity was measured for different energy windows, leading to a sensitivity of 1.74% at the center of FOV. Also, images quality was evaluated by RMS contrast and SNR factors, and the results show that the reconstructed images by MLEM algorithm have the best RMS contrast, and SNR. The IRI-microPET presents high image resolution, low scatter fraction values and improved SNR for animal studies.

  16. Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle.

    PubMed

    Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu

    2006-07-10

    The geometrical-optics approximation of light scattering by a transparent or absorbing spherical particle is extended from plane wave to Gaussian beam incidence. The formulas for the calculation of the phase of each ray and the divergence factor are revised, and the interference of all the emerging rays is taken into account. The extended geometrical-optics approximation (EGOA) permits one to calculate the scattering diagram in all directions from 0 degrees to 180 degrees. The intensities of the scattered field calculated by the EGOA are compared with those calculated by the generalized Lorenz-Mie theory, and good agreement is found. The surface wave effect in Gaussian beam scattering is also qualitatively analyzed by introducing a flux ratio factor. The approach proposed is particularly important to the further extension of the geometrical-optics approximation to the scattering of large spheroidal particles.

  17. Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off

    NASA Astrophysics Data System (ADS)

    Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Zhang, Zhiqiang; Duan, Huigao

    2015-10-01

    Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process.

  18. Optical characterization of broad plasmon resonances of Pd/Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Valizade-Shahmirzadi, N.; Pakizeh, T.

    2018-04-01

    In this paper, optical properties of nanoparticles (nanodisks and nanospheres) composed of photofunctional metals like palladium (Pd) and platinum (Pt) over a large dimension range are investigated using the electromagnetic simulation and quasi-static theory. These characteristics are compared with their counterparts in plasmonic gold (Au) nanoparticles. Pd/Pt-nanodisks with larger dimension have higher absorption and lower scattering efficiencies than Au-nanodisks that accompany with lower extinction efficiencies and broader resonances. Although an increment in the dimension (diameter and height) of Au/Pd/Pt-nanoparticles decreases the absorption-to-scattering ratios, these ratios are less sensitive to the height size in Au-nanodisks, which causes their LSPR spectra become much broader. It is noteworthy that the LSPR quality factor of Pd nanoparticles is improved by considering the radiative damping and depolarization in quasi-static method unlike the Au nanoparticles. The importance of the highly absorptive Pd/Pt nanoparticles can be traced in the photo-functionalized and energy applications.

  19. An effective field theory for forward scattering and factorization violation

    DOE PAGES

    Rothstein, Ira Z.; Stewart, Iain W.

    2016-08-03

    Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where |t| << s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators whichmore » describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCET II and SCET I. The one-loop amplitude’s rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not sensitive to the directions for soft and collinear Wilson lines. Conversely, certain Glauber interactions can be absorbed into these soft and collinear Wilson lines by taking them to be in specific directions. Finally, we also discuss criteria for factorization violation.« less

  20. Measuring the Contribution of Atmospheric Scatter to Laser Eye Dazzle

    DTIC Science & Technology

    2015-09-01

    alignment of the detector was then fine tuned to ensure that the reflected beam traveled perfectly back through the aperture, thus indicating normal...spanning June and July 2014. A narrow acceptance angle detector was used to measure scattered laser radiation within the laser beam at different... scatter does not make a significant contribution to laser eye dazzle for short-range laser engagements in atmospheres of good to moderate air quality

  1. Size-dependent longitudinal plasmon resonance wavelength and extraordinary scattering properties of Au nanobipyramids.

    PubMed

    Wang, Wenhao; Yu, Peng; Zhong, Zhiqin; Tong, Xin; Liu, Tianji; Li, Yanbo; Ashalley, Eric; Chen, Huanyang; Wu, Jiang; Wang, Zhiming

    2018-08-31

    Au nanobipyramids (NBPs) with sharp tips and narrow plasmon linewidths are ideal candidates for plasmonic applications. In this paper, we investigated the influencing factors of longitudinal plasmon resonance wavelength (LPRW) and scattering properties of single Au NBP by simulation. Compared with the volume, we establish the aspect ratio (length/width) as the dominant factor that affects the LPRW of Au NBPs. Plasmonic nanoparticles have been widely used for light-trapping enhancement in photovoltaics. To give a profound understanding of the superior light harvesting properties of Au NBPs, the near-field localization effect and far-field scattering mechanism of Au NBPs were investigated. Under the light injection at LPRW, the tip area shows near-field enhancement and the maximum scattering intensity appears on the side area of the waist owing to the remarkable optical absorption near the tips. Additionally, we confirm the fraction of light scattered into the substrate and angular distribution of the light scattered by the Au NBPs. The fraction of light scattered into the substrate reaches up to 97% from 400-1100 nm and preserves a broadband spectrum. This suggests that the NBP has a predominant forward scattering and reduced backward scattering. The excellent plasmonic scattering properties of Au NBPs are promising in photovoltaic devices and photothermal therapy.

  2. [Light scattering extinction properties of atmospheric particle and pollution characteristics in hazy weather in Hangzhou].

    PubMed

    Xu, Chang; Ye, Hui; Shen, Jian-Dong; Sun, Hong-Liang; Hong, Sheng-Mao; Jiao, Li; Huang, Kan

    2014-12-01

    In order to evaluate the influence of particle scattering on visibility, light scattering coefficient, particle concentrations and meteorological factor were simultaneously monitored from July 2011 to June 2012 in Hangzhou. Daily scattering coefficients ranged from 108.4 to 1 098.1 Mm(-1), with an annual average concentration of 428.6 Mm(-1) ± 200.2 Mm(-1). Seasonal variation of scattering coefficients was significant, with the highest concentrations observed in autumn and winter and the lowest in summer. It was found there were two peaks for the average diurnal variations of the scattering coefficient, which could be observed at 08:00 and 21:00. The scattering efficiencies of PM2.5 and PM10 were 7.6 m2 x g(-1) and 4.4 m2 x g(-1), respectively. The particle scattering was about 90.2 percent of the total light extinction. The scattering coefficients were 684.4 Mm(-1) ± 218.1 Mm(-1) and 1 095.4 Mm(-1) ± 397.7 Mm(-1) in hazy and heavy hazy days, respectively, which were 2.6 and 4.2 times as high as in non-hazy weather, indicating that particle scattering is the main factor for visibility degradation and the occurrence of hazy weather in Hangzhou.

  3. X-ray Intermolecular Structure Factor (XISF): separation of intra- and intermolecular interactions from total X-ray scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-06-01

    XISF is a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained. XISF has been optimized for performance and can separate intermolecular structure factors of complex molecules.

  4. X-ray Intermolecular Structure Factor ( XISF ): separation of intra- and intermolecular interactions from total X-ray scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-05-09

    XISFis a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained.XISFhas been optimized for performance and can separate intermolecular structure factors of complex molecules.

  5. Attenuation of seismic waves obtained by coda waves analysis in the West Bohemia earthquake swarm region

    NASA Astrophysics Data System (ADS)

    Bachura, Martin; Fischer, Tomas

    2014-05-01

    Seismic waves are attenuated by number of factors, including geometrical spreading, scattering on heterogeneities and intrinsic loss due the anelasticity of medium. Contribution of the latter two processes can be derived from the tail part of the seismogram - coda (strictly speaking S-wave coda), as these factors influence the shape and amplitudes of coda. Numerous methods have been developed for estimation of attenuation properties from the decay rate of coda amplitudes. Most of them work with the S-wave coda, some are designed for the P-wave coda (only on teleseismic distances) or for the whole waveforms. We used methods to estimate the 1/Qc - attenuation of coda waves, methods to separate scattering and intrinsic loss - 1/Qsc, Qi and methods to estimate attenuation of direct P and S wave - 1/Qp, 1/Qs. In this study, we analyzed the S-wave coda of local earthquake data recorded in the West Bohemia/Vogtland area. This region is well known thanks to the repeated occurrence of earthquake swarms. We worked with data from the 2011 earthquake swarm, which started late August and lasted with decreasing intensity for another 4 months. During the first week of swarm thousands of events were detected with maximum magnitudes ML = 3.6. Amount of high quality data (including continuous datasets and catalogues with an abundance of well-located events) is available due to installation of WEBNET seismic network (13 permanent and 9 temporary stations) monitoring seismic activity in the area. Results of the single-scattering model show seismic attenuations decreasing with frequency, what is in agreement with observations worldwide. We also found decrease of attenuation with increasing hypocentral distance and increasing lapse time, which was interpreted as a decrease of attenuation with depth (coda waves on later lapse times are generated in bigger depths - in our case in upper lithosphere, where attenuations are small). We also noticed a decrease of frequency dependence of 1/Qc with depth, where 1/Qc seems to be frequency independent in depth range of upper lithosphere. Lateral changes of 1/Qc were also reported - it decreases in the south-west direction from the Novy Kostel focal zone, where the attenuation is the highest. Results from more advanced methods that allow for separation of scattering and intrinsic loss show that intrinsic loss is a dominant factor for attenuating of seismic waves in the region. Determination of attenuation due to scattering appears ambiguous due to small hypocentral distances available for the analysis, where the effects of scattering in frequency range from 1 to 24 Hz are not significant.

  6. SU-F-BRD-15: Quality Correction Factors in Scanned Or Broad Proton Therapy Beams Are Indistinguishable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorriaux, J; Lee, J; ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve

    2015-06-15

    Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combinemore » many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm{sup 3} idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a high-energy proton beam. Jefferson Sorriaux is financed by the Walloon Region under the convention 1217662. Jefferson Sorriaux is sponsored by a public-private partnership IBA - Walloon Region.« less

  7. Developing a more useful surface quality metric for laser optics

    NASA Astrophysics Data System (ADS)

    Turchette, Quentin; Turner, Trey

    2011-02-01

    Light scatter due to surface defects on laser resonator optics produces losses which lower system efficiency and output power. The traditional methodology for surface quality inspection involves visual comparison of a component to scratch and dig (SAD) standards under controlled lighting and viewing conditions. Unfortunately, this process is subjective and operator dependent. Also, there is no clear correlation between inspection results and the actual performance impact of the optic in a laser resonator. As a result, laser manufacturers often overspecify surface quality in order to ensure that optics will not degrade laser performance due to scatter. This can drive up component costs and lengthen lead times. Alternatively, an objective test system for measuring optical scatter from defects can be constructed with a microscope, calibrated lighting, a CCD detector and image processing software. This approach is quantitative, highly repeatable and totally operator independent. Furthermore, it is flexible, allowing the user to set threshold levels as to what will or will not constitute a defect. This paper details how this automated, quantitative type of surface quality measurement can be constructed, and shows how its results correlate against conventional loss measurement techniques such as cavity ringdown times.

  8. Influence of multiple scattering on CloudSat measurements in snow: A model study

    NASA Astrophysics Data System (ADS)

    Matrosov, Sergey Y.; Battaglia, Alessandro

    2009-06-01

    The effects of multiple scattering on larger precipitating hydrometers have an influence on measurements of the spaceborne W-band (94 GHz) CloudSat radar. This study presents initial quantitative estimates of these effects in “dry” snow using radiative transfer calculations for appropriate snowfall models. It is shown that these effects become significant (i.e., greater than approximately 1 dB) when snowfall radar reflectivity factors are greater than about 10-15 dBZ. Reflectivity enhancement due to multiple scattering can reach 4-5 dB in heavier stratiform snowfalls. Multiple scattering effects counteract signal attenuation, so the observed CloudSat reflectivity factors in snowfall could be relatively close to the values that would be observed in the case of single scattering and the absence of attenuation.

  9. Fully relativistic form factor for Thomson scattering.

    PubMed

    Palastro, J P; Ross, J S; Pollock, B; Divol, L; Froula, D H; Glenzer, S H

    2010-03-01

    We derive a fully relativistic form factor for Thomson scattering in unmagnetized plasmas valid to all orders in the normalized electron velocity, beta[over ]=v[over ]/c. The form factor is compared to a previously derived expression where the lowest order electron velocity, beta[over], corrections are included [J. Sheffield, (Academic Press, New York, 1975)]. The beta[over ] expansion approach is sufficient for electrostatic waves with small phase velocities such as ion-acoustic waves, but for electron-plasma waves the phase velocities can be near luminal. At high phase velocities, the electron motion acquires relativistic corrections including effective electron mass, relative motion of the electrons and electromagnetic wave, and polarization rotation. These relativistic corrections alter the scattered emission of thermal plasma waves, which manifest as changes in both the peak power and width of the observed Thomson-scattered spectra.

  10. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging

    PubMed Central

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2017-01-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time. PMID:29270539

  11. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging.

    PubMed

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2017-05-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time.

  12. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-11-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal difference to noise ratio (SDNR) were calculated with the aim to assess/determine in which conditions (i.e. energy, angular projection, breast thickness) the scatter radiation affects the image quality. The obtained results on the aforementioned quantities and topics will be reported.

  13. On Strong Positive Frequency Dependencies of Quality Factors in Local-Earthquake Seismic Studies

    NASA Astrophysics Data System (ADS)

    Morozov, Igor B.; Jhajhria, Atul; Deng, Wubing

    2018-03-01

    Many observations of seismic waves from local earthquakes are interpreted in terms of the frequency-dependent quality factor Q( f ) = Q0 f^{η } , where η is often close to or exceeds one. However, such steep positive frequency dependencies of Q require careful analysis with regard to their physical consistency. In particular, the case of η = 1 corresponds to frequency-independent (elastic) amplitude decays with time and consequently requires no Q-type attenuation mechanisms. For η > 1, several problems with physical meanings of such Q-factors occur. First, contrary to the key premise of seismic attenuation, high-frequency parts of the wavefield are enhanced with increasing propagation times relative to the low-frequency ones. Second, such attenuation cannot be implemented by mechanical models of wave-propagating media. Third, with η > 1, the velocity dispersion associated with such Q(f) occurs over unrealistically short frequency range and has an unexpected oscillatory shape. Cases η = 1 and η > 1 are usually attributed to scattering; however, this scattering must exhibit fortuitous tuning into the observation frequency band, which appears unlikely. The reason for the above problems is that the inferred Q values are affected by the conventional single-station measurement procedure. Both parameters Q 0 and are apparent, i.e., dependent on the selected parameterization and inversion method, and they should not be directly attributed to the subsurface. For η ≈ 1, parameter Q 0 actually describes the frequency-independent amplitude decay in access of some assumed geometric spreading t -α , where α is usually taken equal one. The case η > 1 is not allowed physically and could serve as an indicator of problematic interpretations. Although the case 0 < η < 1 is possible, its parameters Q 0 and may also be biased by the measurement procedure. To avoid such difficulties of Q-based approaches, we recommend measuring and interpreting the amplitude-decay rates (such as parameter α) directly.

  14. XAFS Debye-Waller Factors Temperature-Dependent Expressions for Fe+2-Porphyrin Complexes

    NASA Astrophysics Data System (ADS)

    Dimakis, Nicholas; Bunker, Grant

    2007-02-01

    We present an efficient and accurate method for directly calculating single and multiple scattering X-ray absorption fine structure (XAFS) thermal Debye-Waller factors for Fe+2 -porphiryn complexes. The number of multiple scattering Debye-Waller factors on metal porphyrin centers exceeds the number of available parameters that XAFS experimental data can support during fitting with simulated spectra. Using the Density Functional Theory (DFT) under the hybrid functional of X3LYP, phonon normal mode spectrum properties are used to express the mean square variation of the half-scattering path length for a Fe+2 -porphiryn complex as a function of temperature for the most important single and multiple scattering paths of the complex thus virtually eliminating them from the fitting procedure. Modeled calculations are compared with corresponding values obtained from DFT-built and optimized Fe+2 -porphyrin bis-histidine structure as well as from experimental XAFS spectra previously reported. An excellent agreement between calculated and reference Debye-Waller factors for Fe+2-porphyrins is obtained.

  15. Time series analysis for the estimation of tidal fluctuation effect on different aquifers in a small coastal area of Saijo plain, Ehime prefecture, Japan.

    PubMed

    Kumar, Pankaj; Tsujimura, Maki; Nakano, Takanori; Minoru, Tokumasu

    2013-04-01

    Considering the current poor understanding of the seawater-freshwater (SW-FW) interaction pattern at dynamic hydro-geological boundary of coastal aquifers, this work strives to study tidal effect on groundwater quality using chemical tracers combined with environmental isotopes. In situ measurement data of electrical conductivity and groundwater level along with laboratory measurement data of hydro-chemical species were compared with tidal level data measured by Hydrographic and Oceanographic Department, Saijo City, Japan for time series analysis. Result shows that diurnal tides have significant effect on groundwater level as well as its chemical characteristics; however, the magnitude of effect is different in case of different aquifers. Various scatter diagrams were plotted in order to infer mechanisms responsible for water quality change with tidal phase, and results show that cations exchange, selective movement and local SW-FW mixing were likely to be the main processes responsible for water quality changes. It was also found that geological structure of the aquifers is the most important factor affecting the intensity of tidal effect on water quality.

  16. Deblurring adaptive optics retinal images using deep convolutional neural networks.

    PubMed

    Fei, Xiao; Zhao, Junlei; Zhao, Haoxin; Yun, Dai; Zhang, Yudong

    2017-12-01

    The adaptive optics (AO) can be used to compensate for ocular aberrations to achieve near diffraction limited high-resolution retinal images. However, many factors such as the limited aberration measurement and correction accuracy with AO, intraocular scatter, imaging noise and so on will degrade the quality of retinal images. Image post processing is an indispensable and economical method to make up for the limitation of AO retinal imaging procedure. In this paper, we proposed a deep learning method to restore the degraded retinal images for the first time. The method directly learned an end-to-end mapping between the blurred and restored retinal images. The mapping was represented as a deep convolutional neural network that was trained to output high-quality images directly from blurry inputs without any preprocessing. This network was validated on synthetically generated retinal images as well as real AO retinal images. The assessment of the restored retinal images demonstrated that the image quality had been significantly improved.

  17. Deblurring adaptive optics retinal images using deep convolutional neural networks

    PubMed Central

    Fei, Xiao; Zhao, Junlei; Zhao, Haoxin; Yun, Dai; Zhang, Yudong

    2017-01-01

    The adaptive optics (AO) can be used to compensate for ocular aberrations to achieve near diffraction limited high-resolution retinal images. However, many factors such as the limited aberration measurement and correction accuracy with AO, intraocular scatter, imaging noise and so on will degrade the quality of retinal images. Image post processing is an indispensable and economical method to make up for the limitation of AO retinal imaging procedure. In this paper, we proposed a deep learning method to restore the degraded retinal images for the first time. The method directly learned an end-to-end mapping between the blurred and restored retinal images. The mapping was represented as a deep convolutional neural network that was trained to output high-quality images directly from blurry inputs without any preprocessing. This network was validated on synthetically generated retinal images as well as real AO retinal images. The assessment of the restored retinal images demonstrated that the image quality had been significantly improved. PMID:29296496

  18. WE-DE-207B-10: Library-Based X-Ray Scatter Correction for Dedicated Cone-Beam Breast CT: Clinical Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L; Zhu, L; Vedantham, S

    Purpose: Scatter contamination is detrimental to image quality in dedicated cone-beam breast CT (CBBCT), resulting in cupping artifacts and loss of contrast in reconstructed images. Such effects impede visualization of breast lesions and the quantitative accuracy. Previously, we proposed a library-based software approach to suppress scatter on CBBCT images. In this work, we quantify the efficacy and stability of this approach using datasets from 15 human subjects. Methods: A pre-computed scatter library is generated using Monte Carlo simulations for semi-ellipsoid breast models and homogeneous fibroglandular/adipose tissue mixture encompassing the range reported in literature. Projection datasets from 15 human subjects thatmore » cover 95 percentile of breast dimensions and fibroglandular volume fraction were included in the analysis. Our investigations indicate that it is sufficient to consider the breast dimensions alone and variation in fibroglandular fraction does not significantly affect the scatter-to-primary ratio. The breast diameter is measured from a first-pass reconstruction; the appropriate scatter distribution is selected from the library; and, deformed by considering the discrepancy in total projection intensity between the clinical dataset and the simulated semi-ellipsoidal breast. The deformed scatter-distribution is subtracted from the measured projections for scatter correction. Spatial non-uniformity (SNU) and contrast-to-noise ratio (CNR) were used as quantitative metrics to evaluate the results. Results: On the 15 patient cases, our method reduced the overall image spatial non-uniformity (SNU) from 7.14%±2.94% (mean ± standard deviation) to 2.47%±0.68% in coronal view and from 10.14%±4.1% to 3.02% ±1.26% in sagittal view. The average contrast to noise ratio (CNR) improved by a factor of 1.49±0.40 in coronal view and by 2.12±1.54 in sagittal view. Conclusion: We demonstrate the robustness and effectiveness of a library-based scatter correction method using patient datasets with large variability in breast dimensions and composition. The high computational efficiency and simplicity in implementation make this attractive for clinical implementation. Supported partly by NIH R21EB019597, R21CA134128 and R01CA195512.The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less

  19. Quantum theory for the dynamic structure factor in correlated two-component systems in nonequilibrium: Application to x-ray scattering.

    PubMed

    Vorberger, J; Chapman, D A

    2018-01-01

    We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.

  20. Quantum theory for the dynamic structure factor in correlated two-component systems in nonequilibrium: Application to x-ray scattering

    NASA Astrophysics Data System (ADS)

    Vorberger, J.; Chapman, D. A.

    2018-01-01

    We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.

  1. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons

    NASA Astrophysics Data System (ADS)

    Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant

    2014-10-01

    Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04719b

  2. Out-of-Field Dose Equivalents Delivered by Passively Scattered Therapeutic Proton Beams for Clinically Relevant Field Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wroe, Andrew; Centre for Medical Radiation Physics, University of Wollongong, Wollongong; Clasie, Ben

    2009-01-01

    Purpose: Microdosimetric measurements were performed at Massachusetts General Hospital, Boston, MA, to assess the dose equivalent external to passively delivered proton fields for various clinical treatment scenarios. Methods and Materials: Treatment fields evaluated included a prostate cancer field, cranial and spinal medulloblastoma fields, ocular melanoma field, and a field for an intracranial stereotactic treatment. Measurements were completed with patient-specific configurations of clinically relevant treatment settings using a silicon-on-insulator microdosimeter placed on the surface of and at various depths within a homogeneous Lucite phantom. The dose equivalent and average quality factor were assessed as a function of both lateral displacement frommore » the treatment field edge and distance downstream of the beam's distal edge. Results: Dose-equivalent value range was 8.3-0.3 mSv/Gy (2.5-60-cm lateral displacement) for a typical prostate cancer field, 10.8-0.58 mSv/Gy (2.5-40-cm lateral displacement) for the cranial medulloblastoma field, 2.5-0.58 mSv/Gy (5-20-cm lateral displacement) for the spinal medulloblastoma field, and 0.5-0.08 mSv/Gy (2.5-10-cm lateral displacement) for the ocular melanoma field. Measurements of external field dose equivalent for the stereotactic field case showed differences as high as 50% depending on the modality of beam collimation. Average quality factors derived from this work ranged from 2-7, with the value dependent on the position within the phantom in relation to the primary beam. Conclusions: This work provides a valuable and clinically relevant comparison of the external field dose equivalents for various passively scattered proton treatment fields.« less

  3. SU-D-206-04: Iterative CBCT Scatter Shading Correction Without Prior Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Y; Wu, P; Mao, T

    2016-06-15

    Purpose: To estimate and remove the scatter contamination in the acquired projection of cone-beam CT (CBCT), to suppress the shading artifacts and improve the image quality without prior information. Methods: The uncorrected CBCT images containing shading artifacts are reconstructed by applying the standard FDK algorithm on CBCT raw projections. The uncorrected image is then segmented to generate an initial template image. To estimate scatter signal, the differences are calculated by subtracting the simulated projections of the template image from the raw projections. Since scatter signals are dominantly continuous and low-frequency in the projection domain, they are estimated by low-pass filteringmore » the difference signals and subtracted from the raw CBCT projections to achieve the scatter correction. Finally, the corrected CBCT image is reconstructed from the corrected projection data. Since an accurate template image is not readily segmented from the uncorrected CBCT image, the proposed scheme is iterated until the produced template is not altered. Results: The proposed scheme is evaluated on the Catphan©600 phantom data and CBCT images acquired from a pelvis patient. The result shows that shading artifacts have been effectively suppressed by the proposed method. Using multi-detector CT (MDCT) images as reference, quantitative analysis is operated to measure the quality of corrected images. Compared to images without correction, the method proposed reduces the overall CT number error from over 200 HU to be less than 50 HU and can increase the spatial uniformity. Conclusion: An iterative strategy without relying on the prior information is proposed in this work to remove the shading artifacts due to scatter contamination in the projection domain. The method is evaluated in phantom and patient studies and the result shows that the image quality is remarkably improved. The proposed method is efficient and practical to address the poor image quality issue of CBCT images. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R&D Program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917).« less

  4. Hygroscopic Measurements of Aerosol Particles in the San Joaquin Valley California during the DRAGON and Discover AQ Campaign 2013

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Hoff, R. M.

    2013-12-01

    In the ambient atmosphere, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH). Wet aerosols particles are larger than their dry equivalents, therefore they scatter more light. Quantitative knowledge of the RH effect and its influence on the light scattering coefficient on aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth. The DISCOVER-AQ campaign is focused in improving the interpretation and relation between satellite observations and surface conditions related to air quality. In the winter of 2013, this campaign was held in the San Joaquin Valley, California, where systematic and concurrent observations of column integrated surface, and vertically resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Different instruments such as particulate samplers, lidars, meteorological stations and airborne passive and active monitoring were coordinated to measure the aerosol structure of the San Joaquin Valley in a simultaneous fashion. A novel humidifier-dryer system for a TSI 3563 Nephelometer was implemented in the Penn State University NATIVE trailer located in Porterville California in order to measure the scattering coefficient σsp(λ) at three different wavelengths (λ=440, 550 and 700nm) in a RH range from 30 to 95%. The system was assembled by combining Nafion tubes to humidify and dry the aerosols and stepping motor valves to control the flow and the amount of humidity entering to the Nephelometer. Measurements in Porterville California reached dry scattering coefficient readings greater than 300Mm-1 at 550nm indicating the presence of a large amount of particles in the region. However, the ratio between scattering coefficients at high and low humidity, called the enhancement factor f(RH), showed relatively low hygroscopic growth in the aerosol particles, especially in comparison to a similar experiment conducted in 2012 in the Baltimore-Washington area. In average, during January and early February, the f(RH=85%) was 1.57×0.16 in the sampling site, which leads to the conclusion that the particle loading was dominated by black carbon and remnants of biomass burning. We refer to concurrent speciation measurements by Zhang et al. (private communication) in Fresno, during the study. The implications for sunphotometer measurements in DRAGON are discussed.

  5. In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.

    2012-01-01

    Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.

  6. Anisotropic Scattering Shadow Compensation Method for Remote Sensing Image with Consideration of Terrain

    NASA Astrophysics Data System (ADS)

    Wang, Qiongjie; Yan, Li

    2016-06-01

    With the rapid development of sensor networks and earth observation technology, a large quantity of high resolution remote sensing data is available. However, the influence of shadow has become increasingly greater due to the higher resolution shows more complex and detailed land cover, especially under the shadow. Shadow areas usually have lower intensity and fuzzy boundary, which make the images hard to interpret automatically. In this paper, a simple and effective shadow (including soft shadow) detection and compensation method is proposed based on normal data, Digital Elevation Model (DEM) and sun position. First, we use high accuracy DEM and sun position to rebuild the geometric relationship between surface and sun at the time the image shoot and get the hard shadow boundary and sky view factor (SVF) of each pixel. Anisotropic scattering assumption is accepted to determine the soft shadow factor mainly affected by diffuse radiation. Finally, an easy radiation transmission model is used to compensate the shadow area. Compared with the spectral detection method, our detection method has strict theoretical basis, reliable compensation result and minor affected by the image quality. The compensation strategy can effectively improve the radiation intensity of shadow area, reduce the information loss brought by shadow and improve the robustness and efficiency of the classification algorithms.

  7. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND WATER CONSTITUENT CONCENTRATIONS FROM THE REMOTE-SENSING REFLECTANCE SPECTRA IN THE ALBEMARLE-PAMLICO ESTUARY, USA

    EPA Science Inventory

    The decomposition of remote sensing reflectance (RSR) spectra into absorption, scattering and backscattering coefficients, and scattering phase function is an important issue for estimating water quality (WQ) components. For Case 1 waters RSR decomposition can be easily accompli...

  8. Derivation of the scan time requirement for maintaining a consistent PET image quality

    NASA Astrophysics Data System (ADS)

    Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki

    2015-05-01

    Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (FTS) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ṡ body weight0.3 and NECR = 421.36 (body weight)-0.84. The equation derived for FTS was 0.01ṡ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics.

  9. Assessing the Impacts of Atmospheric Conditions under Climate Change on Air Quality Profile over Hong Kong

    NASA Astrophysics Data System (ADS)

    Hei Tong, Cheuk

    2017-04-01

    Small particulates can cause long term impairment to human health as they can penetrate deep and deposit on the wall of the respiratory system. Under the projected climate change as reported by literature, atmospheric stability, which has strong effects on vertical mixing of air pollutants and thus air quality Hong Kong, is also varying from near to far future. In addition to domestic emission, Hong Kong receives also significant concentration of cross-boundary particulates that their natures and movements are correlated with atmospheric condition. This study aims to study the relation of atmospheric conditions with air quality over Hong Kong. Past meteorological data is based on Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data. Radiosonde data provided from HKO are also adopted in testing and validating the data. Future meteorological data is simulated by the Weather Research and Forecasting Model (WRF), which dynamically downscaled the past and future climate under the A1B scenario simulated by ECHAM5/MPIOM. Air quality data is collected on one hand from the ground station data provided by Environment Protection Department, with selected stations revealing local emission and trans-boundary emission respectively. On the other hand, an Atmospheric Light Detection and Ranging (LiDAR), which operates using the radar principle to detect Rayleigh and Mie scattering from atmospheric gas and aerosols, has also been adopted to measure vertical aerosol profile, which has been observed tightly related to the high level meteorology. Data from scattered signals are collected, averaged or some episode selected for characteristic comparison with the atmospheric stability indices and other meteorological factors. The relation between atmospheric conditions and air quality is observed by statistical analysis, and statistical models are built based on the stability indices to project the changes in sulphur dioxide, ozone and particulate matters due to changes in stability in future years.

  10. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  11. Universal analytical scattering form factor for shell-, core-shell, or homogeneous particles with continuously variable density profile shape.

    PubMed

    Foster, Tobias

    2011-09-01

    A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society

  12. Rayleigh, Compton and K-shell radiative resonant Raman scattering in 83Bi for 88.034 keV γ-rays

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sharma, Veena; Mehta, D.; Singh, Nirmal

    2007-11-01

    The Rayleigh, Compton and K-shell radiative resonant Raman scattering cross-sections for the 88.034 keV γ-rays have been measured in the 83Bi (K-shell binding energy = 90.526 keV) element. The measurements have been performed at 130° scattering angle using reflection-mode geometrical arrangement involving the 109Cd radioisotope as photon source and an LEGe detector. Computer simulations were exercised to determine distributions of the incident and emission angles, which were further used in evaluation of the absorption corrections for the incident and emitted photons in the target. The measured cross-sections for the Rayleigh scattering are compared with the modified form-factors (MFs) corrected for the anomalous-scattering factors (ASFs) and the S-matrix calculations; and those for the Compton scattering are compared with the Klein-Nishina cross-sections corrected for the non-relativistic Hartree-Fock incoherent scattering function S(x, Z). The ratios of the measured KL2, KL3, KM and KN2,3 radiative resonant Raman scattering cross-sections are found to be in general agreement with those of the corresponding measured fluorescence transition probabilities.

  13. Frequency mismatch in stimulated scattering processes: An important factor for the transverse distribution of scattered light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Zheng, Jian, E-mail: jzheng@ustc.edu.cn

    2016-06-15

    A 2D cylindrically symmetric model with inclusion of both diffraction and self-focus effects is developed to deal with the stimulated scattering processes of a single hotspot. The calculated results show that the transverse distribution of the scattered light is sensitive to the longitudinal profiles of the plasma parameters. The analysis of the evolution of the scattered light indicates that it is the frequency mismatch of coupling due to the inhomogeneity of plasmas that determines the transverse distribution of the scattered light.

  14. Improving high resolution retinal image quality using speckle illumination HiLo imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-01-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis. PMID:25136486

  15. Improving high resolution retinal image quality using speckle illumination HiLo imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-08-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis.

  16. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast.

    PubMed

    Vaz, Pedro G; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2017-12-29

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  17. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2018-01-01

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  18. Image reconstruction through thin scattering media by simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Longjie; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Zhang, Xicheng; Zhu, Jianhua

    2018-07-01

    An idea for reconstructing the image of an object behind thin scattering media is proposed by phase modulation. The optimized phase mask is achieved by modulating the scattered light using simulated annealing algorithm. The correlation coefficient is exploited as a fitness function to evaluate the quality of reconstructed image. The reconstructed images optimized from simulated annealing algorithm and genetic algorithm are compared in detail. The experimental results show that our proposed method has better definition and higher speed than genetic algorithm.

  19. The scatter of mechanical values of carbon fiber composites and its causes. [statistical values of strength

    NASA Technical Reports Server (NTRS)

    Roth, S.

    1979-01-01

    The scatter of experimental data obtained in an investigation of the parameters of structural components was investigated. Strength parameters which are determined by the resin or the adhesion between fiber and resin were included. The statistical characteristics of the mechanical parameters of carbon fiber composites, and the possibilities which exist to reduce this scatter were emphasized. It is found that quality control tests of fiber and resin are important for such a reduction.

  20. Subjective Visual Performance and Objective Optical Quality With Intraocular Lens Glistening and Surface Light Scattering.

    PubMed

    Luo, Furong; Bao, Xuan; Qin, Yingyan; Hou, Min; Wu, Mingxing

    2018-06-01

    To evaluate the long-term effect of glistenings and surface light scattering of intraocular lenses (IOLs) on visual and optical performance after cataract surgery. Pseudophakic eyes that underwent standard phacoemulsification and two types of hydrophobic acrylic spherical IOL implantation without complications for at least 5 years were included in this retrospective study. Participants were divided into the glistenings, surface light scattering, and control groups according to the current condition of the IOLs. Then participants received a follow-up examination including uncorrected and corrected distance visual acuity (UDVA and CDVA), contrast sensitivity, straylight, and intraocular higher order aberrations, as well as point spread function (PSF) and modulation transfer function (MTF). A total of 140 eyes were included in the study. UDVA, CDVA, and glare sensitivity were not significantly different among the three groups (P > .05). However, compared with the control group, the IOLs of the glistenings and surface light scattering groups were associated with significantly lower contrast sensitivity under no glare conditions. Furthermore, eye with glistenings exhibited the highest straylight value (P < .05), whereas no difference was found between the surface light scattering and control groups. In contrast to the control group, the spherical aberration increased and the mean values of PSF and MTF decreased in the glistenings and surface light scattering groups. Both glistenings and surface light scattering tend to impair subjective visual performance, such as contrast sensitivity, and potentially affect objective optical quality, including straylight, spherical aberration, PSF, and MTF. [J Refract Surg. 2018;34(6):372-378.]. Copyright 2018, SLACK Incorporated.

  1. Evaluation of loss in optical quality of multifocal intraocular lenses with glistenings.

    PubMed

    DeHoog, Edward; Doraiswamy, Anand

    2016-04-01

    To study the impact of loss in optical quality from glistenings in diffractive multifocal intraocular lenses (IOLs) using ray tracing in a model eye. Independent research laboratory, Irvine, California, USA. Experimental study. A pseudophakic eye model was constructed in Zemax, an optical ray-tracing program, using the Arizona eye model as the basis. The Mie scattering theory was used to describe the intensity and direction of light as it scattered for a spherical particle immersed in a diffractive multifocal IOL. To evaluate the impact of glistening scatter, a more advanced eye model was constructed in Fred, a nonsequential optical ray-tracing software. An evaluation of scatter and modulation transfer function (MTF) was performed for a hydrophobic biomaterial with a refractive index of 1.54 for various sizes and densities of glistenings under mesopic conditions. As predicted by the Mie theory, the amount of scatter was a function of the change in the refractive index, size of the scatterer, and volume fraction of the scatterers. This modeling showed that an increase in density of glistenings can lead to a significant drop of MTF of the IOL. This effect was more pronounced in multifocal IOLs than in monofocal IOLs. Mathematical modeling showed that glistenings in multifocal IOLs lead to a reduction in MTF of the IOL and the pseudophakic eye. The relative loss of MTF in multifocal IOLs was more significant than in monofocal IOLs because of the nature of the design. Drs. DeHoog and Doraiswamy are consultants to Advanced Vision Science, Inc. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Methods for assessing forward and backward light scatter in patients with cataract.

    PubMed

    Crnej, Alja; Hirnschall, Nino; Petsoglou, Con; Findl, Oliver

    2017-08-01

    To compare objective methods for assessing backward and forward light scatter and psychophysical tests in patients with cataracts. Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom. Prospective case series. This study included patients scheduled for cataract surgery. Lens opacities were grouped into predominantly nuclear sclerotic, cortical, posterior subcapsular, and mixed cataracts. Backward light scatter was assessed using a rotating Scheimpflug imaging technique (Pentacam HR), forward light scatter using a straylight meter (C-Quant), and straylight using the double-pass method (Optical Quality Analysis System, point-spread function [PSF] meter). The results were correlated with visual acuity under photopic conditions as well as photopic and mesopic contrast sensitivity. The study comprised 56 eyes of 56 patients. The mean age of the 23 men and 33 women was 71 years (range 48 to 84 years). Two patients were excluded. Of the remaining, 15 patients had predominantly nuclear sclerotic cataracts, 13 had cortical cataracts, 11 had posterior subcapsular cataracts, and 15 had mixed cataracts. Correlations between devices were low. The highest correlation was between PSF meter measurements and Scheimpflug measurements (r = 0.32). The best correlation between corrected distance visual acuity was with the PSF meter (r = 0.45). Forward and backward light-scatter measurements cannot be used interchangeably. Scatter as an aspect of quality of vision was independent of acuity. Measuring forward light scatter with the straylight meter can be a useful additional tool in preoperative decision-making. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. Steps Toward an EOS-Era Aerosol Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2, or when the range of scattering angles observed is reduced by solar geometry, even though the quality of the AOD retrieval itself is much less sensitive to these factors. This presentation will review a series of studies aimed at assessing the capabilities, as well as the limitations, of MISR aerosol type retrievals involving wildfire smoke, desert dust, volcanic ash, and urban pollution, in specific cases where suborbital validation data are available. A synthesis of results, planned upgrades to the MISR Standard aerosol algorithm to improve aerosol type retrievals, and steps toward the development of an aerosol type quality flag for the Standard product, will also be covered.

  4. WFIRST: Retrieval Studies of Directly Imaged Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, Mark; Lupu, Roxana; Lewis, Nikole K.; WFIRST Coronagraph SITs

    2018-01-01

    The typical direct imaging and spectroscopy target for the WFIRST Coronagraph will be a mature Jupiter-mass giant planet at a few AU from an FGK star. The spectra of such planets is expected to be shaped primarily by scattering from H2O clouds and absorption by gaseous NH3 and CH4. We have computed forward model spectra of such typical planets and applied noise models to understand the quality of photometry and spectra we can expect. Using such simulated datasets we have conducted Markov Chain Monte Carlo and MultiNest retrievals to derive atmospheric abundance of CH4, cloud scattering properties, gravity, and other parameters for various planets and observing modes. Our focus has primarily been to understand which combinations of photometry and spectroscopy at what SNR allow retrievals of atmospheric methane mixing ratios to within a factor of ten of the true value. This is a challenging task for directly imaged planets as the planet mass and radius--and thus surface gravity--are not as well constrained as in the case of transiting planets. We find that for plausible planets and datasets of the quality expected to be obtained by WFIRST it should be possible to place such constraints, at least for some planets. We present some examples of our retrieval results and explain how they have been utilized to help set design requirements on the coronagraph camera and integrated field spectrometer.

  5. A Backscattering Enhanced Microwave Canopy Scattering Model Based On MIMICS

    NASA Astrophysics Data System (ADS)

    Shen, X.; Hong, Y.; Qin, Q.; Chen, S.; Grout, T.

    2010-12-01

    For modeling microwave scattering of vegetated areas, several microwave canopy scattering models, based on the vectorized radiative transfer equation (VRT) that use different solving techniques, have been proposed in the past three decades. As an iterative solution of VRT at low orders, the Michigan Microwave Canopy Scattering Model (MIMICS) gives an analytical expression for calculating scattering as long as the volume scattering is not too strong. The most important usage of such models is to predict scattering in the backscattering direction. Unfortunately, the simplified assumption of MIMICS is that the scattering between the ground and trunk layers only includes the specular reflection. As a result, MIMICS includes a dominant coherent term which vanishes in the backscattering direction because this term contains a delta function factor of zero in this direction. This assumption needs reconsideration for accurately calculating the backscattering. In the framework of MIMICS, any incoherent terms that involve surface scattering factors must at least undergo surface scattering twice and volume scattering once. Therefore, these incoherent terms are usually very weak. On the other hand, due to the phenomenon of backscattering enhancement, the surface scattering in the backscattering direction is very strong compared to most other directions. Considering the facts discussed above, it is reasonable to add a surface backscattering term to the last equation of the boundary conditions of MIMICS. More terms appear in the final result including a backscattering coherent term which enhances the backscattering. The modified model is compared with the original MIMICS (version 1.0) using JPL/AIRSAR data from NASA Campaign Soil Moisture Experimental 2003 (SMEX03) and Washita92. Significant improvement is observed.

  6. Light scattering properties of spheroidal particles

    NASA Technical Reports Server (NTRS)

    Asano, S.

    1979-01-01

    In the present paper, the light scattering characteristics of spheroidal particles are evaluated within the framework of a scattering theory developed for a homogeneous isotropic spheroid. This approach is shown to be well suited for computing the scattering quantities of spheroidal particles of fairly large sizes (up to a size parameter of 30). The effects of particle size, shape, index of refraction, and orientation on the scattering efficiency factors and the scattering intensity functions are studied and interpreted physically. It is shown that, in the case of oblique incidence, the scattering properties of a long slender prolate spheroid resemble those of an infinitely long circular cylinder.

  7. Impact of Snow Grain Shape and Internal Mixing with Black Carbon Aerosol on Snow Optical Properties for use in Climate Models

    NASA Astrophysics Data System (ADS)

    He, C.; Liou, K. N.; Takano, Y.; Yang, P.; Li, Q.; Chen, F.

    2017-12-01

    A set of parameterizations is developed for spectral single-scattering properties of clean and black carbon (BC)-contaminated snow based on geometric-optic surface-wave (GOS) computations, which explicitly resolves BC-snow internal mixing and various snow grain shapes. GOS calculations show that, compared with nonspherical grains, volume-equivalent snow spheres show up to 20% larger asymmetry factors and hence stronger forward scattering, particularly at wavelengths <1 mm. In contrast, snow grain sizes have a rather small impact on the asymmetry factor at wavelengths <1 mm, whereas size effects are important at longer wavelengths. The snow asymmetry factor is parameterized as a function of effective size, aspect ratio, and shape factor, and shows excellent agreement with GOS calculations. According to GOS calculations, the single-scattering coalbedo of pure snow is predominantly affected by grain sizes, rather than grain shapes, with higher values for larger grains. The snow single-scattering coalbedo is parameterized in terms of the effective size that combines shape and size effects, with an accuracy of >99%. Based on GOS calculations, BC-snow internal mixing enhances the snow single-scattering coalbedo at wavelengths <1 mm, but it does not alter the snow asymmetry factor. The BC-induced enhancement ratio of snow single-scattering coalbedo, independent of snow grain size and shape, is parameterized as a function of BC concentration with an accuracy of >99%. Overall, in addition to snow grain size, both BC-snow internal mixing and snow grain shape play critical roles in quantifying BC effects on snow optical properties. The present parameterizations can be conveniently applied to snow, land surface, and climate models including snowpack radiative transfer processes.

  8. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    NASA Astrophysics Data System (ADS)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus

    2017-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.

  9. Research and development of a dedicated collimator for 14.2 MeV fast neutrons for imaging using a D-T generator

    NASA Astrophysics Data System (ADS)

    Sabo-Napadensky, I.; Weiss-Babai, R.; Gayer, A.; Vartsky, D.; Bar, D.; Mor, I.; Chacham-Zada, R.; Cohen, M.; Tamim, N.

    2012-06-01

    One of the main problems in neutron imaging is the scattered radiation that accompanies the direct neutrons that reach the imaging detectors and affect the image quality. We have developed a dedicated collimator for 14.2 MeV fast neutrons. The collimator optimizes the amount of scattered radiation to primary neutrons that arrive at the imaging plane. We have used different materials within the collimator in order to lower the scattered radiation that arrives at the scanned object. The image quality and the signal to noise ratios that are measured show that a mixture of BORAX (Na2B4O7ṡ10H2O) and water in the experimental beam collimator give the best results. We have used GEANT4 to simulate the collimator performance, the simulations predict the optimized material looking on the ratios of the scattered to primary neutrons that contribute in the detector. We present our experimental setup, report the results of the experimental and related simulation studies with neutrons beam generated by a 14.2 MeV D-T neutron generator.

  10. Dynamic aspects of apparent attenuation and wave localization in layered media

    USGS Publications Warehouse

    Haney, M.M.; Van Wijk, K.

    2008-01-01

    We present a theory for multiply-scattered waves in layered media which takes into account wave interference. The inclusion of interference in the theory leads to a new description of the phenomenon of wave localization and its impact on the apparent attenuation of seismic waves. We use the theory to estimate the localization length at a CO2 sequestration site in New Mexico at sonic frequencies (2 kHz) by performing numerical simulations with a model taken from well logs. Near this frequency, we find a localization length of roughly 180 m, leading to a localization-induced quality factor Q of 360.

  11. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guoping, E-mail: guoping.lin@femto-st.fr; Diallo, Souleymane; Saleh, Khaldoun

    2014-12-08

    We report the observation of stimulated Brillouin scattering and lasing at 1550 nm in barium fluoride (BaF{sub 2}) crystal. Brillouin lasing was achieved with ultra-high quality (Q) factor monolithic whispering gallery mode mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from 8.2 GHz up to 49 GHz have been generated through cascaded Brillouin lasing. BaF{sub 2} resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  12. A simple underwater imaging model.

    PubMed

    Hou, Weilin

    2009-09-01

    It is commonly known that underwater imaging is hindered by both absorption and scattering by particles of various origins. However, evidence also indicates that the turbulence in natural underwater environments can cause severe image-quality degradation. A model is presented to include the effects of both particle and turbulence on underwater optical imaging through optical transfer functions to help quantify the limiting factors under different circumstances. The model utilizes Kolmogorov-type index of refraction power spectra found in the ocean, along with field examples, to demonstrate that optical turbulence can limit imaging resolution by affecting high spatial frequencies. The effects of the path radiance are also discussed.

  13. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    NASA Astrophysics Data System (ADS)

    Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  14. Dose measurement in heterogeneous phantoms with an extrapolation chamber

    NASA Astrophysics Data System (ADS)

    Deblois, Francois

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin electrodes, on the other hand, has a negligible effect on dose determination. The uncalibrated hybrid PEEC is an accurate and absolute device for measuring the dose directly in bone material in conjunction with appropriate correction factors determined with Monte Carlo techniques.

  15. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days

    NASA Astrophysics Data System (ADS)

    See, S. W.; Balasubramanian, R.; Wang, W.

    2006-05-01

    Many Southeast Asian countries have been constantly plagued by recurring smoke haze episodes as a result of traditional slash-and-burn practices in agricultural areas to clear crop lands or uncontrolled forest fires. However, our current knowledge on the physiochemical and optical properties of ambient aerosols associated with regional haze phenomenon is still fairly limited. Therefore a comprehensive field study was carried out in Singapore from March 2001 to March 2002 under varying weather conditions to gain a better understanding of the characteristics. The physical (size distribution of mass and number concentrations), chemical (mass concentrations of chemical components: 14 ions, 24 metals, elemental carbon (EC) and organic carbon (OC)), and optical (light absorption (bap) and scattering (bsp) by particles) characteristics of ambient aerosol particles were investigated. The results are reported separately for clear and hazy days by categorizing the days as clear or hazy on the basis of visibility data. It was observed that the average concentrations of PM2.5 and most chemical components increased approximately by a factor of 2 on hazy days. Backward air trajectories together with the hot spot distributions in the region indicated that the degradation in Singapore's air quality on hazy days was attributable to large-scale forest fires in Sumatra. This visibility degradation was quantitatively measured on the basis of the light absorption and scattering by particles. As expected, scattering rather than absorption controlled atmospheric visibility, and PM2.5 particles present on hazy days were more efficient at scattering light than those found on clear days.

  16. Radiative heat transfer in strongly forward scattering media using the discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Granate, Pedro; Coelho, Pedro J.; Roger, Maxime

    2016-03-01

    The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta-Eddington phase function and the transport approximation may perform poorly.

  17. Aerosol optical properties at rural background area in Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-11-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. The average scattering and absorption coefficients at wavelength 525 nm were 109 ± 71 Mm- 1 (mean ± SD, at STP conditions) and 15 ± 17 Mm- 1 (at STP conditions), respectively. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent, 0.49 ± 0.62. Especially from February to June the Ångström scattering exponent was clearly lower (0.23) and scattering coefficients higher (124 Mm- 1) than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10-PM2.5) mass concentrations to identify source characteristics. Three different factors with clearly different properties were found; anthropogenic, BC source and desert dust. Mass absorption efficiencies for BC source and desert dust factors were, 6.0 m2 g- 1 and 0.4 m2 g- 1, respectively, and mass scattering efficiencies for anthropogenic (sulphate) and desert dust, 2.5 m2 g- 1 and 0.8 m2 g- 1, respectively.

  18. Assessing Educational Processes Using Total-Quality-Management Measurement Tools.

    ERIC Educational Resources Information Center

    Macchia, Peter, Jr.

    1993-01-01

    Discussion of the use of Total Quality Management (TQM) assessment tools in educational settings highlights and gives examples of fishbone diagrams, or cause and effect charts; Pareto diagrams; control charts; histograms and check sheets; scatter diagrams; and flowcharts. Variation and quality are discussed in terms of continuous process…

  19. Small-angle scattering from 3D Sierpinski tetrahedron generated using chaos game

    NASA Astrophysics Data System (ADS)

    Slyamov, Azat

    2017-12-01

    We approximate a three dimensional version of deterministic Sierpinski gasket (SG), also known as Sierpinski tetrahedron (ST), by using the chaos game representation (CGR). Structural properties of the fractal, generated by both deterministic and CGR algorithms are determined using small-angle scattering (SAS) technique. We calculate the corresponding monodisperse structure factor of ST, using an optimized Debye formula. We show that scattering from CGR of ST recovers basic fractal properties, such as fractal dimension, iteration number, scaling factor, overall size of the system and the number of units composing the fractal.

  20. An empirical model for polarized and cross-polarized scattering from a vegetation layer

    NASA Technical Reports Server (NTRS)

    Liu, H. L.; Fung, A. K.

    1988-01-01

    An empirical model for scattering from a vegetation layer above an irregular ground surface is developed in terms of the first-order solution for like-polarized scattering and the second-order solution for cross-polarized scattering. The effects of multiple scattering within the layer and at the surface-volume boundary are compensated by using a correction factor based on the matrix doubling method. The major feature of this model is that all parameters in the model are physical parameters of the vegetation medium. There are no regression parameters. Comparisons of this empirical model with theoretical matrix-doubling method and radar measurements indicate good agreements in polarization, angular trends, and k sub a up to 4, where k is the wave number and a is the disk radius. The computational time is shortened by a factor of 8, relative to the theoretical model calculation.

  1. Local Intensity Enhancements in Spherical Microcavities: Implications for Photonic Chemical and Biological Sensors

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.

    2005-01-01

    In this report, we summarize recent findings regarding the use spherical microcavities in the amplification of light that is inelastically scattered by either fluorescent or Raman-active molecules. This discussion will focus on Raman scattering, with the understanding that analogous processes apply to fluorescence. Raman spectra can be generated through the use of a very strong light source that stimulates inelastic light scattering by molecules, with the scattering occurring at wavelengths shifted from that of the source and being most prominent at shifts associated with the molecules natural vibrational frequencies. The Raman signal can be greatly enhanced by exposing a molecule to the intense electric fields that arise near surfaces (typically of gold or silver) exhibiting nanoscale roughness. This is known as surface-enhanced Raman scattering (SERS). SERS typically produces gain factors of 103 - 106, but under special conditions, factors of 1010 - 1014 have been achieved.

  2. Atomic Scattering Factor of the ASTRO-H (Hitomi) SXT Reflector Around the Gold's L Edges

    NASA Technical Reports Server (NTRS)

    Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Maeda, Yoshitomo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsubishi, Ikuyuki; Saji, Shigetaka

    2016-01-01

    The atomic scattering factor in the energy range of 11.2 - 15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT) is reported. The large effective area of the SXT makes use of photon spectra above 10 keV viable, unlike most other X-ray satellites with total-reflection mirror optics. Presence of gold's L-edges in the energy band is a major issue, as it complicates the function of the effective area. In order to model the area, the reflectivity measurements in the 11.2 - 15.4 keV band with the energy pitch of 0.4 - 0.7 eV were made in the synchrotron beam-line Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the L-I, II, and III transitions are identified, of which the depths are found to be roughly 60 shallower than those expected from the Henkes atomic scattering factor.

  3. Breakdown of equipartition in diffuse fields caused by energy leakage

    NASA Astrophysics Data System (ADS)

    Margerin, L.

    2017-05-01

    Equipartition is a central concept in the analysis of random wavefields which stipulates that in an infinite scattering medium all modes and propagation directions become equally probable at long lapse time in the coda. The objective of this work is to examine quantitatively how this conclusion is affected in an open waveguide geometry, with a particular emphasis on seismological applications. To carry our this task, the problem is recast as a spectral analysis of the radiative transfer equation. Using a discrete ordinate approach, the smallest eigenvalue and associated eigenfunction of the transfer equation, which control the asymptotic intensity distribution in the waveguide, are determined numerically with the aid of a shooting algorithm. The inverse of this eigenvalue may be interpreted as the leakage time of the diffuse waves out of the waveguide. The associated eigenfunction provides the depth and angular distribution of the specific intensity. The effect of boundary conditions and scattering anisotropy is investigated in a series of numerical experiments. Two propagation regimes are identified, depending on the ratio H∗ between the thickness of the waveguide and the transport mean path in the layer. The thick layer regime H∗ > 1 has been thoroughly studied in the literature in the framework of diffusion theory and is briefly considered. In the thin layer regime H∗ < 1, we find that both boundary conditions and scattering anisotropy leave a strong imprint on the leakage effect. A parametric study reveals that in the presence of a flat free surface, the leakage time is essentially controlled by the mean free time of the waves in the layer in the limit H∗ → 0. By contrast, when the free surface is rough, the travel time of ballistic waves propagating through the crust becomes the limiting factor. For fixed H∗, the efficacy of leakage, as quantified by the inverse coda quality factor, increases with scattering anisotropy. For sufficiently thin layers H∗≈ 1/5, the energy flux is predominantly directed parallel to the surface and equipartition breaks down. Qualitatively, the anisotropy of the intensity field is found to increase with the inverse non-dimensional leakage time, with the scattering mean free time as time scale. Because it enhances leakage, a rough free surface may result in stronger anisotropy of the intensity field than a flat surface, for the same bulk scattering properties. Our work identifies leakage as a potential explanation for the large deviation from isotropy observed in the coda of body waves.

  4. Hyperspectral imaging technique for determination of pork freshness attributes

    NASA Astrophysics Data System (ADS)

    Li, Yongyu; Zhang, Leilei; Peng, Yankun; Tang, Xiuying; Chao, Kuanglin; Dhakal, Sagar

    2011-06-01

    Freshness of pork is an important quality attribute, which can vary greatly in storage and logistics. The specific objectives of this research were to develop a hyperspectral imaging system to predict pork freshness based on quality attributes such as total volatile basic-nitrogen (TVB-N), pH value and color parameters (L*,a*,b*). Pork samples were packed in seal plastic bags and then stored at 4°C. Every 12 hours. Hyperspectral scattering images were collected from the pork surface at the range of 400 nm to 1100 nm. Two different methods were performed to extract scattering feature spectra from the hyperspectral scattering images. First, the spectral scattering profiles at individual wavelengths were fitted accurately by a three-parameter Lorentzian distribution (LD) function; second, reflectance spectra were extracted from the scattering images. Partial Least Square Regression (PLSR) method was used to establish prediction models to predict pork freshness. The results showed that the PLSR models based on reflectance spectra was better than combinations of LD "parameter spectra" in prediction of TVB-N with a correlation coefficient (r) = 0.90, a standard error of prediction (SEP) = 7.80 mg/100g. Moreover, a prediction model for pork freshness was established by using a combination of TVB-N, pH and color parameters. It could give a good prediction results with r = 0.91 for pork freshness. The research demonstrated that hyperspectral scattering technique is a valid tool for real-time and nondestructive detection of pork freshness.

  5. Inelastic X-ray scattering of RTAl3 (R = La, Ce, T = Cu, Au)

    NASA Astrophysics Data System (ADS)

    Tsutsui, Satoshi; Kaneko, Koji; Pospisil, Jiri; Haga, Yoshinori

    2018-05-01

    Inelastic X-ray scattering (IXS) experiments of RTAl3 (R = La Ce, T = Cu, Au) were carried out at 300 and 5.5 K. The spectra between LaCuAl3 and CeCuAl3 (LaAuAl3 and CeAuAl3) are nearly identical at both temperatures except for temperature factors such as temperature dependence of Bose factor in IXS spectra and effect on thermal expansion. This means that no evident temperature dependence of IXS spectra was observed in CeTAl3 (T = Cu, Au). Since the major contribution of scattering cross section in IXS measurements is Thomson scattering, the present results failed to confirm the presence of vibron in these compounds.

  6. Feasibility study on an integrated AEC-grid device for the optimization of image quality and exposure dose in mammography

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Yun, Ryang-Young; Han, Moo-Jae; Heo, Ye-Ji; Song, Yong-Keun; Heo, Sung-Wook; Oh, Kyeong-Min; Park, Sung-Kwang

    2017-10-01

    Currently, in the radiation diagnosis field, mammography is used for the early detection of breast cancer. In addition, studies are being conducted on a grid to produce high-quality images. Although the grid ratio of the grid, which affects the scattering removal rate, must be increased to improve image quality, it increases the total exposure dose. While the use of automatic exposure control is recommended to minimize this problem, existing mammography equipment, unlike general radiography equipment, is mounted on the back of a detector. Therefore, the device is greatly affected by the detector and supporting device, and it is difficult to control the exposure dose. Accordingly, in this research, an integrated AEC-grid device that simultaneously performs AEC and grid functions was used to minimize the unnecessary exposure dose while removing scattering, thereby realizing superior image quality.

  7. The effects of compensation for scatter, lead X-rays, and high-energy contamination on tumor detectability and activity estimation in Ga-67 imaging

    NASA Astrophysics Data System (ADS)

    Fakhri, G. El; Kijewski, M. F.; Maksud, P.; Moore, S. C.

    2003-06-01

    Compton scatter, lead X-rays, and high-energy contamination are major factors affecting image quality in Ga-67 imaging. Scattered photons detected in one photopeak window include photons exiting the patient at energies within the photopeak, as well as higher energy photons which have interacted in the collimator and crystal and lost energy. Furthermore, lead X-rays can be detected in the main energy photopeak (93 keV). We have previously developed two energy-based methods, based on artificial neural networks (ANN) and on a generalized spectral (GS) approach to compensate for scatter, high-energy contamination, and lead X-rays in Ga-67 imaging. For comparison, we considered also the projections that would be acquired in the clinic using the optimal energy windows (WIN) we have reported previously for tumor detection and estimation tasks for the 93, 185, and 300 keV photopeaks. The aim of the present study is to evaluate under realistic conditions the impact of these phenomena and their compensation on tumor detection and estimation tasks in Ga-67 imaging. ANN and GS were compared on the basis of performance of a three-channel Hotelling observer (CHO), in detecting the presence of a spherical tumor of unknown size embedded in an anatomic background as well as on the basis of estimation of tumor activity. Projection datasets of spherical tumors ranging from 2 to 6 cm in diameter, located at several sites in an anthropomorphic torso phantom, were simulated using a Monte Carlo program that modeled all photon interactions in the patient as well as in the collimator and the detector for all decays between 91 and 888 keV. One hundred realistic noise realizations were generated from each very-low-noise simulated projection dataset. The presence of scatter degraded both CHO signal-to-noise ratio (SNR) and estimation accuracy. On average, the presence of scatter led to a 12% reduction in CHO SNR. Correcting for scatter further diminished CHO SNR but to a lesser extent with ANN (5% reduction) than with GS (12%). Both scatter corrections improved performance in activity estimation. ANN yielded better precision (1.8% relative standard deviation) than did GS (4%) but greater average bias (5.1% with ANN, 3.6% with GS).

  8. Image enhancement using MCNP5 code and MATLAB in neutron radiography.

    PubMed

    Tharwat, Montaser; Mohamed, Nader; Mongy, T

    2014-07-01

    This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Scatter measurement and correction method for cone-beam CT based on single grating scan

    NASA Astrophysics Data System (ADS)

    Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua

    2017-06-01

    In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.

  10. High-level expression and deuteration of sperm whale myoglobin: A study of its solvent structure by X-ray and neutron diffraction methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, F.; Ramakrishnan, V.; Schoenborn, B.P.

    1994-12-31

    Neutron diffraction has become one of the best ways to study light atoms, such as hydrogens. Hydrogen however has a negative coherent scattering factor, and a large incoherent scattering factor, while deuterium has virtually no incoherent scattering, but a large positive coherent scattering factor. Beside causing high background due to its incoherent scattering, the negative coherent scattering of hydrogen tends to cancel out the positive contribution from other atoms in a neutron density map. Therefore a fully deuterated sample will yield better diffraction data with stronger density in the hydrogen position. On this basis, a sperm whale myoglobin gene modifiedmore » to include part of the A cII protein gene has been cloned into the T7 expression system. Milligram amounts of fully deuterated holo-myoglobin have been obtained and used for crystallization. The synthetic sperm whale myoglobin crystallized in P2{sub 1} space group isomorphous with the native protein crystal. A complete X-ray diffraction dataset at 1.5{Angstrom} has been collected. This X-ray dataset, and a neutron data set collected previously on a protonated carbon-monoxymyoglobin crystal have been used for solvent structure studies. Both X-ray and neutron data have shown that there are ordered hydration layers around the protein surface. Solvent shell analysis on the neutron data further has shown that the first hydration layer behaves differently around polar and apolar regions of the protein surface. Finally, the structure of per-deuterated myoglobin has been refined using all reflections to a R factor of 17%.« less

  11. Impact of reconstruction parameters on quantitative I-131 SPECT

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haseeb, Syed Abdul; Ahmad, Syed Bilal; Mirza, Sika

    Purpose: To assess the impact of radiation treatment delivery through patient inhomogeneities on the secondary barrier shielding requirements in IMRT treatments using Monte Carlo Simulations. Materials and Methods: Scatter factors were calculated at a distance of 1m from the center of a virtual phantom in Geant4.10.01. Phantom (30×30×30 cm{sup 3}) was inserted with lung (30×30×8 cm{sup 3}), stainless steel (5×5×5 cm{sup 3}) and aluminum (5×5×5 cm{sup 3}) to represent the inhomogeneities. Scatter factor was defined according to the NCRP-151 recommendations and was calculated for angles of 3° to 120° with respect to the beam’s central axis. A virtual radiation source,more » with energy sampled from a histogram representing 6 MV FFF beam, was used for irradiation with a field size of 15×15 cm{sup 2} and SSD of 100 cm. Results: Irradiation through the inhomogeneity affects the patient scattered dose. For high Z material inhomogeneities the scattered dose is reduced due to significant attenuation of the primary radiation. On the other hand if the inhomogeneity is a low Z material such as lung the scattered dose is higher by a maximum of 26%. The average increase in scatter factors for the lung phantom was 17% for angles between 3° and 63° compared to the homogeneous water phantom. Conclusions: In IMRT type treatments delivered through low density patient inhomogeneities (lung) the scattered dose increases significantly. Considering a large proportion of patients receiving radiation therapy for lung cancers the increase in the scattered dose should be incorporated in the shielding calculations for the secondary barriers.« less

  13. Analysis of position-dependent Compton scatter in scintimammography with mild compression

    NASA Astrophysics Data System (ADS)

    Williams, M. B.; Narayanan, D.; More, M. J.; Goodale, P. J.; Majewski, S.; Kieper, D. A.

    2003-10-01

    In breast scintigraphy using /sup 99m/Tc-sestamibi the relatively low radiotracer uptake in the breast compared to that in other organs such as the heart results in a large fraction of the detected events being Compton scattered gamma-rays. In this study, our goal was to determine whether generalized conclusions regarding scatter-to-primary ratios at various locations within the breast image are possible, and if so, to use them to make explicit scatter corrections to the breast scintigrams. Energy spectra were obtained from patient scans for contiguous regions of interest (ROIs) centered left to right within the image of the breast, and extending from the chest wall edge of the image to the anterior edge. An anthropomorphic torso phantom with fillable internal organs and a compressed-shape breast containing water only was used to obtain realistic position-dependent scatter-only spectra. For each ROI, the measured patient energy spectrum was fitted with a linear combination of the scatter-only spectrum from the anthropomorphic phantom and the scatter-free spectrum from a point source. We found that although there is a very strong dependence on location within the breast of the scatter-to-primary ratio, the spectra are well modeled by a linear combination of position-dependent scatter-only spectra and a position-independent scatter-free spectrum, resulting in a set of position-dependent correction factors. These correction factors can be used along with measured emission spectra from a given breast to correct for the Compton scatter in the scintigrams. However, the large variation among patients in the magnitude of the position-dependent scatter makes the success of universal correction approaches unlikely.

  14. Grading of apples based on firmness and soluble solids content using VIS-SWNIR spectroscopy and spectral scattering techniques

    USDA-ARS?s Scientific Manuscript database

    Sorting apple fruit based on internal quality will enhance the industry’s competiveness and profitability and assure consumer satisfaction. In this research, visible and shortwave near-infrared (Vis-SWNIR) spectroscopy (460–1,100 nm) and spectral scattering (450–1,050 nm) were used for sorting apple...

  15. Impact on dose and image quality of a software-based scatter correction in mammography.

    PubMed

    Monserrat, Teresa; Prieto, Elena; Barbés, Benigno; Pina, Luis; Elizalde, Arlette; Fernández, Belén

    2018-06-01

    Background In 2014, Siemens developed a new software-based scatter correction (Progressive Reconstruction Intelligently Minimizing Exposure [PRIME]), enabling grid-less digital mammography. Purpose To compare doses and image quality between PRIME (grid-less) and standard (with anti-scatter grid) modes. Material and Methods Contrast-to-noise ratio (CNR) was measured for various polymethylmethacrylate (PMMA) thicknesses and dose values provided by the mammograph were recorded. CDMAM phantom images were acquired for various PMMA thicknesses and inverse Image Quality Figure (IQF inv ) was calculated. Values of incident entrance surface air kerma (ESAK) and average glandular dose (AGD) were obtained from the DICOM header for a total of 1088 pairs of clinical cases. Two experienced radiologists compared subjectively the image quality of a total of 149 pairs of clinical cases. Results CNR values were higher and doses were lower in PRIME mode for all thicknesses. IQF inv values in PRIME mode were lower for all thicknesses except for 40 mm of PMMA equivalent, in which IQF inv was slightly greater in PRIME mode. A mean reduction of 10% in ESAK and 12% in AGD in PRIME mode with respect to standard mode was obtained. The clinical image quality in PRIME and standard acquisitions resulted to be similar in most of the cases (84% for the first radiologist and 67% for the second one). Conclusion The use of PRIME software reduces, in average, the dose of radiation to the breast without affecting image quality. This reduction is greater for thinner and denser breasts.

  16. High-quality imaging in environmental scanning electron microscopy--optimizing the pressure limiting system and the secondary electron detection of a commercially available ESEM.

    PubMed

    Fitzek, H; Schroettner, H; Wagner, J; Hofer, F; Rattenberger, J

    2016-04-01

    In environmental scanning electron microscopy applications in the kPa regime are of increasing interest for the investigation of wet and biological samples, because neither sample preparation nor extensive cooling are necessary. Unfortunately, the applications are limited by poor image quality. In this work the image quality at high pressures of a FEI Quanta 600 (field emission gun) and a FEI Quanta 200 (thermionic gun) is greatly improved by optimizing the pressure limiting system and the secondary electron (SE) detection system. The scattering of the primary electron beam strongly increases with pressure and thus the image quality vanishes. The key to high-image quality at high pressures is to reduce scattering as far as possible while maintaining ideal operation conditions for the SE-detector. The amount of scattering is reduced by reducing both the additional stagnation gas thickness (aSGT) and the environmental distance (ED). A new aperture holder is presented that significantly reduces the aSGT while maintaining the same field-of-view (FOV) as the original design. With this aperture holder it is also possible to make the aSGT even smaller at the expense of a smaller FOV. A new blade-shaped SE-detector is presented yielding better image quality than usual flat SE-detectors. The electrode of the new SE detector is positioned on the sample table, which allows the SE-detector to operate at ideal conditions regardless of pressure and ED. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  17. The Quality of In Vivo Upconversion Fluorescence Signals Inside Different Anatomic Structures.

    PubMed

    Wang, Lijiang; Draz, Mohamed Shehata; Wang, Wei; Liao, Guodong; Xu, Yuhong

    2015-02-01

    Fluorescence imaging is a broadly interesting and rapidly growing strategy for non-invasive clinical applications. However, because of interference from light scattering, absorbance, and tissue autofluorescence, the images can exhibit low sensitivity and poor quality. Upconversion fluorescence imaging, which is based on the use of near-infrared (NIR) light for excitation, has recently been introduced as an improved approach to minimize the effects of light scattering and tissue autofluorescence. This strategy is promising for ultrasensitive and deep tissue imaging applications. However, the emitted upconversion fluorescence signals are primarily in the visible range and are likely to be absorbed and scattered by tissues. Therefore, different anatomic structures could impose various effects on the quality of the images. In this study, we used upconversion-core/silica-shell nanoprobes to evaluate the quality of upconversion fluorescence at different anatomic locations in athymic nude mice. The nanoprobe contained an upconversion core, which was green (β-NaYF4:Yb3+/Ho3+) or red (β-NaYF4:Yb3+/Er3+), and a nonporous silica shell to allow for multicolor imaging. High-quality upconversion fluorescence signals were detected with signal-to-noise ratios of up to 170 at tissue depths of up to - 1.0 cm when a 980 nm laser excitation source and a bandpass emission filter were used. The presence of dense tissue structures along the imaging path reduced the signal intensity and imaging quality, and nanoprobes with longer-wavelength emission spectra were therefore preferable. This study offers a detailed analysis of the quality of upconversion signals in vivo inside different anatomic structures. Such information could be essential for the analysis of upconversion fluorescence images in any in vivo biodiagnostic and microbial tracking applications.

  18. Optical Sensing of Polarization States Changes in Meat due to the Ageing

    NASA Astrophysics Data System (ADS)

    Tománek, Pavel; Mikláš, Jan; Abubaker, Hamed Mohamed; Grmela, Lubomír

    2010-11-01

    Food materials or biological materials display large compositional variations, inhomogeneities, and anisotropic structures. The biological tissues consist of cells which dimensions are bigger than a wavelength of visible light, therefore Mie scattering of transmitted and reflected light occurs and different polarization states arise. The meat industry needs reliable meat quality information throughout the production process in order to guarantee high-quality meat products for consumers. The minor importance is still given to the food quality control and inspection during processing operations or storing conditions. The paper presents a quite simple optical method allowing measure the freshness or ageing of products. The principle is to study temporal characteristics of polarization states of forward or backward scattered laser light in the samples in function of meat ageing.

  19. Relative contributions of scattering, diffraction and modal diffusion to focal ratio degradation in optical fibres

    NASA Astrophysics Data System (ADS)

    Haynes, D. M.; Withford, M. J.; Dawes, J. M.; Lawrence, J. S.; Haynes, R.

    2011-06-01

    Focal ratio degradation (FRD) is a major contributor to light loss in astronomical instruments employing multimode optical fibres. We present a powerful diagnostic model that uniquely quantifies the various sources of FRD in multimode fibres. There are three main phenomena that can contribute to FRD: scattering, diffraction and modal diffusion. We propose a Voigt FRD model where the diffraction and modal diffusion are modelled by the Gaussian component and the end-face scattering is modelled by the Lorentzian component. The Voigt FRD model can be deconvolved into its Gaussian and Lorentzian components and used to analyse the contribution of each of the three major components. We used the Voigt FRD model to analyse the FRD of modern astronomical grade fibre for variations in (i) end-face surface roughness, (ii) wavelength, (iii) fibre length and (iv) external fibre stress. The elevated FRD we observed was mostly due to external factors, i.e. fibre end effects such as surface roughness, subsurface damage and environmentally induced microbending caused by the epoxy, ferrules and fibre cable design. The Voigt FRD model has numerous applications such as a diagnostic tool for current fibre instrumentation that show elevated FRD, as a quality control method for fibre manufacture and fibre cable assembly and as a research and development tool for the characterization of new fibre technologies.

  20. Linear attenuation coefficients of tissues from 1 keV to 150 keV

    NASA Astrophysics Data System (ADS)

    Böke, Aysun

    2014-09-01

    The linear attenuation coefficients and three interaction processes have been computed for liver, kidney, muscle, fat and for a range of x-ray energies from 1 keV to 150 keV. Molecular photoelectric absorption cross sections were calculated from atomic cross section data. Total coherent (Rayleigh) and incoherent (Compton) scattering cross sections were obtained by numerical integration over combinations of F2m(x) with the Thomson formula and Sm(x) with the Klein-Nishina formula, respectively. For the coherent (Rayleigh) scattering cross section calculations, molecular form factors were obtained from recent experimental data in the literature for values of x<1 Å-1 and from the relativistic modified atomic form factors for values of x≥1 Å-1. With the inclusion of molecular interference effects in the coherent (Rayleigh) scattering, more accurate knowledge of the scatter from these tissues will be provided. The number of elements involved in tissue composition is 5 for liver, 47 for kidney, 44 for muscle and 3 for fat. The results are compared with previously published experimental and theoretical linear attenuation coefficients. In general, good agreement is obtained. The molecular form factors and scattering functions and cross sections are incorporated into a Monte Carlo program. The energy distributions of x-ray photons scattered from tissues have been simulated and the results are presented.

  1. Theoretical model of x-ray scattering as a dense matter probe.

    PubMed

    Gregori, G; Glenzer, S H; Rozmus, W; Lee, R W; Landen, O L

    2003-02-01

    We present analytical expressions for the dynamic structure factor, or form factor S(k,omega), which is the quantity describing the x-ray cross section from a dense plasma or a simple liquid. Our results, based on the random phase approximation for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy down-shift and the known Fermi-Dirac electron velocity distribution for S(k,omega) in the case of a cold degenerate plasma. The usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or for the modeling of solid density matter found in the interior of planets.

  2. Virtual edge illumination and one dimensional beam tracking for absorption, refraction, and scattering retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vittoria, Fabio A., E-mail: fabio.vittoria.12@ucl.ac.uk; Diemoz, Paul C.; Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot

    2014-03-31

    We propose two different approaches to retrieve x-ray absorption, refraction, and scattering signals using a one dimensional scan and a high resolution detector. The first method can be easily implemented in existing procedures developed for edge illumination to retrieve absorption and refraction signals, giving comparable image quality while reducing exposure time and delivered dose. The second method tracks the variations of the beam intensity profile on the detector through a multi-Gaussian interpolation, allowing the additional retrieval of the scattering signal.

  3. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    NASA Astrophysics Data System (ADS)

    Tanaka, J.; Kanungo, R.; Alcorta, M.; Aoi, N.; Bidaman, H.; Burbadge, C.; Christian, G.; Cruz, S.; Davids, B.; Diaz Varela, A.; Even, J.; Hackman, G.; Harakeh, M. N.; Henderson, J.; Ishimoto, S.; Kaur, S.; Keefe, M.; Krücken, R.; Leach, K. G.; Lighthall, J.; Padilla Rodal, E.; Randhawa, J. S.; Ruotsalainen, P.; Sanetullaev, A.; Smith, J. K.; Workman, O.; Tanihata, I.

    2017-11-01

    Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex = 0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30 ∼ 296 Weisskopf units, exhausting 2.2% ∼ 21% of the isoscalar E1 energy-weighted sum rule (EWSR) value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  4. Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.

    2018-04-01

    Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.

  5. Burton-Miller-type singular boundary method for acoustic radiation and scattering

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo-Jia; Chen, Wen; Gu, Yan

    2014-08-01

    This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.

  6. Scaling of graphene field-effect transistors supported on hexagonal boron nitride: radio-frequency stability as a limiting factor

    NASA Astrophysics Data System (ADS)

    Feijoo, Pedro C.; Pasadas, Francisco; Iglesias, José M.; Martín, María J.; Rengel, Raúl; Li, Changfeng; Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri; Jiménez, David

    2017-12-01

    The quality of graphene in nanodevices has increased hugely thanks to the use of hexagonal boron nitride as a supporting layer. This paper studies to which extent hBN together with channel length scaling can be exploited in graphene field-effect transistors (GFETs) to get a competitive radio-frequency (RF) performance. Carrier mobility and saturation velocity were obtained from an ensemble Monte Carlo simulator that accounted for the relevant scattering mechanisms (intrinsic phonons, scattering with impurities and defects, etc). This information is fed into a self-consistent simulator, which solves the drift-diffusion equation coupled with the two-dimensional Poisson’s equation to take full account of short channel effects. Simulated GFET characteristics were benchmarked against experimental data from our fabricated devices. Our simulations show that scalability is supposed to bring to RF performance an improvement that is, however, highly limited by instability. Despite the possibility of a lower performance, a careful choice of the bias point can avoid instability. Nevertheless, maximum oscillation frequencies are still achievable in the THz region for channel lengths of a few hundreds of nanometers.

  7. Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Xu, Zhengbin; Song, Qinghai; Konger, Raymond L.; Kim, Young L.

    2010-05-01

    We experimentally study potential mechanisms by which the enhancement factor in low-coherence enhanced backscattering (LEBS) can probe subtle variations in radial intensity distribution in weakly scattering media. We use enhanced backscattering of light by implementing either (1) low spatial coherence illumination or (2) multiple spatially independent detections using a microlens array under spatially coherent illumination. We show that the enhancement factor in these configurations is a measure of the integrated intensity within the localized coherence or detection area, which can exhibit strong dependence on small perturbations in scattering properties. To further evaluate the utility of the LEBS enhancement factor, we use a well-established animal model of cutaneous two-stage chemical carcinogenesis. In this pilot study, we demonstrate that the LEBS enhancement factor can be substantially altered at a stage of preneoplasia. Our animal result supports the idea that early carcinogenesis can cause subtle alterations in the scattering properties that can be captured by the LEBS enhancement factor. Thus, the LEBS enhancement factor has the potential as an easily measurable biomarker in skin carcinogenesis.

  8. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  9. Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium

    NASA Astrophysics Data System (ADS)

    Zhu, G. H.; Lee, H.; Lan, Y. C.; Wang, X. W.; Joshi, G.; Wang, D. Z.; Yang, J.; Vashaee, D.; Guilbert, H.; Pillitteri, A.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F.

    2009-05-01

    The mechanism for phonon scattering by nanostructures and by point defects in nanostructured silicon (Si) and the silicon germanium (Ge) alloy and their thermoelectric properties are investigated. We found that the thermal conductivity is reduced by a factor of 10 in nanostructured Si in comparison with bulk crystalline Si. However, nanosize interfaces are not as effective as point defects in scattering phonons with wavelengths shorter than 1 nm. We further found that a 5at.% Ge replacing Si is very efficient in scattering phonons shorter than 1 nm, resulting in a further thermal conductivity reduction by a factor of 2, thereby leading to a thermoelectric figure of merit 0.95 for Si95Ge5, similar to that of large grained Si80Ge20 alloys.

  10. Improved scatterer property estimates from ultrasound backscatter for small gate lengths using a gate-edge correction factor

    NASA Astrophysics Data System (ADS)

    Oelze, Michael L.; O'Brien, William D.

    2004-11-01

    Backscattered rf signals used to construct conventional ultrasound B-mode images contain frequency-dependent information that can be examined through the backscattered power spectrum. The backscattered power spectrum is found by taking the magnitude squared of the Fourier transform of a gated time segment corresponding to a region in the scattering volume. When a time segment is gated, the edges of the gated regions change the frequency content of the backscattered power spectrum due to truncating of the waveform. Tapered windows, like the Hanning window, and longer gate lengths reduce the relative contribution of the gate-edge effects. A new gate-edge correction factor was developed that partially accounted for the edge effects. The gate-edge correction factor gave more accurate estimates of scatterer properties at small gate lengths compared to conventional windowing functions. The gate-edge correction factor gave estimates of scatterer properties within 5% of actual values at very small gate lengths (less than 5 spatial pulse lengths) in both simulations and from measurements on glass-bead phantoms. While the gate-edge correction factor gave higher accuracy of estimates at smaller gate lengths, the precision of estimates was not improved at small gate lengths over conventional windowing functions. .

  11. Preparation of wholemount mouse intestine for high-resolution three-dimensional imaging using two-photon microscopy.

    PubMed

    Appleton, P L; Quyn, A J; Swift, S; Näthke, I

    2009-05-01

    Visualizing overall tissue architecture in three dimensions is fundamental for validating and integrating biochemical, cell biological and visual data from less complex systems such as cultured cells. Here, we describe a method to generate high-resolution three-dimensional image data of intact mouse gut tissue. Regions of highest interest lie between 50 and 200 mum within this tissue. The quality and usefulness of three-dimensional image data of tissue with such depth is limited owing to problems associated with scattered light, photobleaching and spherical aberration. Furthermore, the highest-quality oil-immersion lenses are designed to work at a maximum distance of

  12. Obtaining high resolution XUV coronal images

    NASA Technical Reports Server (NTRS)

    Golub, L.; Spiller, E.

    1992-01-01

    Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.

  13. Improved scatter correction using adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Sun, M.; Star-Lack, J. M.

    2010-11-01

    Accurate scatter correction is required to produce high-quality reconstructions of x-ray cone-beam computed tomography (CBCT) scans. This paper describes new scatter kernel superposition (SKS) algorithms for deconvolving scatter from projection data. The algorithms are designed to improve upon the conventional approach whose accuracy is limited by the use of symmetric kernels that characterize the scatter properties of uniform slabs. To model scatter transport in more realistic objects, nonstationary kernels, whose shapes adapt to local thickness variations in the projection data, are proposed. Two methods are introduced: (1) adaptive scatter kernel superposition (ASKS) requiring spatial domain convolutions and (2) fast adaptive scatter kernel superposition (fASKS) where, through a linearity approximation, convolution is efficiently performed in Fourier space. The conventional SKS algorithm, ASKS, and fASKS, were tested with Monte Carlo simulations and with phantom data acquired on a table-top CBCT system matching the Varian On-Board Imager (OBI). All three models accounted for scatter point-spread broadening due to object thickening, object edge effects, detector scatter properties and an anti-scatter grid. Hounsfield unit (HU) errors in reconstructions of a large pelvis phantom with a measured maximum scatter-to-primary ratio over 200% were reduced from -90 ± 58 HU (mean ± standard deviation) with no scatter correction to 53 ± 82 HU with SKS, to 19 ± 25 HU with fASKS and to 13 ± 21 HU with ASKS. HU accuracies and measured contrast were similarly improved in reconstructions of a body-sized elliptical Catphan phantom. The results show that the adaptive SKS methods offer significant advantages over the conventional scatter deconvolution technique.

  14. Scatter-Reducing Sounding Filtration Using a Genetic Algorithm and Mean Monthly Standard Deviation

    NASA Technical Reports Server (NTRS)

    Mandrake, Lukas

    2013-01-01

    Retrieval algorithms like that used by the Orbiting Carbon Observatory (OCO)-2 mission generate massive quantities of data of varying quality and reliability. A computationally efficient, simple method of labeling problematic datapoints or predicting soundings that will fail is required for basic operation, given that only 6% of the retrieved data may be operationally processed. This method automatically obtains a filter designed to reduce scatter based on a small number of input features. Most machine-learning filter construction algorithms attempt to predict error in the CO2 value. By using a surrogate goal of Mean Monthly STDEV, the goal is to reduce the retrieved CO2 scatter rather than solving the harder problem of reducing CO2 error. This lends itself to improved interpretability and performance. This software reduces the scatter of retrieved CO2 values globally based on a minimum number of input features. It can be used as a prefilter to reduce the number of soundings requested, or as a post-filter to label data quality. The use of the MMS (Mean Monthly Standard deviation) provides a much cleaner, clearer filter than the standard ABS(CO2-truth) metrics previously employed by competitor methods. The software's main strength lies in a clearer (i.e., fewer features required) filter that more efficiently reduces scatter in retrieved CO2 rather than focusing on the more complex (and easily removed) bias issues.

  15. Snow particles extracted from X-ray computed microtomography imagery and their single-scattering properties

    NASA Astrophysics Data System (ADS)

    Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko

    2018-04-01

    Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.

  16. Computing the scatter component of mammographic images.

    PubMed

    Highnam, R P; Brady, J M; Shepstone, B J

    1994-01-01

    The authors build upon a technical report (Tech. Report OUEL 2009/93, Engng. Sci., Oxford Uni., Oxford, UK, 1993) in which they proposed a model of the mammographic imaging process for which scattered radiation is a key degrading factor. Here, the authors propose a way of estimating the scatter component of the signal at any pixel within a mammographic image, and they use this estimate for model-based image enhancement. The first step is to extend the authors' previous model to divide breast tissue into "interesting" (fibrous/glandular/cancerous) tissue and fat. The scatter model is then based on the idea that the amount of scattered radiation reaching a point is related to the energy imparted to the surrounding neighbourhood. This complex relationship is approximated using published empirical data, and it varies with the size of the breast being imaged. The approximation is further complicated by needing to take account of extra-focal radiation and breast edge effects. The approximation takes the form of a weighting mask which is convolved with the total signal (primary and scatter) to give a value which is input to a "scatter function", approximated using three reference cases, and which returns a scatter estimate. Given a scatter estimate, the more important primary component can be calculated and used to create an image recognizable by a radiologist. The images resulting from this process are clearly enhanced, and model verification tests based on an estimate of the thickness of interesting tissue present proved to be very successful. A good scatter model opens the was for further processing to remove the effects of other degrading factors, such as beam hardening.

  17. The single scattering properties of the aerosol particles as aggregated spheres

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-08-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  18. An investigation of kV CBCT image quality and dose reduction for volume-of-interest imaging using dynamic collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, David, E-mail: david.parsons@dal.ca, E-mail: james.robar@cdha.nshealth.ca; Robar, James L., E-mail: david.parsons@dal.ca, E-mail: james.robar@cdha.nshealth.ca

    2015-09-15

    Purpose: The focus of this work was to investigate the improvements in image quality and dose reduction for volume-of-interest (VOI) kilovoltage-cone beam CT (CBCT) using dynamic collimation. Methods: A prototype iris aperture was used to track a VOI during a CBCT acquisition. The current aperture design is capable of 1D translation as a function of gantry angle and dynamic adjustment of the iris radius. The aperture occupies the location of the bow-tie filter on a Varian On-Board Imager system. CBCT and planar image quality were investigated as a function of aperture radius, while maintaining the same dose to the VOI,more » for a 20 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Corresponding scatter-to-primary ratios (SPR) were determined at the detector plane with Monte Carlo simulation using EGSnrc. Dose distributions for various sizes VOI were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field distributions. Results: SPR was reduced by a factor of 8.4 when decreasing iris diameter from 21.2 to 2.4 cm (at isocenter). Depending upon VOI location and size, dose was reduced to 16%–90% of the full-field value along the central axis plane and down to 4% along the axis of rotation, while maintaining the same dose to the VOI compared to full-field techniques. When maintaining constant dose to the VOI, this change in iris diameter corresponds to a factor increase of approximately 1.6 in image contrast and a factor decrease in image noise of approximately 1.2. This results in a measured gain in contrast-to-noise ratio by a factor of approximately 2.0. Conclusions: The presented VOI technique offers improved image quality for image-guided radiotherapy while sparing the surrounding volume of unnecessary dose compared to full-field techniques.« less

  19. Tunable dielectric response, resistive switching, and unconventional transport in SrTiO3

    NASA Astrophysics Data System (ADS)

    Mikheev, Evgeny

    The first section of this thesis discusses integration of SR TiO3 grown by molecular beam epitaxy (MBE) in vertical device structures. One target application is as a tunable dielectric. Parallel plate capacitors based on epitaxial Pt(001) bottom electrodes and (Ba,Sr)TiO 3 dielectric layers grown by MBE are demonstrated. Optimization of structural quality of the vertical stack is shown to produce very low dielectric loss combined with very high tunability of the dielectric constant by DC bias. This results in considerable improvement of common figures of merit for varactor performance in comparison to previous reports. Another target application for transition metals oxides is in resistive switching memories, which are based on the hysteretic current-voltage response observed in many oxide-based Schottky junctions and capacitors. A study on the role of metal/oxide interface quality is presented. In particular, the use of epitaxial Pt(001) as Schottky contacts to Nb:SRTiO 3 is shown to suppress resistive switching hysteresis by eliminating unintentional contributions to interface capacitance. Such uncontrolled factors are discussed as a probable root cause for poor reproducibility in resistive switching memories, currently a ubiquitous challenge in the field. Potential routes towards stabilizing reproducible switching through intentional control of defect densities in high-quality structures are discussed, including a proof of concept demonstration using Schottky junctions incorporating intentionally non-stoichiometric SRTiO3 interlayers grown by MBE. The second section of this thesis is concerned with unconventional electronic transport in SRTiO3. A systematic description of scattering mechanisms will be presented for three related material systems: uniformly-doped SRTiO3, two-dimensional electron liquids (2DEL) at SRTiO3/RTiO 3 interfaces (R = Gd, Sm) and confined 2DELs in RTiO3/SRTiO3/ RTiO3 quantum wells. In particular, the prevalence of a well-defined T2 scattering rate in doped SRTiO3 will be discussed as being incompatible with its traditional assignment as electron-electron scattering in a Fermi liquid. In the case of ultrathin SRTiO3 quantum wells bound by RTiO3, evidence will be presented for the existence of a quantum critical point. This refers to a quantum phase transition at zero temperature towards an ordered phase in SRTiO 3. This transition is driven by increasing confinement of the 2DEL, with a critical point located at the 5 SrO layer thickness of SRTiO 3. It is manifested in anomalous temperature exponents of the power law resistivity. Additionally, a well-defined trend for the separation of the Hall and longitudinal scattering rates will be presented, analogously to a similar effect observed in the normal state of high-Tc superconductors. In particular, a unique pattern of residual scattering separation was documented, consistent with a quantum critical correction to the Hall lifetime that is divergent at the quantum critical point.

  20. A study of a dual polarization laser backscatter system for remote identification and measurement of water pollution

    NASA Technical Reports Server (NTRS)

    Sheives, T. C.

    1974-01-01

    Remote identification and measurement of subsurface water turbidity and oil on water was accomplished with analytical models which describe the backscatter from smooth surface turbid water, including single scatter and multiple scatter effects. Lidar measurements from natural waterways are also presented and compared with ground observations of several physical water quality parameters.

  1. A comparison between measured surface microtopography and observed scattering in the extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Green, James; Jelinsky, Sharon; Bowyer, Stuart; Malina, Roger F.

    1988-01-01

    The paper presents comparative measurements of surface roughness on prepared samples. These measurements have been made with both Talystep profilometers and WYKO interferometers. In addition, the scattering distribution from these samples was measured at extreme ultraviolet wavelengths. The utility of the WYKO interferometer and Talystep device for specifying extreme ultraviolet mirror surface quality is discussed.

  2. A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong

    2017-08-01

    A sampling method by using scattering amplitude is proposed for shape and location reconstruction in inverse acoustic scattering problems. Only matrix multiplication is involved in the computation, thus the novel sampling method is very easy and simple to implement. With the help of the factorization of the far field operator, we establish an inf-criterion for characterization of underlying scatterers. This result is then used to give a lower bound of the proposed indicator functional for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functional decays like the bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functional continuously depends on the scattering amplitude, this further implies that the novel sampling method is extremely stable with respect to errors in the data. Different to the classical sampling method such as the linear sampling method or the factorization method, from the numerical point of view, the novel indicator takes its maximum near the boundary of the underlying target and decays like the bessel functions as the sampling points go away from the boundary. The numerical simulations also show that the proposed sampling method can deal with multiple multiscale case, even the different components are close to each other.

  3. Thomson scattering from a three-component plasma.

    PubMed

    Johnson, W R; Nilsen, J

    2014-02-01

    A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].

  4. Diaphragm correction factors for the FAC-IR-300 free-air ionization chamber.

    PubMed

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-02-01

    A free-air ionization chamber FAC-IR-300, designed by the Atomic Energy Organization of Iran, is used as the primary Iranian national standard for the photon air kerma. For accurate air kerma measurements, the contribution from the scattered photons to the total energy released in the collecting volume must be eliminated. One of the sources of scattered photons is the chamber's diaphragm. In this paper, the diaphragm scattering correction factor, k dia , and the diaphragm transmission correction factor, k tr , were introduced. These factors represent corrections to the measured charge (or current) for the photons scattered from the diaphragm surface and the photons penetrated through the diaphragm volume, respectively. The k dia and k tr values were estimated by Monte Carlo simulations. The simulations were performed for the mono-energetic photons in the energy range of 20 - 300keV. According to the simulation results, in this energy range, the k dia values vary between 0.9997 and 0.9948, and k tr values decrease from 1.0000 to 0.9965. The corrections grow in significance with increasing energy of the primary photons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed.

  6. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    ERIC Educational Resources Information Center

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, Ira Z.; Stewart, Iain W.

    Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where |t| << s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators whichmore » describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCET II and SCET I. The one-loop amplitude’s rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not sensitive to the directions for soft and collinear Wilson lines. Conversely, certain Glauber interactions can be absorbed into these soft and collinear Wilson lines by taking them to be in specific directions. Finally, we also discuss criteria for factorization violation.« less

  8. Structural-electrical coupling optimisation for radiating and scattering performances of active phased array antenna

    NASA Astrophysics Data System (ADS)

    Wang, Congsi; Wang, Yan; Wang, Zhihai; Wang, Meng; Yuan, Shuai; Wang, Weifeng

    2018-04-01

    It is well known that calculating and reducing of radar cross section (RCS) of the active phased array antenna (APAA) are both difficult and complicated. It remains unresolved to balance the performance of the radiating and scattering when the RCS is reduced. Therefore, this paper develops a structure and scattering array factor coupling model of APAA based on the phase errors of radiated elements generated by structural distortion and installation error of the array. To obtain the optimal radiating and scattering performance, an integrated optimisation model is built to optimise the installation height of all the radiated elements in normal direction of the array, in which the particle swarm optimisation method is adopted and the gain loss and scattering array factor are selected as the fitness function. The simulation indicates that the proposed coupling model and integrated optimisation method can effectively decrease the RCS and that the necessary radiating performance can be simultaneously guaranteed, which demonstrate an important application value in engineering design and structural evaluation of APAA.

  9. Photonic crystal ring resonator-based four-channel dense wavelength division multiplexing demultiplexer on silicon on insulator platform: design and analysis

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, Tupakula; Bhowmick, Kaustav; Samad, Shafeek A.; Yadunath, Thamerassery Illam R.; Badrinarayana, Tarimala; Hegde, Gopalkrishna; Srinivas, Talabattula

    2018-04-01

    A micro/nanofabrication feasible compact photonic crystal (PC) ring-resonator-based channel drop filter has been designed and analyzed for operation in C and L bands of communication window. The four-channel demultiplexer consists of ring resonators of holes in two-dimensional PC slab. The proposed assembly design of dense wavelength division multiplexing setup is shown to achieve optimal quality factor, without altering the lattice parameters or resonator size or inclusion of scattering holes. Transmission characteristics are analyzed using the three-dimensional finite-difference time-domain simulation approach. The radiation loss of the ring resonator was minimized by forced cancelation of radiation fields by fine-tuning the air holes inside the ring resonator. An average cross talk of -34 dB has been achieved between the adjacent channels maintaining an average quality factor of 5000. Demultiplexing is achieved by engineering only the air holes inside the ring, which makes it a simple and tolerant design from the fabrication perspective. Also, the device footprint of 500 μm2 on silicon on insulator platform makes it easy to fabricate the device using e-beam lithography technique.

  10. A reappraisal of seismic Q evaluated at Mt. Etna volcano. Receipt for the application to risk analysis

    NASA Astrophysics Data System (ADS)

    Del Pezzo, Edoardo; Bianco, Francesca; Giampiccolo, Elisabetta; Tusa, Giuseppina; Tuvé, Tiziana

    2015-01-01

    A new approach in dealing with seismic risk in the volcanic areas of Italy, by taking into account the possible occurrence of damaging pre- or syn-eruptive seismic events, is exciting the scientific interest and is actually the topic developed in several research projects funded by the European Community (e.g., UPStrat-MAFA, www.upstrat-mafa.ov.ingv.it/UPstrat/) and the Civil Defense Department of Italy. To achieve this goal, it is necessary to have a detailed knowledge of the local attenuation-distance relations. In the present paper, we make a survey of the estimates of the seismic quality factor of the medium reported in literature for the Etna area. In the framework of a similar paper published for the Campi Flegrei zone in Southern Italy, we first review the results on seismic attenuation already obtained for Etna and then apply a standard technique to separately measure intrinsic and scattering attenuation coefficients from passive seismic data recorded by the Etna seismological network. Indications are then given for the correct utilization of the attenuation parameters to obtain the best candidate quality factor Q to be used in this area for seismic risk purposes.

  11. Characterization of scatter in digital mammography from physical measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, Stephanie M., E-mail: Stephanie.Leon@uth.tmc.edu; Wagner, Louis K.; Brateman, Libby F.

    2014-06-15

    Purpose: That scattered radiation negatively impacts the quality of medical radiographic imaging is well known. In mammography, even slight amounts of scatter reduce the high contrast required for subtle soft-tissue imaging. In current clinical mammography, image contrast is partially improved by use of an antiscatter grid. This form of scatter rejection comes with a sizeable dose penalty related to the concomitant elimination of valuable primary radiation. Digital mammography allows the use of image processing as a method of scatter correction that might avoid effects that negatively impact primary radiation, while potentially providing more contrast improvement than is currently possible withmore » a grid. For this approach to be feasible, a detailed characterization of the scatter is needed. Previous research has modeled scatter as a constant background that serves as a DC bias across the imaging surface. The goal of this study was to provide a more substantive data set for characterizing the spatially-variant features of scatter radiation at the image detector of modern mammography units. Methods: This data set was acquired from a model of the radiation beam as a matrix of very narrow rays or pencil beams. As each pencil beam penetrates tissue, the pencil widens in a predictable manner due to the production of scatter. The resultant spreading of the pencil beam at the detector surface can be characterized by two parameters: mean radial extent (MRE) and scatter fraction (SF). The SF and MRE were calculated from measurements obtained using the beam stop method. Two digital mammography units were utilized, and the SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and presence or absence of a grid. These values were then used to generate general equations allowing the SF and MRE to be calculated for any combination of the above parameters. Results: With a grid, the SF ranged from a minimum of about 0.05 to a maximum of about 0.16, and the MRE ranged from about 3 to 13 mm. Without a grid, the SF ranged from a minimum of 0.25 to a maximum of 0.52, and the MRE ranged from about 20 to 45 mm. The SF with a grid demonstrated a mild dependence on target/filter combination and kV, whereas the SF without a grid was independent of these factors. The MRE demonstrated a complex relationship as a function of kV, with notable difference among target/filter combinations. The primary source of change in both the SF and MRE was phantom thickness. Conclusions: Because breast tissue varies spatially in physical density and elemental content, the effective thickness of breast tissue varies spatially across the imaging field, resulting in a spatially-variant scatter distribution in the imaging field. The data generated in this study can be used to characterize the scatter contribution on a point-by-point basis, for a variety of different techniques.« less

  12. The Relationship between Sleep Quality and Social Intimacy, and Academic Burn-Out in Students of Medical Sciences.

    PubMed

    Arbabisarjou, Azizollah; Hashemi, Seyed Mehdi; Sharif, Mohammad Reza; Haji Alizadeh, Kobra; Yarmohammadzadeh, Peyman; Feyzollahi, Zahra

    2015-11-05

    Academic burnout leads to creation of a series of negative and scattered thoughts, loss of hope and emotional and physical exhaustion in carrying out activities. Two factors that affect academic burnout are sleep quality and social intimacy. This study was conducted in order to investigate the relationship between sleep quality and social intimacy, and academic burn-out in the students of Tabriz University of Medical Sciences. This study was descriptive and correlational. The population of this study consisted of the students in Tabriz University of Medical Sciences and 196 medical students were selected. They completed Berso et al. Academic Burnout Questionnaire, Pittsburgh Sleep Quality Index (PSQI) and Miller Social Intimacy Scale (MSIS). The validity of the questionnaires confirmed by experts' views. Their reliability were obtained as 77%, 64% and 85% for academic burnout, sleep quality and social intimacy questionnaires respectively by calculating the internal consistency (Cronbach's alpha). For data analysis, descriptive statistics and Pearson correlation test, Regression, cluster analysis and t-test were used. The results showed that there was a positive and significant relationship between sleep quality and academic burnout at the level p<0.05 (r=0.38). There was a negative and significant relationship between social intimacy and academic burnout at the level p<0.05 (r= -0.40). Also, the regression results showed that sleep quality and social intimacy were able to predict 37% and 39% of academic burnout respectively. Moreover, the students were divided into two clusters of individuals with high social intimacy and individuals with low social intimacy. No significant difference was found between the two types in terms of the variable of academic burn-out. Based on the research results, it can be stated that the variables of sleep quality and social intimacy are the predictor factors of academic burn-out.

  13. Combined Henyey-Greenstein and Rayleigh phase function.

    PubMed

    Liu, Quanhua; Weng, Fuzhong

    2006-10-01

    The phase function is an important parameter that affects the distribution of scattered radiation. In Rayleigh scattering, a scatterer is approximated by a dipole, and its phase function is analytically related to the scattering angle. For the Henyey-Greenstein (HG) approximation, the phase function preserves only the correct asymmetry factor (i.e., the first moment), which is essentially important for anisotropic scattering. When the HG function is applied to small particles, it produces a significant error in radiance. In addition, the HG function is applied only for an intensity radiative transfer. We develop a combined HG and Rayleigh (HG-Rayleigh) phase function. The HG phase function plays the role of modulator extending the application of the Rayleigh phase function for small asymmetry scattering. The HG-Rayleigh phase function guarantees the correct asymmetry factor and is valid for a polarization radiative transfer. It approaches the Rayleigh phase function for small particles. Thus the HG-Rayleigh phase function has wider applications for both intensity and polarimetric radiative transfers. For microwave radiative transfer modeling in this study, the largest errors in the brightness temperature calculations for weak asymmetry scattering are generally below 0.02 K by using the HG-Rayleigh phase function. The errors can be much larger, in the 1-3 K range, if the Rayleigh and HG functions are applied separately.

  14. Estimation of gloss from rough surface parameters

    NASA Astrophysics Data System (ADS)

    Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin

    2005-12-01

    Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.

  15. Passivated niobium cavities

    DOEpatents

    Myneni, Ganapati Rao [Yorktown, VA; Hjorvarsson, Bjorgvin [Lagga Arby, SE; Ciovati, Gianluigi [Newport News, VA

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  16. Controlling Nanoantenna Polarizability through Backaction via a Single Cavity Mode

    NASA Astrophysics Data System (ADS)

    Ruesink, Freek; Doeleman, Hugo M.; Verhagen, Ewold; Koenderink, A. Femius

    2018-05-01

    The polarizability α determines the absorption, extinction, and scattering by small particles. Beyond being purely set by scatterer size and material, in fact polarizability can be affected by backaction: the influence of the photonic environment on the scatterer. As such, controlling the strength of backaction provides a tool to tailor the (radiative) properties of nanoparticles. Here, we control the backaction between broadband scatterers and a single mode of a high-quality cavity. We demonstrate that backaction from a microtoroid ring resonator significantly alters the polarizability of an array of nanorods: the polarizability is renormalized as fields scattered from—and returning to—the nanorods via the ring resonator depolarize the rods. Moreover, we show that it is possible to control the strength of the backaction by exploiting the diffractive properties of the array. This perturbation of a strong scatterer by a nearby cavity has important implications for hybrid plasmonic-photonic resonators and the understanding of coupled optical resonators in general.

  17. Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, M.; Morimoto, M.; Shima, Y.

    2012-10-15

    In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TSmore » system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.« less

  18. Polarization recovery through scattering media.

    PubMed

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie

    2017-09-01

    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  19. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bootsma, G. J.; Verhaegen, F.; Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4

    2013-11-15

    Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6more » cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup −1} and 7/(2π) rad{sup −1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and π/7 rad (∼25°) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10{sup 6} photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality.Conclusions: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.« less

  20. Reliable structural interpretation of small-angle scattering data from bio-molecules in solution--the importance of quality control and a standard reporting framework.

    PubMed

    Jacques, David A; Guss, Jules Mitchell; Trewhella, Jill

    2012-05-17

    Small-angle scattering is becoming an increasingly popular tool for the study of bio-molecular structures in solution. The large number of publications with 3D-structural models generated from small-angle solution scattering data has led to a growing consensus for the need to establish a standard reporting framework for their publication. The International Union of Crystallography recently established a set of guidelines for the necessary information required for the publication of such structural models. Here we describe the rationale for these guidelines and the importance of standardising the way in which small-angle scattering data from bio-molecules and associated structural interpretations are reported.

  1. Multiplexing and de-multiplexing with scattering media for large field of view and multispectral imaging

    NASA Astrophysics Data System (ADS)

    Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong

    2018-02-01

    Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.

  2. Hole mobilities and the effective Hall factor in p-type GaAs

    NASA Astrophysics Data System (ADS)

    Wenzel, M.; Irmer, G.; Monecke, J.; Siegel, W.

    1997-06-01

    We prove the effective Hall factor in p-GaAs to be larger than values discussed in the literature up to now. The scattering rates for the relevant scattering mechanisms in p-GaAs have been recalculated after critical testing the existing models. These calculations allow to deduce theoretical drift and theoretical Hall mobilities as functions of temperature which can be compared with measured data. Theoretical Hall factors in the heavy and light hole bands and an effective Hall factor result. The calculated room temperature values of the drift mobility and of the effective Hall factor are 118 cm2/V s and 3.6, respectively. The fitted acoustic deformation potential E1=7.9 eV and the fitted optical coupling constant DK=1.24×1011 eV/m are close to values published before. It is shown that the measured strong dependence of the Hall mobility on the Hall concentration is not mainly caused by scattering by ionized impurities but by the dependence of the effective Hall factor on the hole concentration.

  3. A study on scattering correction for γ-photon 3D imaging test method

    NASA Astrophysics Data System (ADS)

    Xiao, Hui; Zhao, Min; Liu, Jiantang; Chen, Hao

    2018-03-01

    A pair of 511KeV γ-photons is generated during a positron annihilation. Their directions differ by 180°. The moving path and energy information can be utilized to form the 3D imaging test method in industrial domain. However, the scattered γ-photons are the major factors influencing the imaging precision of the test method. This study proposes a γ-photon single scattering correction method from the perspective of spatial geometry. The method first determines possible scattering points when the scattered γ-photon pair hits the detector pair. The range of scattering angle can then be calculated according to the energy window. Finally, the number of scattered γ-photons denotes the attenuation of the total scattered γ-photons along its moving path. The corrected γ-photons are obtained by deducting the scattered γ-photons from the original ones. Two experiments are conducted to verify the effectiveness of the proposed scattering correction method. The results concluded that the proposed scattering correction method can efficiently correct scattered γ-photons and improve the test accuracy.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Christopher Matthew

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia ( 15NH 3) target at a four momentum transfer squared of Q 2 = 0.5 (GeV/c) 2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH 3. The asymmetry, A p, has beenmore » used to determine the proton elastic form factor G Ep. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.« less

  5. Long term measurements of optical properties and their hygroscopic enhancement

    NASA Astrophysics Data System (ADS)

    Hervo, M.; Sellegri, K.; Pichon, J. M.; Roger, J. C.; Laj, P.

    2014-11-01

    Optical properties of aerosols were measured from the GAW Puy de Dôme station (1465 m) over a seven year period (2006-2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010-2011). The analysis of the spatial and temporal variability of the optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the PBL height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type. At 90% humidity, the scattering factor enhancement (fσsca) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH = 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type.

  6. Analysis of long wavelength electromagnetic scattering by a magnetized cold plasma prolate spheroid

    NASA Astrophysics Data System (ADS)

    Ahmadizadeh, Yadollah; Jazi, Bahram; Abdoli-Arani, Abbas

    2013-08-01

    Using dielectric permittivity tensor of the magnetized prolate plasma, the scattering of long wavelength electromagnetic waves from the mentioned object is studied. The resonance frequency and differential scattering cross section for the backward scattered waves are presented. Consistency between the resonance frequency in this configuration and results obtained for spherical plasma are investigated. Finally, the effective factors on obtained results such as incident wave polarization, the frequency of the incident wave, the plasma frequency and the cyclotron frequency are analyzed.

  7. An Underwater Color Image Quality Evaluation Metric.

    PubMed

    Yang, Miao; Sowmya, Arcot

    2015-12-01

    Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score.

  8. A symmetrical subtraction combined with interpolated values for eliminating scattering from fluorescence EEM data

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Liu, Xiaofei; Wang, Yutian

    2016-08-01

    Parallel factor analysis is a widely used method to extract qualitative and quantitative information of the analyte of interest from fluorescence emission-excitation matrix containing unknown components. Big amplitude of scattering will influence the results of parallel factor analysis. Many methods of eliminating scattering have been proposed. Each of these methods has its advantages and disadvantages. The combination of symmetrical subtraction and interpolated values has been discussed. The combination refers to both the combination of results and the combination of methods. Nine methods were used for comparison. The results show the combination of results can make a better concentration prediction for all the components.

  9. Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy.

    PubMed

    Wang, Dong; Liu, Shuanglong; Chen, Yue; Song, Jun; Liu, Wei; Xiong, Maozhen; Wang, Guangsheng; Peng, Xiao; Qu, Junle

    2017-05-01

    We propose a method to improve the resolution of coherent anti-Stokes Raman scattering microscopy (CARS), and present a theoretical model. The proposed method, coherent anti-Stokes Raman scattering difference microscopy (CARS-D), is based on the intensity difference between two differently acquired images. One being the conventional CARS image, and the other obtained when the sample is illuminated by a doughnut shaped spot. The final super-resolution CARS-D image is constructed by intensity subtraction of these two images. However, there is a subtractive factor between them, and the theoretical model sets this factor to obtain the best imaging effect.

  10. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  11. On the Forward Scattering of Microwave Breast Imaging

    PubMed Central

    Lui, Hoi-Shun; Fhager, Andreas; Persson, Mikael

    2012-01-01

    Microwave imaging for breast cancer detection has been of significant interest for the last two decades. Recent studies focus on solving the imaging problem using an inverse scattering approach. Efforts have mainly been focused on the development of the inverse scattering algorithms, experimental setup, antenna design and clinical trials. However, the success of microwave breast imaging also heavily relies on the quality of the forward data such that the tumor inside the breast volume is well illuminated. In this work, a numerical study of the forward scattering data is conducted. The scattering behavior of simple breast models under different polarization states and aspect angles of illumination are considered. Numerical results have demonstrated that better data contrast could be obtained when the breast volume is illuminated using cross-polarized components in linear polarization basis or the copolarized components in the circular polarization basis. PMID:22611371

  12. Peripheral elastic and inelastic scattering of 17,18O on light targets at 12 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Carstoiu, F.; Al-Abdullah, T.; Gagliardi, C. A.; Trache, L.

    2015-02-01

    The elastic and inelastic scattering of 17,18O with light targets has been undertaken at 12 MeV/nucleon in order to determine the optical potentials needed for the transfer reaction 13C (17O ,18O )12C . Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the 17F ( p ,γ)18Ne which is essential to estimate the production of 18F at stellar energies in ONe novae. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of 17O , 18O and 16O projectiles is made.

  13. Environmental and Genetic Factors Explain Differences in Intraocular Scattering.

    PubMed

    Benito, Antonio; Hervella, Lucía; Tabernero, Juan; Pennos, Alexandros; Ginis, Harilaos; Sánchez-Romera, Juan F; Ordoñana, Juan R; Ruiz-Sánchez, Marcos; Marín, José M; Artal, Pablo

    2016-01-01

    To study the relative impact of genetic and environmental factors on the variability of intraocular scattering within a classical twin study. A total of 64 twin pairs, 32 monozygotic (MZ) (mean age: 54.9 ± 6.3 years) and 32 dizygotic (DZ) (mean age: 56.4 ± 7.0 years), were measured after a complete ophthalmologic exam had been performed to exclude all ocular pathologies that increase intraocular scatter as cataracts. Intraocular scattering was evaluated by using two different techniques based on a straylight parameter log(S) estimation: a compact optical instrument based in the principle of optical integration and a psychophysical measurement. Intraclass correlation coefficients (ICC) were used as descriptive statistics of twin resemblance, and genetic models were fitted to estimate heritability. No statistically significant difference was found for MZ and DZ groups for age (P = 0.203), best-corrected visual acuity (P = 0.626), cataract gradation (P = 0.701), sex (P = 0.941), optical log(S) (P = 0.386), or psychophysical log(S) (P = 0.568), with only a minor difference in equivalent sphere (P = 0.008). Intraclass correlation coefficients between siblings were similar for scatter parameters: 0.676 in MZ and 0.471 in DZ twins for optical log(S); 0.533 in MZ twins and 0.475 in DZ twins for psychophysical log(S). For equivalent sphere, ICCs were 0.767 in MZ and 0.228 in DZ twins. Conservative estimates of heritability for the measured scattering parameters were 0.39 and 0.20, respectively. Correlations of intraocular scatter (straylight) parameters in the groups of identical and nonidentical twins were similar. Heritability estimates were of limited magnitude, suggesting that genetic and environmental factors determine the variance of ocular straylight in healthy middle-aged adults.

  14. The accurate assessment of small-angle X-ray scattering data

    DOE PAGES

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; ...

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  15. Tissue mimicking simulations for temporal enhanced ultrasound-based tissue typing

    NASA Astrophysics Data System (ADS)

    Bayat, Sharareh; Imani, Farhad; Gerardo, Carlos D.; Nir, Guy; Azizi, Shekoofeh; Yan, Pingkun; Tahmasebi, Amir; Wilson, Storey; Iczkowski, Kenneth A.; Lucia, M. Scott; Goldenberg, Larry; Salcudean, Septimiu E.; Mousavi, Parvin; Abolmaesumi, Purang

    2017-03-01

    Temporal enhanced ultrasound (TeUS) is an imaging approach where a sequence of temporal ultrasound data is acquired and analyzed for tissue typing. Previously, in a series of in vivo and ex vivo studies we have demonstrated that, this approach is effective for detecting prostate and breast cancers. Evidences derived from our experiments suggest that both ultrasound-signal related factors such as induced heat and tissue-related factors such as the distribution and micro-vibration of scatterers lead to tissue typing information in TeUS. In this work, we simulate mechanical micro-vibrations of scatterers in tissue-mimicking phantoms that have various scatterer densities reflecting benign and cancerous tissue structures. Finite element modeling (FEM) is used for this purpose where the vertexes are scatterers representing cell nuclei. The initial positions of scatterers are determined by the distribution of nuclei segmented from actual digital histology scans of prostate cancer patients. Subsequently, we generate ultrasound images of the simulated tissue structure using the Field II package resulting in a temporal enhanced ultrasound. We demonstrate that the micro-vibrations of scatterers are captured by temporal ultrasound data and this information can be exploited for tissue typing.

  16. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  17. Assessment of the general quality of sunscreen products available in Palestine and method verification of the sun protection factor using Food and Drug Administration guidelines.

    PubMed

    Zaid, Abdel Naser; Jaradat, Nidal; Darwish, Saja; Nairat, Sura; Shamlawi, Rawan; Hamad, Yasmeen; Hussein, Fatema; Issa, Linda

    2018-01-29

    Sunlight exposure affects all skin types causing skin tanning, burns or even skin cancer. Sunscreens were invented to prevent these outcomes by scattering or absorbing the UV light. This study aimed to verify the effectiveness of Mansur method in SPF measurement and to find out how much reliable the labeled sun protection factor (SPF) value for the products that are imported to Palestine knowing that they are considered as cosmetics and they don't undergo tests by the Ministry Of Health (MOH). In this research, sun protection factor (SPF) was determined for 16 commercially available sunscreen products using Mansur equation which was also validated; moreover sunscreen classification, product phase determination and pH measurement were also done. Sun protection factor values were mostly 50, 43.75% of the analyzed samples were close to the labeled SPF, 31.25% were under the labeled value, and 25% SPF value above the labeled value. All samples exhibited a pH close to skin pH. 62% of them were found to be O/W. Cosmetic companies and importers should focus on pediatric sunscreens, since only 12.5% are pediatric sunscreens. Ministry Of Health should ask prove about the quality of an SPF value of sunscreens for final registration of these products. More instructions should be available on the label regarding the proper use especially, if they are not water proof. © 2018 Wiley Periodicals, Inc.

  18. Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres

    NASA Technical Reports Server (NTRS)

    Mishchenko, M. I.; Lacis, A. A.; Travis, L. D.

    1994-01-01

    Although neglecting polarization and replacing the rigorous vector radiative transfer equation by its approximate scalar counterpart has no physical background, it is a widely used simplification when the incident light is unpolarized and only the intensity of the reflected light is to be computed. We employ accurate vector and scalar multiple-scattering calculations to perform a systematic study of the errors induced by the neglect of polarization in radiance calculations for a homogeneous, plane-parallel Rayleigh-scattering atmosphere (with and without depolarization) above a Lambertian surface. Specifically, we calculate percent errors in the reflected intensity for various directions of light incidence and reflection, optical thicknesses of the atmosphere, single-scattering albedos, depolarization factors, and surface albedos. The numerical data displayed can be used to decide whether or not the scalar approximation may be employed depending on the parameters of the problem. We show that the errors decrease with increasing depolarization factor and/or increasing surface albedo. For conservative or nearly conservative scattering and small surface albedos, the errors are maximum at optical thicknesses of about 1. The calculated errors may be too large for some practical applications, and, therefore, rigorous vector calculations should be employed whenever possible. However, if approximate scalar calculations are used, we recommend to avoid geometries involving phase angles equal or close to 0 deg and 90 deg, where the errors are especially significant. We propose a theoretical explanation of the large vector/scalar differences in the case of Rayleigh scattering. According to this explanation, the differences are caused by the particular structure of the Rayleigh scattering matrix and come from lower-order (except first-order) light scattering paths involving right scattering angles and right-angle rotations of the scattering plane.

  19. Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography.

    PubMed

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses x-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized x rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized x-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent x rays are emitted isotropically, while scattered x rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example, but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic x-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an x-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image reconstruction showed that for a scatter magnitude decrease by a factor of 2.4, the molecular sensitivity could almost be doubled. Scatter reduction lowers the amount of noise in the projection datasets and reconstructed images which enhance molecular sensitivity at equal dose. The results support the use of linear polarized x rays to reduce scatter in XFCT imaging. © 2018 American Association of Physicists in Medicine.

  20. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    PubMed

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  1. Optimization of Compton Source Performance through Electron Beam Shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander; Yampolsky, Nikolai

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a waymore » so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.« less

  2. [Atmospheric correction of HJ-1 CCD data for water imagery based on dark object model].

    PubMed

    Zhou, Li-Guo; Ma, Wei-Chun; Gu, Wan-Hua; Huai, Hong-Yan

    2011-08-01

    The CCD multi-band data of HJ-1A has great potential in inland water quality monitoring, but the precision of atmospheric correction is a premise and necessary procedure for its application. In this paper, a method based on dark pixel for water-leaving radiance retrieving is proposed. Beside the Rayleigh scattering, the aerosol scattering is important to atmospheric correction, the water quality of inland lakes always are case II water and the value of water leaving radiance is not zero. So the synchronous MODIS shortwave infrared data was used to obtain the aerosol parameters, and in virtue of the characteristic that aerosol scattering is relative stabilized in 560 nm, the water-leaving radiance for each visible and near infrared band were retrieved and normalized, accordingly the remotely sensed reflectance of water was computed. The results show that the atmospheric correction method based on the imagery itself is more effective for the retrieval of water parameters for HJ-1A CCD data.

  3. Polarization observables and T-noninvariance in the weak charged current induced electron proton scattering

    NASA Astrophysics Data System (ADS)

    Fatima, A.; Sajjad Athar, M.; Singh, S. K.

    2018-06-01

    In this work, we have studied the total scattering cross section (σ, differential scattering cross section ( dσ/d Q2) as well as the longitudinal ( P_L(Ee,Q2)), perpendicular ( PP(Ee,Q2)), and transverse ( PT(Ee,Q2)) components of the polarization of the final hadron ( n, Λ and Σ0) produced in the electron proton scattering induced by the weak charged current. We have not assumed T-invariance which allows the transverse component of the hadron polarization perpendicular to the production plane to be non-zero. The numerical results are presented for all the above observables and their dependence on the axial vector form factor and the weak electric form factor are discussed. The present study enables the determination of the axial vector nucleon-hyperon transition form factors at high Q2 in the strangeness sector which can provide a test of the symmetries of the weak hadronic currents like T-invariance and SU(3) symmetry while assuming the hypothesis of conserved vector current and partial conservation of axial vector current.

  4. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    NASA Astrophysics Data System (ADS)

    Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peña, C.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-02-01

    There is a significant discrepancy between the values of the proton electric form factor, GEp, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEp from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ɛ ) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ɛ at Q2=1.45 GeV2 . This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2 - 3 GeV2 .

  5. Scattering of Airy elastic sheets by a cylindrical cavity in a solid.

    PubMed

    Mitri, F G

    2017-11-01

    The prediction of the elastic scattering by voids (and cracks) in materials is an important process in structural health monitoring, phononic crystals, metamaterials and non-destructive evaluation/imaging to name a few examples. Earlier analytical theories and numerical computations considered the elastic scattering by voids in plane waves of infinite extent. However, current research suggesting the use of (limited-diffracting, accelerating and self-healing) Airy acoustical-sheet beams for non-destructive evaluation or imaging applications in elastic solids requires the development of an improved analytical formalism to predict the scattering efficiency used as a priori information in quantitative material characterization. Based on the definition of the time-averaged scattered power flow density, an analytical expression for the scattering efficiency of a cylindrical empty cavity (i.e., void) encased in an elastic medium is derived for compressional and normally-polarized shear-wave Airy beams. The multipole expansion method using cylindrical wave functions is utilized. Numerical computations for the scattering energy efficiency factors for compressional and shear waves illustrate the analysis with particular emphasis on the Airy beam parameters and the non-dimensional frequency, for various elastic materials surrounding the cavity. The ratio of the compressional to the shear wave speed stimulates the generation of elastic resonances, which are manifested as a series of peaks in the scattering efficiency plots. The present analysis provides an improved method for the computations of the scattering energy efficiency factors using compressional and shear-wave Airy beams in elastic materials as opposed to plane waves of infinite extent. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Achieving a strongly negative scattering asymmetry factor in random media composed of dual-dipolar particles

    NASA Astrophysics Data System (ADS)

    Wang, B. X.; Zhao, C. Y.

    2018-02-01

    Understanding radiative transfer in random media like micro- or nanoporous and particulate materials, allows people to manipulate the scattering and absorption of radiation, as well as opens new possibilities in applications such as imaging through turbid media, photovoltaics, and radiative cooling. A strong-backscattering phase function, i.e., a negative scattering asymmetry parameter g , is of great interest, which can possibly lead to unusual radiative transport phenomena, for instance, Anderson localization of light. Here we demonstrate that by utilizing the structural correlations and second Kerker condition for a disordered medium composed of randomly distributed silicon nanoparticles, a strongly negative scattering asymmetry factor (g ˜-0.5 ) for multiple light scattering can be realized in the near infrared. Based on the multipole expansion of Foldy-Lax equations and quasicrystalline approximation (QCA), we have rigorously derived analytical expressions for the effective propagation constant and scattering phase function for a random system containing spherical particles, by taking the effect of structural correlations into account. We show that as the concentration of scattering particles rises, the backscattering is also enhanced. Moreover, in this circumstance, the transport mean free path is largely reduced and even becomes smaller than that predicted by independent scattering approximation. We further explore the dependent scattering effects, including the modification of electric and magnetic dipole excitations and far-field interference effect, both induced and influenced by the structural correlations, for volume fraction of particles up to fv˜0.25 . Our results have profound implications in harnessing micro- or nanoscale radiative transfer through random media.

  7. III-V semiconductor Quantum Well systems: Physics of Gallium Arsenide two-dimensional hole systems and engineering of mid-infrared Quantum Cascade lasers

    NASA Astrophysics Data System (ADS)

    Chiu, YenTing

    This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further experimentally prove the importance of interface roughness on intersubband scattering by measuring the electron transit time of different quantum cascade lasers and comparing them to the calculated upper laser level lifetimes with and without taking into account interface roughness induced intersubband scattering. A significantly better correlation is found between the experimental results and the calculation when the interface roughness scattering is included. Lastly, we study the effect of growth asymmetry on scattering mechanisms in mid-infrared Quantum Cascade lasers. Due to the dopant migration of around 10 nm along the growth direction of InGaAs/InAlAs Quantum Cascade laser structures, ionized impurity scattering is found to have a non-negligible influence on the lifetime of the upper laser level when the laser is biased in the polarity that electrons flow along the growth direction, in sharp contrast to the situation for the opposite polarity.

  8. A study on independently using static and dynamic light scattering methods to determine the coagulation rate

    NASA Astrophysics Data System (ADS)

    Zhou, Hongwei; Xu, Shenghua; Mi, Li; Sun, Zhiwei; Qin, Yanming

    2014-09-01

    Absolute coagulation rate constants were determined by independently, instead of simultaneously, using static and dynamic light scattering with the requested optical factors calculated by T-matrix method. The aggregating suspensions of latex particles with diameters of 500, 700, and 900 nm, that are all beyond validity limit of the traditional Rayleigh-Debye-Gans approximation, were adopted. The results from independent static and dynamic light scattering measurements were compared with those by simultaneously using static and dynamic light scattering; and three of them show good consistency. We found, theoretically and experimentally, that for independent static light scattering measurements there are blind scattering angles at that the scattering measurements become impossible and the number of blind angles increases rapidly with particle size. For independent dynamic light scattering measurements, however, there is no such a blind angle at all. A possible explanation of the observed phenomena is also presented.

  9. A new theory for X-ray diffraction.

    PubMed

    Fewster, Paul F

    2014-05-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the `Bragg position' even if the `Bragg condition' is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many `Bragg positions'. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on `Bragg-type' scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the `background'. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.

  10. Relation of biospeckle activity with quality attributes of apples.

    PubMed

    Zdunek, Artur; Cybulska, Justyna

    2011-01-01

    Biospeckle is nondestructive optical technique based on the analysis of variations of laser light scattered from biological samples. Biospeckle activity reflects the state of the investigated object. In this study the relation of biospeckle activity (BA) with firmness, soluble solids content (SSC), titratable acidity (TA) and starch content (SC) during the shelf life of seven apple cultivars was studied. The results showed that the quality attributes change significantly during storage. Significant and pronounced positive correlation between BA and SC was found. This result shows that degradation of starch granules, which could be stimulated to vibration by intracellular cyclosis, causes a lesser number of laser light scattering centers and results in smaller apparent biospeckle activity.

  11. Relation of Biospeckle Activity with Quality Attributes of Apples

    PubMed Central

    Zdunek, Artur; Cybulska, Justyna

    2011-01-01

    Biospeckle is nondestructive optical technique based on the analysis of variations of laser light scattered from biological samples. Biospeckle activity reflects the state of the investigated object. In this study the relation of biospeckle activity (BA) with firmness, soluble solids content (SSC), titratable acidity (TA) and starch content (SC) during the shelf life of seven apple cultivars was studied. The results showed that the quality attributes change significantly during storage. Significant and pronounced positive correlation between BA and SC was found. This result shows that degradation of starch granules, which could be stimulated to vibration by intracellular cyclosis, causes a lesser number of laser light scattering centers and results in smaller apparent biospeckle activity. PMID:22163957

  12. Improving human object recognition performance using video enhancement techniques

    NASA Astrophysics Data System (ADS)

    Whitman, Lucy S.; Lewis, Colin; Oakley, John P.

    2004-12-01

    Atmospheric scattering causes significant degradation in the quality of video images, particularly when imaging over long distances. The principle problem is the reduction in contrast due to scattered light. It is known that when the scattering particles are not too large compared with the imaging wavelength (i.e. Mie scattering) then high spatial resolution information may be contained within a low-contrast image. Unfortunately this information is not easily perceived by a human observer, particularly when using a standard video monitor. A secondary problem is the difficulty of achieving a sharp focus since automatic focus techniques tend to fail in such conditions. Recently several commercial colour video processing systems have become available. These systems use various techniques to improve image quality in low contrast conditions whilst retaining colour content. These systems produce improvements in subjective image quality in some situations, particularly in conditions of haze and light fog. There is also some evidence that video enhancement leads to improved ATR performance when used as a pre-processing stage. Psychological literature indicates that low contrast levels generally lead to a reduction in the performance of human observers in carrying out simple visual tasks. The aim of this paper is to present the results of an empirical study on object recognition in adverse viewing conditions. The chosen visual task was vehicle number plate recognition at long ranges (500 m and beyond). Two different commercial video enhancement systems are evaluated using the same protocol. The results show an increase in effective range with some differences between the different enhancement systems.

  13. The optimal balance between quality and efficiency in proton radiography imaging technique at various proton beam energies: A Monte Carlo study.

    PubMed

    Biegun, A K; van Goethem, M-J; van der Graaf, E R; van Beuzekom, M; Koffeman, E N; Nakaji, T; Takatsu, J; Visser, J; Brandenburg, S

    2017-09-01

    Proton radiography is a novel imaging modality that allows direct measurement of the proton energy loss in various tissues. Currently, due to the conversion of so-called Hounsfield units from X-ray Computed Tomography (CT) into relative proton stopping powers (RPSP), the uncertainties of RPSP are 3-5% or higher, which need to be minimized down to 1% to make the proton treatment plans more accurate. In this work, we simulated a proton radiography system, with position-sensitive detectors (PSDs) and a residual energy detector (RED). The simulations were built using Geant4, a Monte Carlo simulation toolkit. A phantom, consisting of several materials was placed between the PSDs of various Water Equivalent Thicknesses (WET), corresponding to an ideal detector, a gaseous detector, silicon and plastic scintillator detectors. The energy loss radiograph and the scattering angle distributions of the protons were studied for proton beam energies of 150MeV, 190MeV and 230MeV. To improve the image quality deteriorated by the multiple Coulomb scattering (MCS), protons with small angles were selected. Two ways of calculating a scattering angle were considered using the proton's direction and position. A scattering angle cut of 8.7mrad was applied giving an optimal balance between quality and efficiency of the radiographic image. For the three proton beam energies, the number of protons used in image reconstruction with the direction method was half the number of protons kept using the position method. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    PubMed

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  15. Optimization-based scatter estimation using primary modulation for computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Ma, Jingchen; Zhao, Jun, E-mail: junzhao

    Purpose: Scatter reduces the image quality in computed tomography (CT), but scatter correction remains a challenge. A previously proposed primary modulation method simultaneously obtains the primary and scatter in a single scan. However, separating the scatter and primary in primary modulation is challenging because it is an underdetermined problem. In this study, an optimization-based scatter estimation (OSE) algorithm is proposed to estimate and correct scatter. Methods: In the concept of primary modulation, the primary is modulated, but the scatter remains smooth by inserting a modulator between the x-ray source and the object. In the proposed algorithm, an objective function ismore » designed for separating the scatter and primary. Prior knowledge is incorporated in the optimization-based framework to improve the accuracy of the estimation: (1) the primary is always positive; (2) the primary is locally smooth and the scatter is smooth; (3) the location of penumbra can be determined; and (4) the scatter-contaminated data provide knowledge about which part is smooth. Results: The simulation study shows that the edge-preserving weighting in OSE improves the estimation accuracy near the object boundary. Simulation study also demonstrates that OSE outperforms the two existing primary modulation algorithms for most regions of interest in terms of the CT number accuracy and noise. The proposed method was tested on a clinical cone beam CT, demonstrating that OSE corrects the scatter even when the modulator is not accurately registered. Conclusions: The proposed OSE algorithm improves the robustness and accuracy in scatter estimation and correction. This method is promising for scatter correction of various kinds of x-ray imaging modalities, such as x-ray radiography, cone beam CT, and the fourth-generation CT.« less

  16. Linac head scatter factor for asymmetric radiation field

    NASA Astrophysics Data System (ADS)

    Soubra, Mazen Ahmed

    1997-11-01

    The head scatter factor, Sh is an important dosimetric quantity used in radiation therapy dose calculation. It is empirically determined and its field size dependence reflects changes in photon scatter from components in the linac treatment head. In this work a detailed study of the physical factors influencing the determination of Sh was performed with particular attention given to asymmetric field geometries. Ionization measurements for 6 and 18 MV photon beams were made to examine the factors which determine Sh. These include: phantom size and material, collimator backscatter, non-lateral electronic equilibrium (LEE) conditions, electron contamination, collimator-exchange, photon energy, flattening filter and off-axis distance (OAD). Results indicated that LEE is not required for Sh measurements if electron contamination is minimized. Brass caps or polystyrene miniphantoms can both be used in Sh measurements provided the phantom thickness is large enough to stop contaminant electrons. Backscatter radiation effects into the monitor chamber were found to be negligible for the Siemens linac. It was found that the presence and shape of the flattening filter had a significant effect on the empirically determined value of Sh was also shown to be a function of OAD, particularly for small fields. For fields larger than 12×12 cm2/ Sh was independent of OAD. A flattening filter mass model was introduced to explain qualitatively the above results. A detailed Monte Carlo simulation of the Siemens KD2 linac head in 6 MV mode was performed to investigate the sources of head scatter which contribute to the measured Sh. The simulated head components include the flattening filter, the electron beam stopper, the primary collimator, the photon monitor chamber and the secondary collimators. The simulations showed that the scatter from the head of the Siemens linac is a complex function of the head components. On the central axis the flattening filter played the dominant role in the contributing to scatter. However this role was significantly reduced off- axis and other head components, such as the electron beam stopper and the primary collimator, became more important. The role of the mirror and ion chamber was relatively minor. Scatter from the secondary collimators was shown to be a function of the filed size and the position of the collimators in the treatment head. They were also found to play a dual role, both as a scatter source and as an attenuator for scatter produced upstream in the linac head. A closed form model, based on the work of Yu and Slobada, was developed to estimate head scatter factors for on- and off-axis asymmetric fields. The model requires three parameters to fit the measured data. The first, a constant c, has a physical significance and is independent of energy and off-axis distance. The second, g, shows a small variation with the energy and OAD while the third parameter, the primary-to-scatter ratio, is strongly dependent on energy and off-axis distance. Comparison of Sh, predicted by the model, to measurement for a large range of symmetric and asymmetric fields showed excellent agreement. A maximum of 0.7% discrepancy was observed at 12 cm OAD.

  17. Analysis of factors driving stream water composition and synthesis of management tools--a case study on small/medium Greek catchments.

    PubMed

    Skoulikidis, N Th; Amaxidis, Y; Bertahas, I; Laschou, S; Gritzalis, K

    2006-06-01

    Twenty-nine small- and mid-sized permanent rivers (thirty-six sites) scattered throughout Greece and equally distributed within three geo-chemical-climatic zones, have been investigated in a seasonal base. Hydrochemical types have been determined and spatio-temporal variations have been interpreted in relation to environmental characteristics and anthropogenic pressures. Multivariate statistical techniques have been used to identify the factors and processes affecting hydrochemical variability and the driving forces that control aquatic composition. It has been shown that spatial variation of aquatic quality is mainly governed by geological and hydrogeological factors. Due to geological and climatic variability, the three zones have different hydrochemical characteristics. Temporal hydrological variations in combination with hydrogeological factors control seasonal hydrochemical trends. Respiration processes due to municipal wastewaters, dominate in summer, and enhance nutrient, chloride and sodium concentrations, while nitrate originates primarily from agriculture. Photosynthetic processes dominate in spring. Carbonate chemistry is controlled by hydrogeological factors and biological activity. A possible enrichment of surface waters with nutrients in "pristine" forested catchments is attributed to soil leaching and mineralisation processes. Two management tools have been developed: a nutrient classification system and a rapid prediction of aquatic composition tool.

  18. Accurate optimization of amino acid form factors for computing small-angle X-ray scattering intensity of atomistic protein structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Dudu; Yang, Sichun; Lu, Lanyuan

    2016-06-20

    Structure modellingviasmall-angle X-ray scattering (SAXS) data generally requires intensive computations of scattering intensity from any given biomolecular structure, where the accurate evaluation of SAXS profiles using coarse-grained (CG) methods is vital to improve computational efficiency. To date, most CG SAXS computing methods have been based on a single-bead-per-residue approximation but have neglected structural correlations between amino acids. To improve the accuracy of scattering calculations, accurate CG form factors of amino acids are now derived using a rigorous optimization strategy, termed electron-density matching (EDM), to best fit electron-density distributions of protein structures. This EDM method is compared with and tested againstmore » other CG SAXS computing methods, and the resulting CG SAXS profiles from EDM agree better with all-atom theoretical SAXS data. By including the protein hydration shell represented by explicit CG water molecules and the correction of protein excluded volume, the developed CG form factors also reproduce the selected experimental SAXS profiles with very small deviations. Taken together, these EDM-derived CG form factors present an accurate and efficient computational approach for SAXS computing, especially when higher molecular details (represented by theqrange of the SAXS data) become necessary for effective structure modelling.« less

  19. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was investigated by measuring the illuminated current voltage (I-V) characteristics of the minicell wafer set. The average short circuit current on different wafers is 3 to 14 percent lower than that of single crystal Czochralski silicon. The scatter was typically less than 3 percent. The average open circuit voltage is 20 to 60 mV less than that of single crystal silicon. The scatter in the open circuit voltage of most of the polycrystalline silicon wafers was 15 to 20 mV, although two wafers had significantly greater scatter than this value. The fill factor of both polycrystalline and single crystal silicon cells was typically in the range of 60 to 70 percent; however several polycrystalline silicon wafers have fill factor averages which are somewhat lower and have a significantly larger degree of scatter.

  20. Scatter and beam hardening reduction in industrial computed tomography using photon counting detectors

    NASA Astrophysics Data System (ADS)

    Schumacher, David; Sharma, Ravi; Grager, Jan-Carl; Schrapp, Michael

    2018-07-01

    Photon counting detectors (PCD) offer new possibilities for x-ray micro computed tomography (CT) in the field of non-destructive testing. For large and/or dense objects with high atomic numbers the problem of scattered radiation and beam hardening severely influences the image quality. This work shows that using an energy discriminating PCD based on CdTe allows to address these problems by intrinsically reducing both the influence of scattering and beam hardening. Based on 2D-radiographic measurements it is shown that by energy thresholding the influence of scattered radiation can be reduced by up to in case of a PCD compared to a conventional energy-integrating detector (EID). To demonstrate the capabilities of a PCD in reducing beam hardening, cupping artefacts are analyzed quantitatively. The PCD results show that the higher the energy threshold is set, the lower the cupping effect emerges. But since numerous beam hardening correction algorithms exist, the results of the PCD are compared to EID results corrected by common techniques. Nevertheless, the highest energy thresholds yield lower cupping artefacts than any of the applied correction algorithms. As an example of a potential industrial CT application, a turbine blade is investigated by CT. The inner structure of the turbine blade allows for comparing the image quality between PCD and EID in terms of absolute contrast, as well as normalized signal-to-noise and contrast-to-noise ratio. Where the absolute contrast can be improved by raising the energy thresholds of the PCD, it is found that due to lower statistics the normalized contrast-to-noise-ratio could not be improved compared to the EID. These results might change to the contrary when discarding pre-filtering of the x-ray spectra and thus allowing more low-energy photons to reach the detectors. Despite still being in the early phase in technological progress, PCDs already allow to improve CT image quality compared to conventional detectors in terms of scatter and beam hardening reduction.

  1. Neutron Scattering Reference

    Science.gov Websites

    Conversion Factors Periodic Table of the Elements Chart of the Nuclides Map of the Nuclides Computer Index of (Atominstitut der Österreichischen Universitäten) Neutron Activation Table of Elements Neutron Scattering at neutronsources.org. The information contained here in the Neutron Scattering Web has been

  2. Investigation of the structure of unilamellar dimyristoylphosphatidylcholine vesicles in aqueous sucrose solutions by small-angle neutron and X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiselev, M. A., E-mail: elena@jinr.ru; Zemlyanaya, E. V.; Zhabitskaya, E. I.

    2015-01-15

    The structure of a polydispersed population of unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose solutions has been investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). Calculations within the model of separated form factors (SFF) show that the structure of the vesicle system depends strongly on the sucrose concentration.

  3. Scattering from randomly oriented scatterers of arbitrary shape in the low-frequency limit with application to vegetation

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1983-01-01

    A general theory of intensity scattering from small particles of arbitrary shape has been developed based on the radiative transfer theory. Upon permitting the particles to orient in accordance with any prescribed distribution, scattering models can be derived. By making an appropriate choice of the particle size, the scattering model may be used to estimate scattering from media such as snow, vegetation and sea ice. For the purpose of illustration only comparisons with measurements from a vegetated medium are shown. The difference in scattering between elliptic- and circular-shaped leaves is demonstrated. In the low-frequency limit, the major factors on backscattering from vegetation are found to be the depth of the vegetation layer and the orientation distribution of the leaves. The shape of the leaf is of secondary importance.

  4. Scattering from randomly oriented scatterers of arbitrary shape in the low-frequency limit with application to vegetation

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1984-01-01

    A general theory of intensity scattering from small particles of arbitrary shape was developed based on the radiative transfer theory. Upon permitting the particles to orient in accordance with any prescribed distribution, scattering models can be derived. By making an appropriate choice of the particle size, the scattering model may be used to estimate scattering from media such as snow, vegetation and sea ice. For the purpose of illustration only comparisons with measurements from a vegetated medium are shown. The difference in scattering between elliptic and circular shaped leaves is demonstrated. In the low frequency limit, the major factors on backscattering from vegetation are found to be the depth of the vegetation layer and the orientation distribution of the leaves. The shape of the leaf is of secondary importance.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsytovich, Vadim, E-mail: tsytov@lpi.ru; Max Planck Institute for Extraterrestrial Physics, Garching; Gusein-zade, Namik

    Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, themore » total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.« less

  6. Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen.

    PubMed

    Ye, Yiyang; Chen, Tupei; Zhen, Juyuan; Xu, Chen; Zhang, Jun; Li, Huakai

    2018-02-01

    The ability to selectively scatter green light is essential for an RGB transparent projection display, and this can be achieved by a silver-core, titania-shell nanostructure (Ag@TiO 2 ), based on the metallic nanoparticle's localized surface plasmon resonance. The ability to selectively scatter green light is shown in a theoretical design, in which structural optimization is included, and is then experimentally verified by characterization of a transparent film produced by dispersing such nanoparticles in a polymer matrix. A visual assessesment indicates that a high-quality green image can be clearly displayed on the transparent film. For completeness, a theoretical design for selective scattering of red light based on Ag@TiO 2 is also shown.

  7. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  8. Small-angle solution scattering using the mixed-mode pixel array detector.

    PubMed

    Koerner, Lucas J; Gillilan, Richard E; Green, Katherine S; Wang, Suntao; Gruner, Sol M

    2011-03-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 10(7) 10 keV X-rays, a maximum flux rate of 10(8) X-rays pixel(-1) s(-1), and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements.

  9. Small-angle solution scattering using the mixed-mode pixel array detector

    PubMed Central

    Koerner, Lucas J.; Gillilan, Richard E.; Green, Katherine S.; Wang, Suntao; Gruner, Sol M.

    2011-01-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 107 10 keV X-rays, a maximum flux rate of 108 X-rays pixel−1 s−1, and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements. PMID:21335900

  10. Atomically Thin Graphene Windows That Enable High Contrast Electron Microscopy without a Specimen Vacuum Chamber.

    PubMed

    Han, Yimo; Nguyen, Kayla X; Ogawa, Yui; Park, Jiwoong; Muller, David A

    2016-12-14

    Scanning electron microscopes (SEMs) require a high vacuum environment to generate and shape an electron beam for imaging; however, the vacuum conditions greatly limit the nature of specimens that can be examined. From a purely scattering physics perspective, it is not necessary to place the specimen inside the vacuum chamber-the mean free paths (MFPs) for electron scattering in air at typical SEM beam voltages are 50-100 μm. This is the idea behind the airSEM, which removes the specimen vacuum chamber from the SEM and places the sample in air. The thickness of the gas layer is less than a MFP from an electron-transparent window to preserve the shape and resolution of the incident beam, resulting in comparable imaging quality to an all-vacuum SEM. Present silicon nitride windows scatter far more strongly than the air gap and are currently the contrast and resolution limiting factor in the airSEM. Graphene windows have been used previously to wrap or seal samples in vacuum for imaging. Here we demonstrate the use of a robust bilayer graphene window for sealing the electron optics from the room environment, providing an electron transparent window with only a 2% drop in contrast. There is a 5-fold-increase in signal/noise ratio for imaging compared to multi-MFP-thick silicon nitride windows, enabling high contrast in backscattered, transmission, and surface imaging modes for the new airSEM geometry.

  11. [Spectrum simulation based on data derived from red tide].

    PubMed

    Liu, Zhen-Yu; Cui, Ting-Wei; Yue, Jie; Jiang, Tao; Cao, Wen-Xi; Ma, Yi

    2011-11-01

    The present paper utilizes the absorption data of red tide water measured during the growing and dying course to retrieve imaginary part of the index of refraction based on Mie theory, carries out the simulation and analysis of average absorption efficiency factors, average backscattering efficiency factors and scattering phase function. The analysis of the simulation shows that Mie theory can be used to reproduce the absorption property of Chaetoceros socialis with an average error of 11%; the average backscattering efficiency factors depend on the value of absorption whose maximum value corresponds to the wavelength range from 400 to 700 nanometer; the average backscattering efficiency factors showed a maximum value on 17th with a low value during the outbreak of red tide and the minimum on 21th; the total scattering, weakly depending on the absorption, is proportional to the size parameters which represent the relative size of cell diameter with respect to the wavelength, while the angle scattering intensity is inversely proportional to wavelength.

  12. Electron Scattering and Doping Mechanisms in Solid-Phase-Crystallized In2O3:H Prepared by Atomic Layer Deposition.

    PubMed

    Macco, Bart; Knoops, Harm C M; Kessels, Wilhelmus M M

    2015-08-05

    Hydrogen-doped indium oxide (In2O3:H) has recently emerged as an enabling transparent conductive oxide for solar cells, in particular for silicon heterojunction solar cells because its high electron mobility (>100 cm(2)/(V s)) allows for a simultaneously high electrical conductivity and optical transparency. Here, we report on high-quality In2O3:H prepared by a low-temperature atomic layer deposition (ALD) process and present insights into the doping mechanism and the electron scattering processes that limit the carrier mobility in such films. The process consists of ALD of amorphous In2O3:H at 100 °C and subsequent solid-phase crystallization at 150-200 °C to obtain large-grained polycrystalline In2O3:H films. The changes in optoelectronic properties upon crystallization have been monitored both electrically by Hall measurements and optically by analysis of the Drude response. After crystallization, an excellent carrier mobility of 128 ± 4 cm(2)/(V s) can be obtained at a carrier density of 1.8 × 10(20) cm(-3), irrespective of the annealing temperature. Temperature-dependent Hall measurements have revealed that electron scattering is dominated by unavoidable phonon and ionized impurity scattering from singly charged H-donors. Extrinsic defect scattering related to material quality such as grain boundary and neutral impurity scattering was found to be negligible in crystallized films indicating that the carrier mobility is maximized. Furthermore, by comparison of the absolute H-concentration and the carrier density in crystallized films, it is deduced that <4% of the incorporated H is an active dopant in crystallized films. Therefore, it can be concluded that inactive H atoms do not (significantly) contribute to defect scattering, which potentially explains why In2O3:H films are capable of achieving a much higher carrier mobility than conventional In2O3:Sn (ITO).

  13. Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT).

    PubMed

    Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei

    2015-05-01

    In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).

  14. Pyridine-pyrimidine amides that prevent HGF-induced epithelial scattering by two distinct mechanisms.

    PubMed

    Siddiqui-Jain, Adam; Hoj, Jacob P; Hargiss, J Blade; Hoj, Taylor H; Payne, Carter J; Ritchie, Collin A; Herron, Steven R; Quinn, Colette; Schuler, Jeffrey T; Hansen, Marc D H

    2017-09-01

    Stimulation of cultured epithelial cells with scatter factor/hepatocyte growth factor (HGF) results in individual cells detaching and assuming a migratory and invasive phenotype. Epithelial scattering recapitulates cancer progression and studies have implicated HGF signaling as a driver of cancer metastasis. Inhibitors of HGF signaling have been proposed to act as anti-cancer agents. We previously screened a small molecule library for compounds that block HGF-induced epithelial scattering. Most hits identified in this screen exhibit anti-mitotic properties. Here we assess the biological mechanism of a compound that blocks HGF-induced scattering with limited anti-mitotic activity. Analogs of this compound have one of two distinct activities: inhibiting either cell migration or cell proliferation with cell cycle arrest in G2/M. Each activity bears unique structure-activity relationships. The mechanism of action of anti-mitotic compounds is by inhibition of microtubule polymerization; these compounds entropically and enthalpically bind tubulin in the colchicine binding site, generating a conformational change in the tubulin dimer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The effect of kinematic parameters on inelastic scattering of glyoxal.

    PubMed

    Duca, Mariana D

    2004-10-08

    The effect of kinematic parameters (relative velocity v(rel), relative momentum p(rel), and relative energy E(rel)) on the rotational and rovibrational inelastic scatterings of 0(0)K(0)S(1) trans-glyoxal has been investigated by colliding glyoxal seeded in He or Ar with target gases D2, He, or Ne at different scattering angles in crossed supersonic beams. The inelastic spectra for target gases He and D2 acquired with two different sets of kinematic parameters revealed no significant differences. This result shows that kinematic factors have the major influence in the inelastic scattering channel competition whereas the intermolecular potential energy surface plays only a secondary role. The well-defined exponential dependence of relative cross sections on exchanged angular momentum identifies angular momentum as the dominant kinematic factor in collision-induced rotationally and rovibrationally inelastic scatterings. This is supported by the behavior of the relative inelastic cross sections data in a "slope-p(rel)" representation. In this form, the data show a trend nearly independent of the target gas identity. Representations involving E(rel) and v(rel) show trends specific to the target gas.

  16. Determination of the structure of subsurface layers by means of coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Teplov, S. V.; Rabalais, J. W.

    1994-05-01

    It is demonstrated that both surface and subsurface structural information can be obtained from Si{100}-(2 × 1) and Si{100}-(1 × 1)-H by coupling coaxial time-of-flight scattering and recoiling spectrometry (TOF-SARS) with three-dimensional trajectory simulations. Experimentally, backscattering intensity versus incident α angle scans at a scattering angle of ˜ 180° have been measured for 2 keV He + incident on both the (2 × 1) and (1 × 1)-H surfaces. Computationally, an efficient three-dimensional version of the Monte Carlo computer code RECAD has been developed and applied to simulation of the TOF-SARS results. An R (reliability) factor has been introduced for quantitative evaluation of the agreement between experimental and simulated scans. For the case of 2 keV He + scattering from Si{100}, scattering features can be observed and delineated from as many as 14 atomic layers ( ˜ 18 Å) below the surface. The intradimer spacing D is determined as 2.2 Å from the minimum in the R-factor versus D plot.

  17. Dispersive analysis of the pion transition form factor

    NASA Astrophysics Data System (ADS)

    Hoferichter, M.; Kubis, B.; Leupold, S.; Niecknig, F.; Schneider, S. P.

    2014-11-01

    We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the cross section, generalizing previous studies on decays and scattering, and verify our result by comparing to data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below , and extract the slope of the form factor at vanishing momentum transfer . We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.

  18. Ab initio simulations of the dynamic ion structure factor of warm dense lithium

    DOE PAGES

    Witte, B. B. L.; Shihab, M.; Glenzer, S. H.; ...

    2017-04-06

    Here, we present molecular dynamics simulations based on finite-temperature density functional theory that determine self-consistently the dynamic ion structure factor and the electronic form factor in lithium. Our comprehensive data set allows for the calculation of the dispersion relation for collective excitations, the calculation of the sound velocity, and the determination of the ion feature from the total electronic form factor and the ion structure factor. The results are compared with available experimental x-ray and neutron scattering data. Good agreement is found for both the liquid metal and warm dense matter domain. Finally, we study the impact of possible targetmore » inhomogeneities on x-ray scattering spectra.« less

  19. Ab initio simulations of the dynamic ion structure factor of warm dense lithium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, B. B. L.; Shihab, M.; Glenzer, S. H.

    Here, we present molecular dynamics simulations based on finite-temperature density functional theory that determine self-consistently the dynamic ion structure factor and the electronic form factor in lithium. Our comprehensive data set allows for the calculation of the dispersion relation for collective excitations, the calculation of the sound velocity, and the determination of the ion feature from the total electronic form factor and the ion structure factor. The results are compared with available experimental x-ray and neutron scattering data. Good agreement is found for both the liquid metal and warm dense matter domain. Finally, we study the impact of possible targetmore » inhomogeneities on x-ray scattering spectra.« less

  20. LIGHT SCATTERING PROPERTIES OF GLIADIN AFTER X-RAY IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J.

    1962-01-01

    The gliadin portion of wheat gluten prepared in 60% ethanol solution was investigated for its light scattering properties after x irradiation. Results show that the effect of irradiation depends on the quality of the sample, such as dry or wet. The average molecular weight of liadin decreased in accordance with the time of irradiation. The longer the irradiated time, the more SH groups were setfree. (P.C.H.)

  1. Simplified multiple scattering model for radiative transfer in turbid water

    NASA Technical Reports Server (NTRS)

    Ghovanlou, A. H.; Gupta, G. N.

    1978-01-01

    Quantitative analytical procedures for relating selected water quality parameters to the characteristics of the backscattered signals, measured by remote sensors, require the solution of the radiative transport equation in turbid media. Presented is an approximate closed form solution of this equation and based on this solution, the remote sensing of sediments is discussed. The results are compared with other standard closed form solutions such as quasi-single scattering approximations.

  2. Correlational Analysis of Objective and Subjective Measures of Cataract Quantification.

    PubMed

    Cochener, Béatrice; Patel, Sunni R; Galliot, Florence

    2016-02-01

    To evaluate whether correlations exist between objective and subjective measures of vision quality as a consequence of cataract and whether this may qualify the Objective Scatter Index as a supplementary means of cataract assessment. A prospective multicenter, cross-sectional study was conducted in 10 centers across France in patients undergoing cataract extraction surgery (lens opacity evaluated with the Lens Opacities Classification System III). A quality of life assessment using the Visual Function Index-14 (VF-14) (14 questions scored from 0 to 4) and measurement of visual acuity and evaluation of the Objective Scatter Index (HD Analyzer, Visiometrics SL, Terrassa, Spain) to assess the alteration of light scatter were used as measures in the study. The study included 1,768 eyes of 1,768 patients (mean age: 72.5 years; range: 28 to 93 years). The average OSI score was 4.97 ± 3.13 (range: 0.4 to 20.5). There was good correlation between visual acuity and OSI (r = -0.47, P < .001) and between OSI and VF-14 (r = -0.11, P < .001). The results presented in this study confirm that the Objective Scatter Index has sufficient correlations with visual acuity and VF-14 to supplement existing cataract diagnosis in a large population encompassing a broad spectrum of cataract presentations. Copyright 2016, SLACK Incorporated.

  3. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    NASA Technical Reports Server (NTRS)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  4. Proton energy and scattering angle radiographs to improve proton treatment planning: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Biegun, A. K.; Takatsu, J.; Nakaji, T.; van Goethem, M. J.; van der Graaf, E. R.; Koffeman, E. N.; Visser, J.; Brandenburg, S.

    2016-12-01

    The novel proton radiography imaging technique has a large potential to be used in direct measurement of the proton energy loss (proton stopping power, PSP) in various tissues in the patient. The uncertainty of PSPs, currently obtained from translation of X-ray Computed Tomography (xCT) images, should be minimized from 3-5% or higher to less than 1%, to make the treatment plan with proton beams more accurate, and thereby better treatment for the patient. With Geant4 we simulated a proton radiography detection system with two position-sensitive and residual energy detectors. A complex phantom filled with various materials (including tissue surrogates), was placed between the position sensitive detectors. The phantom was irradiated with 150 MeV protons and the energy loss radiograph and scattering angles were studied. Protons passing through different materials in the phantom lose energy, which was used to create a radiography image of the phantom. The multiple Coulomb scattering of a proton traversing different materials causes blurring of the image. To improve image quality and material identification in the phantom, we selected protons with small scattering angles. A good quality proton radiography image, in which various materials can be recognized accurately, and in combination with xCT can lead to more accurate relative stopping powers predictions.

  5. Comparative study of inelastic squared form factors of the vibronic states of B 1Σu+ , C 1Πu , and E F 1Σg+ for molecular hydrogen: Inelastic x-ray and electron scattering

    NASA Astrophysics Data System (ADS)

    Xu, Long-Quan; Kang, Xu; Peng, Yi-Geng; Xu, Xin; Liu, Ya-Wei; Wu, Yong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Wang, Jian-Guo; Zhu, Lin-Fan

    2018-03-01

    A joint experimental and theoretical investigation of the valence-shell excitations of hydrogen has been performed by the high-resolution inelastic x-ray scattering and electron scattering as well as the multireference single- and double-excitation configuration-interaction method. Momentum-transfer-dependent inelastic squared form factors for the vibronic series belonging to the B 1Σu+ ,C 1Πu , and E F 1Σg+ electronic states of molecular hydrogen have been derived from the inelastic x-ray scattering method at an impact photon energy around 10 keV, and the electron energy-loss spectra measured at an incident electron energy of 1500 eV. It is found that both the present and the previous calculations cannot satisfactorily reproduce the inelastic squared form-factor profiles for the higher vibronic transitions of the B 1Σu+ state of molecular hydrogen, which may be due to the electronic-vibrational coupling for the higher vibronic states. For the C 1Πu state and some vibronic excitations of E F 1Σg+ state, the present experimental results are in good agreement with the present and previous calculations, while the slight differences between the inelastic x-ray scattering and electron energy-loss spectroscopy results in the larger squared momentum-transfer region may be attributed to the increasing role of the higher-order Born terms in the electron-scattering process.

  6. A symmetrical subtraction combined with interpolated values for eliminating scattering from fluorescence EEM data.

    PubMed

    Xu, Jing; Liu, Xiaofei; Wang, Yutian

    2016-08-05

    Parallel factor analysis is a widely used method to extract qualitative and quantitative information of the analyte of interest from fluorescence emission-excitation matrix containing unknown components. Big amplitude of scattering will influence the results of parallel factor analysis. Many methods of eliminating scattering have been proposed. Each of these methods has its advantages and disadvantages. The combination of symmetrical subtraction and interpolated values has been discussed. The combination refers to both the combination of results and the combination of methods. Nine methods were used for comparison. The results show the combination of results can make a better concentration prediction for all the components. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness.

    PubMed

    Hughes, J M; Oiseth, S K; Purslow, P P; Warner, R D

    2014-11-01

    The colour, water-holding capacity (WHC) and tenderness of meat are primary determinants of visual and sensory appeal. Although there are many factors which influence these quality traits, the end-results of their influence is often through key changes to the structure of muscle proteins and their spatial arrangement. Water acts as a plasticiser of muscle proteins and water is lost from the myofibrillar lattice structure as a result of protein denaturation and consequent reductions in the muscle fibre volume with increasing cooking temperature. Changes in the myofilament lattice arrangement also impact the light scattering properties and the perceived paleness of the meat. Causes of variation in the quality traits of raw meat do not generally correspond to variations in cooked meat and the differences observed between the raw muscle and cooked or further processed meat are discussed. The review will also identify the gaps in our knowledge and where further investigation would beneficial. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A new optical method coupling light polarization and Vis-NIR spectroscopy to improve the measured absorbance signal's quality of soil samples.

    NASA Astrophysics Data System (ADS)

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2014-05-01

    Visible - Near-infrared spectroscopy (Vis-NIRS) is now commonly used to measure different physical and chemical parameters of soils, including carbon content. However, prediction model accuracy is insufficient for Vis-NIRS to replace routine laboratory analysis. One of the biggest issues this technique is facing up to is light scattering due to soil particles. It causes departure in the assumed linear relationship between the Absorbance spectrum and the concentration of the chemicals of interest as stated by Beer-Lambert's Law, which underpins the calibration models. Therefore it becomes essential to improve the metrological quality of the measured signal in order to optimize calibration as light/matter interactions are at the basis of the resulting linear modeling. Optics can help to mitigate scattering effect on the signal. We put forward a new optical setup coupling linearly polarized light with a Vis-NIR spectrometer to free the measured spectra from multi-scattering effect. The corrected measured spectrum was then used to compute an Absorbance spectrum of the sample, using Dahm's Equation in the frame of the Representative Layer Theory. This method has been previously tested and validated on liquid (milk+ dye) and powdered (sand + dye) samples showing scattering (and absorbing) properties. The obtained Absorbance was a very good approximation of the Beer-Lambert's law absorbance. Here, we tested the method on a set of 54 soil samples to predict Soil Organic Carbon content. In order to assess the signal quality improvement by this method, we built and compared calibration models using Partial Least Square (PLS) algorithm. The prediction model built from new Absorbance spectrum outperformed the model built with the classical Absorbance traditionally obtained with Vis-NIR diffuse reflectance. This study is a good illustration of the high influence of signal quality on prediction model's performances.

  9. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr; Lee, Taewon

    2015-09-15

    Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue compositionmore » for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite accurate under a variety of conditions. Our GPU-based fast MCS implementation took approximately 3 s to generate each angular projection for a 6 cm thick breast, which is believed to make this process acceptable for clinical applications. In addition, the clinical preferences of three radiologists were evaluated; the preference for the proposed method compared to the preference for the convolution-based method was statistically meaningful (p < 0.05, McNemar test). Conclusions: The proposed fully iterative scatter correction method and the GPU-based fast MCS using tissue-composition ratio estimation successfully improved the image quality within a reasonable computational time, which may potentially increase the clinical utility of DBT.« less

  10. The Effect of Sub-Aperture in DRIA Framework Applied on Multi-Aspect PolSAR Data

    NASA Astrophysics Data System (ADS)

    Xue, Feiteng; Yin, Qiang; Lin, Yun; Hong, Wen

    2016-08-01

    Multi-aspect SAR is a new remote sensing technology, achieves consecutive data in large look angle as platform moves. Multi- aspect observation brings higher resolution and SNR to SAR picture. Multi-aspect PolSAR data can increase the accuracy of target identify and classification because it contains the 3-D polarimetric scattering properties.DRIA(detecting-removing-incoherent-adding)framework is a multi-aspect PolSAR data processing method. In this method, the anisotropic and isotropic scattering is separated by maximum- likelihood ratio test. The anisotropic scattering is removed to gain a removal series. The isotropic scattering is incoherent added to gain a high resolution picture. The removal series describes the anisotropic scattering property and is used in features extraction and classification.This article focuses on the effect brought by difference of sub-aperture numbers in anisotropic scattering detection and removal. The more sub-apertures are, the less look angle is. Artificial target has anisotropic scattering because of Bragg resonances. The increase of sub-aperture number brings more accurate observation in azimuth though the quality of each single image may loss. The accuracy of classification in agricultural fields is affected by the anisotropic scattering brought by Bragg resonances. The size of the sub-aperture has a significant effect in the removal result of Bragg resonances.

  11. Correlation between He-Ne scatter and 2.7-microm pulsed laser damage at coating defects.

    PubMed

    Porteus, J O; Spiker, C J; Franck, J B

    1986-11-01

    A reported correlation between defect-initiated pulsed laser damage and local predamage scatter in multilayer infrared mirror coatings has been analyzed in detail. Examination of a much larger data base confirms the previous result on dielectric-enhanced reflectors with polished substrates over a wide range of energy densities above the damage onset. Scatter signals from individual undamaged defects were detected using a He-Ne scatter probe with a focal spot that nearly coincides with the 150-microm-diam (D1/e(2)) focal spot of the damage-probe beam. Subsequent damage frequency measurements (1-on-1) were made near normal or at 45 degrees incidence with 100-ns pulses at 2.7-microm wavelength. The correlation is characterized by an increase in damage frequency with increasing predamage scatter signal and by equivalence of the defect densities indicated by the two probes. Characteristics of the correlation are compared with a simple model based on focal spot intensity profiles. Conditions that limit correlation are discussed, including variable scatter from defects and background scatter from diamond-turned substrates. Results have implication for nondestructive defect detection and coating quality control.

  12. Three-Dimensional Visualization of Ozone Process Data.

    DTIC Science & Technology

    1997-06-18

    Scattered Multivariate Data. IEEE Computer Graphics & Applications. 11 (May), 47-55. Odman, M.T. and Ingram, C.L. (1996) Multiscale Air Quality Simulation...the Multiscale Air Quality Simulation Platform (MAQSIP) modeling system. MAQSIP is a modular comprehensive air quality modeling system which MCNC...photolyzed back again to nitric oxide. Finally, oxides of 6 nitrogen are terminated through loss or combination into nitric acid, organic nitrates

  13. Feasibility for direct rapid energy dispersive X-ray fluorescence (EDXRF) and scattering analysis of complex matrix liquids by partial least squares.

    PubMed

    Angeyo, K H; Gari, S; Mustapha, A O; Mangala, J M

    2012-11-01

    The greatest challenge to material characterization by XRF technique is encountered in direct trace analysis of complex matrices. We exploited partial least squares (PLS) in conjunction with energy dispersive X-ray fluorescence and scattering (EDXRFS) spectrometry to rapidly (200 s) analyze lubricating oils. The PLS-EDXRFS method affords non-invasive quality assurance (QA) analysis of complex matrix liquids as it gave optimistic results for both heavy- and low-Z metal additives. Scatter peaks may further be used for QA characterization via the light elements. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Inverse scattering transform for the time dependent Schrödinger equation with applications to the KPI equation

    NASA Astrophysics Data System (ADS)

    Zhou, Xin

    1990-03-01

    For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an opertor-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.

  15. Small Angle X-ray Scattering for Nanoparticle Research

    DOE PAGES

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    2016-04-07

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  16. Photopolarimetric properties of leaf and vegetation covers over a wide range of measurement directions

    NASA Astrophysics Data System (ADS)

    Sun, Zhongqiu; Peng, Zhiyan; Wu, Di; Lv, Yunfeng

    2018-02-01

    The optical scattering property of the target is the essential signal for passive remote sensing applications. To deepen our understanding of the light reflected from vegetation, we present results of photopolarimetric laboratory measurements from single leaf and two vegetation covers (planophile and erectophile) over a wide range of viewing directions. The bidirectional polarized reflectance factor (BPRF) was used to characterize the polarization property of our samples. We observed positive and negative polarization (-BPRFQ) of all samples in the forward scattering and backward scattering directions, respectively. Based on the comparison of the BPRF among single leaf, planophile vegetation and erectophile vegetation, our measurements demonstrate that the orientation of the leaf is a key factor in describing the amount of polarization in the forward scattering direction. Our measurements also validated certain model results stating that (1) specular reflection generates a portion of polarization in the forward scattering direction and diffuses scattering of polarized light in all hemisphere directions, (2) BPRFU is anti-symmetric in the principal plane from a recent study in which the authors simulated the polarized reflectance of vegetation cover using the vector radiative transfer theory. These photopolarimetric measurement results, which can be completely explained by the theoretical results, are useful in remote sensing applications to vegetation.

  17. Coherent and incoherent ultrasound backscatter from cell aggregates.

    PubMed

    de Monchy, Romain; Destrempes, François; Saha, Ratan K; Cloutier, Guy; Franceschini, Emilie

    2016-09-01

    The effective medium theory (EMT) was recently developed to model the ultrasound backscatter from aggregating red blood cells [Franceschini, Metzger, and Cloutier, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2668-2679 (2011)]. The EMT assumes that aggregates can be treated as homogeneous effective scatterers, which have effective properties determined by the aggregate compactness and the acoustical characteristics of the cells and the surrounding medium. In this study, the EMT is further developed to decompose the differential backscattering cross section of a single cell aggregate into coherent and incoherent components. The coherent component corresponds to the squared norm of the average scattering amplitude from the effective scatterer, and the incoherent component considers the variance of the scattering amplitude (i.e., the mean squared norm of the fluctuation of the scattering amplitude around its mean) within the effective scatterer. A theoretical expression for the incoherent component based on the structure factor is proposed and compared with another formulation based on the Gaussian direct correlation function. This theoretical improvement is assessed using computer simulations of ultrasound backscatter from aggregating cells. The consideration of the incoherent component based on the structure factor allows us to approximate the simulations satisfactorily for a product of the wavenumber times the aggregate radius kr ag around 2.

  18. Small Angle X-ray Scattering for Nanoparticle Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  19. Light scattering from laser induced pit ensembles on high power laser optics

    DOE PAGES

    Feigenbaum, Eyal; Elhadj, Selim; Matthews, Manyalibo J.

    2015-01-01

    Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expectedmore » to be substantially lower than assuming complete scattering from the total visible footprint of the pits.« less

  20. Evolution of the scattering anisotropy of aged foams in the wet-to-dry transition

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Yuvchenko, S. A.; Isaeva, A. A.; Isaeva, E. A.; Samorodina, T. V.

    2018-04-01

    Empirical data on the diffuse and collimated transmittance of aged liquid foams are discussed in terms of influence of mutual correlations in the scatter positions. This influence can be described introducing the static structure factor of a scattering system and occurs remarkable in the case of wet foams with gas bubbles as the basic scattering units. On the contrary, mutual correlations of basic scattering units (Plateau-Gibbs channels and vertices) in dry foams are negligible due to low values of their volume fraction. This causes dramatic changes of the scattering anisotropy of foam layers in the vicinity of the wet-to-dry transition. Some analogies can be drawn between this effect and a previously reported "optical inversion" of densely packed random media.

  1. Advances in remote sensing of the daytime ionosphere with EUV airglow

    NASA Astrophysics Data System (ADS)

    Stephan, Andrew W.

    2016-09-01

    This paper summarizes recent progress in developing a method for characterizing the daytime ionosphere from limb profile measurements of the OII 83.4 nm emission. This extreme ultraviolet emission is created by solar photoionization of atomic oxygen in the lower thermosphere and is resonantly scattered by O+ in the ionosphere. The brightness and shape of the measured altitude profile thus depend on both the photoionization source in the lower thermosphere and the ionospheric densities that determine the resonant scattering contribution. This technique has greatly matured over the past decade due to measurements by the series of Naval Research Laboratory Special Sensor Ultraviolet Limb Imager (SSULI) instruments flown on Defense Meteorological Satellite Program (DMSP) missions and the Remote Atmospheric and Ionospheric Detection System (RAIDS) on the International Space Station. The volume of data from these missions has enabled a better approach to handling specific biases and uncertainties in both the measurement and retrieval process that affect the accuracy of the result. This paper identifies the key measurement and data quality factors that will enable the continued evolution of this technique into an advanced method for characterization of the daytime ionosphere.

  2. Time reversal technique for gas leakage detection.

    PubMed

    Maksimov, A O; Polovinka, Yu A

    2015-04-01

    The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise.

  3. Random lasing actions in self-assembled perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2016-05-01

    Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

  4. Deimos: A featureless asteroid-like spectrum

    NASA Technical Reports Server (NTRS)

    Grundy, W. M.; Fink, Uwe

    1991-01-01

    High quality CCD spectra were obtained of Deimos from 0.5 to 1.0 micron at a spectral resolution of 15A at the time of the 1988 Mars opposition. The data acquisition and reduction methods allowed the quantitative prevention of scattered light from Mars contaminating the spectra. Solar analog stars BS560, BS2007, and BS8931 were observed the same night to allow removal of telluric absorptions. The ratio spectrum of Deimos has a red slope, increasing in reflectance by a factor of approx. 50 pct. over the one octave wavelength interval observed. Other than this slope, the spectrum is remarkably featureless. The absence of absorption bands in the spectrum of Deimos is in marked contrast with the spectra of Martian surface materials. No trace of the Fe(2+) charge transfer absorption band around 1 micron is observed, which rules out the presence of significant quantities of minerals such as the pyroxenes or olivine at the surface of Deimos. The featureless red spectrum of Deimos appears to be consistent with a surface composition of fine grained carbonaceous chondrite type material. An analysis is presented of the spectrum of Deimos which makes use of the Hapke scattering surface model.

  5. Poster — Thur Eve — 01: The effect of the number of projections on MTF and CNR in Compton scatter tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chighvinadze, T; Pistorius, S; CancerCare Manitoba, Winnipeg, MB

    2014-08-15

    Purpose: To investigate the dependence of the reconstructed image quality on the number of projections in multi-projection Compton scatter tomography (MPCST). The conventional relationship between the projection number used for reconstruction and reconstructed image quality pertained to CT does not necessarily apply to MPCST, which can produce images from a single projection if the detectors have sufficiently high energy and spatial resolution. Methods: The electron density image was obtained using filtered-backprojection of the scatter signal over circular arcs formed using Compton equation. The behavior of the reconstructed image quality as a function of the projection number was evaluated through analyticalmore » simulations and characterized by CNR and MTF. Results: The increase of the projection number improves the contrast with this dependence being a function of fluence. The number of projections required to approach the asymptotic maximum contrast decreases as the fluence increases. Increasing projection number increases the CNR but not spatial resolution. Conclusions: For MPCST using a 500eV energy resolution and a 2×2mm{sup 2} size detector, an adequate image quality can be obtained with a small number of projections provided the incident fluence is high enough. This is conceptually different from conventional CT where a minimum number of projections is required to obtain an adequate image quality. While increasing projection number, even for the lowest dose value, the CNR increases even though the number of photons per projection decreases. The spatial resolution of the image is improved by increasing the sampling within a projection rather than by increasing the number of projections.« less

  6. Improving the Optical Quality Factor of the WGM Resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Iltchenko, Vladimir

    2008-01-01

    Resonators usually are characterized with two partially dependent values: finesse (F) and quality factor (Q). The finesse of an empty Fabry-Perot (FP) resonator is defined solely by the quality of its mirrors and is calculated as F=piR(exp 1/2)/(1-R). The maximum up-to-date value of reflectivity R approximately equal to 1 - 1.6 x 10(exp -6) is achieved with dielectric mirrors. An FP resonator made with the mirrors has finesse F=1.9 x 10(exp 6). Further practical increase of the finesse of FP resonators is problematic because of the absorption and the scattering of light in the mirror material through fundamental limit on the reflection losses given by the internal material losses and by thermodynamic density fluctuations on the order of parts in 109. The quality factor of a resonator depends on both its finesse and its geometrical size. A one-dimensional FP resonator has Q=2 F L/lambda, where L is the distance between the mirrors and lambda is the wavelength. It is easy to see that the quality factor of the resonator is unlimited because L is unlimited. F and Q are equally important. In some cases, finesse is technically more valuable than the quality factor. For instance, buildup of the optical power inside the resonator, as well as the Purcell factor, is proportional to finesse. Sometimes, however, the quality factor is more valuable. For example, inverse threshold power of intracavity hyperparametric oscillation is proportional to Q(exp 2) and efficiency of parametric frequency mixing is proportional to Q(exp 3). Therefore, it is important to know both the maximally achievable finesse and quality factor values of a resonator. Whispering gallery mode (WGM) resonators are capable of achieving larger finesse compared to FP resonators. For instance, fused silica resonators with finesse 2.3 x 10(exp 6) and 2.8 x 10(exp 6) have been demonstrated. Crystalline WGM resonators reveal even larger finesse values, F=6.3 x 10(exp 6), because of low attenuation of light in the transparent optical crystals. The larger values of F and Q result in the enhancement of various nonlinear processes. Low-threshold Raman lasing, optomechanical oscillations, frequency doubling, and hyperparametric oscillations based on these resonators have been recently demonstrated. Theory predicts a possibility of nearly 10(exp 14) room-temperature optical Q-factors of optical crystalline WGM resonators, which correspond to finesse levels higher than 10(exp 9). Experiments have shown numbers a thousand times lower than that. The difference occurs due to media imperfections. To substantially reduce the optical losses caused by the imperfections, a specific, multi-step, asymptotic processing of the resonator is implemented. The technique has been initially developed to reduce microwave absorption in dielectric resonators. One step of the process consists of mechanical polishing performed after high temperature annealing. Several steps repeat one after another to lead to significant reduction in optical attenuation and, as a result, to the increase of Q-factor as well as finesse of the resonator which demonstrates a CaF2 WGM resonator with F greater than 10(exp 7) and Q greater than 10(exp 11).

  7. SU-E-I-77: X-Ray Coherent Scatter Diffraction Pattern Modeling in GEANT4.

    PubMed

    Kapadia, A; Samei, E; Harrawood, B; Sahbaee, P; Chawla, A; Tan, Z; Brady, D

    2012-06-01

    To model X-ray coherent scatter diffraction patterns in GEANT4 for simulating experiments involving material detection through diffraction pattern measurement. Although coherent scatter cross-sections are modeled accurately in GEANT4, diffraction patterns for crystalline materials are not yet included. Here we describe our modeling of crystalline diffraction patterns in GEANT4 for specific materials and the validation of the results against experimentally measured data. Coherent scatter in GEANT4 is currently based on Hubbell's non-relativistic form factor tabulations from EPDL97. We modified the form-factors by introducing an interference function that accounts for the angular dependence between the Rayleigh-scattered photons and the photon wavelength. The modified form factors were used to replace the inherent form-factors in GEANT4. The simulation was tested using monochromatic and polychromatic x-ray beams (separately) incident on objects containing one or more elements with modified form-factors. The simulation results were compared against the experimentally measured diffraction images of corresponding objects using an in-house x-ray diffraction imager for validation. The comparison was made using the following metrics: number of diffraction rings, radial distance, absolute intensity, and relative intensity. Sharp diffraction pattern rings were observed in the monochromatic simulations at locations consistent with the angular dependence of the photon wavelength. In the polychromatic simulations, the diffraction patterns exhibited a radial blur consistent with the energy spread of the polychromatic spectrum. The simulated and experimentally measured patterns showed identical numbers of rings with close agreement in radial distance, absolute and relative intensities (barring statistical fluctuations). No significant change was observed in the execution time of the simulations. This work demonstrates the ability to model coherent scatter diffraction in GEANT4 in an accurate and efficient manner without compromising the accuracy or runtime of the simulation. This work was supported by the Department of Homeland Security under grant DHS (BAA 10-01 F075), and by the Department of Defense under award W81XWH-09-1-0066. © 2012 American Association of Physicists in Medicine.

  8. A new theory for X-ray diffraction

    PubMed Central

    Fewster, Paul F.

    2014-01-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the ‘Bragg position’ even if the ‘Bragg condition’ is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many ‘Bragg positions’. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on ‘Bragg-type’ scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the ‘background’. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models. PMID:24815975

  9. At-edge minima in elastic photon scattering amplitudes for dilute aqueous ions

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Hugtenburg, R. P.; Yusoff, A. L.

    2006-11-01

    Elastic photon scattering and absorption in the vicinity of core atomic orbital energies give rise to resonances in the elastic photon scattering cross-section. Of interest is whether a dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. Predictions of the energy of these resonances have been determined for a Dirac-Slater exchange potential with a Latter tail. At BM28 (ESRF), tuneable X-rays were obtained at eV resolution using a 1 1 1 Si monochromator. From target systems including Cu 2+ and Zn 2+, the X-rays were scattered through high angle from an aqueous medium contained in a thin Perspex cell provided with 8 μm kaplan windows. An energy resolution of ˜500 eV from the HPGe detector was adequate to separate the elastic scattering signal from K α radiation but not from Compton or K β contributions. The Compton contribution from the medium was removed assuming validity of the relativistic impulse approximation. The contribution due to K β fluorescence and the resonant X-ray Raman scattering process were handled by assuming the branching ratio for K α and K β contributions to be constant and to be accurately described by fluorescent yields measured above edge. At ionic concentrations ranging from 0.01 to 0.1 mol/l, resonance structures accord with predictions of elastic scattering cross-sections calculated within IPA. Amplitudes calculated using modified form-factors and anomalous scatter factors computed from a Dirac-Slater exchange potential were convolved with a Lorentzian of several eV (FWHM).

  10. Numerical Studies of Scattering Properties of Leaves and Leaf Moisture Influences on the Scattering at Microwave Wavelengths

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Hu, Yongxiang; Sun, Wenbo; Min, Qilong

    2008-01-01

    This study uses 3-dimensional finite difference time domain method to accurately calculate single-scattering properties of randomly orientated leaves and evaluate the influences of vegetation water content (VWC) on these properties at 19 and 37 GHz frequencies. The studied leaves are assumed to be thin elliptic disks with two different sizes and have various VWC values. Although the leaf moisture produces considerable absorption during scattering processes, the effective efficiencies of extinction and scattering of leaves still near-linearly increase with VWC. Calculated asymmetry factors and phase functions indicate that there are significant amounts of scattering at large scattering angles in microwave wavelengths, which provides good opportunities for off-nadir microwave remote sensing of forests. This study lays a basic foundation in future quantifications of the relations between satellite measurements and physical properties of vegetation canopies.

  11. Impact of optical phonon scattering on inversion channel mobility in 4H-SiC trenched MOSFETs

    NASA Astrophysics Data System (ADS)

    Kutsuki, Katsuhiro; Kawaji, Sachiko; Watanabe, Yukihiko; Onishi, Toru; Fujiwara, Hirokazu; Yamamoto, Kensaku; Yamamoto, Toshimasa

    2017-04-01

    Temperature characteristics of the channel mobility were investigated for 4H-SiC trenched MOSFETs in the range from 30 to 200 °C. The conventional model of channel mobility limited by carrier scattering is based on Si-MOSFETs and shows a greatly different channel mobility from the experimental value, especially at high temperatures. On the other hand, our improved mobility model taking into account optical phonon scattering yielded results in excellent agreement with experimental results. Moreover, the major factors limiting the channel mobility were found to be Coulomb scattering in a low effective field (<0.7 MV/cm) and optical phonon scattering in a high effective field.

  12. Ringing phenomenon in coupled cavities: Application to modal coupling in whispering-gallery-mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebaol, Stephane; Dumeige, Yannick; Feron, Patrice

    We present a simple model to describe the transient response of two coupled resonators probed by a monochromatic wave whose frequency is rapidly swept across the resonances with respect to their characteristic photon lifetimes. The model is applied to analyze the dynamic behavior of the modal coupling between two degenerate resonances of the same cavity. In particular, this can be used to describe the coupling of counterpropagating whispering gallery modes (WGMs) by Rayleigh scattering. The theory is successfully compared to experiments carried out in silica microspheres. These results show that this ringdown technique can be extended to accurately measure linearmore » properties and frequency splittings of high-quality factor WGM microresonators.« less

  13. Data consistency checks for Jefferson Lab Experiment E00-002

    NASA Astrophysics Data System (ADS)

    Telfeyan, John; Niculescu, Gabriel; Niculescu, Ioana

    2006-10-01

    Jefferson Lab experiment E00-002 aims to measure inclusive electron-proton and electron-deuteron scattering cross section at low Q squared and moderately low Bjorken x. Data in this kinematic region will further our understanding of the transition between the perturbative and non-perturbative regimes of Quantum Chromodynamics (QCD). As part of the data analysis effort underway at James Madison University (JMU) a comprehensive set of checks and tests was implemented. These tests ensure the quality and consistency of the experimental data, as well as providing, where appropriate, correction factors between the experimental apparatus as used and its idealized computer-simulated representation. This contribution will outline this testing procedure as implemented in the JMU analysis, highlighting the most important features/results.

  14. An improved methodology for heliostat testing and evaluation at the Plataforma Solar de Almería

    NASA Astrophysics Data System (ADS)

    Monterreal, Rafael; Enrique, Raúl; Fernández-Reche, Jesús

    2017-06-01

    The optical quality of a heliostat basically quantifies the difference between the scattering effects of the actual solar radiation reflected on its optical surface, compared to the so called canonical dispersion, that is, the one reflected on an optical surface free of constructional errors (paradigm). However, apart from the uncertainties of the measuring process itself, the value of the optical quality must be independent of the measuring instrument; so, any new measuring techniques that provide additional information about the error sources on the heliostat reflecting surface would be welcome. That error sources are responsible for the final optical quality value, with different degrees of influence. For the constructor of heliostats it will be extremely useful to know the value of the classical sources of error and their weight on the overall optical quality of a heliostat, such as facets geometry or focal length, as well as the characteristics of the heliostat as a whole, i.e., its geometry, focal length, facets misalignment and also the possible dependence of these effects with mechanical and/or meteorological factors. It is the goal of the present paper to unfold these optical quality error sources by exploring directly the reflecting surface of the heliostat with the help of a laser-scanner device and link the result with the traditional methods of heliostat evaluation at the Plataforma Solar de Almería.

  15. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites.

    PubMed

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-Ichi; Ohishi, Kazuki; Suzuki, Jun-Ichi

    2016-12-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization ( P H ). The following samples were prepared: (i) a binary mixture of styrene-butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = -35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å -1 ) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å -1 ) decreased with increasing P H , which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H . At P H = -35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations, the partial scattering functions were obtained. The partial scattering function obtained for SP was well reproduced by a spherical form factor and matched the SANS profile for the SBR/SP mixture. The partial scattering function for CP exhibited surface fractal behaviour according to q -3.6 , which is consistent with the results for the SBR/CP mixture.

  16. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites1

    PubMed Central

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi

    2016-01-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix calculations, the partial scattering functions were obtained. The partial scattering function obtained for SP was well reproduced by a spherical form factor and matched the SANS profile for the SBR/SP mixture. The partial scattering function for CP exhibited surface fractal behaviour according to q −3.6, which is consistent with the results for the SBR/CP mixture. PMID:27980510

  17. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adikaram, D.; Rimal, D.; Weinstein, L. B.

    There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentummore » transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.« less

  18. On the Validity of Certain Approximations Used in the Modeling of Nuclear EMP

    DOE PAGES

    Farmer, William A.; Cohen, Bruce I.; Eng, Chester D.

    2016-04-01

    The legacy codes developed for the modeling of EMP, multiple scattering of Compton electrons has typically been modeled by the obliquity factor. A recent publication has examined this approximation in the context of the generated Compton current [W. A. Farmer and A. Friedman, IEEE Trans. Nucl. Sc. 62, 1695 (2015)]. Here, this previous analysis is extended to include the generation of the electromagnetic fields. Obliquity factor predictions are compared with Monte-Carlo models. In using a Monte-Carlo description of scattering, two distributions of scattering angles are considered: Gaussian and a Gaussian with a single-scattering tail. Additionally, legacy codes also neglect themore » radial derivative of the backward-traveling wave for computational efficiency. The neglect of this derivative improperly treats the backward-traveling wave. Moreover, these approximations are examined in the context of a high-altitude burst, and it is shown that in comparison to more complete models, the discrepancy between field amplitudes is roughly two to three percent and between rise-times, 10%. Finally, it is concluded that the biggest factor in determining the rise time of the signal is not the dynamics of the Compton current, but is instead the conductivity.« less

  19. A re-evaluation of thermal expansion measurements of metallic liquids and glasses from x-ray scattering experiments

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A. K.; Kelton, K. F.

    2018-05-01

    Previous studies reported a number of anomalies when estimates of linear thermal expansion coefficients of metallic liquids and glasses from x-ray scattering experiments were compared with direct measurements of volume/length changes with temperature. In most cases, the first peak of the pair correlation function showed a contraction, while the structure factor showed an expansion, but both at rates much different from those expected from the direct volume measurements. In addition, the relationship between atomic volume and the characteristic lengths obtained from the structure factor from scattering experiments was found to have a fractional exponent instead of one equal to three, as expected from the Ehrenfest relation. This has led to the speculation that the atomic packing in liquids and glasses follow a fractal behavior. These issues are revisited in this study using more in-depth analysis of recent higher resolution data and some new ideas suggested in the literature. The main conclusion is that for metallic alloys, at least to a large extent, most of these anomalies arise from complicated interplays of the temperature dependences of the various partial structure factors, which contribute to the total intensities of the scattering peaks.

  20. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    DOE PAGES

    Adikaram, D.; Rimal, D.; Weinstein, L. B.; ...

    2015-02-10

    There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpE from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (epsilon) and momentummore » transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε at Q2=1.45 GeV2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Delta intermediate states, which have been shown to resolve the discrepancy up to 2-3 GeV2.« less

  1. Towards a resolution of the proton form factor problem: new electron and positron scattering data.

    PubMed

    Adikaram, D; Rimal, D; Weinstein, L B; Raue, B; Khetarpal, P; Bennett, R P; Arrington, J; Brooks, W K; Adhikari, K P; Afanasev, A V; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Avakian, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Burkert, V D; Carman, D S; Careccia, S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Fradi, A; Garillon, B; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jenkins, D; Jiang, H; Jo, H S; Joo, K; Joosten, S; Kalantarians, N; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuhn, S E; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P; Mayer, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Peña, C; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Sharabian, Y G; Simonyan, A; Skorodumina, I; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Trivedi, A; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I

    2015-02-13

    There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ϵ) and momentum transfer (Q(2)) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ϵ at Q(2)=1.45  GeV(2). This measurement is consistent with the size of the form factor discrepancy at Q(2)≈1.75  GeV(2) and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2-3  GeV(2).

  2. Optical properties of doped sol-gel silica glasses

    NASA Astrophysics Data System (ADS)

    King, Terence A.

    1994-01-01

    Sol-gel optical composites were developed and characterized for potential applications in optics, lasers, nonlinear optics, and optoelectronics. Post-doped xerogels were index matched by in-situ polymerization of monomers to form inorganic-organic composites of low scatter and high optical quality. Characterization of the microstructure was made by visible and IR absorption and Raman Spectroscopy and optical quality by attenuation and scatter measurement. Doping techniques were optimized using hypercritical drying and vacuum impregnation and doping distribution monitored by laser-induced fluorescence. One-tenth wavelength surfaces were formed by novel optical polishing. Organic molecular dopants were tested in laser and nonlinear systems. Initial third harmonic generation and Z-scan measurements have shown the potential for saturable absorption and optical limiting.

  3. The assessment of human skin biomatrixes using raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Timchenko, P. E.; Volova, L. T.; Dolgushkin, D. A.; Shalkovskaya, P. Y.; Pershutkina, S. V.; Nefedova, I. F.

    2017-01-01

    There are presented the results of the analysis of the implants made of human skin by Raman scattering method. The main spectral distinctions of bioimplants by using various methods for their manufacture are shown at wavenumbers 1062 cm-1, 1645 cm-1, 1260 cm-1, 850 cm-1, 863 cm-1, corresponding to components that are important for the quality of implant: glycosaminoglycans, amide type I, amide type III, asymmetrical association C-O-S of vibration of glycosaminoglycans GAGs, tyrosine and a C-C stretching of proline ring, ribose. Has been carried out two-dimensional analysis of optical coefficients providing an opportunity to control the quality of cutaneous implants in the process of manufacturing it, and detailed analysis of Raman scattering spectroscopy.

  4. A study of the polarization of light scattered by vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Woessner, P. N.

    1985-01-01

    This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. The intensity and polarization of light scattered by clover and grass in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of leaves were measured. The light transmitted through the leaves was found to be negatively polarized. The light scattered from the upper leaf surface was found to be positively polarized in a manner which could be accounted for qualitatively but not quantitatively by the Fresnel reflection coefficients modified by a shadowing function of the form cos sup2 (g/2), where g is the phase angle. Findings indicate that the polarization of light scattered by vegetation is a more complex process than previously thought, and that besides the surface-scattered component of light, the volume-scattered and multiply-scattered components also contribute significantly to the polarization.

  5. Operational properties of fluctuation X-ray scattering data

    DOE PAGES

    Malmerberg, Erik; Kerfeld, Cheryl A.; Zwart, Petrus H.

    2015-03-20

    X-ray scattering images collected on timescales shorter than rotation diffusion times using a (partially) coherent beam result in a significant increase in information content in the scattered data. These measurements, named fluctuation X-ray scattering (FXS), are typically performed on an X-ray free-electron laser (XFEL) and can provide fundamental insights into the structure of biological molecules, engineered nanoparticles or energy-related mesoscopic materials beyond what can be obtained with standard X-ray scattering techniques. In order to understand, use and validate experimental FXS data, the availability of basic data characteristics and operational properties is essential, but has been absent up to this point.more » In this communication, an intuitive view of the nature of FXS data and their properties is provided, the effect of FXS data on the derived structural models is highlighted, and generalizations of the Guinier and Porod laws that can ultimately be used to plan experiments and assess the quality of experimental data are presented.« less

  6. Novel Descattering Approach for Stereo Vision in Dense Suspended Scatterer Environments

    PubMed Central

    Nguyen, Chanh D. Tr.; Park, Jihyuk; Cho, Kyeong-Yong; Kim, Kyung-Soo; Kim, Soohyun

    2017-01-01

    In this paper, we propose a model-based scattering removal method for stereo vision for robot manipulation in indoor scattering media where the commonly used ranging sensors are unable to work. Stereo vision is an inherently ill-posed and challenging problem. It is even more difficult in the case of images of dense fog or dense steam scenes illuminated by active light sources. Images taken in such environments suffer attenuation of object radiance and scattering of the active light sources. To solve this problem, we first derive the imaging model for images taken in a dense scattering medium with a single active illumination close to the cameras. Based on this physical model, the non-uniform backscattering signal is efficiently removed. The descattered images are then utilized as the input images of stereo vision. The performance of the method is evaluated based on the quality of the depth map from stereo vision. We also demonstrate the effectiveness of the proposed method by carrying out the real robot manipulation task. PMID:28629139

  7. Assessment of subjective intraocular forward scattering and quality of vision after posterior chamber phakic intraocular lens with a central hole (Hole ICL) implantation.

    PubMed

    Iijima, Ayaka; Shimizu, Kimiya; Yamagishi, Mayumi; Kobashi, Hidenaga; Igarashi, Akihito; Kamiya, Kazutaka

    2016-12-01

    To evaluate the subjective intraocular forward scattering and quality of vision after posterior chamber phakic intraocular lens with a central hole (Hole ICL, STAAR Surgical) implantation. We prospectively examined 29 eyes of 29 consecutive patients (15 men and 14 women; ages, 37.2 ± 8.8 years) undergoing Hole ICL implantation. We assessed the values of the logarithmic straylight value [log (s)] using a straylight meter (C-Quant ™ , Oculus) preoperatively and 3 months postoperatively. The patients completed a questionnaire detailing symptoms on a quantitative grading scale (National Eye Institute Refractive Error Quality of Life Instrument-42; NEI RQL-42) 3 months postoperatively. We compared the preoperative and postoperative values of the log(s) and evaluated the correlation of these values with patient subjective symptoms. The mean log(s) was not significantly changed, from 1.07 ± 0.20 preoperatively, to 1.06 ± 0.17 postoperatively (Wilcoxon signed-rank test, p = 0.641). There was a significant correlation between the preoperative and postoperative log(s) (Spearman's correlation coefficient r = 0.695, p < 0.001). The postoperative log(s) was significantly associated with the scores of glare in the questionnaire (Spearman's correlation coefficient r = -0.575, p = 0.017). According to our experience, Hole ICL implantation does not induce a significant additional change in the subjective intraocular forward scattering. The symptom of glare after Hole ICL implantation was significantly correlated with the postoperative intraocular forward scattering in relation to the preoperative one. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  8. Application of small-angle neutron scattering to the study of forces between magnetically chained monodisperse ferrofluid emulsion droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Dr Nirmesh; Liu, Dr C K; Hawkett, Dr B. S.

    2014-01-01

    The optical magnetic chaining technique (MCT) developed by Leal-Calderon, Bibette and co-workers in the 1990 s allows precise measurements of force profiles between droplets in monodisperse ferrofluid emulsions. However, the method lacks an in-situ determination of droplet size and therefore requires the combination of separately acquired measurements of droplet chain periodicity versus an applied magnetic field from optical Bragg scattering and droplet diameter inferred from dynamic light scattering (DLS) to recover surface force-distance profiles between the colloidal particles. Compound refractive lens (CRL) focussed small-angle scattering (SANS) MCT should result in more consistent measurements of droplet size (form factor measurements inmore » the absence of field) and droplet chaining period (from structure factor peaks when the magnetic field is applied); and, with access to shorter length scales, extend force measurements to closer approaches than possible by optical measurements. We report on CRL-SANS measurements of monodisperse ferrofluid emulsion droplets aligned in straight chains by an applied field perpendicular to the incident beam direction. Analysis of the scattering from the closely spaced droplets required algorithms that carefully treated resolution and its effect on mean scattering vector magnitudes in order to determine droplet size and chain periods to sufficient accuracy. At lower applied fields scattering patterns indicate structural correlations transverse to the magnetic field direction due to the formation of intermediate structures in early chain growth.« less

  9. Radiometry rocks

    NASA Astrophysics Data System (ADS)

    Harvey, James E.

    2012-10-01

    Professor Bill Wolfe was an exceptional mentor for his graduate students, and he made a major contribution to the field of optical engineering by teaching the (largely ignored) principles of radiometry for over forty years. This paper describes an extension of Bill's work on surface scatter behavior and the application of the BRDF to practical optical engineering problems. Most currently-available image analysis codes require the BRDF data as input in order to calculate the image degradation from residual optical fabrication errors. This BRDF data is difficult to measure and rarely available for short EUV wavelengths of interest. Due to a smooth-surface approximation, the classical Rayleigh-Rice surface scatter theory cannot be used to calculate BRDFs from surface metrology data for even slightly rough surfaces. The classical Beckmann-Kirchhoff theory has a paraxial limitation and only provides a closed-form solution for Gaussian surfaces. Recognizing that surface scatter is a diffraction process, and by utilizing sound radiometric principles, we first developed a linear systems theory of non-paraxial scalar diffraction in which diffracted radiance is shift-invariant in direction cosine space. Since random rough surfaces are merely a superposition of sinusoidal phase gratings, it was a straightforward extension of this non-paraxial scalar diffraction theory to develop a unified surface scatter theory that is valid for moderately rough surfaces at arbitrary incident and scattered angles. Finally, the above two steps are combined to yield a linear systems approach to modeling image quality for systems suffering from a variety of image degradation mechanisms. A comparison of image quality predictions with experimental results taken from on-orbit Solar X-ray Imager (SXI) data is presented.

  10. STUDY OF THE INELASTIC SCATTERING OF ELECTRONS BY THE NUCLEI $sup 6$Li AND $sup 7$Li (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, M.; Bishop, G.R.

    1963-11-01

    We have measured the form factors for transitions to the following excited states by the inelastic scattering of electrons: 2.189, 3.57, and 4.52 Mev of /sup 6/Li; and 0.478, 4.61, 5.76, and 6.8 Mev of /sup 7/Li. The dependence of the form factors on the momentum transfer indicates the principal components of the wave functions describing these states. (auth)

  11. Considerations for implementing machine vision for detecting watercore in apples

    NASA Astrophysics Data System (ADS)

    Upchurch, Bruce L.; Throop, James A.

    1993-05-01

    Watercore in apples is a physiological disorder that affects the internal quality of the fruit. Growers can experience serious economic losses due to internal breakdown of the apple if watercored apples are placed unknowingly into long term storage. Economic losses can also occur if watercore is detected and the entire `lot' is downgraded; however, a gain can be obtained if watercored fruit is segregated and marketed as a premium apple soon after harvest. Watercore is characterized by the accumulation of fluid around the vascular bundles replacing air spaces between cells. This fluid reduces the light scattering properties of the apple. Using machine vision to measure the amount of light transmitted through the apple, watercored apples were segregated according to the severity of damage. However, the success of the method was dependent upon two factors. First, the sensitivity of the camera dictated the classes of watercore that could be detected. A highly sensitive camera could separate the less severe classes at the expense of not distinguishing between the more severe classes. A second factor which is common to most quality attributes in perishable commodities is the elapsed time after harvest at which the measurement was made. At the end of the study, light transmission levels decreased to undetectable levels with the initial camera settings for all watercore classes.

  12. Elastic Electron Scattering from Tritium and Helium-3

    DOE R&D Accomplishments Database

    Collard, H.; Hofstadter, R.; Hughes, E. B.; Johansson, A.; Yearian, M. R.; Day, R. B.; Wagner, R. T.

    1964-10-01

    The mirror nuclei of tritium and helium-3 have been studied by the method of elastic electron scattering. Absolute cross sections have been measured for incident electron energies in the range 110 - 690 MeV at scattering angles lying between 40 degrees and 135 degrees in this energy range. The data have been interpreted in a straightforward manner and form factors are given for the distributions of charge and magnetic moment in the two nuclei over a range of four-momentum transfer squared 1.0 - 8.0 F{sup -2}. Model-independent radii of the charge and magnetic moment distributions are given and an attempt is made to deduce form factors describing the spatial distribution of the protons in tritium and helium-3.

  13. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.

    PubMed

    Kritcher, A L; Neumayer, P; Brown, C R D; Davis, P; Döppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wünsch, K; Glenzer, S H

    2009-12-11

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  14. Optical absorption and scattering spectra of pathological stomach tissues

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  15. Lung cancer diagnosis with quantitative DIC microscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Zheng, Longfei; Cai, Shuangshuang; Zeng, Bixin; Xu, Min

    2017-01-01

    We report the study of lung squamous cell carcinoma diagnosis using the TI-DIC microscopy and the scattering-phase theorem. The spatially resolved optical properties of tissue are computed from the 2D phase map via the scattering-phase theorem. The scattering coefficient, the reduced scattering coefficient, and the anisotropy factor are all found to increase with the grade of lung cancer. The retrieved optical parameters are shown to distinguish cancer cases from the normal cases with high accuracy. This label-free microscopic approach applicable to fresh tissues may be promising for in situ rapid cancer diagnosis.

  16. Child and adolescent experience of and satisfaction with psychiatric care: a critical review of the research literature.

    PubMed

    Biering, P

    2010-02-01

    This review paper contributes to better understanding of child and adolescent perception of quality of psychiatric care and should therefore be of interests for those who are concerned with the development and improvement of psychiatric care. * The review shows that the concept of patient satisfaction in child and adolescent psychiatric care is still underdeveloped and that few valid instruments have been developed to measure the concept. * The review helps to clarify the concept of adolescent satisfaction with psychiatric care by indentifying the universal components of the concept. * The paper concludes that children's perception of quality of care differs from their parents' and that quality assessment of children and adolescents needs to be heeded. Abstract Users' perspectives ought to be a determining factor for assessing the quality of psychiatric care and hence their perspectives need to be thoroughly understood. There is a lack of comprehensive knowledge of how children and adolescents perceive the quality of their psychiatric care. Therefore, the purpose of this paper is to critically review and synthesize findings from research on youth experience and satisfaction with psychiatric care. The review finds that knowledge about youth perception of quality of care is scattered and that few researchers consider previous findings. There are few valid instruments to measure child and adolescent patient satisfaction and few studies have considered these users' perceptions. These few studies indicate that adolescents' satisfaction has three universal components: satisfaction with environment and the organization of services; with user-caregiver relationship; and with treatment outcome. However, instruments that only use these factors lack sensitivity, while instruments that measure specific components of services capture differences in satisfaction between user groups. The review shows that parents and children have different mental care needs, and that the assessments by children and adolescents of their psychiatric care should be heeded.

  17. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types.

    PubMed

    Muir, B R; Rogers, D W O

    2014-11-01

    To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers' effective point of measurement (EPOM) and beam quality conversion factors. The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R50 converted from I50 (calculated using ion chamber simulations in phantom) to R50 calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, kQ, as a function of R50. The optimal shift of cylindrical chambers is found to be less than the 0.5 rcav recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 rcav. Values of kecal are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R50 = 7.5 cm (kQ (')) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.

  18. Exclusive Reactions at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Radyushkin, Anatoly; Stoler, Paul

    2008-03-01

    Hard exclusive scattering at JLab / P. Kroll -- AdS/CFT and exclusive processes in QCD / S. J. Brodsky and G. F. de Téramond -- Hadron structure matters in collisions at high energy and momentum / A. W. Thomas -- Inclusive perspectives / P. Hoyer -- Fitting DVCS at NLO and beyond / K. Kumericki, D. Müller and K. Passek-Kumericki -- Spin-orbit correlations and single-spin asymmetries / M. Burkardt -- Electroproduction of soft pions at large momentum transfers / V. M. Braun, D. Yu. Ivanov and A. Peters -- Color transparency: 33 years and still running / M. Strikman -- Meson clouds and nucleon electromagnetic form factors / G. A. Miller -- Covariance, dynamics and symmetries, and hadron form factors / M. S. Bhagwat, I. C. Cloët and C. D. Roberts -- N to [symbol] electromagnetic and axial form factors in full QCD / C. Alexandrou -- Real and virtual compton scattering in perturbative QCD / C.-R. Ji and R. Thomson -- Deeply virtual compton scattering at Jefferson Lab / F. Sabatie -- DVCS at HERMES: recent results / F. Ellinghaus -- Deeply virtual compton scattering with CLAS / F. X. Girod -- Deeply virtual compton scattering off the neutron at JLab Hall A / M. Mazouz -- The future DVCS experiments in Hall A at JLab / J. Roche -- Deeply virtual compton scattering with CLAS12 / L. Elouadrhiri -- Quark helicity flip and the transverse spin dependence of inclusive DIS / A. Afanasev, M. Strikman and C. Weiss -- Deeply virtual pseudoscalar meson production / V. Kubarovsky and P. Stoler -- Exclusive p[symbol] electroproduction on the proton: GPDs or not GPDs? / M. Guidal and S. Morrow -- p[symbol] transverse target spin asymmetry at HERMES / A. Airapetian -- Electroproduction of ø(1020) mesons / J. P. Santoro and E. S. Smith -- Generalized parton distributions from hadronic observables / S. Ahmad ... [et al.] -- Imaging the proton via hard exclusive production in diffractive pp scattering / G. E. Hyde ... [et al.] -- Regge contributions to exclusive electro-production / A. P. Szczepaniak and J. T. Londergan -- High energy break-up of few-nucleon systems / M. Sargsian -- Photodisintegration of the deuteron, and [symbol]He / R. Gilman -- A review of the few-body form factors / G. G. Petratos -- Nucleon form factor measurements and interpretation / C. F. Perdrisat -- Implications of G[symbol](Q[symbol])/G[symbol](Q[symbol]) / S. Dubnicka and A. Z. Dubnickova -- High Q[symbol] large acceptance G[symbol]/G[symbol] measurements using polarization transfer / L. Pentchev, C. F. Perdrisat and B. Wojtsekhowski -- A precise measurement of the neutron magnetic form factor G[symbol] in the few-GeV[symbol] region / G. P. Gilfoyle et al. (the CLAS collaboration) -- Magnetic form factor of the neutron up to 8 (GeV/c)[symbol] / B. Quinn -- Timelike form factors / K. K. Seth -- Polarization phenomena in e[symbol]e[symbol] [symbol] pp¯ revisited / A. Z. Dubnickova and S. Dubnicka -- Light-cone sum rules for form factors of the N[symbol] transition at Q[symbol] = 0 / J. Rohrwild -- Exclusive electroproduction of [symbol] mesons / A. N. Villano (for the JLab E01-002 collaboration) -- Exclusive electroproduction of [symbol] mesons in the S[symbol](1535) resonance region at high momentum transfer / M. M. Dalton (for the JLab E01-002 collaboration) -- Two-photon exchange in electron-proton elastic scattering: theory update / A. V. Afanasev -- Two-photon exchange contributions to elastic ep scattering in the non-local field formalism / P. Jain, S. D. Joglekar and S. Mitra -- Beyond the born approximation: a precise comparison of positron-proton and electron-proton elastic scattering in CLAS / J. Lachniet et al. -- Meson form factors in the space-like region / D. Gaskell -- Pion-nucleon distribution amplitudes / A. Peters -- [symbol] scattering in the 1/N[symbol] expansion / H. J. Kwee -- [symbol] annihilations into quasi-two-body final states at 10.58 GeV / Kai Yi -- Transition distribution amplitudes / J. P. Lansberg, B. Pire and L. Szymanowski -- Novel QCD effects from initial and final state interactions / S. J. Brodsky -- Parton distributions and spin-orbital correlations / F. Yuan -- Transverse momentum dependences of distribution and fragmentation functions / D. S. Hwang and D. S. Kim -- Flavor dependence of the Boer-Mulders function and its influence on Azimuthal and single-spin asymmetries in semi-inclusive DIS / L. P. Gamberg, G. R. Goldstein and M. Schlegel -- Symmetric spin-dependent structure function in deep inelastic processes / D. S. Hwang, J. H. Kim and S. Kim -- HERMES recoil detector / R. Perez-Benito -- Inner calorimeter in CLAS/DVCS experiment / R. Niyazov -- Frozen-spin HD as a possible target for electro-production experiments / A. M. Sandorfi et al.

  19. A Surrogate for Debye-Waller Factors from Dynamic Stokes Shifts

    PubMed Central

    Zhong, Qin; Johnson, Jerainne; Aamer, Khaled A.; Tyagi, Madhusudan

    2011-01-01

    We show that the short-time behavior of time-resolved fluorescence Stokes shifts (TRSS) are similar to that of the intermediate scattering function obtained from neutron scattering at q near the peak in the static structure factor for glycerol. This allows us to extract a Debye-Waller (DW) factor analog from TRSS data at times as short as 1 ps in a relatively simple way. Using the time-domain relaxation data obtained by this method we show that DW factors evaluated at times ≥ 40 ps can be directly influenced by α relaxation and thus should be used with caution when evaluating relationships between fast and slow dynamics in glassforming systems. PMID:21701673

  20. Application of spherical diodes for megavoltage photon beams dosimetry.

    PubMed

    Barbés, Benigno; Azcona, Juan D; Burguete, Javier; Martí-Climent, Josep M

    2014-01-01

    External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to perform in vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT. The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm(2) and 20 × 20 cm(2)) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer. The spherical diode studied in this work produces a high signal (150 nC/Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%/kGy for 15 MV photons and 0.7%/kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (± 0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements. The measurements of relative dose using the spherical diode described in this work show its feasibility for the dosimetry of megavoltage photon beams. A particularly important feature is its good angular response in the MV range. They would be good candidates for in vivo dosimetry, and quality assurance of VMAT and tomotherapy, and other modalities with beams irradiating from multiple orientations, such as Cyberknife and ViewRay, with minor modifications.

  1. A study on mastectomy samples to evaluate breast imaging quality and potential clinical relevance of differential phase contrast mammography.

    PubMed

    Hauser, Nik; Wang, Zhentian; Kubik-Huch, Rahel A; Trippel, Mafalda; Singer, Gad; Hohl, Michael K; Roessl, Ewald; Köhler, Thomas; van Stevendaal, Udo; Wieberneit, Nataly; Stampanoni, Marco

    2014-03-01

    Differential phase contrast and scattering-based x-ray mammography has the potential to provide additional and complementary clinically relevant information compared with absorption-based mammography. The purpose of our study was to provide a first statistical evaluation of the imaging capabilities of the new technique compared with digital absorption mammography. We investigated non-fixed mastectomy samples of 33 patients with invasive breast cancer, using grating-based differential phase contrast mammography (mammoDPC) with a conventional, low-brilliance x-ray tube. We simultaneously recorded absorption, differential phase contrast, and small-angle scattering signals that were combined into novel high-frequency-enhanced images with a dedicated image fusion algorithm. Six international, expert breast radiologists evaluated clinical digital and experimental mammograms in a 2-part blinded, prospective independent reader study. The results were statistically analyzed in terms of image quality and clinical relevance. The results of the comparison of mammoDPC with clinical digital mammography revealed the general quality of the images to be significantly superior (P < 0.001); sharpness, lesion delineation, as well as the general visibility of calcifications to be significantly more assessable (P < 0.001); and delineation of anatomic components of the specimens (surface structures) to be significantly sharper (P < 0.001). Spiculations were significantly better identified, and the overall clinically relevant information provided by mammoDPC was judged to be superior (P < 0.001). Our results demonstrate that complementary information provided by phase and scattering enhanced mammograms obtained with the mammoDPC approach deliver images of generally superior quality. This technique has the potential to improve radiological breast diagnostics.

  2. Novel approach for calculating the charge carrier mobility and Hall factor for semiconductor materials

    NASA Astrophysics Data System (ADS)

    Colibaba, G. V.

    2018-06-01

    The additive Matthiessen's rule is the simplest and most widely used rule for the rapid experimental characterization and modeling of the charge carrier mobility. However, the error when using this rule can be higher than 40% and the contribution of the assumed additional scattering channels due to the difference between the experimental data and results calculated based on this rule can be misestimated by several times. In this study, a universal semi-additive equation is proposed for the total mobility and Hall factor, which is applicable to any quantity of scattering mechanisms, where it considers the energy dependence of the relaxation time and the error is 10-20 times lower compared with Matthiessen's rule. Calculations with accuracy of 99% are demonstrated for materials with polar-optical phonon, acoustic phonon via the piezoelectric potential, ionized, and neutral impurity scattering. The proposed method is extended to the deformation potential, dislocation, localized defect, alloy potential, and dipole scattering, for nondegenerate and partially degenerate materials.

  3. Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasmas.

    PubMed

    Fortmann, Carsten; Wierling, August; Röpke, Gerd

    2010-02-01

    The dynamic structure factor, which determines the Thomson scattering spectrum, is calculated via an extended Mermin approach. It incorporates the dynamical collision frequency as well as the local-field correction factor. This allows to study systematically the impact of electron-ion collisions as well as electron-electron correlations due to degeneracy and short-range interaction on the characteristics of the Thomson scattering signal. As such, the plasmon dispersion and damping width is calculated for a two-component plasma, where the electron subsystem is completely degenerate. Strong deviations of the plasmon resonance position due to the electron-electron correlations are observed at increasing Brueckner parameters r(s). These results are of paramount importance for the interpretation of collective Thomson scattering spectra, as the determination of the free electron density from the plasmon resonance position requires a precise theory of the plasmon dispersion. Implications due to different approximations for the electron-electron correlation, i.e., different forms of the one-component local-field correction, are discussed.

  4. Hygroscopic Measurements of Aerosol Particles in Colorado during the Discover AQ Campaign 2014

    NASA Astrophysics Data System (ADS)

    Orozco, D.; Delgado, R.; Espinosa, R.; Martins, J. V.; Hoff, R. M.

    2014-12-01

    In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground observations with other optical aerosol measurements such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. In the summer of 2014, the DISCOVER-AQ campaign was held in Colorado, where systematic and concurrent observations of column- integrated surface, and vertically-resolved distributions of aerosols and trace gases relevant to air quality and their evolution during the day were observed. Aerosol optical properties were measured in the UMBC trailer at the city of Golden using a TSI-3563 nephelometer and an in-situ Polarized Imaging Nephelometer (PI-NEPH) designed and built by the LACO group at UMBC. The PI-NEPH measures aerosol phase matrix components in high angular range between 2 and 178 degrees scattering angle at three wavelengths (λ=473, 532 and 671nm). The two measured elements of the phase matrix, intensity (P11) and linear polarization (P12) provide extensive characterization of the scattering properties of the studied aerosol. The scattering coefficient, P11 and P12 were measured under different humidity conditions to obtain the enhancement factor f(RH) and the dependence of P11 and P12 to RH using a humidifier dryer system covering a RH range from 20 to 90%. The ratio between scattering coefficients at high and low humidity in Golden Colorado showed relatively low hygroscopic growth in the aerosol particles f(RH=80%) was 1.27±0.19 for the first three weeks of sampling. According to speciated measurements performed at the UMBC trailer, the predominance of dust and organic aerosols over more hygroscopic nitrate and sulfate in the region are responsible for the low hygroscopicity. In addition, transported smoke remnants from wildfires in the Pacific Northwest were detected as the elemental and organic carbon concentrations increased. The P11 and P12 elements from smoke and local sources are discussed as well as the vertical distribution by airborne and ground comparisons.

  5. Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images.

    PubMed

    Rydén, T; Heydorn Lagerlöf, J; Hemmingsson, J; Marin, I; Svensson, J; Båth, M; Gjertsson, P; Bernhardt, P

    2018-01-04

    Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (128 3 or 256 3 ). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177 Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 128 3 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was clearly improved with MC-based OSEM reconstruction, e.g., the activity recovery was 88% for the largest sphere, while it was 66% for AC-OSEM and 79% for RRC-OSEM. The GPU-based MC code generated an MC-based SPECT/CT reconstruction within a few minutes, and reconstructed patient images of 177 Lu-DOTATATE treatments revealed clearly improved resolution and contrast.

  6. A novel Compton camera design featuring a rear-panel shield for substantial noise reduction in gamma-ray images

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.

    2014-12-01

    After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.

  7. Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin

    1998-07-01

    Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.

  8. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    PubMed

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  9. Study on off-axis detection of pulsed laser in atmosphere

    NASA Astrophysics Data System (ADS)

    Liang, Weiwei

    2018-02-01

    Laser communication, designation, and ranging are point to point and have a high degree of specificity, current laser detection, such as laser warning receiver system, could detect the scattering laser from the off-axis distance by scattering track on natural aerosols, which is helpful to locate the laser source. However, the intensity of the scattering laser is extremely weak and affected by many factors, in order to evaluate the detection characteristic, a simplified model of off-axis detection for scattering laser in the lower atmosphere based on the Mie scattering theory is presented in this paper, the performances of the off-axis laser detection in different conditions such as off-axis distance, visibility, incidence angle, and delay time are investigated.

  10. Optimal combining of ground-based sensors for the purpose of validating satellite-based rainfall estimates

    NASA Technical Reports Server (NTRS)

    Krajewski, Witold F.; Rexroth, David T.; Kiriaki, Kiriakie

    1991-01-01

    Two problems related to radar rainfall estimation are described. The first part is a description of a preliminary data analysis for the purpose of statistical estimation of rainfall from multiple (radar and raingage) sensors. Raingage, radar, and joint radar-raingage estimation is described, and some results are given. Statistical parameters of rainfall spatial dependence are calculated and discussed in the context of optimal estimation. Quality control of radar data is also described. The second part describes radar scattering by ellipsoidal raindrops. An analytical solution is derived for the Rayleigh scattering regime. Single and volume scattering are presented. Comparison calculations with the known results for spheres and oblate spheroids are shown.

  11. Electron scattering times in ZnO based polar heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falson, J., E-mail: j.falson@fkf.mpg.de; Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561; Max Planck Institute for Solid State Research, D-70569 Stuttgart

    2015-08-24

    The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10{sup 6} cm{sup 2}/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors.

  12. Imaging performance of a LaBr3-based PET scanner

    PubMed Central

    Daube-Witherspoon, M E; Surti, S; Perkins, A; Kyba, C C M; Wiener, R; Werner, M E; Kulp, R; Karp, J S

    2010-01-01

    A prototype time-of-flight (TOF) PET scanner based on cerium-doped lanthanum bromide [LaBr3 (5% Ce)] has been developed. LaBr3 has high light output, excellent energy resolution, and fast timing properties that have been predicted to lead to good image quality. Intrinsic performance measurements of spatial resolution, sensitivity, and scatter fraction demonstrate good conventional PET performance; the results agree with previous simulation studies. Phantom measurements show the excellent image quality achievable with the prototype system. Phantom measurements and corresponding simulations show a faster and more uniform convergence rate, as well as more uniform quantification, for TOF reconstruction of the data, which have 375-ps intrinsic timing resolution, compared to non-TOF images. Measurements and simulations of a hot and cold sphere phantom show that the 7% energy resolution helps to mitigate residual errors in the scatter estimate because a high energy threshold (>480 keV) can be used to restrict the amount of scatter accepted without a loss of true events. Preliminary results with incorporation of a model of detector blurring in the iterative reconstruction algorithm show improved contrast recovery but also point out the importance of an accurate resolution model of the tails of LaBr3’s point spread function. The LaBr3 TOF-PET scanner has demonstrated the impact of superior timing and energy resolutions on image quality. PMID:19949259

  13. Damage Effects Identified By Scatter Evaluation Of Supersmooth Surfaces

    NASA Astrophysics Data System (ADS)

    Stowell, W. K.; Orazio, Fred D.

    1983-12-01

    The surface quality of optics used in an extremely sensitive laser instrument, such as a Ring Laser Gyro (RLG), is critical. This has led to the development of a Variable Angle Scatterometer at the Air Force Wright Aeronautical Laboratories at Wright-Patterson Air Force Base, which can detect low level light scatter from the high quality optics used in RLG's, without first overcoating with metals. With this instrument we have been able to identify damage effects that occur during the typical processing and handling of optics which cause wide variation in subsequent measurements depending on when, in the process, one takes data. These measurements indicate that techniques such as a Total Integrated Scatter (TIS) may be inadequate for standards on extremely low scatter optics because of the lack of sensitivity of the method on such surfaces. The general term for optical surfaces better than the lowest level of the scratch-dig standards has become "supersmooth", and is seen in technical literature as well as in advertising. A performance number, such as Bidirectional Radiation Distribution Function (BRDF), which can be measured from the uncoated optical surface by equipment such as the Variable Angle Scatterometer (VAS) is proposed as a method of generating better optical surface specifications. Data show that surfaces of average BRDF values near 10 parts per billion per steriadian (0.010 PPM/Sr) for 0-(301 = 0.5, are now possible and measurable.

  14. Damage Effects Identified By Scatter Evaluation Of Supersmooth Surfaces

    NASA Astrophysics Data System (ADS)

    Stowell, W. K.

    1984-10-01

    The surface quality of optics used in an extremely sensitive laser instrument, such as a Ring Laser Gyro (RLG), is critical. This has led to the development of a Variable Angle Scatterometer at the Air Force Wright Aeronautical Laboratories at Wright-Patterson Air Force Base, which can detect low level light scatter from the high quality optics used in RLG's, without first overcoating with metals. With this instrument we have been able to identify damage effects that occur during the typical processing and handling of optics which cause wide variation in subsequent measurements depending on when, in the process, one takes data. These measurements indicate that techniques such as a Total Integrated Scatter (TIS) may be inadequate for standards on extremely low scatter optics because of the lack of sensitivity of the method on such surfaces. The general term for optical surfaces better than the lowest level of the scratch-dig standards has become "supersmooth", and is seen in technical literature as well as in advertising. A performance number, such as Bidirectional Radiation Distribution Function (BRDF), which can be measured from the uncoated optical surface by equipment such as the Variable Angle Scatterometer (VAS) is proposed as a method of generating better optical surface specifications. Data show that surfaces of average BRDF values near 10 parts per billion per steriadian (0.010 PPM/Sr) for 0-(301 = 0.5, are now possible and measurable.

  15. Development and optimization of SPE-HPLC-UV/ELSD for simultaneous determination of nine bioactive components in Shenqi Fuzheng Injection based on Quality by Design principles.

    PubMed

    Wang, Lu; Qu, Haibin

    2016-03-01

    A method combining solid phase extraction, high performance liquid chromatography, and ultraviolet/evaporative light scattering detection (SPE-HPLC-UV/ELSD) was developed according to Quality by Design (QbD) principles and used to assay nine bioactive compounds within a botanical drug, Shenqi Fuzheng Injection. Risk assessment and a Plackett-Burman design were utilized to evaluate the impact of 11 factors on the resolutions and signal-to-noise of chromatographic peaks. Multiple regression and Pareto ranking analysis indicated that the sorbent mass, sample volume, flow rate, column temperature, evaporator temperature, and gas flow rate were statistically significant (p < 0.05) in this procedure. Furthermore, a Box-Behnken design combined with response surface analysis was employed to study the relationships between the quality of SPE-HPLC-UV/ELSD analysis and four significant factors, i.e., flow rate, column temperature, evaporator temperature, and gas flow rate. An analytical design space of SPE-HPLC-UV/ELSD was then constructed by calculated Monte Carlo probability. In the presented approach, the operating parameters of sample preparation, chromatographic separation, and compound detection were investigated simultaneously. Eight terms of method validation, i.e., system-suitability tests, method robustness/ruggedness, sensitivity, precision, repeatability, linearity, accuracy, and stability, were accomplished at a selected working point. These results revealed that the QbD principles were suitable in the development of analytical procedures for samples in complex matrices. Meanwhile, the analytical quality and method robustness were validated by the analytical design space. The presented strategy provides a tutorial on the development of a robust QbD-compliant quantitative method for samples in complex matrices.

  16. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method.

    PubMed

    Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.

  17. Clinical peripherality: development of a peripherality index for rural health services.

    PubMed

    Swan, Gillian M; Selvaraj, Sivasubramaniam; Godden, David J

    2008-01-25

    The configuration of rural health services is influenced by geography. Rural health practitioners provide a broader range of services to smaller populations scattered over wider areas or more difficult terrain than their urban counterparts. This has implications for training and quality assurance of outcomes. This exploratory study describes the development of a "clinical peripherality" indicator that has potential application to remote and rural general practice communities for planning and research purposes. Profiles of general practice communities in Scotland were created from a variety of public data sources. Four candidate variables were chosen that described demographic and geographic characteristics of each practice: population density, number of patients on the practice list, travel time to nearest specialist led hospital and travel time to Health Board administrative headquarters. A clinical peripherality index, based on these variables, was derived using factor analysis. Relationships between the clinical peripherality index and services offered by the practices and the staff profile of the practices were explored in a series of univariate analyses. Factor analysis on the four candidate variables yielded a robust one-factor solution explaining 75% variance with factor loadings ranging from 0.83 to 0.89. Rural and remote areas had higher median values and a greater scatter of clinical peripherality indices among their practices than an urban comparison area. The range of services offered and the profile of staffing of practices was associated with the peripherality index. Clinical peripherality is determined by the nature of the practice and its location relative to secondary care and administrative and educational facilities. It has features of both gravity model-based and travel time/accessibility indicators and has the potential to be applied to training of staff for rural and remote locations and to other aspects of health policy and planning. It may assist planners in conceptualising the effects on general practices of centralising specialist clinical services or administrative and educational facilities.

  18. Clinical peripherality: development of a peripherality index for rural health services

    PubMed Central

    Swan, Gillian M; Selvaraj, Sivasubramaniam; Godden, David J

    2008-01-01

    Background The configuration of rural health services is influenced by geography. Rural health practitioners provide a broader range of services to smaller populations scattered over wider areas or more difficult terrain than their urban counterparts. This has implications for training and quality assurance of outcomes. This exploratory study describes the development of a "clinical peripherality" indicator that has potential application to remote and rural general practice communities for planning and research purposes. Methods Profiles of general practice communities in Scotland were created from a variety of public data sources. Four candidate variables were chosen that described demographic and geographic characteristics of each practice: population density, number of patients on the practice list, travel time to nearest specialist led hospital and travel time to Health Board administrative headquarters. A clinical peripherality index, based on these variables, was derived using factor analysis. Relationships between the clinical peripherality index and services offered by the practices and the staff profile of the practices were explored in a series of univariate analyses. Results Factor analysis on the four candidate variables yielded a robust one-factor solution explaining 75% variance with factor loadings ranging from 0.83 to 0.89. Rural and remote areas had higher median values and a greater scatter of clinical peripherality indices among their practices than an urban comparison area. The range of services offered and the profile of staffing of practices was associated with the peripherality index. Conclusion Clinical peripherality is determined by the nature of the practice and its location relative to secondary care and administrative and educational facilities. It has features of both gravity model-based and travel time/accessibility indicators and has the potential to be applied to training of staff for rural and remote locations and to other aspects of health policy and planning. It may assist planners in conceptualising the effects on general practices of centralising specialist clinical services or administrative and educational facilities. PMID:18221533

  19. One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro

    2017-10-01

    In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.

  20. Polarization characteristics of inhomogeneous models of nonstationary light-scattering media

    NASA Astrophysics Data System (ADS)

    Smolinskii, E. S.; Petruk, V. G.; Lavreniuk, V. I.

    1990-09-01

    The optical parameters of monodisperse layers of MgO and turpentine black with different surface particle densities are investigated using a polarization spectrum extinction meter. A method for determining the volume density of a real nonstationary scattering and absorbing medium is proposed which is based on the transfer equations. Graphical and spectroanalytical data are presented which allow for various optical and physical factors. Polarization measurements of the layers are carried out, and scattering matrices are obtained.

  1. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials

    PubMed Central

    Mao, Jun; Shuai, Jing; Song, Shaowei; Wu, Yixuan; Dally, Rebecca; Zhou, Jiawei; Liu, Zihang; Sun, Jifeng; Zhang, Qinyong; dela Cruz, Clarina; Wilson, Stephen; Pei, Yanzhong; Singh, David J.; Chen, Gang; Chu, Ching-Wu; Ren, Zhifeng

    2017-01-01

    Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type Mg3Sb2-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved. In this work, Fe, Co, Hf, and Ta are doped on the Mg site of Mg3.2Sb1.5Bi0.49Te0.01, where the ionized impurity scattering crosses over to mixed ionized impurity and acoustic phonon scattering. A significant improvement in Hall mobility from ∼16 to ∼81 cm2⋅V−1⋅s−1 is obtained, thus leading to a notably enhanced power factor of ∼13 μW⋅cm−1⋅K−2 from ∼5 μW⋅cm−1⋅K−2. A simultaneous reduction in thermal conductivity is also achieved. Collectively, a figure of merit (ZT) of ∼1.7 is obtained at 773 K in Mg3.1Co0.1Sb1.5Bi0.49Te0.01. The concept of manipulating the carrier scattering mechanism to improve the mobility should also be applicable to other material systems. PMID:28923974

  2. Rupturing of Biological Spores As a Source of Secondary Particles in Amazonia.

    PubMed

    China, Swarup; Wang, Bingbing; Weis, Johannes; Rizzo, Luciana; Brito, Joel; Cirino, Glauber G; Kovarik, Libor; Artaxo, Paulo; Gilles, Mary K; Laskin, Alexander

    2016-11-15

    Airborne biological particles, such as fungal spores and pollen, are ubiquitous in the Earth's atmosphere and may influence the atmospheric environment and climate, impacting air quality, cloud formation, and the Earth's radiation budget. The atmospheric transformations of airborne biological spores at elevated relative humidity remain poorly understood and their climatic role is uncertain. Using an environmental scanning electron microscope (ESEM), we observed rupturing of Amazonian fungal spores and subsequent release of submicrometer size fragments after exposure to high humidity. We find that fungal fragments contain elements of inorganic salts (e.g., Na and Cl). They are hygroscopic in nature with a growth factor up to 2.3 at 96% relative humidity, thus they may potentially influence cloud formation. Due to their hygroscopic growth, light scattering cross sections of the fragments are enhanced by up to a factor of 10. Furthermore, rupturing of fungal spores at high humidity may explain the bursting events of new particle formation in Amazonia.

  3. Irena : tool suite for modeling and analysis of small-angle scattering.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilavsky, J.; Jemian, P.

    2009-04-01

    Irena, a tool suite for analysis of both X-ray and neutron small-angle scattering (SAS) data within the commercial Igor Pro application, brings together a comprehensive suite of tools useful for investigations in materials science, physics, chemistry, polymer science and other fields. In addition to Guinier and Porod fits, the suite combines a variety of advanced SAS data evaluation tools for the modeling of size distribution in the dilute limit using maximum entropy and other methods, dilute limit small-angle scattering from multiple non-interacting populations of scatterers, the pair-distance distribution function, a unified fit, the Debye-Bueche model, the reflectivity (X-ray and neutron)more » using Parratt's formalism, and small-angle diffraction. There are also a number of support tools, such as a data import/export tool supporting a broad sampling of common data formats, a data modification tool, a presentation-quality graphics tool optimized for small-angle scattering data, and a neutron and X-ray scattering contrast calculator. These tools are brought together into one suite with consistent interfaces and functionality. The suite allows robust automated note recording and saving of parameters during export.« less

  4. Small-angle x-ray scattering in amorphous silicon: A computational study

    NASA Astrophysics Data System (ADS)

    Paudel, Durga; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim

    2018-05-01

    We present a computational study of small-angle x-ray scattering (SAXS) in amorphous silicon (a -Si) with particular emphasis on the morphology and microstructure of voids. The relationship between the scattering intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by generating large high-quality a -Si networks with 0.1%-0.3% volume concentration of voids, as observed in experiments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region is particularly sensitive to the size and the total volume fraction of the voids, but the effect of the geometry or shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.

  5. Dispersive analysis of the pion transition form factor.

    PubMed

    Hoferichter, M; Kubis, B; Leupold, S; Niecknig, F; Schneider, S P

    We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the [Formula: see text] cross section, generalizing previous studies on [Formula: see text] decays and [Formula: see text] scattering, and verify our result by comparing to [Formula: see text] data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below [Formula: see text], and extract the slope of the form factor at vanishing momentum transfer [Formula: see text]. We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.

  6. Cosmicflows Constrained Local UniversE Simulations

    NASA Astrophysics Data System (ADS)

    Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Courtois, Helene M.; Steinmetz, Matthias; Tully, R. Brent; Pomarède, Daniel; Carlesi, Edoardo

    2016-01-01

    This paper combines observational data sets and cosmological simulations to generate realistic numerical replicas of the nearby Universe. The latter are excellent laboratories for studies of the non-linear process of structure formation in our neighbourhood. With measurements of radial peculiar velocities in the local Universe (cosmicflows-2) and a newly developed technique, we produce Constrained Local UniversE Simulations (CLUES). To assess the quality of these constrained simulations, we compare them with random simulations as well as with local observations. The cosmic variance, defined as the mean one-sigma scatter of cell-to-cell comparison between two fields, is significantly smaller for the constrained simulations than for the random simulations. Within the inner part of the box where most of the constraints are, the scatter is smaller by a factor of 2 to 3 on a 5 h-1 Mpc scale with respect to that found for random simulations. This one-sigma scatter obtained when comparing the simulated and the observation-reconstructed velocity fields is only 104 ± 4 km s-1, I.e. the linear theory threshold. These two results demonstrate that these simulations are in agreement with each other and with the observations of our neighbourhood. For the first time, simulations constrained with observational radial peculiar velocities resemble the local Universe up to a distance of 150 h-1 Mpc on a scale of a few tens of megaparsecs. When focusing on the inner part of the box, the resemblance with our cosmic neighbourhood extends to a few megaparsecs (<5 h-1 Mpc). The simulations provide a proper large-scale environment for studies of the formation of nearby objects.

  7. New method for evaluating high-quality fog protective coatings

    NASA Astrophysics Data System (ADS)

    Czeremuszkin, Grzegorz; Latreche, Mohamed; Mendoza-Suarez, Guillermo

    2011-05-01

    Fogging is commonly observed when humid-warm air contacts the cold surface of a transparent substrate, i.e. eyewear lenses, making the observed image blurred and hazy. To protect from fogging, the lens inner surfaces are protected with Anti-Fog coatings, which render them hydrophilic and induce water vapor condensation as a smooth, thin and invisible film, which uniformly flows down on the lens as the condensation progresses. Coatings differ in protection level, aging kinetics, and susceptibility to contamination. Some perform acceptably in limited conditions, beyond which the condensing water film becomes unstable, nonuniform, and scatters light or shows refractory distortions, both affecting the observed image. Quantifying the performance of Anti-Fog coated lenses is difficult: they may not show classical fogging and the existing testing methods, based on fog detection, are therefore inapplicable. The presented method for evaluating and quantifying AF properties is based on characterizing light scattering on lenses exposed to controlled humidity and temperature. Changes in intensity of laser light scattered at low angles (1, 2 4 and 8 degrees), observed during condensation of water on lenses, provide information on the swelling of Anti-Fog coatings, formation of uniform water film, going from an unstable to a steady state, and on the coalescence of discontinuous films. Real time observations/measurements allow for better understanding of factors controlling fogging and fog preventing phenomena. The method is especially useful in the development of new coatings for military-, sport-, and industrial protective eyewear as well as for medical and automotive applications. It allows for differentiating between coatings showing acceptable, good, and excellent performance.

  8. Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.

    PubMed

    Leão-Neto, J P; Lopes, J H; Silva, G T

    2017-11-01

    The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.

  9. Numerical method of applying shadow theory to all regions of multilayered dielectric gratings in conical mounting.

    PubMed

    Wakabayashi, Hideaki; Asai, Masamitsu; Matsumoto, Keiji; Yamakita, Jiro

    2016-11-01

    Nakayama's shadow theory first discussed the diffraction by a perfectly conducting grating in a planar mounting. In the theory, a new formulation by use of a scattering factor was proposed. This paper focuses on the middle regions of a multilayered dielectric grating placed in conical mounting. Applying the shadow theory to the matrix eigenvalues method, we compose new transformation and improved propagation matrices of the shadow theory for conical mounting. Using these matrices and scattering factors, being the basic quantity of diffraction amplitudes, we formulate a new description of three-dimensional scattering fields which is available even for cases where the eigenvalues are degenerate in any region. Some numerical examples are given for cases where the eigenvalues are degenerate in the middle regions.

  10. Linearized T-Matrix and Mie Scattering Computations

    NASA Technical Reports Server (NTRS)

    Spurr, R.; Wang, J.; Zeng, J.; Mishchenko, M. I.

    2011-01-01

    We present a new linearization of T-Matrix and Mie computations for light scattering by non-spherical and spherical particles, respectively. In addition to the usual extinction and scattering cross-sections and the scattering matrix outputs, the linearized models will generate analytical derivatives of these optical properties with respect to the real and imaginary parts of the particle refractive index, and (for non-spherical scatterers) with respect to the ''shape'' parameter (the spheroid aspect ratio, cylinder diameter/height ratio, Chebyshev particle deformation factor). These derivatives are based on the essential linearity of Maxwell's theory. Analytical derivatives are also available for polydisperse particle size distribution parameters such as the mode radius. The T-matrix formulation is based on the NASA Goddard Institute for Space Studies FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented here are in FORTRAN 90 and will be made publicly available.

  11. Translucent Radiosity: Efficiently Combining Diffuse Inter-Reflection and Subsurface Scattering.

    PubMed

    Sheng, Yu; Shi, Yulong; Wang, Lili; Narasimhan, Srinivasa G

    2014-07-01

    It is hard to efficiently model the light transport in scenes with translucent objects for interactive applications. The inter-reflection between objects and their environments and the subsurface scattering through the materials intertwine to produce visual effects like color bleeding, light glows, and soft shading. Monte-Carlo based approaches have demonstrated impressive results but are computationally expensive, and faster approaches model either only inter-reflection or only subsurface scattering. In this paper, we present a simple analytic model that combines diffuse inter-reflection and isotropic subsurface scattering. Our approach extends the classical work in radiosity by including a subsurface scattering matrix that operates in conjunction with the traditional form factor matrix. This subsurface scattering matrix can be constructed using analytic, measurement-based or simulation-based models and can capture both homogeneous and heterogeneous translucencies. Using a fast iterative solution to radiosity, we demonstrate scene relighting and dynamically varying object translucencies at near interactive rates.

  12. Coherent scattering of a spherical wave from an irregular surface. [antenna pattern effects

    NASA Technical Reports Server (NTRS)

    Fung, A. K.

    1983-01-01

    The scattering of a spherical wave from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna pattern can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane wave incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna pattern and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.

  13. Thomson scattering density calibration by Rayleigh and rotational Raman scattering on NSTX.

    PubMed

    LeBlanc, B P

    2008-10-01

    The multipoint Thomson scattering diagnostic measures the profiles of the electron temperature T(e)(R) and density n(e)(R) on the horizontal midplane of NSTX. Normal operation makes use of Rayleigh scattering in nitrogen or argon to derive the density profile. While the Rayleigh scattering n(e)(R) calibration has been validated by comparison to other density measurements and through its correlation with plasma phenomena, it does require dedicated detectors at the laser wavelength in this filter polychromator based diagnostic. The presence of dust and/or stray laser light precludes routine use of these dedicated spectral channels for Thomson scattering measurement. Hence it is of interest to investigate the use of Raman scattering in nitrogen for the purpose of density calibration since it could free up detection equipment, which could then be used for the instrumentation of additional radial channels. In this paper the viewing optics "geometrical factor" profiles obtained from Rayleigh and Raman scattering are compared. While both techniques agree nominally, residual effects on the order of 10% remain and will be discussed.

  14. Investigation of light scattering as a technique for detecting discrete soot particles in a luminous flame

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.

  15. Vertical spatial coherence model for a transient signal forward-scattered from the sea surface

    USGS Publications Warehouse

    Yoerger, E.J.; McDaniel, S.T.

    1996-01-01

    The treatment of acoustic energy forward scattered from the sea surface, which is modeled as a random communications scatter channel, is the basis for developing an expression for the time-dependent coherence function across a vertical receiving array. The derivation of this model uses linear filter theory applied to the Fresnel-corrected Kirchhoff approximation in obtaining an equation for the covariance function for the forward-scattered problem. The resulting formulation is used to study the dependence of the covariance on experimental and environmental factors. The modeled coherence functions are then formed for various geometrical and environmental parameters and compared to experimental data.

  16. Semiconductor laser insert with uniform illumination for use in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Charamisinau, Ivan; Happawana, Gemunu; Evans, Gary; Rosen, Arye; Hsi, Richard A.; Bour, David

    2005-08-01

    A low-cost semiconductor red laser light delivery system for esophagus cancer treatment is presented. The system is small enough for insertion into the patient's body. Scattering elements with nanoscale particles are used to achieve uniform illumination. The scattering element optimization calculations, with Mie theory, provide scattering and absorption efficiency factors for scattering particles composed of various materials. The possibility of using randomly deformed spheres and composite particles instead of perfect spheres is analyzed using an extension to Mie theory. The measured radiation pattern from a prototype light delivery system fabricated using these design criteria shows reasonable agreement with the theoretically predicted pattern.

  17. The Hitomi (ASTRO-H) Soft X-ray Telescope (SXT): current status of calibration

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; Sato, Toshiki; Tachibana, Sasagu; Mori, Hideyuki; Christensen, Finn; Brejnholt, Nicolai; Nitta, Kiyofumi; Uruga, Tomoya

    2017-08-01

    We report the atomic scattering factor in the 11.2-15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4 - 0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the gold' s L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor.

  18. Reflectivity around the gold L-edges of x-ray reflector of the soft x-ray telescope onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; Sato, Toshiki; Tachibana, Sasagu; Mori, Hideyuki; Christensen, Finn; Brejnholt, Nicolai; Nitta, Kiyofumi; Uruga, Tomoya

    2016-07-01

    We report the atomic scattering factor in the 11.2{15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2{15.4 keV band with the energy pitch of 0.4 { 0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the gold's L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor.

  19. The Influence of Inspection Angle, Wave Type and Beam Shape on Signal-to-Noise Ratios in Ultrasonic Pitch-Catch Inspections

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Li, Anxiang; Thompson, R. B.

    2007-03-01

    Grain noise, which arises from the scattering of sound waves by microstructure, can limit the detection of small internal defects in metal components. Signal-to-noise (S/N) ratios for ultrasonic pitch/catch inspections are primarily determined by three factors: the scattering ability of the defect; the inherent noisiness of the microstructure (per unit volume); and finite-beam effects. An approximate single-scattering model has been formulated which contains terms representing each of these factors. In this paper the model is applied to a representative pitch/catch inspection problem, namely, the detection of a circular crack in a nickel cylinder. The object is to estimate S/N ratios for various choices of the inspection angle and sonic wave types, and to demonstrate how S/N is determined by the interplay of the defect, microstructure, and finite-beam factors. We also explore how S/N is influenced by the sizes, shapes, and orientations of the transmitter and receiver sound beams.

  20. Reflectivity Around the Gold L-Edges of X-Ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H

    NASA Technical Reports Server (NTRS)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu; Iizuka, Ryo; Hayashi, Takayuki; Okajima, Takashi; Matsumoto, Hironori; Mitsuishi, Ikuyuki; Saji, Shigetaka; hide

    2016-01-01

    We report the atomic scattering factor in the 11.215.4 keV for the ASTRO-H Soft X-ray Telescope (SXT) obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4-0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the golds L-I, II, and III transitions are identified, of which the depths are found to be roughly 60 percent shallower than those expected from the Henke's atomic scattering factor.

  1. Parity Violating electron scattering from Hydrogen and Helium-4 and Strangness in the nucleon: Results from HAPPEX-II

    NASA Astrophysics Data System (ADS)

    Moffit, Bryan

    2006-11-01

    The quark-antiquark pairs that form the sea within the nucleon are well established within quantum chromodynamics. Several recent and ongoing experiments are motivated by determining how this sea, containing contributions from all quark flavors, plays a role in affecting the nucleon's overall properties. Of particular interest is the possible strange quark contribution to the nucleon's electric and magnetic form factors. The recently completed HAPPEX asymmetry measurements take advantage of parity violation in elastic electron scattering to probe the strange quark effects. The measurement using a hydrogen target is sensitive to a linear combination of GE^s and GM^s, the contribution to the electric and magnetic form factors due to strange quarks, respectively, whereas scattering from a spinless helium target cleanly isolates GE^s. The combination of the two measurements therefore allows these form factors to be separately determined. Final results will be presented from the complete data set, obtained in runs in 2004 and 2005, yielding results of unprecedented precision.

  2. Calculation of optical properties of dental composites as a basis for determining color impression and penetration depth of laser light

    NASA Astrophysics Data System (ADS)

    Weniger, Kirsten K.; Muller, Gerhard J.

    2005-03-01

    In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.

  3. Synchronous scattering and diffraction from gold nanotextured surfaces with structure factors

    NASA Astrophysics Data System (ADS)

    Gu, Min-Jhong; Lee, Ming-Tsang; Huang, Chien-Hsun; Wu, Chi-Chun; Chen, Yu-Bin

    2018-05-01

    Synchronous scattering and diffraction were demonstrated using reflectance from gold nanotextured surfaces at oblique (θi = 15° and 60°) incidence of wavelength λ = 405 nm. Two samples of unique auto-correlation functions were cost-effectively fabricated. Multiple structure factors of their profiles were confirmed with Fourier expansions. Bi-directional reflectance function (BRDF) from these samples provided experimental proofs. On the other hand, standard deviation of height and unique auto-correlation function of each sample were used to generate surfaces numerically. Comparing their BRDF with those of totally random rough surfaces further suggested that structure factors in profile could reduce specular reflection more than totally random roughness.

  4. Charge form factor of the neutron at low momentum transfer from the 2H-->(e-->,e'n)1H reaction.

    PubMed

    Geis, E; Kohl, M; Ziskin, V; Akdogan, T; Arenhövel, H; Alarcon, R; Bertozzi, W; Booth, E; Botto, T; Calarco, J; Clasie, B; Crawford, C B; DeGrush, A; Donnelly, T W; Dow, K; Farkhondeh, M; Fatemi, R; Filoti, O; Franklin, W; Gao, H; Gilad, S; Hasell, D; Karpius, P; Kolster, H; Lee, T; Maschinot, A; Matthews, J; McIlhany, K; Meitanis, N; Milner, R G; Rapaport, J; Redwine, R P; Seely, J; Shinozaki, A; Sirca, S; Sindile, A; Six, E; Smith, T; Steadman, M; Tonguc, B; Tschalaer, C; Tsentalovich, E; Turchinetz, W; Xiao, Y; Xu, W; Zhang, C; Zhou, Z; Zwart, T

    2008-07-25

    We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio GEn/GMn was extracted from the beam-target vector asymmetry AedV at four-momentum transfers Q2=0.14, 0.20, 0.29, and 0.42 (GeV/c)2.

  5. A comparison of phantom scatter from flattened and flattening filter free high-energy photon beams.

    PubMed

    Richmond, Neil; Allen, Vince; Daniel, Jim; Dacey, Rob; Walker, Chris

    2015-01-01

    Flattening filter free (FFF) photon beams have different dosimetric properties from those of flattened beams. The aim of this work was to characterize the collimator scatter (Sc) and total scatter (Scp) from 3 FFF beams of differing quality indices and use the resulting mathematical fits to generate phantom scatter (Sp) data. The similarities and differences between Sp of flattened and FFF beams are described. Sc and Scp data were measured for 3 flattened and 3 FFF high-energy photon beams (Varian 6 and 10MV and Elekta 6MV). These data were fitted to logarithmic power law functions with 4 numerical coefficients. The agreement between our experimentally determined flattened beam Sp and published data was within ± 1.2% for all 3 beams investigated and all field sizes from 4 × 4 to 40 × 40cm(2). For the FFF beams, Sp was only within 1% of the same flattened beam published data for field sizes between 6 × 6 and 14 × 14cm(2). Outside this range, the differences were much greater, reaching - 3.2%, - 4.5%, and - 4.3% for the fields of 40 × 40cm(2) for the Varian 6-MV, Varian 10-MV, and Elekta 6-MV FFF beams, respectively. The FFF beam Sp increased more slowly with increasing field size than that of the published and measured flattened beam of a similar reference field size quality index, i.e., there is less Phantom Scatter than that found with flattened beams for a given field size. This difference can be explained when the fluence profiles of the flattened and FFF beams are considered. The FFF beam has greatly reduced fluence off axis, especially as field size increases, compared with the flattened beam profile; hence, less scatter is generated in the phantom reaching the central axis. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  6. Final-state interactions in semi-inclusive deep inelastic scattering off the Deuteron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wim Cosyn, Misak Sargsian

    2011-07-01

    Semi-inclusive deep inelastic scattering off the Deuteron with production of a slow nucleon in recoil kinematics is studied in the virtual nucleon approximation, in which the final state interaction (FSI) is calculated within general eikonal approximation. The cross section is derived in a factorized approach, with a factor describing the virtual photon interaction with the off-shell nucleon and a distorted spectral function accounting for the final-state interactions. One of the main goals of the study is to understand how much the general features of the diffractive high energy soft rescattering accounts for the observed features of FSI in deep inelasticmore » scattering (DIS). Comparison with the Jefferson Lab data shows good agreement in the covered range of kinematics. Most importantly, our calculation correctly reproduces the rise of the FSI in the forward direction of the slow nucleon production angle. By fitting our calculation to the data we extracted the W and Q{sup 2} dependences of the total cross section and slope factor of the interaction of DIS products, X, off the spectator nucleon. This analysis shows the XN scattering cross section rising with W and decreasing with an increase of Q{sup 2}. Finally, our analysis points at a largely suppressed off-shell part of the rescattering amplitude.« less

  7. Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution

    PubMed Central

    Acerbo, Alvin Samuel; Cook, Michael J.; Gillilan, Richard Edward

    2015-01-01

    X-ray scattering of biological macromolecules in solution is an increasingly popular tool for structural biology and benefits greatly from modern high-brightness synchrotron sources. The upgraded MacCHESS BioSAXS station is now located at the 49-pole wiggler beamline G1. The 20-fold improved flux over the previous beamline F2 provides higher sample throughput and autonomous X-ray scattering data collection using a unique SAXS/WAXS dual detectors configuration. This setup achieves a combined q-range from 0.007 to 0.7 Å−1, enabling better characterization of smaller molecules, while opening opportunities for emerging wide-angle scattering methods. In addition, a facility upgrade of the positron storage ring to continuous top-up mode has improved beam stability and eliminated beam drift over the course of typical BioSAXS experiments. Single exposure times have been reduced to 2 s for 3.560 mg ml−1 lysozyme with an average quality factor I/σ of 20 in the Guinier region. A novel disposable plastic sample cell design that incorporates lower background X-ray window material provides users with a more pristine sample environment than previously available. Systematic comparisons of common X-ray window materials bonded to the cell have also been extended to the wide-angle regime, offering new insight into best choices for various q-space ranges. In addition, a quantitative assessment of signal-to-noise levels has been performed on the station to allow users to estimate necessary exposure times for obtaining usable signals in the Guinier regime. Users also have access to a new BioSAXS sample preparation laboratory which houses essential wet-chemistry equipment and biophysical instrumentation. User experiments at the upgraded BioSAXS station have been on-going since commissioning of the beamline in Summer 2013. A planned upgrade of the G1 insertion device to an undulator for the Winter 2014 cycle is expected to further improve flux by an order of magnitude. PMID:25537607

  8. SU-F-J-08: Quantitative SPECT Imaging of Ra-223 in a Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, J; Hobbs, R; Sgouros, G

    Purpose: Ra-223 therapy of prostate cancer bone metastases is being used to treat patients routinely. However, the absorbed dose distribution at the macroscopic and microscopic scales remains elusive, due to the inability to image the small activities injected. Accurate activity quantification through imaging is essential to calculate the absorbed dose in organs and sub-units in radiopharmaceutical therapy, enabling personalized absorbed dose-based treatment planning methodologies and more effective and optimal treatments. Methods: A 22 cm diameter by 20 cm long cylindrical phantom, containing a 3.52 cm diameter sphere, was used. A total of 2.01 MBq of Ra-223 was placed in themore » phantom with 177.6 kBq in the sphere. Images were acquired on a dual-head Siemens Symbia T16 gamma camera using three 20% full-width energy windows and centered at 84, 154, and 269 keV (120 projections, 360° rotation, 45 s per view). We have implemented reconstruction of Ra-223 SPECT projections using OS-EM (up to 20 iterations of 10 subsets) with compensation for attenuation using CT-based attenuation maps, collimator-detector response (CDR) (including septal penetration, scatter and Pb x-ray modeling), and scatter in the patient using the effective source scatter estimation (ESSE) method. The CDR functions and scatter kernels required for ESSE were computed using the SIMIND MC simulation code. All Ra-223 photon emissions as well as gamma rays from the daughters Rn-219 and Bi-211 were modeled. Results: The sensitivity of the camera in the three combined windows was 107.3 cps/MBq. The visual quality of the SPECT images was reasonably good and the activity in the sphere was 27% smaller than the true activity. This underestimation is likely due to partial volume effect. Conclusion: Absolute quantitative Ra-223 SPECT imaging is achievable with careful attention to compensate for image degrading factors and system calibration.« less

  9. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.

  10. TH-A-18C-10: Dynamic Intensity Weighted Region of Interest Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, E; Pan, X; Pelizzari, C

    2014-06-15

    Purpose: For image guidance tasks full image quality is not required throughout the entire image. With dynamic filtration of the kV imaging beam the noise properties of the CT image can be locally controlled, providing a high quality image around the target volume with a lower quality surrounding region while providing substantial dose sparing to the patient as well as reduced scatter fluence on the detector. Methods: A dynamic collimation device with 3mm copper blades has been designed to mount in place of the bowtie filter on the On-Board Imager (Varian Medical Systems). The beam intensity is reduced by 95%more » behind the copper filters and the aperture is controlled dynamically to conformally illuminate a given ROI during a standard cone-beam CT scan. A data correction framework to account for the physical effects of the collimator prior to reconstruction was developed. Furthermore, to determine the dose savings and scatter reduction a monte carlo model was built in BEAMnrc with specifics from the Varian Monte Carlo Data Package. The MC model was validated with Gafchromic film. Results: The reconstructed image shows image quality comparable to a standard scan in the specified ROI, with higher noise and streaks in the outer region but still sufficient information for alignment to high contrast structures. The monte carlo modeling showed that the scatter-to-primary ratio was reduced from 1.26 for an unfiltered scan to 0.45 for an intensity weighted scan, suggesting that image quality may be improved in the inner ROI. Dose in the inner region was reduced 10–15% due to reduced scatter and by as much as 75% in the outer region. Conclusion: Dynamic intensity-weighted ROI imaging allows reduction of imaging dose to sensitive organs away from the target region while providing images that retain their utility for patient setup and procedure guidance. Funding was provided in part by Varian Medical Systems and NIH Grants 1RO1CA120540, T32EB002103, S10 RR021039 and P30 CA14599. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of any of the supporting organizations.« less

  11. Optical aberrations, retinal image quality and eye growth: Experimentation and modeling

    NASA Astrophysics Data System (ADS)

    Tian, Yibin

    2007-12-01

    Retinal image quality is important for normal eye growth. Optical aberrations are of interest for two reasons: first, they degrade retinal images; second, they might provide some cues to defocus. Higher than normal ocular aberrations have been previously associated with human myopia. However, these studies were cross-sectional in design, and only reported aberrations in terms of root mean square (RMS) errors of Zernike coefficients, a poor metric of optical quality. This dissertation presents results from investigations of ocular optical aberrations, retinal image quality and eye growth in chicks and humans. A number of techniques were utilized, including Shack-Hartmann aberrometry, high-frequency A-scan ultrasonography, ciliary nerve section (CNX), photorefractive keratectomy (PRK) as well as computer simulations and modeling. A technique to extract light scatter information from Shack-Hartmann images was also developed. The main findings of the dissertation are summarized below. In young chicks, most ocular aberrations decreased with growth in both normal and CNX eyes, and there were diurnal fluctuations in some aberrations. Modeling suggested active reduction in higher order aberrations (HOAs) during early development. Although CNX eyes manifested greater than normal HOAs, they showed near normal growth. Retinal image degradation varied greatly among individual eyes post-PRK in young chicks. Including light scatter information into analyses of retinal image quality better estimated the latter. Albino eyes showed more severe retinal image degradation than normal eyes, due to increased optical aberrations and light scatter, but their growth was similar to those of normal eyes, implying that they are relatively insensitive to retina image quality. Although the above results questioned the influence of optical aberrations on early ocular growth, some optical quality metrics, derived from optical aberrations data, could predict how much the eyes of young chicks subsequently elongated. The performance of some focus measures was very poor when non-defocus aberrations exceeded a certain level; presumably, these non-defocus aberrations might interfere with the eye's ability to interpret defocus. In anisomyopic human adults, more myopic eyes had larger anterior and vitreous chambers, greater astigmatism, and more positive spherical aberration. However, compared to isometropes, only interocular differences in spherical equivalent refractive errors were significantly increased.

  12. Single and Multiple Scattered Solar Radiation

    DTIC Science & Technology

    1982-08-30

    so that factor can be expected to vary considerably from one scattering point to the next. The monochromatic intensity at the observer due to all of...the single scattering sources within the line-of-sight is obtained by summing over the optical path the product of the source function and the...the observer. Using a dot product 1)etwecen position_ vectors on the unit sphere, it can be Chown that cosA cost coss cost) cos4o + 0 S 0 0 "+ cost

  13. Dust scattering from the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Narayan, Sathya; Murthy, Jayant; Karuppath, Narayanankutty

    2017-04-01

    We present an analysis of the diffuse ultraviolet emission near the Taurus Molecular Cloud based on observations made by the Galaxy Evolution Explorer. We used a Monte Carlo dust scattering model to show that about half of the scattered flux originates in the molecular cloud with 25 per cent arising in the foreground and 25 per cent behind the cloud. The best-fitting albedo of the dust grains is 0.3, but the geometry is such that we could not constrain the phase function asymmetry factor (g).

  14. Parity Nonconservation in Proton-water Scattering at 800 MeV

    DOE R&D Accomplishments Database

    Nagle, D. E.; Bowman, J. D.; Carlini, R.; Mischke, R. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R.

    1982-01-01

    A search has been made for parity nonconservation in the scattering of 800 MeV polarized protons from an unpolarized water target. The result is for the longitudinal asymmetry, A{sub L} = +(6.6 +- 3.2) x 10{sup -7}. Control runs with Pb, using a thickness which gave equivalent beam broadening from Coulomb multiple scattering, but a factor of ten less nuclear interactions than the water target, gave A{sub L} = -(0.5 +- 6.0) x 10{sup -7}.

  15. Application of the diagnostic radiological index of protection to protective garments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasciak, Alexander S.; Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Wagner, Louis K.

    2015-02-15

    Purpose: Previously, the diagnostic radiological index of protection (DRIP) was proposed as a metric for quantifying the protective value of radioprotective garments. The DRIP is a weighted sum of the percent transmissions of different radiation beams through a garment. Ideally, the beams would represent the anticipated stray radiation encountered during clinical use. However, it is impractical to expect a medical physicist to possess the equipment necessary to accurately measure transmission of scattered radiation. Therefore, as a proof of concept, the authors tested a method that applied the DRIP to clinical practice. Methods: Primary beam qualities used in interventional cardiology andmore » radiology were observed and catalogued. Based on the observed range of beam qualities, five representative clinical primary beam qualities, specified by kV and added filtration, were selected for this evaluation. Monte Carlo simulations were performed using these primary beams as source definitions to generate scattered spectra from the clinical primary beams. Using numerical optimization, ideal scatter mimicking primary beams, specified by kV and added aluminum filtration, were matched to the scattered spectra according to half- and quarter-value layers and spectral shape. To within reasonable approximation, these theoretical scatter-mimicking primary beams were reproduced experimentally in laboratory x ray beams and used to measure transmission through pure lead and protective garments. For this proof of concept, the DRIP for pure lead and the garments was calculated by assigning equal weighting to percent transmission measurements for each of the five beams. Finally, the areal density of lead and garments was measured for consideration alongside the DRIP to assess the protective value of each material for a given weight. Results: The authors identified ideal scatter mimicking primary beams that matched scattered spectra to within 0.01 mm for half- and quarter-value layers in copper and within 5% for the shape function. The corresponding experimental scatter-mimicking primary beams matched the Monte Carlo generated scattered spectra with maximum deviations of 6.8% and 6.6% for half- and quarter-value layers. The measured DRIP for 0.50 mm lead sheet was 2.0, indicating that it transmitted, on average, 2% of incident radiation. The measured DRIP for a lead garment and one lead-alternative garment closely matched that for pure lead of 0.50 mm thickness. The DRIP for other garments was substantially higher than 0.50 mm lead (3.9–5.4), indicating they transmitted about twice as much radiation. When the DRIP was plotted versus areal density, it was clear that, of the garments tested, none were better than lead on a weight-by-weight basis. Conclusions: A method for measuring the DRIP for protective garments using scatter-mimicking primary beams was developed. There was little discernable advantage in protective value per unit weight for lead-alternative versus lead-only garments. Careful consideration must be given to the balance of protection and weight when choosing a lead-alternative protective garment with a lower specified “lead equivalence,” e.g., 0.35 mm. The DRIP has the potential to resolve this dilemma. Reporting the DRIP relative to areal density is an ideal metric for objective comparisons of protective garment performance, considering both protective value in terms of transmission of radiation and garment weight.« less

  16. Thermal vibrations in the metallic glass Cu64Zr36

    NASA Astrophysics Data System (ADS)

    Schönfeld, Bernd; Zemp, Jérôme; Stuhr, Uwe

    2017-01-01

    Neutrons with 14.7 and 34 meV energy were used to determine the elastic and inelastic part of the structure factor for the metallic glass Cu64Zr36 at 250 K. Based on the temperature dependence of the elastic scattering between 150 K and RT, an average mean-square displacement < {{u}2}> =0.027(3) ~{{{\\mathringA}}2} at 250 K is obtained. The experimental scattering-vector dependence of inelastic scattering in reference to elastic scattering is found to be well described by the Debye model. Both results are supported by molecular dynamics simulations. A procedure is presented to separate the elastic part also in total x-ray scattering. This allows the smearing of structural information due to thermal vibrations to be eliminated.

  17. Software design of control system of CCD side-scatter lidar

    NASA Astrophysics Data System (ADS)

    Kuang, Zhiqiang; Liu, Dong; Deng, Qian; Zhang, Zhanye; Wang, Zhenzhu; Yu, Siqi; Tao, Zongming; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Because of the existence of blind zone and transition zone, the application of backscattering lidar in near-ground is limited. The side-scatter lidar equipped with the Charge Coupled Devices (CCD) can separate the transmitting and receiving devices to avoid the impact of the geometric factors which is exited in the backscattering lidar and, detect the more precise near-ground aerosol signals continuously. Theories of CCD side-scatter lidar and the design of control system are introduced. The visible control of laser and CCD and automatic data processing method of the side-scatter lidar are developed by using the software of Visual C #. The results which are compared with the calibration of the atmospheric aerosol lidar data show that signals from the CCD side- scatter lidar are convincible.

  18. Nucleon Form Factors above 6 GeV

    DOE R&D Accomplishments Database

    Taylor, R. E.

    1967-09-01

    This report describes the results from a preliminary analysis of an elastic electron-proton scattering experiment... . We have measured cross sections for e-p scattering in the range of q{sup 2} from 0.7 to 25.0 (GeV/c){sup 2}, providing a large region of overlap with previous measurements. In this experiment we measure the cross section by observing electrons scattered from a beam passing through a liquid hydrogen target. The scattered particles are momentum analyzed by a magnetic spectrometer and identified as electrons in a total absorption shower counter. Data have been obtained with primary electron energies from 4.0 to 17.9 GeV and at scattering angles from 12.5 to 35.0 degrees. In general, only one measurement of a cross section has been made at each momentum transfer.

  19. Tissue characterization with ballistic photons: counting scattering and/or absorption centres

    NASA Astrophysics Data System (ADS)

    Corral, F.; Strojnik, M.; Paez, G.

    2015-03-01

    We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach-Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path-integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.

  20. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    NASA Astrophysics Data System (ADS)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  1. In Situ observation of dark current emission in a high gradient rf photocathode gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.

    Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less

  2. In Situ observation of dark current emission in a high gradient rf photocathode gun

    DOE PAGES

    Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; ...

    2016-08-15

    Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less

  3. Mixing Single Scattering Properties in Vector Radiative Transfer for Deterministic and Stochastic Solutions

    NASA Astrophysics Data System (ADS)

    Mukherjee, L.; Zhai, P.; Hu, Y.; Winker, D. M.

    2016-12-01

    Among the primary factors, which determine the polarized radiation, field of a turbid medium are the single scattering properties of the medium. When multiple types of scatterers are present, the single scattering properties of the scatterers need to be properly mixed in order to find the solutions to the vector radiative transfer theory (VRT). The VRT solvers can be divided into two types: deterministic and stochastic. The deterministic solver can only accept one set of single scattering property in its smallest discretized spatial volume. When the medium contains more than one kind of scatterer, their single scattering properties are averaged, and then used as input for the deterministic solver. The stochastic solver, can work with different kinds of scatterers explicitly. In this work, two different mixing schemes are studied using the Successive Order of Scattering (SOS) method and Monte Carlo (MC) methods. One scheme is used for deterministic and the other is used for the stochastic Monte Carlo method. It is found that the solutions from the two VRT solvers using two different mixing schemes agree with each other extremely well. This confirms the equivalence to the two mixing schemes and also provides a benchmark for the VRT solution for the medium studied.

  4. Two-dimensional antiscatter grid: A novel scatter rejection device for Cone-beam computed tomography.

    PubMed

    Alexeev, Timur; Kavanagh, Brian; Miften, Moyed; Altunbas, Cem

    2018-02-01

    Scattered radiation remains to be a major cause of image quality degradation in Flat Panel Detector (FPD)-based Cone-beam computed tomography (CBCT). We have been investigating a novel two-dimensional antiscatter grid (2D-ASG) concept to reduce scatter intensity, and hence improve CBCT image quality. We present the first CBCT imaging experiments performed with the 2D-ASG prototype, and demonstrate its efficacy in improving CBCT image quality. A 2D-ASG prototype with septa focused to x-ray source was additively manufactured from tungsten and mounted on a Varian TrueBeam CBCT system. CBCT projections of phantoms were acquired with an offset detector geometry using TrueBeam's "developer" mode. To minimize the effect of gantry flex, projections were gain corrected on angle-specific bases. CBCT images were reconstructed using a filtered backprojection algorithm and image quality improvement was quantified by measuring contrast-to-noise ratio (CNR) and CT number accuracy in images acquired with no antiscatter grid (NO-ASG), conventional one dimensional antiscatter grid (1D-ASG), and the 2D-ASG prototype. A significant improvement in contrast resolution was achieved using our 2D-ASG prototype compared to results of 1D-ASG and NO-ASG acquisitions. Compared to NO-ASG and 1D-ASG experiments, the CNR of material inserts improved by as much as 86% and 54% respectively. Using 2D-ASG, CT number underestimation in water equivalent material section of the phantom was reduced by up to 325 HU when compared to NO-ASG and up to 179 HU when compared to 1D-ASG. We successfully performed the first CBCT imaging experiments with a 2D-ASG prototype. 2D-ASG provided significantly higher CT number accuracy, higher CNR, and diminished scatter-induced image artifacts in qualitative evaluations. We strongly believe that utilization of a 2D-ASG may potentially lead to better soft tissue visualization in CBCT and may enable novel clinical applications that require high CT number accuracy. © 2017 American Association of Physicists in Medicine.

  5. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstratedmore » for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.« less

  6. A New Clinical Instrument for The Early Detection of Cataract Using Dynamic Light Scattering and Corneal Topography

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Datiles, Manuel B., III; King, James F.

    2000-01-01

    A growing cataract can be detected at the molecular level using the technique of dynamic light scattering (DLS). However, the success of this method in clinical use depends upon the precise control of the scattering volume inside a patient's eye and especially during patient's repeat visits. This is important because the scattering volume (cross-over region between the scattered fight and incident light) inside the eye in a high-quality DLS set-up is very small (few microns in dimension). This precise control holds the key for success in the longitudinal studies of cataract and during anti-cataract drug screening. We have circumvented these problems by fabricating a new DLS fiber optic probe with a working distance of 40 mm and by mounting it inside a cone of a corneal analyzer. This analyzer is frequently used in mapping the corneal topography during PRK (photorefractive keratectomy) and LASIK (laser in situ keratomileusis) procedures in shaping of the cornea to correct myopia. This new instrument and some preliminary clinical tests on one of us (RRA) showing the data reproducibility are described.

  7. New clinical instrument for the early detection of cataract using dynamic light scattering and corneal topography

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Datiles, Manuel B., III; King, James F.

    2000-06-01

    A growing cataract can be detected at the molecular level using the technique of dynamic light scattering (DLS). However, the success of this method in clinical use depends upon the precise control of the scattering volume inside a patient's eye and especially during patient's repeat visits. This is important because the scattering volume (cross-over region between the scattered light and incident light) inside the eye in a high-quality DLS set-up is very small (few microns in dimension). This precise control holds the key for success in the longitudinal studies of cataract and during anti-cataract drug screening. We have circumvented these problems by fabricating a new DLS fiber optic probe with a working distance of 40 mm and by mounting it inside a cone of a corneal analyzer. This analyzer is frequently used in mapping the corneal topography during PRK (photorefractive keratectomy) and LASIK (laser in situ keratomileusis) procedures in shaping of the cornea to correct myopia. This new instrument and some preliminary clinical tests on one of us (RRA) showing the data reproducibility are described.

  8. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, D.; Barbrel, B.; Falcone, R. W.

    2015-05-15

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability ofmore » spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.« less

  9. Dynamic intensity-weighted region of interest imaging for conebeam CT

    PubMed Central

    Pearson, Erik; Pan, Xiaochuan; Pelizzari, Charles

    2017-01-01

    BACKGROUND Patient dose from image guidance in radiotherapy is small compared to the treatment dose. However, the imaging beam is untargeted and deposits dose equally in tumor and healthy tissues. It is desirable to minimize imaging dose while maintaining efficacy. OBJECTIVE Image guidance typically does not require full image quality throughout the patient. Dynamic filtration of the kV beam allows local control of CT image noise for high quality around the target volume and lower quality elsewhere, with substantial dose sparing and reduced scatter fluence on the detector. METHODS The dynamic Intensity-Weighted Region of Interest (dIWROI) technique spatially varies beam intensity during acquisition with copper filter collimation. Fluence is reduced by 95% under the filters with the aperture conformed dynamically to the ROI during cone-beam CT scanning. Preprocessing to account for physical effects of the collimator before reconstruction is described. RESULTS Reconstructions show image quality comparable to a standard scan in the ROI, with higher noise and streak artifacts in the outer region but still adequate quality for patient localization. Monte Carlo modeling shows dose reduction by 10–15% in the ROI due to reduced scatter, and up to 75% outside. CONCLUSIONS The presented technique offers a method to reduce imaging dose by accepting increased image noise outside the ROI, while maintaining full image quality inside the ROI. PMID:27257875

  10. Scattered image artifacts from cone beam computed tomography and its clinical potential in bone mineral density estimation.

    PubMed

    Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.

  11. Commissioning a passive-scattering proton therapy nozzle for accurate SOBP delivery.

    PubMed

    Engelsman, M; Lu, H M; Herrup, D; Bussiere, M; Kooy, H M

    2009-06-01

    Proton radiotherapy centers that currently use passively scattered proton beams do field specific calibrations for a non-negligible fraction of treatment fields, which is time and resource consuming. Our improved understanding of the passive scattering mode of the IBA universal nozzle, especially of the current modulation function, allowed us to re-commission our treatment control system for accurate delivery of SOBPs of any range and modulation, and to predict the output for each of these fields. We moved away from individual field calibrations to a state where continued quality assurance of SOBP field delivery is ensured by limited system-wide measurements that only require one hour per week. This manuscript reports on a protocol for generation of desired SOBPs and prediction of dose output.

  12. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulsen, Per Rugaard, E-mail: per.poulsen@rm.dk; Jonassen, Johnny; Jensen, Carsten

    2015-11-15

    Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with amore » 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12.2%, 2.2%, and 0.9% in the first, second, and third frame after an exposure. The CNR model predicted the CNR with triggered image readout with a mean absolute error of 2.0% for the gold marker. Conclusions: A device that triggers readout of unexposed frames during kV fluoroscopy was built and shown to greatly improve the quality of intratreatment kV images. A simple theoretical model successfully described the CNR improvements with the device.« less

  13. A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions

    PubMed Central

    Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco

    2016-01-01

    In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931

  14. Visual air quality simulation techniques

    NASA Astrophysics Data System (ADS)

    Molenar, John V.; Malm, William C.; Johnson, Christopher E.

    Visual air quality is primarily a human perceptual phenomenon beginning with the transfer of image-forming information through an illuminated, scattering and absorbing atmosphere. Visibility, especially the visual appearance of industrial emissions or the degradation of a scenic view, is the principal atmospheric characteristic through which humans perceive air pollution, and is more sensitive to changing pollution levels than any other air pollution effect. Every attempt to quantify economic costs and benefits of air pollution has indicated that good visibility is a highly valued and desired environmental condition. Measurement programs can at best approximate the state of the ambient atmosphere at a few points in a scenic vista viewed by an observer. To fully understand the visual effect of various changes in the concentration and distribution of optically important atmospheric pollutants requires the use of aerosol and radiative transfer models. Communication of the output of these models to scientists, decision makers and the public is best done by applying modern image-processing systems to generate synthetic images representing the modeled air quality conditions. This combination of modeling techniques has been under development for the past 15 yr. Initially, visual air quality simulations were limited by a lack of computational power to simplified models depicting Gaussian plumes or uniform haze conditions. Recent explosive growth in low cost, high powered computer technology has allowed the development of sophisticated aerosol and radiative transfer models that incorporate realistic terrain, multiple scattering, non-uniform illumination, varying spatial distribution, concentration and optical properties of atmospheric constituents, and relative humidity effects on aerosol scattering properties. This paper discusses these improved models and image-processing techniques in detail. Results addressing uniform and non-uniform layered haze conditions in both urban and remote pristine areas will be presented.

  15. SU-E-T-59: Calculations of Collimator Scatter Factors (Sc) with and Without Custom-Made Build-Up Caps for CyberKnife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wokoma, S; Yoon, J; Jung, J

    2014-06-01

    Purpose: To investigate the impact of custom-made build-up caps for a diode detector in robotic radiosurgery radiation fields with variable collimator (IRIS) for collimator scatter factor (Sc) calculation. Methods: An acrylic cap was custom-made to fit our SFD (IBA Dosimetry, Germany) diode detector. The cap has thickness of 5 cm, corresponding to a depth beyond electron contamination. IAEA phase space data was used for beam modeling and DOSRZnrc code was used to model the detector. The detector was positioned at 80 cm source-to-detector distance. Calculations were performed with the SFD, with and without the build-up cap, for clinical IRIS settingsmore » ranging from 7.5 to 60 mm. Results: The collimator scatter factors were calculated with and without 5 cm build-up cap. They were agreed within 3% difference except 15 mm cone. The Sc factor for 15 mm cone without buildup was 13.2% lower than that with buildup. Conclusion: Sc data is a critical component in advanced algorithms for treatment planning in order to calculate the dose accurately. After incorporating build-up cap, we discovered differences of up to 13.2 % in Sc factors in the SFD detector, when compared against in-air measurements without build-up caps.« less

  16. Pulsed holographic system for imaging through spatially extended scattering media

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.; Judd, K. P.; Lebow, P.; Watnik, A. T.; Novak, K. M.; Lindle, J. R.

    2017-10-01

    Imaging through scattering media is a highly sought capability for military, industrial, and medical applications. Unfortunately, nearly all recent progress was achieved in microscopic light propagation and/or light propagation through thin or weak scatterers which is mostly pertinent to medical research field. Sensing at long ranges through extended scattering media, for example turbid water or dense fog, still represents significant challenge and the best results are demonstrated using conventional approaches of time- or range-gating. The imaging range of such systems is constrained by their ability to distinguish a few ballistic photons that reach the detector from the background, scattered, and ambient photons, as well as from detector noise. Holography can potentially enhance time-gating by taking advantage of extra signal filtering based on coherence properties of the ballistic photons as well as by employing coherent addition of multiple frames. In a holographic imaging scheme ballistic photons of the imaging pulse are reflected from a target and interfered with the reference pulse at the detector creating a hologram. Related approaches were demonstrated previously in one-way imaging through thin biological samples and other microscopic scale scatterers. In this work, we investigate performance of holographic imaging systems under conditions of extreme scattering (less than one signal photon per pixel signal), demonstrate advantages of coherent addition of images recovered from holograms, and discuss image quality dependence on the ratio of the signal and reference beam power.

  17. Comparative study of bowtie and patient scatter in diagnostic CT

    NASA Astrophysics Data System (ADS)

    Prakash, Prakhar; Boudry, John M.

    2017-03-01

    A fast, GPU accelerated Monte Carlo engine for simulating relevant photon interaction processes over the diagnostic energy range in third-generation CT systems was developed to study the relative contributions of bowtie and object scatter to the total scatter reaching an imaging detector. Primary and scattered projections for an elliptical water phantom (major axis set to 300mm) with muscle and fat inserts were simulated for a typical diagnostic CT system as a function of anti-scatter grid (ASG) configurations. The ASG design space explored grid orientation, i.e. septa either a) parallel or b) parallel and perpendicular to the axis of rotation, as well as septa height. The septa material was Tungsten. The resulting projections were reconstructed and the scatter induced image degradation was quantified using common CT image metrics (such as Hounsfield Unit (HU) inaccuracy and loss in contrast), along with a qualitative review of image artifacts. Results indicate object scatter dominates total scatter in the detector channels under the shadow of the imaged object with the bowtie scatter fraction progressively increasing towards the edges of the object projection. Object scatter was shown to be the driving factor behind HU inaccuracy and contrast reduction in the simulated images while shading artifacts and elevated loss in HU accuracy at the object boundary were largely attributed to bowtie scatter. Because the impact of bowtie scatter could not be sufficiently mitigated with a large grid ratio ASG, algorithmic correction may be necessary to further mitigate these artifacts.

  18. Monte Carlo study of neutron-ambient dose equivalent to patient in treatment room.

    PubMed

    Mohammadi, A; Afarideh, H; Abbasi Davani, F; Ghergherehchi, M; Arbabi, A

    2016-12-01

    This paper presents an analytical method for the calculation of the neutron ambient dose equivalent H* (10) regarding patients, whereby the different concrete types that are used in the surrounding walls of the treatment room are considered. This work has been performed according to a detailed simulation of the Varian 2300C/D linear accelerator head that is operated at 18MV, and silver activation counter as a neutron detector, for which the Monte Carlo MCNPX 2.6 code is used, with and without the treatment room walls. The results show that, when compared to the neutrons that leak from the LINAC, both the scattered and thermal neutrons are the major factors that comprise the out-of field neutron dose. The scattering factors for the limonite-steel, magnetite-steel, and ordinary concretes have been calculated as 0.91±0.09, 1.08±0.10, and 0.371±0.01, respectively, while the corresponding thermal factors are 34.22±3.84, 23.44±1.62, and 52.28±1.99, respectively (both the scattering and thermal factors are for the isocenter region); moreover, the treatment room is composed of magnetite-steel and limonite-steel concretes, so the neutron doses to the patient are 1.79 times and 1.62 times greater than that from an ordinary concrete composition. The results also confirm that the scattering and thermal factors do not depend on the details of the chosen linear accelerator head model. It is anticipated that the results of the present work will be of great interest to the manufacturers of medical linear accelerators. Copyright © 2016. Published by Elsevier Ltd.

  19. DetOx: a program for determining anomalous scattering factors of mixed-oxidation-state species.

    PubMed

    Sutton, Karim J; Barnett, Sarah A; Christensen, Kirsten E; Nowell, Harriott; Thompson, Amber L; Allan, David R; Cooper, Richard I

    2013-01-01

    Overlapping absorption edges will occur when an element is present in multiple oxidation states within a material. DetOx is a program for partitioning overlapping X-ray absorption spectra into contributions from individual atomic species and computing the dependence of the anomalous scattering factors on X-ray energy. It is demonstrated how these results can be used in combination with X-ray diffraction data to determine the oxidation state of ions at specific sites in a mixed-valance material, GaCl(2).

  20. Hadron mass corrections in semi-inclusive deep-inelastic scattering

    DOE PAGES

    Guerrero Teran, Juan Vicente; Ethier, James J.; Accardi, Alberto; ...

    2015-09-24

    We found that the spin-dependent cross sections for semi-inclusive lepton-nucleon scattering are derived in the framework of collinear factorization, including the effects of masses of the target and produced hadron at finite Q 2. At leading order the cross sections factorize into products of parton distribution and fragmentation functions evaluated in terms of new, mass-dependent scaling variables. Furthermore, the size of the hadron mass corrections is estimated at kinematics relevant for current and future experiments, and the implications for the extraction of parton distributions from semi-inclusive measurements are discussed.

Top